{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# The Goal \n",
"Provide a specific set of recommendations on how to improve The Client's business based on the provided data. Provide the recommendations and any supporting analyses and assumptions.\n",
"# Approach \n",
"## 1. QA Data \n",
"- confirm all data is present and entered correctly. If null values are present, determine whether to \n",
" 1) drop row values\n",
" 2) impute null values using other row indicators, if applicable\n",
" \n",
"## 2. Exploratory Data Analysis\n",
"- look for trends in the data and see if any obvious patterns emerge. Make sure data trends make sense - if they do not, reevaluate data quality and determine reason for discrepancy\n",
"- look for patterns that emerge (or don't)\n",
"- identify target metrics for improvement\n",
" \n",
"## 3. (Time Permitting) Competitive Analysis / ML Analysis \n",
"- compare The Client data to competitors (e.g. DoorDash, UberEats, GrubHub, and proprietary food delivery services like Domino's) and identify gaps / competitive advantages\n",
"- using the sklearn library, utilize the appropriate models to look for most impactful indicators to either further exploit advantages or close gaps\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# PHASE 1: Import & QA the dataset"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1a) Import the dataset and instantiate the dataframe"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"#import the necessary modules\n",
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"import os\n",
"import warnings\n",
"warnings.filterwarnings('ignore')\n",
"#the dts list denotes the columns that represent datetimes. Because the datetime format provided is not standard, \n",
"#we will not adjust them when we instatiate the dataframe; we will adjust each column with pd.to_datetime. \n",
"dts = [\"Customer placed order datetime\", \n",
" \"Placed order with restaurant datetime\", \n",
" \"Driver at restaurant datetime\", \n",
" \"Delivered to consumer datetime\"]\n",
"#instatiate the dataframe from the provided excel\n",
"df = pd.read_excel(\"Sample deliveries data - 1 month (1) (2).xlsx\")\n",
"#Convert datetime columns to appropriate data types, and convert from base UTC to the Client's operational time zone (PT) \n",
"for col in dts:\n",
" df[col] = pd.to_datetime(df[col], format = \"%d %H:%M:%S\", utc=True).dt.tz_convert('US/Pacific')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1b) check for missing values in dataframe "
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Unique delivery regions: ['Mountain View' 'Palo Alto' 'San Jose' 'None']\n",
"26 entries do not have region data\n",
"\n",
"# Missing values for each column:\n"
]
},
{
"data": {
"text/plain": [
"Customer placed order datetime 0\n",
"Placed order with restaurant datetime 40\n",
"Driver at restaurant datetime 4531\n",
"Delivered to consumer datetime 0\n",
"Driver ID 0\n",
"Restaurant ID 0\n",
"Consumer ID 0\n",
"Delivery Region 26\n",
"Is ASAP 0\n",
"Order total 0\n",
"Amount of discount 0\n",
"Amount of tip 0\n",
"Refunded amount 0\n",
"dtype: int64"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print(f'Unique delivery regions: {df[\"Delivery Region\"].unique()}')\n",
"print(f'{len(df[df[\"Delivery Region\"]==\"None\"])} entries do not have region data')\n",
"df[\"Delivery Region\"].replace({\"None\": np.nan}, inplace=True)\n",
"print(\"\\n# Missing values for each column:\")\n",
"df.isna().sum()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Problems: \n",
"- 3 columns (\"Placed order with restaurant datetime,\" \"Delivery Region,\" and \"Driver at restaurant datetime\") are missing some data. This may impact analysis.\n",
"\n",
"#### Mitigation Options: Two solutions present themselves for the datetime data: \n",
"1. Impute the data where appropriate using the average delivery time.\n",
" Deliver time can be inferred by comparing existing \"driver at restaurant\" and \"delivered to consumer\" times. This solution raises the below concerns.\n",
" a) We do not have geolocation data; some customers may be placing orders at restaurants far away. \n",
" b) We do not know what method the driver is using the deliver the food (e.g. bike, motorcycle, car)\n",
" c) We do not know the whether conditions on the given day, or other one-off events that cause atypical fluctuations in delivery times. \n",
"2. Remove the columns. \n",
" When data quality is in question, it is oftentimes advisable to remove the questionable entries when it will not cause a material change to the dataset. In this case, 4500 rows represents almost 25% of all rows - removing this much data would cause a material change to data interpretation. \n",
" \n",
"\n",
"#### Solutions\n",
"Per the above, I consider the uncertainty inherent in imputing values less of a concern than removing up 25% of data. \n",
"1. For missing delivery region, I will impute using the most common delivery region (mode)\n",
"2. For missing driver at restaurant values, I will infer the missing data using the average (median) delivery time. The median is resistent to outliers. As we are missing significant context when it comes to deliveries (restaurant delays, distance, etc), the mode is a safer reflection of the average delivery time than the mean.\n",
"3. For order placed w/restaurant values, I will use a two pronged approach based on ASAP status:\n",
" 1. If the \"IS ASAP\" flag is True: \n",
" a) If the number missing data is material: I will impute order using the \"order placed w/customer\" value\n",
" b) If the number missing data is not material: I will drop the rows from the relevant analysis\n",
" 2. If the order is not ASAP: order-time would be delayed from order placed. As we do not know the time the customer has specified for delivery given current data, we will leave these blank and not analyze non-asap orders\n",
"\n",
"\n",
"#### Assumptions\n",
"##### 1. Customers' distance from restaurants are all similar\n",
"##### 2. All drivers are using the same method of transportation (given the \"Driver\" denotation, likely a car)\n",
"##### 3. Weather conditions are immaterial to delivery time. As the delivery regions specified typically have driving-favorable weather, this is a very reasonable assumption\n",
"##### 4. We will not analyze non-asap orders per Solution 3.2 above\n",
"\n",
"Note: For a more detailed analysis, we could additionally factor in delivery region and time-of-day to impute average delivery time. As I am limited on time, I will go with the simple region approach denoted in "
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"ASAP status of orders missing order placement data: \n",
"False 38\n",
"True 2\n",
"Name: Is ASAP, dtype: int64\n"
]
}
],
"source": [
"# Impute Delivery Region\n",
"df[\"Delivery Region\"].fillna(df[\"Delivery Region\"].mode()[0], inplace=True)\n",
"# Impute Driver at Restaurant\n",
"# Step 1: Create delivery Driver_time_elapsed column\n",
"df[\"Driver_time_elapsed\"] = df[\"Delivered to consumer datetime\"] - df[\"Driver at restaurant datetime\"]\n",
"# Step 2: Create an integer column for feature engineering\n",
"df[\"Driver at restaurant datetime\"] = df[\"Delivered to consumer datetime\"] - df[\"Driver_time_elapsed\"].median()\n",
"# Impute order placed w/restaurants for ASAP deliveries\n",
"print(f'ASAP status of orders missing order placement data: \\n{df[df[\"Placed order with restaurant datetime\"].isnull()][\"Is ASAP\"].value_counts()}')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Only two values missing order placement time are ASAP orders; this number is immaterial to any analysis. I will drop them. Let's confirm all the null values are gone now. "
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Customer placed order datetime 0\n",
"Placed order with restaurant datetime 40\n",
"Driver at restaurant datetime 0\n",
"Delivered to consumer datetime 0\n",
"Driver ID 0\n",
"Restaurant ID 0\n",
"Consumer ID 0\n",
"Delivery Region 0\n",
"Is ASAP 0\n",
"Order total 0\n",
"Amount of discount 0\n",
"Amount of tip 0\n",
"Refunded amount 0\n",
"Driver_time_elapsed 4531\n",
"dtype: int64"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.isna().sum()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Great! All the null values are gone. I'll do a quick sanity check on the dataframe and make sure all the info still looks right after our transformations"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Customer placed order datetime
\n",
"
Placed order with restaurant datetime
\n",
"
Driver at restaurant datetime
\n",
"
Delivered to consumer datetime
\n",
"
Driver ID
\n",
"
Restaurant ID
\n",
"
Consumer ID
\n",
"
Delivery Region
\n",
"
Is ASAP
\n",
"
Order total
\n",
"
Amount of discount
\n",
"
Amount of tip
\n",
"
Refunded amount
\n",
"
Driver_time_elapsed
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
1899-12-31 18:59:12-07:53
\n",
"
1899-12-31 19:07:25-07:53
\n",
"
1899-12-31 19:19:58-07:53
\n",
"
1899-12-31 19:42:20-07:53
\n",
"
279
\n",
"
50
\n",
"
6738
\n",
"
Mountain View
\n",
"
True
\n",
"
16.33
\n",
"
0.0
\n",
"
0.82
\n",
"
0.0
\n",
"
00:27:11
\n",
"
\n",
"
\n",
"
1
\n",
"
1900-01-13 08:05:57-07:53
\n",
"
1900-01-13 10:03:45-07:53
\n",
"
1900-01-13 10:41:39-07:53
\n",
"
1900-01-13 11:04:01-07:53
\n",
"
303
\n",
"
96
\n",
"
64746
\n",
"
Palo Alto
\n",
"
True
\n",
"
76.14
\n",
"
0.0
\n",
"
6.45
\n",
"
0.0
\n",
"
00:32:22
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Customer placed order datetime Placed order with restaurant datetime \\\n",
"0 1899-12-31 18:59:12-07:53 1899-12-31 19:07:25-07:53 \n",
"1 1900-01-13 08:05:57-07:53 1900-01-13 10:03:45-07:53 \n",
"\n",
" Driver at restaurant datetime Delivered to consumer datetime Driver ID \\\n",
"0 1899-12-31 19:19:58-07:53 1899-12-31 19:42:20-07:53 279 \n",
"1 1900-01-13 10:41:39-07:53 1900-01-13 11:04:01-07:53 303 \n",
"\n",
" Restaurant ID Consumer ID Delivery Region Is ASAP Order total \\\n",
"0 50 6738 Mountain View True 16.33 \n",
"1 96 64746 Palo Alto True 76.14 \n",
"\n",
" Amount of discount Amount of tip Refunded amount Driver_time_elapsed \n",
"0 0.0 0.82 0.0 00:27:11 \n",
"1 0.0 6.45 0.0 00:32:22 "
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Make sure all the data looks correct. \n",
"# QAing with the provided excel shows that the datetime conversion is a difference of 8 hours.\n",
"# This which is correct if Daylight savings time is not active. \n",
"df.head(2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Everything's looking good. A quick sanity check on the timezones shows that the UTC to PT conversion clocks in at -8 hours, which fits if daylight savings time is not active (Pacific time is currently PST). \n",
"\n",
"#### Assumption: Pacific time is currently on PST (not PDT)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Exploration 1: Demand trends\n",
"1. Can we get a better idea of what month this data is representing? \n",
"2. Does food-delivery demand have any common trends?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 1: Restrict analysis to operational month (PST, not UTC)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"def order_check(num, df):\n",
" return(f\"Total # of orders check: {num}/{len(df)}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Since orders can be placed in advance, monthly operational data can be best inferred by the date an order is delivered to a consumer"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The largest day # in the dataset in PT is: 30\n",
"of the 18078 entries provided, 17698 are in the operational month\n"
]
}
],
"source": [
"#Dataframe contains month values given in UTC; some values \n",
"#(e.g. 1st day of the month, 2AM UTC) would actually belong to the previous operational month in Pacific Time \n",
"pst_df = df[df[\"Delivered to consumer datetime\"].dt.year != 1899]\n",
"print (f'The largest day # in the dataset in PT is: {pst_df[\"Delivered to consumer datetime\"].dt.day.max()}')\n",
"print (f\"of the {len(df)} entries provided, {len(pst_df)} are in the operational month\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 2: Visualize data"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Total # of orders check: 17698/17698\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0MAAAEWCAYAAACkHEyCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde7wVdb3/8ddbMK+YkmjIRbDoov6OlDsyNY+lJmYnzLxgmVgU5sHUygqs31E7cQ79KstKPZKZmHkhzSQvGZGXzAui4QXRJEQlEPCWeDko+Pn98f1uHTZrrb32Zq+99trr/Xw81mPNfGfmO5+1Zu2Z/Zn5zncUEZiZmZmZmTWbjeodgJmZmZmZWT04GTIzMzMzs6bkZMjMzMzMzJqSkyEzMzMzM2tKTobMzMzMzKwpORkyMzMzM7Om5GTIGoqk0yVd3MjrkXShpO/Uou4K65SkX0h6VtKc7lx3NSSFpLfXOw4z8352A9ZZ9/2spJskfb4D8/+3pJM7ua5hed/dt5PLnyrp/M4sW08d/dySFkvav9Zx1VJXHqMlbSLpIUnbdUV9XcHJkHUbScdKul/SS5KelHSupK3rHVeT2Bs4ABgcEaPqGUhHD9ZmVj3vZ+uqx+xnqyFpAHAMcF43rGtfSUuKZRHxXxHhY0GTiYjVwAXAN+odSysnQ9YtJH0V+C7wNeDNwB7AjsAsSW8qs0ynzjaVqUuSmvn3viOwOCJerHcgZlYb3s/WXaPtZ48FrouIl0tN7Mrfhhms85u6BBgnaZN6xtOqmXda1k0kbQWcAXwpIn4fEa9GxGLgCNLB4+g83+mSrpB0saTngWMlDZd0s6RVkmYB27apew9Jt0l6TtK9kvYtTLtJ0hRJfwFeAnbKZ00X5foelfTpCqFvKunyPO89knbL9X5N0pVt4viJpB+V+fzvycuvknQ5sGlh2jaSrpG0MjetuEbS4DztcEl3t6nrq5J+W2Y9O0iaKekZSQslfSGXjwfOBz4g6QVJZ5RY9lhJf5H0w/xdLpK0Zy5/QtIKSeMK879Z0kU57sckfav1n6C8zK2Svp8/06OSDsrTpgAfBH6aY/lpIYz9JT2SlzlbksptGDNbl/ezDbGffUzS7nn4aKWmRzvn8c+3rlPSRpImSfq7pKclzZDUv1BP2e3RZn0DJd0n6ZRS04GDgJsL8+8raYmkb0h6EvhFe7G0Wd9nJS3I22CRpONy+RbA9cAO+bt5IX+PrzeTlPR7SSe0qe9eSYfm4XdJmpW/94clHVEmhg9Jur8w/kcVmizmY9MheXgHSVfm38Wjkk4szNeRz/1JpaZwu+bxz+Rt/bSkb7aZd5Sk2/O2Wybpp8onKpSOez9oM//vVKYZY/79fFEljptq0wRVbZr2Kf3dfif/jl7I63mLpF9Jel7SXZKGtVnlR/N2fUrS91Q48SHpc3nbPyvpBkk7tolzoqRHgEcAImIJ8CzphE39RYRfftX0BYwG1gB9S0ybDlyah08HXgUOISXqmwG3A2cCmwD7AKuAi/P8g4CngY/m+Q/I4wPy9JuAx4FdgL6kM6XPA+/M0wcCu5SJuTWWw4CNgVOAR/PwQOBFYOs8b19gBbB7iXreBDwGfDkve1iu9zt5+luATwKbA/2AXwO/zdM2AZ4B3l2o76/AJ8vEfDNwDumfgJHASmC/PO1Y4NYK2+jYvI0+C/QBvpO/u7NzHB/J3/2Wef6LgKtzzMOAvwHjC3W9Cnwh13U8sBRQYbt8vs36A7gG2BoYmmMfXe/frl9+NcoL72cbYT97EfDVPDwN+DtwfGHal/PwycAdwOAc33mF7VfN9vg8b+yXJ1SIZyXwvsL4vvk39N283s3aiWUYad/dN48fDLwNEPCvpOT4vYW6l5TY/q2/s2OAvxSm7Qw8l9e5BfAE6fjUF3gv8BQlfld5u7xMSuj7Ak+Sjj/98ud5Of8eNgLuBv6D9PvZCVgEHFjFNnj9c+eYFgJvL8T9AunvaBPS39UaYP88fXdSAtA317MAODlPG5Vj3SiPb5u/w+3LbL+yx83id1tmW92U434b6W/2QdLvZf8c20XAL9qs60agf17X38jHcdK+ZCHw7rzst4Db2iw7Ky+7WaF8JnBivfedEeFkyK/av0hnJJ8sM20qMCsPnw7cUpg2NO9EtiiUXcIbO89vAL9sU98NwLg8fBPw7cK0LUg7108W/yDLxHU6cEdhfCNgGfDBPH498IU8/DHgwTL17EMhEchlt5EP0iXmHwk8Wxg/F5iSh3chnUnZpMRyQ4C1QL9C2X8DF+bhY2k/GXqkMP5/8g5s+0LZ0zm+PsBqYOfCtOOAmwp1LSxM2zzX9dbCdimVDO1dGJ8BTKr3b9cvvxrl5f1sQ+xnxwMz8/ACUtJyWR5/jDcShwXkBCuPDyQld32r3B5nAouBo9r5/l8F3lUY3xd4Bdi0UFYplmEU/sEuUf9vgZMKdVdKhvqRkt8d8/gU4II8fCTw5zbLngecVma9fwYOJSUdfyAdT0YDHwLuy/O8H3i8zXKTyQlAlZ/7FFISMbgw33+0btPC38Mr5GSoRKwnA1e1+b4PyMMnkJoxltt+ZY+bVJcMfbMw/QfA9YXxfwPmtVnX6ML4vwOzC3+n49v8Hb9U2JYBfLhE/L8C/qPSb7S7Xm4mZ93hKWBblW5/PDBPb/VEYXgH0gGr2P76scLwjsDh+XLzc5KeI93AOrBUfbmeI4EvAsskXSvpXRXiLi77GrAkxwTpTOvRefho4Jdl6tgB+Efkv/y2n0HS5pLOy5fUnwduAbaW1Kewnk/lS9+fAWZEuvmw1HqeiYhVbdYzqMLna2t5YfhlgIhoW7Yl6WxV65nYcut6snUgIl7Kg1u2s/4nC8MvVTG/mb3B+9mev5+9GfigpLeSTipdDuyVmyO9GZiX59sRuKrwfS8gJWHbU932+DTwD+CKduJ5lpSEFK2MiP8tjFeKZR2SDpJ0R27K9hzp6tW2becrJX+n1wJjc9FY0j/LrTG8v81n/jTw1jLV3UxKvvbJwzeRrlT9K280C9yR1GyvWOephc9Vzef+GnB2pCZfrXZg/b+Hp1vHJb1DqZnmk/m3+F+s+x1V+5tvtSHHzbbH91LH+6LifuMx3vg73RE4q/BdPUO6OjiozLKt+pFOnNSdkyHrDreTriQcWixUakd8EDC7UFw8mC0DtsnztRpaGH6CdIZs68Jri4iYWqY+IuKGiDiAdOB4CPhZhbiHFGLdiHS5fGku+i3wL7mN8Md4Y6fd1jJgUGs73hKf4avAO4H3R8RWpJ03pB0JEXEH6azSB4FPUX7HuBToL6l4YBtKOiB2tadIZ8h27OS6ov1ZzKyDvJ/t4fvZiFhI+of1RNLVuVWkf2YnkK4ovZZnfQI4qM13vmlE/IPqtsfppP30JYWEr5T7gHe0DbPNeKVYXqd0I/yVwPdJLQq2Bq4jf8cl6i3lUuAoSR8gNWm7sRDDzW1i2DIiji9TT9tk6GbWT4aeAB5tU2e/iPhoBz73R4BvSfpkoWwZ6/6mNyc1y2t1LulvYkT+LZ5a+I4ALgbGKN07927S30BnvEhqldGqXOLYEUMKw0N54+/0CeC4Nt/VZhFxW2H+Utv/3cC9XRDXBnMyZDUXEf8k3dj7E0mjJW2cz4T9mnQWsOSBJyIeA+YCZ0h6k6S9SZduW10M/JukAyX1kbSp0g2gg0vVJ2l7SR/PB/3VpHa9ayuEvrukQ/OZ1pPzMnfk2P6XdNbtEmBORDxepo7bSU1QTpTUV+lm0GKXq/1IZ2CeU7o587QSdVwE/BRYExG3llpJRDxBahby3/l7+BdSk4xy/zx0WkSsJV2OnyKpX75R8iuk7VGN5aT22WbWRbyfbZj97M2k5k+t/5Tf1GYc4H9I+9cdIXWBLWlMnlbN9ngVOJzUROuXKt/D33WkBKGSSrEUvYl0j8xKYI1SpzkfKUxfDrxF0psrrOs60km2bwOXF5LDa4B3KHVMsHF+vU/Su8vUcxsp+R1F+t3Mz/W+n3RVEGAO8LxSZxGb5e9yV0nv68Dnnk9qfne2pI/nsiuAj0naW6ljhG+z7v/a/Uj31L2gdMV0nYQuX2W6i/T3emWU6emvCvOAfSQNzd/55E7WU/Q1pc5IhgAnka5sQvquJkvaBV7vYOnwShVJGkS6h+iOLohrgzkZsm4REf+PdAbk+6QdwZ2kswn7lWmO0OpTpB3YM6QD2EWFOp8AxuR6V+b6vkb53/VGpDOES3N9/0pq91rO1aTmHs+Smk4cGhGvFqZPJ91bU/YydkS8QjpTe2yu50jgN4VZfkQ6A/YUaafw+xLV/BLYtdJ6sqNI7YKXAleR2lPPameZzvoS6czTIuBW0j8rF1S57FnAYUq9zvy4RvGZNR3vZxtiP3sz6R/iW8qMQ9pHzgT+IGlVjvn9UP32KHwn2wEXlEmILiL1ELZZhXjLxtJmfatIV7xmkLbBp/JyrdMfIl35WZSbU+1Qoo7VpO22P+mYUqz7I6Smc0tJV9NaO3lYT26adg8wP38PkBLmxyJiRZ5nLSnpH0nqtOMpUm+ArclatZ/7XtJVy59JOignXhNz/Mvyd1FsRndK/m5Wka6YXs762v3Ntyf/Ji8nXf27m5RQbqirc13zSE0af57XdRVpe1yWm/49QLoaXcmngOnt7Je6TWvvTmbWQZKGki53vzUinq/hejYj9aL03oh4pFbrMTPrabyfrS1J/wWsiIiSXZZb95O0D+kK4LDC1bFeIzepvBfYpzU5rTc/UMusE/JZtq+Qeo2p2QE6Ox64q5kO0GZm3s/WXkScWu8Y7A2SNiY1QTu/NyZC8PoVwEqdqnQ7J0NmHZTbwi8n9aYyusbrWky6ufKQWq7HzKwn8X7Wmk2+B2ou6arJZ+scTlNxMzkzMzMzM2tK7kDBzMzMzMyaUkM3k9t2221j2LBh9Q7DzKyp3X333U9FxIB6x9ET+ThlZtYzlDtW1TQZkvRl4POkhy3dT2oDuTmpu79hwGLgiIh4Ns8/mdRn/1rgxIi4oVL9w4YNY+7cubUK38zMqiDpsXrH0FP5OGVm1jOUO1bVrJlcfqDSiUBLROwK9CH1ET8JmB0RI0hPxJ6U5985T9+FdLPkOe08OdnMzMzMzKzTan3PUF9gs/xk6c1JD8saQ3qgFPm9tfeWMaTuM1dHxKPAQtZ9grSZmZmZmVmXqVkyFBH/ID0F+3HSU3j/GRF/ALaPiGV5nmWkpyMDDCI9SbnVkly2DkkTJM2VNHflypW1Ct/MzMzMzHq5WjaT24Z0tWc4sAOwhaSjKy1Somy9fr8jYlpEtEREy4ABvl/XzMwqk7SppDmS7pU0X9IZuby/pFmSHsnv2xSWmSxpoaSHJR1YKN9d0v152o8llTp2mZlZg6hlM7n9gUcjYmVEvAr8BtgTWC5pIEB+X5HnXwIMKSw/mNSszszMbEOsBj4cEbsBI4HRkvagc/ewngtMAEbkV00fCGpmZrVVy2TocWAPSZvnM2f7AQuAmcC4PM844Oo8PBMYK2kTScNJB5k5NYzPzMyaQCQv5NGN8yvo4D2s+QTeVhFxe6Qnll9UWMbMzBpQzbrWjog7JV0B3AOsAf4KTAO2BGZIGk9KmA7P88+XNAN4MM8/MSLW1io+MzNrHvnKzt3A24Gz8zFqnXtYJRXvYb2jsHjrPayv5uG25W3XNYF09YihQ4d29UcxM7MuVNPnDEXEacBpbYpXk64SlZp/CjClljGZmVnzySfXRkraGrhK0q4VZi93D2vV97aSTv7R0tKy3nQzM+s5at21tpmZWY8REc8BN5Hu9enoPaxL8nDbcjMza1A1vTJkZtYohk26tt15Fk89uBsisa4maQDwakQ8J2kzUgc/3+WNe1insv49rJdIOpPUG+oIYE5ErJW0Kne+cCdwDPCTWsdfzW+zHvz3YGa9gZMhMzPr7QYC0/N9QxsBMyLiGkm30/F7WI8HLgQ2A67PLzMza1BOhszMrFeLiPuA95Qof5oO3sMaEXOBSvcbmZlZA/E9Q2ZmZmZm1pScDJmZmZmZWVNyMmRmZmZmZk3JyZCZmZmZmTUlJ0NmZmZmZtaUnAyZmZmZmVlTcjJkZmZmZmZNycmQmZmZmZk1JSdDZmZmZmbWlJwMmZmZmZlZU+pb7wDMzMzMrGsNm3RtvUMoafHUg+sdgtk6fGXIzMzMzMyakpMhMzMzMzNrSk6GzMzMzMysKdUsGZL0TknzCq/nJZ0sqb+kWZIeye/bFJaZLGmhpIclHVir2MzMzMzMzGqWDEXEwxExMiJGArsDLwFXAZOA2RExApidx5G0MzAW2AUYDZwjqU+t4jMzMzMzs+bWXc3k9gP+HhGPAWOA6bl8OnBIHh4DXBYRqyPiUWAhMKqb4jMzMzMzsybTXcnQWODSPLx9RCwDyO/b5fJBwBOFZZbksnVImiBprqS5K1eurGHIZmZmZmbWm9U8GZL0JuDjwK/bm7VEWaxXEDEtIloiomXAgAFdEaKZmZmZmTWh7rgydBBwT0Qsz+PLJQ0EyO8rcvkSYEhhucHA0m6Iz8zMzMzMmlB3JENH8UYTOYCZwLg8PA64ulA+VtImkoYDI4A53RCfmZmZmZk1ob61rFzS5sABwHGF4qnADEnjgceBwwEiYr6kGcCDwBpgYkSsrWV81niGTbq24vTFUw/upkjMzMzMrNHVNBmKiJeAt7Qpe5rUu1yp+acAU2oZk5mZmZmZGXRfb3JmZmZmZmY9Sk2vDJmZNbv2mnaCm3eamZnVi68MmZmZmZlZU/KVoTrzWWMzs9qSNAS4CHgr8BowLSLOknQ68AWg9Qnep0bEdXmZycB4YC1wYkTckMt3By4ENgOuA06KiPWeiWdmZo3ByZCZmfV2a4CvRsQ9kvoBd0ualaf9MCK+X5xZ0s7AWGAXYAfgj5LekXs4PReYANxBSoZGA9d30+doONWc8KsHn2Q0s1ZOhszMOshXdBtLRCwDluXhVZIWAIMqLDIGuCwiVgOPSloIjJK0GNgqIm4HkHQRcAhOhszMGpaTIbNezM9l8ndg65I0DHgPcCewF3CCpGOAuaSrR8+SEqU7CostyWWv5uG25W3XMYF09YihQ4d2+WcwM7Ou42TIzMyagqQtgSuBkyPieUnnAv8JRH7/AfA5QCUWjwrl6xZETAOmAbS0tPh+ogbWE5v5+QSOWddyb3JmZtbrSdqYlAj9KiJ+AxARyyNibUS8BvwMGJVnXwIMKSw+GFiayweXKDczswblK0Nm1nDc9M06QpKAnwMLIuLMQvnAfD8RwCeAB/LwTOASSWeSOlAYAcyJiLWSVknag9TM7hjgJ931OczMrOs5GTIzs95uL+AzwP2S5uWyU4GjJI0kNXVbDBwHEBHzJc0AHiT1RDcx9yQHcDxvdK19Pe48wcysoTkZMrMewT20Wa1ExK2Uvt/nugrLTAGmlCifC+zaddGZWVs98V4t8DGot/I9Q2ZmZmZm1pScDJmZmZmZWVNyMzmzBuPOA8zMzMy6hq8MmZmZmZlZU/KVIeu1fAXFzMzMzCqpaTIkaWvgfFLPO0F6svfDwOXAMFJXpkdExLN5/snAeGAtcGJE3FDL+GrFvWKZWa052TczM9twtb4ydBbw+4g4TNKbgM1Jz3aYHRFTJU0CJgHfkLQzMBbYhfSQuz9Kekfh2Q5m1mB8YsDMzMx6spolQ5K2AvYBjgWIiFeAVySNAfbNs00HbgK+AYwBLouI1cCjkhYCo4DbaxWjWU/hpMHMzMys+9XyytBOwErgF5J2A+4GTgK2j4hlABGxTNJ2ef5BwB2F5ZfksnVImgBMABg6dGjtordu40TAzMzMzOqhlslQX+C9wJci4k5JZ5GaxJVT6ungsV5BxDRgGkBLS8t60zvC/4Qb+HdgZmZm1qxqmQwtAZZExJ15/ApSMrRc0sB8VWggsKIw/5DC8oOBpTWMz8zMzMysS1VzkrUefGK3tJolQxHxpKQnJL0zIh4G9gMezK9xwNT8fnVeZCZwiaQzSR0ojADm1Cq+RtSR3qPc05SZ9TaSDid1yrNK0rdIrQ++ExH31Dk0MzNrULXuTe5LwK9yT3KLgM+SHvQ6Q9J44HHgcICImC9pBilZWgNMdE9yPYubk5lZnf3fiPi1pL2BA4HvA+cC769vWGZm1qhqmgxFxDygpcSk/crMPwWYUsuYzMx6Kp9waFfrCbKDgXMj4mpJp9cxHjMza3C1vjJkZmbWVf4h6Txgf+C7kjYhtTYwM7Mu0Iz3O/kgYmZmjeII4AZgdEQ8B/QHvlbfkMzMrJH5ypCZmfV4kjYC5kTErq1l+Zl1y+oXlZmZNTpfGTIzsx4vIl4D7pXkp22bmVmX8ZUhqwnfCG5mNTAQmC9pDvBia2FEfLx+IZmZWSNrNxmSNBf4BXBJRDxb+5DMrLs5ebUGcUa9AzAzs96lmmZyY0kPQb1L0mWSDpSkGsdlZma2joi4GVgMbJyH7wL8wFUzM+u0dpOhiFgYEd8E3gFcAlwAPC7pDEn9ax2gmZkZgKQvAFcA5+WiQcBv6xeRmZk1uqo6UJD0L8APgO8BVwKHAc8Df6pdaGZmZuuYCOxFOv4QEY8A29U1IjMza2jV3DN0N/Ac8HNgUkSszpPulLRXLYPrSXxPhZlZ3a2OiFdaW2pL6gtEfUMyM7NGVk1vcodHxKJSEyLi0C6Ox8zMrJybJZ0KbCbpAODfgd/VOSYzM2tg7SZDEbFI0sHALsCmhfJv1zIws0bnq4lmXW4SMB64HzgOuA44v64RmZlZQ2v3niFJ/wMcCXwJEHA4sGON4zIzM1tHRLwWET+LiMMj4rA83G4zOUlDJN0oaYGk+ZJOyuX9Jc2S9Eh+36awzGRJCyU9LOnAQvnuku7P037s3lXNzBpbNR0o7BkRxwDPRsQZwAeAIbUNy8zMLMnJx33lXlVUsQb4akS8G9gDmChpZ9KVptkRMQKYncfJ08aSWkSMBs6R1CfXdS4wARiRX6O78KOamVk3q+aeoZfz+0uSdgCeBobXLiQzM7N1fCy/T8zvv8zvnwZeam/hiFgGLMvDqyQtIHXLPQbYN882HbgJ+EYuvyx3GPSopIXAKEmLga0i4nYASRcBhwDXb8BnMzOzOqomGbpG0takbrXvIfXc4zbaZmbWLSLiMQBJe0VEsRfTSZL+AlR9D6ukYcB7gDuB7XOiREQsk9TaTfcg4I7CYkty2at5uG1523VMIF09YujQodWGZmZmdVDNQ1f/MyKei4grSfcKvSsi/m/tQzMzM1vHFpL2bh2RtCewRbULS9qS9Ky8kyPi+UqzliiLCuXrFkRMi4iWiGgZMGBAteGZmVkdlL0yJKlst9mSiIjf1CYk607u8czMGsjngF9IejMpCflnLmuXpI1JidCvCsev5ZIG5qtCA4EVuXwJ694bOxhYmssHlyg3M7MGVamZ3L/l9+2APYE/5fEPkdpVt5sM5fbVq4C1wJqIaJHUH7gcGAYsBo6IiGfz/JNJ3aauBU6MiBs69GnMaszJo1l95A4M/jUidpO0FaCI+GeVy4r04PAFEXFmYdJMYBwwNb9fXSi/RNKZwA6kjhLmRMRaSask7UFqZncM8JMu+HhmZlYnZZvJRcRnI+KzpLNvO0fEJyPik6TedTriQxExMiJa8nhneu8xM7MmFhFrSR0bEBHPV5sIZXsBnwE+LGlefn2UlAQdIOkR4IA8TkTMB2YADwK/Bybm9QMcT7pvdiHwd9x5gplZQ6umA4VhrTeYZsuBd2zAOjvUew9w+wasy8zMeo+/SPopqXXBi62FEXFPpYUi4lZK3+8DsF+ZZaYAU0qUzwV2rTZgMzPr2apJhm6SdANwKekq0VjgxirrD+APkgI4LyKm0fHee9bhXnrMzJrWnvm92HtcAB+uQyxmZtYLtJsMRcQJkj4B7JOLpkXEVVXWv1dELM0JzyxJD1WYt+peeoBpAC0tLe0+edzMzHqHiPhQvWMwM7PepZorQ+Tkp9oEqLjc0vy+QtJVpGZvHe29x8zMjNyL3Gm8cXLuZuDbHbx/yMzM7HXtPmeosyRtIalf6zDwEeAB3ui9B9bvvWespE0kDSf33lOr+MzMrOFcQOqh9Ij8eh74RV0jMjOzhlbVlaFO2h64KvVoSl/gkoj4vaS7gBmSxgOPA4dD6r1HUmvvPWtYt/ceMzOzt+VeTVudIWle3aIxM7OGVzEZyl1bT4+IoztacUQsAnYrUf40Hey9x8zMDHhZ0t65dzgk7QW8XOeYzMysgVVMhvID5gZIelNEvNJdQZmZmZXwReCifO8QwLO80ezazMysw6ppJreY9GyHmaz7XIczyy5hZmbWxSLiXmA3SVvl8efrHJKZmTW4apKhpfm1EdCvtuGYmZlV5iTIzMy6SjXPGToDUo9wEfFie/ObmZmZmZk1gna71pb0AUkPAgvy+G6Szql5ZGZmZmZmZjVUzXOGfgQcCDwNr7fZ3qfiEmZmZl1M0lxJEyVtU+9YzMysd6jqoasR8USbIj//x8zMuttYYAfgLkmXSTpQ+WF2ZmZmnVFNMvSEpD2BkPQmSaeQm8yZmZl1l4hYGBHfBN4BXAJcADwu6QxJ/esbnZmZNaJqkqEvAhOBQcA/gJF53MzMrFtJ+hfgB8D3gCuBw4DngT/VMy4zM2tM1fQm9xTw6W6IxczMrCxJdwPPAT8HJkXE6jzpTkl71S8yMzNrVO0mQ5J2As4C9gACuB34ckQsqnFsZmZmRYeXO/ZExKHdHYyZmTW+ah66eglwNvCJPD4WuBR4f62CMjMzayXpK4Xh9aZHxJndGpCZmfUa1dwzpIj4ZUSsya+LSVeIzMzMukO/dl5mZmadUs2VoRslTQIuIyVBRwLXtvbcExHP1DA+MzNrchFxRr1jMDOz3qmaZOjI/H5cm/LPkZKjnbo0IjMzsxIkDQC+AAyjcPyKiM/VKyYzM2ts1fQmN7w7AjEzM2vH1cCfgT/ih3+bmVkXqObKkJnZ64ZNurbdeRZPPbgbIrEmtHlEfKPeQZiZWe9RTQcKZmZmPcE1kj5a7yDMzKz3qHkyJKmPpL9KuiaP95c0S9Ij+X2bwryTJS2U9LCkA2sdm5mZ9XySVkl6HjiJlBC9LOn5QrmZmVmntJsMSeKCFcUAABr+SURBVNpL0hZ5+GhJZ0rasQPrOAlYUBifBMyOiBHA7DyOpJ1JzzDaBRgNnCOpTwfWY2ZmvVBE9IuIrfL7RhGxWWF8q3rHZ2ZmjauaK0PnAi9J2g34OvAYcFE1lUsaDBwMnF8oHgNMz8PTgUMK5ZdFxOqIeBRYCIyqZj1mZtb7SZpdTVmJeS6QtELSA4Wy0yX9Q9K8/PpoYVrJVgqSdpd0f572Y5V6AqyZmTWUapKhNRERpGTlrIg4i+ofcvcjUgL1WqFs+4hYBpDft8vlg4AnCvMtyWXrkDRB0lxJc1euXFllGGZm1qgkbSrpLcC2krbJza37SxoG7FBFFReSWhy09cOIGJlf1+V1VWqlcC4wARiRX6XqNDOzBlJNMrRK0mTgaNLDVvsAG7e3kKSPASsi4u4qYyl1hi3WK4iYFhEtEdEyYMCAKqs2M7MGdhwwF3gXcHfhdTVwdnsLR8QtQLUPCC/ZSkHSQGCriLg9nyC8iDdaNpiZWYOqJhk6ElgNjI+IJ0lXa75XxXJ7AR+XtBi4DPiwpIuB5fmgQn5fkedfAgwpLD8YWFrNhzAzs94rIs7Kz7w7JSJ2iojh+bVbRPx0A6o+QdJ9uRlda2c+5VopDMrDbcvX4xYMZmaNo2IylK8CXRwRZ0bEnwEi4vGIaPeeoYiYHBGDI2IYqcnBnyLiaGAmMC7PNo50Zo9cPlbSJpKGk5ogzOnMhzIzs94nIn4iaU9Jn5J0TOurk9WdC7wNGAksA36Qy8u1Uqiq9UKO0y0YzMwaRMWHrkbEWkkvSXpzRPyzi9Y5FZghaTzwOHB4Xtd8STOAB4E1wMSI8BPGzcwMAEm/JCUw84DW40Nrk7UOiYjlhXp/BlyTR8u1UliSh9uWm5lZA6uYDGX/C9wvaRbwYmthRJxY7Uoi4ibgpjz8NLBfmfmmAFOqrdfMzJpKC7Bzvmdng0ga2NqZD/AJoLWnuZnAJZLOJHXOMAKYk08OrpK0B3AncAzwkw2Nw8zM6quaZOja/DIzM6unB4C3kpq1VU3SpcC+pN7olgCnAftKGkm6srSY1ElDe60Ujif1TLcZcH1+mZlZA2s3GYqI6ZI2A4ZGxMPdEJOZmVkp2wIPSppD6tgHgIj4eKWFIuKoEsU/rzB/yVYKETEX2LXqaM3MrMdrNxmS9G/A94E3AcPzmbRvt3fwMTMz62Kn1zsAMzPrXarpWvt0YBTwHEBEzAOG1zAmMzOz9UTEzcBDpAd/9wMW5DIzM7NOqSYZWlOiJ7kNvnnVzMysIyQdQXrkwuHAEcCdkg6rb1RmZtbIqulA4QFJnwL6SBoBnAjcVtuwzMzM1vNN4H0RsQJA0gDgj8AVdY3KzMwaVjVXhr4E7EK6WfVS4Hng5FoGZWZmVsJGrYlQ9jTVHcfMzMxKqqY3uZdIZ+O+WftwzMzMyvq9pBtIJ+YAjsTdW5uZ2QYomwxJ+h0V7g1yb3JmZtadIuJrkj4J7AUImBYRV9U5LDMza2CVrgx9P78fSnrI3cV5/CjSA+rMzMy6VURcKWkW+fglqX9EPFPnsMzMrEGVTYZauyuV9J8RsU9h0u8k3VLzyMzMzAokHQd8G3gZeI10dSiAneoZl5mZNa5qepMbIGmniFgEIGk4MKC2YZmZma3nFGCXiHiq3oGYmVnvUE0ydDJwk6RFeXwYMKFmEZmZmZX2d+ClegdhZma9R8VkSNJGwJuBEcC7cvFDEbG61oGZmZm1MRm4TdKdpMc9ABARJ9YvJDMza2QVk6GIeE3SCRExA7i3m2IyMzMr5TzgT8D9pHuGzMzMNkg1zeRmSToFuBx4sbXQvfeYmVk3WxMRX6l3EGZm1ntUkwx9Lr9PLJS59x4zM+tuN0qaAPyOdZvJ+eScmZl1SrvJUEQM70zFkjYFbgE2yeu5IiJOk9SfdJVpGOl5RUdExLN5mcnAeGAtcGJE3NCZdZuZWa/0qfw+uVDmk3NmZtZp7XWgsB3pitAupAPOg8DZEbGiirpXAx+OiBckbQzcKul60kNcZ0fEVEmTgEnANyTtDIzN69oB+KOkd0TE2s5+ODMz6z06e3LOzMysnI3KTZC0F3BXHr0IuDgPz8nTKorkhTy6cX4FMAaYnsunA4fk4THAZRGxOiIeBRYCozrwWczMzMzMzKpW6crQD4BDIuKvhbKrJV1F6tHn/e1VLqkPcDfwdtIVpTslbR8RywAiYlm++gQwCLijsPiSXGZmZmZmZtblyl4ZArZqkwgBEBHzgH7VVB4RayNiJDAYGCVp1wqzq1QV680kTZA0V9LclStXVhOGmZmZmZnZeipdGZKkbVo7NygU9qdyErWeiHhO0k3AaGC5pIH5qtBAoPX+oyXAkMJig4GlJeqaBkwDaGlpWS9ZMjOz3kXSeytNj4h7uisWMzPrXSolQz8E/pCfMdR6oNkd+G6eVpGkAcCrORHaDNg/LzsTGAdMze9X50VmApdIOpPUgcIIYE6HP5GZmfU2P6gwLYAPd1cgZmbWu5RNhiJimqSlwH+ybm9y34mI31VR90Bger5vaCNgRkRcI+l2YIak8cDjwOF5ffMlzcjrWANMdE9yZmYWER+qdwxmZtY7VexaOyKuAa7pTMURcR/wnhLlTwP7lVlmCjClM+szM7PeL997ujOwaWtZRFxUv4jMzKyRtfvQVTMzs55A0mnAvqRk6DrgIOBW0uMfzMzMOqxDHSGYmZnV0WGklgVPRsRngd2ATeobkpmZNTInQ2Zm1ihejojXgDWStiL1RrpTewtJukDSCkkPFMr6S5ol6ZH8vk1h2mRJCyU9LOnAQvnuku7P034sqdQjIczMrIG0mwxJ+lZh2GfgzMysXuZK2hr4GemB3vdQXa+jF5Ie7VA0CZgdESOA2XkcSTsDY0kdB40GzskdAQGcC0wg9XY6okSdZmbWYMomQ5K+LukDpGYJrW6vfUhmZmbri4h/j4jnIuJ/gAOAcbm5XHvL3QI806Z4DDA9D08HDimUXxYRqyPiUWAh6aHhA0kPI789IoJ0n9IhmJlZQ6t0ZehhUrfXO0n6s6RpwFskvbN7QjMzM3uDpNmtwxGxOCLuK5Z10PYRsSzXtQzYLpcPAp4ozLcklw3Kw23LS8U5QdJcSXNXrlzZyfDMzKw7VEqGngVOJZ0V2xf4cS6fJOm2GsdlZmYGgKRNJfUHtpW0Tb7fp7+kYaSHdHfp6kqURYXy9QsjpkVES0S0DBgwoEuDMzOzrlWpa+3RwGnA24AzgXuBF6tpkmBmZtaFjgNOJiU+9xTKnwfO7mSdyyUNjIhluQncily+BBhSmG8wsDSXDy5RbmZmDazslaGIODUi9gMWAxeTEqcBkm6V9Ltuis/MzJpcRJwVEcOBUyJieOG1W0T8tJPVzgTG5eFxwNWF8rGSNpE0nNRRwpzclG6VpD1yL3LHFJYxM7MGVc1DV2+IiLuAuyQdHxF7S9q21oGZmZm1cZ6kE4F98vhNwHkR8WqlhSRdSmruva2kJaRWD1OBGZLGA4+T7pElIuZLmgE8CKwBJkbE2lzV8aSe6TYDrs8vMzNrYO0mQxHx9cLosbnsqVoFZGZmVsY5wMb5HeAzpO6uP19poYg4qsyk/crMPwWYUqJ8LrBrtcGamVnPV82VoddFxL21CsTMzKwUSX0jYg3wvojYrTDpT5J8XDIzs05r96GrZmZmddb6YNW1kt7WWihpJ2Bt6UXMzMza16ErQ2ZmZnXQ2q31KcCNkhbl8WGAezg1M7NOczJkZmY93QBJX8nD5wF9gBeBTYH3ADfWKzAzM2tsTobMzKyn6wNsyboPPt0yv/fr/nDMzKy3cDJkZmY93bKI+Ha9gzAzs97HHSiYmVlPp/ZnMTMz67iaJUOShki6UdICSfMlnZTL+0uaJemR/L5NYZnJkhZKeljSgbWKzczMGkrJ5wGZmZltqFpeGVoDfDUi3g3sAUyUtDMwCZgdESOA2XmcPG0ssAswGjhHUp8axmdmZg0gIp6pdwxmZtY71SwZiohlEXFPHl4FLAAGAWOA6Xm26cAheXgMcFlErI6IR4GFwKhaxWdmZmZmZs2tW+4ZkjSM1P3pncD2EbEMUsIEbJdnGwQ8UVhsSS5rW9cESXMlzV25cmUtwzYzMzMzs16s5smQpC2BK4GTI+L5SrOWKIv1CiKmRURLRLQMGDCgq8I0MzMzM7MmU9NkSNLGpEToVxHxm1y8XNLAPH0gsCKXLwGGFBYfDCytZXxmZmZmZta8atmbnICfAwsi4szCpJnAuDw8Dri6UD5W0iaShgMjgDm1is/MzMzMzJpbLR+6uhfwGeB+SfNy2anAVGCGpPHA48DhABExX9IM4EFST3QTI2JtDeMzMzMzM7MmVrNkKCJupfyD8ko+MyIipgBTahWTmZmZmZlZq27pTc7MzMzMzKynqWUzOTMz6wGGTbq24vTFUw/upkjMzMx6Fl8ZMjMzMzOzpuRkyMzMzMzMmpKTITMzMzMza0pOhszMzMzMrCk5GTIzMzMzs6bkZMjMzMzMzJqSkyEzMzMzM2tKTobMzMzMzKwpORkyM7OmJWmxpPslzZM0N5f1lzRL0iP5fZvC/JMlLZT0sKQD6xe5mZl1BSdDZmbW7D4UESMjoiWPTwJmR8QIYHYeR9LOwFhgF2A0cI6kPvUI2MzMuoaTITMzs3WNAabn4enAIYXyyyJidUQ8CiwERtUhPjMz6yJOhszMrJkF8AdJd0uakMu2j4hlAPl9u1w+CHiisOySXLYOSRMkzZU0d+XKlTUM3czMNlTfegdgZmZWR3tFxFJJ2wGzJD1UYV6VKIv1CiKmAdMAWlpa1ptuZmY9h68MmZlZ04qIpfl9BXAVqdnbckkDAfL7ijz7EmBIYfHBwNLui9bMzLqakyEzM2tKkraQ1K91GPgI8AAwExiXZxsHXJ2HZwJjJW0iaTgwApjTvVGbmVlXcjM5MzNrVtsDV0mCdDy8JCJ+L+kuYIak8cDjwOEAETFf0gzgQWANMDEi1tYndDMz6wo1S4YkXQB8DFgREbvmsv7A5cAwYDFwREQ8m6dNBsYDa4ETI+KGWsVmZmYWEYuA3UqUPw3sV2aZKcCUGodmZmbdpJbN5C4kPYehyM9uMDMzMzOzHqFmyVBE3AI806bYz24wMzMzM7Meobs7UNigZzeAn99gZmZmZmZdo6f0JlfVsxsgPb8hIloiomXAgAE1DsvMzMzMzHqr7k6G/OwGMzMzMzPrEbo7GfKzG8zMzMzMrEeoZdfalwL7AttKWgKcBkzFz24wMzMzM7MeoGbJUEQcVWaSn91gZmZmZmZ111M6UDAzMzMzM+tWTobMzMzMzKwpORkyMzMzM7Om5GTIzMzMzMyakpMhMzMzMzNrSk6GzMzMzMysKTkZMjMzMzOzpuRkyMzMzMzMmpKTITMzMzMza0pOhszMzMzMrCk5GTIzMzMzs6bkZMjMzMzMzJqSkyEzMzMzM2tKTobMzMzMzKwpORkyMzMzM7Om5GTIzMzMzMyakpMhMzMzMzNrSk6GzMzMzMysKfW4ZEjSaEkPS1ooaVK94zEzMyvyccrMrPfoUcmQpD7A2cBBwM7AUZJ2rm9UZmZmiY9TZma9S49KhoBRwMKIWBQRrwCXAWPqHJOZmVkrH6fMzHoRRUS9Y3idpMOA0RHx+Tz+GeD9EXFCYZ4JwIQ8+k7g4Sqq3hZ4qovD7Qn8uRpLb/1c0Hs/mz9XdXaMiAFdWF+PVcPjVHdp5N90I8cOjR2/Y6+fRo6/p8Ve8ljVtx6RVKASZetkaxExDZjWoUqluRHRsiGB9UT+XI2lt34u6L2fzZ/LSqjJcaq7NPK2b+TYobHjd+z108jxN0rsPa2Z3BJgSGF8MLC0TrGYmZm15eOUmVkv0tOSobuAEZKGS3oTMBaYWeeYzMzMWvk4ZWbWi/SoZnIRsUbSCcANQB/ggoiY3wVV98jmCl3An6ux9NbPBb33s/lz2TpqeJzqLo287Rs5dmjs+B17/TRy/A0Re4/qQMHMzMzMzKy79LRmcmZmZmZmZt3CyZCZmZmZmTWlXp0MSRot6WFJCyVNqnc8XUnSYkn3S5onaW694+ksSRdIWiHpgUJZf0mzJD2S37epZ4ydUeZznS7pH3mbzZP00XrG2BmShki6UdICSfMlnZTLG3qbVfhcDb3NJG0qaY6ke/PnOiOXN/T2so5r5ONhqf1poyi3b2kU5fYhjURSH0l/lXRNvWPpqEb+X0/S1pKukPRQ/v1/oN4xldNr7xmS1Af4G3AAqSvUu4CjIuLBugbWRSQtBloioic9zKrDJO0DvABcFBG75rL/BzwTEVPzQXubiPhGPePsqDKf63TghYj4fj1j2xCSBgIDI+IeSf2Au4FDgGNp4G1W4XMdQQNvM0kCtoiIFyRtDNwKnAQcSgNvL+uYRj8eltqfNopy+5YG+u5L7kMi4o46h1Y1SV8BWoCtIuJj9Y6nIxr5fz1J04E/R8T5uefNzSPiuXrHVUpvvjI0ClgYEYsi4hXgMmBMnWOyNiLiFuCZNsVjgOl5eDrpn9KGUuZzNbyIWBYR9+ThVcACYBANvs0qfK6GFskLeXTj/AoafHtZhzX08bCR96eNvm+psA9pCJIGAwcD59c7lmYiaStgH+DnABHxSk9NhKB3J0ODgCcK40tooB1QFQL4g6S7JU2odzBdbPuIWAbpQAJsV+d4utIJku7LzT4aummSpGHAe4A76UXbrM3nggbfZrmJyDxgBTArInrV9rKq9PbjYUMosW9pCGX2IY3iR8DXgdfqHUgnNer/ejsBK4Ff5CaK50vaot5BldObkyGVKGuYsxlV2Csi3gscBEzMzQisZzsXeBswElgG/KC+4XSepC2BK4GTI+L5esfTVUp8robfZhGxNiJGAoOBUZIaqpmRdYnefjzs8Rp5n9mo+xBJHwNWRMTd9Y5lAzTq/3p9gfcC50bEe4AXgR57r2JvToaWAEMK44OBpXWKpctFxNL8vgK4itQMordYnttZt7a3XlHneLpERCzPB5XXgJ/RoNsstxu/EvhVRPwmFzf8Niv1uXrLNgPITRRuAkbTC7aXdUivPh72dGX2mQ2nzT6kEewFfDzfd3MZ8GFJF9c3pI5p4P/1lgBLClcRryAlRz1Sb06G7gJGSBqeb9waC8ysc0xdQtIW+UZM8mXHjwAN18tOBTOBcXl4HHB1HWPpMq3/fGafoAG3Wb6Z9ufAgog4szCpobdZuc/V6NtM0gBJW+fhzYD9gYdo8O1lHdZrj4c9XYV9ZkOosA/p8SJickQMjohhpN/8nyLi6DqHVbVG/l8vIp4EnpD0zly0H9BjOw3pW+8AaiUi1kg6AbgB6ANcEBHz6xxWV9keuCrtY+kLXBIRv69vSJ0j6VJgX2BbSUuA04CpwAxJ44HHgcPrF2HnlPlc+0oaSWqeshg4rm4Bdt5ewGeA+3MbcoBTafxtVu5zHdXg22wgMD33JrYRMCMirpF0O429vawDGv14WGp/GhE/r29UVSu5b4mI6+oYU0eU3IfUOaZm0ej/630J+FU+AbMI+Gyd4ymr13atbWZmZmZmVklvbiZnZmZmZmZWlpMhMzMzMzNrSk6GzMzMzMysKTkZMjMzMzOzpuRkyMzMzMzMmpKTIWtqktZKmidpvqR7JX1FUk3/LiR9L6/ve23Kj5UUkvYrlH0ilx3WyXXtK2nPwviFna3LzMzqq6ccs5Q8JWmbPD4wH6v2LsyzUtJbOrG+F7omcrPq9NrnDJlV6eWIGAkgaTvgEuDNpOcC1cpxwICIWF1i2v3AUcDsPD4WuHcD1rUv8AJw2wbUYWZmPUOPOGZFREi6E/gAcB2wJ/DX/H5rftjmUxHxdA3jMusSvjJklkXECmACcEI+6zVM0p8l3ZNfewJI+qWkMa3LSfqVpI8X68rLf0/SA5Lul3RkLp8JbAHc2VrWxp+BUZI2lrQl8HZgXqHe/ST9Ndd5gaRNcvliSWfkOO+X9C5Jw4AvAl/OZxI/mKvZR9Jtkhb5KpGZWWPqAcesv5CSH/L7maTkqHX8tlzH1yTdJek+SWcU1nm0pDn5+HRefrBrMaZtJd0u6eAN+qLM2uFkyKwgIhaR/i62A1YAB0TEe4EjgR/n2c4nP0lZ0ptJO/22TxM/FBgJ7AbsD3xP0sCI+Dj5zF5EXF4qBOCPwIHAGGBm6wRJmwIXAkdGxP8hXdk9vrDsUznWc4FTImIx8D/AD/P6/pznGwjsDXwMmFr9t2NmZj1JnY9Zt/FGMjQK+C0wJI/vCfxF0keAEXn6SGB3SftIeneOca98pWst8OnWiiVtD1wL/EdEXNupL8esSk6GzNan/L4x8DNJ9wO/BnYGiIibgbfnJgpHAVdGxJo2dewNXBoRayNiOXAz8L4q138ZqXncWODSQvk7gUcj4m95fDqwT2H6b/L73cCwCvX/NiJei4gHge2rjMnMzHqmeh2z5gDvkbQFsHFEvAAskvR23rgy9JH8+itwD/AuUnK0H7A7cJekeXl8p8LnmA18PSJmdfjbMOsg3zNkViBpJ9IZqhWkNtjLSWfKNgL+tzDrL0lnscYCnytVVWdjiIg5knYlnY37m/R6Ve3V2dqeey2V/7aL9yp1Ok4zM6uveh6zIuIlSQtzfffk4juAj5KuVD2c6/3viDivTdxfAqZHxOQSVa8hndQ7kJSUmdWUrwyZZZIGkJqV/TQignRT6rKIeA34DFBsz3whcDJARMwvUd0twJGS+uR69yGdRavWZODUNmUPAcPyWTdyTO0dKFYB/TqwXjMzawA95Jj1l1zv7Xn8duAk4I4c0w3A5/I9sEgalK9QzQYOy8NI+v/t3KFKBWEQhuH3Aw0azYLV7DV4C4LBYharGLwL4dyAUcVwgnCKSQyCYNFs06goCCJj+NfmkaMGD+z7xIXdnbTD7Mz8C0mWumcUrcBaTrI7QQzSn9gZUt/NdS36WdrfqAPaEijAADhOsgacAS+fN1XVQ5Jb2oz0V05oi6TXtA/7TlXdTxpUVZ1+ce01ySZwmGQGuKQlwu8MgaNueXZ70vdLkqbStOWsc1rx81kMXQGLtD0lqmrU7QdddFMOz8BGVd0k2QNGaUeDvwFbwF1333uSdWCY5KmqBhPEIv1KWuEu6SeSzNOOwV6pqsf/jkeSpHHMWdJ4jslJP5RklTaytm9SkSRNM3OW9D07Q5IkSZJ6yc6QJEmSpF6yGJIkSZLUSxZDkiRJknrJYkiSJElSL1kMSZIkSeqlD+qFELRTQTYjAAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"#Create pivot table with count of data entries per day ID\n",
"day_quant_table = pst_df.pivot_table(index = pst_df[\"Delivered to consumer datetime\"].dt.day, aggfunc = \"count\")\n",
"weekday_quant_table = pst_df.pivot_table(index = pst_df[\"Delivered to consumer datetime\"].dt.weekday, aggfunc = \"count\")\n",
"\n",
"#Confirm that sum of orders equals the total number of orders in the dataframe (18078)\n",
"print(order_check(day_quant_table[\"Restaurant ID\"].sum(), pst_df))\n",
"#Graph by day\n",
"fig, axes = plt.subplots(1,2, figsize=(14,4))\n",
"for table, ax in zip([day_quant_table, weekday_quant_table], axes):\n",
" ax.bar(table.index, table[\"Restaurant ID\"])\n",
"axes[0].set(title=\"Orders by day of month\", xlabel=\"Day of Month\", ylabel=\"# Orders per day\");\n",
"axes[1].set(title=\"Orders by day of week (relative weekday number)\", xlabel=\"Day of Week\", ylabel=\"Total monthly orders\");"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note: Day 30 in this example may be underrepresented by design, as our extract is pulled on UTC data. Thus, in the same way that this month's extract included some of last month's data, at least someof the Day 30 operational data for this month would be included in the next month's data, as UTC is ahead of PST. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Takeaways / Trends\n",
"Using the knowledge that the largest day contained in the date columns is 30, we know that we are operating in a month with 31 days. Thus, we know this data comes from either September, April, June, and November. \n",
"\n",
"The data also seems to follow two patterns a 7-day basis:\n",
" 1. Starting with Day #4, every 7th day appears to see a relative spike in orders\n",
" 2. Starting with Day #7, every 7th day represents a relative trough in order demand\n",
" \n",
"\n",
"# Demand trends require further exploration\n",
"We have a clear relative trend of order volume by relative weekday, but what month and year is this data exerpt taken from? Knowing the time will provide clarity as to which weekdays are most valuable. \n",
"- We know that this data comes from either Sept, April, June, or November\n",
" \n",
"- The data is exposing a clear demand trend that seems to hold for almost the entire duration of the data provided. Knowing which month would allow us to determine which weekdays the Client sees peak demand and likewise, which weekdays demand suffers. Knowing what month this data is from would also allow us to cross-reference our demand data with likely confounding variables, such as holidays. For example, the massive decline in demand seen in Days 20 and 30 could be explained by national holidays "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Exploration 2: Delivery Trends\n",
"1. Are there any significant lead times when communicicating Client orders to partner restaurants?\n",
" - Are certain restaurants suffering from disproportionately long lead-times? \n",
"2. Do monetary KPIs differ by delivery region?\n",
" - Create the same time-series as #2, grouped by Delivery Region\n",
"3. Do certain consumers out-refund others? Why?\n",
" - Group monetary kpis by consumer ID and look for outliers \n",
"4. (Time-permitting) Do certain drivers outperform others?\n",
" - Group monetary kpis by driver ID and look for outliers\n",
"5. (Time-permitting) Do certain restaurants stand out (for better or for worse?)\n",
" - Group monetary KPIs by restaurant.\n",
" - Do discounts correspond to increased order volume?\n",
" - Do some restaurants account for a larger share of order totals?\n",
" - Are some restaurants more likely to be associated with refunded orders?\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Restaurant Order lead-times"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"count 14104\n",
"mean 0 days 00:04:28.898468\n",
"std 0 days 06:03:04.639094\n",
"min -30 days +04:56:24\n",
"25% 0 days 00:01:17\n",
"50% 0 days 00:03:14\n",
"75% 0 days 00:09:09\n",
"max 2 days 19:59:58\n",
"Name: order_lt, dtype: object"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pst_df[\"order_lt\"] = pst_df[\"Placed order with restaurant datetime\"] - pst_df[\"Customer placed order datetime\"]\n",
"pst_df[\"order_lt_min\"] = pst_df[\"order_lt\"].dt.seconds/60\n",
"#order lead times are only relevant for orders placed for immediate delivery; \n",
"# the current dataset does not have data to analyze orders placed for delayed delivery\n",
"pst_df[pst_df[\"Is ASAP\"]][\"order_lt\"].describe()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Looks like there may be some data integrity issues - some orders seem to have placed an order with the restaurant significantly before the customer even placed the order. I'll drop all the values that have orders placed with restaurants before the customer places their order."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"count 14103\n",
"mean 0 days 00:07:31.447209\n",
"std 0 days 00:35:37.410277\n",
"min 0 days 00:00:06\n",
"25% 0 days 00:01:17\n",
"50% 0 days 00:03:14\n",
"75% 0 days 00:09:09\n",
"max 2 days 19:59:58\n",
"Name: order_lt, dtype: object"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"time_df = pst_df.drop(pst_df[pst_df[\"Placed order with restaurant datetime\"] < pst_df[\"Customer placed order datetime\"]].index)\n",
"time_df[time_df[\"Is ASAP\"]][\"order_lt\"].describe()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"That looks better! Immediate takeaways are that some orders are placed almost immediately (6 seconds!), though over 75% of all orders take over a minute to place with the restaurant. If we can partner more closely with our partner restaurants and integrate their order queue directly to the Client's App, we can reduce order delays to almost 0! \n",
"\n",
"Let's see if there are any other specific insights we can glean"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"# orders placed in each region:\n",
"Palo Alto 11218\n",
"Mountain View 3668\n",
"San Jose 2801\n",
"Name: Delivery Region, dtype: int64\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAyoAAAEICAYAAACwMgDTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3debRkVX3o8e+PbmZRpoY0NNAaEQciiC1qcEDBCKJCXhzgOTRGw9No1MSpNUaRxLfIW2rUmGhQlFYZgihCIBEIiiOijbYytIhCy9TQDYKAGhn8vT/2vnTdoupW3e6qW6fu/X7WuutWnXPq1O/ss8/Z+3emisxEkiRJkppkk1EHIEmSJEntTFQkSZIkNY6JiiRJkqTGMVGRJEmS1DgmKpIkSZIax0RFkiRJUuOYqDRARBwYETf0Oe2xEfH5YcfU4XszIh65kfP4RET83aBiGqSIWB0RB486Dk1tOtvKTIuIKyLiwFHHIcF4tCuD0m/bEhG7R8TdETFvJuJq++5J62Oc9hcRcVJE/MOQ5t3YfbqaYWwSlYi4KCJuj4jNRx2LNkxmvjYz/37UcYxarcuvmaHvGloDMwhNj286MvNxmXnRqONQ/2xXZod+25bMvC4zH5KZ9w8jjojYPyL+MyLuiIhfRsT3IuJVXWIZyP5i3JPMJhvnso2IoyPiW6OOo5vpxDcWiUpELAaeDiTwwiHMf/6g56lmGvS6nom609T6GcVY7EP6MYqjrBod25WZN5u3sYh4KvBV4OvAI4EdgNcBh44yruka5Doa521g2LH30342ufxmNLbMbPwf8B7g28CHgHPqsM2BO4C9W6ZbAPwW2Km+fz6wsk73HeDxLdOuBt4B/Bj4HTAfWAb8HLgLuBL405bp5wEfBG4FrgXeQGng5tfxDwNOBNYANwL/AMzrsjxbAicBt9fveRtwQ8v4XYAvAuvqd72xZdyxwOdb3n8BuBn4FfAN4HF1+JOAWybiq8P+DFjZJaaTgE8AF9Tl/zqwR8v4BB5ZXx8G/BC4E7geOLZtXk+r5X1HHX90y3f8Q319IHAD8BZgbS23V7XMYwfgP+p3fL+W57emqCMvBK6o33kR8Jge6/oVwC+A24C/rdMcXKffpKUu3AacDmxfxy2uZfFq4DrgGx1i2Q44p66/2+vrRXXc+4H7gf8B7gY+1uHzHb8D+HNgVZ3neRPrBwjgn2o5/qou597AMcC9wD31u/6jTj9VPT+WyfVrIpaJen5RXYZvU7a1RwKvqnHdBVwD/J+Wz3ddz93i67EvmJjfuyjb4mrgZRtR5z8O/Cfwa+Bgpt72tgSW1/JfBbydydvtatbXoc2BDwM31b8PA5v3U/f9m5k/bFdmql2ZzjY2j7JtT5TXpcBuddyjKe3TL4GrgJe0fc9E27IKeH7LuPm1fPej8/7s72s9uAs4H9ix5bOvZH078Xe0bOMdlvVbwL9MUd8OpPv+op82ZymlPbgV+Ns67hDK/vNeyj70R12++zF1We+gtJMv7LGOngD8oJbJvwOnTZTvhmwDPbbDAxnsPn2qfsxHKH2SOyl16+lt28AZwOfr+Dd0Kts+6sxTWN//+RFwYMu4i2hrPzssw4PKr8c8j6a0u3dRtqeX1fX9P5S+xt3AHXXarn032upnhzraXj6vAfYHLq5xrQE+BmzW8vkEXgtcTdkv/Qulv9Ixvq51ZGN29DP1B/wM+EvgibXS7FyHfxp4f8t0rwe+Ul/vR+kEPJmy81taC32is7CasqHtBmxZh72YshPdBHgpZaNdWMe9lrLzX0TpiP43k3d4Xwb+Ddga2An4Hi0dtrblOR74JrB9/f7LJypI/e5LKY3oZsAjaiV8bktlaW1Q/hzYhvUdo5Ut464EDm15fybwlik28LuAZ9R5fYSWxIDJicqBwB/VWB9P2ZEcUcftXudzFLApJeHYt+U7WhOV+4Dj6nTPA34DbFfHn1b/tgIeS9moOiYqwKPqunpOndfbKXVms07rus7v7pZl/VCNZWKDfDPw3bquN6/r9dQ6bnEti8/Wdb1lh3h2oOxMt6rr5gvAl9t2Vq+Zor4/6DuAI+oyPYay43o38J06/XMpdWZb1u8EFraXecv8p6rnx9I7UbkOeFyNY1PKzu8P63c/s67H/fpczw+Kr8e+YGJ+H6rr5pk1/r02sM7/CjiglsVWTL3tHU9p+LardePHdO94HEepQztROrrfAf6+nzLxb2b+sF2ZqXZlOtvY24DLgL0o+5N9KPvTrSltwKso+539KJ3ax7V8z0Tb8h7g5JYYDgN+Ul8v5sH7s59T2pAt6/vj67iJduJpNdYPUOrJgxKVulz3A8+aor4dSPf9RT9tzidrjPtQOrCP6bTuOnzvppS6/q66HM+mtNF7dVlHD6UkZ39dP/uiutwT5TvtbaDHdnggg92nT9WPeTmlPs2nHCi6GdiipRzvpbS1m9SyflDZ9qgzu1ISzefVeTynvl/Q8tlJ7WeHZZhUflPNk7Jd3NlSVgtZv00cTVufian7bgfSO1FpL58nUpKo+ZR6ugp4c8vnk3KgdltK33AdcEi3+LrWkUHv/Af9R9lJ3EvNWIGfAH9dXx8MXNMy7beBV9bXH6d2DFrGXwU8s2UF/HmP714JHF5ff5XJR4oPrithPrAzZcexZcv4o4CvdZnvNRMrq74/hvUNypOB69qmfyfwmZbK0nGnVCtDAg+r799B3WFTGq/fUBvILhv4aS3vH0LZ8U4czXogUenw2Q8D/9QS65lTfEdrovJbJh8pWVsr/by6zvdqGdf1jArlSNfpLe83oRx9PLDTuqY0ZK3LujXlyMnEBrkKOKhl/MIaz8TGmMAjplGH9wVub3l/Ef0lKo9oGfZfwKvblvE3wB6Uhuentew26VbmfdbzSfWLzg37cT3m92XgTb3Wc7/xtc37QEqjtnXLsNOBv9vAOv/Zlve9tr0HOlT1/Wvo3vH4OfC8lnHPBVb3Uyb+Df8P25X2uj1pu2+bbmPblelsY1dNlE3bNC8Fvtk27N+A97Z8z0Tb8khKZ3Wr+v5k4D319WIevD97d8s8/5L1Sel7qMlCfb8VLe1EWyy71vk+eor1fiDd9xf9tDmLWsZ/Dziy17qr459O6ZBv0jLsVOrR9A7r6BmUs8DRMuw7LeW70dtAh3IZ5D69az+mw/S3A/u0lOM32sY/qGx71Jl3AJ9rm/48YGnLZ3u1n5PKb6p5Uvoud1AOjG7ZNs3R9EgEmNx3m1Q/O9TRB5VPh/m9mZb+X623T2tbr8v6jW/ir7HXv7VYCpyfmbfW96fUYf9E2clvGRFPpmyI+1KybSgduKUR8Vct89qMcmRrwvWtXxQRrwT+hrJjgFLJd6yvd2mbvvX1HpQjD2siYmLYJu3zb9E+r1+0zWuXiLijZdg8ypGySeq1pO+nHLFbAPy+jtqRcoTk88CqiHgI8BLKjn5Nl5gmLVNm3h0Rv+wQK7W8j6dcXrQZ5cjFF+ro3SidtH7clpn3tbz/DaXMF1B20N3Ku90utJRhZv4+Iq6nNB6dPj9pmTLz1xFxW8v4PYAzI+L3LcPup3QcesYTEVtR6uchlKOkANtExLyc3k2c7XXsIxHxwdavAnbNzK9GxMcop1V3j4gzgbdm5p1d4puqnk83LiLiUOC9lCNME0dNL2uZpNt63lC3Z+avW97/gvXb9QbXeXpve1PtA9pNqpNtMcLgy0TTY7sygnaljzi6tR97AE9u+9x84HPtE2bmzyJiFfCCiPgPymXBT5givptbXrduh+3txG/a2olWt1PKaSEl6Z2uftqcbnH2sgtwfWa2zvsXTN0+3pi1N9kyfWus09oG+jCUfXp7PyYi3kI5wLQLpRP9UCa3ff3G3W1d7AG8OCJe0DJ+U+Br0/yO9m2m4zxr3+WlwFuBEyPi25SzTR3rYI++Wz/a922PopwJW0Jp9+dTzpi22tB6+4BGJyoRsSWlYs6LiImF3RzYNiL2ycwfRcTplKNMt1CuM76rTnc95fT9+6f4igc2xIjYg3Jq9SDg4sy8PyJWUjqDUK6/W9Ty2d1aXl9POfK1Y1vno5s19fNX1Pe7t83r2szcs4/5/G/gcMpRuNWU65lvn4g5M2+MiIuBP6Xck/HxHvN7YJnqTmF7ypGVdqdQrkU8NDP/JyI+zPqN/XrKdYsbYx3lCMsiypmCSbF1cBPldCZQblKr09/YMk3rTncN5fKoiem3opwOnnA95YjGt9u/qN6A2z6/dm+hXLrw5My8OSL2pVwXOlGXpvpsq9bpJurzyR0nzPwo8NGI2Ily1OJtlDNNk76rj3r+a8oOZ8IfTBVXfVrSFynXcp+VmfdGxJdb5jedZezXdhGxdUvDtjvlMpcNqfPtZTzVtjexD7iyvu9VJ/dg8jbeaVvSDLNd6WnQ7cp0trHrKZeRXt5h+Ncz8zl9xA/ljMFRlMTuysz8WZ+fa7WGsh8HHqg3O3SasCYxF1OObH+t0zQ99NPmdNNrH3oTsFtEbNKSrOzO+ra1fR5rgF0jIlqSld1Zn0BOaxvo0yD36R37MRHxdMrZiYOAK+oBzQfqdZe4p7sc11POfvzFFNP0M8/2babrPDPzPOC8Wj//gbK/mXhISLup+m6T2v56wGJBj9g/TunbHJWZd0XEmymXCvaj77Jt+hN7jqAcVXgs5ajWvpQO5jcpHSMoBf9Syg1Ep7R89pPAayPiyfXpCltHxGERsU2X79qaUnDrAKI8UnDvlvGnA2+KiF0jYltKhQegZvfnAx+MiIdGxCYR8YcR8cwu33U68M6I2C4iFgGtRya+B9wZEe+IiC0jYl5E7B0RT+own20oDdltlAr2fztM81nKPRt/xPqjgt08LyKeFhGbUW4WuyQzO2X/2wC/rBV9f0rDNuFk4OCIeElEzI+IHWpHvW/1rMOXgGMjYquIeDTr13cnpwOHRcRBEbEpJVH4HeV0dSdnAM9vWdbjmLwtfAJ4f+1kEBELIuLwaSzCNpRLe+6IiO0pZxta3UK5Nns6PkGpM4+rMT0sIl5cXz+p1vNNKTubiZvUOn1Xr3q+EnhGlN8beBjlsoypTByVWQfcV8+u/Mk0lutBZRHlkcUn9fjc+yJis9r4PJ/JR4WmU+db9dr2WrfbXSk3W3ZzKvDuWnd2pFxGMpaPuZyFbFdmtl1p1SuOTwF/HxF71vJ9fETsQLnO/VER8YqI2LT+PSkiHtPle06j7Idex+T1Nx1nUM7K/HFtJ97H1Adg3g4cHRFvqzETEftExGl9fNfGtDm3AIuj+xOkLqG0C2+v5XYg8AJKGXVyMeVA4RtrG/6/mHzwcbrbwEzv07v1Y7apy7UOmB8R76GcUZlKr7Jt93lKnXlurdtbRPmdmEU9P7kB84yInSPihRGxNWWbvZvJbf+iWg4Tpuq7/RTYoq7LTSn3wfZ6bPs2lHtk7q79tNdNY7k6xddR0xOVpZRrV6/LzJsn/igZ4csiYn5mTmyEu1Cu4wcgM1cAf1GnvZ1yM9nR3b4oM6+kPH3lYkoB/hHl2uQJn6Q0Gj+mZJD/San0E5XilZRO25X1+86gnAbu5H2UU5vX1nk+cPq6dtJfQGk8r6XcMPgpylGtdp+t87mxfu93O0xzJvW0ctup1U5OoXSqf0m5SeplXab7S+C4iLiL0gE7vSX+6yg3fb2lzmcl5ea/6XoDZZlvppTPqZQN8UEy8yrKTXL/TCmvFwAvyMx7ukx/BeUG2VMoR49upzx1ZMJHgLOB8+syfpdybXW/Pky50ezW+tmvtI3/CPCiKL/f8NF+ZpiZZwL/CJwWEXdSjjZNPPbyoZT6eTvrn1DzgTruROCxUZ7r/+Ve9TwzL6A85eXHlFO45/SI6y7gjZQ6cDtlx3d2P8vUKb46bDcmb3vtbq7fdRMlMX5t26nu6dT5B/Sx7R1HqSfXUm56PoMudZJyZGsFpRwvozxBZ1b8XswsYLsys+3KA/qI40OUfcn5lA7QiZRr7++iJB5HUrb7myn7w44dqZrkXQz8MWV/Nm21nfgrSod+DeW+l7V0b4e+Q7lf8NnANVEuOTqBsk572Zg2Z6JDf1tE/KBDXPdQLn87lFLe/0q556rj5UF1+v9Fqde3UxL2L7WMn9Y2UM3kPr1bP+Y8yrb8U0r9/h96X4Y1Zdm2qwnR4ZQHF6yr838bG9HX7jHPTSh9rZsoy/tMSv8MyiWsVwA3R8TEJa5T9d1+Vcd/irLt/5rJ/aJO3kpp8++i7Mums611iq+jmHwZovpVjxx/IjP3GHUsvUTEzyk3bP73FNOcRLmR6t0zFtg0RMQ/An+QmUtHHYuGpx5d+RHlcZf3bsR8etb5jRURr6Pc0NrtCLc0LbOtXZlNolxGdAewZ2ZeO+p4xsVM7tOb3o/Rhmn6GZXGqKepn1dPhe5Kydinc8p7JCLizyiXHnx11LFMR0Q8up72j3qK8tWMQXlr42TmPZn5mI1s0IZS5yNiYUQcUC/B2YtyJMs6qQ1mu9JsEfGCKJcfb005S30Z5b4d9anJ+3SNh0bfTN8wQTm1/u+U+w/OpZw6a6yIuIhyHfYr2p74MQ62oVzutQvldPsHgbNGGpEab8h1fjPKI1EfTjmyehrlMgppQ9muNNvhlEvognIp55HpZSgzao7VN3XgpV+SJEmSGsdLvyRJkiQ1zlAu/dpxxx1z8eLFw5i1JKlPl1566a2Z2f4sfGE7JUlN0KudGkqisnjxYlasWDGMWUuS+hQRv+g91dxkOyVJo9ernfLSL0mSJEmNY6IiSZIkqXFMVCRJkiQ1jomKJEmSpMYxUZEkSZLUOCYqkiRJkhrHREWSJElS45ioSJIkSWocExVJkiRJjTOUX6bfWIuXnTvqEOaU1ccfNuoQJEmSNEYWLzt36H1Iz6hIkiRJahwTFUmSJEmNY6IiSZIkqXFMVCRJkiQ1jomKJEmSpMYxUZEkSZLUOH0lKhHx1xFxRURcHhGnRsQWww5MkiRJ0tzVM1GJiF2BNwJLMnNvYB5w5LADkyRJkjR39Xvp13xgy4iYD2wF3DS8kCRJkiTNdT0Tlcy8EfgAcB2wBvhVZp4/7MAkSZIkzV39XPq1HXA48HBgF2DriHh5h+mOiYgVEbFi3bp1g49UkiRJ0pzRz6VfBwPXZua6zLwX+BLwx+0TZeYJmbkkM5csWLBg0HFKkiRJmkP6SVSuA54SEVtFRAAHAauGG5YkSZKkuayfe1QuAc4AfgBcVj9zwpDjkiRJkjSHze9nosx8L/DeIcciSZIkSYC/TC9JGiMRsW1EnBERP4mIVRHx1IjYPiIuiIir6//tRh2nJGnjmahIksbJR4CvZOajgX0o90wuAy7MzD2BC+t7SdKYM1GRJI2FiHgo8AzgRIDMvCcz76A8Qn95nWw5cMRoIpQkDZKJiiRpXDwCWAd8JiJ+GBGfioitgZ0zcw1A/b9Tpw/7e1+SNF5MVCRJ42I+sB/w8cx8AvBrpnGZl7/3JUnjxURFkjQubgBuqI/Nh/Lo/P2AWyJiIUD9v3ZE8UmSBqivxxNL0uJl5446hDln9fGHjTqERsnMmyPi+ojYKzOvovwA8ZX1bylwfP1/1gjDlCQNiImKJGmc/BVwckRsBlwDvIpydcDpEfFq4DrgxSOMT5I0ICYqkqSxkZkrgSUdRh0007FIkobLe1QkSZIkNY6JiiRJkqTGMVGRJEmS1DgmKpIkSZIax0RFkiRJUuOYqEiSJElqHBMVSZIkSY3TM1GJiL0iYmXL350R8eaZCE6SJEnS3NTzBx8z8ypgX4CImAfcCJw55LgkSZIkzWHTvfTrIODnmfmLYQQjSZIkSTD9ROVI4NROIyLimIhYEREr1q1bt/GRSZIkSZqz+k5UImIz4IXAFzqNz8wTMnNJZi5ZsGDBoOKTJEmSNAdN54zKocAPMvOWYQUjSZIkSdDHzfQtjqLLZV9SN4uXnTvqEOaU1ccfNuoQJEmSBqKvMyoRsRXwHOBLww1HkiRJkvo8o5KZvwF2GHIskiRJkgT4y/SSJEmSGshERZIkSVLjmKhIkiRJahwTFUmSJEmNY6IiSZIkqXFMVCRJkiQ1znR+8FGSpJGKiNXAXcD9wH2ZuSQitgf+HVgMrAZekpm3jypGSdJgeEZFkjRunpWZ+2bmkvp+GXBhZu4JXFjfS5LGnImKJGncHQ4sr6+XA0eMMBZJ0oCYqEiSxkkC50fEpRFxTB22c2auAaj/d+r0wYg4JiJWRMSKdevWzVC4kqQN5T0qkqRxckBm3hQROwEXRMRP+v1gZp4AnACwZMmSHFaAkqTB8IyKJGlsZOZN9f9a4Exgf+CWiFgIUP+vHV2EkqRBMVGRJI2FiNg6IraZeA38CXA5cDawtE62FDhrNBFKkgbJS78kSeNiZ+DMiIDSfp2SmV+JiO8Dp0fEq4HrgBePMEZJ0oCYqEiSxkJmXgPs02H4bcBBMx+RJGmY+rr0KyK2jYgzIuInEbEqIp467MAkSZIkzV39nlH5CPCVzHxRRGwGbDXEmCRJkiTNcT0TlYh4KPAM4GiAzLwHuGe4YUmSJEmay/q59OsRwDrgMxHxw4j4VH3aiiRJkiQNRT+JynxgP+DjmfkE4NfAsvaJ/MVfSZIkSYPST6JyA3BDZl5S359BSVwmycwTMnNJZi5ZsGDBIGOUJEmSNMf0TFQy82bg+ojYqw46CLhyqFFJkiRJmtP6ferXXwEn1yd+XQO8anghSZIkSWqqxcvOnZHv6StRycyVwJIhxyJJkiRJQJ8/+ChJkiRJM8lERZIkSVLjmKhIkiRJahwTFUmSJEmNY6IiSZIkqXFMVCRJkiQ1jomKJEmSpMYxUZEkSZLUOCYqkiRJkhrHREWSJElS45ioSJIkSWocExVJkiRJjWOiIkmSJKlxTFQkSZIkNY6JiiRpbETEvIj4YUScU99vHxEXRMTV9f92o45RkjQYJiqSpHHyJmBVy/tlwIWZuSdwYX0vSZoF+kpUImJ1RFwWESsjYsWwg5IkqV1ELAIOAz7VMvhwYHl9vRw4YqbjkiQNx/xpTPuszLx1aJFIkjS1DwNvB7ZpGbZzZq4ByMw1EbFTtw9HxDHAMQC77777MOOUJA2Al35JkhovIp4PrM3MSzd0Hpl5QmYuycwlCxYsGGB0kqRh6DdRSeD8iLi0HpF6kIg4JiJWRMSKdevWDS5CSZLgAOCFEbEaOA14dkR8HrglIhYC1P9rRxeiJGmQ+k1UDsjM/YBDgddHxDPaJ/BIlSRpWDLznZm5KDMXA0cCX83MlwNnA0vrZEuBs0YUoiRpwPpKVDLzpvp/LXAmsP8wg5IkqU/HA8+JiKuB59T3kqRZoOfN9BGxNbBJZt5VX/8JcNzQI5MkqYPMvAi4qL6+DTholPFIkoajn6d+7QycGRET05+SmV8ZalSSJEmS5rSeiUpmXgPsMwOxSJIkSRLg44klSZIkNZCJiiRJkjTHLF527qhD6MlERZIkSVLjmKhIkiRJahwTFUmSJEmNY6IiSZIkqXFMVCRJkiQ1jomKJEmSNIc19QlgJiqSJEmSGsdERZIkSVLjmKhIkiRJahwTFUmSJEmNY6IiSZIkqXFMVCRJkiQ1jomKJEmSpMYxUZEkSZLUOH0nKhExLyJ+GBHnDDMgSZIkSZrOGZU3AauGFYgkSZIkTegrUYmIRcBhwKeGG44kSZIk9X9G5cPA24Hfd5sgIo6JiBURsWLdunUDCU6SJEnS3NQzUYmI5wNrM/PSqabLzBMyc0lmLlmwYMHAApQkCSAitoiI70XEjyLiioh4Xx2+fURcEBFX1//bjTpWSdLG6+eMygHACyNiNXAa8OyI+PxQo5Ik6cF+Bzw7M/cB9gUOiYinAMuACzNzT+DC+l6SNOZ6JiqZ+c7MXJSZi4Ejga9m5suHHpkkSS2yuLu+3bT+JXA4sLwOXw4cMYLwJEkD5u+oSJLGRn1U/kpgLXBBZl4C7JyZawDq/526fNZ7KSVpjEwrUcnMizLz+cMKRpKkqWTm/Zm5L7AI2D8i9p7GZ72XUpLGiGdUJEljJzPvAC4CDgFuiYiFAPX/2hGGJkkaEBMVSdJYiIgFEbFtfb0lcDDwE+BsYGmdbClw1mgilCQN0vxRByBJUp8WAssjYh7lQNvpmXlORFwMnB4RrwauA148yiAlSYNhoiJJGguZ+WPgCR2G3wYcNPMRSZKGyUu/JEmSJDWOiYokSZKkxjFRkSRJktQ4JiqSJEmSGsdERZIkSVLjmKhIkiRJahwTFUmSJEmNY6IiSZIkqXFMVCRJkiQ1jomKJEmSpMYxUZEkSZLUOD0TlYjYIiK+FxE/iogrIuJ9MxGYJEmSpLlrfh/T/A54dmbeHRGbAt+KiP/KzO8OOTZJkiRJc1TPRCUzE7i7vt20/uUwg5IkSZI0t/V1j0pEzIuIlcBa4ILMvKTDNMdExIqIWLFu3bpBxylJkiRpDukrUcnM+zNzX2ARsH9E7N1hmhMyc0lmLlmwYMGg45QkadZZvOzcUYcgSY01rad+ZeYdwEXAIUOJRpIkSZLo76lfCyJi2/p6S+Bg4CfDDkySJEnS3NXPU78WAssjYh4lsTk9M88ZbliSJEmS5rJ+nvr1Y+AJMxCLJEmSJAH+Mr0kSZKkBjJRkSRJktQ4JiqSpLEQEbtFxNciYlVEXBERb6rDt4+ICyLi6vp/u1HHKknaeCYqkqRxcR/wlsx8DPAU4PUR8VhgGXBhZu4JXFjfS9LY8beVJjNRkSSNhcxck5k/qK/vAlYBuwKHA8vrZMuBI0YToSRpkExUJEljJyIWU55IeQmwc2augZLMADt1+cwxEbEiIlasW7dupkKVJG0gExVJ0liJiIcAXwTenJl39vu5zDwhM5dk5pIFCxYML0BJ0kCYqEiSxkZEbEpJUk7OzC/VwbdExMI6fiGwdlTxSZIGx0RFkjQWIiKAE4FVmfmhllFnA0vr66XAWTMdm6Tx4k3r46HnL9NLktQQBwCvAC6LiJV12LuA44HTI+LVwHXAi0cUnyRpgExUJEljITO/BUSX0QfNZCySpOHz0i9JkiRJjWOiIkmSpK68n0OjYqIiSZIkqXFMVCRJkiQ1jomKJEmSpMbpmahExG4R8bWIWBURV0TEm2YiMEmStOG8r0DSuOvn8db/DhkAABBHSURBVMT3AW/JzB9ExDbApRFxQWZeOeTYJEmSJM1RPc+oZOaazPxBfX0XsArYddiBSZIkSYPkmcbxMq17VCJiMfAE4JIO446JiBURsWLdunWDiU6SJEnSnNR3ohIRDwG+CLw5M+9sH5+ZJ2TmksxcsmDBgkHGKEmSJM0JnvVZr69EJSI2pSQpJ2fml4YbkiRJ0mDY6ZPGVz9P/QrgRGBVZn5o+CFJkiRpnJgQahj6OaNyAPAK4NkRsbL+PW/IcUmSJEljZ0OSNhO9zno+njgzvwXEDMQiSZIkSYC/TC9JkiSpgUxUJEmS1Lf2y5S8bEnDYqIiSZIkqXFMVCRJkgbAMwszr+ll3vT4ms5ERZIkaYjsrEobxkRFkiRNqakd7abGJU3Fets/ExVJkiRpFhvX5MhERZIkzYhx7SwNk2XSfK6j0TFRkSSNhYj4dESsjYjLW4ZtHxEXRMTV9f92o4xxLrMzNzsNcr1aRx7MMpmaiYokaVycBBzSNmwZcGFm7glcWN9rjNlxG46ZLNfFy85t9HocdGxNXtZxZ6IiSRoLmfkN4Jdtgw8HltfXy4EjZjKm1g7KbOj82OHqrcllNMz6OCgbG1cTlqsJMcwVJiqSpHG2c2auAaj/dxpxPBvFDtDgjLIsx3k9Nv1syExpShk0JY5RMVGRJM0JEXFMRKyIiBXr1q0bdTgbZUM6L/1+Zrrzbj+K3+3z43Qkfa53DucK13PzmahIksbZLRGxEKD+X9ttwsw8ITOXZOaSBQsWzFiA6l+vjuO4dyzHPf5WE8sym5ZpJg2q3GZ7+ZuoSJLG2dnA0vp6KXDWTAcw2zsKw+RZEo0L689o9ExUOj0OUpKkmRYRpwIXA3tFxA0R8WrgeOA5EXE18Jz6vnEG0clp4s36w+q8Na1T2LR4emmPd5iXCmrjWdbd9XNG5SQe/DhISZJmVGYelZkLM3PTzFyUmSdm5m2ZeVBm7ln/tz8VbE6aLR2fqZZjtizjxhiHMugnxnFYDo1Gz0Sly+MgJUnSgIzbEe9B3Jg/Lp3TJp7JGoSmxDEdTTuDN6wHVGi9gd2jMpuepiJJ0qA1pbPSlDikXqyrozfqdTCwRMWnqUiSNBqj7kyMk2EfPVczuf7Gk0/9kiRpCDbm90hmyjDvH7Bj2FzjuG4GsT2N43LPdSYqkiRtADs9zTOb18lsXLZhLNNMJ9YzsV5m47rvVz+PJ+70OEhJkrSBZlvHY7Ytz2w129bTbH3Qgdbr56lfD3oc5EwEJkmSBqPJR4tnQlOXY9hxNWW5mxJHv4bxG0PjVgZN4aVfkiQNyaA6Jxszn1F3kEb9/b00NVlYvOzcxsbWlPlr9jNRkSRpFrBTqI3V1DrU1Lg0fCYqkiSpcWbDj0Vq5jSlTsxkHE1Z5mEyUZEkSX2ZCx0jdea6n5rlMxwmKpIkDYidlfHluhsNy11TMVGRJEnqwyA71T5ad25yPU2PiYokSXOMnSVJ48BERZIkjbW5nnjN9eXvZq6Uy2xeThMVSZJmyDA6FMP4cbqZNBs6WbNhGaQmMlGRJEljz3s+pPVmS/01UZEkSdpAs6VD2CStZWr5zm0mKpIkSVKb2ZwkjcuymahIkiSpEcalAz1bNL28TVQkSZIkNY6JiiRJkqS+zORZGBMVSZIkSY3TV6ISEYdExFUR8bOIWDbsoCRJmg7bKUmabPGycxt/D0ovPROViJgH/AtwKPBY4KiIeOywA5MkqR9Nb6fGvaMgSaPSzxmV/YGfZeY1mXkPcBpw+HDDkiSpb7ZTkjQLRWZOPUHEi4BDMvM19f0rgCdn5hvapjsGOKa+3Qu4avDhNt6OwK2jDkID4bqcPebyutwjMxeMOohhG0E71eQ61eTYoNnxNTk2aHZ8TY4NjG9jDDu2Kdup+X3MIDoMe1B2k5knACdMI7BZJyJWZOaSUcehjee6nD1cl3PCjLZTTa5TTY4Nmh1fk2ODZsfX5NjA+DbGqGPr59KvG4DdWt4vAm4aTjiSJE2b7ZQkzUL9JCrfB/aMiIdHxGbAkcDZww1LkqS+2U5J0izU89KvzLwvIt4AnAfMAz6dmVcMPbLxNKcvfZtlXJezh+tylhtBO9XkOtXk2KDZ8TU5Nmh2fE2ODYxvY4w0tp4300uSJEnSTPOX6SVJkiQ1jomKJEmSpMYZ60QlIjIiPtfyfn5ErIuIc4bwXUdHxC59THdcRBzc5zy3jojbIuJhbcO/HBEvmc685rKIuD8iVkbE5RHxhYjYaoppj46Ij23Ad5wVERe3DTs2It7aMt+e9UO9RcTfRsQVEfHjul6fPIB5Lo6IywcRn+auiDgkIq6KiJ9FxLJRxwMQEasj4rK6rayow7aPiAsi4ur6f7sZiuXTEbG2dVubKpaIeGcty6si4rkjiu/YiLixlt/KiHjeKOKLiN0i4msRsaru/95Uhzei/KaIb+TlFxFbRMT3IuJHNbb31eFNKbtu8Y287Fq+b15E/HCi/9yUsgMgM8f2D7gb+CGwZX1/KLASOGcI33URsGQI8z0VWNry/mGUH9bZatTlOy5/wN0tr08G/maKaY8GPjbN+W8LXA+sAh7eMvxY4K3DrB9z7Q94KnAxsHl9vyOwywDmuxi4fNTL59/4/lFu0v858AhgM+BHwGMbENdqYMe2Yf8PWFZfLwP+cYZieQawX+u21i0W4LG1DDcHHl7Ldt4I4ntgP9427YzGBywE9quvtwF+WmNoRPlNEd/Iy4/yO0oPqa83BS4BntKgsusW38jLruU7/wY4hdp/bkrZZeZ4n1Gp/gs4rL4+itLxBx7ICL9cj8x+NyIeX4c/cCS8vr+8HnFdXI8WfLJmvedHxJZRfvV4CXByzXq3jIj3RMT362dPiIio8zqpTj9xpOt9EfGDKEe8Ht0h/lMpj9Kc8KfAVzLzN23zemJEfD0iLo2I8yJiYUTsFBGX1vH7RDnDtHt9//OY4szCLPZN4JER8YKIuKQeIfjviNi5fcKI2CMiLqz148KJsuvgz4D/AE5j8rqamE+n+nFQ/e7LohzF23yAyzibLQRuzczfAWTmrZl5E8AU29xFEfGP9YjVTyPi6VN9QT269Zm6bn4YEc+qwx9X57Gy1ok96/CXtwz/t4iYN9QSUFPtD/wsM6/JzHso+4PDRxxTN4cDy+vr5cARM/GlmfkN4Jd9xnI4cFpm/i4zrwV+RinjmY6vmxmNLzPXZOYP6uu7KAfGdqUh5TdFfN3MWHxZ3F3fblr/kuaUXbf4upnR+CJiEaUf/am2GEZedjDml35VpwFHRsQWwOMpmeqE9wE/zMzHA+8CPtvH/PYE/iUzHwfcAfxZZp4BrABelpn7ZuZvKUfln5SZewNbAs/vMr9bM3M/4OPAWzuM/wrwxIjYob4/kpZkCyAiNgX+GXhRZj4R+DTw/sxcC2wREQ8Fnl5jfHpE7AGszczf9LG8s0ZEzKecVbsM+BbwlMx8AqWOvL3DRz4GfLbWj5OBj3aZ9UQCfGp9PUl7/aDsgE4CXpqZf0R5DPjrNnzJ5pTzgd1qwvGvEfHMlnFTbXPzM3N/4M3Ae3t8x+sB6ro5Clhe9x+vBT5S1+ES4IaIeAzwUuCAOvx+4GUbv5gaQ7tSzqxOuIGpO2ozJYHz60GsY+qwnTNzDZQOJrDTyKLrHkuTyvMN9eDEp1sucRlZfBGxGHgCpT/TuPJriw8aUH710qWVwFrggsxsVNl1iQ8aUHbAhyl9pN+3DGtM2Y19opKZP6Zc1nEU8J9to58GfK5O91Vgh2i7H6SDazNzZX19aZ13J8+qR+wvA54NPK7LdF+aal71yNzZwIsiYkdgX0pnrdVewN7ABbWiv5vyy8sA3wEOoJzS/r/1/9MpZxbmii1ruawArgNOpJTPeXX9vI3O6+eplFOdUOrJ09onqGdiHgl8KzN/CtwXEXv3iGcvSj36aX2/nLJe1EM96vRE4BhgHfDvEXF0HT3VNjfldtamdb/wE+AXwKMol5y9KyLeAexRD0gcVOP5fq1jB1Eu/dHcEx2GNeH5/gfUg2GHAq+PiHHZ1zSlPD8O/CGl7V0DfLAOH0l8EfEQ4IvAmzPzzqkm7TBsFPE1ovwy8/56MGkRsH+PdnrGy65LfCMvu4h4PuXA9qX9fqTDsKGWXc8ffBwTZwMfAA4EdmgZ3q1A72NykrZFy+vftby+n3LkdpJ69PVfKfckXB8Rx7bNo9XE/O6ne3mfSkk+AjgrM+9t/0rgisx8aofPfpOSmOwBnAW8g7KMA3+gQIP9tu4AHhAR/wx8KDPPjogDKdeC9tJpY3spsB1wbb3S6KGUs17vnmI+neqd+pSZ91Pu+bmoJiVLI+I0pt7m+tnOJnRcP5l5SkRcQjkFfl5EvKZOuzwz37mhy6NZ4wZgt5b3i4CbRhTLAyYujczMtRFxJuUyjFsiYmFmromIhZSjuKPSLZZGlGdm3jLxOiI+yfq2c8bjq1dPfBE4OTMnDr40pvw6xdek8qvx3BERFwGH0KCy6xRfZn5gYvgIy+4A4IVRbuTfAnhoRHyeBpXd2J9RqT4NHJeZl7UN/wb1Mo3aWb21HgFYTbmhjojYj3JDUC93UW4gg/UdpFvr0YUXbUzwwNcol5y9nrbLvqqrgAUR8VQoO4uImDia/A3g5cDVmfl7yvW3zwO+vZExjbuHATfW10u7TPMd1t9z8jLK5WLtjqLsUBZn5mLK0fUH3afC5PrxE2BxRDyyvn8F8PVpRT9HRcReE/eGVPtSzngMcptr3S88CtgduCoiHgFck5kfpRz8eDxwIeVs5051+u3rpZWae74P7BkRD4+IzSj7gbNHGVCUJ0duM/Ea+BPg8hrXxH5vKeUg1qh0i+VsymXbm0fEwylt4PdmOrjaCZvwp5Tym/H4ohwJOxFYlZkfahnViPLrFl8Tyi8iFkTEtvX1lsDBlHa4KWXXMb4mlF1mvjMzF9X+zZHAVzPz5TSk7GCWnFHJzBuAj3QYdSzwmYj4MfAb1hf6F4FX1ks5vk95ekUvJwGfiIjfUi4Z+iTlXojVdR4bLDN/HxFfBF5M6US1j78nyg3bH62Xrs2nXFN4RWaurkf6Jz73LWBRZt6+MTHNAscCX4iIG4Hv0jkZfSPw6Yh4G+Uyo1e1jqzX4e5ePw9AZl4bEXfGgx+ZexKT68er6vfPp9SPT2z8Is0JDwH+ue7U76PcqHdMPQq1MdvcfNafdflXyrq6rH7H0Zn5u4h4KfDyiLgXuJly8OOXEfFuyj0AmwD3Ug4o/GKjllJjJzPvi4g3AOdRngD26cy8YsRh7QycWduA+cApmfmViPg+cHpEvJpyOeyLZyKYiDiVcmXDjhFxA+V+seM7xZKZV0TE6cCVlO3w9fVs6kzHd2BETNxbuBr4PyOK7wDKQa3Lat8Eyr21TSm/bvEd1YDyW0i513Ae5QD86Zl5TpSfFGhC2XWL73MNKLtumlLviMwmXGIrScMTEYdTHnbwklHHIkmS+jMrzqhIUjcRcRzlkYpHjzgUSZI0DZ5RkSRJktQ4s+VmekmSJEmziImKJEmSpMYxUZEkSZLUOCYqkiRJkhrHREWSJElS4/x/teC91UX1UiEAAAAASUVORK5CYII=\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig, axes = plt.subplots(1,2, figsize = (14,4))\n",
"\n",
"chart_regions = time_df[time_df[\"Is ASAP\"]].groupby(\"Delivery Region\").mean()[\"order_lt_min\"]\n",
"chart_restaurants = time_df[time_df[\"Is ASAP\"]].groupby(\"Restaurant ID\").mean()[\"order_lt_min\"]\n",
"titles = [\"Average delay placing order at restaurant, by region\", \"Average delay receiving Client order, by partner restaurant\"]\n",
"print(f\"# orders placed in each region:\\n{time_df['Delivery Region'].value_counts()}\")\n",
"\n",
"for chart, ax, title in zip([chart_regions, chart_restaurants], axes, titles):\n",
" ax.bar(chart.index, chart)\n",
" ax.set_title(title)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Regions: Palo Alto seem to have the lowest average delivery time, but it's still over 6 minutes. As the Client already has significant market penetration in Palo Alto, it should prioritize developing relationships in Mountain View and San Jose to continue to improve customer and partner experience and further penetrate these markets\n",
"\n",
"Restaurants: Most restaurants have around a 10 minute delay, but a handful have scary high delays in receiving Client orders. Let's identify what restaurants those are, and work with them to fix whatever issue is causing these massive delays"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"There are 78 restaurants with average order lead times > 10 min.\n",
"They received a total of 2866 orders\n",
"\n",
"These 10 retaurants account for 1701 of the 2866 orders above:\n"
]
},
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
# orders received
\n",
"
\n",
"
\n",
"
Restaurant ID
\n",
"
\n",
"
\n",
" \n",
" \n",
"
\n",
"
9
\n",
"
710
\n",
"
\n",
"
\n",
"
5
\n",
"
187
\n",
"
\n",
"
\n",
"
194
\n",
"
184
\n",
"
\n",
"
\n",
"
30
\n",
"
156
\n",
"
\n",
"
\n",
"
221
\n",
"
96
\n",
"
\n",
"
\n",
"
90
\n",
"
89
\n",
"
\n",
"
\n",
"
224
\n",
"
75
\n",
"
\n",
"
\n",
"
264
\n",
"
71
\n",
"
\n",
"
\n",
"
239
\n",
"
68
\n",
"
\n",
"
\n",
"
109
\n",
"
65
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" # orders received\n",
"Restaurant ID \n",
"9 710\n",
"5 187\n",
"194 184\n",
"30 156\n",
"221 96\n",
"90 89\n",
"224 75\n",
"264 71\n",
"239 68\n",
"109 65"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"print (f\"There are {len(chart_restaurants[chart_restaurants > 10])} restaurants with average order lead times > 10 min.\")\n",
"print(f\"They received a total of {pst_df['Restaurant ID'].isin(chart_restaurants[chart_restaurants > 10].index).sum()} orders\")\n",
"\n",
"#Identify high-lead time restaurants with the highest volume of orders \n",
"big_delays = pst_df[pst_df[\"Restaurant ID\"].isin(chart_restaurants[chart_restaurants > 10].index)].\\\n",
"pivot_table(index=\"Restaurant ID\", values = \"Consumer ID\", aggfunc=\"count\").\\\n",
"sort_values(\"Consumer ID\", ascending=False).rename({\"Consumer ID\": \"# orders received\"},axis=1).head(10)\n",
" \n",
"print(f\"\\nThese 10 retaurants account for {big_delays['# orders received'].sum()} of the 2866 orders above:\")\n",
"display(big_delays)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Action Item: \n",
"Work with the above 10 restaurants and determine ways to best reduce delays from the time a customer places an order with the Client to the time the partner restaurant receives it. I hypothesize the best way to do this is to integrate the partner restaurant's order queue with the Client's order API, as this would cause orders to be placed with the partner restaurant instantaneously. However, more research is required. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Monetary KPIs - by Delivery Region"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Palo Alto 11226\n",
"Mountain View 3670\n",
"San Jose 2802\n",
"Name: Delivery Region, dtype: int64"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Review how many orders were placed in each region\n",
"pst_df[\"Delivery Region\"].value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"pst_df[\"tip % of order\"] = pst_df[\"Amount of tip\"] / pst_df[\"Order total\"] * 100\n",
"money_kpis = [\"Order total\", \"tip % of order\", \"Refunded amount\", \"Amount of discount\"]"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA+gAAAEYCAYAAADPrtzUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOy9eZhcVZn4/3m7a+k1a3eAJIREIGzp2IGwb1E2dYAwArIZQBRkkMVRv6PgDEQmOuow/sRBZdRBEJkABgEH0QGBCAg4k8QACSQkQidkIXt6r67t/P4493ZXV9dyq7qqqyr9fp6nnuque+69596qc895dzHGoCiKoiiKoiiKoihKaakqdQcURVEURVEURVEURVEBXVEURVEURVEURVHKAhXQFUVRFEVRFEVRFKUMUAFdURRFURRFURRFUcoAFdAVRVEURVEURVEUpQxQAV1RFEVRFEVRFEVRygAV0PchRMSIyCGl7kcyItImImeWuh9eKdf7qIwOiv37E5HbRORnxTp+vojI34rI+yLSJSJzinD8pSLyuUIfV1GgvOaNYo4lEblaRF4e6X0VZaQppzFdSYjIYSLyFxHpFJGbPbRfKCK/dP6e5jy3qovf0/JGBfQi4AikYRFpSvp8pTPgpxfgHEVfbIrIOBH5sYh8ICI9IvKmiHymmOf00Kd5IrKpWO0VxWVfGMepfv/GmG8ZY/I6p4hcLiJbReQ9EZmX8PnBIvLKMCfVu4AbjTENxpi/DOM4yihmHxq3cWeh2ikia3Oce3UsFQlVMow8+8KYTjjPDGds/6jY58qXAtyLfwCWGmMajTE/yGVHY8xG57kVG8b5i8JIj30V0IvHe8Bl7j8i0gLUlq47uSEiAeAPwEHAicBY4P8B3xaRL6XZx1fgPhT0eIqSBxU9jguJMx6/DRwN3ATck7D5B8CXhjmpHgSsHsb+AIilYHObPocqkn1h3G4xxjQAY4C/B34qIod53LcgY0lRyoh9YUwDXAnsAS4VkWCpO1Mk9PlTAFRALx4PYgeiy1XALxIbiMhYEfmFiOwQkQ0i8o/uwtLV1IjIXSKyx7FYfdzZ9k3gVOAeR8OeuFA+U0TWOfv8UEQkz/4vAKYBFxtj3jPGRIwxvwduBu4UkTFOX9pE5Ksi8gbQLSI+EVngXM8uEfl60jVXicjXROSvzvZHRWSCs226ow39rIhsBJ5P2rce+B0w2bnuLhGZLCJBEfm+iGxxXt93PkvX/jgReVVE9jrWwHschYSiJFOx4zjD7z/Rncwdc9c5Y2eriHw5zSEnApuNMVuxyrsPOce4yPn8tSz9qXLuzQYR2e7cs7HOWO0CqoHXReSvafY/SUT+T0TanfeTErYtFZFvisifgB7gQyJyloiscdrfA0jS8a4Rkbede/w/InJQwjYjIl8QkXXAukzXpZQlFTtukzGWp4HdwGynDynn0XRjSZJcdUXkfhFZ5Pw9T0Q2iciXnXG5VRKs9SIyUUR+IyIdIvK/wMFJ9/FwEXlWRHaLtfR/yuu+yYjIr8R67LWLyIsiclRSn38kIr9z7vufRGR/sfP9Hmesz0lof4TzXNgrIqtF5PyEbYMshJJkGXPu1/XJ36WIHAHcC5zo9GFvtu9PKRj7ypi+EvhHIAKcl9R/IyI3OOfrFJF/Fuud9qozhh6VhLWqiFwrIuudsfcbEZnsfO7O676Etv2/+WHci8S+nu+Mq73OsY9wPn8e+EjC/jNT7DtDRP7oXOOzQFPCtkF9d/r6rtP2PRG5Iun633a2vSUiRzuf7xtj3xijrwK/gDbgTGAtcAR2snwfq1UywHSn3S+AJ4FGYDrwDvBZZ9vV2AF8rbP/3wFbAHG2LwU+l3ReAzwFjMMK1zuAj+V5DQ8DD6T43AdEgXMSrnUlcCBWm3kk0AWcBgSB7zntz3TafxF4DZjqbP8PYLGzbbpzDb8A6oHaFOefB2xK+uxO55iTgGbgFeCfM7Q/BjjBuZbpwNvAF5Pu4yGl/h3pq7SvfWQcp/r9LwR+6fztjrnFzphrcc53ZopjVTnXNhW7sPg/oMEZ/xM99OUaYD1WsG8Afg08mHTdKccdMAFrdVjgjNvLnP8nJtzHjcBRzvZmoAO4CPBjLZBR914DFzh9OcJp/4/AK0l9edY575DnkL7K97WvjVtn3J0PxIE5zmdp59GEvhyS4f/7gUUJ54pi51E/8Amskmu8s/1h4FHs82EWsBl42dlW79zbzzjj6GhgJ3BUtn3TXPc1zvcRBL4PrEzq807s/F2DVeC/hxV4qoFFwAtOW78zvm8DAsBHgU7gsFTfn/N9v5x0v1J+l8lt9aVjOofrOBXoA8YD/w78JsX5foP1mjnKafscds4cC7wFXOW0/agzHo52xsu/Ay8626Y7x/IlHLv/+vK5F0n9nAl0A2c5Y+0fnPEW8Lj/q1jZIIiVFToZuibxYZ8bHQyM2wMYeLZcjH2eHItVvh/i/B72mbGvFvTi4mr8zgLWYH9MAIiN1bwEuNUY02mMaQP+DbsAddlgjPmpsW6jD2B/nPtlOee3jTF7jTEbgReA1jz73gRsTf7QGBPFPhQSY4F+YIx53xjTi10QP2WMedEY0wf8E3Zh4fJ54OvGmE3O9oXARTLYjXShMabbOZ4XrgDuNMZsN8bsAL7B4PuYfA3LjTGvGWOizn3/D+B0j+dSRh+VPI698g1nzL0J/JwEV0IXY0wcO5EvAb6CndzvxC4MWkTkBbGW6FlpznEF8D1jzLvGmC7gVqybnxcX8r8B1hljHnTG7WLsd5FogbjfGLPaeUZ9HHjLGLPEGBPBLvY/SGj7eeBfjDFvO+2/BbRKghXd2b47h+eQUl5U+rid7FhpeoHHsSEkbjy5l3k0FyLYOTRirLW+CzjMuU8XArc7z4dV2Hvhci7QZoz5uTMuVwCPOX3Jtu8QjDH3Od+He00fFpGxCU0ed+bvkHNPQsaYXzjf0SOAa0E/AasE/LYxJmyMeR676B7yXMvASD+DlexU+pi+CvidMWYP8F/Ax0VkUlKb7xhjOowxq4FVwDPOnNmO9Yhzf+NXAPcZY1Y44+VWrHV3use+5HMvXC4BfmuMedaZX+/CGuhOyrybTQKHFar/yRjTZ4x5EfjvDLvEgVkiUmuM2ercF4DPAd81xvyfsaw3xmxgHxr7KqAXlweBy7Fal18kbWvCanc2JHy2AZiS8H//gtIY0+P82ZDlnImL0J507WXA5bXLGTDJ7MQO2OT9fE7fdyZ8/H7C35MT/zfGdAO7ErYfBDzuuJ7sxVqvYwx+MCQezwuTGXofJ6drLCIzReQpsa50HdjFeVO69sqop5LHsVcSx1za8WOMec4Yc4Ix5nTsxDkXa9l6EHt//hlIlyE+1Tj14W1RkLyvu3/ifc70HDJJ2w8C7k54Du3GauHTHU+pPCp93G4xxozDWtN+gLUEuXiZR3Nhl6OoSu57M3aMJj8fEvtxvNsPpy9XAPt72HcQIlItIt8W67bfgbWawuC5eVvC370p/nfv92TgfUepmHjuxO83G56+S2VEqdgxLSK1WKvvQ875X8V6fV2e1DSX33j/tTpK7114/43ncy9cks8dx45zL+eeDOxxZAOXlM8Fp80lwPXAVhH5rYgc7mw+EEgVDrfPjH0V0IuIo815D+sy9uukzTuxWutEi800EjSC2Q4/zL41JLw2pmjyB6x2rz7p8wuxbjeJ8aaJfdmKHTgAiEgdNnbV5X3g48aYcQmvGmNM4nVnurZU27Yw9D5uydD+x1jt66HGmDFYV5hhxwoq+yYVPo69Hv/AhL8Tx09KRESwSeJuxi6Mqp379H84cbIpSDVOowxegKQjeV93/3TPjeTnkDD4Gt8HPp/0HKo1xryS5nhKhVHh4zaxbR/wVayXygXOx17m0UR6gLqE//f32NUd2DGa/HxweR/4Y1I/Gowxf+dh32QuB+ZjXZnHYl1dIb+5eQtwoAxOFpn4/XaT3/0AfS6UjAof03+LVbb9yDEOfYAVGq9M0dYLg+ZEZ60+EXu9rvBbrN948rnd+dXLvd4KjE+SLdI+F4wx/2OMOQtrMFwD/NTZ9D6pc1rsM2NfBfTi81ngo0naIhy3kkeBb4pIo+Na+SXglx6Puw0nSVOReBDYBPzKSdrgF5FzsJr8hY67TSqWAOeKyClik1ncyeDf2b3Yaz4IQESaRWR+Dv3aBkxMcntbDPyjc6wm4HYG7mOq9o3YuJYuRxv3dzmcXxmdVOo4TvX7T8U/iUid2KRMn8G6i2bic8BfjDErsVr7WhE5Epsc5t00+ywG/l5sgpgGrOfKI0mWu3Q8DcwUW+bNJyKXYPNdPJWm/W+Bo0Tkk47Xz80MnojvBW51rtdNLnSxh34olUWljttBGGPCWHfd252Pcp1HVwKXO1bqj+ExpMu5T78GFjrPhyOxbrouT2HH5QJnjeAXkWNF5AgP+ybTiFX+78IuoL/lpY9p+DN2If4PTp/mYcNhHna2rwQ+6fTrEOzvxCvbgKmiiWVLRaWO6auA+7B5Xlqd18nY0KqWPI73X8BnRKRVbDb4bwF/Nsa0GRvquRn4tDPmryFLgsYkst2LR4G/EZEzRMQPfBk7dl/JsA/Qr2RZBnxDRAIicgpJyfJcRGQ/scno6p3jd2E9hcB66n1FRI4RyyHOd77PjH0V0IuMMeavxphlaTbfhP0hvQu8jB1w93k89N3YOK89IpJTnUEvOFr7M7Faqj9jBdrvYePe/jXDfquBL2CvZSs2kVNiHea7sUkwnhGRTqwl/vgc+rUGu9B/13Gpm4xNDrMMeAN4E1jhfJau/Vew2vpOrDYumzCijHIqeByn+v2n4o/YxCrPAXcZY55Jd0xHCXYLNr+Em5fiRmzSpnux9yMV92EVfy9irSChDG2Tr2MXNt71y9gF/D8A5xpjdqZpvxPrTvhtp/2hwJ8Stj8OfAd42HGnXYWNW1f2ISp13KbhPmCaiJxH7vPoLdhFquuC/kQO570R6+L5ATac5efuBmNMJ3A2cCnWcvUBdlwFs+2bgl9gXVE3Y5NhZawKkQlHoXE+dkzvBH4EXOk8DwH+PyCMXXA/gON27JHnsSWkPhCRlM8fpXhU4pgWkSnAGcD3jTEfJLyWA78ns+IqJcaY57Bz8GPYtfbB2HHoci22NPIubMK5rMJzAhnvhTFmLfBpbP6Zndhny3nOuPPC5djn1W7gDoaGK7hUYef8LU7b04EbnD78Cvgm9jvuxD7TJuxLY9/N2KcoiqKMMsQmlHkP8Hu0ZCuKoiiKoihFRC3oiqIoiqIoiqIoilIGqICuKIqiKIqiKIqiKGWAurgriqIoiqIoiqIoShmgFnRFURRFURRFURRFKQN8pe6AF5qamsz06dNL3Q1FKWuWL1++0xjTXOp+5IuOc0XJjo5zRdn30XGuKKODdGO9IgT06dOns2xZuqoKiqIAiMiGUvdhOOg4V5Ts6DhXlH0fHeeKMjpIN9bVxV1RFEVRFEVRFEVRygAV0BVFURRFURRFURSlDFABXVEURVEURVEURVHKgIqIQVcURVEURVEURRntRCIRNm3aRCgUKnVXFI/U1NQwdepU/H6/p/YqoCuKoiiKoiiKolQAmzZtorGxkenTpyMipe6OkgVjDLt27WLTpk3MmDHD0z7q4q4oiqIoiqIoilIBhEIhJk6cqMJ5hSAiTJw4MSePBxXQFUVRFEVRFEVRKgQVziuLXL8vFdAVpcx5v/N93m1/t9TdUEYz8Rjs3VjqXiiKolQ0O3t3smb3GmLxWKm7Ur50boNwd6l7oSglRQV0RSlz3tzxJss+WFbqbiijmR1r4S8PQffOUvdEURSlYtnYsZHnNz5PnHipu1K+vPEwbHil1L1QslBdXU1rayuzZs3i4osvpqenJ23b+++/nxtvvDHnc8yfP58TTzxx0GcLFy7krrvu6j/uli1bcj5uJaACuqKUOeF4GH+Vt6yPI4WI3CIiq0RktYh8McV2EZEfiMh6EXlDRI4uRT+VAhHpte9d20vbD0VRlAomGo8iCD7RHM0piUUh3AOh9lL3RMlCbW0tK1euZNWqVQQCAe69996CHn/v3r2sWLGCvXv38t5776VsowK6oiglIxwLE6wOlrob/YjILOBa4Djgw8C5InJoUrOPA4c6r+uAH49oJ4eDMaXuQfkRC9v3bhXQFUVR8iUSj+Cr8mn8cDoijhW2r7O0/VBy4tRTT2X9+vX893//N8cffzxz5szhzDPPZNu2bUPabtiwgTPOOIPZs2dzxhlnsHFj6vC5xx57jPPOO49LL72Uhx9+eMj2JUuWsGzZMq644gpaW1vp7e3lueeeY86cObS0tHDNNdfQ19dX8GsdKVSFpyhlTiQeIVAdKHU3EjkCeM0Y0wMgIn8E/hb4bkKb+cAvjDEGeE1ExonIAcaYrSPf3RwItcOyn8OR82GCt1IYo4J+AV1d3BVFUfIlGo/iq9Kld1pcby0V0D2zdO12dnQWVhBtbgwy77BJntpGo1F+97vf8bGPfYxTTjmF1157DRHhZz/7Gd/97nf5t3/7t0Htb7zxRq688kquuuoq7rvvPm6++WaeeOKJIcddvHgxd9xxB/vttx8XXXQRt95666DtF110Effccw933XUXc+fOJRQKcfXVV/Pcc88xc+ZMrrzySn784x/zxS8OcfKsCNSCrihlTjgWLjcBfRVwmohMFJE64BPAgUltpgDvJ/y/yfmsvNm8wi4QOj8odU/Ki1jEvnfvKG0/FEVRKhgV0LMQcZLDRXogrnH65Uxvby+tra3MnTuXadOm8dnPfpZNmzZxzjnn0NLSwr/+67+yevXqIfu9+uqrXH755QAsWLCAl19+eUibbdu2sX79ek455RRmzpyJz+dj1apVGfuzdu1aZsyYwcyZMwG46qqrePHFFwtwpaVBnxKKUub0xfrKKgbdGPO2iHwHeBboAl4HoknNUvnvDfEdF5HrsC7wTJs2rcA9zZFYBLa+bv8Od5W2L+VGzNHO9+6FaBh8ZaUwUhRFqQgiJqICeiZcC7oxdh6uGVPa/lQAXi3dhcaNQU/kpptu4ktf+hLnn38+S5cuZeHChVmPkyrc45FHHmHPnj3MmGE9GTs6Onj44YdZtGhR2uOYfSw8US3oilLGRONR4iZebhZ0jDH/aYw52hhzGrAbWJfUZBODrepTgSGZPIwxPzHGzDXGzG1ubi5eh72w/S27OKiqhr6O0val3HBd3EGt6IqiKHmiFvQshBMygauivOJob29nyhTrLPnAAw+kbHPSSSf1x5Q/9NBDnHLKKUPaLF68mN///ve0tbXR1tbG8uXLU8ahNzY20tlpwyEOP/xw2traWL9+PQAPPvggp59+ekGuqxSogK4oZUzYEYwCVeUloIvIJOd9GvBJYHFSk98AVzrZ3E8A2ss6/twY2Lwc6ptg7IHQpwuDQcQi4K+xf6uAriiKkhfReFQzuGcikiCgaxx6xbFw4UIuvvhiTj31VJqamlK2+cEPfsDPf/5zZs+ezYMPPsjdd989aHtbWxsbN27khBNO6P9sxowZjBkzhj//+c+D2l599dVcf/31tLa2Yozh5z//ORdffDEtLS1UVVVx/fXXF/4iRwh9SihKGROJ29jfcrOgA4+JyEQgAnzBGLNHRK4HMMbcCzyNjU1fD/QAnylZT73QsRk6t8HMc6BjC+xpK3WPyotYGOonQecWTRSnKIqSJ9F4lBpfTam7Ub5EeqwXWzymivIyp6tr6Pczf/585s+fP+Tzq6++mquvvhqA6dOn8/zzz6c97vTp09m8efOQz1esWAHA8ccf3//ZhRdeyIUXXtj//xlnnMFf/vIXz9dQzqiArihljGtB91eXTww6gDHm1BSf3ZvwtwG+MKKdGg6bl4MvCPvNsu7t4W5rVddSOJZYGIJjoK5JLeiKoih50heLUO9rKHU3ypdID9SOh949EFYLujJ6URd3RSljwvHydHHfp+jrhO1r4IDZNvlZoBFM3ArpiiUahmo/NExSAV1RFCVPNuzq4PerdtAXjZW6K+VJuAf8dRCoVxd3ZVSjArqilDH9Mejl5+K+77BlJWBg8tH2/2CjfdfFwQCxMFQHoL7ZKi5UeaEoipIzfbEIVVJNoFqX3ymJ9IK/FgIN6uKujGr0CaEoZYwroAergyXuyT5KPAZb/gITPgR1E+xnQcf9UDPIDhBzLOj1TtIXtaIriqLkTCQWJVjtT1laSsHWQQ/UW0W5zsHKKEYFdEUpY9wkceVUB32fYsdaaw2ecszAZ/0WdC21BthY/FgEqoPWgg6aKM4L+1hNVkVRhocxhnAsgr9a0z+lJB6HSMha0ION6sWmjGpUQFeUMkZd3IvM5mU2Ic2EDw185q8HqSque11fZ+UsPtwa6NUB63bor1ULeja6d8FLd6kiQ1GUfmImRiweJ1hmSV/LBrfEmr/ezjXRPpv/RFFGISqgK0oZE46HqZIqqqW61F3Z9+j8ANo3W+t5orthVVXxE9Ss+a19VQL9Arrf3qf6ZujaXto+lTs9OyEWhfb3S90TRVHKhEg8QswYgj5VuKck0mvf/bUaalYBfPOb3+Soo45i9uzZtLa2DqlRng9tbW3MmjWrAL2rfNTPRlHKmHAsTKA6oPFqxWDzcqj2wf4tQ7cFG4q7MOjrtNaBSiBmwyxwvTjqm+GDN7QMXSZcS1DX6PA0EJE2oBOIAVFjzNzS9khRyo9oPEosbgioBT01ESf5aKBu4LO+zoH8MErZ8Oqrr/LUU0+xYsUKgsEgO3fuJBxWb4dCohZ0RSljwrGwllgrBuEe2PYW7NcC/pqh24sd/xYNWQVALFq8cxSKRBd3sIniYhEItZeuT+VOJGTfR1cowEeMMa0qnCtKalwBvcanAnpK+i3odbbcKagFvUzZunUrTU1NBIM2gXFTUxOTJ08G4M477+TYY49l1qxZXHfddRgnH8u8efP46le/ynHHHcfMmTN56aWXMp4jFArxmc98hpaWFubMmcMLL7wAwOrVqznuuONobW1l9uzZrFu3DoBf/vKX/Z9//vOfJxar7FKGakFXlDLGtaArBWb72xCPDk4Ol0igEfZsKN75oyFrge7rKH/rgCugu26ZDZPse/dOqB1Xmj6VO64FvXuHehooigIMCOhBFdBTE3Zj0OtsSBVUTq6WUrLuD9C1rbDHbNgPDj0z7eazzz6bO++8k5kzZ3LmmWdyySWXcPrppwNw4403cvvttwOwYMECnnrqKc477zwAotEo//u//8vTTz/NN77xDf7whz+kPccPf/hDAN58803WrFnD2WefzTvvvMO9997LLbfcwhVXXEE4HCYWi/H222/zyCOP8Kc//Qm/388NN9zAQw89xJVXXlmoOzLiqAVdUcqYcDysGdyLQc8u8AWhoTn19mBj8RLUxGMDlvPQ3sIfv9BEkyzodVpqLStRx4Ie6R0tFiADPCMiy0XkulJ3RlHKkWg8StwYaspI6S4iB4rICyLytoisFpFbUrSZJyLtIrLSed1elM70J4mrtfNztV9roZcpDQ0NLF++nJ/85Cc0NzdzySWXcP/99wPwwgsvcPzxx9PS0sLzzz/P6tWr+/f75Cc/CcAxxxxDW1tbxnO8/PLLLFiwAIDDDz+cgw46iHfeeYcTTzyRb33rW3znO99hw4YN1NbW8txzz7F8+XKOPfZYWltbee6553j33XeLcu0jhVrQFaWMCcfC1PvrS92NfY9QO9SMTb89MUGNr8AWbteNz+1HuZPs4u6vgZox0F0GieLicZuIbfxBpe7JYBK/4+4dA6X79l1ONsZsEZFJwLMissYY86K70RHarwOYNm1aqfqoKCXFWtAh6C8rpXsU+LIxZoWINALLReRZY8xbSe1eMsacW9SeRHrs/FLlJMUNjoGwWtCzksHSXUyqq6uZN28e8+bNo6WlhQceeIBLL72UG264gWXLlnHggQeycOFCQqFQ/z6uS3x1dTXRaOYQP5OmVOnll1/O8ccfz29/+1vOOeccfvazn2GM4aqrruJf/uVfCneBJaaoFnQR+XtHI7dKRBaLSI2ITBCRZ0VknfM+vph9UJRKJhKPqIt7MQjtzSKgF7EWemJyuIoS0BMWlfXN5WFB3/1XWPlf0LG11D0ZTKTXxurDqCi1ZozZ4rxvBx4Hjkva/hNjzFxjzNzm5jReK4qyjxOJR8ouBt0Ys9UYs8L5uxN4G5hSks5Eeqx7u0uwQS3oZcratWv7Y78BVq5cyUEHHdQvjDc1NdHV1cWSJUvyPsdpp53GQw89BMA777zDxo0bOeyww3j33Xf50Ic+xM0338z555/PG2+8wRlnnMGSJUvYvt0aDnbv3s2GDUUMUxwBiiagi8gU4GZgrjFmFlANXAp8DXjOGHMo8Jzzv6IoKdAkcUXAmOwWdDdBTTEWB9EBbTK9FeDinpzFHazw2bPbuuuXEvf+FTr+brhEQza3QKB+ny9JJyL1juUNEakHzgZWlbZXilJ+9ESscrbOX55zuohMB+YAqeplnSgir4vI70TkqKJ0IJwkoAcaNAa9TOnq6uKqq67iyCOPZPbs2bz11lssXLiQcePGce2119LS0sIFF1zAsccem9Nxo9Fov5X9hhtuIBaL0dLS0u9CHwwGeeSRR5g1axatra2sWbOGK6+8kiOPPJJFixZx9tlnM3v2bM466yy2bi0zxX2OFNvF3QfUikgEqAO2ALcC85ztDwBLga8WuR+KUpFokrgiEA1ZodOTBb0IiwNXQK/2V5gFPVFAn2SF8949A5biUuB6OJSblTrSaxea5eJpUFz2Ax53SkH6gP8yxvy+tF1SlPKjN2KfpeVYB11EGoDHgC8aY5Jdx1YABxljukTkE8ATwKEpjjG8UJZID9QmONW65U410WbZccwxx/DKK6+k3LZo0SIWLVo05POlS5f2/93U1JQyBn316tUcfPDBANTU1PTHtSdy6623cuuttw75/JJLLuGSSy7xdgEVQNEs6MaYzcBdwEZgK9BujHkG2M8Ys9VpsxWYlGp/EblORJaJyLIdO/b5BY6iDCEajxIzMRXQC40rFGcS0H0B+ypGgi9XQG/YrzKSxMX6oMo3EBcIVvCE0luH3e+nnIRgY6yA7quxSQh7dtpY+X0UY929CfsAACAASURBVMy7xpgPO6+jjDHfLHWfFKUcCTkxt7VlZkEXET9WOH/IGPPr5O3GmA5jTJfz99OAX0SGaGaHHcoS6bFeRy7BMVYRnJjTIxU9u+HVH9p3pWK5/fbbuf3221MK36ORYrq4jwfmAzOAyUC9iHza6/4as6aMdiJx61qsLu4FxouADnZxUEwLeuP+1qXPdSEvV2KRwfHnAHUTQapKLxi730+p+5FILAwmbjMR1zfbjP2VoIhRFKWo9DkVMWrLKAZdrOvLfwJvG2O+l6bN/k47ROQ4rOywq6AdMQYiIfvcdAk4yVqzzcPt70OoA/a0FbRLyshy55138vrrrzNnzpxSd6UsKKaL+5nAe8aYHQAi8mvgJGCbiBxgjNkqIgcA+3aAnqLkSdhxLVYLeoHxKqAXK/7NTRLn1hMPtZfWTTwbsfBg93aAap91RSy1YOx+P+Fuq+wI1GVuPxIklgpyPQ26d5R/vXtFUYpKbzSCiJRVkjjgZGAB8KaIrHQ+uw2YBmCMuRe4CPg7EYkCvcClJl2K7XyJ9DqKzUQLekI1FfZLv687D5V6PlKUAlJMAX0jcIKI1GEH9BnAMqAbuAr4tvP+ZBH7oCgViyug+5Otl8rwCLVbi7CvJnO7YAPs3Vj480d6rYBbN9H+37u3/AX0VDGTDc3QWcLkbMbYJH4NzdC1wy7OAsMot9a9E15fDHM+PTgOMlcijoeEr9bWjBexfWs+LP9jKopS8fRFw1RRTdBfnb3xCGGMeRnIGOBtjLkHuKeoHXHd2BMt6F5zwbg5SEodcqUoBaSYMeh/BpZgk0u86ZzrJ1jB/CwRWQec5fyvKEoS4bhjQVcX98LiZnDPlnQm2GgFwAIbCoj2WeVAzbiB/pQzschQCzpY63BoLzhumyNOpBfiUZjwIfv/cBPFdW233/fud4d3nGjCQtMXsN+zWnYUZdQTikaoEh/+6qJWOK5MIt32PZCUxR2y54JJtKAXer5WlBJR1Czuxpg7gDuSPu7DWtMVRcmAurgXiVD7gHCciUCjdbkLdw+42hWCaMgK6IF6m3yt3OOTo33gCw79vL7ZLoZ6dsKYySPfL9eq0jjZ9m+4QrCbG6B9E0w5Jv/jJFuC6pushV9RlFGNa0EP+FRAH0L/czNBQK+qtgJ7Jgt6uMcqVmvH26oifR3Zw9cUpQLQp4SilCn9Arpa0AtLthroLsUqtRYNWYFSxPaj3AX0WHhokjgYHF9dClyrSrChMOXM3NwA7ZuGd5x+F3cnhKK+2S4cY9HhHVdRlIqmL+Za0LVk2BDCjgXdn5RHJNBgBfB0uM/9/Y6076oMHTFEhAULFvT/H41GaW5u5txzzy34ue6//362bNmStd3tt9/OH/7wB0/H7O7uZuLEibS3D/ZivOCCC3j00UdzOlYxUAFdUcqU/izuakEvHJGQFcQ8Cege3etyJRqy8ckAteNG3sU9HoctK70rHtK5uNeMs7H0pRLQ3RrowUYrBPfsHJ57o+uaHuoY3ncSTbKgN0yynhg9hU16rChKZRGKRqwFXV3ch5LKgg62mko4w1zlhjZNcgT07iLGocfj6kKfQH19PatWraK31353zz77LFOmTCnKubwK6HfeeSdnnnmmp2PW19dz9tln88QTT/R/1t7ezssvv8y5556b07GKgT4lFKVM0SRxRaA/g/uY7G37Legdhe1Dost4zVibJG6kCPfAG4/A2t/BB6u87RMLQ3UKF/eqKpsEbbix3/nS12m9EAKOBT0SGp4yxbWgA7Rvzv84kV4be+7Wje/3NNAERooymgnHIvir/Ui2/CejkUiPfW5WJ0XeBj1Y0H1Bm3S1dlxxE8WteABWPWYFdQWAj3/84/z2t78FYPHixVx22WX923bv3s0FF1zA7NmzOeGEE3jjjTcAWLhwIXfddVd/u1mzZtHW1kZbWxtHHHEE1157LUcddRRnn302vb29LFmyhGXLlnHFFVfQ2tpKb28vd955J8ceeyyzZs3iuuuuwy0qcPXVV7NkyRIApk+fzh133MHRRx9NS0sLa9asGdL/yy67jIcffrj//8cff5yPfexj1NXVDTrW8uXLOf300znmmGM455xz2Lp1K9u3b+eYY2w43Ouvv46IsHGjTSx88MEH09PTM6x7W9QYdEVR8iccDyMi+ESHacFwhW0vFnR/va31nWlxkA9uDLrbj2ifU/81S1b54dK13S4uXMHWtfRmI1UddJf65uEnVcuXvi5rbamqHsiC371jQLGSK5FeG8cY7rJu7q7LZD7H8SVkIq4db/uoieIUZVQTjkYIJAugiiXSM9R6DlYBG+mBeGxA6ZlI9w47D4kUJtQpHeFu6PzAvt77Ixz8keKcJw9e3vwyO3sLqyhvqm3ilCmnZG136aWXcuedd3LuuefyxhtvcM011/DSSy8BcMcddzBnzhyeeOIJnn/+ea688kpWrlyZ8Xjr1q1j8eLF/PSnP+VTn/oUjz32GJ/+9Ke55557uOuuu5g7dy4AN954I7fffjsACxYs4KmnnuK8884beh1NTaxYsYIf/ehH3HXXXfzsZz8btP1jH/sYn/vc59i1axcTJ07k4Ycf5qabbhrUJhKJcNNNN/Hkk0/S3NzMI488wte//nXuu+8+QqEQHR0dvPTSS8ydO5eXXnqJU045hUmTJlFXN7yyr2pBV5QyJRwLE6wOlqW2XUT+XkRWi8gqEVksIjVJ2+eJSLuIrHRet5eqr4PwWgMdrIU4UJ/dFdyYAfe8bBhjBXJXGB+pTO471sKKX9is561X2IVQosU4HfGY3SddmEV980AN8pGmr3NAGO8X0IexSIn2Wbf0MVOg/f38jxPpHVwqqKraWndK5WmgKEpZEI5HCVSpR1xKwmkE9GCDnTdTeUcZMyCggw0n6tlVnHwfHY579dgpsPE17x5o+zizZ8+mra2NxYsX84lPfGLQtpdffrk/Rv2jH/0ou3btGhLvncyMGTNobW0F4JhjjqGtrS1luxdeeIHjjz+elpYWnn/+eVavXp2y3Sc/+cmMxwoEApx//vksWbKEnTt3snLlSs4+++xBbdauXcuqVas466yzaG1tZdGiRWzaZHPVnHTSSfzpT3/ixRdf5LbbbuPFF1/kpZde4tRTT814nV5QVZ6ilCmRWKQsE8SJyBTgZuBIY0yviDwKXArcn9T0JWNM4bOFDIfQXutCl2ohkIpgQ3a36a0rYf1zcNLNqeuFJxLts4uKRAu626/G/bz1KReMgbaX7WvMZJj1SSvU+moGspZnwgmzSCugNyQkihtODfJ86OsYqFceqLev4VhPoiF7jMYDYMOf0mevz3qcJAEd7AJy78b8+6YoSsUTjoWp9WmG8ZREemy8eTLuZ31dQxXrfZ32Oe0K6PWTBiqLNO5f2P61b7IedS2fsp5oa39n55+xxYm5zgUvlu5icv755/OVr3yFpUuXsmvXQK4VkyJeX0Tw+XzEE8IEQqGBtUgwODDnVldX98e3JxIKhbjhhhtYtmwZBx54IAsXLhx0jETc41VXVxONplbcXHbZZSxatAhjDPPnz8fvH6xEM8Zw1FFH8eqrrw7Z99RTT+Wll15iw4YNzJ8/n+985zuISEES5akFXVHKlHA8XM4J4nxArYj4gDoge/aOcsAtsebVKyHYmN2Cvvs96wbuJf7ZFYoTY9DdfhWaWMQuJNpehv1brOXctTj7a7xZ0PsF9Awu7lAa9+1w12B39uG6N7rZ9cdOtYu8jjzj0COh1AJ6X+dAhndFUUYd4ViEgOaUSU2kd3ANdJdMtdDd573rQdUwyb4XIw69Y4s9vr8Gjvpbq7xf/WubVHSUc80113D77bfT0tIy6PPTTjuNhx56CIClS5fS1NTEmDFjmD59OitWrABgxYoVvPfee1nP0djYSGenXYu5wnhTUxNdXV39ceL58pGPfIR169bxwx/+cFAMvcthhx3Gjh07+gX0SCTSb7E/7bTT+OUvf8mhhx5KVVUVEyZM4Omnn+bkk08eVp9ABXRFKVv6Yn34y9AdzhizGbgL2AhsBdqNMc+kaHqiiLwuIr8TkaNGtJPpCLWn1tKnI5BFQE8U5Ly4uUeTSnD5a63VvRgC+rbVsHMdHHIGHP43g5Pv+Gq89TcWcdqnsSQHGuy2nt3D728uxCJW2B0ioA8jk7ubXX/MZGspybfcWqRncAw6DCwcNQ5dUUYtkViUoK/85vSSY4wTg147dJtbTSXVPOyGDbmK4v7KIgUW0ONx6NxilbdgFQmzLrJK7lWPDcyTo5SpU6dyyy23DPl84cKFLFu2jNmzZ/O1r32NBx54AIALL7yQ3bt309rayo9//GNmzpyZ9RxXX301119/Pa2trQSDQa699lpaWlq44IILOPbYY4fV/6qqKi688EJ27drFaaedNmR7IBBgyZIlfPWrX+XDH/4wra2tvPLKK4BNRAf073fKKacwbtw4xo8fP6w+gbq4K0rZEo6FqffXl7obQxCR8cB8YAawF/iViHzaGPPLhGYrgIOMMV0i8gngCeDQFMe6DrgOYNq0aUXvO6EOaJzsvX2w0U7C0XBq9/W+joEkchEPcdjJArpbC70Ymdx799j456nHDvUY8CpUu1b2dJ4cIlA3AXpHWEB3F2uDBPSJdqEU2jvg+u4VNzeAL2hfDc35Cejx+OAcA/19c2Pkt8O4A3M/rqIoFY0xhnAsQlAt6EOJhW2+k1TrHTcRaEoBfYcV4F3Lu1tZpNC10Lu327j2MQlrh4ZmOHK+FdDX/Nb+XYb5gopJV9dQr4Z58+Yxb948ACZMmMCTTz45pE1tbS3PPJPKpgOrVg3E9n/lK1/p//vCCy/kwgsv7P9/0aJFLFq0aMj+999/f//fiTHnc+fOZenSpekuhbvvvpu777477bFaW1t58cUXU+7rZm4HuO2227jtttvSnicX1IKuKGVKJB4pVxf3M4H3jDE7jDER4NfASYkNjDEdxpgu5++nAb+INCUfyBjzE2PMXGPM3Obm5uL2OtpnrcZeEsS5ZKuFnliOy5OA7gi8vgQBrmacFSoLjestkGrRkHMMeoZFZe2Ekbegu4s11/0REtzt80jGlpwbYOyB1jMiHsvxOM49TVXL1xfURHGKMkqJmihxY1RAT0W4276nsqC7pTTTubjXJ60bGiYV3oLuzvNjkuLNmw6FGafB9rdh49D4ZEUZDiqgK0qZEo6FyzJJHNa1/QQRqRObYv4M4O3EBiKyv7MNETkO+6zZNeRII0kohxJrLtlqoXdsGSj94iWTuetWnugyXjPOCtP5umanI9Sevt67LzgglGbCdd3LpCiqm2Dvz0i6+fVb0BOubzjx8P2CtSugT7UWk65tuR2n//tNsqAXuwSQoihlTTQeJRY3BLMlEh2NuM/NQBqPwWDDUAt6PG6TwdUn6f3rJ9m5uJDlUTs2276lWjtMOxGaZ9pcL1ofXSkgKqArSpkSjoXxl6G23RjzZ2AJ1o39Texz5Ccicr2IXO80uwhYJSKvAz8ALjWpUnqOJLmUWHMJuAJ6msm+Y5N1e6v25WZBT7QU1Ix1YqoLXKqsryP9tfpqwcQHLOTpyJbFHawF3RjrUj9SpHJx9wWtQiIvC3pS6IFrKWnPMVGcW1s+lSWovtkmLyrxMFAUZeQJRyPE4lCjAvpQ3Lkv1XMTrAU9eQ4O7bVK1CEWdFdRW0Aresdmm609lTeaCEw8xHpbFcMTLgOlXlIpWMOPx7VPrt+XCuiKUobE4jFiJlauFnSMMXcYYw43xswyxiwwxvQZY+41xtzrbL/HGHOUMebDxpgTjDGvlLrPAwJ6DkniMrm4x6JW4Bozxbo0e41BFxks8NYWoRZ6LGoXNOkS4rkW/Gxu7l4E9LoJ9n0k3dzDXTYnQPJiN18rdbKAXjPGKjdyrYceySKgR/uyVwVQFGWfo9dRztb4NPXTEPoF9DTlT4NjIJz03ExOEOdS72ZyL5C3Ul+XzRGT7N6eSK0zB46gkrqmpoZdu3apkF5qon2evAeNMezatYuampqsbV30SaEoZUg4bgWjMo1Br0z62qHKNzhuORu+oBUCUwlVnVut1nzMFNjT5jGLu5OILFET71q5e/cOTkIzHPqyuPO7gmi2UmteLegwsoni+jpSKx/qm+x3EY/bhEFeiSQJ6GDd3Pe0WYu31+Q/6Vzc3b6BVSDkoiRSFKXi6YnYRby6uKcgnE1Ab7CJWt35EwYUsXVJLu6BOtu+UBb0DqeCbCYBvW7kBfSpU6eyadMmduzQsKmSYUzCWit7BGdNTQ1Tp071fHgV0BWlDAk7glGwOk15KyV33JjsXDOtpiu15pZXG+tY0N1EN5mI9g4twVWMWujZ3PlzsaCLZE4S5wvYBdFIWtD7Oge7t7vUN1ulSe8em9XdK8n16cEK6NtW22O5CzCvx0m10OwvtbYTJh7svW+KolQ8IUdAr/WXX9hayYn02DCxdMoLV6ne1zVYQK8dl3qf+kmFq4XescnmmWk8IH0bf53txwjOgX6/nxkzZozY+ZQUdGyF5U6W+pNvGagmUCDUxV1RypBI3E7m5RiDXrGE2nOLP3cJZhDQa8fb5DH+2tws6In4gnb/ogjo6Vzcc7CgV/myKzXqJo6wBb0rtSdEvoniUuUGGOuUQ+vIIQ490mNrqKeqG++vLaxlR1GUiqE34ijd1YI+lEhPeus5JISaJczDqTK4uzQ0Q8+u3KtwpKJji1WuVmewZ4pYT7KRLjeq5Mc7z8Db/z384yTO5V4MNDmS1YIuIlXAh4HJQC+w2hiTY2pbRVFywbWgFzMGfdSN7VA7NO2X+37BBti7cfBnxtgEYuOn2/8DdRDxYkEPpXZ/rhlb2AQzfR120ZAuBt3NVp5NqRCLZHZvd6mdADvW5NbHfInH7WSYyoJeN9Fed/cO4HDvx4z2WsE68Vrrm6yg3b4J9m/xdpxIaGgIQyJlnMl91D0PFGUECUXtnF5bJAG9osdvpDeLgO7MY26iuHjMWqubDk3dvn7SQJuGYZRvjcdsKNsBc7K3rR1v2yrlz573CnOcxDwH4S6gsKWC0wroInIw8FVszeN1wA6gBpgpIj3AfwAPGGO0roCiFJi+mLXoFSMGfVSO7VjExrmlE1gzEWy0C4PEWORQuxUSxzpxaf46m5gtFsnsDh4JQX0Ky2/N2MIKbqF2a2F2S8Alk4sFPZU1OJm6CXaRFe4puJvXEMJdNgN9KgG92m/L1uVjQU8WrEWsm3v7phyOk2WhWd8Mm1fkHiNfREbl80BRRphQtDgu7vvE+A13Z35uBpKStfbssnNAWgu6G060fXgCetd2O697yQ1T5yip47H0865SemJRG7bmZV2Tje7t1tgRCY24BX0R8GPg88nlkURkEnA5sAB4oOC9UpRRTpEt6KNvbOdTA90l0GgXA+HuAVc71+15TIKADk4sXYZzREOpM3zXjoNd63NLSJaJUIYSawDVHmPQo+HMCgeXxERxIyGgQ2oBHazlO9dSa5He1J4NY6fCrr86Fp40JYCSj+PPkKW1vhni0dxj5IvL6HseKMoI41rQ6/wFzytT+eM30ju0nnkibsUON9TMVcCmE9DrJlqPqOEqvRPzzGSjdrxTbnRvOT3blWR6d9vvKRIanjLFGKvAGT8dtq8ZWQHdGHNZhm3bge8XvDeKogADMejFsKCPyrHtuo/nG4MOTmIyR0Bv32wFV7ekiyugh3synyNVDLrbr3jMnqMQGb5D7Va4TEdVlV3weLGge/kNJpZay3TeQpCqBnoi9c1WqI5FM8cNJpLue3GvpX0zNB2S/TiR3szff2KMfJks4kbl80BRRph+F/dAYef0fWL8RrqzK0ATk7V277ACeF2aZ2hVtX2+DrfUWsdmO+d78bxLVFKXybNdSUGi8j7SO7Cmy5Vwt91/7IGwc33qUrzDxNPqRUROAqYntjfG/KLgvVEUBRiwoPur/WzvCBE3sP9Y7/UTvTJqxna2rOaZSFULvWOzdXtz3ZQDCRb0dMQi1nqaMgY9oRb6cAX0eNyboO+r9ZbFPVCf/Zw1Y+2CaSSS5HgR0E3cukE2esw5EE1jIW88wC722t/3LqA3ZDhnfVN+MfIjxKh5HijKCNOfxd1XvMSvFTl+YxGrTPVnmWeCjQNzcPdOqxTOZP2sn2Sf28OhfbP1kvPi1ZaopFbKl54CCehugrj6ZrtGKlGSuAeBg4GVgJsS0QDlPegVpYIJx8OICD7x8eq72+kIRVlwwkEFPceoGtuhdjuZ51ID3aXfgu64ycci1rVp2vEDbfweBPRoilrbLokCOgfm3sdEwp1WQM2mjPAFPQjoHpPEVVVbN/2RWJz0ddrzpYtZdK3UPTtzEND7Ut+var8VuL3GoUezuLhX+601pgyz/Y6q54GijDChmJ3Ti1VmrWLHryvYZLOgBxtgryNwd++Axv0zt2+YZMtkeg1PSqavy87HU+d6a++vtc/+EayFruTBIAt6hvVaNroSwixKJaADc4Ejk2NbFEUpHuFYmEBVABGhLxKn1l+UpCOjZ2yH2q2gnU9iLn+9tQ67GWQ7t1oBeEyCK3e/gJ4hK7rrTp4uizsQ6dnJ9q7NTGnwEPOWDtdbIJtbnq/GmwXda5jFSJWZ6eu0ipZ0Vo26CbnHH0ZDQ+vTu4ydahO7ZXOZj0UdS1CWGPyasQM5EcqLvJ8HIlINLAM2G2POLXjPFKXCCUej+Kv8SCFyjKSmMudzd87M5qkVaLAW9GifjfPOVlkjMZxo3LTc+9WfZ8ZDgjgXLbVW/vTsssaE3r3DE9C7t1ulUaDO/naLoJjxslpdBWRRVSmKUkgisUh//HkoGqPGX5SMz6NnbPdlSZqWiaoq+wB2XavbU0zcvqAVCjNpUfst6Clinat9EGxg7e41PLn+SbqGE8/UnxBvXOZ2nizofd4F9LoJ0LPHJk8pJn2d6d3bwVrX6yZ4TxTnJoxJl9V17IE2NKHrg8zHcSf7VAqYRGrGDHhjlBfDeR7cArxdwL4oyj5FXyxCwGtOjPyozPncfW5mtaA32jwtrhU9XYI4FzeTe75x6B2b7VzSkMMtrR2vFvRyxi29N9bxUhyWBX37QA6iQMPwjpUGL0+LJuAtEflfoD+jkDHm/IL3RlEUwLq4uxnce8MxasYWxYI+esZ2qB0mfCj//YMNA/FvHZutAJiYrVzELjAyWdAjGVzcAWrG0t39PjSOZ3doNw35uONDQry9Fwt6hiRxxmQvG5dI3QQryA5HGeKFcNfA4isd9c3ea9LGItYjIt0C0c3g274pcwI8V9mRdaE5xioZyqjUmkNezwMRmQr8DfBN4EtF7aGiVCjhaAR/VfHiz6nU+bxfQM/ieeQqZd0a1tkE9ECDfRa7scK50r7ZhjflolSpm2Dd6nOZN5WRo3evnevHHQgfvJl5vZaJeMxa4ifMsP8H6u2xClxiz8svb2HBzqYoiifCsTCB6gDGGEKROLWBogjoC4tx0LIjFrXu6cMRGoONVvNqjBXQUwn7gTpvMejpBLiasfTuWgWN49nTt4dp5OGWB04N9LrsCwR/TeYJKh6115uLizvY+1QsAd0YqwCYeHDmdvXNsP1tWybOl6X/UecepLOgB+qtsqMry0LPvZfZBPSaMfY6wp3FVWTkzsI89/s+8A9ABrcGRRndhGJh/MUV2hYW8+BFI+xRQHcV1rvfs0JzNg8xETsPZHtupyIeg84PYMqc3Pbrz+S+J7sSWRl53ARx9ZPsfJ+vgN67x/5G+i3o9Y4nXk9m774cySqgG2P+WLCzKYriiXA8TJ2vjnAsTtyYori4j5qx3TeMGugugUbYs8E+mMM9A/XPE/FnE9DdGPQ0gmDNOHrDnWAMe92ycPng1YLtq3Eyy6ex5DqVBLIKuC6JWWxdzXKhiYaswiVbfH1iorhsMYSZcgO41IwbKNWXDneyTxfL3n8s57sJtZeVgJ7P80BEzgW2G2OWi8i8DO2uA64DmDYtT8WTolQw4SK7uFfsfB7psVbHdPOii5ttu2eXTRDnxfuoYRJsfd0KT7nE/ndtswrqVPN8JmrH23cV0MsTN+ytbmL29VomXKVPQ4KLO9gQxwIK6Fl/4SJygoj8n4h0iUhYRGIiUpYBdIqyr+Ba0EOROABBX+Et6BU3trevgVW/zj3G2RWsvNQyTUew0Qpye9rs/6lcnf11WZLEuQJcehf33ngEoiH29A0jji3U7u1a3X6ki0N3BXSvFvRAg7XaFzNJjpuoL5v7f32TffeSKC5Tdn0XL7GFUY8W9KAroJfXUMvzeXAycL6ItAEPAx8VkV8mNzLG/MQYM9cYM7e5OYtrqqLsg1gBvagl1iprPneJ9NhnZjYBOjExaDb3dpf6ZquEzjUuvD/PTI4CupZaK296dlqluC9gf3PhPAX07u0251CdU+/eTXBY4EzuXsxy9wCXAeuAWuBzzmeKohQJN4t7KGKrpdQUJ4t7ZY3tcDfsWDsQY+2VUAEs6K72fuc79uFe1zS0jb8ue5K4an/6GKXacfSaKET78regG2Ov15MFPTjQr5T9zVFAF3ESxRVTQHe+y2xa6ppxUOWz1pZsZMsNAFZAD/dkjtnPxcUdyjFRXM7PA2PMrcaYqcaY6cClwPPGmE8Xu6OKUmlEYlGCxXVxr6z53CXSm929HQaX1vQqoLsWzlwqeoANY6sZkz2PSzK+oA0v00Rx5Un3zgHl/bAs6DugfuLAWq5fQB9Gct8UePKbNcasB6qNMTFjzM+BeQXthaIogwg78WqugF6kGPTKGtuu1dprTWqXULvVdg7Xgg7Wzb1xcmr3ukCdFeDisaHbwG7L6EY9lt54FImF6Yn2EMqWYT0V4W7rmpctPg8SLOhphM5+C3oOi8pil5lxM+lnE9D7M+97mDD7cwNkEtCd+9mbQXES6bVKgWz3q9pvhfgys6BDhT0PFKWCCMeLa0GHCh2/4W5vAjoMKMrrUyjIU1HfbBXHXdtyDi3lHgAAIABJREFU61PH5tzKqyXidQ7s/MB65KVbLyiFJR63xoN+q3cWj8dMdG8frCQqkgXdS0BMj4gEgJUi8l1gK5ClYKGiKPkSi8eImZhjQbcu7jW+omR7rqyxXd9srdcdm2H/Wd73G04NdJeAIxCaePqJ27WcpksUEs1QyguI+usIE2eSBNgO7O3by/6+HKvmeM3gDgkCeppJKlcXd7CT34412WuGp6Ej3EGtrzZ9tmNXQ+0lzitQ723C9OriDjZconG/9MfJZj13qRmbuydI8RnW88AYsxRYWpyuKUplE4lFCfiKKqBX1nzuEukdUIBmI9AIbPNuQa/2Wzf1LX+BKXMHV15JR6jdKk+nHuftHMnUTYDd72ZuYwy88aidn3xBmHgINM20yWe95nxRciO01xovXAHdrbqTa36CSMj+PiYn5Bio9tvvsQQu7gucdjcC3cCBwIUF7YWiKP2E41YwClQH6C2ui3tlje2qKjvZtr+f236FSMYVTIh5Tldqy++shdJpZSOZBbhQPALVQSZXWSF+b18ebu65JMTLakGP2PfqLMl7Eqmb4LjZ5973uInz6NpHeXPHm+kb9XXaRZaXUiaJpfEy4Qroma7T9UjI5LoY6c1shR90vLKshV5ZzwNFqRDicUMkFqUmF2Vn7lTm+I3kYEGvHW+f/7kk4pp5jp3j1j2Tva0x8M4zdn7JVikkUx/7ujKHQ3Vtt8LclGOsYL77r7D6cfjT3fDGr2DnuvzOnQvtm8rTev/Bm/nHhmfCDb1LdHGPRwcMEV5xwyWSkwAGPK43csBLFvcNIlILHGCM+UZBz64oyhDCsQEBfW8RBfSKHNtjp0Lby46w61EYCrXD+IOGd15f0Gq2o+HsFvR0WtRoKKPg3BvtBV+QSaaKKqlidygPV3HXKuspSVyWGPR8XdzBToZe3RAdeqO9hGNhuiIZJrm+Lu+Ls0AD7N2YvV20z96LTB4W/hr7/WZzcc+Wwd0lONaWC8pVe19EKvJ5oCgVQDgWJ06UoK+oWdwrb/zGonZO9SqgTz8Fphyd2zOzYRIcdDK89yJMOgKaD0vfdtMy2LUeDjlzIOFbriSWWmtM4wHnJpuddoJV1sbj1vCwcx3sXAurHoMTbxxsGCgkPbthxYNwxLmwf0txzpEPvXvg7afgQ/PgoBMLe2y3xJqbPyjR4zFbBYFEup0M7sleHF499nLASxb384CVwO+d/1tF5Dce9jtMRFYmvDpE5IsiMkFEnhWRdc77+OFfhqLsO0Ti1nLpJokL+Kqorir8Ij7fsV1SxkwZqEXuhXjMajULUc4q0OiU50gjhAWyWNBdQTANVkCvoT4SYlxwXH6J4kId9hxelBeeY9BzcXF3BXQPydmS6I7Yya03ncs9WKtzwKuAXm8VObFo5naR3szu7S614zJb0HNycR9jPRTyyTNQJCryeaAoFUA4GiNuYtQU0X15GGv1A0XkBRF5W0RWi8gtKdqIiPxARNaLyBsicnRBOu0m6fL63PTX5Cc4TzvBhia98/v01tmOrfDuC9B0KEydm/s5XBJLraVjT5tVYLuhaFVV1ohw6JnQcrFd4+wqohXdLTeWT434YuJauV1hupB077QKD3dtlM3jMR1dO+wxkg0FpRDQgYXAccBeAGPMSmB6tp2MMWuNMa3GmFbgGKAHeBz4GvCcMeZQ4Dnnf0VRHFwLuk0SFy+WezvkObZLypgpNuGb10RxfR12siuEgD7teJh+cvrtiRrZVEQzC4K9UesiXRvpY1ygMb9Sa7m487sZ5QtVZg2cLLb1eSWKcwX0vlgG18C+ztws6JDd7Sza502hUTs+s+u+Wy7IC66HQ3kliltIpT0PFKUC6I1apXuwuDHoC8lv/EaBLxtjjgBOAL4gIkcmtfk4cKjzug74cUF67ApHgSKHyldVw+Hn2mf9+meHbo/2wVtP2n4c/jfD82pyBfR01UxiUWjfCOOnp95e32yVwcV0c3eVB+VWDs7tT7d3AX1b9zYeX/c40fhgRXwsbnjwtQ28t9MRmnt2Dq6+079ey1FA794O9ZOG/kaK4OLuRUCPGmOGm83mDOCvxpgNwHzgAefzB4ALhnlsRdmn6HdxdyzoNf6iJIiDwoztkcUXgIZm7xb0/qRpBRDQD/gw7HdUhr45tVxTCejxuHXlyyagB8dQW+VjfMd2OsIdxHKNEevLQUAXsQJ1JIOALlXe4r0TybPUWo9z39Jmr49F7WSas4CeRaudRXHST804+3tK9Z0YkzXHwOBjubXQy2r4Vd7zQFEqgJ6wndOLLKDnNX6NMVuNMSucvzuBt4HkAuDzgV8Yy2vAOBE5YNg9dpSynp+bw6FhEhx0Emx7y5ZrdTEG1v7OPouPOH/4ffEFrKU2nQW9Y5Ody8bPSL1dxFrx97RljmMfDq4CPQ9Pt6KS2C9jPO2ytXsrW7u39iv4XbrDUXZ29tG2s9seK7HEGmQ3qKTCGBuDnipJYaDervHc3D0FwMvKf5WIXA5Ui8ihIvLvwCs5nudSYLHz937GmK1gHwzApFQ7iMh1IrJMRJbt2JFjDUNFqWDcJHHB6iChSIza4lnQCzG2R56xB1oB3YvwWkgBPRtVVVbQS6WRda3CWQT0qroJBJoOY9zOdZhIiPZwDustY3JPiOeryWBBj9jFRq7WhDxLrbkTbFoBPeyWWPMYl+e19Em28ncuteMH7nGqY5i49xj08qyFXpnPA0Upc0JRO6fXFjdD97DHr4hMB+YAf07aNAVIzM66iaFCfO7rdneu9I9QsvlpJ1pB/Z3/GXB13/o6bH8bZpwK4w4szHkyzYF72qziO9O5mmba9U22bPD54ioPQnuzh4CNJK5iPxbxrLzuidrvMZyU7C0UtuvDXd1hO8/GIgMZ3GEg70EuCelCe60Q3pBGQIeCWtG9COg3AUcBfVghuwP4otcTOGUfzgd+lUvHjDE/McbMNcbMbW72WFJBUfYBIo4GLlDtWtCLJqAPa2yXjLFT7aTiJX4q1G4FzOHUQM8Ff11qgdBdiGSJQa/11SKHnsl4CcKettzi0KMhO3nkcq2+YHotfbQvN/d2l7oJdtJLZ5lPQ1YXd6810F1cQd4V7NPhOQY9Q2yhGzfvNXGhv87WTC8vC3plPg8UpcxxLei1/qIK6MNdqzcAjwFfNMYkaw5TaWmHmDhzXreHc4xBHy6uq3uk17q6d+2w7+OnW+G9UGTyItvTZhPNZkpMNmaqvSfFcnPv2W1D3PKsuFI0encPGBg8Wvddhb5r2Oo/lJNgeXd334DLfKIF3Re0v4dcLOhdjtKpPoVduQi10LMK6MaYHmPM140xxzoD7+vGmFxWXh8HVhhjtjn/b3NdY5z3MstSoCilxRVQ/NV+eiPxorm4D2dsi8jfOwllVonIYhGpSdpenKQyYOPQwVsceqjDujrn6qadL4G61BZ0VwjOsBBxBXRqxzP+oFOgazt7dq1N234IoRxKrLlktKCH8xTQHS11jlZ0VxMeiUdSu/b3uTXQPSog/PVWOePJgu4hi6tbqzdVJndXGeE1G7FI2ZVaK8BcryhKCkbCgj7M+dyPFc4fMsb8OkWTTdiybS5TgS3D7nSkx1qTR0pAB5ssbvrJ1tX99cW2vOYR5xW2mkbteLsOSFZSR3qh84P08ecuVVXWzX3X+sKXQotFrLJ7guNiXy5u7rGIXcM0zbT/e4xD7xfQY6kF9O6+GH2djmCdaEEXGaiF7hW3xFo6F3cYWQFdROaKyK9FZIWz0H5DRN7I4RyXMeDeDvAb4Crn76uAJ3M4lqLs84TjYUSEaqrpixbPgp7v2BaRKcDNwFxjzCygGhvGkkhxksqAFWxqxnqrhx7aOzLu7S7+2tQaWVcIziAIhqIhK6AD/umnUh9oZO+Gl2z8uhfycefP5uKeS4k1l8RSazmQGEMWiqXok2tBD3h0ca9yFn6ZJsxY1NZC9bJADDRAtQ9CKSzo7nfuxRLvUjO2rCzoBZjrFUVJgSug1xTRgj6M+VyA/wTeNsZ8L02z3wBXOor3E4B2N1R1WER6rNfRSJeadF3dIz1WOC90ObP+UmtJc+CeDdZqPSFN/HkiTTOt8thLqdBccD3AJh5i38tFQHf7NWayNXR4taDH0gjo4QHFRtfubXaOT05GmG69lo7u7Vb5kkrRVgQXdy9FGR8C/h/wJuBxpWgRkTrgLODzCR9/G3hURD4LbAQuzuWYirKvE46FCVQFCMeMTUBePBf3vMc29tlRKyIRoI6h2vT+pDLAayIyTkQOKMikDjB2ip24MtWR7uuCji22bupI4a+HSArLftRbDPrYoCNc+wKMP2AOezYvgw9eh8lzsp/btcbW5OLiXgQLeu04+53kakGP9BCoDhCOhQlFQ9QnxyX2dVqFQS41SwMNA5b3VESzhx70I2ITxaWyoLv3MBdLUHBMuZW5Gc7zQFGUNPRGbNhakV3c8x2/JwMLgDdFZKXz2W3ANABjzL3A08AngPXYikyfKUiPIz3evY4KSVU1zP6UVSKPP6jwx08MhxozeeDzPW1WuGv0kF9v/HSrEN65zptA7xVXcd6wnw0XKxcB3e1X3USbbd1jqTW3LGtyFnfXgg7Qu2cbTGhiCP663F3cU8Wfg3ePvRzwIqDvMMbkVQvVGNMDTEz6bBc2q7uiKCmIxCL98ecANb6iCeh5jW1jzGYRuQurYOsFnjHGPJPULF1SmUECuohch7WwM23aNO+dGDvVuqiF9g5Mhsl88IZ1DzvAg3BbKFyXqWTFgQdBsDfaS02CAD9+0lGs3bEK89elSPPh2YW/0F47oeey4HFj0FMpOmJh8OfhfVBVbQXZHCb+uInTG+1lv/r9+KD7g9Rx6OFOK9TmYm3JVvqkX3HiUbCuHZ86Bj2Sh4BeM8ZO5rGo/d5KT95zvaIo6QnFXBf3omZxz3c+f5nUMeaJbQzwhXw7lpZwiQR0sMKp13wmuVI73s5TyV5ke9pg3EHeQu6q/TbT+87/n703DXIsS8/znnNx78WaidyX2rqru6r3dbo5C6dnhpxFHko0RUqkSMqyGQqFKNphRcg2FaIUthiSQw7+sBhhUhapoURzFcfmcIZDcYazcThkz770vlZX1165ZyKRCeBe3O34x8FFYt+BXApPREZWIZHAARLnnvOd9/ve7xJc/MjgsgzC9Ss+rYLhoxKghwf68WlVK77+amsBJvy10t6qtgY99G8KgoBidh3OfF/9Lxvxzg/JfVeNceGBxj/vJGOvSzrZFfyiEOI/onqWl3dNTepUxowZ0ydOoBT08ARwiG3WeprbQohplEJ+HtVz9Q+FEH9PSvl7lXdr8KsNTWWAjwE8/fTTnfXVAGWiApC93ThADwJYeUGdjidn638+LMxkqeWWpdK0QtoEgm7g4gZuOcUdYDo2gzN1F/l8jtS1r6pFuhV2FqLp7hZyPaYOMQKvPp29VwUdum61VnALSCSzsVnW8muNndyL+92nIprJg7qxRnRg3ldFfAoyV+s3DuUU9y4VdFCZD4mZzn9veIzX+jFjhoDtukQ0gdFLyVDnHL/561rNFcnjTERX1/fKLDIro77OPN3548zdpxT0/TWY7L+rnRrHjloX9agK0Ndf7igQHjqFHXVgoptKQfeK6nC9xSGKH/jl1Pb6FPeAhBkhLl0cq1BtEBdiJDtX0PNb6n1qZBAXYiZHHqD/feABwOAgbUYCR3fSjxnTA+X+470GJQMch1LQ1XSLm0NT0Hud2x8GrkopNwGEEJ8Evh+oDNCHYyoTkpxXF/LsLVh6pP7nmasqYL33Bwf2lB1R2VuzKkC3lRlOkw1aeApcGaBPRacgmiITP0Pq9nOqD3uqxeJg73Vfbx8Gpp492AA9PgO71zte+MP685mYClSb1qBPdZFlASqgd/LNx9FB6UEV8WmleNduHDy75ArbxWFa7MgF6OO1fsyYIeD4KkDXtaFmyhy/+evmwRhCivlRoDbbKnNNfW9nEFfJ7AW1bm1dGlyAXtg5EDUSs6rzS5tAeCRYOwfrYCiq5Ldajqsy066RSVzciLAY7CuxK9FAqDHiKvstCNqv3fmS0t5qD9YuY69LOrlaPC6lfHRgzzhmzBHlyze+jCc9fvieHz7UcTiBQ1yPjyLFvde5fQN4d8ljwkKVrHy35j5/AvyPQoiPA+9iUKYyIZqmVPRmRnG3n1OnmaEj6KioDNArcUsBXJNgNVSMqxV0tYjuzl/k7N46XP4SPP7TzQNeO9tZbVvD8dr1C6Hv9GYSB5AoBbLF/Y5q4vNeKUAvmevUpbhLqWrJu91EmCnVn9wt1BvEQPe147HQyT1TPRa30L0TcXiYcnSM4sZr/ZgxQ6DouUQEGNpQFfTjNX+DQK07h5XiPmwSM9Vp2plras1oFCg2w0xA+qwK0O/5wGDGZWVg9t6DMYJKcz/sAL2wA/Ol9PFESe0ubLesvw+FDWjcZi0dN5h39sl6AbY5Td0xfPjZ86zG+4NK8psqMyLcAzTCTA60ZKCT4/5vCiEeGtgzjhlzRNkt7pJp5NA8YkKTuIMU96EF6D3NbSnlt4BPAM+hDGk04GNCiJ8TQvxc6W6fBa6gTGV+A/gfBjPkCtKn1cWwtpWJtQs7byvFeVTt1UJCY7Pa1h2e3bbFGlQH6Ak9gRkxyfgWnH+/coDdutT4ATxHPWc3BnFQraBXEgSl2ug+FHTo2CjOKr1faTONJrSqhRcoqeABmN0G6G1an3Tgrl9Fs17ort2dgzsc1NPbR6bV2nitHzNmCNieQ0TTiIihrkfHa/6Gh9gnNUCPT6sMrdCTJnNdqefdppLP3aeU5C67ojTEK6q1MFyfw8OCw65DdwrqfQoPDMykcvdv02qtMtPO9d3qnzlKQZ9mH18zyHgN9jLhnszpIM09t6kyN1sp7WZSPZbsvFqzFZ0o6M8APyOEuIqqaxEoz4jHBjKCMWOOCLZnY/s2UkrEIdbjuL5LNBLFdnyEgKg+tBr0nue2lPIXgV+sufnXK34+HFOZStJn1IVw7/bBiTDAasmI9tQTQ336hpQv+DUBYZte240CdCEEU9Epdou7cP4ZuPVduP51tWDXfj7LDu7dprjHDsZXSVBa7LpxTK+kvPDvdJTSl3fzCAQJI0Fcj1OsHU/YYq0XBT38/UapaeUAvcPgOpZWpQq1Tu6e1f1GU4uoBf3o9EIfr/VjxgyBou+iaxqR4R4YH6/5Gx5imyc1QK84pC7q6vV2k94eMndBZc9tX4bEO/sbU6VBHKj1NGIMJvjvh7JBXOk9E6JkYNcmQC+t32bErFLQpZTlFPdJmcXSp9nOuyzXit/NMh4bkd+A2Yut72OmlJ+PV1QHDH3SSYD+0b6fZcyYI46UEsu31HfPInGIp7pO4GBEDIpuQFSPoGlDOyw43nN74pQKlrK3DgL0wIfVF1Xt1ij7n4eEn5s6Bd1q22INqgN0gOnoNLdyt9Sp7dl3wZt/plLlatO+wjTpaLcKehig1yjoYYDca4p7dEKlg3WooOfdPHE9jiY0opFofYp7WNfVdYDeRkF3S7X3nW6ctYjKUqhT0K3m3QRaEZ08Sgr68b4ejBlzRCl67rAN4uC4zd+S70jXpUHHhXL6+M7B+tNLgB6fVofLW5fgbJ8BermVWW0gfMgKeu24QKW5b7/V8tfCfdOkOVlVg+74AX4giZsacWcXJzrNTt6pfwCzScZjLU5BfTUymmv0eE5+uAG6ECIlpcxJKa+3u0/foxgz5pAJlXNQwcJhBeh+4OMFHqZmknX9oTi4n5i5rZtq4cpW9B3fuqQupJ30DR8GEV2Nq/ZE1iu2rF2yXIuIiNTVKE7Fpngz86Yqe1h8BK49Cze+2TxA79kkriYgDtPFek1xF0Kdhhc6KxnJewdzLhqJ1qe4hypz1y7upfu3SnHvNjU9Pq1a2lXiWt05uIfE0sqh9xA5MdeDMWOOKG7gYg4pQD+28zeWVnXV3dRkHyfK2VYZ2FtRbvXdrl8hc/fB9a+pdaxdrXQrKluZhSRmm3v5jAprR71XlfuX5JwSW1q85nCfMGFOVJWn2k7JYFm4aG4effKuxgF6pwp6uN63O4QvB+i5gXQParX7/7QQ4t8KId4vhCi/O0KIe4QQ/0AI8XmO24ndmDFNqGzrFDpKHwZhmo4ZUTXoQ6o/PzlzO30W9leUcg7KHC4+BTP3HN6YGrXuaBMIWr5FXI/XlVZMR9WCkLEzKvg/806loO/VGOLbWaXudqswlxX0moA4PI3up6NBagH2bqla9jYU3ALJUv1+XI/XK+jFfbWAG11uTnRTfTVzVvXs7k+6Y1PVCnoQlFLaegnQJ9VrG1DNWo+cnOvBmDFHEMcfXoDOcZ2/8Wm46/sP35xsWGgRFXDmN5WI0It6HjJ3Ua0R25f7G1Noblr5WUzMqiyumhrukVLYUfu2yky2Durjbc/GjJjEIjHc4GD8oX9T0lOBdTy9wFauWP8A5YzHNgF6WNLWyiAO2gsCXdI0QJdSfgjVT/EfAa8KIbJCiG1UK6Ul4GeklJ8YyCjGjDlkKhW7Qw3QK1q92W5AfAgB+oma2+nTKgDMrStDkd0bsPzE4fb0NOLVpiNSdlSDHm8Q4JWd3IulBeLUE+pxbnyz+o7FPbXwdvu6tYharGtT3AcRoC8+olLIt95se9e8my8H6A1T3Is5dTrdTRuzkFatT3pV0F37wJwwvHb0EqBH06pmbYC9U7vlRF0Pxow5gji+hxkZTou18fxVJYpv775NIIP2dx4l8WnYfltd46ebu5G3JbWoDnO3Wqd8t6WwU9/Ss9Iv5rCwdg7qz0PCdPIWRnG2bxPX4xgRoyrFPQzQE546SE/OLLNvexQ9v/oBtEgp47FNinunGYrtSuq6pOUVQ0r5WZQb85gxJ5qjEqCHp4CmZmK7PjPJ4Zy6n5i5nT6jvmdvHajIy4fsiWMmq1tn+a5S+NvUoNfWn4OqrRJCkCmWFFs9CqefghvfqF5s7WzvNfd6bPAp7qAUg/g0rDwPiw83vZsf+FiedRCg6yrFvcqs0d7t/fWZqdYp7u1OxWuJV7RaM5YPAvVeFXQoHbD0mP44AE7M9WDMmCNGEMiS8Wv/NanNuNPn72p+lc9f+zwfvfuj3DN1iNlztSRmYOeK2pekz/b+OEKoNPeVF1THFr3HddnKwPz99WMEpVRPLPY+xl6RUo2rNsMgOlkysGutoMciMUzNxA3c8p7BclQgHndU5mF6ahZurJLJuyyla0SvRhmPdU+0q8wM273vekz9rQfUC31o9tBjxhwnwhR3TWjk3MMr1QpPAY2Ige35RIfXYu1kEJ1QgVvmGqy9rBaffmq0BoERr77gl3tttwjQXYt4pD7Ai2gR0maa3cqa5zNPg4hUq+h2tnuDuBA92kBBD03i+gjQhVBeALs3VYuSJoSHY2ENelyPE8gAL6hIjbd2ezNhg5JTepM53Ut7tHAc4d8k/Ft3+zhQ0Qv9yBjFjRkzZoA4fkAgPaL6cBT0MQdryEp+pc09R0y4Vkye7j2oDpm7qJT4nSu9/b5rlcxMa5Tq+Ixaq4dhFBe2T2tFcU9lQdZ6EQihVPQWCnoobJilfUoocIUKuulkIDHLbEplL27nG6W5x9uP0drt7CBfiFKrtSGnuI8ZcydR8NQmezo6fSRS3HWhXNxj+jhAb0v6jEoj84qHZw5XiZE46H0KB+p0kwAu7BzQSEEHleZeVtBBLQDLj8H6KyqwC3y1IPSqMBvx+l7y5RT3PjM4lh5VJ8ph67sGhPMtqR+kuENFj1PfUyfS8S6V7pB2Ke691KDDQR2614eCHh6qVGZcjBkz5sTg+gEBPtF+DjvHtCRcK1ZyRzRA76f+PCR9Tq39G6/29vu1LdZCIrraOww6QHdt+N5vwaufan2/Qk2LtUoScy1brVmeRUyPlTskhPtn2/XRhMCwdyAxRzpuENFEE6O4RGcKeqf7j3GAXo3lWUdvYo45VliehRkxmYxOHgmTOClVYB43xwF6W8I09+Rcf2lkg8JIqKA5DHLD8okmNehe4OFLv2ENOsBUdIpsMYsfVNRPnX2nOgC49R0V3EnZZ4p7bYA+gBR3UGlh8w+o7AavweKIcnCHAwU9VkoFLRs3ll9fjwF6NKVeT+3zB766vVvlWzfVIhxueNw+atD1qHq8o9MLfcyYMQPE9SWB9DH1obdZu2Mplg7Bt63tev+SwyR9RinfLUq8OkbTYOEhJUbUHqh3QqNWZiHDaLV2+Ytq7d69Ue3JU4vVYlzJOZX91uD1SilViruuUtzhYP9sOT6piIso7kNyDk0TTCfN5k7urcYX+EoI6XT/0UoQ6JK2AboQ4lEhxE+Uvh4ZyLMOmGdvPcvnrn2uegM7ZkwX2J4ym0gaycOtQS8FRoGv0uGG0WYt5DjM7Y6Yukt9P/3U4ZrDhYSBWniKWlbQGwdwYfZGKwU9kAH7zv7BjfFpWHhA1XfnNtRtsX5S3Gtr0AdgEhdy6kn1+JuvN/xxoXR6Hdagx0oBc1lBL7c46VVBr2h9Ukl4ANBLanp86sDZNQzQe2mzJkSpF/rhK+gn5nowZswRwvECAjxiQw7Q7+T5G64VEsla/nDbVlahR+HRH+997apl8WEVMG6+0f3vWjtqvWkUaCZm1M8H1U1k43VYe+XAfb5VWn4hozL1zAYeLGUDu3oVvSxsVKS4hwq65frM+qXfmVgGYDZpsp1rEqBXZjzWUtwDGRwtBV0IkRZCfAX4Y+DvAv8Nqp3DXwghetwJDoeL0xexPZvbuduHPZQxxxTLs0joCZJGkqJfrGrZMErCE0AvUMr5MFLcj9Pc7ojkLLzzHx6N9HY4CAjDwK0cCDZW0MP6uWYB+lRULQxVae4A596jFOCrf6X+P1AF3VGpb724pteSPqNOwleeb/jjvJtHIMqvv5ziHo6p0xYnzWgaoLcuPWhJfLoixd1SLeBauPS3JJY+VAX9xF0Pxow5Qrh+QCB9osPrg37GKhoLAAAgAElEQVTHz9+iVyQaiSKEYDW/etjDGR4TSyqYXu8hzd3KlIzXGnghJGZVKdkgDortPbj0OZhchod/TK2/2y3c562S2W0jcaVFqzXLV/um0CQODgQuy/WZ8jbVY06eAmAmabJnu7h+jdO/mVS1/c3azHW7/zBLpnNB/x0FWu2+/nfgu8BFKeWPSSl/FLgIfAf4N30/8wA5O3EWM2LyVqbPFgRj7ljCWpZQxcsfUtsjx3cQQuB56mI1pBT3YzO3OyY5dzTUczhQ0MO6Jre1UhsG6LEmLr91rdZCUgswe69avEIlthf0qArIK0+QPWcw6jmUzOLeAXur6quGvJsnYSTQhFqOQgW9nKoY9oDv1fzPLPXZrZ3TZeW7xwDdyalNjVuqY+/18xdLH7aCfvKuB2PGHBGKnqpBjxlDq0G/4+dv0S+SNJIsxBdYzZ3gAF0IpaLv3uh+zWjUYi2kg57jHSElvPEZFfA++CPKf2b2XqWgN8twLjRosRYSmwJNb2gUFx7gV9WgBwc16Gl3Xe2RSgfns0kTKSFTm+Zeu1+re6IuM/jMpHof2tW1d0CrAP3DwC9IedBYsPTvf1H62ZFB13TuTd/LleyVQ1M+xxxvKlPc4aAudtQ4voOpmRQ9Ne2GZBJ3bOb2saRUS12+QLdJpS4r6E1qmKORKAk9wY7doE/puXer72ZKLYa9oMdLvdorVHR/gAE6qE1FRG9oFhcG6CF1Neihg2qvAXAY2Nc6uXfgrt+U2JR6z+xd9XfuJb09JDqpgvwmNfojoK/rgRAiJoT4thDiRSHEq0KIfzXEsY4Zc6woeh6B9In36+LdnDt+Pbd9m2gkynJqmfXCenUHkJPGwkPq+0bjkrGGhK3MmnVCGVQv9FvfVR11Lnz44DBg9qJa27I36+/ve2oNbXZwoGnqZw0ODsL9QcMU96LLhLMBk2fK959Jqvts1wXoNfu1WqxdtbcKD/rbEabqD0DkaxWgO1LKuk956bYj5MKguDh9ETdwuZ69fthDGXPMkFJi+VZVgJ4bkMlDtzi+gxkxsV211kaHU4N+rOb2sSO84IfGI15RGYE1SRevXGiaMRWbqm61FpI+C1Pn1Elxr4Sp2XUB+gBTMo0YLDysUvNqDF8KbqHs4A6qtZyhGdU16L22WAN1Qt6oN2lfNeil8Vi7JSf4PgL0yl7oh0O/14Mi8EEp5ePAE8BHhRDvHvAYx4w5lliuCgiixtBq0O/49bzoFYnpMZaTywQyYKOwcdhDGh6JGUifVl1cOsUtqH1IM6XaSKg1uh8FPbcJV76i6s6Xnzi4ffputf5uX67/HXtXHR40Gxc0bbVWWRpYaRInpUQUNoniq/epxFTCRBMNnNzLCnqTVmv2rspy67Tcr1lJXQ+0aswYE0I8CdTKFgLosdhueJxKnSJpJLm8e5kL0xcOezhjjhG2byOlJKbHSBnq9Cs07ho1TqAU9LBNRFQfSoB+rOb2sUM3lVpcqaC3CAItz8LQDAyt+QZuJjbDpcwltfhUKslCwGN/p8/xlsZWaRTnuxDp76NwLXsN27d5YOYBdcOpJ2H1RdUm5vRT5fsVvAJLyaWq341GosqZV0oVBE/d3ftAmvUmbeMN0JIw3c3KqL9zr/XxUN1qLTnX++P0Tl/XAymlBMLdiFH6GpDb0Jgxxxu7lBkzRAX9jl/Pbd9mPjLPclIZgq3kVjiVOnXIoxoiCw/DW19QBrGdHM63cnAHtUb24+Tue/D6p9Vaev8PlbPdXtx8EV3oPDx1l3Kfv1CT0NFuXKBara2/plT4ijlULg3UY+hChbKO71D0AlL2OnpEqP7zJSKaYDpp9Kagd7O+lwP0/hX0VgH6GvDLLX52pNCExr1T9/LK1isU/WLZaGjMmHbUpsoYmnEEFHSfmKFVB2OD41jN7WNJZW9Nz24ZBLbqgR4yFZ3C8R1lZliRDg70r3Q3U9B7UZZLSCl59vazeIHH/dP3q8/x5LIyuVl5XtWkC4Ef+A1fU0yPKQXdLajDgn5dcM1kC5O4HtRvI6E2C/auyghI9f5elc39Dk9B7/t6IISIAN8DLgD/t5TyWwMa25gxxxrLc5V59vBc3O/49bzoF4lFYsT0GLOx2ZNtFAeqg8vlL6mMtE4C9GY90CuJz0Dmam/jufqXSkF/7O+UA1QpJc+tP0fKTPHw7AV1oJDfVqa+5XG16IEeEh5aF7bVHqKE7dsIITA1EyEEuqbj+i6W4zNRXEebmawzzp1NRtncrzHELQfoLRT0yS4Oe4wRBOhSyh/o+9FHzMWpi7y0+RJXdq/w4OyDhz2cMceEWhftpJE8vBr0wCGux7GtgJgxnB7ox3FuHzuMRLWLe4sgMDQobMV0VC2smWKmPkDvl4YKugPRDmuuGrCWXyu3hcu7eVJhXdapJ+HNP4O925A+U85UaRige3b/Du4hZurA7CXEtZQBTSNX23aE7WqsjHJx7yfF3UwpF/hDMoobxPVASukDTwghpoBPCSEekVKWczCFED8L/CzAuXPn+n26MWOODbbroAnRMkOqH+709dwNXLzAI1o6aF5OLfPmzpsEMigbj544zCTM3AMbr8E9P9Den8XaUWtMq04viVlYe/nA9LRT9tfg1nfg9DuUIVyJPWcPy7MQCDh7L7yFSnOvDNALO2AmWj9fIgzQt6oDdM8mHomXRSxDM3ACB8v1mSiuIdIP1L0vM0mTtzb28fwAPVL6bOhR9d40UtBdW311s//QTSWaDLMGXQjxfUKIpYr//3dCiE8LIX5FCNHiuOPwWEgskI6meWt37OY+pnNqA/SUmTpUF3dTM7FKCvowOI5z+9gxaAW9tEA0rEPvl3BxrDxB7tMk7lLmUvnfW1ZF/djCQ2oBK7Vcy7tqnlXWoIMyirN9u/8e6CFmqkGKe7E3g7iQ+DTkN1V6Xz8BuqapwxD7cBT0QV4PpJS7wFeAj9bc/jEp5dNSyqfn5+cHMu4xY44DtucR0ZTCNwzu9PU8NAYLzUWXk8u4gVu97pxEFh9Sa8bujfb3tTKlOuoWok9oFGd1aRR39a/U/ub8B6puDvvRF7wCfnQCUvP1dejWzsHzNiM+pcZdU4due3aVsGFGTNzAxc7vEvVz6FNnah+J2ZRyct8pVKS5C6HWb6dBgN7r/sNMDaQGvVUE8B8AB0AI8X7gl4DfAbLAx/p+5iEghODC1AVu79+mMACL+zF3BrUmXUk9WQ4cRo3ruxUp7sNR0DmGc/vYYSYOLvhu+xr0dgF60kgiEMP5XDZT0HsM0P3A5/LuZe6evBuoCdB1ExYfgY03wLXK1+nQnDEkpsdUm7Wygt5jj/cQM6n+HpWtXjyrrzR+4lMHQXU/jwPKKO7wUtz7uh4IIeZLyjlCiDjKOfqNoY12zJhjhO06RATlVlBD4I5ez8P9W1jWWlmHfqKZu08ptZ30RG/VYi2kl1ZruzdVbfm599QddocBOkDOzcHsBcjeqhYCWrVYC9Ei6jC8Zly1+yZDM3B8B39HucXrM/WZWqGTe0OjuEYxY68ZfI08b3qgVYAekVKGRyk/CXxMSvlHUsr/DVVndiS5OH0RieTybgPHwDFjGhCm2YYnsElTpbgHB11LRkalSdwQA/RjObePFZUXfK95ypiUsqMAXRMaMT02HPPCiKlOkatq0N0qQ5ZuuL5/naJf5OG5h0lH02zZNUrG/AOqT+reyoGCXhOghyZx0spANNV/nX0j4xav2GeAXlHP12/ZQXTy0BR0+r8eLAN/IYR4CdV7+YtSyj8d0ljHjDlWFH2HiKaVjayGwB29nhd9dbAcprinzBST5mRVgHgiiRgwfz9svqGyuJrRrsVaSHxKpXp3GqBLqWrPzWSV6WvIWn6tnDWSd/MqQJcB7JTq3F1brcftDg6goYFdbWmgGTFxfAeZvU0gdGJTy7WPwlTcUE7uuZoA3Uw2rkG3exQIRhGgC1G+onwI+HLFz4Z2pemXmdgMc/E53sqM09zHdIblWZgRk0gp/SepJ8uB0yjxAx8v8DAiBkVveDXoHNO5fawwEirI9YqlYLdxIOgEDoEM2gbooDI8hvKZFEKlqIUKuu8ppblHBf1S5hJxPc7ZibPMxmfZKtQE6KlF9T23Tt7LI4Soq8GP6TEkkmJhq//6cziop68K0FtnNrSlKkDvV0FPQ3EfgtEfCtLn9UBK+ZKU8kkp5WNSykeklP96KKMcM+YYYnsumsbQUty5w9fzsB1nKLCAqkNfya+gGkycYBYeUuv2ztvN7+PkSkarvSnVTclcVQr6Xe+tO0Av+kV27B0WYmexXV8p6BOnlHCxXYrNysZ1HQToyTl1/4qDCNu3q/ZNpqZS3MXeLQqxBQyj/qOvRzSmEo2c3OONA3RrV/2s2/V9BCnufwD8pRDi04AFPAsghLiASp05slycvsh6YZ1s8UgPc8wRwfaqJ3qypLaNOs3dDVwAIhg4XkBsOC3W4BjP7UFxa/8Wn73yWbygxclzDY7vdH7/UFENF6EmgaDlVvsftCJhJIZXuqPHVMo3qPR26ClAL/pFrmevc2HqAprQmIvNsefslVUOQC128SnIrVNwCyT0RJ2ZT7jZKha2+q8/h8a9Sd3W3gBtqTw46FdBj00qdaFkrDdi7vjrwZgxw6LouUOtQecOn79Fr1pBBziVPIXt2WSKmcMa1miYPq/WtlY90cutzNoo6KDU7EIHNehSwpW/VAfLp56o+/FGfgOJ5NrqBK+uZNnMZZXXyuy9sHNFHURbHbRYK49rrpQJoH4nkAFFr1h1KGNGTBy3gMiv4yaXm3ZAmkmaDVLcE9Bov2/v9rb/MJMlcabz/WUjmkYAUsp/A/wvwG8Bz8iDoygN+Md9PeuQuTClsnrGae5jOsHyLBL6wQY7NKzKuaNtteYE4UVDnUbGzaG5uB/buT0ormSvcG3vWseZNoEM+NRbn+KTb32ys9KHMGALF7smgWCtQWErEnpiOCnuUArQQwU9DNC7Tyu/snsFX/rcN30fAPMJZQi2bdWcyqcWILdB3s03dKWPRqIQBFjFvfapeZ3QKED37P7M3aKTB6Y7/dagl3uhjz7NfXw9GDNmeDi+S2S4Lu539PwND3+rFPRSHfqJb7emaUpF335bHTg3opMWayGJWXX/dplcW5eUe/vdzzQ0nlvNr+J4AV5xGt/X+Yu3buL5AcxeVOPcu6X2RmE3lHaErdZKRnFFv4hE1qe4F7bxPB83dbrRowAwmzTZLbj4QUV2hRFX+5/a191tD/TyYEr7jT5FvlYu7jPAJeAvgagQYloIIaSUl6SUz/X1rENmwpxgObk8TnMf0xG1tSxhS6hRGw2GbqQyUBe8YaW4H+e5PSh2bBU4v7D5QkdpcFd2r7Btb7NlbfHKVovT6hAzgZSSK9uv4Ui/aZu1bgL0MMV9KGl7euygBt1XmRy9KOiXMpdIR9MsJFRv1rm4WljrHHVTi2BlKBT36hzcQaW449kUA3cwKe5hm7cwxT0ISjXofSjoWkXbmn4CfTjUXujj68GYMcNj2Ar6nT5/w37YlQcg6WiahJ5gNXfCA3SAxYdVSdpmE19Oa0cF0dEO6qgTs+qxWnWLCQLl3J6YVYavDVgrrCG9CSLC4P6FOdZzWf7y0ibMnFdj2b6sxhVLd9bmND6jgvlSuVxoDFi5bzc0A8fawQskwUTzvuUzKZNASjKVTu5GUin0lSWEQaBan/akoNfsN3qkVQ7t94Dvlr6+BzwHbAghviSEuLuvZx0BF6cvsmPvnPxWC2P6pjbFPa6r3oojV9BLAbrvlwJ0fWg16Md6bg+CjJ0hoSfI2Bmu7V1reV8pJc9tPEc6mubsxFm+vfbt9oc3RoLXnB0+d/tZXnV2mivofncp7l7glUshBkpVDXpvKe77zj4ruRXum76vnF6W0BPE9XjjAF1K8vn1OoM4KKkhno0t/cGkuGsRFUQXS3M6TLnv4H1vSXxabTBqsg22rW1+46XfIGN3mGJ5iAo64+vBmDFDw/GHnuJ+R8/fMNW5MqVZCKHq0E+6kzvAxJJSmK98BbK3639uZdQht9ZByWQnTu4bryol+/z7Gz5mIAPW8+t4ziQTMZ2HlxY4PSN46VaWV9ZtSJ+FrcvqOTqpPwe1xoZtTWksbJgRk8DeJatNEI3X7ylCGjq5hwfslXXoxT1VdtaPgj6sAF1KeV5KeU/p63zpax7498Cv9/WsI+Ce9D0IIcYq+piWSCmx/GoXbU1oJPTEyGvQywq6DBX04dSg9zu3hRD3CyFeqPjaE0L8k5r7/IAQIltxn385lBfTAwW3gOVZPL7wOCkjxQsbL7S8/439G2xZWzy1+BTvO/0+vMDjGyvfaPk7277NV+1VcC3WvHzbGvRak7RGhGUYQ8nsqFLQS8FrlwH65d3LSGQ5vR3URmkuPtcwQPdkgG3tNE5x16MHAfogFHQoOauWAvTwtfajoANM3w3p+nYuN/dv4gYu64X1zh5HN9UmwR59yehxX+vHjDmqBIHE8V0MTa/z2RgUd/r8tX273GKtkuXkMjk3x55zaN0xRoMQ8MjfVmv4i/8Ztmpink5arIWE92sWoAc+XPsqTCwqB/kG7Ng7FH0Hy5rg7tkkKTPF4hTcNZvgy29ssB07qx4/t9n5uACmzsH2FbB261ojA5iaAfYem/oc8RbZp9MJEyFgO9coQK/YW/XaAx0al9T1QNdXDCnlJ4GFvp51BCSMBGdSZ9Sm8aQ7OY7pGdu3kVLWBUgpIzX6AD2oUdCHVIPejE7ntpTyTSnlE1LKJ4CngALwqQZ3fTa831Fydg6NY+Ziczy+8Dir+dWmLVmklHxv/XukjBQXpy4yFZviiYUneDPzZtPTeTdw+eKtv8TUdM4JkzW/gGxRg25GzI7UlXAxGoqTuxE7qGHrMcX90s4llpJLpGtS6ebic+zYO/iVPcijExQiOjj5hgp6NBJFeDZFwcFi1y/RiYMT7fC19ls7fvad8PhP1t0cBuYdK+hw2L3Q6zgua/2YMUcVxw8I8DD1ofVAb8qdMn+LfrHhAfeplEpzviPS3BMz8I7/FpLz8Mofwe1SZYOUqo66Ux8XIw5mQqWg796oNzlbfUE93vkPqIOBBqzl19i3PUxmuHsuQcpIYXsWf+2hBZJRnc+uJHH9QKnTnSrooNziBXDlK+XMwyqTOKeADDw2I1Mty0ONiEY6btQo6CWRwKkI0HvtgQ7DV9CbIYRI9fJ7h8F90/ex7+yzaW0e9lDGHFEancSB6sucG0CbhG5wS4HRCFLcG9Lj3P4Q8LaU8voQhjQUdkpOoNOxaR6aeQgzYvLCZmMVfSW/wlp+jScXniy34Xtq4SlSRopnbz3b0DDuGyvfYKeY4UOTFzkvYliBx17g1N0P6KgHekioNA/FKE6Pqd7kvteTSdyWtcW2vV2lnofMxecIZFDtqCsEhfgUOLmGAbomNEzfwzZiTTcCXdNIQe+3PVoT1vMqQN8ttqjlqyU6eSgKejOO01o/ZsxRxPUDAulj9mC42S93yvy1vcYK+kxsBjNinnyjuBAzCY//XZi5By59Xrms21m1rjcI0DN5p7F4OXe/ap/2/O/DV38ZnvtdlT6/dRmufx3SZ9RzNGEtv4Zd1IlpKc7OJEiaSSQSqRX5rx9bZlemeHnXIJCyM2f5kNgknH0XbLyOvXtT3VRZg17YJpCSrDHd1mB5Jmmyna/sLNNEQRfaQflZN4QldX0G6E1lGyHE/9zg5mngR4B/19ezjojwBG2jsFE2LRozppJmJl1JI8mt3K2RjiVU0D1fI6IJjMiAApMaBjy3fwrV5qUR7xFCvAisAD8vpXy1wVh+FvhZgHPn6lOFh0GmmMGMmCSNJEIIHpl7hOfXnydbzNapv8+tP0dCT/DA7APl24yIwTOnn+Fz1z7Hy1sv8/j84+WfXcle4ZWtV3hi/gnOua+x5TkgNNasLdKJubqxdBWgDzXFvbTB8eyeatAvZS4hhODeqXvrflZpFBf+G6AQnwCnQDLSOEiO+R52tM8U9ErMpFowpaxIcR98gF5wC2X/iq4C9FgaMtfU+AZ1KNEBJ2GtHzPmKOJ4AQE+0U6MsHrkTp+/Rb/IbGy27nZNaCwll+6MOvQQ3YRHfhwufU4F05mr6vaaVPJM3uG3v3GNDz6wwGNnahTi+z8K93wAsreUip69BTe+BbJU1vfQ32y5Pq3l1/CcSU7PxInqEVKGMkzLu3mWJpf48EOLvPbVZWZ23uTuRP3frSVn3w2rL2Lf/CbGzKmqzEMjt40vdAqReMsUd4C5VJRrWwU8P0CPaAcKemUNurWrDgU6qd1vRKUg0COtnnmi5isFrAF/T0r5G508uBBiSgjxCSHEG0KI14UQ7xFCzAghviiEeKv0fQA9dBqTMlLE9BibhbGCPqYxrQJ0x3fKdeGjwPEdBALX04gbkaZ9HAdA33MbQAhhojYBf9jgx88Bd0kpHwd+FfjjRo8hpfyYlPJpKeXT8/Pz3b2KHtm2tpmJzZTf30fnHkUIUVeLvp5f5+b+TR5feLyuRc759HnOTZ7jO2vfKZdC5Jwcf3HjL5hPzPOu5XeBkWBGi2FGoqw1qUWuNShsRUyPIRDDSXEPA1WveJDi3mF9tpSStzJvcdfEXQ1fSzqaRtf0ujr0vJkEGZBo1B5GSmK+Q3GQypM5oWroPHuoAXqY3r6cXCZbzHbWlg/g3HvgXf9o4OPpgIFcD8aMGVON60sC6Q1bQb+j52/RL1b1QK/kVPIUW4Ud9oujzYY8VDQN7v8hOP8+2CtlD9Qo6Ld3LaSE11aalFQZcZi7CBc+BE/9DDzzP8HjP6Vq3aeaCyl5N89WYZfAneLuOZUZF2bIhRmpDy5PMvfg+3lWfw9bXpfrr27C+Q9g5zeIWdXZZmZ+E8+YIBB+2wB9tuzkHpbz6eqxKwN0u8cWa+UBpYanoEsp/1Vfj6z4v4DPSSl/vLSZTwD/AvhzKeUvCSF+AfgF4J8N4LnqEEIwH58fp7iPaUqrFHdQFxyzh3ZTveD4DkbEoOgFQzOIg4HNbYAfAp6TUtZFn1LKvYp/f1YI8e+FEHNSykNtqyClJFPMcE/6IEUraSS5f/p+3th5g+9b+r5yKvlzG88RjUR5ePbhuscRQvC+0+/jD974A76x8g0+eO6DfOnGlwhkwEfOfUSlwxsJNCFYjE41NQuzPIvF5GJHY9eERkyPDS/FHUrBa1GdkHfoOnw7d5u8m+e9p97b8Oea0JiNzdYdlOYN5bwbt7JQuw66BaISrEHWboZ1YcXc4GrQG7BeWEcIwcXpi6zmV9l39usyMxoSTQ18LJ0wwOvBmDFjKnD9koLeoJXkoOh3/gohfhP4YWBDSlnXN0sI8QPAp4GSHMsnj4qnjB/4OL7TMMUdVBbtKyt7fDbyBj/5xNMjHt0hIoTqUR5Lq3T1mjTtlV0ViK5mbTJ5h+lkmz2ubqoWaW1Yz6+zW3BIRua4e1Z95ifMCYCqrkjvvO8ML607vHwryw8+0GV289KjFKJJ4jvXlJgQMcDJY9p7eHoKP3CJma33z3Mp9XnZzheZnyh9doxEdd9ya7epEV5HmEnYa+Cq3wUtX4UQ4mEhxHzp3zNCiP8ohPi4EOKhdg8shJgE3g/8JwAppSOl3AX+JvDbpbv9NvCj/byAdjQ0KBrTFVJKbNc/kWZ7YbATq0mzDXuhj7LVmhM4mJqJ5fpEh9QDPaSfuV3BT9MkvV0IsSRKErUQ4p2oa02L3h2jwfIsbM9mOlZ9ovzEwhP40i/3ON+2trmavcpj8481PaBJR9O8Y+EdXMpc4gvXvsBKboX3nXkfU+GpaynQX4xOs21t12VjhB0EOnFwD0noieG5uEMpxb206HWYwXEpcwkzYnJX+q6m95lPzLNtb1ddQ/JahEQkisht1P+CtUtM6NjaAOdBpbOqZ6v6siEoWxuFDWZjs+V0/q6M4g6JAV0PxowZU0HRC5DSI64P95C/z/n7W8BH29znSBq+FksdR2r3byFT5ixFF97O3BjlsI4OS4/CA3+9bi1fzdosTsYQAl5fG5wx6Vp+jT07YD4+x1xKfeZNzcTQjCrT5bgZ4eJiitdW93C8DjPMQoTAnr1AzHfh1nfUbdnbmCKCo6cIpNtWQZ9OmGhC1Du5hwq6V1T/7ktBL6W49xE3tZPpKls0/B+otJlPAb/ZwWPfA2wC/48Q4vnSBSMJLEopVwFK3xsenwghflYI8V0hxHc3N3tXwEODoh17p+r2b17Z5vr2aF26jzpBIPna5S0+89Iqn/jeLX73G9f42F+9za/8+WV+7Stv8ycvrgwkSD9KgX7ooh2pCQSSpRPvoQRDTXB9l2gkStH1W7pQDoh+5jZCiATwEeCTFbf9nBDi50r//XHglVIN+q8APyWPwB8+vA7MxKprsqZj09w9eTevbL+C67s8t/Echmbw6NyjLR/vycUnmTAnuJK9wsXpi9w/XXHiaqoAfSk+h0TWqehhB4FOU9xBGcUNN8W9VIPeYdZIIAOuZK9wPn2+rgygktn4LI7vVLW8KfgWydgM5BpkF9i7xESEYq/1X42IqpP8Vzdf5iubzyuDuAGXkUgp2ShssJhYLKvmXdWhHx59XQ/GjBlTj+sH+HhEh+/i3vP8lVL+FbDT7n5HkTBAb5bini8GJCLTrOQ2jtS+8zCxHJ+dvMOFhRRnpxO8sbo/sPdmJbeK66Q4PzdRLiEUQpA0kuy7+1X3ffTMFI4XcGl9v9FDtcSOJoinz6o6+2IO9m5hRgyKWgJfem0D9IgmmEkabOUqjeKSByZxoVlrLy3WQsxUteluDzTd/QghfhG4APz3pX//GBABHgDOCCH+pRDi/S0eWwfeAfyalPJJII9KZ++IQdWmzsfV71bWP7p+wDevbPO960df2RglW7ki3766w2rWIggk6YTJPXMpnr57msfPprmymefFW/27DP/Jiyv8+esd9gceMs1qgJMltW3kCnrExHaDtheYfkanPw4AACAASURBVBjA3EZKWZBSzkopsxW3/bqU8tdL//53UsqHpZSPSynfLaX8+tBeUBc0C9ABnlx4Etuz+dbat7icuczDsw+3VbcNzeCD5z7IvVP38oEzH6j2DSg5gy4m5hGIulZuzfwPWhHX40NKca8xiWuSMliL7dk4vsNionWa/lxMqcnb1kESRd7Nk0zMqwC9doNg7RIVERyhDS77qTSnr2Tf5q3cDWSHr7EbMsWMej+Si8T1ODE9duQD9EFcD8aMGVOP4ykX92EG6COav+8RQrwohPgzIUR9zdch0U5B37M9EtoM++4OWXt0fkJHmdWs2ncsp2M8uDxJ1nJZyTbwgekSL/C4srtKVM5yfq66pCNlpsjX1GOfSseYm4jyUg8xhe3ZxE5/X6kv+7OQvY0+cQpPCrSIp4zf2jCbijZX0PtpsRYygFZrLWvQhRA/CvxnYAl4v5TynwMIIT7cQZrLLeCWlPJbpf9/AhWgrwshlqWUq0KIZaBBfuPgSEfTmBGTTWuTB3kQUA3qpVR1GH4giWijc8w9yuSKqufh33hsmeV0ddAgpSRruXz1rU3umkm0r1lpQtHzubZVOKj7OGQszyq7Y1diaAZmxBxpL3THd4hFYtiuP/Qa9D7n9rElY2eIRqIN/+ZLySUWE4u8tPkSERHh8YXHGzxCPadTpzmdOl3/g5KPQdScYFr36gL0Zv4HrQhT3KWUgzURrDWJ6zD1OzwsaPR+VjITV6Z8m9Ym90yp+v+8m+dUagF21pUhS6WRjb1LLDoBWoSiXyShtX78joiYENHJ2ju4nkMxojPoCvSNglrOwq4h09HpI5/ifidfD8aMGSZhDXpsiCnuI5i/oeFrTgjx11GGrxcb3XHUXVnCNbRZDXrWcklEpgkcnys767zj9Gg6xRxlVrM2mhAspWMsTsKX3xC8vrLH6anO9yGN2CxsksnbTOhznJ2pXq+TRpJbdnVXJCEEj51O8+U3NljL2iylO1uN3cDFDVxiyXk4/RTc/i4IDXH6KWQmg6Z1ljI/mzR5c20fxwswda0UoIcKeilA70dBnzoLD//YgUN8D7SLAv418FfA7wP/K6haF6Ct0ZOUcg24KYQIcz4/BLwG/AnwM6XbfgZlPjE0hBDMxmarFPTNfXXq5vqStb3+T45OCgVHKVXJaP25jRCCDz+4iKYJvvDaGkHQW0rMrYxFICUFx+trrIOiVZurlJEaaYBe9ItowsAL5ChS3Hue28eZHXunysG9EiEETy48CcCDsw827M/dFWFvTT3KUnKJ9cJ6VSpZLwp6wkjgS7/ckm9gRHRlCuda4Bc7TnEPS0ASbRYhQzOYjk6Xr8Ne4KnAe6J0sFFbh27tEiv5BNj+gK7RQuAbSfaLexC45IbQJWE9v44ZMZmOqrGno+kjr6CXuCOvB2PGDBPHC5B4RPXhtVkrMbT5K6Xck1LmSv/+LGAIIep7hjL6rixlBb1Jptue5ZKKqKFe2Tm57da6SVFf2bWYn4hiRDRMXePCQopLG/t4fpe14DWsFdbIFBzunTlTt39NGSkKXqGuo8kDyxOYusZLtzpfI8NDmZgeg7vfq7L/Al/1Zw8i6JHOMu5mS0ZxO/nSXspIqJR0z1EKuh492MP1QiwNCw+oUroeaRmgSyk/JaU8JaW8S0rVBE9K+aqU8sc6fPx/DPy+EOIl4AlUbcwvAR8RQryFqmH9pZ5H3yHziXm2rK3yh2MzZ2PqGkLAzZ3R1Rh3QhDIQ6uVCRX0pNl4MZmIGfzg/Qus7No8d6M3VehG6f3OF4+G6ZzlNTfpShrJkaa4u74LUl3YhpniDgOZ28cOKWU5QG/G+fR5PnD2A7xz6Z39P2GY4qTHWUou4fgOmeLBvOk1xR3AcodQh27ESgp65zXooYLeyWuYi8+VA/Sy8p5aVnXgtXXo9i6xuPo7Fb0igyIX0ZFeEQKffTH46896YZ2FxEL5AGg6No3lWeWN5FHlTrwejBkzbBw/QIigpT/HIBjm/D2qhq9wcHjbTEHfs10WU9MkzCg3smsN79MNn778ab69+u2+H2eQ+IHk//3OTb78RvuyUT+QrO/ZLE8d7HkfWJqk6AZca+PJdWUzxx8/f5t8sbG4dn33Np4b576F+t7mKSOFlLLO0ymqR7h/cYJL6/vYbmeBdVXmoRGH8x9QGX/pswRBBC3SmfgXmtiV69DDYNwtlDL6+lDPUQchf/z8bXYLQ6hBHwRSyhdKp2mPSSl/VEqZkVJuSyk/JKW8WPo+dHOK+fg8XuCVlYzN/SILE1HmUlFuZYaw0e2Roufze9+6zrNvHY5okS96xM1Iy5T/B5YmuLCQ4utvb1cbLHRIeCASSInt9ndi1y9SSmy/eR/qpJEcqUmcEzgg1eHIMFPc71QKXoGiX6xzcK9ECNFR7XlHRCdV2nZqoVyjXZnmHgbozernGhGmkg+t1Vqli3sHlBX0NinuoAL0vJvH8qzy7yVjaUjMwn7F5sL3oLhPNK4Wessf3DU6qwn1+gKPHIMN0N3AZdveLqe3A0xF1SJ/1NPcx4wZM3iKnocQcugBej8IIf4A+AZwvxDilhDiHxwHw1dQh7cC0TLFfSphspiYZzXfn++RlJK1/NqRa9v8rSvbrGZtXl9tr4Jv5Yq4vuRURQnruZkEyWiE11abm7Xt2y6fe3WNq1t5Pvn87bpgWkrJG1s3S+3V6vcC5V7oDQSvx86kcX3J66uducmXA/RI6TWcfge895+AmVAButZZoD8ZMzAigu1QQQ8FFddSCno/9eeoAP3qVp6o3rvYdkdEAWG7m83CJkEg2co5zE9EOTuTYHXX6ju1Y1D81aUttnNO25OsYZF3/Ibp7ZUIIfjQgwtEdY3Pv7qG30Wq+77tsp1zyrUmuSYncaOinYt2GKDXpuUMg+t71/ECD6RayPuZ1GMa08ogbijoJrz752DmPFPRKaKRaF2AHo1E6zoItCJeOuUdTqu16IGC3sQVt5aCV8CMmBgdBPSzpYB7y9oql44kjSSkFqoVdDsLUqoaMwaroKsAvQiBxz6Dbb25VdhCSlllmBcG6Nli/+aaY7pHSjnSMqUxYyqxXZeIJtC1oae494yU8qellMtSSkNKeUZK+Z+Og+ErqD2cGTGb+rHsWR6TcZ0zE8tsFbZwPLfn57I8C1/65QDxKLCatfj2tR3mJqI4XsDNNoJj2P+8UkHXNMH9S5Nc28pjOfVropSSz7+6jpTwoQcXyOQd/uSFFdyKuGnP2WN9f4+5+EJDf6mwbXGja/HCZIzldIyXb2c7yqoND+yrRJSIml9+EEGIztZ1TRPMJKNsD0lB39gvMhHTiZvjAL0l07FpIiLClrVF1nJxvID5iShnpuN4gWR1AA6G/XJ5Y59XbmeZiOls55yO0z0GSb7okezgw5QwdT704AIbe8r1vVNu7qiJ9eDyJMCh16GXFcwmamnKSCGpT8sZJEW/yJdvfJnPXPkMM7EZluPKQGsENeh3HCMP0CsQQrCUXKoL0LtJb4cDpbqTVmsFt8ALGy90XkpSVtCdrhT0Tl9DeFBaGaAn9ASklqC4D061QUssqZToQaaHZwnQpSStmeTkYK+xYRu9ygB90pxECFFV2jBmdFzfu87vvPY75JzRlSqNGRNiew4RIY60gn6cKfrFpvs32/WxXZ903OCuqSW8IODabu8qeqj+DqXNaQ+4fsAXXl0nFdX52+84jalrXN5ofZ1bzdpMxHQmY9WfxweXJ/AD2bDl2XM3drm5U+AD983z2JkpPvrIEitZi8+8tFoW6Fb2V9m1XB6cP9fwsKSVgg7w6Jk02zmH27vt39uqGvQKPD9ABjqa1nlcMZsyD5zcQx+d3Lqqae9TQd/YU73m+6GjAF0I8YwQ4u+X/j0vhDjf17OOGE1ozMZn2bQ22SgZxM1PRDk9FVd16JnDrUPPFT2+9PoGC5NRPvKQ2tytdPBBHTT5otdWQQ+5sDDBg8uTfPvqDusdGu3d2CmQMCPcVXJ4zBdHfwjh+gGffuE2t3etti7a7S4q/XJj7wYff+PjvLnzJu9YfAc/ft+PE0GNpZ9Tt2447nO7GzJ2hpge6zooHhRLySV2i7vlz10vAXpMjyEQHaW4X8pc4usrX6/rv96UqhT3zmvQO0lvBzXPUkaqHKALIdTrT5VSwkMVvdTixEjMI4QY6IYoi09ai5ISBjnZu5rSiPXCOikjVWWYF9EiTJqT7NrHwijuxF0Pso5SZY6JUd+YE4btuWgaI1PQT8L8lVLy7FubXNtqn/lie3bL+nNQqcwXZs8AcHnnds/jOmoB+tcub7GTd/hrDy2RMHXunU/y9maupYHzyq5V16EJYD4VZS5l8sZadZr55n6Rr13e4p75JA+fUsLafYsTfOiBRa5u5fn8q8ow+vWtG8hA55HFBt1sUGV8ERGpa7UWct/iBFFD48Wbu3x37bvsOc3T3W3PbljWYHsBEWEgOkxxB1WHnit6ShANFfS9kplgHwq67fpkCi4LfXarahugl/oq/jPgn5duMoDf6+tZD4H5uDKK29iziWiC2WSUmBFhYSLGrZ2DCVf0iyOtF5RS8oVX1/D8gB96ZJlTU3E0IUau6kspKTh+U4O4RvzA/fMko5HyJG33+Dd3CpydSZQPAfKHoKC/tZ7jymaeZy9tlpXxdgH6oBV0x3f4ys2v8KdX/hQzYvK3Lv4t3r38bnRNL9flx/ThJ7eclLndKTv2DtPR6cG2J+uCpeQScKC0Wp5VTlnvFE1oqhd6B5/JcJFbyXXoXqvHoJhTPcm7cHHv5jWERnEFt0BST6q/RaqkOIcBup2BiI6IpohH4oNV0AOXtGaS0gz2g8FefzYKGywm6/vBT0enj0WAeBKvB2F5xDjNfcxhYHvOyFLcT8r8vbZd4LvXMrxws/01s+gXmwfoVilAjxucmZzG0KJc313teVxhFk7Y5uswublT4PkbuzxxdopzpZrvCwspLMdvqkLv2y77tleV3h4ihODB5UlWdu2yqZnnB3zu1TVihsZHHlqs2jc9eibNMxfneHNtn794c4M3t26S0me5e65x5xshBCkz1VTsMiIaDy1P8vLabb52+5u8tv1a09dueRZRPYomqvfIluOjoUMXpWuzSfXZ2coV1f5HaLBf+oz0oaCHncIWRqCg/xjwI0AeQEq5Akz09ayHwFxiDsd3uJndYiZplo3Qzs7EWduzy/UUz956lj++/Mcjcxh/4eYu17cLvO/iPDNJEyOiMT8RHbmCbrk+fiBJRjtXbmNGhPffN892zuFqm7r57bxDruhxbiaBqav2Ds3cIIfJK7ez5QOQaztqARilgr7n7PHxNz7O69uv88TCE/zEfT9Rtam3XB8jItAjI6k+ORFzuxNCB/ewDvowWIgrd+8wzd3yrAOjky6I6/GOTvHLAXq+0wA9CmHQ2kUf9E4VdFAB+q69y56zd9DGzkxAdKJaQY9NgRBE9ejAav4CGbAXuExqJhOaSUG6+MFgsngKboF9Z78qvT1kKjZFtpgdiZdFn5y460Ho8jwO0MccBkXfJSJGVoN+7OevlJKvXVYmyatZu+0+vFWKe9ZSa1k6bhA1IszG5rm930eKe0WZTCdrkucHZAsuG/vtX0c3FD2fL7y2zlTC4L0XDrrdnZtJYkRE0zT3UPQ71UBBB7h/aQIh4PWSWdzX395ma7/Ihx9cJNFAuPu+u2d4+u5pnr+5xZubq5ybPNWyNDNpJFtehx87M0XO22Fjv8hqrvlBiuU3zjy0XZ+I0JHC6/j9ni05uW/nHNVNxogrkUII1SatR8JM7aEr6IBTcmyUAEKIPpsDHw7zcWU4dCO7XmVicGY6gR9IVnYtHN/hSvbKyNribOWKfPWtLc7PJXnszMGH4dRUjPU9uysDtn4J0807TXEPuXc+RSqq8/Kt1iZIYXu18LQvaUbKfddHxXauyO1di3ffM0MqqvP8LdV7uZmLdlyPowltoJu7VzYu8/LqGn/j/A/z/ae+v27htl1/lPXnJ2Jud0LezeP4Trk/9WFgRAxmY7Os5dcIZEDRK/aUbp8wEh2luIfGZOHztaXKdKX9wuIFHo7vdBegJ+aQSNYKa9W90yeWDnqh27vK/R41NwfVBz3v5gm0SFlBlyJC3hvM3G5Ufx4yFZ3Clz77TnOX3CPCibsehBvpUbbLHDMmpDhak7hjP3/fXN9nc7/IXbMJbNc/6FHdhJYp7paLqWtES9mIpyYW2bR2VDvbHqi8htQekG/uF/nCq2t86vlb/O43r/NrX3mbX/3yZX7za1f5/W/e4M0Gtd298uylLfZtl//q4SXMikxLU9e4a1aluTcKUFezNkZENDRxA9VG+ex0gjfW9ri5U+C5GxkeP5vmnvlU07E8c2GOuxdU+7aLc8stxz1hTLS8Ds8kTRLxPBt7NhuFjaaH57ZnN9yzW66PJpQze6cZDqmoTtTQ2M7XGMVFJ6EL895aNvdVrX+38VQtnQTo/58Q4j8AU0KIfwh8CfiNvp71EJiJzeD5km17q+oDemoqhiYEtzIWV7NXlZM2tKyBGASeH/C5V9Yw9fr0kVNTcVxf9tTGrFdCNbvbD1REEzx8epJr23myheaT4uZOgemEUTanSET1kbu4v3w7S0QTPHomzVN3T7O6l6Xoak1dtIUQbU/9uuWtzU029jxsq/Hp3IgD9BMxtzuhbBAXH71BXCVLySU2ChtYnoWkeQeBViT0RNsU90AG7Dv7TJgTOL5T7j/ekkrn9g5S3Mu9zI3uFHRQSklZQQdVh17YBs+panES02MDc3HPFrMQMZiMxJgQBmj6wMzDNgobCCGYS8zV/Sw8FDoGae4n7noQHu6Msl3mmGNA9rYq5RkyRV8F6CMyiTvW89cPJF+/vM38RJQP3KcEtValnoEMcHynqcCyZ7uk40Z5b31XehnL8VjN9aai59xc+e9YG6B/59oOb67tY7sB6bjB/Uspvv/eWT7y0CKTcYNXbg8mnri6lefl21meumuaU1P1e4cLCyn2bY+1Br5Qq7sWC5Ox1m2UlyfYLbj8yYsrTMUN3ndxvuV4hBA8ds7k4mKKd991tuV9k2aSnNv48CBkasKi6Elu7ebYKGw0vI/tNW6NbDk+EQx0TcPxO+s9LoRgLhllq9York8H9/W9YtODkG5oG6BLKf9P4BPAHwH3A/9SSvmrfT/ziNE1HYNJCn6G+dTBGxfVIyylo9zcKXApc4mIUMHRsNWOb1zZZnO/yIcfWqwLipdLbchGmeYe1oOnuqhBD3n0dBqB4OXbjVV0P5Dcylhl9RwgaeoURhige37A66v7XFhIkTB1HjmVJhJxWdttreInjeRA1Zcdaw9TS/DWRuOgv+gGIwvQT8rc7oQwQD9MBR1UgO4GLrf2bwHNyytaETdUinurhS7v5glkwAMzDwAd1qFX1pJ3kOJuuer61I2CPmFMYJaC/6rfSy2qDfPuDWVSV1ogo5HowBT0rJMFIUjHpkhpKkAf1HV+vbDObGy24UZ8KnY8eqGfxOvBWEEfU0d+G577Hdh6a6hPEwQSx3fRRpTiftzn7yu3s2Qtl2cuzDGTNIkZkZZ7YMd3kEiiTVqCZi2XyfjB9fj89DJSwtuZDku+asg5ufIBc2WKexBIrm8XuG9pgp9+5zl+5PFTfPCBRd51zyyPnE7z8KlJbu4UyFqdqboFt1DeH1TieAFfem2duZTJe+5pXKp3fi6JJurT3F0/YGO/2DS9PeTCQopt7w3WrMt89JFljA5KLXPuPnOpKHOJ1kFtykgpr6sm2X9+4KPpOS5MXeDaVoE/fOEV9u3698z27IZlDZbrExEGekTgBJ0F6HDg5C6lPNgD9VF/XvR8MgWnbwd36NDFXUr5RSnlP5VS/ryU8ot9P+shEZFprCDDXKpaHTozneDWbpbrezd5cPZBYLgK+saezfeuZ3jsTJp7G6SPTMQMJmL6SI3iwhT3RBc16CETMYPz80leWck27Cm/tmfjeAHnZg5aRJmGT36EKe5vbeSwXZ9HTyvl2tQ1Ts/o7BW0li70g1bQM3YWUyS4upXD8erfK8v1iRmj6354UuZ2O3bsHeJ6vCu1dxiERnFX964CdG0SByqw9aXfchEKr19LySXS0TS3cx24145AQRdClDc51Qp6KTV88w31PVTQI7GB1aBni1k0oZGKTZOKmKBFBhK4SSmVQVyD9HZQhzDRSPRY9EI/adeD8LMzrkEfU6ZY2tsNubOC4wcEeCPtg35c56/jBXzr6jZnpuPcNZtACMGpqVjLPXBYhtpIQZdSsmcpBT3kTHoaU0v0ZBQXyIC8ly+vXZUK+sZ+Edv1uWu28Tr44PJkqba7s5jixc0X+S9X/ktdmvZa1iZX9Hjm4nxTj6KYEeHcbJzLG9VK9cZ+ET+QDQ3iKtG0ADN1jfm5TZbSnQWY2WKWuB7HaHOoX/Z0apK1lilmCPD5ySee5JHlJa7s3uJ3vnGdVyr6o0spsXyraYAeM0w0ITpW0AFmU1FstxSPmKU9SR8K+lbOQcr+68+hMxf3fSHEXs3XTSHEp4QQ9/Q9ghESeCm0iItP9aQ/O51g271O1nJ4ePZhopHoUBX0b1/bwdQ1nrlYnw4ZcmoqPnIFPWpoHZ2YNeLxM2ksx+fyZv3ku7FdQAh1EALwmSuf4dL+N3G8oGGQOgxevp1lKmFwZvogIJqbVJvnb7Xo5Z4yUuTd/MBMPrLFfZLGBK4vudbAWM92feIjUtBP0txuR8bOMB07XPUclIKcNJLc3LsJNPc/aEWourdK2w2DwUlzktOp06zmV9vXoVfVoHcRoHehoAONA/RYWh0QbJdUrfhBirsv/YG45u45e0yak2jRSQwjQcyIDyRw2y3u4vgOC4mFpveZjk0f+V7oJ/F6UJnifgxM+saMgvC6WRxulqTrBwTSVwG6GImL+7Gdv8/fyJAv+rz3wlw5JX05HWcn72A1EXLCw7dGNegFx8f1JZOxg/d9JmmSjMxwa2+t6/EV3AJSSmZiM0REpEoFvradRwi4a6ZxyX86rmq7X1vZ62gfmS2qgLQ2BtnMqde71EaZvTCv0tTLaduo9HZobhAXcnv/NnMTOol4seM9756zRzra3lAtZSgxstmau1nYBJSPy9On7+H+0z7zKZMvvrbOp56/zZ7tUvTVuBrtm2zHJ2mo27vxGZhNhkZxxYEo6KHg16+DO3SmoP8y8E+B08AZ4OdRdS0fB36z7xGMELeYImnqbFqbVbcvT8XI+jfAn2A2PsuEOTE0tSOTd7i8kePx/5+9Nw2O5DzPBJ8vr8qqzDqBwtVoNNDoixQPkWyJpC5L1GHLMuWxZHPslY8Zx4zCxx6zsRsb/jG74R+zETsbsftjdmdsyzFjyxrNhka2bFOHZdE2RZomKapJUTy6ye4GGvdRhULdlXd++yMrE1WFrKqsA9VAu58IBK46Eqj6jvd7nvd5ZhMIce0Lsem4iLJqelmOR42qZvYUsdaKuVQEiQiPN3zM4tb2q5iMiRB5FoqpIFPLQKfO5FMbQdTaflXHZl5xpPgNvf6GreFCegxLmYoXi9AKiZccM6weJDPtYNgGKnoV86kxSCEW11uMQyilUEcocccdNLY7gVKKvJZHSry9/eeAwyBPRia9grNfkzigcx5rSS+BEIKoEMW0NA3d0pFTcp0fuJFB5wIU6F1iCtvBLWSjQoPBsBu3ZtQPT+sOqq58cRgsekkrIRaKAYk5IDEHmZeHchDrGsR1KtDjofhJyEK/o+YDwzZg2qYjrQS924d+Fw70+vugTSbz0J7GPCjQR9SDfiLHr6JbuLKax+KE3NRX7bZ6bhf91zmPQfdhU919cyODzjIEU/IEsrVCz+uJq7SSBRkiJzatvas5Z38bFtrv2+6diaGoGNjIB09faa1BsmUNUZHr+DwAcDYtgRA0ydy3iiqSEb7rfVdKKwCc9oGgrWXuwXc3dEtFyipZCKyAeCiOKWkKlOj41P0xPHFpAttFFV95aRVXtx0vHd8edMOCJDj7hV4l7oDDfA+jBz1T0iCFWMgDGsQBwQr0n6KU/gGltEwpLVFKvwTgpymlXwNw+ympgNBNG7ouQQpxhwyTamYZhCuCN08BAGKh2JFJ3K+s5sESgofmOr8B3IlquzAamXtVMwdyHCSE4IHZODbzSpO5nWZa2Clqnrzd7YU1qTNRjULm/mY9Wu2e6YNJhFIK1VLxnulxCByDKyv+LHo3WU4vKCgl6CZFOhLH+YkobmWrTQoCzbRhUzpKifsdMba7oWJUoFv6sSjQgQOZOwFpGxHTCUEY9JJWZ4sJg1OyM691jVvrkUFXTEdq1s5ksR3OJc7hc+c/d1jR4MrcQ7LXA+/G0A2aqkEpRVErIi7EgblHgfs+j6gQHcq4ztQyEFiho0IjGUqiZtZ6kt7dBvQ1HxBCThNCniWEXCOEvE0I+R9Gd8nt4ZoLuoqNu33odwEAcBm8IRlEtn0aizoS99HFrJ3I9fyHK/swLBsfWGzuq56Ki14krh/cAtKPQS82ZKA3YjY6jZpuemxtULjrhMRLCHNhr8BXDQvbRRVnUp1VZOcmZAgcg7e3OtcVlNKOBXoQ4zEpxGEmEfbUrJRSbBcUTPuYyrU+90pxxduTBCEpLdtCRa8EKtDdVKR283CmlsF42FFQuHukndoOHjydwC8/dgbxMI/nbm6CUn9zXcWwIIeca+9lnY0IHKQQ6zDoiTPA2CIgdTbH64RsWR1K/zkQrEC3CSFPEUKY+sdTDb8bXQ7YgMhVNTDgMSWnDhXo1/PXEQsLgDEJ1bAQE2Io6+WhZ6GXVQPXtku471TcN1ewEeNyCDxLsNXm9HDYqGoW5D76zxtx73QcHEOaItc28gpsSr0C3euFJSYsahy5UZxjDlfC4oTUdAChWk42ZVyU8OBsAu/ulpH3ifRwC/RhsC+ZqsOgpaUEzk/KMG2KW3sHp/ia4RTrnZQVQ8YdMbYt28ILmy+01MDT+gAAIABJREFUXVA8B/djVqCLnAiG9H4Y40rKO0WtNZ5qy4KMmBDrbhTHiQ6TDQSTuBu9ZaC7YAjj/Q+aEK0X6A3ysmEx6IqpwLCNJimezMsoG4Mz6DvVHaTD6Y6v5Qkxiut3PjAB/E+U0nsAPAbgtwkh9x7plQaAu4EfCzsb/7sM+l0AAOrmltCOtkB3GXSB5ZuUe0eIE7eel1UDP14v4J7pGMbl5uKTZxmko6G2rZ7uAZxfgV6qZ6C7qUEuFpJT0EwbWz06ubtFZVSIIsyFPQZ9fb8GSoEz450T7XiWwcXJKG5mytDM9qSUaqlecdlIEhqWjf2q0WRw3QnnJmTslTXkqzqKioGabnWVt2dqGdTMGt4z9h4AwQr0ilEBBXWUaV1ACPFaRlth2RZySg4TYUeFlhJTEFgBO1WnHSEe5vHQXAJFtYaabvn3oOsWZKFeoPeoeB2TQshVdUBOAw88Fcgk1w+6aSNX1Yfi4A4EK9C/AOBXAGQA7Na//mVCSBjAfzuUqxgBXAnzmcR00+kZpRQ38jdwPnUaPJGwWVAQE2KOKcSQjWV+tFYApcDDZ7ofZrIMwWRM7MqgU0qxvl+DPUBmOqUUVc3semjQDWGBxflJGVe3Sx4zvLZfA88ST660WdkEIQQCx0C3a0cetXYzW4GiH5jDuXAnWJET8fCZBDiG4Ic+LHo3WU4v2K04BfqknMBMPAw5xDXJ3NX6xN1NhjRE3BFjO1PL4I3sG/jure/69iq7RdFx6EEHHEaPIUxf8nbAec8SQjpK3ItaselUe0aewVZlq/OhIyFOYc6wgTJAa2ZtuKZ7LoPeIC9zN1+DFujuZqOpQBdk6JY+EDtv2AZyag6Tkr9BnItEyPmbjnnUWl/zAaV0m1L6Wv3rMoBrcGS2txXue2ZMdAr0uwz6XQA4kLYfMYPumsSFuJHI24ETuJ6/vLwPCuCxNq7kMwkRuyUVls/+1j2A8yvWioqBiMA25YQDwHQsihCJ4lahNyf3sl4Gz/AQGAERLuKtvSu5GkI8g+kAjOm9MzEYFsWN3fbvu8aiuPHr/aoOm9LAhZ9rPr2UrWCrXkN0M4hbKa2AEIL7x+8HAQlUoJfqhotBGHSgnorkM+721X1Y1EI64jDXLou+XT0w9FsYl2BSDftV3fc1Vw0Lsitx71Gp5ji5B++7b4e9ilY3iBsRg04pXaaUPkkpHaeUputf36SUKpTSF4ZyFSNAtqwhxDOYi02iYlS8AZZVsihoBVyevhcc4+Shu2+2YRrFqYaFNzeLuDglN/XFdMKpRBjZstbRSG0pW8Gfvrrha84WFJppw7TpQBJ3Fw/MJqCbNt7dcf536/s1nEqGwbEMakYNeTWPM9Ez4BgCEwpqRyxxf3OjiHiY9xh8F+7mLcyFndi1U3Fc2y4fisJwC/RhHNZka0WnB1mOg2EIzk3KWNmreieqquF8HmHM2h0xtl3zrZyaw0tbLx36fU7NIcJF+i6Ihw2O4TAtTQde1FrBEAZhNtyWEdQsDZqlNRWjp+RT0CwNObVbH7oY+PS4Xwa9LSJjjotqdNr7kfuaDSpxL+r1Al1oZtCBwdpXckoOlNKO/efu8xJCjnWBPoz5gBAyD+AhAD9o+fkXCSFXCCFXstne5KX9wp3jE2ICDGHuOrnfhQN33jQ1J9LxqJ7GsmFTE6E+2bhecdLW8/2qjre3inhgNt52TzyTCMOwaFPbpAvN0iCwgq9yqdXB3cWYFEKETWKt2JuTe9WoQhZkEEK8HnRKKVZzVZxORsB0yBZ3MR0XkZIEXO0gc3dZ85SYamLQXYIxaIEeD/OYjIm4malgu6ggxDOeGVo7rBRXMC1NI8JHEBWigdYqd10NupeRBX8G3fUFa1xHpyJTyKt5bx6PCBySEpCv6V7rmwvDsmFYFFJIAMdwPZvKjsshGBb1lBf9IlN/nSZjI2LQCSEiIeS3CSH/gRDyn9yPoTz7CJEta0jLIe+EZq/myNxv5G+AIQwupM5hOhHG+n7NMy8aZh/66+sF6KaNR84El9lOJ8KwKW0bA0Yp9RzIO0WFdUO1zmJLPUrcFVPBlZ0reG79Oe/kaTouYjwawhubBZRVA7mKfkjefjF1EYQQcJzmPfdRIF/VsZFXcF+LOZx77cBBAfDImSQIAV5dbWbROYaDyIlD2dzlaiXwJIyY6EyUFyajTTJ3xS3QudH0oN8pYzuv5sESFg+mH8Rbe29hqbB06PfHhT138VMLP4WPn/l43/eP8JG2Ene/U+1p2Sl6u8vcQ4CPZLAVbp7pUAt0hgUe+y3g1CPejzwGfcAs9JJWAgFpMqZzvx6EWXUleO0i1lywDIuYEDvWTu6DzgeEEBlOBvO/opQ2LZ6U0i9RSi9TSi+n0/339/UC9z0T5sJDj8u8ixMMQzlo5TlCJ3fdtGHDGhmDftLWc9OyMZuM4P0L7ffEnvLSR+aumZqvvB1wTOJa+88Bp3CNcmPI1Uo9zQdlo+wd6Ia5MEzbxG65irJqYn6ss7zdBSEE987EsFlQfNspgYO1ezY6i7Je9pInsmUNAscEJvcAR+a+XVSxnK1iOi52bLMoakXk1BzmY/MAHKWZW3x3QkkrgSVscyJLB0i85MjiW5jqbM0xiPPbs7hrLACMRQkUHWiNlHf3zmGeBc/wPbm4Aw1GcdXBiIBMSUVEGI5BHBBM4v4VAFMAfhLAc3DcIY82n2LIsG3nBC4dDXmGMVklC5vauFm4iTOxMxA5EbPJMPYqGnjibDqHVaDrpo3X1ws4m5Z66k04cLH035yu5GrIlDQwhLR1IQ8Cl8UO6uJe1Ip4fuN5fOXqV/DKzit4O/e2J0UhhODB2TgyJc2TjJ9uKNAFVsBcbA4EBITRjpRBd83h3jNz+HSvtUCPijzunY7h7c3SoUMDmZeHIo/MK0VEBdnLsJyJi3WZu/PYar0HfYQS9xM/tgGHQU+KSTw2/RgmIhN4dv1ZT55FKUVePR4O7o0IsaG2m4sgaOyDa4U7bzX2hcWEGKJCNJhRXADGx3XIHnquPMsdbJ7hHJBxDDe4xF0vQhbkJkO7YTDom5VNRIVooA1KIpRAUT3WWeh9zweEEB5Ocf5VSuk3juwKe4D7nhFZcWhz+F3cAdCrQDh58PURwY1ZG6HE/USt5xMxET//yGzH1sqoyCMqcr6tnqql+q6htk1RVs1D/ecAwDAEM7FJ1HQLmVom8LVW9WpTgQ4A1zPO/nauTf65H9xM9KttMtGLehESLyElpmBT25uzXIKxFy+DcxP19U0zMd2l/3y1tAoAWIgvAKgX6Fqxq+S7pDvJKEGvS+Zl2NQ+tHfJKBmkw+mmx5mITIAQgp3aQYGelAGOhLCcbR63qn6gPhVYoece9JQXtTaYietuWcNErLfXqROCFOjnKKX/K4AqpfTLAD4D4P6hPPuIUFAMGJbTvyFyIqJCFFkli83KJqpGFReSFwA4hSSlwE5Rh8RLQyvQ394qQtEtvG++tyJB5FmMyYKvSQalFK/cyiEqcrg4JSNb7r9/ouIx6J0L9J3qDr5767v4L9f+C67mrmIxsYjPnf8cOIbDzcJN73YXp6IQOAY/Xi8iIrCescVmZRMz0gx4hkeYC4Ow6pH1oJuWjavbJZxNS75/l9eD3pCn+MiZJCxK8eP1ZmlPhI8MKS+5hHhD0UQIwflJGat1mbsrcR+hSdyJH9sAUFALSIQSYBkWnzzzSQDAM6vPwLItlI0yDNs4dgX6oIhwkbYS98YM9EbMSAH60NOXnI8u6DdirR+IrDgwg17UioeyWiN8BISQvo3idEvHennd29R0QzKUREErDN18dIjoaz4gzm7kPwK4Rin9v4/4GgNDtVTwDA+WYYc2h9/FCYdtOdJ216X5CPvQddMGxegk7rhD1vNWzCTCvlFrmqX59iJXdBOWTduyzXOxKSiGHdjJ3bRN1MwaZKG5QL+1v4+UJPTEasshDvNjEq5tl3x9o9z0FXetcovkbCWYg3sjUpLgMcPdDOJWSitIiknveeOhOHRL7+hzAwSPWHPhl4XuGsS56mYXPMMjHU5ju3LQjsBxJmKhCJZbWno9Bl1wGPRee9BDHItYmHec3PuEYdnYr+iYHFL/ORCsQHe1AgVCyH0A4gDmh3YFI0Br/0Y6nMaesocb+RseowsAUzERPEuwXu9Dd+Umg8CyKV5dzeNUMtyU8RgU0/EwtovqoU3dRl7BVkHF5fkUJmMiarrVd2RZN4k7pRTPrD6Db9z4BjYrm3ho8iH8yr2/go/PfRxT0hTmY/O4WbgJyz4oMC9NOfLR06n6Jlgvo6gVcSrqeAfJggxK1IFz0PerOn68XsBLSzk8+04G335jG1+/so6vvLzqaw7nQjEVhNhQE6OWlAScm5Dx+kahyWmznfNkL7CpjZJWQTLcPJm5MvflbBWKYUHgGLAB+pmGhBM/tg3bQFkvexL2eCiOj53+GDK1DH6w/QPsK8fLwX1YCPNh1Myab7FX0ksIc2EILU7sM/IMVFP1XO19MfsIsPDhrs/vyuuHKnFvA5ETPcfefuFFrDWAIYzDrPa5SV8prcCmNhbji4FuHxfjsKg1FOf4I0K/88EH4RhSPUEIeb3+8dNHdI2BoZqqt4F35/BjfDhyF6OAe6jpGlIeIYOuWzYIY4MfXYF+4tdzP0zHRZRV08s2d6Ga/gx6seZGrPkTTpMxCYwtY6O84/v7Vrh7P7e4FDkRlk2xtl/EmR7Ycxf3zsRQVk2s7R8+YHcLXrfoLWklFBUDumn35Qx+YTIKniWYjLe/r2Zp2KxsevJ24MCrpRNJ6UbC9VSg1w85GtVM++o+bGp7Du6NmJKmkKllvNpCNVXMxGPYyCtNe/RGibvACn3FmY7LAvbatB4EQa7iGPlNDKn/HAhWoH+JEJIE8K8BPA3gKoB/O7QrGAGyZQ0sQzAmOf+48fA4iloRS4UlLMQXwDPOBMoyBDOJMDb2a17U2qB4Z6eEsmr2zJ67mI6LUA0L+y1vnFdu7UMKsXjPTMwbuP3K3Ku6UxgKrP/bYa28hhv5G3hv+r341Xt/FY9NP9Yk6TyXPAfVVA8i1OCYxTGEYKEeP+H2vrqZzDIvwyaOSdwgDvTffmMLf/dOBi8v5/DOTtlxUQQQC1NMpfcwl/I/FHEznFtx+UwKmmHjrc2DiUniJSim4k0S/aCiV6CZJsYaHKoB5/WNio6bu2ZYIzOIq+PEj+2iVgQFRTJ00GO+mFjEfeP34fXs63hz700Ax8fBfViIcBHY1PaVcrVbNGfkGQBockbtFx6Dzh89gx5iQwMx6KqpHjLNcyHzct/z/HJhGRIv+UfG+cB9jxbUY2sU19d8QCl9gVJKKKUPUErfW//4zlFfbDeo1kGBLvESTNsc2GxwJHj7L4Dsu7f7Ku5M6PWiKDLmeF4cYQ+6YVEQYnv7yxHgxK/nfnCJrVaZu2ZpTQpIF24h347ZHpMERJgU1orbgQ7s3GKykUEvqwY0Ww3cf96Is+MSRJ49JHM3bRNVo4pYKAaZl8ESFkW92LNBXCPeN5/Cr31gvqMqc620BkppkxKskcFvBzcSLkjEmgs/Bj2jOK0GrQw6AExL07Co5ZnIqZaKuWQClk2xmjs44FD0hgKdEXo2iQMcA8F8VfdNDAgC1wcsPSoGnRDCAChRSvOU0ucppWcppROU0j8Y2hWMANmKipQkeMyk+0YwbMOTt7uYiovIVXVEOMdUZpCijFKHPR+PhjDfx0kb0DA5NfShbxcVrO3X8MiZJHiW8fIj+y7QNRMRgfXtm7CpjRe3XkQ8FMej04/6ngbPRecgsAJuFG54P0tHQ/j1D817TPpGZQMiJ3qRNxIvwYIC26aoGf39j4s1A3sVHR88N47//uPn8ZsfXcSvfWAeT10+jdnpLPJ4val/pRGqqfqyf1Nxx4vgR2t5b6C6xc4gBk+5WgmWDaQjzZMZIQTnJmSs5mooKgbCIyrQBxnbhJCLDUzZ64SQEiHkX7XchhBC/h0h5CYh5A1CyMNH8Xe4bHBCbD74+MDMBzAmjmG9vA6Jl3wPY4aFlb0qvvbDNZhW+7SFYcOV2fnJ3Ita0XfRjAkxSLzUdJDWL0bNoA/Sg+5J/n3+J1Eh2ldvsmEZWC2tYiG+ELjfzI1aO45GcXfKWt8I1VS9Dfww0ziOFGoJyFwD9m50v+1d9A739RciTmLEEUvcGcYCxwzHMKoT7sTx62JcDoFnCbYaZO6UUqcHnfNh0BUDhDj9634Yk0OIsCnklWogNZOrsHKLywgXQUExQKHhVLL3A2qOZXBpKoqlTMVrawQavGMEp6c7KkRR0krIlh2fqW4u7H5gGdL2/+BipbSCMBduclCPCTEQdE4d6TViDXD2La6i1kW2lkWIDfk+jnv47RrFKaaC6WgUYYFtkrkrhgVCgBDH9M2gj8kCLJuiUOuPRc+UNYQFFjFxeOO9Y4FOKbVxTPMTe0G23Ny/kQ47BbrESx6j6yIlCaAUIDQCCjqQscxStopcRcf75pN9mwYkIzxEnm3qQ3/l1j5EnsX9p5wNn8iziIf5gQr0dv3n1/avIa/m8fj0401y8EZwDIeF+AJuFW/BtA8k61GRByEElFJslp3+c/f/EBWiYBgLFgzU+uxDX95zXpsLk/IhWbhbhFzbv+Z7X8VU2vbPXp5PoayaeGfnwFETODDS6Ac7FWdTnpYSh353YTIKy6bYKqgQ+dE4uA8ytiml77pMGYBHANQA/HnLzT4N4Hz944sAfm+Ay22LgloAAfGKHxccw+FT858Cz/BHLm9/Y7OIrYJ6SOVylHDN2Vqd3C3bQkWv+C52hBCckk9huxKMOeiEmlkDIWRkPeiDMJ/uxqdV4g44rEjFqHhuuUGxUlqBRS2cS5wLfB+37SBIvuyocaes9Y1o7FH1Y26OJVzZ7fFVWZxsGPV9FC8BgnzkJnHAaAr0O3H8umAZgsmY2MSgG7YBSqk/g66YkENc21bBmMghIYw7RnHV7kZxrQw6x3AoKzbiEgXfRnXaDffOxGDa1IsjBg4K3sY+8JJeQraiISXxnrnwMGHZFlZLqzgTO9MUV8cyLKJCtONa1WvEGuDsQVpbRjO1DNKRtG+NJPESYkIMO9UdWLYF3dIR4SNYGJewvFf1SDS1rj5lGNKXSRzQ4OTep1FcpqxiIjo8gzggmMT9GULI/0wIOU0ISbkfQ7uCI0ZVM1HVrKYCPcJHMB4ex71j9x7KUExFnBfJNJyBP0gf+s1MBRGBxYWJaPcbtwEhBDMJ0WPQM2UnNuGhuQSEhjiudDSEbLk/lqmqmb4O7oZl4IfbP8S0NN3VCOlC4gJ0S8daee3Q70p6CRWj0nQYIvESeJaBYSt9987f2qsiJQlIRJpPFg3LwG5tFwxhsFRY8t3ct5O4A8D8WATj0RBeW82DUgqJl5COpLFSXOnrOgEgW3U2XFPRwwW6K3MHRpeBXscwxvbHASxRSltPL34WwJ9QBy8DSBBCpg/ffTDsa/uIhWK+m6CkmMTPnf85fGT2I8N+Wg+GZWMt5yw22QEMRnqFy1wrRrOJS8WogIL6yrkBJ7qkZtYGzuN2M9CHuRi1Q4hzJO79Hip0ZND5qBMZ18Zwrx2WikuIcJHA8nbAmcuToSTy6vFj0Os40Wt9K1yfEQCQBIdBP/ZO7uV6+8nxdvs/uXAl7nzYYdCPOGYNjD2SAr2OO2r8NmImEUa2rDn/UxxEKPr1oJcU/4g1F4QQzMbSUHXbk1d3QkWvIMSGvFaFsmZCNzgkele3e5iIhjAuC80Fut7MSMeEGIpaEZmS2pe8PQi2q9vQLR3z8flDv+sWteYx6D1I3IHmVCTTNrGv7nukqR+mpCnsVHeaYjMX0xI0w/aIS0W3PfVpPyZxgFP7EYK+jOJMy0auomNiiPJ2IFiB/usAfhvA8wBerX9cGepVHCG8/g25+Q3+1MWncHny8qHbJ+syEt1wbj+Ik3umrGIqLoIZ0PRrJhHGflWHolv44a08BI7Be083F3rpaAgFxWgyTgiKqm75GsT9KPMj1MwaHp95vOtG/FT0FMJcGDfyh6V5LpvtGsQBziDlWQY6rfaVha6ZFjbyitfj3oid6g4opbg8eRmmbeJm/mbT7115VDv2jxCCy2eS2KvoXkb5fGwemVqm5428i2ytCI6EkIoclgQ7bu7OIc6oJO51DGNs/yKA/8/n56cArDd8v1H/WRMIIV8khFwhhFzJZoO5qjaioBaa+s9bMR4eb1usDgOruRoMyykc+z157QeexL2FQe8mOzslOS9B1zz0LuikQBk2RFYEpbSvU3HgILrGrxfUz7SmGwzLwFppDWcTZw8d8HZDIpQY+HDkCHGi1/pG2NSGbunee1TiTojE3WXQtbLjOH4Xw4VRBQjjFOih6JFK3DXTAiGjYdDruGPGbyum4yJsSr0+X9c01E/iXlKNrs7q6WgEsGOBGfSocECyreVq4EgI0Uj/KjSntTGKraLi7X+LWtFLOAKcArlmaMgr1SMr0FdKK2AJi9Py6UO/6xa1VtJLbdfVTpB4yZuHPYO4yGGDOBfTkkMq7NZ2ATgtb3MpCSxDsFzfnyuG5e2dBVaATe0mNW8QcCyDZKQ/o7hcvXd9cogGcUCAAp1SuuDzcXaoV3GEcFktvze4X9HJswxiYR6KyoEhTN8FumY6xm6TscFPVNw89KvbRdzIlPHgbOIQ05qOhkBp7zl+umlDN+1DEveKXsHr2ddxLnEuEEvEEAaLiUWsllZhWM0GDVuVLUS4SFMhJQsyBJdB76NAX9+vwbKpb4G+Wd108tjTD2JMHDskc3fZuE4FxoXJKKIihysrDtu1EF8ABe1b5r6vlBDmpLYS9guTTqEQGpHEHRh8bBNCBACfBfB1v1/7PaXPNXyJUnqZUno5nW5/iuoHm9ooaIVD/eejxFK2ghDPYDwawl6fLSb9wO3lai3Qu8nO4qE4JF7qnofeBTWzNvwM9DZwlS7t+tC7ZrVq7Z1m+8lCXyuvwbRNnI33vgwmxASqRrWvE/6jxklf6xvRmIEOOJLNMBc+3gU6pUB5C2B55+u7LPrwYShOcU6II3E3VMA6mqjXkqqDZwk4MpoC/U4av61o9WJy2dRWibtp2aho/hnojRiTBfA0ga3Kbtf1o6JXmkyRV3JVRIUIOLZ3I7JGnJ+UQamjtAUOzF3duiQmxFDTLGi0grQ8fA8dSilWiiuYjc76ekt1i1rr1cHdhZucQin1ou78DOJcTEpO4sKt4i0Azn5A4BjMpSJYyjiPoxgWRKFeoDN1krXPPvR+GPRMybnPyBl0QkiEEPKvCSFfqn9/nhDyM0O9igHx1mYRf/fOrm8PaLasIRbme5IOpyQeBcV0TBr6LNCdXHIcKtAppXhr7y189dpXA0umJ2MiGELwDzdz4BiCh88cLkj6dXL3ItZaJO6v7LwCm9p4dPrRwI91LnEOpm3iVumW9zNKqZN/Ls80HYhIvASWYUBYDbU+JO7L2SpCPOMbXbdZ3sRkZBI8y+PS2CVkahnsKXve770M9A7GYSxD8MiZJDYLCrYKCsbEMci8jJXSSs/XCgAF1clAb6dEmIqJePRsChcm+2+H6BVDGNufBvAapXTX53cbABqPZWcBDFYVtqCklWBTuyODfpSw6/F4Z8clTEZD2BuhxJ0Q4puFXtJKYAnbtKFovd+0NN09D70LXIn7KODKGP0K9Ov56/jjt/8YOSXX9v5+GeguXGakFwZ9qbAEkRM9V/xe4Dm5H0MW/SSs9UHhSWAbGLZG5uZYQi04BeP4+fr3dwv0oUOvOgU64EjcgSNh0Q3LRs3QIbDMyGLW7qTx2wqRZzEmC14eusegt0jcy6oJSts7uLsYlxyjuKKqdjXtbGTQbZtibb+G6Xi8a0Z4N4xJApIRvqlAb1yn4qE4qroJ3a5gPNq7QVw35NQcSnrJV94OdI9a63Tw3QmSIMGiFlRLRaaWgciJiPLt971j4hgEVvDIMfdQ5mxaQlExkKvqUPVmBh1A307uRcVoMu8LgkxZhcizbaP9+kUQuu6PAOgAPlD/fgPAvxnqVQyIkmrgrc0SvvziCv78Rxu4tXeQd9pqEBcEyYiAfFVHlI/2HcGz652oHDx3Xs3jL27+BZ7feB6KqeCvV/4aG+WNro/FswwmYiFYNsV9p+KI+PSLR0McRJ7tvUCv55DLDQz6nrKHd/ffxQPjD/QkD56WpiHxUpOkvKAVUDWqTfJ2wGHcI3wEhFW8awgKSilu7VUxPyYdMgIxLAMZJeNtni8kL4AhDK7lDlh0d6PfTaL7npk4RJ7FldU8CCGYj89jvbze88CnlKKolZAU209mhBB8YHHcc+QfEQYd278Ef3k74MS8/Grdzf0xAEVK6eD5Xg1wF9bbFaG2WVCgGhbOTcgYj4ZQ062+1CD9IsyFD20SSnoJsQ4HQYATdVg1qn0fPlJKR8qgu+O01UuioBbw3PpzUEwFP87+2Pe+hmWgZtbazmMCK0BgBZT1MlTDwvPXs16Oru/j2Y57+9l47/J24MAA6DgW6DgBa31QeHM8ezDHH/sC3ZW3py85n+8axQ0fRu2gMA/Vi4IjKNArqglKnfjaEUrc75jx64fpeBhbBUf96K4FrSRLUemcge5iTHai1mq6iUytvczdsAxoluYprXZKKjTDxumEU6APcsjttjZu5BXUNPNQwRsVoqjpFlhO8d3zDwqXIGzMP2+Ea7zrt1Y1RsL1ikbDzqySRTrsbxDnghCCycjkoX27q55dzlabJO7ugVg/Bbqba/+tN7brJo/BsFvShm4QBwQr0Bcppf8nAAMAKKUK/OWrtw0fWBzHv/jwAj6wOIa9so6/+NEmvvziCl5dzSNf0w/1n3fDmBSCYVGwJNL3JjZTUhEVOUghDpZt4crOFXzt3a9hX93HE3NP4Av3fAHxUBx/deuvvAiBTphNhsHVWV0/EEIco7geWbyq5pwUReo96JRSvLj1IgRWwMM0BGeIAAAgAElEQVSTvSVjEUJwPnEea+U1bzB5+efSofZjZ6ASreeiZrfksO5+8vbtquNQ7T5fmAvjbPwsruevez0pblHTrUAXOAYPno5jKVPBflXHfGwepm1is9xbTJVqqVAMHclw75PZEaPvsU0IiQD4JIBvNPzsNwghv1H/9jsAlgHcBPCHAH5riNcNAJ7Z1u0q0JeyFXAMwVxK8uaYXltMWrGRr+G/XlkPNCbCXPhwD3oA2dm07Hj1uZKxXuG2iIycQW/IQjdtE99b/R4YwmAhvoAb+Ru+jIYr+fdzcHfhmtZc3S7h1dU8/vMPVnFj1/9g1j2gW4wv9vW3xENxJ77meBZfx36tDwpPAtuwgW80JzqWKG052dyps06f9F0GffjQa4B7sFj3nzgKJ/eKZsKC6RToI5K44w4av36YjotQDQv5mtHWJK5bBrqLiMAiKSZhGEzHAt2dL1xF2kquCkKAM8kELGr13OfcinMTMmxK8dZOBha1mgpejuFgmgIEof+I0U5YKa1gMjLZVm0XFaIghPg6uZf1Mihofwx6/fmKWhE5NddR3u5iWjrwF3bn9KjIYzIm4p2dEiybIiw45azbE9+PxH0mEcZPvmcKG/kann59K1CRbtkUexUNE0PuPweCFeg6ISSMev8oIWQRwOi0nAERETg8enYMv/6hBXz6/imIPIvnr2dBqX//eSckpfrgtsJQTbWvF3q3pGIyJmK3uos/vf6neGXnFZyNn8UvXfolXEpdQpgL48nFJxHhI/j28rebJNh+eHRhDF947EzHTMN0vQ/WtoOf6rUy6GvlNWyUN3B56nJf2dHnkudgUxvLxWUATv65xEu+DJYkSKBE9Q4JgmJ5rwJCgPkxn/7zyiYYwjT1zd+TugeapXkFSdACHQDeezoBniW4srKPGXkGPMP33IeeV4rQTYrxyNGZlfWJvsc2pbRGKR2jlBYbfvb7lNLfr39NKaW/TSldpJTeTykdullNXstD4iVfJ9ejBqUUS9kq5sYiEDjGi+gY1Mn9ne0yNvMKvvvWTtfT+QjfLHF3lBrFrotmMpTEbHQWP9j+Qdd5xw/uc95OifvL2y9jT9nDE3NP4NHpR2FRC1dzVw/dN4jTrCzIKOtlrOxVEQvzSEkCvvXGNp59N3Mo2365sIwQG+pL3g44my5ZkAcyHz1CnIi1Pgjc90qjxD3CR6Ca6sCb6iNDeQeQJ5wedDF2t0A/CjQy6O5n7QgYdM2ETU1H4t6jidYAuGPGrx/cdsatggLN1MAx3CF1QlExwDKkSRHqB0IIxuUQGBr3zMf84HqTuBL3tVwN03ERcdE53Gk9IO8VE9EQYmEeV3cdkq5x7TYtG5YRBscPv0CvGTVkahmciZ1pexuWYT0n+Va0Os73ApdBXy2tglKKiXB7gzgX7n4+xIaalGtn05JHirhtzIP0oAPAPdMxfPLeSazna/jWG1uH9gCtyFU1WDYdev85EKxA/10A3wVwmhDyVQB/C+B/GfqVDAksQ3BpKoZffP8cfun9c/jQ+XHMj/W2kUzVndwty5kQet1Muad8BruFb9z4BlRLxacXPo1PzX+qSRYq8RKeXHwSHMPhW0vf6siqCBzjXVc7pOUQTJsiXwv+xqxqJjiGIMQxsKmNl7ZeQjwUx31j9wV+jKZrCKcRD8Vxs3ATlFJsVbYwK8/6Sj+ifBQ2UVDVjJ6kQrf2qpiJhxEWDvsKbFYO+s9dzEZnERWinlmc14Puk6HZiojA4T0zcbyzU4ZpEZyOncZKaaWn681UnQkuLR27Av13cYLGdivyav5Q/vmokK1oKCkGFtPOYhMROMghbuA+9PV8DRGBxdp+DT9c6dwbF+EiTTI7xVRg2EbXthRCCD4x9wmInIi/XvnrnjPG3U3JqE3i3Ou8VbyFN7Jv4P7x+7EQX0BKTGE2Oou39t6C1eJ87THoHf4nUT6KolrGRl7BuQkZT10+jYfmEnh9rYCvv7rhSd5N28RKaQUL8QWwTP9pC8eYyf1dnOD5oBHue6VR4n6ss9ApdSLWovWDHzEBKMdSZXFyYVuAqTX3oBMG6LONsRMqmgkbI5e4/y7ukPHrh2TE8ZLaLqpQLbVNxJqJmMgFkhqPyyFQM4G92l5bOXQjg27ZFJmyhlOJiLd3HLQP3XFzl3ErtwfTtpvWqVxVh8DIIOxgz+EHt6bpxl7HhJivxL01s70XRHgnntX1cwrCoE9GJkEIOUQank0fkHStPej9pr4ATnvrJ+6ZxMpeDd96Y7tjkZ7xaWceFoK4uH8PwOcA/DM4/aaXKaXfH/qVHAGm4iLeN58Cx/bWKxgROIQFFrrWX9Sa2wdettcQFaL4xUu/2DZHPCbE8NnFz8KGjaeXnu675x1oMIrroUioaiYiIWdCy9Qy2Ff3cXnyct8bUEIIziXOYbO8iY3KBhRTacs2SbwEhrGhWho0M1i/R1k1kClpTQPThW7pyCrZQ89HCMGl1CVslDdQ0ktePm7Qv3ExLcOyKbJlDQuxBa93JijcDPRJ6fZIsdvhJI9tSikKWuH2ydszjtSt8X04JgsDFehFxUChZuB9CylcmorixaU9bOTbn9CHuTBsanvFSC+n2hE+gk+d+RRKegnPrj3b04HTqBl0hjAQWAGqqaKiV/Ds+rMYD4/j8ZnHvdvcP34/qkb1kGy/qBUhcmJHlYUsyNitlGFYBs6OO74WH704gScfnEG+puOrr6ziZqaMjfIGdEvHYqI/ebuL49oLfZLng1YopgKGNBdHx7pAr+UAywCideWXGL/LoA8bdSm7wQp4ZvUZFPWSU6QfhcRdNcGzNliGjKxAv5PGrx8IIZhJiNjI16Caqi/BUuySgd6IdDQEgSZQ0822JqMVowICApmXkas4TGk6GvLUl4MW6IAjc69ZZRRrpjdHAU4dIRAZLGsMPfXDVQa0k7e7iIfiKOmlQ/uDkl4Cx3B9Ra0yhEGEc9RMIic2/c3twLM8JsITh643LYcQFZ3x5RJ2nkmcNZjL/n2nnCL91l4V335zG1aLMlnRLSxlndY4gWOQiAxfKRPExf1pAJ8C8H1K6bcopb1rIk8gUhEBmu680L0Wzbslp0dTtR1ZdDcJblJM4smzT0K3dTy99HTfWdspSQDLkJ6M4qqaBbnef+72wp+OHs5E7AXnk+dBQfHC5gsAcMggzoWXhW7XAju5u7nknfrP/Q4ELqUugYDgndw7UEylJ/m+66CZKWuYi82BgAR24AeATLUAlnAYlzpPhqPGSR7bNbMG3dL7dnCnlA5k6HYzW8FMItxk3jIuh5Cr6D21mDTCLcZPJyN44p4JxMM8vvvWDpQ2Y8NlsF1G25WiBTVumZan8fj041guLrc1WfODuykZFYMOOGoXxVTwzOozsGwLnzzzyaaN73xsHvFQHG/uvdl0v6JW7Nh/DjjzUKGmgzJqUyrEuQkZX3j/GSTCAr754208u/wmBFbArDw70N/SGDNznHCS54NWqKbqRRG6cN+vx7JAL9f9M6P1Xksx7hSOA24y76IBhjNvbZpV3MjfcFpiBOnIJO5iXfA4qgL9Thq/7XB+IopCzcCtXLFtBnq3iDUXE9EQJHYMVd1sK3Mv62WEuTBYhkWmfMCUhusqjHbRn71gJi6CYRVUFa6JNMqWNch8FCGu/7jndnCVAY357n5IhBK+UWutkXC9wi3KuxnENeITZz6Bj53+WNPPCCGeijHcKnEfgEF3cf9sHE9cmsBy1inSr26V8DdXd/EnL63g959bwtOvb2GnqOLemf7/F50QhFr+vwB8GMBVQsjXCSE/TwgJVN0QQlYIIW8SQl4nhFyp/yxFCHmGEHKj/vl40Yp1JCUB5RoBz/CenCModksaxJAGC7qX4dcN6Ugan1n4DKpGFd+48Y2+ekNZhmBMFnor0HXTKzJ2a7uICtGBN94pMYUxcQx5NY+YEGufQSzIEDgGBg2ehX5rr4p4vU+0FX795y6iQhSz0Vlc27/Wc0RUROAghVjsVTSEuTCmpKme4tb2lRJ4JtLRP+A2oe+xfbuxr+4DQN8Z6C8u5fBH/3Cr5zgNACjWDOyVNW9hcDEuO0kLvbSYNGJ9X0FEYDEuCwhxLD5z/zRquoXvXfXvR3ffw+7i6S7i3RbdRjyYfhBnE2fx0vZLnqFjN9SMGjiGG2VvJUROxFJxCdvVbXxk9iOHlBOEENw3fh+2q9tNpj+t0TV+cAp0A+Mx+1AqRDzC46nLsxiTOfxo510sxAaTtwPNMTPHDCd2PmiFZmmHGDZZOMYMennH6T2PjDnfh+vz2j8yFl2ztL72PoFQf92zlvN5ubgMKshHJnEP1afHEc6Td8z4bYd7pqOYiot4ZzcHFs17QM20oOgW4gGZzDE5BJGLwLZCbY3iqkbVmzeyZc1jSt3WmWEw6IQQxCQDNVVoMiXLljXMRMdACOm5BumGqlEFz/BeMdsO7trZ2ofeb8SaC/d/OhHp3n/eeC1+a/lDcwk8NJfwDmY4hgMBGZrq4MHTCXz0YhpLmQr++u0dvLtbRkzk8cFz4/iFy7P4zY8u4mMXg/8dvSCIxP05SulvATgL4EsAngLQ3vbwMD5GKX0vpfRy/fvfAfC3lNLzcHpkfqfHax4JUhIPxbAhsr0b+uyWVAiiM+lPRoIV6IDDaH128bOwqIU/u/5neHf/3Z6eF3AkH5myFpidcRj0eoFe3e3pejvhXPIcAHQ0U3IYdALDrgWKWjMsG2u5GhbSku9pldd/3mZBvCd1D6pGFTu1nZ6lOePyQc71fHwee8peYGXFvlJCVJB7brU4agxhbN82uH4NKTEFRbfw3bd2AsvLy6qB11bzMCzqKTJ6wc2sc/q82NJm4Sot9vpwcqeUYiNfw2wy4r23J2IiPnx+HMvZKl5bO9wH5r6HXcVNSS9B4qWeNoSEEDxx+gnEhBieWX0mkHqnZjoHXEdxYtwOITYESikuJi/iYuqi720upS6BZ3iPRTdtExW90nUjoeshaKaNsah/mw3HMohHyygoCk5J8wP9HcDxlVqf5PmgFaqpHmLYBEYAz/DH7v8OwHFwj04BTH2NEOsb0X9EBTqlFN9b+R6+ceMbR2Pkpztz226dPSxqReQIjkzi7hboI5S43zHjtx0IIfjoxTSqhoq1XLO6pKQ475mgDDrLOEZxxIq3LdDLetmbrzNlFWnZidLiWR4cww2lQAeAcEgHCwmrOee9SClFtqLhdMI5sHO9VIaFslGGxPvvoxvhqs8an59S6sW59guPQQ/Qf94NiYiAj16cAFM/XHdfn2G2BTw0l8R/8+gcfvmxM/jNn1jEP3noFN6/kMJsMgL+CPf1gR657gz5eQC/AeB9AL48wHP+bMP9vwzgnwzwWEeGlOQs7oSGe5K4q4aFomKAcEXwDI+UmOrpeaekKfzChV/ApDSJv137Wzy/8fwh46NOSEdDUHQLlQCMtGnZUA0LEYFF1aiiYlQCM/7dcD55HhzDte29BxzJYYjjoNNaICf39f0aTJvirI+8XbM07NX2cEr2l9MDTmEtciIopT071KejB/JlNzcyqJt7QS0h2YeZxigw5LE9MuS1PARWQISL4PkbWVzbdqRHQQ6mfrC8DwqnZ2kp27u8cSlbwXg0hESk+fQ5FRHAENJXH3qhZqCsmjidaj44eu/pBBYnZPzDzT3sFJsZ11aJe7+n2gIr4CfnfxKapeGZ1Wdg085+EDWz1lfv2SAYE8eQElP48OyH294mxIZwMXURN/I3UDNqXhRMNwZ9t0jrLEb7OcjidsCAh6kNLvhy++gqR5C/PChO6nzQCr82JkIIInzk+Bn02RZQyRz0nwMHBfo/IqO46/nrWC+vw7TNo2HRDcdQM6uXvFa1W2bJKdx72GN1g21TVHUTId6ZR0doEnfHjN9OmIqJSMkEq3s6Cg1qtaARa42YiIZg6TEU1MKhYptS6jHotk2xV9GRbojSCnPhoUjcdUtHSDARFWK4sVs/PFIM6KaNmXgUIif6OqkPgqp+oAzoBDdqrdEozjWjHYRBjwkxEJBADu79QGCEoUjcGzEZE5GOhryDgFEgSA/61wBcA/AEgH8PJ2vxvwv4+BTA9wghrxJCvlj/2SSldBsA6p+P5hUaECl3822FfU0S2mG35AxYmykgHUk3RQIERYSP4LOLn8WD6Qfx1t5b+Mulvwx86u8ZxQWQuVfrva1SiMNu1enBGRaDHhNi+PX7fr1jgc4QBvGQDAsKagEY9Ft7VQgcg1OJw8XBdmUbFP795y44hsPFpMO+9cOgWzbFfk1HIpRAPBQPlCNtWAaqeu04ZqAPOrZvK/JqHslQEuv7Cq5ulTAdF7FdVPHWZme1y35Vx9tbJdw/G8f5CRmruVrXGI1G1HQTWwXlEHsOOExrSuL7KtDXG/rPG0EIwafunYQU4vCdN7ebJPkiK4IQ0iRx7/dUezw8jo/MfgSblU1c2emciFczaiPtPweAx2cex1MXn/IMYNrh/vH7YVMbV3NXvU1NtwJ9LaciGZZhwl89YNgG8sYG0uIprO8Pnlp0XBn0kzwftEKztCYHdxcyLx+7/zuqe4BtHvSfA05GN8MBHZJd7iSopooXt170CA3XD2eoMKoow4JiG5iPzWNKmsKyXk/KGOJhWVU3QSng2pOMsAf9jhm/nWBSE7PJEAQmhOeuH5j1FhWnQI+Fg/+/J2IhcDQBzbSRrTUb/2qWBsM2nBaoesGclpsL9EFj1gBn3SaE4NxYGst7VZiW7e3f09EQYkLsSHrQuxnEAf5Ra4NErLm4NHYJP3f+5wIdEvQDgRUGNok7DghSPf4RnIH+G5TSvwPwOCHk3wd8/A9SSh8G8GkAv00I+UjQCyOEfJEQcoUQciWbDe6YPSxERQ4cQ2CZYZi2GVjKslvSYFMTKi0MVOwyhMEHT30QnzzzSeSUHL7+7tcD9Yj2VKDXWXYpxGG3tguGMBgPj/d9za0IsjDJggzCaF0ZdEodOfJcKuIrFd+qbIEhTFcFgGsW1+vEMF6fmPcqGgghmI/NY7Oy2XUSKOklRz4bPpYM+iBj+7aioBUQFeL4m2u7SEZ4fP6RWZxKhvHCzb22pmoA8NJSDhxL8OhCCotpGbppY20/+CK7nK2CUuBc2v/9My6HevKAcLG+ryAqcr5OoCLP4qfvn0JJNfDa2kH0GiEEEc7JQjdsA1WjOtiimbqEhfgC3s693fFA0pW4jxKEkECHnUkxidPR03g797Z36t/pf6IaFraKCk7Fkm0Lt3dy70CzNDw89SBWcrW+TQBduDEzx47JPcHzQSMopU4Mk4+J1LF00C/X1/XGAp2Qf1RO7i9tvQTVUvGJM59APBTHdnV7+E+i15CBBRCCdDiNhfgCcpaKoqV5MnfbpgObN7rqRZ5zHocjI2PQ+xq/hJD/RAjJEELeavN7Qgj5d4SQm4SQNwghDw/jYjVLw0pxpedCSjOdXvAHZ9NYzlY9WXhJMSBwjGcWFgQTURER1mmTazWKc+dnmZe9NX2ihUEfhsTd7S9/z9S0tx/JljUwhCAlCYiH4kNl0G1qo2bUEOWDedW0FuhBD747gWd4X6+oYUFghbbReScJQXrQvwvgfkLIvyWErAD4NwDeCfLglNKt+ucMgD8H8H4Au4SQaQCof/Zt/qCUfolSeplSejmdHrxPoVcwDEFCEqDXndyDnmDtllTwQgUsg6HIxc8nz+Nz5z8HnuXx9NLT2ChvdLx9iGORiPCBotYOCnQWu7VdjIfHRyrHAupyT0btahKXrWgoq6avezsAbFY3MSVNde2/HQuP4ecv/LzHpAeF65C/V3ZkM/PxedjUxnp5veP99mpF2BQYP34Z6AON7dsJzdJQNarYzDEoKgY+fs8keJbBE5cmoJs2XrjpL4/cLam4vlvGQ3MJRAQOs8kwBI7Bcjb4hn0pW0FU5LyDsFaMR0Moq2ZP5nOUUqy39J+3YjoexpmxCK5uNat53FN8tw0nyKJJKcVz17O4srKPstq8iM3F5qCYStsNgWVbUE3Vl0E3LBtbBQU/Wsvju29t48svruCP/uEW/ubqLt7dKQdSyQwDD6QfQNWo4o3sGxBYoaNaZiXnHLicSY75tjJZtoXXs69jSprCwzMLUA0LO6XBZI1uzMxxK9BP6nzQCs1yPFj8YpjcAv1YOeiXdwAuBIRb2ifE+D8KBn2rsoVr+9fwYPpBjIfHMRWZwk7V3xhzIBg1ZIgFhjAYC4/hbOIswPJYNkuA5qQq/Ncr6/i7dwZr23b3MgJHHcOqEXl1DDB+/xjAT3X4/acBnK9/fBHA7w12pQ52q7v4zq3vtHVQbwfXXPOBmXEkIjyeu56FZVMnYi1gBrqLMVkAzwggtny4QK+rKmRBRqasOibM0sG6L3LiUAp0t7/70sQEBI7BzUwF2YqGlMSDZxnEhBgqeqWnVtdOqBpVUFBIQrBUoUQogaJW9MZjP2a0owbPDLcHnVKKN7NvDr3VoBvaFuiEkAuEkP+NEHINwP8LYAMAoZR+jFL6/3R7YEKIRAiJul/DiX94C8DTAH6tfrNfA/CXA/4NR4YxSYBWz0IP2oe+W1LBh3o3iOt4HeExfP7855EIJfBXt/7Kk6O3QzoajMVzJe4RgUGmlhna9faCKB+FTVRUtc6nXbey7ePVgvSfNyIdSfd8EMEyzmlmtuIsDlORKYTYEG6VOsvcdyvOBmtC6s9t/Cgw6Ni+3cireVQ1E2sZBvediuN0yikWx+UQHppL4K3NIraLhxfOF27sISyweOSMsxHmWAbzYxKW94JFXummY1K4OCG33QS4SotcNfjisFfRoejWof7zVtwzHUNZNbGRP/jbInwEiql4p/BBGPSNvILXVvP4+xt7+I8v3MKfvbqBt7eK0EwLM5LTIrJV9VfreBFrdQadUoofLOfwn19exX94dglf++E6vv9uFuv7CpKSgJQk4N3dMr7z5jb+4LllfOXlVXz/3QzWe1At9Iq56BzioTgqRqVrFMzKXhVhgcVsLOUbfXazcBNlvYyHJh7CmbEICHHuMyiOk9T6pM8HrdAsZ+3zO5iReRk2tYdm7tQVay8Db/0Z0Gl+KW877Hnr+zScuOMZdNM28f317yMqRPG+yfcBcHx4FFMZuqwXRg0ZamAsPAaO4RATYkjLM1g2ioBexvq+gu2iilt7gx3glFWnQOdYOhLCY9DxSyl9HsB+h5v8LIA/oQ5eBpBwSbZB4Ko1e/UbcMe3JITxkQtp5Co6frxRQEk1A2egu+BZBilZALESyNQyTa+7Oz/LvIxMScOYLDSlfLg96IMeJJW0EkJsCJIQxmJawvJeFZmS5pEA8VAcFLTnuOd2aPy7giAeisOwjaZWOomXRk7m9QKBHW4PesWo4O83/x7X9q8N7TGDoBOD/g6AjwN4klL6ofpA7+UIZxLAC4SQHwN4BcC36yd8/weATxJCbgD4ZP37Y4lkRIBmCLBsGmixqOmmMzlzBci8HKjHIyhETsSTi09C5ER8+9a3vZgpP6TlEAo1A5rZ+eWqaiYYQqBYRZi2OTSDuF4gCRI41kZR67xhurVXxVRchBQ6PClsVba69p8PA+NyyGPQWYbFXGwOq6XVjqZae9UiCCGYlI9VD/qgY/u2IqfsYylbQUKM48Pnm1syHj2bghzi8HfvZJqkyGu5Gtb2a3j/Qgoh7kACtzghoapZ2C52Z0XX9qswbdpW3g4A43Ldyb0HmbvXf57qLBtfTDuxhG9vHcxFYS6MmlHzTuGDFOjv7pQhcAy+8Ngc3r+QQlEx8L23d/GHzy/jxesKTJNrKzF1F2k3BzZb1vDiUg4cQ3B5PoknH5zBv/jwAv7lR87isw/O4Gffewq/+ROL+KX3z+GD58YR4Vm8uVHEn7220VcrQBAQQnD/+P0AOmfC2zbFSq6G+bEIoiEZFrWaCjdKKV7PvI6kmMR8bB4iz2ImHsat3BAKdEE+TiZxJ3o+aIX7GoZYf4k7MML+/63Xgex1YO+6/+8tE6hkgZhPvSPGAUMFzKMZJ36o6Sa++eMtr5/3qPGjzI9Q0Ar4idmfAM86xZW7Dxl2HzrVqtiztSYi4mzqHuxaCiq1Pa99qKyaKKn9q30qmgmWIWAZe1QRa0c9fk8BaJQKbtR/dgi9tKZG+IgjH1d6a2HV6uNB5EScHZcwPx7By8s5FGt6zwU64BjFGXoUitF8KFQ2yiCEIMyFka1omIg2K3IiXAQWtQaWUjdGgZ6bkD2TZ/ew313Th3Vg5a47QeuT1qi1QSPWRoFhM+iuP8GxYdDhOEHuAHiWEPKHhJCPAwisHaGULlNKH6x/vIdS+r/Xf56jlH6cUnq+/rnTyd1tRUoSwIAHqBAoh3C35EwcJikcSbEr8RI+u/hZMGDwzaVvtj1Rc0/eusU9VTUTUoj1IiZuF4POswxKWhlWm97OqmZip6S2lbdvVbbAEvbIrz8dFVDRTK/HeT42D9VU20Z0AMCeUoRAIoiH/SXRtwkDje3bjSvr61B0ip+85yzEln6zEMfiIxfSyJQ0vLHpTKaUUrxwcw9RkcMDp5ol4PNjEhhCArm538xUIfKsr0mhCznEQeTZnozi1vdrSET4rvEwPMvg4mQUNzNl7/Atwh0w6DzDdzU/tGyKG5kKFtMSJqIiPrA4jn/+wXn80/edxr0zMaztK1jPCtgq+zPorimOy6C/u1sGQwh+9r2n8MFz4zg3ISPa8ncwDMFUXMT7F1L4/COz+GcfnAel6Kn3v1dcSl1CmAt3dIndKalQdAsL47LnSdEoO18rryGn5vDwxMMeCz8/LiFT0gKlZLRDrqJBIJHjJLU+0fNBK1yGzS+pw3PQH0V7QW0fUPIOM778HGD7HORWdgFqN/efu7gNTu7r+wpuZiqBEzEGQV7N49XdV3EucQ5zsTnv5ykxBYEVhl6g57U8dMIgHT5omTybXAQYHm9nb+LWXhXnJ515YKvQv8KiopqQQxwMavizjKUt5/1gDO4AXkxKLa8AACAASURBVMdRj1+/x/J9c/TampqOpDvun/zgStxDrBN59hMXJmCYFIZFe3JwdzERDYG1EzAs2nQtVb0KiZNQ1W0ouoWJlrY2d60dVI1T1IpewXtmTALPOv/uRgbdvd0w4M59QSXqiZCj/nQ9XQaNWBsFht2D7h4iHZsCnVL655TSfwrgEoDvA/gfAUwSQn6PEPKpEV3fbUVKctgwhkZQNrrLS3ZLKgyqgDLKkRWL8VAcP7P4MzBsA99c+qZvbnFQo7iqbiIicNip7UDkxNtyKibxEniWgUHbZ6E7kjPgrI9zNuDkn09JU0cuuUnLzobPLb7mYnNgCIMb+Rtt77OvlBDmJIj88clAP8lju1gz8NrGBk7FxnBx0v/9emFSxlwqgheX9lDVTNzMVLBbUvH44tghg0GRZ3E6Fe7ah15UDFzfLePCpNwxZoMQgnFZCFyg2zbFRl455N7eDvfOxGBY1ItjifAR2NRGVskiHop37b9byVWhGhYuTh387wghmEmE8cSlSXzinglw9hg2ivu+LKM730T4CCiluL5bwZmxCMJCcGOeqMgjGeGxkT+6Al1gBTy58BTuG3ug7W1W9qogBDgzFvEMcxpZ7dd2X4PMyziXOOf9bH484t23V1g2xT/c3MNXXl7Fy0tVKIY29CiYfnCS5wM/uNFHfj3o7kHMSBj0/C3sWyo2p+8Dajlg983DtynXi9Coj2GSWG+LGqHMfb/emrO2X8PV7SFLzBtAKcVzG8+BYzh86NSHmn7HEAaTkcnhFuiWiaxWAFgeE5GDQ7ukmEQyFMeVnSVwDMHHLk4gxDODFeiaU6Cbtum/J9n4IbB5Begj4ccPIxi/GwBON3w/C6C7Y3EAjIfHUdSKPbGd3gFcfXynJAHvnXPGStAM9EZMxESITAyK0Vygl40yokIUmdKBo3oj3APAQQp0m9ooG2Wv4OVZBvN1Isp9vggXAcdwQ2PQq0YVPMNDYDonorhwo9aKenEoZrSjgMAI0C19aIeMjQX6KA/Vg5jEVSmlX6WU/gycgfk6gN858is7BkhEeBACUEsMxKBnyho4oQSOYY7UoXA8PI7PLHwGFaOCby1/69Dk9v+z92ZBjmXnnd/vXOw7kAByz6zMrMpau7qqu6tXbuKuISmNSJEMUxxJE9bEjEIOR/jJ4Sc/OByO8KPtcVijkWYszlAaDSlRJE1xE0mx9+qlqru69iWzKnfsSOzAxcXxw8mL3AAkcqulK/8RGdWdQAIXy73nfN/3X7wOKy67ZesCvWo0J+h97r77ZmayFl67F7tFo9YoU2rj5D6VLCpjLu/mKXSlXiFVTu07vR0g4lMXtPjK++qwOBgPjHMzc5N6o3VzIVvJEXB01sE+KDxq57aUkl9cj1GVeZ4bHWn7ngoh+OTxXuqG5JVbCV67nSTstXOiv/WiMhH1ki7WmpvTVnhzKoUAnhvv2fI4I14HyUJ3i0M8X6VWb2xJbzcxEHASctuam2ezix8vxbumt7vsFkbbPN94xEPI0UuiUG2ZGrF2gr6Uq5Ar6xzt275ZzFDIzXy2vGtH9HZIF2v89ZsL/O2FhbaGfdOpIoMBF06bpVm4mY3YpeISi8VFzvSewaKtNh+iXgc+p5W726S5L5d0vvPOLG9Np1V6QM3G9aU8mfL+FUHbxaN2PWgHc8PcaoLusroQQtyfAj09zflGnp/V4khfP0y/oijta5FfALsHWk2kzAn6fSzQMys04cGgk5dvJrc0b90pbmRusFBY4MXBF1saTvZ7+klX0s1ibNfQS8SMEjari5BzvRnfiHuQe4UYE712PA4rgwHX7gt050qBvtHBvVqAxA3oPwPW7gqkbrGP5+8PgD9YcXN/AVg2o5J3C7NZsh2ae6VeQRPauubHCxM9vHQ4zKHw9tNFol4HFs2CtRFYV6AXaiqKLJGvIsSqv4yJbiboUkpm87NtZZD5Wh4pJQH7KrPv+fEwHz8awb2S0yeE2OSkvhvk9Twem6frPakmtObzm6zdh75AX4lj3YspupSSRCmBEGKdFv9+YFstPCllWkr576SUn9qvA3qYYLNo+J02GnUX+WKMxvk/g+xM2/vHcxWsdpVpGHaF9/ZgMnfh+o+groqIAe8Anx/7PKlKih9N/Yjr6evNn5uZmxiWeS4nrnU0lihW69itDTKVzAOht4Pa6DtsFmqy2JI2WjcazKSKTERbX1AWikp/3q1B3K6O1W7F41hPXz7Zc5KqUW2ZiW40DHLVAkHnw+t2aeJROLevLeaZTubpDUoGfZ3pcz0eO88cCnFtMU+mpPPS4UjbybfJzGhHc08WqlxbzHFmJLiJvt0KEa+DWr1Brrz15tbUnw+HOlPTTQghODkYYD5TZrmkN6nmDdnYctGs1g2mEgWO9nnXmd2shdWicXZglGzJYDbXokDXS9gtdqyalRtLeayaaMts6YThkIuq3iBZ3Ht9baMh+dmVJSwWQSJf5XsX5zcV6YVqnXiuyvjKsTstTqyatTlBvxi/iMPi4GTPyXV/J4RgLOzhXqrUVpKzEdcWc/zn8/dIl2p88ckBfuvMIJ8/cYhCtc6PLk93/Tj3E4/C9aAdqkYVgWipQb9vDvoNAzJ3STvclI0KxdHnoZqH+XfX3y+/1NogDsDmUkXcfXRyTxdrhD12PnOiD91orMuZ3ku8vfQ2/Z7+TeeXiX5PPxJJvLg7R/Um9DIJo0zE3bsprtFWiyAaVXpC6n0eDLpIFmrbSuIwIaVsUtxbTtAX31PfjaE9SSrrdBxdn79CiL8G3gCOCSHmhBB/JIT4YyHEH6/c5R+AKeA28O+BP9mr4zTlBhszyDuhalRxWpzr9oMOq4XnJ8LYWkTwbgW7VVNsWSNAopzAaBjqc9QLTQf3kNuO3br+sbsp0GOlGD+880Muxi+2vL2ZKb6mQRf1OXjm0PpBQMARaPrM7BbFWnHbMcNm1Js5qNxNxNr9gOlnsRc69KJepFwvM+JTJJL7SXN/eHi3Dyl6PHaqugO5PEehsAjX/r+Wpi2FqjKIk5ZlIq7I3puDTL8Ci5fg8nebXfhD/kN8evTTLJWW+OXML5s/v5j5BTPV87yXeoWfTv+s5cMZDUmpZlBDGaM8CIM4UBveoMOH3ii3jGGazZTRDclEpPUFxdSfr6Wt7SeiPse6An3YN4zX5uV6enOaSbFepFqvE3Y9PA7ujzIcNo2BngZ9PjtB59bv6bNjPQRcNoaCyh21HfxOG31+J3firTftr91OYrdqXU3PYZVp0U3U4Wy6RMRrb2l+2A4nBnwIAVcXc+umT1vpwqYSRXRDcrwNk8DEqaEgThHm0tLdTbeZGeiNhqLZH4p4NvkAdIOhlYbEWkf6vcKFmQyLyxU+dbyXL5weaFmkmxT1sbD6Xggh8Nq85PU86Uqa6eVpTkdONxf6tRiLeKjVG1tO2ap1g59cXuQnl5eIeh188/lDTbbBqYE+xiMeplIpfn4f9L6PEyp1lYHebkLksXlaSsP2FMtzGPUqOZua4iccLuiZgJnXV7XH9aqivreit8N9z0KXUpIt1Qh57IS9Dp4b7+HGUp6pLvw5toNyvUy+lmciMNH2M+pz9yEQe5aHbtRyJI0KfRuYdkZDEs97iVitpKvKB20wqD6z+R1M0av1BvWGxOOwkKvl1jtlNwxYuKi+B+7u1pL7ASnlN6SUA1JKm5RyWEr5F1LKP5VS/unK7VJK+d9JKQ9LKU9LKd/Zq+d229x4bJ5tOblXDHV+7yV6fQ4M3Ue9USdTzVCul2nIBj6bj0S+ukl/Dt1R3M3otovxiy3v1236it/uJ1fN7ck6UdAL2zawDthVgb4dM9oHCZO+vxcSsnhZNQkng5MAe9Yo6QYHBfoW6PHYqZcFspAg5w5CNQd3frnpfvFcBSkbyiBur6fR5Swsz0FwVE3wr3xPXeyBo6Gj/MtT/5Jvnvjmup+vTn6DPvsT3F2eb9mdNIvhqkwjEPetwG2FkMuvNOgtKO5TiQJ2q9Z2wjifvz/6cxMRr4NUodacegkhOBE+wVx+bpNGKFvOUatLwu6H+2L2qOBw1Mtzh9XGu8e59QbHdCr/8tNDW9K5JqIelnKVTSyO+WyZqUSRc4d6ui5Ewx4HQrClDr2+khs+3CW93YTPaWO0x83VxRwuy+p5sZYm1wrXl3L4XTYGApupv2sxGHDS7x7gTnppE8W0pJdw2xQ9vVCtc2wH9HZQTZGAy7bnBXqqUOWNOymO9Ho51ufjSK+XL5weIJ6r8vdrivTpFdmM6boPSmtXqBW4GL+IVbNyOnq65XOM9LiwaKIjzX25pPPtN2e4vpTnxcNhvvrM8DoDI7fVTb/fxeSAjWuLOV65tb2ooQO0R9kot9Sfm/DavPs/Qc9Mk5N1pFNd+5PlJEx8QhXns+fVffJLKn7N30Ge5Qwqo7n7gHy1jm5IetzqnHh2rIeI184vr8e3TITZDlLlFABhZ3uWod1iJ+wKs1TaGx16urCEIRtENxToN2N58g0nT3pCzGanqBk1+v1OLJrYEc29GbFmrVGpV9YzKZM3FcV96JldvZYPG6Ku7RnFVevVjuf3jo7B54R6EN1oECvGmtcHq3CRr9Tp9W8u0G2aDZtm61igJ0oJZVhm6FyMbZ6iL9eW0YS2ZcEccAQwpLFraU5DNijppabnSrcwo9ZixVhXZrQPGibFfS8m6MlSEoFgPDCutPgHE/SHBz0eO72lJQyjTn7oKRh5TkWnpO6su18sV6Uqc9itcu8L9PhV9e/xL8Lk5yB1G679sOkK67K6CDgC637Ge6JE7ZNUdcEHyc3mNGYxXDBShJyhlnTA+wW/wwdaZdMEXUrJdLLIaI97k7kXKOpJqpJqUk/uByJeB0ZDkimtnvjHeo4BcCN9Y91948WHLwP9UUemmkEguqZYOayWrmhvh6NepITpNWZxUkpeu5XE47BwdqT7z9Bu1Qi4bFsW6Eu5Croh2+rBO+HkoJ9cWSeRazQpm50m6KVanZlUmeP9vi2bFUIInhocZ7lc41Z6dt1t5gT9ZiyPzSLaJit0g+GQi/lMec+mx42G5GdXY9isGp863tt8nUd6vXzxyQFiK0V6uWYwky4xFl4vm/HavGSrWW5lbnGi50TbTYjDqpz82xnFVesGP3h/nmq9wdfOjfDCRHiTvMKiWXDb3IyGNc6OBHn3XoZ37j60gSaPFKr1ascNpMfm2X8NenqKjDsImhVNaKpJ7uuH3hMw95Yq1DoZxJlwrmSh3weGRWbFgyPkUY0kiyb49Ik+CtU6r99O7dnzmNPSrWSA/Z5+YsVYxxjTbhEvqEl8b2DVLV5KycWZLC5fgNPeHhr1Mvdy97BaNPr8jh0V6GaDV0dJC9c1kuffVdn2PRO7eCUfPkTd0W0ZxVWN6p7vV3t9DuzCQ71uJVaKNaVOlao6F0yD4I0ws9DbIVaKMeQd4mjPUT5IfrBJcpqrqciyjbKLjdirqLWiXkQi8di3t26bTu6z+Vn89ofTU2ktzAm6buxeg54oJwg5Q9gtdvx2f9PN/n7goEDfAiG3jdHCFLrFTc5qh7GPgycCN/4B9NULeDyv9OcWTey9QVzsCgSG1cV96Gk4/CmIX4ObP2m7cIfcdpwWB0HLKLcytzZ1+Yq1utLZ1FPdTc8NvTm13zXyMSiuLvgemwcpKuQr60+mRL5KvlJvWwTM5ecA7nuBDuuno367n2HfMNdS19YVG/GC6rT1eQ8K9L1CppLBa/fuuYQk4rUTcNnW6dCnk0Xms2VemAhv0p9t/XiOLbPQZ9NlhKBjbFs7mJno15byyvgKsZ5OuQE3YwUaUnKsv7vO+UuHJhBovDM3te735XoZl8XFrXiBiZVj2CmGQi4qurFlHGS3eHcmw9JyhU8e690kGVhbpH/7/D1q9UZTf27Ca/cq51ckZ3rPdHyusYiHZKG2KS9aSslPr8RIF3W+eHqg42frsXko1ot84miUo30+XrmV5MrC/Y1x2QsIIf6DECIuhLj8oI8FVijuHTbwHpuHmlHbk81bS9SKkI+Rdavr/ohvZJXCO/5x1Vi/9zrkF8HpVyZx7eAMqLVX339jItMkM+ReZZUMBl2cGQny/lx2V8Zpa5GqpHBb3S3N4daiz92H3tBJV3bfuIqXYjg1G/41EWvz2TKxXIVjowMMWDy40ZhaVte7waCLWK6KbmyvOWCa6tWkOo+bTYhCHLKzMPg0aAfb7rWIuqJIZNc0d1PCsqfH4FPMPJsMES/FmxP0UkWtI60m6KAK9HYT9KpRZbm6TNQV5dn+Z5FI3l56e919ctXuIsv2KmrNbEx22it0ev6qUX3oI9ZgjQZ9DyjuiVKi6ZWwl2Z93eDgSrEFwkYCbz2LdI2S1wtgscKJ34JaCW4pfbeUkliugmbL7X1cWSEOxST0rTFTGX0exj4Ci+/D7V+0LNItmmAg6KJeHqFm1DdppIvVOjVZwKC6tf680YAL34IbP97966nX4P2/hst/2zxur82L1QLL1fVTjamVGKR2JlSz+VmcVicRV2T3x9Ulejx2LJogmV9/4h/vOU5BLzSbBgDxUhab5qDH/XDTgR4lZCqZTS68ewEhBId7vcykS1TrBo2VSKyg28apwe0bokS8DrJlveMGbzZTos/v3JGGezUTvYBDc+G1e9e5jW/EjaUcEZ9jkxNtO4S9bga9vVyO3W02nfSGTs2oka9olGvGjtzb12J4JVpuL+LW1lLbj/a13nyoIr2fYtXAoolN0XZmLuxkcHLLa7jZNLy3geb+xlSKO/ECHzsaYXQLR2GTaq1pgs+f6mO0x83LN5M7Mqd6wPh/gd980AdhomJUWjq4m9j3LPS0MgzNODx4bB6GvEMU9ILayLt7YOCM0iJn7rbOP1+LppP7/k9tMqUaDpuGe0Nk4kuHw3gdVv7xWoz6NgvWVkiVU12Z6JqDjr2IW4uX4kQdAcSa4vjiTBanzcLkSD9CCMadYWZyM+gNncGgC6Oh9nXbQb5SRwgo1pdxW92rTI75d0GzwkD72MfHFVH3ilFcl07upkncXsJpsxB028Dwk6lkyFQyWISFbFHgc1rbrtFOq7NtgW5KS/vcffjtfk5HTnMjfaPZcJJSNifoW8Fr8yKE2PUE3WQGbFeDbkatwcOvP4e9c3Ev6kVK9RIRt6oxgo4gudreeAF0g4MCfQs4E5fQbA5qjtHVk8PXrwrk2FWIX6dQrVOsGjQsWXrdvXtL/4hdUXmZ0RPrfz/2MRh+VmVqTr/c8k9fOhymUfdSqwS4nLy8jipWqNYpNVLYLdrWlPzkDdUoyM3v9tWohUovK3OcjNrIeO1ebBZtU+TQVKJIv9/ZjJtYCyklc/k5hr3D95VuY9EEPR47icL6hXs8MI7D4uBa+lrzd+lyDrvmwePYfgF2gM1oyAbZapaQY+8LdICJiAejIZlJlbi+lCdZqPHS4Uhbx/NOiPrsSAmpNtPhWr3B0nKl6/zzVjg56KdWb6AZUQ4HDre933JJZyFb4XiX03MTp/vGSZQSLCyrItQ01oplJXarxtgOIm3WIuCy4XfZdmTGtBYmtd2+gdreCkd6fXzl6SE+d6pv0/S/192Lz+7j6b6tHZZDbqWhn15Dc78Zy3N+Ks2pQT9PdSGJWEu1tlo0vnRmgK+dG95Rw+ZBQkr5MvBQ8POllFTqlc4a9BUH430r0DPTYHOR1dSGzmwgJ0srE8Kxj6gpql7eukB33b8s9HRRp8dt33T+OKwWPnW8l1Shxnuzu2sUGA2DdCXdVYHut/tVnOMuC3S9oZOuZuldQzdfLuncSRR4cjiAzekDIZiwBdEbOnP5OQYDqrBeyG6vQC9U67jtFrK1Na9Rr0DsMvSdUs78B1gHj001sprnRwfUG3X0hr4vksxenxO96kciuZu7i9fuVQZx/vbXkk4TdFNXbxZ3T/c9jc1i4/yi8qCoGBVqRq0ruZ5Fs+Cz+XY9vTWveWYzuluYUWvwiBTo2t5o0M3PsNelWMYBR4CaUbtvUWsHBXon1EoQv041fBKj4V2fhT76oirUb/6EeCpNXdaQWmFv9edSKv15zwTYN2yGhYAjn1bd+Huvw1v/Hu6+uo46Phh0caTXSyk/SKq0zL3cveZtpapBXWSwW+ydDbekVI8PyqxmY47rdlCvKoOc0Jh6PXMqcsZrU1nouWqh2ZkqVOvEchUmoq2nYalKilK9dF/p7SYUfXn9iW/VrBwNHWVqeap58mbKy/hsvpb6+QNsH/laHkMa+zJBB0U1d9kt3IwVeGMqRa/f0XYauxVaSSHWYnG5jNGQjPTsfMNmZqKLyhFeGnqp7f1uxJTubbsT76eHx4EGb9xTtM9yXeWWL2UlR3q9e/K9HgruXoduUts/dXwztb0VRnrcLZ3se5w9/P7J3+/KgFAIpb+fTZeoGw3i+Qo/u7LEYNC5ZZPAhEmpNzcRDqula4bDowYhxL8WQrwjhHgnkdif6C5QG3hDGp0n6FY1PdoXJ3cpIT2NDB4iU80ScoaaBXpzQujwqeY6gL/bCfr+F+iZonJwb4WJqBeXO8Olxd25qmeqGRqy0RXrTQglF9xtgZ4sJZFGjV7nKr394qzyMnlyOACaBWwuBjUHDouD6eVpXHYLEa9927T+QlXHY7eQLqdXryNLH6h90z5Hqz3KiLgiTbfsTjCvlZ3O752i1++gofupGw2KehGnxUO2rLd0cDdhFuit1q94OY7f7m+yKFxWF2eiZ5henmapuNS1g7sJv8Pf0kG8UCvw8tzL3Mzc3PIxCnoBm2ZrFrDbgdlIeNgj1oCmBHK3BXqyrAzizOuV+dp3y2ToFgeVQycsfQCNOgycpaY7KNVLq5QJzaKo7oaOcfVHVIw0LpuFfvce6s+XZ6GSW09vXwsh4OhvwtHPq87s3VfhrT+Dt/8c7r4GpTQfPRLBqw2SzMHl5KpEsFirU0NN/DsaVKSn1PQ8fFhtPkq7MIsxp+cTn4DBpyB9B0ppvDYvNqugbBSp6GrKb5p1taO3Pwj9uYmoz0GhWqdcM5S7/oo+8ET4BA3Z4FbmFlJKlqt5Qs6Hv9v4qCBTUW7G+zVB1zRVdN2M5cmVdT56JLJjdkbAZcNmEW0L9Nl0WclQAjsv0M1M9LmVTPRWkFJyYynHUNC1zkW8G4wFhgh57FxauqtiGfUS2bJOw7Dvmt5uYjjkolQzmvrX7UBKyfWlHG/cSTHZ592zY+oWYxEPuiG5FS/wg/cWcNosfOnJwa4bF/tOtX6IIKX8MynlOSnluWg0uvUf7BAVQ008Oxbo9n183wtxqBUpB4aoGTWCjiBOqxOf3bdeY3voI8r0NXio8+NZHWBzqiSXfUS1blCo1lUedAvohs5c7XUuJN7YlQSjGwf3tej39JOr5XZl6hcvx8HQ6V2hUlfrBlcWchzr9+JzrlwT7V4seplB72Az2m0w6GJhWTUlu0WhamCxVTCkoQp0KdW+JzDc2QzwMUfUFSVbyW7pC2Ge3/szQXdg1RwIqYZhRl2x4KJbFOgN2WipdU6UEk36vomz0bO4rW7eXHxz25FlAXtg3ZBQN3TeWnyLv7r+V1xOXuZS4tKWj2FGrO1kX2MaxT0KE3SLZsEiLLvWoMdLcYLOYFPTbibl3C8d+kGB3g5SwuJ7EBjGGxkEw4VuNNa7MHoiMPEJjOQtgsZVLJqg17OHcWWxq0rzHp5sfx9NU53Zp/4FvPAnMPlZsNgV7f38vyOUeIuzIz3Uy8PcSE2TXdGy5SpVdJY768+lhHuvqS7++CfU74o7nH6Y0/PwYRUrM/gUIGDhAi6rC6fVht4oU1xxcp9KFvC7bITbbBhm87OEnKEmXfF+Iroy5Vq++Spc+E9w/t/B4vtEnGGi7ijXUtco18tU9Boh18N/MXtUYLpndpOBvlMcXmFsjPS4d+SubkIIoZgWGyjutXqD124nuTCTYSjo2pXJGsDxlUz0S/PZll38ZKFGslDr2hxuLZxWJ0fC/aQqS9xNKS1WqlDFa/fs6r1Zi5GmDn17k6rF5TL/9Z1ZfvzBEmGvnU8dv/8xkcMhF1ZN8LMrMco1g986M7itPHvTqKdY22dH8ccIpqNyJ4q7TbNht9j3x8k9rdgm2ZXkDrOZGHVF12tsLTalR+5mo2w6ue8jMkVVGK01iFuLe7l7eF0aufoStxM7j31LlVNYhKVrFpSpQ48VYzt+zngpjkeCx6Um2jOpErV6gyeG1kwC7V6o5ulz97FcXaZcLzMYdFHVG6S20TwsVOo0hCqiwq6w+j6UMwfRalsg6u7OKK5aVw3vvdagg6K4A9hQ301dt6/8vnOBDlDeYOJY0kvka/lNjFqbxcYzfc+wUFjgSvIK0Dl9ZS0CjgBVo0q5XuZa6hrfvvZt3om9w5h/jCPBI6Qr6S0TD4q14o73zKO+Ufrcfdumxz8omPF2u0GynGwaxMGqFr8bJ/e90KkfFOjtkLkLpTQMPkWP245LC1GuGbwy98q6bOB7rhMs1f04q1cJOoJ719lrGJC4BpGjYO2SjuL0w/A5ePoP4MU/gdAhmL/A8+Mh+p2HmctUuJxSU/REKYFVo7ODe3YGlueVKZ0nolgDOy3Q595RWqyxj6r/d/ggegwWLyEMnYDTiy5LlKoGutFgJlViItq601dv1FkoLDyQ6TlAxGdnIHeJxu1fQGQS3GG4/g9w4VuccERJVVJMZaeo1huE3V3SgRoGvP83kLy9vwe/RxBCBIUQ3xVCXBdCXBNCvLjh9t8QQiwLId5b+fmfd/ucIWeIJyJP7GsG51jYzclBP588Ft21t4Eq0KtIKZFScjOW51tv3OWt6TTH+n385hO7n6j4nTYmol7euZvhP795j0tzWWr11UX6xlIeTYgdT5dP9Y5RI82VhSy5aoFsuc6JvvCOdPktj99lxee0dl2g5yo6P7m8yH95a5blss5nT/bxjWdHW/pU7DdsFo2RHjcNKfnsqT76OmgVW+FxmqDfLzQL9C0osF6bd38KKq1I/wAAIABJREFU9Mw0eKNkpNoYms3EiCuyrSipdXAG9r1ANxks7Sbo07lpgk4nmoC356+3vE83SFaS9Lh6toyVMhFxRbAIS3OqvRPEC0v0ChusuMbPpEvYrdp69pLDC7VCc2ARL8UZDJo69O6uTbrRoKIb1EUegVBNiPkLyqU/emzHx/84wCyCtjKKa07Q99jFHcBlt+B32ZB1tWerVO247Ra8HZquzQJ9gybZfB0bJ+gAJ8Mn8dv9LBYX8dg8XSfSmJPr79z4Dr+a/RV+h5+vTH6Fz419jlH/KPVGfb0MtwXMCfpOMOof5XeP/m5HM9qHCXaLfVcT9JJeoqgX132G2/ECmMnP8K0r39pVCsVBgd4OCxcVbTx6nJDHjssS4HTwoywUF/j+7e9T0kvMpkv88NISlfBx0NL0bTO6oCPSU6qg7XtiZ3/vDED/k1Ar4q4meGliCFnt4/z8Jap6jWQ5gd2qdabk33tdLS79Z1Rx7gopR/ntQq+o7NfwETU9NzF8Tk3WYx/Q4/RTkyUK1Toz6RL1hmSiTbzaYnERQxoMe4e3fyx7AHfsIpP588Sd43DqK4q9cOJLUFlmcuo1LKkp3px7nYaEaLcFeuau+synfnVfMm/3AP8H8BMp5XHgDHCtxX1ekVKeXfn5X3b7hIf8h/j48Md3+zAdYbVofP5UP+E90AKHvXbKNYPZdJm/uzDPjy4t4rRZ+PqzI3z+VP+2pq2d8IUn+vnsyT40TfCLa3H+/NUpfn0zQbZU4/pSjkNhNy77zhbVId8AIY+FK7F5bsZTCGnjxMDeadCEECoPPVvq2HGu1Ru8fifJt16/y61YgefHe/jDl8Z4YiiwKWP8fuKjkxG++ORAS037VviwFOhCiL8G3gCOCSHmhBB/tF/PdSd7p6N2vBuKO6j3fs/f93pNSZ5C42QrWayatcmSaBrFdRkltQ5mgb6P60K2VEMTgoClBle/r3LaV2A0DO7l7nGs5yh93hBXkltrXVtBSqkc3Lukt4Pydul19+5Yh141qiyXk/Ra3E2DtnupEsMh1/omo90LtRK9jggCQbwUx+9UzcNuTSzXRqz5HX5slbyS8Q2eVfunA7SFx+bBZXVtWaCbw7H9oLiDmpYb1ZVIsaqrGb/WDs0C3Vj/HYmX4gjEuumrCYtm4bmB54Dt0cVNTwMhBJ879Dm+fOTLTYaJeU51ur40ZIOSXsJnezQm4LuFTbPtSoNuGsRt/AwDjkBLL4CNiBVjFPXirt7vgwK9Fap5SN6C/tNgseJ3WrFZBB5thC+Of5FsNct/vPQ3/NcLN/C7bDz17Fl0DPore+jsF7uiFpTQ2M4fI3xYOcAnb/HUaJAx33FuJ5a5lLxGwUgScPrbZ5HmFlTROPKcotkDeKI7m6DPb5iem/APKV3W/AVCLh96o0ypVmcqUcRu1ZoxTBsxm59FExpD3qHtH8tuMfcO3P5HjMgxrgY/oSQGQqjvynP/Gsfw8xyulslPv4xLz9DbbQZ6TNGdKCabNMmHFUIIP/Bx4C8ApJQ1KeX+5wA9YjANv/72whyxvDIx+73nRneUe94JVovGE0MBfu+5Ub7+7AhjYQ/vzWT5j6/dJV+pc3xg5wvEoGeQqM9BTk/w3nwcj82958c/HHJTrBpkOujof/j+Auen0kxEvfzBS2O8dCSCw/rgN70Rr2PH7ASrZsVlde3PJPc+Qkr5DSnlgJTSJqUcllL+xX48z3xhnp/e/SmXku21lt1Q3EEVBHtuEpedUUyongky1QxBR7C5uTenMDsq0F1B5YVT279GTrpUI+i2YUnfUtK6xfebt80X5qkZNcYD4zzZe4x4eYHF3PYn+qV6iXK9rJoVhq7iW7tAn6ePRDlBvbF9g9p4aUV/bnGB3cNySWe5rG+W6Ni9IBvYGjo9zh6WiksIIZQOPdudiWW+oo6v0sipgmnhIiBW5HwH6AQhBFF3tBlN1g7dMmR2il6fA73m42uT36ReCzZp7+3QdoJeShB0BptxXxsxGZxkyDu0rT1s0Bnk68e+zjeOf4MjoSPrGgchZwghBKlKe4+ool5EIpseHB922C32XRXoiXJinUGciYAjwHJ1ectrQqwUI+wKN/XrO8FBgd4Ki5dANpoXViEEIY+dTKnGqH+Ul/o+z3tzSe5UfsnHTtjJWXVweOkr7MJAbS3qVUjdgt4Tu+u82lzKnCR1C5tF47NHj9HQffzs1tsUjRSDnfTn915X5jRrFxdPVHXy69v40usVmH1LUcE3OtYKobRZxSRBvURDVMhXdKaTBcbCnrY02rn8HP2e/s5ffL0M8Wt7O3WYexdu/RyiR6lOfolk0cBYayBjc8LkZzjxzL+hLmz0lmeJOLqQJxg6JG+qIt/hVe/Xw40JIAH8RyHERSHEnwshWl31XxRCvC+E+LEQ4lSrB7pf7s4PAr1+Bz0eO08MBfiXL41xZiS4r9NeIQRDQRdfOD3Af/vRMZ6f6OFwr5eJyM6ZPV67lz5vEGHLUKmXGQ6G9vw1mAV/uzz0S3PLzKRLfPpEL184PbBts7uHGV6795GfoN8PSCl5a1FdF83JRit0ayLltXkp6SWMxh5mzmemVTM7MEK2km2aKoFqCLit7q6zntfB9NzYR6O4TFEV6GRn1C9il5tr59TyFDbNxrBvmOeGTyKl5PxcK8JUZzQN4uwBZWR7++dd/V2/p5+GbGxZvLVCvBSHhk7U4gKbm5m0usYcCm9Yrhwr18gVmnu8FEdKyWDQRb5SJ1fZujlQqNZpyDo1WVD688R1NSRxPB4Ty90i6oqSqWQ6ZldXjSpCiB25kHcDM1JtNtXAaMiOBnGw2ihYq0GXUhIvxZvRXK0ghOCfH/nnzUl6t4i4Ili1zcw7q2Yl6Ag2z7FWMBvB3r1k+j7EsGv2XeWgJ0oJAo7ApiaLGbVmrjWtIKUkVortOtXroEDfiEZDmcP1jIN7NW6nx20nXdRJ5Ku8cq3OmeDnODvSwz/O/IgryStYvX30lLJ7s4gmb6pYjr6WNc32EJmEQgLKWU4OBJgMnuRGcpFao8Rwu4iXQlwxCIbOKRdZE54VqkcXeZVNzL2tGg4bp+cmek+CzYUvM4NFk9xMJClWDcbb0NtLeolkObm1/nz+Xbjy95DfXSxME3Pvwq2fQfQonPwdIn43RkOSKW1uVgz2nkYETuCRgkBxeuvHTt5SRXr/aRW/k7kL+d1Fy+wzrMDTwP8jpXwKKAL/04b7XAAOSSnPAP8X8PetHuh+uTs/CDisFv7wpTE+e7LvvmukfU4bLx2O8NtnBndtRDfkHcLlyqHLMhM9e++gH3Tb8DqszLfQoS+XdF69neRQ2M3poYc/3mW78Nq8ByZxXWAuP8dicRGX1dUsnlqhUq9gt9i31El67B4kklK9+yn63ewS/+uv/wPLlTYNlfQUBA9RFyoScqMRWsQd6SrreRP2OWqt0ZBkSjo9ZoFutSv/ndwCDdng7vJdRv2jWDUrh0P9BB1B3o/d2PbzmOyBcOqu2ifFr3U1RTdleEul7a+JiVKCgObAqVnB5uZeuojPaSXk3tDkM6eKtSJ97j6qRpVsNctgUBVg3ejQi9U6lUYOm0XQI2wqgWc3DMjHDKZRXKciM1lO4ra6d+0P0w6mIdyVhdy6/28Hq2bFbrGvK9aKujJUbaU/309EXJGODJ3CCgNnpxr0Rw17MUFv9Rl24+SeqWaoGbXOJtxd4KBA34jUbXVh3UBLCnns5Mo6f3dhDptF8PvPnuT3TnwNn93HYnGRaOQEmhCQ2P7CtQmxq2pR9u8BhTt8RP2buo2mCb586hksqI7QyFo9+Frce125zA6fW/97zwrVo1uau15RBXr0aPuIEYsVBp/Ck4/hFDqJYg4haFugzxW6jFdbnlf/mtTx3SBxQxXnkUk4+TugWZqd1VYxWkIIJqNf4qT1MI74e1s/fvyq6rIHRmDgrHrvH+4p+hwwJ6U8v/L/30UV7E1IKXNSysLKf/8DYBNCbB1+e4CHDv3efkIeONxnYSi49w76QgiGQi7mNuShSyn5+TXl3vyZk337til7kNgXLfSHDFJK3lp6C6/Ny7P9z1Izam03RxWj0pXDs5mFvh15wQ+uvsuN5Dyv3WuxxpezqqgNjZOtZpHIdRN0UBvodDW9far2PhfouYqO0ZBELCWlPT/0EdCsELtMrBijVC8xEZgAQNM0ToQnubc8R6G68t5lZ1Ws6xZstVQlhdfiwDn/rmL36WXIL2x5fG6bm4AjsCMdeqwUo9eq6OwNq4vZdJmRnhYFnulsXc03jXNjpRgRjwO7VeuqQM9X69RFHosmCNdW9gWBB+OT8yiiaRTXhimxVFziXu4ep8J7MLhqA4/DitdhJZmvYrdqilWyBcwsdBNmnntHA+Z9QNgZpqAX1plYr4W5zjwqLuy7xW5M4poGcS08BMws9E4Fupk6cTBB3ytIqfTFV7+vFkSzsF2BGfclBPzu08ME3Da8di9fnvwyR0NHeWLgOfD1KVrTblAtKKpc38nuIli2grtHFdbJWwAcjgY4FTmFVbMx4m9xASml1WsYerppqtKEM6gW7m4L9Lm3VqbnH+t8v8Gn8AobvloCvVFmMOBqa2o1m5/FYXFs0oWsg5SQWynQ41eVLnCnMHS4/Y/g7YVTX25KDkJuOxZNkMhvvhhW6wbFkhdb5HlEbkExGNpBL6vJS+9xpWe3OZWpTPzavjv37hRSyiVgVghhWtN+Gri69j5CiH6xsgsSQjyHutbskQbkAPcTg55BNE0QdNtxW/cmXm0jhkMuCtU62TU69Etzy8ymS3x8Morf+eGhta+F1+alalR3HQfzYca93D1ipRjn+s+txm6VWsduVeqVrvSpZtRQtwV6uljjauIuAO8ttvAIMX1DesabUaYbJ+hRVxQp5fZdfS02NeGt7A/F3XRwjxgr72l4UjXV41eZzt5GExqH/Kt57c8MnkA3GryzeF1NwG/8g4p1XezcjE6Wk0QKKTBq8MTvNv1xukG/p5+l4tK2oouam2yLC4RGvCyo6AaHwi2uYWaBXivS4+zBbrETL8XRNMFg0NlVgV6o1MGSxyIs+EsZ9bntZezuhxxemxen1dlSBiKl5M3FN3FZXZyJntnX4+j1q+FL1NvZIM7EpgK9FEcIoWQO9xHm87VjIBT0goqY3Cd5wMMGm2bb8brayYXfb/cjEJ0L9FIMu8W+qUm7XRwU6KAKoff/WumLQ2Pw9O9v0n4Ph9xM9nn5ytPDhNZEkTgsDj5z6DNMhiYhekKZq+2msEpcVwXmTt3bWyF8RFHXdEXD+TfPfY7/8cV/hdPW4kSdeROEBYZbaGM0DTzh7pzc69WV6fkxVdx2gtOPt/ck7lqSupFjItp6ei6lZC4/x7BvuHNMSzGpnj96FGolSHdBM2+H2bcUo+LIZ9Z9JyyaoMdj3zRBj+Uq/NX5GRL5KqMnX1B/s3Cx/eMnbqgGQu+arvDQCnNh7p2dH/f+478Hvi2EuAScBf43IcQfCyH+eOX2rwKXhRDvA/8n8N/IvQiGPMB9R9ARbJrhtDWV3CVMQ0jTMXm5vEptf2Jo+w7pjwo+LE7u+wVzeu63+zkWOkaPswerZm2rQ68Yla4cnt1WNzQMCrV8V8fx6u1FqjJLr9/BdHaOcm1D0zczrWJO3eFmRq45aTFhNpV3pEN37V8WuinTClQXVSPA3QN9TyBrZaYW3mbYN7xOh3l6YAiXJcC7C9cgeUM19R0+uP0LlfndAvVGnWxhifDyotrbBEfUT6q7WNF+Tz/leplcrXOM1FqYTZw+YQe7m5kVCc0mgzhQTD6bE2oFhBDrnOOHgm6ShRoVvXOjv1Ct0xBK2qDl5hUDUjvYYncLIZTreasJ+lx+joXCAs/0PbMr061uYLIjo/7unOKdFuc6DXqilCDsDHcdn7ZXMK8vnQp0j611dPGHEXaLHUMaOzKXNL+DrQaBFs2Cz+7r6OQeKyr9+W7f68f76iGlMoR7+89VYX3sn8Hpr7Y09XDZLXzpycGmM3NLmFmXO6W5G3XVhfb2rtLJ9wKRSWV6t9Ll9zntnOhv8fjlrDKHGTizapqyEZ5odwV6dkaZyQ0909UhOkdexCkkrsptJqKtnztdSVPUi1vT23OKBs/YxxULIPZBV8ewCdU8zLyuPtfQoU03R7wOknm1uZFScmEmw9+8PYvRkHz13DBPjPWrv41dVpP4VohfVRuitRIAV1BN1BffazZVHjZIKd9b0Y4/KaX8HSllRkr5p1LKP125/d9KKU9JKc9IKV+QUr7+oI/5ADuDEIIBj/Kr2K8Jeshtw+OwMJdRcWs/v/rhprabMCe5BwV6a0wvT5MsJznXfw6LZkETmtrEtylyK/VKs5nUCa66jnv+ArHZrS9LqUKVCwt36PM5eH74BBWjwPsLK94m5awqTFNTEBoHIchWs/jsvk0bdL/dj91i37kOfZ8K9HRRx23TsOfnVNEsBITGSVk0ctkpxgPj6+7vtlsZ808wnZ2jMPUrcIdV1KgQcP1HLanu6UoamblLxOKG8RVGXXhS7SVKWzMKhjxD1OoNbmW6m7iDcp8XQhDBCjYX91JFoj5Hez8Qu1et+ShqaqqSQm/oXevQi9U6NXLKBK+YOKC37wBRd5R0Nb3O3EtKyRuLb+Cz+zgZPrnvx2A6t2+lPzfhsrqaGnTTIK4VNXq/4ba6cVqdbXXoxVqxud48DjCZAjsxikuUlUFcu2av6eTeCjWjRrqSbrK9doPHt0CvFeHy36oFxdsHz/6RohbvZjPo7lE09/j2HU6REm7+RNGhD31k58fQCr5BsLuVM3wn3H0FEDD6Qvv7eKJqEdO3oHxl7ik6fJc6ehEcIRro5ZhrgR5Xa3r7tvTnNpdqcvSegOTtnRW6U/+kPpfDn2x5c9TnoFCtkynW+MH7C/z6RoJDYTfffP7QahTV4FNqmh+/uvkBqnnVyOhtIWcYeV41ONbE3RzgAA8KA15VoO+XwYxyoHczlyk/FtR2E6aj7qMetbYfMKfnAUeAo6Gjzd+bcUytHNirRrUriruY/jWHNDczyatbOrmfn05TkglGerx8fPRZXDaND26fh8t/B+f/VDGdIpPNwtOMWNv0nEJF9uzMyT2gmFxdRpNtB5lijT57Ra1HwVH1S01j2htElDOMOzfrKJ/qP46eT3IrfVvtF1xBOPJZpUefe3vT/VPpW1BMEB55YVVTHzH9ce5seYx3E3Br3sEv777T1Ya7XC9zLXWNyeAktnqFusXN4nKl9fTchMOn9oUo/bCUkkQpQZ/fiUUTLGTb7yEaDclyuQSiStioq33DQYG+bfS61PueLq82be5k75AsJ3mu/7mWDuZ7jUNhN+fGQhxuMyjaCJfNRamuGsu5Wo6qUaX3AUgbhBCEneG2UWvmBP1xgcn62YlRXKKU6Nhk6VSgx0txJHLX+nN4XAv0hgEXvqUmyoc/BWd+D1x75E68U5r7zJuw9IFyO+89vjfHYkLTFM09dae9HrsQV4Zqw88oql47uE2juC2mANl7aoGydHlBFYJg3yksMgdX/77lcc7mZwk6glubXOQW1HMLoeh0jbqi4m0HuQVYuqxc1dt8N6IrbIq/emuGe6kSnzgW5bfPDK7XzwdG1IRhoYU+z4yB623RFfb1q6n93Nu709Af4AB7gJM9J/n06Kd3ranqhOGQijR6+WbiQ09tN2FKBgr7mHH9qOJ29jbpSppn+59dJ2nqdfdiSINMdT2d2mgY1Iza1hT35XmIXeGQK0KtnGExP9v2rqlClZuxPH5fjkP+YfrySSZr0xgz36eanFaN1Bf+GE79Djh8SCk3RaytRdQVJVVO0ZDbLLSdQcWCq3ZP8e4W6VKNAbnSNAiuMsWmrBb6NRfu7L1Nf3Oyt5+BapZLenk1bab/tGpUTP160/4gOf1rbJqNwMSnV3/pCqkm+haDgzuJAv90I06//QR3Uxmup7b2+fkg8QF6Q+ep3qdAL5OuWTEasnOBbvc0s+bNzXW8FMdm0ejzO5jPtnf8L9bqFI0sdqtGuFZR+vp2JrwHaIuIe70MxGgYnF86T4+zR8lI7wNsFo2PTUZx2rqLOHZZXUgpqRrVpvSmU8TafiLiipCupDddXxqyQUkv4bM9HgZxQFMKsd0JekkvUdALHU3+/HY/VaNKpb65aWdKa/bCJPDxLNBjlxU17dRXYPT5vdUJ7YTmnrihprV9J9vHke0W4Uk1yV2ea3371K/BYofRFzs/TjdO7rWSKvjNbnyX8IaPUugZh8RNuPI9RflfQb1RZ6GwwLBvi650rQSl1Ork3j+omA1Ll7s/ECmVMZzdA4deanu3qM+BJgQum4Wvnxvh6dHQZjquEIqZkVuA/AZjo9gVVYh72piJjDyvphqtpu8HOMB9hM1i41jPsX2lmw+FFOtE08SHntpuwqbZcFqdBxP0DTAaBm8vvU2Ps4cjwfWGrWbxtNEoznQv7khxl1Llbzu8jJz8Khbg7mJ7r4/z02mkqOBzVxmu1xHXfsikx88N9wBXD/0Lxa5yrmrNi3oRvaFvMogzEXFFVHOh0lqrbTQMfnr3p1xJbkgfcQZYLutcuj1Dsbp9TWU7lGsG5ZpBxFhSLDu3WouWq8ukGjXG/Ydarp2DIsnhuuSW5iFXX/nuCgFHf1OZo1374WpjOXOPZHaKnt4nEPYNBXL4iJq6t2G4xXIVfvzBIr0+J585ehypB3h17p2OrIeqUeVS8hITgQllnKUXiVU0LJpoXmNawu5VE3Qpcdvc+O3+ZrTbYNBFLFelWm/9vMWqQbmRxW7R6CnnwBtdH1F7gK7gs/lwWBxNDfD1zHWWq8s8P/B8Z9+hBwgzNaJcL5MoJbAICz3Oni3+an8QdoWpN+qbprtFvYhE4rE/PhN0U2K03Qm6KRHoZERt+ouYfiNrESvGCDqCXTG5tsLD+Y3fT0gJM+eVzjt8eO8ff7s099wiXPuBKiSPfXFvnNtbITSmKOetutXZGWXWMvriZuf2jXAG1ALcaYK+vDKRaKHb7gSP3UPR28P8yFPIxE248nfNIn2puES9Ue9Cf74S2xJYKdCFUB3+7Ez3rIb4NTVlmfhEx0XWZbfwe8+P8s0XRukPdDgZ+0+r936ty20prbLOW03PTfRMqIbI7PktI2wOcIBHHWGPncO9Xj5zou9DT21fC6/Ne6BBX4P5bJl/++qrxIubp+egphdrN/EmTCfljjFrsctqzZ34DWyRYwzb/NyNX2rpDp5cmZ4PRkrYLBrD5RzYPUw884eUvQHeX9pMJTWn+m0n6CuuwO10ou8n3udO9g6/nvs119Ork+LZso3rSzku3b7HX7w6zY8/WGQhW96Wq3krZEo1kJJgbUmxvVb2H9PL0yAE48MfUWvqBp24be5NjngGScoAU9k1rvYOryrS80sw8wZIibzzS1JCEhlYl8SpsMEfZy2Wyzrff28el93KPz87yNmREIPOk0ylEtzOtjeXu5y8TM2o8XTf02r/UK+xUBIMBl3YLB22vA6faiqsyPf6PH3NuKTDUS9GQ3In3rqRVqjqVBrL+OxO3IWEei8PsG2YBn2JcgK9ofPO0jv0e/oZ84896ENrC9OXpVKvEC/HibgiWLTupu97jbCztZO72QA2JVWPA0wN+nYL9E4O7ibaRa1JKYmVYrvOPzfx+BXoyVtqwjr6wv4Vw9Hj3dHcKzm4/F2wuVXsSLd08J3AaldFevL2+mJPSrjzK7Wwbsw9bwUhlA69k9FN5p4q4n0D2zrEicAEds3O9wtT/I3HxpWFt9Av/Q0YOrP5WaVT9W6hac/NKXrZ2uc2KXjdZKIbOkz9SjVZ+k5vefeoz4HDusXF2OZaNYurr1ws4lfVe9l7ov3fCaGm6IWEcgk+wAE+xBBC8NtnBjnW//jQ8EDp+g8m6KuoGwbXshe5G9cI2zcXOuYmfqOTu2nU5GjXVK3XFFPNP6CkT1Y7Y8Ej5AqLLaPPzk+lsVk0fN48ToudcC4O4SMM+oaIeB3czsyyXFpPn2wXsWYi6Ahi1awtdejL1WXeXnqb8cA4w75hfjX7K6aXp5lJlfj+tQJOu5UvTLp4cjjAdKrI37w9y7fPz3B5fhnd2Jk2PV2s4TDyeBrFdfT26eVpIq4IgeFn1ToUWzNFzy1Aeprg2MeQjRCXN7IFe48rNuDd12D61+SXZ6gFhgi32rS28cep6AY/eG+eekPyO2cH8TisuOwWzg0do1By8dbiOy2bE7qh837ifUZ8I4piqpeoGQ2SVWvreLW1MKeLa2juRb1IoVZgIODE77JxI9ZaYpCv1CkbywzYbIiGcaA/3wUirgipSor34u9R1Iu8MPDCQ82mcq0MtUr1ktIudyjs9hshp2JxbtShmxKqx1KDvs0s9ESps0EcrEatbUyVyNVylOtl+t27N4iDx61Al1J1dV1BpRXfL0RXNOSdaO71mirO61U4/bX2rul7icgRFYNSWnPyJm+pBXfsY6qo7gaeaGeKe/ae6iBvs4vY6+7lD079AZ8c+SRa8BC/9rj5y5kf88pr/zt3s3fod/evi3tpieV5xY5Y+1pcIbVgxq5sPYmePb8mVm0PT4/Bp9RnHr+qjiF2Vb1HnfT+oCbsDq+KezvAAQ7wocPBBH09Sswy3iuI2k7x3XfnyBQ3b7Ci7mjTZdtEtb4FxX3mdagW1LV9ZcM/1ncWakXubtA1JwtVbsXznB0OkKgsMCQcCEOH8BHCzjCDAT+FepwbsfUxbZlqBrvF3jbtQBMaYWd40wRdSsnLcy9j0Sx8bOhj/LOxf0bUFeU7137Et9+9SMDr4sTYED1aid841su/+ugEnznRhwR+fjXGn708xXffnePlmwmuLeZIFqo0GltP1zOlGsHaEg6r1pSklfQSS8Ul5d7u8KnG/tLl1bVz5g2wOghPPk/IOsqd9MJmw6TJz6nC+94bpOwu8Pa1poxqGvQcXuePYzQkP7q0SLqo81tPDhKgNlfMAAAgAElEQVRek5xzdjRIxHqM26kYd3N3Nz3c1fRVKvUK5/pWhg16ieWyTl1zdtafw2oW+oqTu6khjZViCCE43u/jXqrUUmJQqNSpymX6zPeoS3PcA2yGadD3TuwdRv2jDHofbi2/eb1ZLC6iN/Q90R7vFFbNSsgR2nR9MdeXLf2bPkQwa4VUObWlEehaJMqJjvR2UO+z1+7ddN1rRjseTNB3gOVZVYwOP7e/+ZTuHlUktqO5Gzpc/6HSaZ/8na1zwvcK4RUtX3KlW91owPSvle6s/8nuH8cTVVrvWoupT7Wg6O/bpLebsGk2ToRP8LWjX+MrT/8JY2Of5Er6Gpl7rzK8VVeqYUB+oXX3uu+UOq5CbPNtJio5tfmIHtu2fn5LBIYVXX3xPXUMpZSaMmwFi1W5+gdGDmjuBzjAhxAem4dKvbKjOJgPI0Z8I3xm/KP8q+efo96QfOfdWZKF6rr7mJv4tVTOsqGoyS0nH+UMzL6t1oE164MneoyoxcXd2MV1dzen54f7BUW9yLBeVzKl0BhCCCaCI2j2zKYCPVtVBnGdJn5Rd5RkObluAnw7e5vZ/CzP9T+H1+7FZrFxNvQppuMNZvXX+cQJO3ZPqMnKs1s1Tg8H+BfPj/K1c8Mc6/NRqzd4fzbLTy4v8Z/euMf//avb/PVbM8yk2pubpYs1BmVcacNX/GWmc9NI5Gq8Wt8T6nmXZxWbK3EThs8RDfkZcB9iuaxvppzbXHDsC2C1k+w7hhBae11uZNUfR0rJL67FmEmX+MzJXkY2FNX9fidHQ5NkC1bejb277j2sN+q8F3+PQe9gM3WCWpHlko7m8Gwdm2UOSVb2NRFXBE1oatPdaHA86lBhOxs+c4BEKYPV0lAGcc7A1o33A7SFWRxJKXlhoEOi0EMCU1JzL6fMFB9ExNpahF3hTRT3gl7AptmatO/HAU6LE6/Ny8X4Rf7y6l/y8tzLLBYWO8qCyvUy+Vq+qyZLKyf3WDGGTbPtmQfB/mcWPEyYeVMtHAPbKEZ3it4TynitsrxqIlNZhvl3VXSWXlGd/MiRzo+zl3D4lClZ6hYcehGWLqmi9YmvbK9hYZqaFROrtDAT2Rn17y4LXCEE/Z5++s/8ES9FznL38n/hcHWLqLRCXGnOWnWve08o47ely+szx03Uq3DjH0DSNlZtVxBCTdFv/VzRLDULRI5197dDLbR7BzjAAT4UMLNpS3qpqW17nOG1e3kmMAlOF197Zpi/uzDPd9+d4ytPDdHrX8kodq1ON828WdNRt6U5z51fgQAmfmP9732DjDl6eCc7RUkv4ba5SeSV9vz58R4SlUWQkuFSVjWdrWqDO+gdxOO6wvxymlShvznlzVayW8qwIq4Il5OXydVyBBwBqkaV1+ZfI+qO8kTkCUBlbv/0cpqnQp9BC7zFL2Z/wpdtPoLpaVUke1URIIRgOORmOKQKWaMhSRdrJPJVEoUqt+MFfnZ1iT98aayl/jpTrHGkEYPg0SarYCo7hd/ub+pZiRxVjLSlyyoRxWKDoXMIIZiM9jI14+dm+iZP9T613i8gfBg+8j+Qmvk5fsPfnv0WGlfrYeoWb2d9XFnI8cJEmFODm88FIQRnRkJcSx/hTvoWC8WF5vt9I32Dol7kU6Ofat5frkzQ+yZ6tqZJmxP0FTqw1agTrdeJ3fopTL1FWDbod3+BG0t5nhpdL2GIFVPYLRrhcg56n+j8PAfoCL/dj8fmYdg7vOUk82GARbNgt9hZri5j02xt5S33C2FnmFuZW1Tqlea10IxYe5ilAnsNi2bhmye+yUx+hluZW1xPX+dy8jI+u4/J0CS9rl5qjRo1Y/XHpKx3870L2AObGpOxUoyoO7pnhoaPT4FeiCsa1fg2qNy7QfS4KtATN1RBOPcOJG+q2yJHVXxX8AEYiUQm4e6rysX+7qvKnC5ydOu/WwvPSoewmFT0t7XIzqhNjHdvNBgA7qFnOJm4CbFrMPaJ9s2EjQZxa2FzqQ1D/KqK1lv7GIW4co0vZ2Hys3sXubcRfafURjE9rT6HjY62BzjAAR47mLrAgl44KNAB5i+oRuYLf0zYG+Br54b52wvzfOfdOb781BCDQRdeuxePzdM0ipNSslwpUdXhXrJKvlKgUK2Tr9Sx5GY4tngBMf4xvHUHoYZE01Y2qprGofBJXpn9J358/RKW+gjz2TJ2q8bTh0L809w7+IQFf7UMY6vN9CHvEGGPg1Qxzo3YCC95HeiGvukzlFLSkGDRVjfG5oTN1Dq+ufAm5XqZL058EU1oLC6X+d7FeTx2C189dxRdDvC929/jh0aGLwuB94PvwDN/uLk5jnqeqM9BdGVaPBHx8N1353h/Nsu5sfVTHaMhKecz+GWpqT+vGlXmC/M8GXlydTNvtav9TPyqYqkNn2uuXaM9bgKzR5jPX+XNxTd5aXBD6olmIVVOKTf1drDaIXiIxN3LvNYY4cSgnxcm2k+gjvf76b85wULhNhdiFxjyDmE0DC7EL9Dr7mXYu8qQyOWWqRkNBqMdnr/55tmUKWzyJmTuQnaWvtIcV408jfEn0RI3eco1xY+Xj5At1Qi6VxsOyXISp6jR07Ac6M93CSEEXz/29Udq2uuyuqgZtSbr4kHCLC5TlVSzeVWsFZuN4McJFs3CeGCc8cA4NaPG9PI0NzM3uRi/uGmSbtWs2DU7fe6+rjTkZnPVbIToDZ1EOcHZ6Nk9O/7Hp0CfeXOl8/vM/Xk+k+Z+51fKpdTmhJHn1PM7H+AmLDwJ068oh/RqHk781vbN8uxe9XpaObln70FgdO8lBINn4crfK7O0du77uTnFEnC0oZf1nVb0vLWPsfQB3PwJWBxw9ht7T21fC5tLTfKXPuhsDneAAxzgsYHprHuQhb6CnglAwsJFmPgNgm47Xzs3zN+9O8f3Ls7T73dSMxpczwje1q9yY2oM3Whwt3SXvFGCrGrUWjSBz6FxcuFlZitWLiRHaKTvYbOoIjbidbBc1jFmAxTSRV6V73K2r5/j/T5ODvqxWwVzhTkON1TR0JSIAT3OHvxON3lXlptLeV6cCDcjd8wJWrZU40cfLFKuGXz1meFmQWcaOSUrSbxFL1dSVzgTPUPUHWVpucL3Ls7jsln43WeG8TqsQIgvTXyJ79/+Pj/0efntTBrP/9/enQfJfZYHHv8+fR8z3XPfMxrdhyVbloUsHzgG24DBIAM2hs2yQHaLTTbJJrubSgH/pJKqraKKrVxLgCIO2ElYjhifYDDgtUFgrW1JliwL3dJImtFMz32fPf3uH2/3qDUazdk9M92/51Ol6ulf93S/r1qP+vf83vd93neehls+NWdh2fqSEGvLwrzR1M322ug1ezv3Do9TMHqFgM899b13rOMYCZNgfdG079iq7fZ7y+W25zFJDaUhir0NRDzjHGk/QkWwgg3FV/+eJiYn6B/rZ1Px7IMA3cEGLlx6kzWbRrl/68ZZR/p8Hhfba4ppO7+G870X6RjuoHu0m4HxAe6uvfua323v6sEg1FfM86J7sNhW+Q+XQcPtVHju5O2ut+ladw/liQSNPSdxJRo51TbA7ets0m+MoWe0mzK3wSdureCeAbNulbgKhTwh+sb6VnT9eUrqYljXyNUEfXBikLqAsy8c+dw+NpdsZnPJZoYnhhmOD9tp/24fPpdvwZX3I8k8o2+sj4AnQNdIF8aYjK0/B6ck6CO9dj143W1zbyOWSfV77GhA1Y6pqrErrqDCro8aiNkkdTFrxVOV3KcXihvtt9ux1NyambamK9tkr9q3Hrlxgt7XYkfPb/TlXrreXliIvWNHDM7+wp4EFtXbWgDLUagvta/6QmctKKXyUipB10ruScEimwy3HoU1d4PbQyTg5dHd9fziRIzRiUkCXhc1hZU0DbaxqSpA2BfA2+3HSAWPbqyncKKDYO9ZpPMUlMeZ3PoJtoTX0z4wSsfAGO0DY5yKDVAY8LK2cSuhRClNpe38u721U/vntg+3Mz45Tu3o6NXvzSQRoaagho7+S3QP2inlvZNXt1g72z7AS8djuJLfRU8dap5K0j0uD6WBUmJDMZr6mijwFrCnag9tfaM8/VYzAY+bR3bXUZi21WBFqIIPrfsQPz7/Y54N+/lIz3kKT/8Etjw05wX2uzaU8Z3XL/LGhW7u2XR1fWzP8DiR0VYCZWEIlzM4Psjh9sOsK1p3/Ulm0Rpbq6Z0nb0InhQJeCkOeYmwHcKjvHL5FYoDxVeThNEuDGbWKaNDY3FeaAmxw+3iwepBPLNthZa0o7aIQ5fW0zt0kUPth+ge6aY0UHrddlzdvb14AgVEQ/M899rxqJ3GH7Tb5FWO9UH3MdqH2ymv30Og6yzb3Bc52RZiz1o7bX4snmAw3scOt7Ej8OHVPy1bZVZqKvlqSNBDntBUwgiQMAmGJ4Yp9DqnQNxcQt4QIe/SZrCmttLsG++jMlxJ21AbQMYquINTEvTmN+1t3buW932rdtg/q4mITQ5bDl2/Hm8hwuVXq6KnThAytP58Ri63vcjRfNAWopueTI8N2DX+s33GLret3h87dnUf8obbYe292S0amC5UAlsfWp73Ukqtel63F7/br5Xc09XussVMO07a0Vsg7Pewb+fV5UuX+w0vnD/HljpDfUEpbYMDeIbaqfztt+13gbjsEqy19+Cu2Eq5yNTU72sYw6WeOi6OdtAy0EJjtBGA5oFmmJygbnQIqq/fgrQ2XMsp/1nGBoc5FRvAX9CLMXDk4jhvX+6iKhrggzuqGYtPTq2jTyXpZcGyqX3OH1z7IF2Dk9ck55HA9cvwagpq+PD6D/Oj8z/imfFB9rUcIhoqvXrR9wbKC/1srY5w9HIvOxuKpl67e2iC6NgVAuVbQYQDrQcwxlw/TR3sd/y7/tOMFwMay8IcvdzHe6vuon/sJ/y06ac8sukR/G7/VJJwoynu8ckELxy9woAJsWH9BoJ954G7Zu1Pqk9riqP8treecz3nEBEeWPPANaPnkwlDX38fayILKNg27bwi4osQ9ARpG27jpvr3QmEV27pO8s7gWjoGxqiIBOgdGWM00U9VYsxOb3fQOl9lpUb8V0OCLiJTW9WBvfBrMIRnWBKjFi+11VqqUFxsOEahr3DJiX+6rGclIuIWkbdE5EfJ+yUi8nMROZO8zW5FhfFhO+paedPKTi1fTRrvhp2/u7Tq8aEyW1htLK2iae9FO0JdkLkpHteoudUuF2g7dv1jfS32NjLHlhxV220huZEeu/f89PXoSim1zAq8BTqCnq54rb2Y2XLohk9J7TfcMdwBJ15g5OJ+/L3NdgRzy4fgrv8Ktzxmv/tnS5pEqKnYjndsgKa+C1OHmwebKZmcJCSea6a3p9QU1OB1uygo6OdU2wAt/Z2ciyV4+/IAtzYU8Ynd9USDXioKA3x8Vx3xhJnaNi61Dn1ddB1BqudMzlOqwlXsW7+PeLSOZ11DdJ95afbtXJPuWG8T5APnrlZ37u/tIsIQ3pK1tA62cqbnDLdW3ErEd4OE1uWa8e/xjvWlVEb8vHKiny2Ru+gf7+fliy9jjKFzpBOf2zfj6J0xhl+ciNHaN8oHtlcRqd0C/S32nG0edtRFCSXWMTiWIOqPXjctv7VvBBkfpihaNK/Xm4mIUBmqJDYUs31v2EuFe5jS0cucbLPnPq0DnUhigurEhK4/d6jKUCXlofIbx84yKw2U0j3aTcIkpr5XUjO1VGZ4XB7C3jD9Y7awXGwoRmUos7nPcmQmfwKk7zf2BeBlY8xG4OXk/aXpa7FX24c6bfKVruWQPdaw+rdrWDbe4NIL1KWmcaVPc++5aEfPs3UFOVRiX7/1yPVbjvU3221wZqrQni5Sa0ewb/sslOs0c6XUygv7wjqCnk4EanbZwp8DbTM+JeAJEPVHae84DrHjjEWqCW77KNz8CbtTywKWs3lK1lMvfi52HscYQzwRp3Wwlbp43BZjK6y+7ndKAiUEPUHCoX4GRuP87NQ5EvEQD91czb2bK64tDFfovyZJj3pqWBNZw8bC3fNOzqdeK1TOvg0PY8q38ly8k85j37/h31FKJODllvoiTrT20zFgt6yb6Goi4HWTiNaxv2U/Bd4Cbq1c+PI0v8fNw7fWUlbg540zsC60i6b+Jg7GDtI12kVpoHTGNeVvNvVwonWAO9eXsqGi0NbHMQa6z83rfTdWFBAJFFDh2sv71rxvqjhX99A4vz7TyU+OteEzYxQXLz5BB7unce9Yr90loGwz3oISdiROcDo2QCJhuDLQgT8+SIU3qAm6Q6W2Bl4tVdJLg6XEE3H6xvqmapukipGqzIn6o/SO9TI4PsjgxGBG159DlhN0EakDPgQ8nnZ4H/Bk8ucngYeX/EZXDsOxp+CNf4T9/wsOfA2OfBdOv2QT9LKNui4o01KV3IeTV+RHeu20wqLF7X8+bzU77Xv1NF17vK/FJudzFXoQscsOQpnZp1AppZaqwFugReKmq9phi6DNNooeKCPWfICEP8JYtA6/f5HrLIvXsNYbYWiglY6RDtqG2phMTFA3MmhHz2c48U6tQ590d+HzCOIe5oPb1rOxcuY2pJL0SWN46VgfG0L38NI7vQtKzlNKg6U8vPFjuKp38tzIJWJvPQG9l0iYBKPxUfrG+ugc6aR1sJXxyXEA9qwtwedx8Zuzdg9203sJXzDEifFuOkc6uaPmjqn19wsV8Lr52K5aSgt8nLpYTImnkYNtB2kfbr9u/bkxhtOxAX5ztpMtVYXsWZv8Li6sslPMO8/M6z09bhc31UTo7y/ClYhwrLmP7795iSdfa+LQxR4qIn5uqfTiCyxt5DA1bbl9uN3OIqjbQ727G9PXTEvvCG1DnQQSw5T7Z76Qo9RyS22R2DXSNXXht9Cna9AzLeqP0jfeZ/9vgIyPoGd7DfrfAn8OpP/LqDTGtAIYY1pFZOmLNjY8YKujD3fbqcsjydvYcZicgIY7lvwWahpfyI4spEbQey/a22wn6GWb7TT61iNQstYem4zDYMxu/6KUUjkm7A0zEh8hnojjcTmjNMycvAFbd6TtHVj3nhm3pawY6ePsSA89N92G6To88x7o8xGI0hBpQPpP0NTXRIIEMjZAjfhmnN6eUltQy7nec7z/Fh/mYgF10fIbPhdskv7IbXX88FAzLx5rJRr0Ljg5TykKFPHRrY/xfCLOMy1v4n71S0wEi+z3YtrsgUJfIQ+seYCqcBV7GkvYf6aT07FBgkMtxOtreL3tdarD1WwounE/5yPgdfOxW+t46nAzsdha/MXdJFz9U+vPRycmOdHaz/ErdhS/Khrg/m2VV0cdRewoeuwYDHVBeO6t0W6uLeJgUw//fMCef5QW+LhnUxlbqiKEPUCPgSWuCa0MVSIIseEYDZEGqNpBUfSXNLQe41TbZjqHu6gwcbyRmuXZwlepOaTvFBFPxG218hzati5XRP1RRuOjXBq4hEtc89o/fSGydiYgIg8B7caYQyJy7yJ+//PA5wEaGuYoOuYNgLfm+vXHxtg1ywssn6/mKb2Se+8lewKV7ZkKbo/dLu3KYRgfshcJBtvs/qwRnV6mlMo96ZXcdS/0NLW3wZUjtu5Iw+3XPjYxSmX7GQhEuey3iXnAvcgEHQiWbqSq+xhNfedxu7xUxifxuf220NwN1BTYc46z/SdwiUxV9p1NWYGfj99Wx+GLPexdX7qo5Dwl4ovw8E2f5kjZVqTzDL6OU/i6W/FVbMNft4eEJ8CB1gM8c/YZ9lbv5ea6mzlyuZdfvXOO7fF+TvvLGYvDu9e/OyPTc4M+Nx/fVctTh5rp7NlBVeVFXPFyXjzWyrn2QeIJQ0XEz3u3VLC1OoJ3esX2NXfawoDHn4Zdn5lz55toyMvedaWMTMTZVh2lMuK/2o9RuzZ0pgs7C+Fz+ygOFBMbjtkDHh+euttY1/YzftVymY7Jdrbo+nO1inhcHor9xXSNdOF2uQl7w6tm+n0+SX1Xn+09S3mwPOMX17N5qf4u4CMi8kEgAERE5F+BmIhUJ0fPq4H2mX7ZGPNN4JsAu3fvNjM9Z04iIJqcZ024/Op68GyvP09Xs9NW5m97x560zbdAnFJKrUKaoN9AQYWtl3LlsN2hI72g56XXKDMgJeu4NGB3EFn0CDpAcSON7jAHei8ggSi3jY/aHU9mSRKL/cUEPUEuJIvLzSdBB5ukv++mzGzHU+Ar4O76e6H+XnvRuunX9qLG4EvQcCf1NffySutrHLjwc5o7jrO7/GZOHT9DP2NccPWzs3RvRkd+Qj4PH99Vx1OHINa6hZ+09hDwutleG+Wm2ggVhbN8RoEIbPsIvP0DOP1T2PrhOc8pUgXwrjORLDaXgbW3laFKTvec5pkzz+ASF674OMPedpo7vk+vx0Wpy5/T+5+LyAeAvwPcwOPGmC9Pe/xe4DkgVUXxaWPMXy1rI9WClAZLaR1sJewNU+DTAnHZEPXZ7+rxyfGMrz+HLCboxpgvAl+EqeD+M2PMvxeRrwCfAb6cvH0uW21QWRYutUsIei7Yau7Znt4+9b5ldr/z1qN2r/n+ZggWL88+5koplWGpLXC0UNwManbBb5+D7vNQlpyGPdwNzQfxVu+khEGuDF4BljaCTlEDjd4IB0Z6MS4vtZNm1untcHUd+rnec/jd/qntllaMLwyb3m9nHpx/Fc6/ih94vzEcH+/mN61H6eIlaoeKeNvTTzRcwp7qPRlvRtjv4eO31fH6+S5qi4NsKC+Y1/7mAJSsszvNXNhvR6Vrd83+/FTB2OmJ/HhyV4QFFAu8ka2lWxmcGGTSTJIwCSbdbqSkhmDTGSqoptFbaM9JcpCIuIF/AB4AmoE3ReR5Y8xvpz11vzFG94jNEWXBMs70nGE8Mc7a6NqVbk5eivivVu3P9PpzWJl90L8M/EBE/iNwCXh0BdqgMiFVKK7lsL1drgQdoHonnPyxnVrf1zLrNESllFrN0kfQ1TTlm+3F1yuHrybo5/6v3ed87T2Ux96c2vN3SSPo3iDF0TVEu48yNNpHpTsEpevn/LXUOvTUus9VIVwGOx6xVfDHBhBgO0LVWA8/az3A28W9jFLNA9W3Z+2iQoHfw31bF3nSuuYu2/azv7CF1yI3KL7WdQ7O/Awmx+35R/EaexssvjqCnoH9n6vCVXx4/YevPVjzO5zv+BtifWMUV9dk5H1WyB7grDHmPICIfA9bzHl6gq5ySKpQ3Pjk+IzbHKql87q8hL1hhiaGcmsEPZ0x5lXg1eTPXcB9y/G+KstSCXrXWXsCtZyV0Su22i/vC7+yV8pz9Oq1Ukr53D58bp9Wcp+Jy20vyDb92o6cj/XbSt/rfgf8hVSGKjnZfRJYYoIOUNzI7d2nGSKAp7AKAnMvN6gtsN89853evqymLfsqAx6t3sWvW37N4MQg28u2r0y75iICWx6CQ9+G48/A7s9dOxI+PgznXrbL3MJldvvU3ovQntzRNxCB1L+FJRaJu6FwKUX1NxHrO4S3OHentwO1wOW0+83A7TM87w4ROQpcwc6IPT79CQuqHaWyKlWcEa7O0FKZF/VHMcZk5SKIlotVi+fx2y/C0f7lW3+e4vbaCr+pLXi0QJxSKoelrsTnmrnWr2ZEzU64+JqdrdXbZBPnOjs1uzxUnmrH0isVFzeywRuBSez2rPNQ5C9iU/GmJVdBXy5et5f3NLxnpZsxN18IbvoovPWvcOIF2JGcbNlx0o6aT4xC413QcKctHmuMvYDT22Rr4vReAn+hPU/JkpIt72Z79xlCjZuz9h7LYKYTt+l1nw4Da4wxg8m6Us8C1wVIRmpHqYwIeUIEPUFG4iNTM7RU5u2p2sPY5FhWZk9pgq6WJlyeTNCXcXp7SvUtNkF3e6+O5iulVA4q8Bbk3Br0BaxfXRp/IZRvgpaDNhG76WGblGGncrrEhd/tX/pJUrQOXB5IxOdcf54iIty/5v6lva+aWaQGNtwHp39mlzWM9NjZE4VVcMunbBHBFBFbFydcatfgp3bxyebAQbSOwnv+CwSXcfZg5jUD6VMA6rCj5FOMMf1pP78oIl8TkTJjTOcytVEtkIhQGiyleaCZcAYKJaqZpXbyyIZ5Vu1Q6gZS26oVr0CCXlhpK/wWN15b3VcppXJMjo6gT61fNcaMA6n1q5mXSrqidVC+Zeqw2+WmPFi+9OntYC/2Ruvskq3CG6x7VsurZhdUboPLb0D3BVj/HrsFW3pyPhOR5dliN1yW6+cfbwIbRWStiPiATwLPpz9BRKokefVLRPZgc4euZW+pWpDUOvRCn65Bz0U6gq6WpmYXBIrsn5Vw82PMPENLZZOIFAGPA9ux0+F+zxhzIO1xwU57/SAwDHzWGHN4JdqqVC5oKGwg4AlgjFk9xcbmNq/1qxlZmxqthw3328Jt0/5+7qy5k4nExOJed7rND9rdSXLnM8hvIrDpQQiV2dozy1nrxgGMMXER+SPgJewylW8ZY46LyO8nH/8G8AjwByISB0aATxpjdAr7KrejfAfFgWL87uwt81DZowm6Wppg0dzboGST27ty7+1sfwf81BjzSPKq+/RKPA9i16htxJ6wf52ZC88opYANxRvYUJwb65jTzGf9ambWpopA/btmfKi6IIOj3cFVWOzN6Tw+u95cZYUx5kXgxWnHvpH281eBry53u9TSRHwRtpVuW+lmqEXK6Xk5SqnlJyIR4B7gnwCMMePGmN5pT9sH/LOx/h9QJCI6Z1Sp/DLn+lWllFJKLYwm6EqphVoHdADfFpG3RORxEZlehWSmqa/X7YUnIp8XkYMicrCjoyN7LVZKZcOc61eVUkoptTCaoCulFsoD7AK+boy5FRgCvjDtOfOe+mqM2W2M2V1erpX4lcolxpg4kFq/egL4wUz7IyullFJq/nQNulJqoZqBZmPM68n7T3F9gq5TX5VygJnWryqllFJq8XQEXSm1IMaYNuCyiGxOHroPmL7v8fPAfxBrL9BnjGldznYqpZRSSimVa3QEXSm1GH8MfPZW1AUAAAhTSURBVCe57vQ88Llp27K8iN1i7Sx2m7XPrVRDlVJKKaWUyhWaoCulFswYcwTYPe1w+rYsBvjDZW2UUkoppZRSOU6nuCullFJKKaWUUquA2IGu1U1EOoCLybtlQOcKNmclObnv4Oz+z6fva4wxOVsKXeN8ipP7Ds7uv8a5czi57+Ds/mucO4uT+699n9uMsZ4TCXo6ETlojJk+tdYRnNx3cHb/ndZ3p/U3nZP7Ds7uv9P67rT+pnNy38HZ/Xda353W3+mc3H/t++L7rlPclVJKKaWUUkqpVUATdKWUUkoppZRSahXIxQT9myvdgBXk5L6Ds/vvtL47rb/pnNx3cHb/ndZ3p/U3nZP7Ds7uv9P67rT+Tufk/mvfFynn1qArpZRSSimllFL5KBdH0JVSSimllFJKqbyjCbpSSimllFJKKbUK5EyCLiIfEJFTInJWRL6w0u3JNhH5loi0i8g7acdKROTnInImeVu8km3MFhGpF5FXROSEiBwXkT9JHs/7/otIQETeEJGjyb7/ZfJ43vcdNM6Tx5zyWTs2zsHZsa5x7ozPGTTOnRzn4KxY1zjXOM9knOdEgi4ibuAfgAeBbcCnRGTbyrYq654APjDt2BeAl40xG4GXk/fzURz4H8aYrcBe4A+Tn7cT+j8GvNcYcwuwE/iAiOzFAX3XOJ+S9591kpPjHBwa6xrnU/L6c06jce7AOAdHxvoTaJxrnGcoznMiQQf2AGeNMeeNMePA94B9K9ymrDLG/AronnZ4H/Bk8ucngYeXtVHLxBjTaow5nPx5ADgB1OKA/htrMHnXm/xjcEDf0ThPccJn7eg4B0fHusa5le+fM6Bx7uA4B4fFusa5xnnybkbiPFcS9Frgctr95uQxp6k0xrSCDQagYoXbk3Ui0gjcCryOQ/ovIm4ROQK0Az83xjil7xrnlhM+62s4Mc7BsbGucW7l++d8HY1zR8U5aKyDMz7na2icZybOcyVBlxmO6f5weU5ECoAfAn9qjOlf6fYsF2PMpDFmJ1AH7BGR7SvdpmWice5ATo1zcGysa5w7kMa54+IcNNYdR+M8c3GeKwl6M1Cfdr8OuLJCbVlJMRGpBkjetq9we7JGRLzYIP+OMebp5GHH9B/AGNMLvIpd0+SEvmucW074rAGN8xSHxbrGuZXvn/MUjXPLYXEOGuvgjM8Z0DhPyVSc50qC/iawUUTWiogP+CTw/Aq3aSU8D3wm+fNngOdWsC1ZIyIC/BNwwhjz12kP5X3/RaRcRIqSPweB+4GTOKDvaJynOOGzdnScg6NjXePcyvfPGdA4d3Ccg8Y6OONz1jjPQpyLMbkx20REPgj8LeAGvmWM+Z8r3KSsEpHvAvcCZUAM+AvgWeAHQANwCXjUGDO9IEXOE5G7gf3AMSCRPPwl7HqWvO6/iNyMLSThxl5A+4Ex5q9EpJQ87ztonKNx7og4B2fHusa5xjka53kf5+CsWNc41zgng3GeMwm6UkoppZRSSimVz3JlirtSSimllFJKKZXXNEFXSimllFJKKaVWAU3QlVJKKaWUUkqpVUATdKWUUkoppZRSahXQBF0ppZRSSimllFoFNEHPUSIyKSJHROS4iBwVkf8uIln9PEXkK8n3+8q0458VESMi96Ud+2jy2COLfK97ReTOtPtPLPa1lMpVGudK5T+Nc6Xyn8a5WgjPSjdALdqIMWYngIhUAP8HiGL3XcyW/wyUG2PGZnjsGPAp4OXk/U8CR5fwXvcCg8BrS3gNpXKdxrlS+U/jXKn8p3Gu5k1H0POAMaYd+DzwR2I1ish+ETmc/HMngIj8i4jsS/2eiHxHRD6S/lrJ3/+KiLwjIsdE5LHk8eeBMPB66tg0+4E9IuIVkQJgA3Ak7XXvE5G3kq/5LRHxJ483ichfJtt5TES2iEgj8PvAf0tebXx38mXuEZHXROS8XpVTTqNxrlT+0zhXKv9pnKu5aIKeJ4wx57GfZwXQDjxgjNkFPAb8ffJpjwOfAxCRKHAn8OK0l/oYsBO4Bbgf+IqIVBtjPkLy6p8x5vszNQH4BfB+YB/wfOoBEQkATwCPGWN2YGdu/EHa73Ym2/p14M+MMU3AN4C/Sb7f/uTzqoG7gYeAL8//b0ep/KBxrlT+0zhXKv9pnKvZaIKeXyR56wX+UUSOAf8GbAMwxvwS2CB2as2ngB8aY+LTXuNu4LvGmEljTAz4JfCueb7/97BTZD4JfDft+GbggjHmdPL+k8A9aY8/nbw9BDTO8vrPGmMSxpjfApXzbJNS+UbjXKn8p3GuVP7TOFcz0jXoeUJE1gGT2KtwfwHEsFfTXMBo2lP/BfhdbDD+3kwvtdg2GGPeEJHt2Ct2p0WmXmqu10ytjZlk9n+T6WtoFt1OpXKVxrlS+U/jXKn8p3GuZqMj6HlARMqxU0u+aowx2KITrcaYBPBpwJ329CeAPwUwxhyf4eV+BTwmIu7k694DvLGA5nwR+NK0YyeBRhHZkLz/aewVvtkMAIULeF+l8prGuVL5T+Ncqfynca7moiPouSsoIkew02Li2Ctsf5187GvAD0XkUeAVYCj1S8aYmIicAJ69wes+A9yBreRogD83xrTNt1HGmJ/McGxURD4H/JuIeIA3sf8xzeYF4KlkcYw/nu/7K5VnNM6Vyn8a50rlP41zNW9iL9wopxCREHZrhV3GmL6Vbo9SKvM0zpXKfxrnSuU/jXNn0inuDiIi92OnrfxvDXKl8pPGuVL5T+Ncqfynce5cOoKulFJKKaWUUkqtAjqCrpRSSimllFJKrQKaoCullFJKKaWUUquAJuhKKaWUUkoppdQqoAm6UkoppZRSSim1CmiCrpRSSimllFJKrQL/H4EwU5Ko68e3AAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig, axes = plt.subplots(1,4, figsize=(14,4))\n",
"legend_order = []\n",
"for region in pst_df[\"Delivery Region\"].unique():\n",
" for kpi, ax in zip(money_kpis, axes):\n",
" temp = pst_df[pst_df[\"Delivery Region\"]==region]\n",
" ax.plot(temp.pivot_table(index=temp[\"Delivered to consumer datetime\"].dt.day, values=kpi, aggfunc=\"mean\"), alpha=.5)\n",
" ax.set(ylabel=\"Average $USD (mean)\")\n",
" ax.set(xlabel=\"Day of Month\")\n",
" ax.set(title=f\"Month - {kpi}\")\n",
" plt.tight_layout()\n",
" legend_order.append(region)\n",
"ax.legend(legend_order, loc=\"upper right\");\n",
"\n",
"fig, axes = plt.subplots(1,4, figsize=(14,4))\n",
"legend_order = []\n",
"for region in pst_df[\"Delivery Region\"].unique():\n",
" for kpi, ax in zip(money_kpis, axes):\n",
" temp = pst_df[pst_df[\"Delivery Region\"]==region]\n",
" ax.plot(temp.pivot_table(index=temp[\"Delivered to consumer datetime\"].dt.weekday, values=kpi, aggfunc=\"mean\"), alpha=.5)\n",
" ax.set(ylabel=\"Average $USD (mean)\")\n",
" ax.set(xlabel=\"Weekday (relative number)\")\n",
" ax.set(title=f\"Weekday - {kpi}\")\n",
" plt.tight_layout()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Action Items\n",
"- Focus growth into San Jose - the community seems to tip drivers with a a much higher % of the order total than consumers in other communities\n",
"\n",
"- Reevaluate discount frequency in Palo Alto and Mountain View areas. Palo Alto has almost 300% of Mountain View's order volume, but has higher average discounts almost every day. Either increase discount frequency in Mountain View to increase product update, or decrease discount frequency in Palo Alto if it is determined that market has reached maturity\n",
"\n",
"- Explore alternative delivery fee structures for different areas based on average order size. Assuming current delivery fees are a constant factor of order price and delivery time, the Client may want to consider region-specific policy to normalize income across different cost-of-living zones. Orders placed in San Jose are $10+ cheaper than those placed in Mountain View and Palo Alto. \n",
"\n",
"Note: Tips in San Jose may be a higher % of cost due to having extra money due to the cheaper meals. Before changing delivery fee structures, an elasticity exercise should be conducted. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3. Refunds"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"#find all entries where customers asked for a refund\n",
"refund_df = pst_df[pst_df[\"Refunded amount\"] > 0]"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"486 refunds were issued to 436 unique customers\n",
"The customers who refunded more than two orders this month are as follows: \n"
]
},
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Total Orders
\n",
"
Refunded Orders
\n",
"
Refund %
\n",
"
\n",
"
\n",
"
Consumer ID
\n",
"
\n",
"
\n",
"
\n",
"
\n",
" \n",
" \n",
"
\n",
"
91848
\n",
"
9
\n",
"
3
\n",
"
33.333333
\n",
"
\n",
"
\n",
"
12420
\n",
"
10
\n",
"
3
\n",
"
30.000000
\n",
"
\n",
"
\n",
"
959
\n",
"
11
\n",
"
3
\n",
"
27.272727
\n",
"
\n",
"
\n",
"
2999
\n",
"
14
\n",
"
3
\n",
"
21.428571
\n",
"
\n",
"
\n",
"
96518
\n",
"
14
\n",
"
3
\n",
"
21.428571
\n",
"
\n",
"
\n",
"
5673
\n",
"
21
\n",
"
4
\n",
"
19.047619
\n",
"
\n",
"
\n",
"
14296
\n",
"
20
\n",
"
3
\n",
"
15.000000
\n",
"
\n",
"
\n",
"
10294
\n",
"
21
\n",
"
3
\n",
"
14.285714
\n",
"
\n",
"
\n",
"
929
\n",
"
50
\n",
"
5
\n",
"
10.000000
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Total Orders Refunded Orders Refund %\n",
"Consumer ID \n",
"91848 9 3 33.333333\n",
"12420 10 3 30.000000\n",
"959 11 3 27.272727\n",
"2999 14 3 21.428571\n",
"96518 14 3 21.428571\n",
"5673 21 4 19.047619\n",
"14296 20 3 15.000000\n",
"10294 21 3 14.285714\n",
"929 50 5 10.000000"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print(f\"{len(refund_df)} refunds were issued to {refund_df['Consumer ID'].nunique()} unique customers\")\n",
"print(\"The customers who refunded more than two orders this month are as follows: \")\n",
"all_refunds = refund_df[\"Consumer ID\"].value_counts()\n",
"#identify people who may be abusing the system by logging more than 2 refunds in a month\n",
"potential_abusers = all_refunds[all_refunds > 2]\n",
"#cross reference potential abusers with the total number of orders placed\n",
"abuse_check = pst_df[pst_df[\"Consumer ID\"].isin(potential_abusers.index)].pivot_table(index=\"Consumer ID\", \n",
" values=\"Refunded amount\", \n",
" aggfunc=\"count\")\n",
"abuse_check = abuse_check.join(potential_abusers)\n",
"abuse_check.rename({\"Refunded amount\": \"Total Orders\", \"Consumer ID\": \"Refunded Orders\"}, axis=1, inplace=True)\n",
"abuse_check[\"Refund %\"] = abuse_check[\"Refunded Orders\"] / abuse_check[\"Total Orders\"] * 100\n",
"abuse_check.sort_values(by=\"Refund %\", ascending=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Of those who made more than 2 refunds in the month, the numbers are within the realm of reason - although the Client may to investigate whether customers with high refund %s are legitimate. Speaking of, let's take a quick gander at all refunds and see what the deal is with those who placed 2 or less. "
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Refunders with highest average delivery time (of refunded items)\n"
]
},
{
"data": {
"text/html": [
"
"
],
"text/plain": [
" Total Orders Refunded Orders \\\n",
"Consumer ID \n",
"14241 3 1 \n",
"111695 1 1 \n",
"13592 1 1 \n",
"459 17 2 \n",
"2186 6 1 \n",
"111584 2 1 \n",
"14188 3 1 \n",
"9938 3 1 \n",
"9267 2 1 \n",
"4087 38 2 \n",
"\n",
" Avg Delivery time of refunds (min) Refund frequency \\\n",
"Consumer ID \n",
"14241 5.533333 33.333333 \n",
"111695 6.833333 100.000000 \n",
"13592 7.216667 100.000000 \n",
"459 7.666667 11.764706 \n",
"2186 8.800000 16.666667 \n",
"111584 8.866667 50.000000 \n",
"14188 9.500000 33.333333 \n",
"9938 9.666667 33.333333 \n",
"9267 9.950000 50.000000 \n",
"4087 10.116667 5.263158 \n",
"\n",
" Refund % of cost \n",
"Consumer ID \n",
"14241 6.253155 \n",
"111695 88.310929 \n",
"13592 17.637828 \n",
"459 2.586442 \n",
"2186 4.124251 \n",
"111584 11.977292 \n",
"14188 12.055160 \n",
"9938 5.880594 \n",
"9267 12.549571 \n",
"4087 4.060977 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"refund_df[\"Delivery_Minutes\"] = refund_df[\"Driver_time_elapsed\"].dt.seconds/60\n",
"abuse_check2 = pst_df[pst_df[\"Consumer ID\"].isin(all_refunds.index)].pivot_table(index=\"Consumer ID\", \n",
" values=\"Refunded amount\", \n",
" aggfunc=\"count\")\n",
"abuse_check2 = abuse_check2.join(all_refunds)\n",
"# Rename columns to approrpriate names\n",
"abuse_check2.rename({\"Refunded amount\": \"Total Orders\", \"Consumer ID\": \"Refunded Orders\"}, axis=1, inplace=True)\n",
"\n",
"# Check how many accounts are refunding 100% of their orders\n",
"abuse_check2 = abuse_check2.join(pst_df.groupby(\"Consumer ID\")[\"Order total\", \"Refunded amount\"].sum())\n",
"abuse_check2 = abuse_check2.join(refund_df.groupby(\"Consumer ID\")[\"Delivery_Minutes\"].mean())\n",
"abuse_check2.rename({\"Refunded amount\": \"Sum of refunds\", \"Order total\": \"Sum of order totals\", \"Delivery_Minutes\":\"Avg Delivery time of refunds (min)\"}, axis=1, inplace=True)\n",
"\n",
"abuse_check2[\"Refund frequency\"] = abuse_check2[\"Refunded Orders\"] / abuse_check2[\"Total Orders\"] * 100\n",
"abuse_check2[\"Refund % of cost\"] = abuse_check2[\"Sum of refunds\"] / abuse_check2[\"Sum of order totals\"] * 100\n",
"# Sort accounts/refunds by longest Driver_time_elapsed\n",
"\n",
"\n",
"print(\"Refunders with highest average delivery time (of refunded items)\")\n",
"display(abuse_check2.drop([\"Sum of order totals\", \"Sum of refunds\"], axis=1)\\\n",
" .sort_values(\"Avg Delivery time of refunds (min)\", ascending=False).head(10))\n",
"print(\"Refunders with lowest average delivery time (of refunded items)\")\n",
"display(abuse_check2.drop([\"Sum of order totals\", \"Sum of refunds\"], axis=1)\\\n",
" .sort_values([\"Avg Delivery time of refunds (min)\"], ascending=True).head(10))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The customers at the top end of delivery times are all refunding orders that took over 50 minutes to arrive - likely legit. But it does look like at least one of these accounts has a refund frequency of 100. Let's see how common that is"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Total Orders
\n",
"
Avg Delivery time of refunds (min)
\n",
"
\n",
" \n",
" \n",
"
\n",
"
count
\n",
"
86.0
\n",
"
62.000000
\n",
"
\n",
"
\n",
"
mean
\n",
"
1.0
\n",
"
28.814516
\n",
"
\n",
"
\n",
"
std
\n",
"
0.0
\n",
"
13.861363
\n",
"
\n",
"
\n",
"
min
\n",
"
1.0
\n",
"
6.833333
\n",
"
\n",
"
\n",
"
25%
\n",
"
1.0
\n",
"
19.083333
\n",
"
\n",
"
\n",
"
50%
\n",
"
1.0
\n",
"
25.691667
\n",
"
\n",
"
\n",
"
75%
\n",
"
1.0
\n",
"
34.441667
\n",
"
\n",
"
\n",
"
max
\n",
"
1.0
\n",
"
70.966667
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Total Orders Avg Delivery time of refunds (min)\n",
"count 86.0 62.000000\n",
"mean 1.0 28.814516\n",
"std 0.0 13.861363\n",
"min 1.0 6.833333\n",
"25% 1.0 19.083333\n",
"50% 1.0 25.691667\n",
"75% 1.0 34.441667\n",
"max 1.0 70.966667"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"abuse_check2[abuse_check2[\"Refund frequency\"] == 100].drop(\"Refund % of cost\", axis=1).describe()[[\"Total Orders\", \"Avg Delivery time of refunds (min)\"]]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Further Analysis Needed\n",
"Looking at 100% refunded accounts, it isn't surprising that all of these accounts only placed 1 order. Nor is it surprising that some of these refunds were issued for long delivery times - 70 minutes is a lot! \n",
"\n",
"What is surprising is that 75% of these refunds were issued for food deliveries that took less than 34 minutes. Given the traffic in the Bay area, 35 minutes is not altogether unreasonable. Did these consumers receive the wrong order? Did they have an unpleasant experience? Were they just abusing the app? We can't know with this dataset, but it deserves further exploration in the future. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Next Steps\n",
"\n",
"1. Work with the 10 identified restaurants and reduce the delay in order placement leadtime\n",
"2. Reevaluate discount frequency in Palo Alto / Mountain View\n",
"3. Focus growth in San Jose to increase driver tips (and therefore, employee satisfaction)\n",
"4. Investigate alternative fee structures based on region characteristics\n",
"5. Explore why customers are refunding quick deliveries (qualitative analysis, surveys)\n",
"6. Conduct competitive analysis and evaluate how metrics stack compared to competitors such as DoorDash/Uber Eats/Grubhub\n",
"7. Capture more data per order (e.g. reason for refund, intended delivery time for non-ASAP orders) and create machine learning models to determine which features result in larger tips "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}