Maple-IR: An IR-based Framework for Analyzing Java Bytecode

ecx86! and Bibl?

Abstract—1t is crucial to develop efficient control flow
analysis algorithms due to their critical role in static analysis.
While mature control flow analysis algorithms exist, they do not
address the challenges presented by the unique characteristics
of Java bytecode, especially in the case of exception ranges.
While building the control flow graph (CFG), current optimiza-
tion frameworks either do not consider exception control flow
or do so poorly, resulting in the need for costly and difficult-to-
implement downstream patches. In this research, we present an
approach that integrates exception range information into the
CFG. This is done via a novel block splitting approach to more
efficiently handle the implications of exception ranges. As a
result, later optimizations and analyses can be performed much
more easily. Finally, we introduce our analysis framework,
Maple-IR, which incorporates our work.

I. INTRODUCTION

Java source code is compiled to Java bytecode [1] which
the JVM executes. Java bytecode is a popular target langauge
for many languages, such as Scala, Clojure, and Groovy. In
addition, the popular Android platform makes use of Java
bytecode. This makes Java bytecode a very appealing target
for static analysis and optimization, and two key analyses for
this are data flow analysis [6] and control flow analysis [2]. It
is important to design correct, efficient, and reliable methods
to model both data flow and control flow because almost
all optimizations depend on them. However, Java bytecode
has some idiosyncrasies which make such modeling difficult.
Two of these issues are stack-based operation and exception
control flow. In this paper, we will discuss and attack each
of these problems.

The stack-based nature of Java bytecode poses a problem
for data-flow analysis. Bytecode represents method code
linearly with postfix (concatenative) notation [5], and the
virtual machine operates on a stack and a set of local
variables. The stack is modified implicitly through bytecode
instructions and only the topmost few stack elements are
accessible. Because of the implicit nature of stack access,
proper data-flow analysis can prove to be difficult. On the
other hand, local variables can be accessed randomly and
are zero-indexed and behave much like regular variables.
Stack elements and local variables have vastly varying char-
acteristcs, leading to two distinct classes of variables: stack
variables and local variables. When writing an analysis
framework for Java bytecode, this distinction must be kept
in mind.

To solve this obstacle to data-flow analysis, it is necessary
to perform a stack analysis to convert implicit stack refer-
ences into explicit stack variable references. This is not as

lecx@mapleir.org
2pibl@mapleir.org

simple as it seems as the stack can store values of differing
sizes, allowing for a discrepancy between the stack’s height
and size in elements. Furthermore, instructions accessing
the stack may reference different positions within the stack
depending on the size of the elements present. An example
of this is shown in Figure 1. Moreover, method parameters
are passed in using a left-to-right calling convention as local
variables, indexed starting from 0. In non-static methods,
the first parameter is a reference to the class instance (i.e.
the this pointer). These problems must be handled with
care to ensure proper data-flow analysis. To do so, we use
a method based on stack simulation and synthetic copy
insertion similar to the one presented by Vallée-Rai et al.
[3].

Another major Java-specific challenge for accurate code
generation and analysis are exception ranges. Control flow
in bytecode is controlled through explicit labeled control
flow instructions, implicit natural flow from two sequential
labels, and exception flow. Exceptions are represented in
the bytecode via the exception table, whose entries are
exception ranges, each containing the range’s start and end
labels, its handler block, and exception type. When an
exception occurs in a block contained by the range, the
control flow immediately transfers to the handler block,
discarding stack variables. Because control flow can transfer
from anywhere inside a protected (contained in an exception
range) block to the handler block, this poses significant
problems in modeling the control flow of the program. In
addition, a block may have multiple handlers and handlers
themselves may have handlers. Lastly, finally blocks have
type null and are executed after all protected and handler
blocks within a try-catch chain regardless of the exceptions
thrown. Currently, there is no clear way to model control
flow while taking into account exception flow. We propose
a block splitting-based method to address this issue and
to to facilitate easy implementation of classical compiler
algorithms without consideration exception flow.

Some optimization frameworks do not model exception
flow whatsoever and simply leave it unstructured. However,
this pushes the burden of considering exception flow onto
the compiler writer, leading to a decrease in performance
or even code correctness. Vallée-Rai et al. [3] explored an
intermediate representation (IR) approach to analyzing Java
bytecode which focused on converting Java bytecode first
to Jimple IR before performing optimizations. Then, the
Soot optimization framework [4] was built on top of Jimple
and other IRs similar to Jimple. This approach solves the
first issue addressed earlier, the stack-based nature of the
JVM; however, it does not address the second. Namely, Soot

3.2D pop?2
"String” | dup_x2 "String”
1L pop 1L
5 5

(a) Pre-stack and code

(b) Post-step stack and code

dup_x2
pop

1L
"String”
5
(c) Post-stack

Fig. 1: Implicit stack access via instructions.

5 svar2 = 5;
svarl | svarl = svarl;
2.3f | svar@ = 2.3f;

(a) A simple stack containing only single-size elements.

"String” | svar6 = "String";
svarl svar4 = svarl;
3.14f svar3 = 3.14f;

2L svarl = 2L;
1 svar@ = 1,

(b) A more complicated stack.

Fig. 2: Explicit representation of stack elements as stack variables.

and Jimple leave exception control flow unstructured; that is
to say, exceptions are represented in the "start-end-handler-
type" style found in bytecode. We believe this representation
to be unwieldy and unconducive to optimization. Therefore,
we will structure the exception flow by integrating it into
the standard control flow graph (CFG) methods used by
compilers and optimizers.

Other other hand, some work has been done to address
the problem of exception control flow. For example, Choi
et al. assume handler edges can be taken from anywhere
within a basic block. They claim that due to large number of
possible points for an exception to be thrown, it is better for
the protected blocks to be represented in this fashion [13].
As a result, CFGs produced by Choi et al.’s approach do
not accurately reflect exception control flow, which forces
downstream analysis algorithms to be modified. Our work
expands upon ideas first explored by the Krakatau disassem-
bler project [12], namely, properly structuring control graphs
to account for exception control flow.

With these two major problems solved, there remain no
major impediments for analysis and optimization. Before, an
optimizer would need to consider exception flow explicitly,
which would lead to a large amount of code specifically
for handling the case of exception flow. In addition, if stack
elements were not made explicit via stack variables, it would
be nearly impossible to construct an IR to optimize to begin
with. For these reasons, we propose a method to first convert
stack-based bytecode into a variable-based IR, which will
then be updated to take into account exception-based control
flow properly.

II. METHODS

In Java bytecode, each method is a discrete unit of code,
so we consider only the code of a single method. It is
necessary to first properly model control flow and data flow
before constructing the IR. First, we construct a preliminary
control flow graph (CFG) with protected blocks intact. We
use a worklist method to build the control flow graph, and
we initalize the worklist by adding the entry and handler
labels. Then, we process the worklist by iterating through

instructions sequentially beginning at each label in the work-
list, creating empty basic blocks and control flow graph
edges whenever labels or jump instructions are encountered.
Newly created empty basic blocks are added to the worklist.
As we iterate through the instructions, we also build the
intermediate representation (IR). Blocks are also ended when
an athrow instruction is reached, but no successor edge is
created yet; exception flow is not considered until after the
IR has been built. Finally, after all blocks are processed
and the IR is built, a handler edge to the handler block is
added to all blocks within the exception range. After the
IR has been built, the CFG is naturalized to incorporate
exception flow comprehensively. However, this is not trivial
as accurately modeling the control flow while maintaining
proper basic block structure involves taking into account
when it is possible for an exception to be thrown in the
method.

A. Building the IR

To build the IR, we must consider the problem of implicit
stack data flow. For every block, we keep track of the
incoming stack into the block from preceding blocks. At the
end of a block, we copy to the incoming stack of successor
blocks the current stack, and add the successor blocks to a
worklist. If a successor block’s stack is already initialized,
we can skip copying to it. This relies on the assumption
that the incoming stack of a block is consistent for all of
its preceding blocks, which holds if the code is verifiable by
the JVM. If code is unverifiable (i.e. invalid), the JVM will
refuse to run it. Because the worklist essentially enforces a
preorder traversal of the control flow graph, any label we visit
will have its incoming stack already computed. The benefit
of this method is that the control flow graph and IR can be
built in O(n), where n is the number of labels in the code.

Beginning with the initial block, we sequentially process
the instructions in each block, simulating the stack by
implementing each bytecode instruction in code. Every JVM
bytecode instruction must be implemented in code for a
comprehensive stack analysis [3]. The stack pointer is also
simulated, increasing from 0 as the stack grows. The stack

Al.
lvar® = lvare;

/7 IN: [] /
A.
lvar® = lvare; // Synthetic A2.
lvarl = lvarl; // Synthetic lvarl = lvarl;
canThrow(lvarl); canThrow(lvarl);
lvarl = 1lvare;
goto C; Al.
// 0UT: [lvaril] Handler lvare = lvare;
lvarl = 1lvarl;
/andler A3. canThrow(1lvarl);
lvarl = lvar@; Handler
goto C;
// IN: [Llvarl] Handler
B.
svar@ = catch(); // Synthetic GOTO Handler B
pop(); // Discard exception A2. : _ he):
print(lvarl) B. lvarl = lvare; :;:E?_’ catch(z
N . ’)
// 0UT: [lvari] coTo :;;E?-= catch(); goto C; print(lvarl)
2
\ print(lvarl)
GOTO
// IN: [lvarl] /
C.
print(lvarl); C. C.
return; print(lvaril); print(lvarl);
/7 ouT: [1] return; return;

(a) Before splitting, with comments and liveness.

(b) Naive block splitting.

(c) Optimized block splitting.

Fig. 3: An example of block splitting via naive and optimized methods.

pointer is the sum of the sizes of all of the elements on the
stack. Double-size elements (doubles and longs) take up two
stack indices, while single-size elements take up one stack
index. The initial block is initialized with an empty stack, and
handler blocks are initialized with a stack of only the caught
exception. We represent local variables simply as variables
in the IR. Stack variables are allocated to represent stack
elements based on their position on the stack. The index of
a stack variable is the stack pointer at the point in which it
was defined. The size of a variable, whether local or stack,
is the size of the value it stores. Local variables representing
method parameters at the start of a method are initialized to
themselves by inserting a synthetic copy at the beginning of
the entry block. Similarly, a synthetic copy is inserted for
the stack variable that represents the caught exception in the
start of handler blocks.

B. Naturalizing the Control Flow

After the intermediate representation and preliminary CFG
are built, it is now necessary to simplify the graph and
take into account exception control flow. First, we remove
redundant edges in the CFG by combining successive blocks
that have only 1 incoming and outgoing edge. Handler edges
can be ignored unless one block has a handler edge while
another block does not. This is because currently handler
edges can be taken from anywhere in a block, which allows
for combining of blocks with identical handler edges. As
blocks are merged, we also update the variable definition
map.

Now that the CFG is now cleaned such that there are no
redundant blocks, exception flow can be handled. At this
point, a handler edge can be taken from anywhere within a
basic block, which is problematic for analysis. If exception

flow is not corrected, later processes that depend on control
flow information will need special patches for exception flow,
which is undesirable. Therefore, we will correct the CFG so
that handler blocks can only be taken from the end of a block.
To do this, we will split protected blocks by transferring all
statements above the split point to a new block and updating
the corresponding CFG edges. To do this, we transfer all
predecessor edges into the new block, connect the new block
and existing block with an edge, and duplicating all handler
edges of the existing block in the new block.

What remains is the problem of deciding at what points
to split within a protected block. Because almost every
instruction can lead to an exception [1], the most conservative
method would be to split after every instruction. However,
this is extremely inefficient and leads to huge CFGs. Instead,
we consider how exception flow impacts the state of the
program incoming to the handler block. Stack variables are
discarded as control flows through a handler edge, so we can
ignore them. Local variables are preserved, but they may not
necessarily be used in the handler. To decide which local
variables must be considered, we use liveness information
[7]: the set of variables which must be preserved is the set
of variables live into the handler block. Stack variables are
never live into a handler block. To preserve the state of local
variables while only allowing control flow over handler edges
at block endpoints, it is necessary to split protected blocks
before each assignment to a handler-live local variable.

C. Improved block splitting

While this produces a correct, representative IR in which
handler edges are well-behaved, the control flow graph is
still rather large. This is because before optimizations [6]
take place, the IR is verbose and contains a large number of

copies. A large block may contain a large number of copies
to local variables, which can lead to a large increase in CFG
size, which has negative performance impacts downstream in
the compiler toolchain. While it is very difficult to accurately
model which IR statements can cause an exception [1], it is
possible to optimize the splitting algorithm a bit. First, we
introduce the notion of a simple copy: a copy is simple iff
it is a copy from a single variable to another, or it is a
synthetic copy. An easy-to-implement but highly powerful
optimization is to simply only split if a statement that is not
a simple copy has been encountered since the last split point.
In addition to this stricter definition of splitting locations,
we also remove unnecessary handler edges after splitting.
Consider the handler edge of block A3 in Figure 3b. Clearly,
it is not possible for an exception to be thrown in A3. In order
to take advantage of situations like this, we must first clearly
define what criteria a block must meet in order to have its
handler edges pruned. Handler edges can be removed from a
block B if all statements in B are simple copies, excluding
the control flow statement if present. Because propagation
has not occurred yet, complex expressions cannot occur
within a control flow statement, so it can be ignored.

Algorithm 1 Optimized block splitting

Data: Set of blocks blocks, set of exception ranges ranges,
live-in sets liveln

1: locals - empty_map

2: for range r € ranges do

3: for b € r.blocks do

4 locals(b) += liveln(r.handler)
5: for block b € blocks do

6: if locals(b) = & then
7
8
9

continue

10

checkSplit <— FALSE
10: for statement s € b do
11: if checkSplit = TRUE and s is a copy whose

target € locals(b) then

12: split(b, i)
13: 10
14: checkSplit <— FALSE
15: else if s is not a simple copy then
16: checkSplit <~ TRUE
17: 1 1+1

Algorithm 1 performs the optimized block splitting algo-
rithm described. It keeps track of a map of which local
variables must be preserved within each protected block,
and then processes each protected block. For each block,
it proceeds through the statements sequentially, keeping
track of whether a statement other than a simple copy has
been encountered since the last split. When a split point is
detected, it calls the split function to split the block at the
detected point.

Function 2 takes care of the bookkeeping of the block
splitting process. It moves statements from the beginning of

Function 2 split(b,i)
Data: Set of edges (source, destination) edges, set of
exception ranges ranges

1: b’ + new_block
2: Add ¥ to the CFG
3: Transfer the first ¢ statements from b to b’

4: for edge (p,b) € edges do

5: if edge is a handler edge then

6: r < ranges.findByEdge(edge)

7 r.handler = b’

8 edges -= (p,b)

9 edges += (p,)

10: if the last statement in p is a control flow statement then
11: Replace targets to b with one to /.

12: for handler edge (b, s) € edges do

13: edges += (b, s)

14: if checkPrune(b)) then

15: for handler edge (p,b) € edges do
16: edges -= (p, b)

17: edges += (V',b)

Function 3 checkPrune(b)
Output: True if handler edges from b can be removed.

1: for statement s € b do

2: if s is a control flow statement then
3: continue

4: if if s is not a simple copy then

5: return FALSE

6: return TRUE

the existing block b to a new block b’ and updates the CFG
edges accordingly. To update the CFG edges, the predecessor
edges of b are redirected into b'. If b is an exception range
handler, the exception range that corresponds to the handler
edge must have its handler updated to &’. Then, if the control
flow statement has target b, it must be updated to target
b’ instead. After predecessor edges are considered, we now
consider successor edges. We first copy handler edges from
b to b’ because following our strict definition of a split point,
newly split blocks will always need handler edges. Next, we
remove handler edges from b if they are no longer necessary.
Finally, we connect b’ and b with an edge.

After the CFG naturalization process is complete, excep-
tion flow has now been successfully modeled and integrated
into the basic block structure of the CFG. In other words,
exception flow no longer needs to be treated specially and
handler edges can be treated as ordinary edges with no
specific semantic differences. At this point, the IR is ready
for condensing, optimization, and analysis.

For the practical implementation of the algorithms, we
designed, implemented, and tested the algorithms ourselves
with no outside assistance. The algorithms were built on top

e
%
T

e
>
T

Number of splits vs. Every

<
=~
T

Test Case

In Every

Ir Naive

I8 Optimized
| [E® Pruning

Fig. 4: CFG quality in terms of blocks created due to splitting.

of a Java analysis framework created from scratch leveraging
the ObjectWeb ASM bytecode manipulation library [8]. A
friend assisted in the initial programming of the analysis
framework and otherwise played no part in the project. They
contributed neither to the design nor the implementation of
the algorithms and methods discussed in this report.

III. RESULTS AND DISCUSSION

We performed experiments to determine the efficacy of
our method. The experiments were performed on a variety
of test cases, which we selected based on their large size and
complexity. The test cases specifically were:

e rt, javafx, tools — Standard library and runtime jars
packaged with the jdk1.8.0_102. Total size: 95.0MB

e specjvm2008 — The SPECjvm2008 series of bench-
marks, including all libraries. Total size: 8.1MB

o fernflower, procyon — Two popular Java decompiler
softwares. The latest versions as of September 2016
were used. Total size: 2.3MB

e minecraft — The game client
lar Java video game Minecraft,
Total size: 4.2MB (classes only)

e self — Our implementation of the optimiza-
tion framework described, compiled using javac.
Total size: 1.1MB

First, we evaluated the impact of split point accuracy on
CFG quality by implementing four methods of protected
block splitting. Each method is defined by the way it decides
when it is necessary to split a block. For a baseline, the
simple Every variant is used.

of the popu-
version 1.10.2.

o Every: Split a protected block after every statement.

o Naive: Split a protected block before each copy to a
variable live-in to a handler.

o Optimized: Split a protected block before each copy to
a variable live-in to a handler only if a statement that is
not a simple copy has been encountered since the last
split point.

e Pruning: Same as Optimized, in addition to handler
pruning as described in Section II-C.

Figure 4 shows the ratio of blocks created due to range
splitting compared to the most primitive method, Every,
for each method of splitting. It can be seen that even the
Naive variant, which only considers variable liveness, is
significantly better than splitting a protected block after each
statement. Overall, this method provides a 31.6% over the
Every method. Optimized provides another 36.6% improve-
ment over the Naive method and a 56.6% improvement over
the Every method. It can be seen that while Naive is a
significant improvement over the Every variant, it is still
rather inefficient due to the large number of copies within an
unoptimized CFG. However, optimization cannot take place
before exception flow is modeled, so a large number of
copies is unavoidable. Therefore, optimized block splitting
is important as it avoids many unnecessary new blocks and
handler edges.

Because handler edge pruning does not affect the number
of blocks created, Pruning and Optimized have the same
results for this assessment. To achieve a more comprehensive
analysis on the value of each block splitting method, let us
also consider the number of handler edges created due to
block splitting. For this, the CFG before splitting (unsplit)
was used as a baseline to compare against. We first record the

= 8% -
5
=
=
g +6 % |- —
3 Irn Naive
§ +4% |- | Optimized
S I% Pruning
)
B
St +2 % [7
[
s
: 11 [

o) .]

S & s X & D
< 4%& 0\% Q/QQ R S c}‘{,x & &
¥ ® & ° $© ¥
Q (Q Q
& & &
ES)
Test Case

Fig. 5: CFG quality in terms of handler edges created.

number of handler edges present in the CFG before block
splitting, and take the difference of handler edges present
after block splitting with this pre-split count to find the
number of handler edges created as a result of the splitting
process.

Figure 5 shows the ratio of number of edges created
during block splitting to the number of edges before splitting.
The Every variant has been excluded due to the enormous
number of edges created: while the other methods create
edges amounting to less than 10% of the unsplit count,
Every creates edges up to 400% of the unsplit count. This
would severely disproportion the graph axis and thus has
been excluded. Ignoring Every, it is shown that Optimized
produces 21% less edges overall than Naive, a noticeable
improvement. Furthermore, when pruning is performed on
top of optimized block splitting, 63% less copies are pro-
duced than when naive splitting is performed overall. Edge
pruning yields a 53% improvement over only optimized
block splitting, which is a significant improvement for little
cost.

Optimized block splitting is an improvement upon the
definition of a block split point, so the decrease in block split
count caused is to be expected. Similarly, edge pruning is an
improvement upon the definition of when a handler edge is
necessary, so a decrease in number of handler edges created
is unsurprising. However, it is interesting to note that it also
causes a noticeable decrease in number of handler edges
created while this is not true for pruning. The explanation
for this phenomena is that because optimized block splitting
leads to less new blocks created, there will be less new blocks
to copy handler edges to. Another interesting point is the

relatively low impact of the Every method on block split
count in contrast to its huge impact on handler edge count.
This is due to the fact that while the number of statements in
a block grows linearly, because handler edges must be copied
each time a block is split, the number of handler edges grow
quadratically while the number of block splits grows linearly.

The results of these experiments demonstrate the impor-
tance of accurate block splitting and handler edge pruning.
Without strict split point definitions and edge pruning, inte-
grating exception flow into the control flow graph and basic
block structures would be impractical. With our techniques,
it is practical and efficient to include exception flow properly
into control flow information while preserving the semantics
of the program. This allows for later optimizations and
analysis done on the program to be done without having
to consider exception flow specially, which reduces the pro-
gramming effort required for the optimizer. In addition, it is
slower to have to consider all of the implications of exception
flow on-the-fly such as the state of local variables than to
factor them into the control flow data before optimization or
further analysis begins.

Furthermore, because many optimization algorithms grow
quadratically with CFG size [9] [10], it is important to reduce
the complexity of the CFG early in the compiler toolchain
to lower costs later on. For example, consider the case of
liveness information. Traditionally, liveness information is
stored in sets for each basic block and computed through
solving data-flow equations [6] [11]. As the number of basic
blocks increases, the volume of liveness information stored
increases in addition to the running time of algorithms to
compute it. If exception flow was incoroprated into the

CFG sloppily (such as in the Every method), leaving many
unnecessary edges and blocks, algorithm performance would
decrease sharply for methods containing try-catch ranges.

IV. CONCLUSION

The idiosyncrasies of the Java bytecode Virtual Machine
are summarily its stack-based nature, as well as the control
flow due exception handlers. The first issue is easily ad-
dressed via symbolic execution, which is a common approach
in static analysis. Other projects which implement similar
strategies include Hex-Ray’s IDA Pro and Binary Ninja, for
example. The second problem is more specific to the JVM
and more difficult to tackle. To solve it, we introduced an
efficient block-splitting and edge-pruning algorithm.

A small downside of block splitting is that its efficiency
can vary based on the contents of protected basic blocks.
While bytecode produced by typical Java compilers is suit-
able for block splitting, this may not be true for heavily
obfuscated or manually protected bytecode. Nevertheless, in
our experience, we have not encountered such bytecode yet.
We theorize that protected blocks requiring many split points
are rare.

There exist some possible improvements for our method,
specifically in deciding whether a statement can cause an
exception. In this study, we considered any IR statement
that was not a simple copy able to throw an exception. This
definition is conservative, and leads to more block split points
than actually required. In the future, better modeling of the
possible locations for an exception to be thrown could allow
for more compact CFGs. Another possible optimization is to
only consider exceptions matching the type of the relevant
exception range. Furthermore, it may be only necessary
to consider certain types of exceptions, such as runtime
exceptions and checked exceptions.

For future work, we consider another problem present
in Java bytecode, subroutines. Currently, subroutines are
present in the JVM as a backwards-compatibility feature
for code produced by older Java compilers. In the past,
subroutines were used as a way to compile finally blocks
while avoiding code duplication. Subroutines present many
of the same problems as the ones presented by exception
ranges: they allow for control flow to jump to arbitrary
points within basic blocks, thus causing the basic block to
be poorly-structured. These "side" edges can be handled via
the block splitting method described in this paper.

ACKNOWLEDGMENT

The authors would like to thank our friends in the
Runescape and Minecraft reverse-engineering communities.
This work would not have been possible without them.

REFERENCES

[1] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley, "The Java Virtual
Machine Specifications," Oracle, 2015.

[2] F. E. Allen, "Control Flow Analysis," in SIGPLAN 70 Symposium on
Compiler Construction, 1970, pp. 1-19.

[3] R. Vallée-Rai and L. J. Hendren, "Jimple: Simplifying Java Bytecode
for Analyses and Transformations," Sable Research Group, McGill
University, Montreal, Quebec, 1998.

[4]
[5]
[6]

[7]
[8]

[9]

(10]

(1]

[12]

[13]

R. Vallée-Rai, "Soot: A Java Bytecode Optimization Framework,"
McGill University, Montreal, Quebec, 2000.

J. Purdy, (2012, February 12). Why Concatenative Programming
Matters. [Blog]. Available: https://evincarofautumn.blogspot.com

A. V . Aho and J. D Ullman, "More About Data-Flow Analysis," in
Principles of Compiler Design, 2nd ed. Reading, MA: Addison-Wesley
Publishing Company, ch. 14, sec. 1-5, pp. 478-491.

K. D. Cooper and L. Torczon, "Data-Flow Analysis" in Engineering
a Compiler, 2nd ed: Morgan Kaufmann ch. 9, pp. 475-538.

E. Kuleshov, "Using the ASM framework to implement common
Java bytecode transformation patterns," in Aspect-Oriented Software
Development, Vancouver, British Columbia, 2007.

B. Boissinot, A. Darte, F. Rastello, B. Dupont de Dinechin, C. Guillon,
"Revisiting Out-of-SSA Translation for Correctness, Code Quality,
and Efficiency," in International Symposium on Code Generation and
Optimization (CGO’09, IEEE/ACM, 2008, pp. 114-125.

V. C. Sreedhar, R. D.-C. Ju, D. M. Gillies, and V. Santhanam,
"Translating out of static single assignment form," in Static Analysis
Symposium (SAS’99), Italy, 1999, pp. 194 — 204.

B. Boissinot, S. Hack, D. Grund, B. D. de Dinechin, and F. Rastello,
"Fast Liveness Checking for SSA-Form Programs," in International
Symposium on Code Generation (CGO’08). IEEE/ACM, 2008, pp.
35-44.

R. Grosse, "Krakatau Java Bytecode Tools", 2016, Github repository,
https://github.com/Storyyeller/Krakatau

J. Choi, D. Grove, M. Hind, and V. Sarkar, "Efficient and Precise
Modeling of Exceptions for the Analysis of Java Programs," in
SIGSOFT Software Engineering Notes, vol. 24, no. 5, pp. 21-31, 1999.

