
8
MultiFreedom
Constraints I

8–1



Chapter 8: MULTIFREEDOM CONSTRAINTS I

TABLE OF CONTENTS

Page
§8.1. Classification of Constraint Conditions 8–3

§8.1.1. MultiFreedom Constraints . . . . . . . . . . . . . 8–3
§8.1.2. Methods for Imposing Multifreedom Constraints . . . . . 8–4
§8.1.3. *MFC Matrix Forms . . . . . . . . . . . . . . . 8–5

§8.2. The Example Structure 8–6

§8.3. The Master-Slave Method 8–7
§8.3.1. A One-Constraint Example . . . . . . . . . . . . 8–7
§8.3.2. Multiple Homogeneous MFCs . . . . . . . . . . . . 8–8
§8.3.3. Nonhomogeneous MFCs . . . . . . . . . . . . . 8–9
§8.3.4. *The General Case . . . . . . . . . . . . . . . 8–10
§8.3.5. *Retaining the Original Freedoms . . . . . . . . . . 8–10

§8.4. Model Reduction by Kinematic Constraints 8–11

§8.5. Assessment of the Master-Slave Method 8–13

§8. Notes and Bibliography. . . . . . . . . . . . . . . . . . . . . . 8–14

§8. References . . . . . . . . . . . . . . . . . . . . . . 8–14

§8. Exercises . . . . . . . . . . . . . . . . . . . . . . 8–15

8–2



§8.1 CLASSIFICATION OF CONSTRAINT CONDITIONS

§8.1. Classification of Constraint Conditions

In previous Chapters we have considered structural support conditions that are mathematically
expressable as constraints on individual degrees of freedom:

nodal displacement component = prescribed value. (8.1)

These are called single-freedom constraints. Chapter 3 explains how to incorporate constraints of
this form into the master stiffness equations, using hand- or computer-oriented techniques. The
displacement boundary conditions studied in Chapter 7, which include modeling of symmetry and
antisymmetry, lead to constraints of this form.

For example:

ux4 = 0, uy9 = 0.6. (8.2)

These are two single-freedom constraints. The first one is homogeneous while the second one is
non-homogeneous. These attributes are defined below.

§8.1.1. MultiFreedom Constraints

The next step up in complexity involves multifreedom equality constraints, or multifreedom con-
straints for short, the last name being acronymed to MFC. These are functional equations that
connect two or more displacement components:

F(nodal displacement components) = prescribed value, (8.3)

where function F vanishes if all its nodal displacement arguments do. Equation (8.3), in which all
displacement components are in the left-hand side, is called the canonical form of the constraint.

An MFC of this form is called multipoint or multinode if it involves displacement components at
different nodes. The constraint is called linear if all displacement components appear linearly on
the left-hand-side, and nonlinear otherwise.

The constraint is called homogeneous if, upon transfering all terms that depend on displacement
components to the left-hand side, the right-hand side — the “prescribed value” in (8.3) —is zero.
It is called non-homogeneous otherwise.

In this and next Chapter only linear constraints will be studied. Furthermore more attention is
devoted to the homogeneous case, because it arises more frequently in practice.

Remark 8.1. The most general constraint class is that of inequality constraints, such as uy5 − 2ux2 ≥ 0.5.
These constraints are relatively infrequent in linear structural analysis, except in problems that involve contact
conditions. They are of paramount importance, however, in other fields such as optimization and control.

8–3



Chapter 8: MULTIFREEDOM CONSTRAINTS I

Unmodified master stiffness 
equations  K u = f   before applying MFCs

Apply MFCs

Modified stiffness equations  K u = f

Equation solver returns  u

Recover  u  if necessary

^

^

^ ^

master-slave
penalty functions
Lagrange multipliers

by

Figure 8.1. Schematics of MFC application.

Example 8.1. Here are three instances of MFCs:

ux2 = 1
2 uy2, ux2 − 2ux4 + ux6 = 1

4 , (x5 + ux5 − x3 − ux3)
2 + (y5 + uy5 − y3 − uy3)

2 = 0. (8.4)

The first one is linear and homogeneous. It is not a multipoint constraint because it involves the displacement
components of one node: 2.

The second one is multipoint because it involves three nodes: 2, 4 and 6. It is linear and non-homogeneous.

The last one is multipoint, nonlinear and homogeneous. Geometrically it expresses that the distance between
nodes 3 and 5 in two-dimensional motions on the {x, y} plane remains constant. This kind of constraint appears
in geometrically nonlinear analysis of structures, which is a topic beyond the scope of this book.

§8.1.2. Methods for Imposing Multifreedom Constraints

Accounting for multifreedom constraints is done — at least conceptually — by changing the
assembled master stiffness equations to produce a modified system of equations:

K u = f MFC⇒ K̂ û = f̂. (8.5)

The modification process (8.5) is also called constraint application or constraint imposition. The
modified system is that submitted to the equation solver, which returns û.

The procedure is flowcharted in Figure 8.1. The sequence of operations sketched therein applies to
all methods outlined below.

Three methods for treating MFCs are discussed in this and the next Chapter:

1. Master-Slave Elimination. The degrees of freedom involved in each MFC are separated into
master and slave freedoms. The slave freedoms are then explicitly eliminated. The modified
equations do not contain the slave freedoms.

2. Penalty Augmentation. Also called the penalty function method. Each MFC is viewed as
the presence of a fictitious elastic structural element called penalty element that enforces it
approximately. This element is parametrized by a numerical weight. The exact constraint

8–4



§8.1 CLASSIFICATION OF CONSTRAINT CONDITIONS

is recovered if the weight goes to infinity. The MFCs are imposed by augmenting the finite
element model with the penalty elements.

3. Lagrange Multiplier Adjunction. For each MFC an additional unknown is adjoined to the
master stiffness equations. Physically this set of unknowns represent constraint forces that
would enforce the constraints exactly should they be applied to the unconstrained system.

For each method the exposition tries to give first the basic flavor by working out the same example
for each method. The general technique is subsequently presented in matrix form for completeness
but is considered an advanced topic.

Conceptually, imposing MFCs is not different from the procedure discussed in Chapter 3 for single-
freedom constraints. The master stiffness equations are assembled ignoring all constraints. Then
the MFCs are imposed by appropriate modification of those equations. There are, however, two
important practical differences:

1. The modification process is not unique because there are alternative constraint imposition
methods, namely those listed above. These methods offer tradeoffs in generality, programming
implementation complexity, computational effort, numerical accuracy and stability.

2. In the implementation of some of these methods — notably penalty augmentation — constraint
imposition and assembly are carried out simultaneously. In that case the framework “first
assemble, then modify,” is not strictly respected in the actual implementation.

Remark 8.2. The three methods are also applicable, as can be expected, to the simpler case of a single-freedom
constraint such as (8.2). For most situations, however, the generality afforded by the penalty function and
Lagrange multiplier methods are not warranted. The hand-oriented reduction process discussed in Chapters 3
and 4 is in fact a special case of the master-slave elimination method in which “there is no master.”

Remark 8.3. Often both multifreedom and single-freedom constraints are prescribed. The modification
process then involves two stages: apply multifreedom constraints and apply single freedom constraints. The
order in which these are carried out is implementation dependent. Most implementations do the MFCs first,
either after the assembly is completed or during the assembly process. The reason is practical: single-freedom
constraints are often automatically taken care of by the equation solver itself.

§8.1.3. *MFC Matrix Forms

Matrix forms of linear MFCs are often convenient for compact notation. An individual constraint such as the
second one in (8.4) may be written

[ 1 −2 1 ]

[
ux2

ux4

ux6

]
= 0.25. (8.6)

In direct matrix notation:
āi ūi = gi , (no sum on i) (8.7)

in which index i (i = 1, 2, . . .) identifies the constraint, āi is a row vector, ūi collects the set of degrees of
freedom that participate in the constraint, and gi is the right hand side scalar (0.25 in the foregoinf example).
The bars over a and u distinguishes (8.7) from the expanded form (8.9) discussed below.

For method description and general proofs it is often convenient to expand matrix forms so that they embody all
degrees of freedom. For example, if (8.6) is part of a two-dimensional finite element model with 12 freedoms:

8–5



Chapter 8: MULTIFREEDOM CONSTRAINTS I

1 2 3 4 5 6 7
x

u  ,  f        u  ,  f        u  ,  f        u  ,  f        u  ,  f       u  ,  f        u  ,  f1 1 3 3 4 4 5 5 6 6 7 72 2

(1) (2) (3) (4) (5) (6)

Figure 8.2. A one-dimensional problem discretized with six bar finite
elements. The seven nodes may move only along the x direction. Subscript

x is omitted from the u’s and f ’s to reduce clutter.

ux1, uy1, . . . uy6, the left-hand side row vector may be expanded with nine zeros as follows

[ 0 0 1 0 0 0 −2 0 0 0 1 0 ]




ux1

uy1

ux2
...

uy6


 = 0.25, (8.8)

in which case the matrix notation
ai u = gi (8.9)

is used. Finally, all multifreedom constraints expressed as (8.9) may be collected into a single matrix relation:

A u = g, (8.10)

in which rectangular matrix A is formed by stacking the ai ’s as rows and column vector g is formed by stacking
the gi s as entries. If there are 12 degrees of freedom in u and 5 multifreedom constraints then A will be 5×12.

§8.2. The Example Structure

The one-dimensional finite element discretization shown in Figure 8.2 will be used throughout
Chapters 8 and 9 to illustrate the three MFC application methods. This structure consists of six bar
elements connected by seven nodes that can only displace in the x direction.

Before imposing various multifreedom constraints discussed below, the master stiffness equations
for this problem are assumed to be




K11 K12 0 0 0 0 0
K12 K22 K23 0 0 0 0
0 K23 K33 K34 0 0 0
0 0 K34 K44 K45 0 0
0 0 0 K45 K55 K56 0
0 0 0 0 K56 K66 K67

0 0 0 0 0 K67 K77







u1

u2

u3

u4

u5

u6

u7




=




f1

f2

f3

f4

f5

f6

f7




, (8.11)

or
Ku = f. (8.12)

The nonzero stiffness coefficients Ki j in (8.11) depend on the bar rigidity properties. For example, if
Ee Ae/Le = 100 for each element e = 1, . . . , 6, then K11 = K77 = 100, K22 = . . . = K66 = 200,
K12 = K23 = . . . = K67 = −100. However, for the purposes of the following treatment the

8–6



§8.3 THE MASTER-SLAVE METHOD

coefficients may be kept arbitrary. The component index x in the nodal displacements u and nodal
forces f has been omitted for brevity.

Now let us specify a multifreedom constraint that states that nodes 2 and 6 must move by the same
amount:

u2 = u6. (8.13)

Passing all node displacements to the right hand side gives the canonical form:

u2 − u6 = 0. (8.14)

Constraint conditions of this type are sometimes called rigid links because they can be mechanically
interpreted as forcing node points 2 and 6 to move together as if they were tied by a rigid member.1

We now study the imposition of constraint (8.14) on the master equations (8.11) by the methods
mentioned above. In this Chapter the master-slave method is treated. The other two methods:
penalty augmentation and Lagrange multiplier adjunction, are discussed in the following Chapter.

§8.3. The Master-Slave Method

To apply this method by hand, the MFCs are taken one at a time. For each constraint a slave degree
of freedom is chosen. The freedoms remaining in that constraint are labeled master. A new set
of degrees of freedom û is established by removing all slave freedoms from u. This new vector
contains master freedoms as well as those that do not appear in the MFCs. A matrix transformation
equation that relates u to û is generated. This equation is used to apply a congruent transformation
to the master stiffness equations. This procedure yields a set of modified stiffness equations that
are expressed in terms of the new freedom set û. Because the modified system does not contain the
slave freedoms, these have been effectively eliminated.

§8.3.1. A One-Constraint Example

The mechanics of the process is best seen by going through an example. To impose (8.14) pick u6

as slave and u2 as master. Relate the original unknowns u1, . . . u7 to the new set in which u6 is
missing: 



u1

u2

u3

u4

u5

u6

u7




=




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 1







u1

u2

u3

u4

u5

u7


 , (8.15)

This is the required transformation relation. In compact form:

u = Tû . (8.16)

1 This physical interpretation is exploited in the penalty method described in the next Chapter. In two and three dimensions
rigid link constraints are more complicated.

8–7



Chapter 8: MULTIFREEDOM CONSTRAINTS I

Replacing (8.15) into (8.12) and premultiplying by TT yields the modified system

K̂ û = f̂, in which K̂ = TT K T, f̂ = TT f. (8.17)

Carrying out the indicated matrix multiplications yields


K11 K12 0 0 0 0
K12 K22 + K66 K23 0 K56 K67

0 K23 K33 K34 0 0
0 0 K34 K44 K45 0
0 K56 0 K45 K55 0
0 K67 0 0 0 K77







u1

u2

u3

u4

u5

u7


 =




f1

f2 + f6

f3

f4

f5

f7


 , (8.18)

Equation (8.18) is a new linear system containing 6 equations in the remaining 6 unknowns: u1,
u2, u3 , u4, u5 and u7. Upon solving it, u6 is recovered from the constraint (8.13).

Remark 8.4. The form of modified system (8.17) can be remembered by a simple mnemonic rule: premultiply
both sides of T û = u by TT K, and replace K u by f on the right hand side.

Remark 8.5. For a simple freedom constraint such as u4 = 0 the only possible choice of slave is of course
u4 and there is no master. The congruent transformation is then nothing more than the elimination of u4 by
striking out rows and columns from the master stiffness equations.

Remark 8.6. For a simple MFC such as u2 = u6, it does not matter which degree of freedom is chosen as
master or unknown. Choosing u2 as slave produces a system of equations in which now u2 is missing:


K11 0 0 0 K12 0
0 K33 K34 0 K23 0
0 K34 K44 K45 0 0
0 0 K45 K55 K56 0

K12 K23 0 K56 K22 + K66 K67

0 0 0 0 K67 K77







u1

u3

u4

u5

u6

u7


 =




f1

f3

f4

f5

f2 + f6

f7


 . (8.19)

Although (8.18) and (8.19) are algebraically equivalent, the latter would be processed faster if a skyline solver
(Part III of course) is used for the modified equations.

§8.3.2. Multiple Homogeneous MFCs

The matrix equation (8.17) in fact holds for the general case of multiple homogeneous linear
constraints. Direct establishment of the transformation equation, however, is more complicated if
slave freedoms in one constraint appear as masters in another. To illustrate this point, suppose that
for the example system we have three homogeneous multifreedom constraints:

u2 − u6 = 0, u1 + 4u4 = 0, 2u3 + u4 + u5 = 0, (8.20)

Picking as slave freedoms u6, u4 and u3 from the first, second and third constraint, respectively, we
can solve for them as

u6 = u2, u4 = − 1
4 u1, u3 = − 1

2 (u4 + u5) = 1
8 u1 − 1

2 u5. (8.21)

8–8



§8.3 THE MASTER-SLAVE METHOD

Observe that solving for u3 from the third constraint brings u4 to the right-hand side. But because
u4 is also a slave freedom (it was chosen as such for the second constraint) it is replaced in favor of
u1 using u4 = − 1

4 u1. The matrix form of the transformation (8.21) is




u1

u2

u3

u4

u5

u6

u7




=




1 0 0 0
0 1 0 0
1
8 0 − 1

2 0

− 1
4 0 0 0

0 0 1 0
0 1 0 0
0 0 0 1







u1

u2

u5

u7


 , (8.22)

The modified system is now formed through the congruent transformation (8.17). Note that the
slave freedoms selected from each constraint must be distinct; for example the choice u6, u4, u4

would be inadmissible as long as the constraints are independent. This rule is easy to enforce when
slave freedoms are chosen by hand, but can lead to implementation and numerical difficulties when
it is programmed as an automated procedure, as further discussed later.

Remark 8.7. The three MFCs (8.20) with u6, u4 and u2 chosen as slaves and u1, u2 and u5 chosen as masters,
may be presented in the partitioned matrix form:[

0 0 1
0 4 0
2 1 0

][
u3

u4

u6

]
=

[
0 1 0

−1 0 0
0 0 −1

][
u1

u2

u5

]
(8.23)

This may be compactly written Asus + Amum = 0. Solving for the slave freedoms gives us = −A−1
s Amum .

Expanding with zeros to fill out u and û produces (8.22). This general matrix form is considered in §8.4.4.
Note that non-singularity of As is essential for this method to work.

§8.3.3. Nonhomogeneous MFCs

Extension to non-homogeneous constraints is immediate. In this case he transformation equation
becomes non-homogeneous. For example suppose that (8.14) has a nonzero prescribed value:

u2 − u6 = 0.2 (8.24)

Nonzero RHS values such as 0.2 in (8.24) may be often interpreted physically as “gaps” (thus the
use of the symbol g in the matrix form). Chose u6 again as slave: u6 = u2 − 0.2, and build the
transformation 



u1

u2

u3

u4

u5

u6

u7




=




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 1







u1

u2

u3

u4

u5

u7


 +




0
0
0
0
0

−0.2
0




. (8.25)

In compact matrix notation,

u = T û + g. (8.26)

8–9



Chapter 8: MULTIFREEDOM CONSTRAINTS I

Here the constraint gap vector g is nonzero and T is the same as before. To get the modified system
applying the shortcut rule of Remark 8.4, premultiply both sides of (8.26) by TT K, replace Ku by
f, and pass the data to the RHS:

K̂ û = f̂, in which K̂ = TT K T, f̂ = TT (f − K g). (8.27)

Upon solving (8.27) for û, the complete displacement vector is recovered from (8.26). For the MFC
(8.24) this technique gives the system




K11 K12 0 0 0 0
K12 K22 + K66 K23 0 K56 K67

0 K23 K33 K34 0 0
0 0 K34 K44 K45 0
0 K56 0 K45 K55 0
0 K67 0 0 0 K77







u1

u2

u3

u4

u5

u7


 =




f1

f2 + f6 − 0.2K66

f3

f4

f5 − 0.2K56

f7 − 0.2K67


 . (8.28)

See Exercise 8.2 for multiple non-homogeneous MFCs.

§8.3.4. *The General Case

For implementation in general-purpose programs the master-slave method can be described as follows. The
degrees of freedoms in u are classified into three types: independent or unconstrained, masters and slaves.
(The unconstrained freedoms are those that do not appear in any MFC.) Label these sets as uu , um and us ,
respectively, and partition the stiffness equations accordingly:[

Kuu Kum Kus

KT
um Kmm Kms

KT
us KT

ms Kss

][
uu

um

us

]
=

[
fu

fm

fs

]
(8.29)

The MFCs may be written in matrix form as

Amum + Asus = gA, (8.30)

where As is assumed square and nonsingular. If so we can solve for the slave freedoms:

us = −A−1
s Am um + A−1

s gA
def= T um + g, (8.31)

Inserting into the partitioned stiffness equations (8.30) and symmetrizing yields[
Kuu Kum + Kus T

symm Kmm + TT KT
ms + Kms T + TT Kss T

][
uu

um

]
=

[
fu − Kusg
fm − Kmsg

]
(8.32)

It is seen that the misleading simplicity of the handworked examples is gone.

§8.3.5. *Retaining the Original Freedoms

A potential disadvantage of the master-slave method in computer work is that it requires a rearrangement of
the original stiffness equations because û is a subset of u. The disadvantage can be annoying when sparse
matrix storage schemes are used for the stiffness matrix, and becomes intolerable if secondary storage is used
for that purpose.

8–10



§8.4 MODEL REDUCTION BY KINEMATIC CONSTRAINTS

1 7
x

5 slave DOFs to be eliminated

2 master DOFs to be retained 

1 7
x

Reduced model

Master Master

u1, f1

u1, f1

u7, f7

u7, f7

1 2 3 4 5 6 7
x

u  ,  f        u  ,  f        u  ,  f        u  ,  f        u  ,  f       u  ,  f        u  ,  f1 1 3 3 4 4 5 5 6 6 7 72 2

(1) (2) (3) (4) (5) (6)

Figure 8.3. Model reduction of the example structure of Figure 8.2 to the end freedoms.

With a bit of trickery it is possible to maintain the original freedom ordering. Let us display it for the example
problem under (8.14). Instead of (8.15), use the square transformation



u1

u2

u3

u4

u5

u6

u7




=




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 1







u1

u2

u3

u4

u5

ũ6

u7




, (8.33)

in which ũ6 is a placeholder for the slave freedom u6. The modified equations are


K11 K12 0 0 0 0 0 0
K12 K22 + K66 K23 0 0 K56 0 K67

0 K23 K33 K34 0 0 0 0
0 0 K34 K44 K45 0 0 0
0 K56 0 K45 K55 0 0 0
0 0 0 0 0 0 0 0
0 K67 0 0 0 0 0 K77







u1

u2

u3

u4

u5

ũ6

u7




=




f1

f2 + f6

f3

f4

f5

0
f7




, (8.34)

which are submitted to the equation solver. If the solver is not trained to skip zero rows and columns, a one
should be placed in the diagonal entry for the ũ6 (sixth) equation. The solver will return ũ6 = 0, and this
placeholder value is replaced by u2. Note several points in common with the computer-oriented placeholder
technique described in §3.4 to handle single-freedom constraints.

§8.4. Model Reduction by Kinematic Constraints

The congruent transformation equations (8.17) and (8.27) have additional applications beyond the
master-slave method. An important one is model reduction by kinematic constraints. Through
this procedure the number of DOF of a static or dynamic FEM model is reduced by a significant
number, typically to 1% – 10% of the original number. This is done by taking a lot of slaves and a
few masters. Only the masters are left after the transformation. The reduced model is commonly

8–11



Chapter 8: MULTIFREEDOM CONSTRAINTS I

(* Model Reduction Example *)
ClearAll[K11,K12,K22,K23,K33,K34,K44,K45,K55,K56,K66,
         f1,f2,f3,f4,f5,f6];
K={{K11,K12,0,0,0,0,0},{K12,K22,K23,0,0,0,0},
   {0,K23,K33,K34,0,0,0},{0,0,K34,K44,K45,0,0},
   {0,0,0,K45,K55,K56,0},{0,0,0,0,K56,K66,K67},
   {0,0,0,0,0,K67,K77}};  Print["K=",K//MatrixForm]; 
f={f1,f2,f3,f4,f5,f6,f7}; Print["f=",f]; 
T={{6,0},{5,1},{4,2},{3,3},{2,4},{1,5},{0,6}}/6; 
Print["T (transposed to save space)=",Transpose[T]//MatrixForm]; 
Khat=Simplify[Transpose[T].K.T]; 
fhat=Simplify[Transpose[T].f];
Print["Modified Stiffness:"];
Print["Khat(1,1)=",Khat[[1,1]],"\nKhat(1,2)=",Khat[[1,2]],
    "\nKhat(2,2)=",Khat[[2,2]] ];
Print["Modified Force:"];
Print["fhat(1)=",fhat[[1]],"  fhat(2)=",fhat[[2]] ];

Figure 8.4. Mathematica script for the model reduction example of Figure 8.3.

used in subsequent calculations as component of a larger system, particularly during design or in
parameter identification.

Example 8.2. Consider the bar assembly of Figure 8.2. Assume that the only masters are the end motions u1

and u7, as illustrated in Figure 8.2, and interpolate all freedoms linearly:




u1

u2

u3

u4

u5

u6

u7




=




1 0
5/6 1/6
4/6 2/6
3/6 3/6
2/6 4/6
1/6 5/6
0 1




[
u1

u7

]
, or u = T û. (8.35)

8–12



§8.5 ASSESSMENT OF THE MASTER-SLAVE METHOD

The reduced-order-model (ROM) equations are K̂û = TT KTû = TT f = f̂, or in detail[
K̂11 K̂17

K̂17 K̂77

] [
u1

u7

]
=

[
f̂1

f̂7

]
, (8.36)

in which

K̂11 = 1
36 (36K11+60K12+25K22+40K23+16K33+24K34+9K44+12K45+4K55+4K56+K66),

K̂17 = 1
36 (6K12+5K22+14K23+8K33+18K34+9K44+18K45+8K55+14K56+5K66+6K67),

K̂77 = 1
36 (K22+4K23+4K33+12K34+9K44+24K45+16K55+40K56+25K66+60K67+36K77),

f̂1 = 1
6 (6 f1+5 f2+4 f3+3 f4+2 f5+ f6), f̂7 = 1

6 ( f2+2 f3+3 f4+4 f5+5 f6+6 f7).

(8.37)

This reduces the order of the FEM model from 7 to 2. A Mathematica script to do the reduction is shown in
Figure 8.4. The key feature is that the masters are picked a priori, as the freedoms to be retained in the model
for further use.

Remark 8.8. Model reduction can also be done by the static condensation method explained in Chapter 10.
As its name indicates, condensation is restricted to static analysis. On the other hand, for such problems it is
exact whereas model reduction by kinematic constraints generally introduces approximations.

§8.5. Assessment of the Master-Slave Method

What are the good and bad points of this constraint application method? It enjoys the advantage of
being exact (except for inevitable solution errors) and of reducing the number of unknowns. The
concept is also easy to explain and learn. The main implementation drawback is the complexity of
the general case as can be seen by studying (8.29) through (8.32). The complexity is due to three
factors:

1. The equations may have to be rearranged because of the disappearance of the slave freedoms.
This drawback can be alleviated, however, through the placeholder trick outlined in §8.3.5.

2. An auxiliary linear system, namely (8.31), has to be assembled and solved to produce the
transformation matrix T and vector g.

3. The transformation process may generate many additional matrix terms. If a sparse matrix
storage scheme is used for K, the logic for allocating memory and storing these entries can be
difficult and expensive.

The level of complexity depends on the generality allowed as well as on programming decisions. If
K is stored as full matrix and slave freedom coupling in the MFCs is disallowed the logic is simple.2

On the other hand, if arbitrary couplings are permitted and K is placed in secondary (disk) storage
according to some sparse scheme, the complexity can become overwhelming.

Another, more subtle, drawback of this method is that it requires decisions as to which degrees
of freedom are to be treated as slaves. This can lead to implementation and numerical stability
problems. Although for disjointed constraints the process can be programmmed in reliable form, in
more general cases of coupled constraint equations it can lead to incorrect decisions. For example,
suppose that in the example problem you have the following two MFCs:

1
6 u2 + 1

2 u4 = u6, u3 + 6u6 = u7. (8.38)

2 This is the case in model reduction, since each slave freedom appears in one and only one MFC.

8–13



Chapter 8: MULTIFREEDOM CONSTRAINTS I

For numerical stability reasons it is usually better to pick as slaves the freedoms with larger co-
efficients. If this is done, the program would select u6 as slave freedoms from both constraints.
This leads to a contradiction because having two constraints we must eliminate two slave degrees
of freedom, not just one. The resulting modified system would in fact be inconsistent. Although
this defect can be easily fixed by the program logic in this case, one can imagine the complexity
burden if faced with hundreds or thousands of MFCs.

Serious numerical problems can arise if the MFCs are not independent. For example:

1
6 u2 = u6,

1
5 u3 + 6u6 = u7, u2 + u3 − u7 = 0. (8.39)

The last constraint is an exact linear combination of the first two. If the program blindly choses
u2, u3 and u7 as slaves, the modified system is incorrect because we eliminate three equations
when in fact there are only two independent constraints. Exact linear dependence, as in (8.39), can
be recognized by a rank analysis of the As matrix defined in (8.30). In floating-point arithmetic,
however, such detection may fail because that kind of computation is inexact by nature.3

The complexity of slave selection is in fact equivalent to that of automatically selecting kinematic
redundancies in the Force Method of structural analysis. It has led implementors of programs that
use this method to require masters and slaves be prescribed in the input data, thus transfering the
burden to users.

The method is not generally extendible to nonlinear constraints without case by case programming.

In conclusion, the master-slave method is useful when a few simple linear constraints are imposed
by hand. As a general purpose technique for finite element analysis it suffers from complexity and
lack of robustness. It is worth learning, however, because of the great importance of congruent
transformations in model reduction for static and dynamic problems.

Notes and Bibliography

Multifreedom constraints are treated in several of the FEM books recommended in §1.7.5, notably Zienkiewicz
and Taylor [830]. The master-slave method was incorporated to treat MFCs as part of the DSM developed at
Boeing during the 1950s. It is first summarily described in the DSM-overview by Turner, Martin and Weikel
[761, p. 212]. The implementation differs, however, from the one described here because the relation of FEM
to energy methods was not clear at the time.

The master-slave method became popular through its adoption by the general-purpose NASTRAN code de-
veloped in the late 1960s [20] and early assessments of its potential [745]. The implementation unfortunately
relied on user inputs to identify slave DOFs. Through this serious blunder the method gained a reputation for
unreliability that persists to the present day.

The important application of master-slave to model reduction, which by itself justifies teaching the method, is
rarely mentioned in FEM textbooks.

References

Referenced items have been moved to Appendix R.

3 The safest technique to identify dependencies is to do a singular-value decomposition (SVD) of As . This can be, however,
prohibitively expensive if one is dealing with hundreds or thousands of constraints.

8–14



Exercises

Homework Exercises for Chapter 8

MultiFreedom Constraints I

EXERCISE 8.1 [C+N:20] The example structure of Figure 8.1 has Ee Ae/Le = 100 for each element
e = 1, . . . , 6. Consequently K11 = K77 = 100, K22 = . . . = K66 = 200, K12 = K23 = . . . = K67 = −100.
The applied node forces are taken to be f1 = 1, f2 = 2, f3 = 3, f4 = 4, f5 = 5, f6 = 6 and f7 = 7, which
are easy to remember. The structure is subjected to one support condition: u1 = 0 (a fixed left end), and to
one MFC: u2 − u6 = 1/5.

Solve this problem using the master-slave method to process the MFC, taking u6 as slave. Upon forming the
modified system (8.27) apply the left-end support u1 = 0 using the placeholder method of §3.4. Solve the
equations and verify that the displacement solution and the recovered node forces including reactions are

u = [ 0 0.270 0.275 0.250 0.185 0.070 0.140 ]T

Ku = [ −27 26.5 3 4 5 −18.5 7 ]T
(E8.1)

Use Mathematica or Matlab to do the algebra is recommended. For example, the Mathematica script of
Figure E8.1 solves this Exercise.

MasterStiffnessOfSixElementBar[kbar_]:=Module[
  {K=Table[0,{7},{7}]}, K[[1,1]]=K[[7,7]]=kbar;
  For [i=2,i<=6,i++,K[[i,i]]=2*kbar];
  For [i=1,i<=6,i++,K[[i,i+1]]=K[[i+1,i]]=-kbar];
  Return[K]];
FixLeftEndOfSixElementBar[Khat_,fhat_]:=Module[
  {Kmod=Khat,fmod=fhat}, fmod[[1]]=0; Kmod[[1,1]]=1; 
  Kmod[[1,2]]=Kmod[[2,1]]=0; Return[{Kmod,fmod}]];

K=MasterStiffnessOfSixElementBar[100]; 
Print["Stiffness K=",K//MatrixForm]; 
f={1,2,3,4,5,6,7}; Print["Applied forces=",f]; 
T={{1,0,0,0,0,0},{0,1,0,0,0,0},{0,0,1,0,0,0},
   {0,0,0,1,0,0},{0,0,0,0,1,0},{0,1,0,0,0,0},
   {0,0,0,0,0,1}};
Print["Transformation matrix T=",T//MatrixForm];
g={0,0,0,0,0,-1/5,0};
Print["Constraint gap vector g=",g];
Khat=Simplify[Transpose[T].K.T]; fhat=Simplify[Transpose[T].(f-K.g)];
{Kmod,fmod}=FixLeftEndOfSixElementBar[Khat,fhat]; (* fix left end *)
Print["Modified Stiffness upon fixing node 1:",Kmod//MatrixForm];
Print["Modified RHS upon fixing node 1:",fmod];
umod=LinearSolve[Kmod,fmod]; 
Print["Computed umod (lacks slave u6)=",umod];
u=T.umod+g; Print["Complete solution u=",u];
Print["Numerical u=",N[u]];
fu=K.u; Print["Recovered forces K.u with reactions=",fu];
Print["Numerical K.u=",N[fu]];

(* Exercise 8.1 - Master-Slave Method  *)
(* MFC: u2-u6 = 1/5  - slave: u6  *)

Figure E8.1. Script for solving Exercise 8.1.

8–15



Chapter 8: MULTIFREEDOM CONSTRAINTS I

EXERCISE 8.2 [C+N:25] As in the previous Exercise but applying the following three MFCs, two of which
are non-homogeneous:

u2 − u6 = 1/5, u3 + 2u4 = −2/3, 2u3 − u4 + u5 = 0. (E8.2)

Hint. Chose u4, u5 and u6 as slaves. Much of the script shown for Exercise 8.1 can be reused. The main
changes are in the formation of T and g. If you are a Mathematica wizard (or willing to be one) those can be
automatically formed by the statements listed in Figure E8.2.

sol=Simplify[Solve[{u2-u6==1/5, u3+2*u4==-2/3,2*u3-u4+u5==0},{u4,u5,u6}]];
ums={u1,u2,u3,u4,u5,u6,u7}/.sol[[1]]; um={u1,u2,u3,u7};
T=Table[Coefficient[ums[[i]],um[[j]]],{i,1,7},{j,1,4}];
g=ums/.{u1->0,u2->0,u3->0,u4->0,u5->0,u6->0,u7->0};
Print["Transformation matrix T=",T//MatrixForm]; 
Print["Gap vector g=",g];

Figure E8.2. Script for partially solving Exercise 8.2.

If you do this, explain what it does and why it works. Otherwise form and enter T and g by hand. The
numerical results (shown to 5 places) should be

u = [ 0. 0.043072 −0.075033 −0.29582 −0.14575 −0.15693 −0.086928 ]T ,

Ku = [ −4.3072 16.118 10.268 −37.085 16.124 −8.1176 7. ]T .
(E8.3)

EXERCISE 8.3 [A:25] Can the MFCs be pre-processed to make sure that no slave freedom in a MFC appears
as master in another?

EXERCISE 8.4 [A:25] In the general case discussed in §8.4.4, under which condition is the matrix As of
(8.30) diagonal and thus trivially invertible?

EXERCISE 8.5 [A:25] Work out the general technique by which the unknowns need not be rearranged, that
is, u and û are the same. Use “placeholders” for the slave freedoms. (Hint: use ideas of §3.4).

EXERCISE 8.6 [A/C:35] Is it possible to establish a slave selection strategy that makes As diagonal or
triangular? (This requires knowledge of matrix techniques such as pivoting.)

EXERCISE 8.7 [A/C:40] Work out a strategy that produces a well conditioned As by selecting new slaves as
linear combinations of finite element freedoms if necessary. (Requires background in numerical analysis and
advanced programming experience in matrix algebra).

8–16


