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89.2 THE PENALTY METHOD

89.1. Introduction

InthisChapter we continuethediscussion of methodsto treat multifreedom constraints(MFCs). The
master-slave method described previously was easy to explain, but exhibits serious shortcomingsfor
treating arbitrary constraints (although the method has important applications to model reduction).

We now pass to the study of two other methods: penalty augmentation and Lagrange multiplier
adjunction. Both techniques are better suited to general implementations of the Finite Element
Method, whether linear or nonlinear.

89.2. ThePenalty Method

1 Uy f, ug f3 U,y ug, fs U, f u,, f

J\_’z) J\_’S) J\_(’4) J\_%) J\_%) ? > X

1 4 7

Ficure 9.1. The example structure of Chapter 8, repeated for convenience.

89.2.1. Physical Interpretation of Penalty Method

The penalty method will be first presented using a physical argument, leaving the mathematical
formulation to a subsequent section. Consider again the example structure of Chapter 8, which
is reproduced in Figure 9.1 for convenience. To impose U, = Ug imagine that nodes 2 and 6
are connected with a “fat” bar of axia stiffness w, labeled with element number 7, as shown in
Figure 9.2. Thisbar is called a penalty element and w isits penalty weight.

Such an element, abeit fictitious, can be treated exactly like another bar element insofar as con-
tinuing the assembly of the master stiffness equations. The penalty element stiffness equations,

KOy — f(7), aret
1 -1 u | 0
o[- 3l [e] o

Because thereisone freedom per node, the two local element freedoms map into global freedoms 2
and 6, respectively. Using the assembly rules of Chapter 3 we obtain the following modified master
stiffness equations: K = f, which shown in detail are

~ K1 K12 0 0 0 0 O Jru; ~ fq
K Kx+w Ky 0 0 —w 0 Uso fz
0 Kos Kaz Kz 0 0 0 Us f3
0 0 Ky Ku Kgs 0 0 Usg | = f4 . (92)
0 0 0 Ksas Ksg Ksg 0 Usg f5
0 —w 0 0 Ksg Kes+w Kegr Us fe
| O 0 0 0 0 K67 K77_ [ U7 _ L f7_

This system can now be submitted to the equation solver. Notethat 0 = u, and only K has changed.

1 The general method to construct these equations is described in §9.1.4.
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1 UZ, U3, U4, u5| u6l u71

|_’1) A\_’Z) l_?») ﬁ) r’s) A\_’G) JQ_' oy

penalty element of axial rigidity w

FIGURE 9.2. Adjunction of a fictitious penalty bar of axia stiffness w,
identified as element 7,to enforce the MFC u, = ug.

89.2.2. Choosing the Penalty Weight

What happens when (9.2) is solved numerically? If a finite weight w is chosen the constraint
Uy = Ug isapproximately satisfied in the sensethat one getsu, — us = €y, whereey # 0. The“gap
error” eq is called the constraint violation. The magnitude |gg| of this violation depends on the
weight: the larger w, the smaller the violation. More precisely, it can be shown that |gy| becomes
proportional to 1/w as w gets to be sufficiently large (see Exercises). For example, raising w
from, say, 10° to 107 can be expected to cut the constraint violation by roughly 10 if the physical
stiffnesses are small compared to w.

Therefore it seems as if the proper strategy should be: try to make w as large as possible while
respecting computer overflow limits. However, thisis misleading. As the penalty weight w tends
to oo the modified stiffness matrix in (9.2) becomes more and more ill-conditioned with respect to
inversion.

To make this point clear, suppose for definiteness that the rigidities ESA®/L€ of the actual bars
e=1,...6areunity, that w >> 1, and that the computer solving the stiffness equations has a
floating-point precision of 16 decimal places. Numerical analysts characterize such precision by
saying that e; = O(1071%), where |¢¢| is the smallest power of 10 that perceptibly adds to 1 in
floating-point arithmetic.? The modified stiffness matrix of (9.2) becomes

-1 -1 O 0 O 0 0 7
-1 24+w -1 0 O —w
-1 2 -1 0 0 0

0 -1 2 -1 0 0 (9.3)
0 o -1 2 -1 0

—w O 0 -1 24w -1
0 O 0 O -1 14

Asw — oo rows 2 and 6, as well as columns 2 and 6, tend to become linearly dependent; in
fact the negative of each other. But linear dependency means singularity. Therefore K approaches
singularity as w — oo. In fact, if w exceeds 1/¢; = 10 the computer will not be able to
distinguish K froman exactly singular matrix. If w << 10'® but w >> 1, the effect will be seenin
increasing solution errors affecting the computed displacements ( returned by the equation solver.
These errors, however, tend to be more of arandom nature than the constraint violation error.

o

~)
Il

oNeoNoNeNe)

2 Such definitions are more rigurously done by working with binary numbers and base-2 arithmetic but for the present
discussion the use of decimal powersis sufficient.

94



89.2 THE PENALTY METHOD

89.2.3. The Square Root Rule

Plainly we havetwo effectsat oddswith each other. Making w larger reducesthe constraint violation
error but increases the solution error. The best w is that which makes both errors roughly equal
in absolute value. This tradeoff value is difficult to find aside of systematically running numerical
experiments. In practice the heuristic square root rule is often followed.

This rule can be stated as follows. Suppose that the largest stiffness coefficient, before adding
penalty elements, is of the order of 10X and that the working machine precision is p digits.2 Then
choose penalty weights to be of order 10%+P/2 with the proviso that such a choice would not cause
arithmetic overflow.*

For the above example in which k ~ 0 and p ~ 16, the optimal w given by this rule would be
w ~ 108. Thisw would yield a constraint violation and a solution error of order 10~8. Note that
thereisno simpleway to do better than thisaccuracy asidefrom using extended (e.g., quad) floating-
point precision. Thisis not easy to do when using standard low-level programming languages.

The name “square root” arises because the recommended w is in fact 10/10P. It is seen that
picking the weight by this rule requires knowledge of both stiffness magnitudes and floating-point
hardware properties of the computer used, as well as the precision selected by the program.

§9.2.4. Penalty Elementsfor General MFCs

For the constraint u, = ug the physical interpretation of the penalty element isclear. Nodal points 2
and 6 must move in lockstep long x, which can be approximately enforced by the heavy bar device
shown in Figure 9.2. But how about 3us + us — 4ug = 1? Or just U, = —Ug?

The treatment of more general constraints is linked to the theory of Courant penalty functions,
which in turn is atopic in variationa calculus. Because the necessary theory given in §9.1.5 is
viewed as an advanced topic, the procedure used for constructing a penalty element is stated here
asarecipe. Consider the homogeneous constraint

3us + us — 4ug = 0. (9.4
Rewrite this equation in matrix form
us
[3 1 -4] |:U5i| =0, (9.5
Us

and premultiply both sides by the transpose of the coefficient matrix:

3 us 9 3 -12 us _ 0
[ 1}[3 1 —4]|:u5i|:[ 3 1 —4}[u5}:Keue:|:O] (9.6)
_4 Us ~12 -4 16 Jlus 0

3 Such order-of-magnitude estimates can be readily found by scanning the diagonal of K because the largest stiffness
coefficient of the actual structureisusually adiagonal entry.

4 If overflows occurs, the master stiffness should be scaled throughout or a better choice of physical units made.
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Here K° is the unscaled stiffness matrix of the penalty element. Thisis now multiplied by the
penalty weight w and assembled into the master stiffness matrix following the usual rules. For the
example problem, augmenting (9.2) with the w-scaled penalty element (9.6) yields

rKiu Ko 0 0 0 0 0 73 r1ui’ - 1
Ko Kox K23 0 0 0 0 U fz
0 Koz Ksxz+9%w Ky 3w —12w 0 Us f3
0 0 Ky Kau Kass 0 0 Ug | = f4 . (97)
0 0 3w Kss Kss+w Ksg — 4w 0 Us fs5
0 0 —12w 0 Ksg — 4w Kgg+ 16w Kegry Ug fe
L O 0 0 0 0 K67 Kz7d Luy L f7_

If the constraint is nonhomogeneous the force vector is also modified. To illustrate this effect,
consider the MFC: 3us + us — 4ug = 1. Rewrite in matrix form as

us
[3 1 -—4] [u5:| =1 (9.8

Us

Premultiply both sides by the transpose of the coefficient matrix:

9 3 —129rus 3
[3 1 _4“4:[1] ©9)
12 -4 16 JLug —4

Scaling by w and assembling yields

Kin Koo 0 0 0 0 0 7r1ui’ B f]_ ]
Kio Ko Koz 0 0 0 0 Uo f2
0 Koz Kzxz+9%w Kz 3w —12w 0 Us fz + 3w
0 0 Kas Kaa Kgs 0 0 Ug | = f4
0 0 3w Kss  Kss 4w Ksg — 4w 0 Usg fs +w
0 0 —12w 0 Ksg — 4w Kg+ 16w Kegr Ug fe — 4w
| O 0 0 0 0 K67 K74 Lus L f7

§9.2.5. *The Theory Behind the Penalty Method

The rule comes from the following mathematical theory. Suppose we have a set of m linear MFCs. Using the
matrix notation introduced in 88.1.3, these will be stated as

apu="b,, p=1...m (9.11)
where u contains all degrees of freedom and each a,, is arow vector with same length as u. To incorporate

the MFCsinto the FEM model one selects aweight w,, > 0 for each constraints and constructs the so-called
Courant quadratic penalty function or “penalty energy”

m
P= Z P, with P,=u"(3aja,u—wpaib,) = uTKPu—uTf®, (9.12)
p=1

9-6



89.2 THE PENALTY METHOD

where we have called K = wpala, and f = wpya'h. P is added to the potential energy function
I = u”Ku — u'f to form the augmented potential energy I, = I+ P. Minimization of IT, with respect
touyields

m m
(Ku+ Y KP)u=f+) . (9.13)
p=1 p=1

Each term of the sum on p, which derives from term Py, in (9.12), may be viewed as contributed by a penalty
element with globalized stiffness matrix K® = wpala, and globalized added force term {® = wal by,

To use a even more compact form we may write the set of multifreedom constraints as Au = b. Then the
penalty augmented system can be written compactly as

(K +ATWA)u =f+WATh, (9.14)

where W isadiagona matrix of penalty weights. This compact form, however, conceals the configuration of
the penalty elements.

89.2.6. Assessment of the Penalty Method

The main advantage of the penalty function method isits straightforward computer implementation.
Looking at modified systems such as (9.2), (9.7) or (9.10) it is obvious that the master equations
need not berearranged. That is, u and ( are the same. Constraints may be programmed as “ penalty
elements,” and stiffness and force contributions of these elements merged through the standard
assembler. In fact using this method there is no need to distinguish between unconstrained and
constrained equations! Once all elements — regular and penalty — are assembled, the system can
be passed to the equation solver.®

Animportant advantagewith respect to the master-sl ave (elimination) method isitslack of sensitivity
with respect to whether constraints are linearly dependent. To give a simplistic example, suppose
that the constraint u, = ug appears twice. Then two penalty elements connecting 2 and 6 will be
inserted, doubling the intended weight but not otherwise causing undue harm.

An advantage with respect to the Lagrange multiplier method described in §9.2 is that positive
definiteness is not lost. Such loss can affect the performance of certain numerical processes.®
Finally, it is worth noting that the penalty method is easily extendible to nonlinear constraints
although such extension falls outside the scope of this book.

The main disadvantage, however, isaseriousone: the choice of weight values that balance solution
accuracy with theviolation of constraint conditions. For simple casesthe squareroot rulepreviously
described often works, athough its effective use calls for knowledge of the magnitude of stiffness
coefficients.  Such knowledge may be difficult to extract from a general purpose “black box”
program. For difficult cases selection of appropriate weights may require extensive numerical
experimentation, wasting the user time with numerical games that have no bearing on the actual
objective, which is getting a solution.

The deterioration of the condition number of the penalty-augmented stiffness matrix can have
serious side effects in some solution procedures such as eigenvalue extraction or iterative solvers.

5 Single freedom constraints, such as those encountered in Chapter 3, are usually processed separately for efficiency.
6 For example, solving the master stiffness equations by Cholesky factorization or conjugate-gradients.
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Ficure 9.3. Physica interpretation of Lagrange multiplier
adjunction to enforce the MFC uz = ug.

Finally, evenif optimal weights are selected, the combined solution error cannot be lowered beyond
athreshold value.

From this assessment it is evident that penalty augmentation, although superior to the master-slave
method from the standpoint of generality and ease of implementation, is no panacea.

89.3. LagrangeMultiplier Adjunction
89.3.1. Physical Interpretation

Asin the case of the penalty function method, the method of Lagrange multipliers can be given a
rigorous justification within the framework of variational calculus. But in the same spirit it will be
introduced for the example structure from a physical standpoint that is particularly illuminating.

Consider again the constraint u, = ug. Borrowing some ideas from the penalty method, imagine
that nodes 2 and 6 are connected now by arigid link rather than a flexible one. Thus the constraint
isimposed exactly. But of course the penalty method with an infinite weight would “blow up.”

Wemay removethelinkif itisreplaced by an appropriatereactionforcepair (—x, +21), asillustrated
in Figure 9.3. These are called the constraint forces. Incorporating these forces into the original
stiffness equations (8.10) we get

Ky Koo 0 0 0 0 O 7 ru;’ -y
Ko Ko Ko 0 0 0 0 U fz —A
0 Koz Kizz Ky 0 0 0 U3z f3
0 0 Kau Kgu Kgs 0 0 Usg | = f4 . (9.15)
0 0 0 Ksis Kss5 Ksg 0 Us f5
0 0 0 0 Ksg Kgs Keg7 Ug fe + A
| O 0 0 0 0 K67 K77_ | U7 _ | f7 .

This A iscalled a Lagrange multiplier. Because A is an unknown, let us transfer it to the left hand
side by appending it to the vector of unknowns:

Ky Ko, O 0 0O O 0 017 31 - £y -
Kp Ky Ky 0O 0O 0O 0 1 u2 f,
0 Ky Ks3 Ky 0O 0 0 O u3 f
0 O Kz Ky Kis 0O 0 O u4 = | f4 1. (9.16)
0 0 0 Kg Kgg Kgg 0 O u5 fs
0 0 0 0 Kg Kg Keg -1 UG fo
L 0 0 0O 0 0 Kgg Ky 0 /\7 |,
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89.3 LAGRANGE MULTIPLIER ADJUNCTION

But now we have 7 equations in 8 unknowns. To render the system determinate, the constraint
condition u, — ug = 0 is appended as eighth equation:

K1 Koo 0 0 0 0 0 O JrusT 1
Ko Ky Ko 0 0 0 0 1 Uo f2
0 Koz Kz Ky 0 0 0 0 us f3
0 0 Kaw Ka Kgs 0 0 0 Usg f4
0 0 0 Ksgs Kss Ksg 0 0 Us o f5 ’ ©.17
0 0 0 0 Ksg Kes Kgr —1 Ug f6
0 0 0 0 0 Kg Kzz O Uy f7
0] 1 0 0 O -1 O O J1Lx._ L 0

This is called the multiplier-augmented system. Its coefficient matrix, which is symmetric, is
called the bordered stiffness matrix. The process by which A is appended to the vector of original
unknowns is called adjunction. Solving this system provides the desired solution for the degrees
of freedom while also characterizing the constraint forces through A.

§9.3.2. Lagrange Multipliersfor General MFCs

The general procedure will be stated first as arecipe. Suppose that we want to solve the example
structure subjected to three MFCs

Uy — Uug =0, 5u; — 8u; = 3, 3Usz + Us — 4ug = 1, (9.18)

Adjoin these MFCs as the eighth, nineth and tenth equations:

K1 Ky 0 0 0 0 0 7 ~
K12 K22 K23 0 0 0 0 - Uq f2
0 Ky Kz Kygz 0 0 0O ul f
0 0 Kz Ky K 0 O ui fy
0 0 0 Kg Kgs Kgg O fs
0 0 0 0 Ks Ko Ke |57 )1 (.19)
0O 0 O 0 0 Kg Kz u5 f5
O 1 0 0 0 -1 o0 u6 0
O 5 0 0 0 0 -8| - 3
0 0 3 0 1 -4 o0 | | 1

Three Lagrange multipliers: 11, A, and A3, are required to take care of three MFCs. Adjoin those
unknowns to the nodal displacement vector. Symmetrize the coefficient matrix by appending 3
columns that are the transpose of the 3 last rowsin (9.19), and filling the bottom right-hand corner

9-9
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with a3 x 3 zero matrix:

Ky Koo 0 0 0 0 0 0 0 O 7ru; ~ 1]
Ko K Ko 0 0 0 0 1 5 0 Uo f2
0 Koz Kzz Ky 0 0 0 0 0 3 us f3
0 0 Kaw Ka Kgs 0 0 0 0 0 Uy f4
0 0 0 Ksgs Kss Ksg 0 0 0 1 Us _ f5 (9 20)
0 0 0 0 Ksg Kes Kgz —1 0 —4 Us f6 ' ’
0 0 0 0 0 Kez Koz 0 -8 0 uy; f7
0 1 0 0 0O -1 O O O O A1 0
0 5 0 0 0 o -8 0 0 O A2 3
0 0 3 0 1 -4 O 0 0 0 1 LAs_ |1

§9.3.3. *The Theory Behind Lagrange Multipliers

Therecipeillustrated by (9.20) comes from awell known technique of variational calculus. Using the matrix
notation introduced in 88.1.3, compactly denote the set of m MFCs by Au = b, where A ism x n. The
potential energy of the unconstrained finite element model is T = %uTKu — u'f. Toimpose the constraint,
adjoin m Lagrange multipliers collected in vector A and form the Lagrangian

Lu,X) =T+ AT(Au—Db) = Ju™Ku — uTf + AT (Au — D). (9.21)

Extremizing L with respect to u and X yields the multiplier-augmented form

A SIBI-[) 022

The master stiffness matrix K in (9.22) is said to be bordered with A and AT. Solving this system providesu
and A. Thelatter can be interpreted as forces of constraint in the following sense: a removed constraint can
be replaced by a system of forces characterized by A multiplied by the constraint coefficients. More precisely,
the constraint forcesare —AT .

89.3.4. Assessment of the Lagrange Multiplier Method

In contrast to the penalty method, the method of Lagrange multipliers has the advantage of being
exact (aside from computational errors due to finite precision arithmetic). It provides directly the
constraint forces, which are of interest in many applications. It does not require guesses as regards
weights. Asthe penalty method, it can be extended without difficulty to nonlinear constraints.

Itisnot freeof disadvantages. Itintroducesadditiona unknowns, requiring expansion of theoriginal
stiffness method, and more complicated storage allocation procedures. It renders the augmented
stiffness matrix indefinite, an effect that may cause grief with some linear equation solving methods
that rely on positive definiteness. Finally, as the master-slave method, it is sensitive to the degree
of linear independence of the constraints: if the constraint u, = ug is specified twice, the bordered
stiffnessis obviously singular.

On the whole this method appears to be the most elegant one for a general-purpose finite element
program that issupposed to work asa“black box” by minimizing guessesand choicesfromitsusers.
Its implementation, however, is not simple. Special care must be exercised to detect singularities
due to constraint dependency and to account for the effect of loss of positive definiteness of the
bordered stiffness on equation solvers.

9-10
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§9.4. *The Augmented L agrangian Method
The general matrix forms of the penalty function and L agrangian multiplier methods are given by expressions
(9.13) and (9.22), respectively. A useful connection between these methods can be established as follows.

Because the lower diagonal block of the bordered stiffness matrix in (9.22) isnull, it is not possible to directly
eliminate X. To makethis possible, replacethisblock by ¢S, where Sisaconstraint-scaling diagonal matrix
of appropriate order and € is a small number. The reciprocal of € is alarge number called w = 1/e. To
maintain exactness of the second equation, eS™*\ is added to the right-hand side:

[/}i e/'i:l] [i] - [eS‘fl)\P} (9.23)

Here superscript P (for “predicted value®) is attached to the A on the right-hand side as a “tracer.” We can
now formally solve for A and subsequently for u. The results may be presented as

(K +wATSA)u =f+ wATSh — ATAP,

9.24
A= AP+ wS(b — Au), 24

Setting A = 0in thefirst matrix equation yields
K +wATSA)u =+ wATSh. (9.25)

Ontaking W = wS, the general matrix equation (9.13) of the penalty method is recovered.

This relation suggests the construction of iterative procedures in which one tries to improve the accuracy
of the penalty function method while w is kept constant [?]. This strategy circumvents the aforementioned
ill-conditioning problems when the weight w is gradually increased. One such method is easily constructed
by inspecting (9.24). Using superscript k as an iteration index and keeping w fixed, solve equations (9.24) in
tandem as follows:

K +ATWA)UK =f+ ATWb — ATXK,

(9.26)
A = Ak Wb — AU,

fork = 0,1, ..., beginning with A° = 0. Then u is the penalty solution. If the process converges one
recovers the exact Lagrangian solution without having to solve the Lagrangian system (9.23) directly.

The family of iterative procedures that may be precipitated from (9.24) collectively pertains to the class of
augmented Lagrangian methods.

89.5. Summary

Thetreatment of linear MFCsin finite element systems can be carried out by several methods. Three
of these: master-slave elimination, penalty augmentation and Lagrange multiplier adjunction, have
been discussed. It is emphasized that no method is uniformly satisfactory in terms of generality,
robustness, numerical behavior and simplicity of implementation.

Figure 9.4 gives an assessment of the three techniques in terms of seven attributes.

For ageneral purpose program that triesto attain “black box” behavior (that is, minimal decisions
on the part of users) the method of Lagrange multipliers has the edge. This edge is unfortunately
blunted by afairly complex computer implementation and by the loss of positive definitenessin the
bordered stiffness matrix.
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Master-Slave| Penalty Lagrange
Elimination Function Multipliers
Generality fair excellent excellent
Ease of implementation poor to fair good fair
Sensitivity to user decisions high high small to none
Accuracy variable mediocre excellent
Sensitivity asregards high none high
constraint dependence
Retains positive definiteness yes yes no
M odifies unknown vector yes no yes

FicUure 9.4. Assessment summary of three MFC application methods.

Notes and Bibliography

A form of the penalty function method, quite close to that described in 89.1.5, was first proposed by Courant
in the early 1940s [154]. It entered the FEM through the work of researchersin the 1960s. Thereis a good

description in the book by Zienkiewicz and Taylor [837].

The Lagrange Multiplier method is much older. Multipliers (called initially “coefficients’) were described
by Lagrange in his famous Mécanique Analytique monograph [435], as part of the procedure for forming the

function now called the Lagrangian. Its usein FEM is more recent than penalty methods.

Augmented Lagrangian methods have received much attention since the late 1960s, when they originated in
the field of constrained optimization. The origina papers are by Hestenes [360] and Powell [598]. The use
of the Augmented Lagrangian Multiplier method for FEM kinematic constraints is first discussed in [212],

wherein the iterative algorithm (9.26) for the master stiffness equations is derived.

References

Referenced items have been moved to Appendix R.
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Exercises

Homework Exercisesfor Chapter 9
MultiFreedom Constraints||

EXERCISE 9.1 [C+N:20] Thisisidentical to Exercise 8.1, except that the MFC u, — ug = 1/5 isto be
treated by the penalty function method. Take the weight w to be 10%, in which k variesask = 3, 4,5, ... 16.
For each sample w compute the Euclidean-norm solution error e(w) = ||uP(w) — u®||,, where uP is the
computed solution and u® isthe exact solution listed in (E8.1). Plot k = log,, w versuslog,, e and report for
which weight e attains aminimum. (See Slide#5 for acheck). Doesit roughly agree with the square root rule
(89.1.3) if the computations carry 16 digits of precision?

As in Exercise 8.1, use Mathematica, Matlab (or similar) to do the algebra. For example, the following
Mathematica script solves this Exercise:

(* Exercise 9.1 - Penalty Method *)
(* MFC: u2-u6=1/5 variable w *)
K=MasterStiffnessOfSixElementBar[100] ;
Print["Stiffness K=",K//MatrixForm];
£={1,2,3,4,5,6,7}; Print["Applied forces=",f];
uexact= {0,0.27,0.275,0.25,0.185,0.07,0.14}; ew={};
For [w=100, w<=10"16, w=10*w; (* increase w by 10 every pass *)
Khat=K; fhat=f;
Khat[[2,2]]+=w; Khat[[6,6]]1+=w; Khat[[6,2]]1=Khat[[2,6]]-=w;
fhat [[2]1]1+=(1/5)*w; fhat[[6]]1-=(1/5)*w; (*insert penalty *)
{Kmod, fmod}=FixLeftEnd0fSixElementBar [Khat,fhat];
u=LinearSolve [N[Kmod] ,N[fmod]];
Print["Weight w=",N[w]//ScientificForm," u=",u//InputForm];
e=Sqrt [(u-uexact) . (u-uexact)];
(¥*Print ["L2 solution error=",e//ScientificForm]; x*)
AppendTo[ew,{Log[10,w] ,Log[10,e]l}];
1
ListPlot[ew,AxesOrigin->{5,-8},Frame->True, PlotStyle->
{AbsolutePointSize[4] ,AbsoluteThickness[2] ,RGBColor[1,0,0]},
PlotJoined->True,AxesLabel->{"Logl0(w)","Logl0(u error)"}];

HereMasterStiffness0fSixElementBar andFixLeftEnd0fSixElementBar arethesamemoduleslisted
in Exercise 8.1.

Note: If you run the above program, you may get several beeps from Mathematica asit is processing some of
the systems with very large weights. Don't be alarmed: those are only warnings. The LinearSolve function
is alerting you that the coefficient matrices K for weights of order 10* or bigger are ill-conditioned.

EXERCISE 9.2 [C+N:15] Again identical to Exercise 8.1, except that the MFC u, — ug = 1/5isto be
treated by the Lagrange multiplier method. The results for the computed u and the recovered force vector Ku
should agree with (E8.1). Use Mathematica, Matlab (or similar) to do the algebra. For example, thefollowing
Mathematica script solves this Exercise:

(* Exercise 9.2 - Lagrange Multiplier Method *)

(* MFC: u2-u6=1/5 *)

K=MasterStiffnessO0fSixElementBar[100] ;

Khat=Table[0,{8},{8}]; f={1,2,3,4,5,6,7}; fhat=AppendTo[f,0];
For [i=1,i<=7,i++, For[j=1,j<=7,j++, Khat[[i,jl]1=K[[i,3j]1] 1];
{Kmod , fmod}=FixLeftEndOfSixElementBar [Khat,fhat];
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Kmod[[2,8]]1=Kmod[[8,2]]= 1;

Kmod [[6,8]]1=Kmod[[8,6]]=-1; fmod[[8]]1=1/5;

Print ["Kmod=",Kmod//MatrixForm] ;

Print ["fmod=",fmod] ;
umod=LinearSolve [N[Kmod] ,N[fmod]]; u=Take [umod,7];
Print["Solution u=",u ,", lambda=",umod[[8]]];
Print ["Recovered node forces=",K.u];

HereMasterStiffness0fSixElementBar andFixLeftEndOfSixElementBar arethesamemoduleslisted
in Exercise 8.1.

Does the computed solution agree with (E8.1)?
EXERCISE 9.3 [A:10] For the example structure, show which penalty elements would implement the fol-
lowing MFCs:
(@ ux+us=0,
(b) u, —3ug=1/3.
As answer, show the stiffness equations of those two el ementsin a manner similar to (9.1).

(E9.1)

EXERCISE 9.4 [A/C+N:15+15+10] Suppose that the assembled stiffness equations for a one-dimensional
finite element model before imposing constraints are

2 -1 07[u, 1
[_1 2 1}”:[0} 02
0 -1 2]|u, 2

This system is to be solved subject to the multipoint constraint

u, = Us. (E9.3)

(@ Impose the constraint (E9.3) by the master-dave method taking u; as master, and solve the resulting
2 x 2 system of equations by hand.

(b) Impose the constraint (E9.3) by the penalty function method, leaving the weight w as a free parameter.
Solve the equations by hand or CAS (Cramer’s rule is recommended) and verify analytically that as
w — oo thesolution approachesthat foundin (a). Tabulatethevaluesof uy, u,, usforw = 0, 1, 10, 100.
Hint 1: the value of u, should not change. Hint 2: the solution for u; should be (6w + 5)/(4w + 4).

(c) Impose the constraint (E9.3) by the Lagrange multiplier method. Show the 4 x 4 multiplier-augmented
system of eguations analogousto (9.13) and solve it by computer or calculator.

EXERCISE 9.5 [A/C:10+15+10] The left end of the cantilevered beam-column member illustrated in Fig-
ure E9.1 rests on askew-roller that formsa45° angle with the horizontal axis x. The member isloaded axially
by aforce P asshown. Thefinite element equations upon removing the fixed right end freedoms {uy,, Uy», 62},
but before imposing the skew-roller MFC, are

EA/L 0 0 Ux1 P
[ 0 12E1/L® 6EI/L2i| [uyl} = [o} (E9.4)
0 6EI/L2 4EI/L 61 0

where E, A, and | = |,, are given member properties, 6, istheleft end rotation, and L isthe member length.’

7 The stiffness equations for abeam column are derived in Part I11 of this book. For now consider (E9.4) as arecipe.
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Exercises

To simplify the calculationsset P = ¢ EA, and | = BAL?, in which « and 8 are dimensionless parameters,
and express the following solutionsin terms of & and 8.

(@ Apply the skew-roller constraint by the master-slave
method (make uy; slave) and solvefor uy; and 6, interms

of L, @ and 8. Thismay be doneby hand or aCAS. Partial beam-column E A I
member

solution: uy; = aL/(1+ 3B). 5 y T«
i x P 1 - 2

(b) Apply the skew-roller constraint with the penalty method
by inserting a penalty element at node 1. Follow the rule L
of §9.1.4 to construct the 2 x 2 penalty stiffness. Com- f ! Z

4‘50

pute uy; from the modified equations (Cramer’s rule is

recommended if solved by hand). Verify that asw — oo

the answer obtained in (a) is recovered. Partial solution: FIGURE E9.1. Cantilevered beam-column
Uy = aL(BEAB+wL)/(BEAB+wL(1+3B)). Canthe on skew-roller for Exercise 9.5.
penalty stiffness be physically interpreted in some way?

(c) Apply theskew roller constraint by L agrangian multiplier adjunction, and solvetheresulting 4 x 4 system
of equations using a CAS (by hand it will take long). Verify that you get the same solution asin (a).

EXERCISE 9.6 [A:5+5+10+10+5] A cantiveler beam-column isto be joined to a plane stress plate mesh as
depicted in Figure E9.2.2 Both pieces move in the plane {x, y}. Plane stress elements have two degrees of
freedom per node: two translations u, and uy along x and y, respectively, whereas a beam-column element
has three: two translations uy and uy along x and y, and one rotation (positive CCW) 6, about z. To connect
the cantilever beam to the mesh, the following “gluing” conditions are applied:

6 9
(1) The horizontal (uy) and vertical (uy) dis-
placements of the beam at their common plane beam ] —ﬂ—flz
node (2 of beam, 4 of plate) are the same. 18 /é%) 4 4 10 %
(2) The beam end rotation 6, and the mean ro- nodes2and4 -¥ | JH/Z
tation of the plate edge 3-5 are the same. occupy same position 3 {
Eor infinitesimal gisplacements and rota- 0 y plane stress mesh n
tionsthe latter is 6% = (Uxs — Ux3)/H. X
Questions:

. e Ficure E9.2. Beam linked to plate in plane stress
(8 Write down the three MFC conditions: two for Exercise 9.6. Beam shown dlightly separate from

from (1) and onefrom (2), and state whether plate for visualization convenience: nodes 2 and 4
they are linear and homogeneous. actually are at the same location.

avg

(b) Where does the above expression of 6.~ come from? (Geometric interpretation is OK.) Can it be made
more accurate® by including uy,?

(c) Write down the master-slave transformation matrix if {ux., Uyz, 62} are picked as daves. It is sufficient
to write down the transformation for the DOFs of nodes 2, 3, 4, and 5, which givesa T of order 9 x 6,
since the transformations for the other freedoms are trivial.

(d) If the penalty method is used, write down the stiffness equations of the three penalty elements assuming
the same weight w is used. Their stiffness matrices are of order 2 x 2, 2 x 2 and 3 x 3, respectively.
(Do not proceed further)

8 This is extracted from a question previously given in the Aerospace Ph. D. Preliminary Exam. Technically it is not
difficult once the student understand what is being asked. This can take some time, but a HW is more relaxed.

9 Toanswer the second question, observethat the displacements along 3-4 and 4-5 vary linearly. Thustheangle of rotation
about z is constant for each of them, and (for infinitesimal displacements) may be set equal to the tangent.
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Chapter 9: MULTIFREEDOM CONSTRAINTS Il
(e) If Lagrange multiplier adjunction isused, how many Lagrange multiplierswill you need to append? (Do
not proceed further).

EXERCISE 9.7 [A:30] Show that the master-slave transformation method u = T can be written down asa
specid form of the method of Lagrange multipliers. Start from the augmented functional

Mys=2u"Ku—u"f+AT(u—T0) (E9.5)
and write down the stationarity conditions of ITy s with respect to u, A and G in matrix form.

EXERCISE 9.8 [A:35] Check the matrix equations (9.23) through (9.26) quoted for the Augmented La-
grangian method.

EXERCISE 9.9 [A:40] (Advanced, close to a research paper). Show that the master-slave transformation
method u = T can be expressed as alimit of the penalty function method as the weights go to infinity. Start
from the augmented functional

Mp=3u'Ku—u"f+wu-TOT(U-TN (E9.6)

Write down the matrix stationarity conditions with respect to to u and 0 and take the limit w — oo. Hint:
using Woodbury’s formula (Appendix C, 8C.5.2)

K4+wTTSTHy 1=K -KITTK+wisHITK™ (E9.7)

show that

K '=TKITT, (E9.8)
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