/* 2D Problems */

ArchiveEntry "Benchmarks/Nonlinear/Ahmadi Parrilo Krstic"

Description "Theorem 1.1 (1)".
Citation "Amir Ali Ahmadi, Miroslav Krstic, and Pablo A; Parrilo. A globally asymptotically stable polynomial vector field with no polynomial Lyapunov function; CDC-ECE 2011".
Link "https://doi.org/10.1109/CDC.2011.6161499".

ProgramVariables
  Real x;
  Real y;
End.

Problem
  0.5<=x & x<=0.7 & 0<=y & y<=0.3
  ->
  [
    {x'=-x+x*y , y'=-y}@invariant(y>=0)
  ] !(-0.8>=x & x>=-1 & -0.7>=y & y>=-1)
End.


Tactic "Scripted proof"
  implyR(1); dC("y>=0",1); <(
    dW(1); QE,
    dbx(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Arrowsmith Place Fig_3_11 page 83"

Description "Fig 3.11 Page 83".
Citation "D. K. Arrowsmith and C. M. Place. An Introduction to Dynamical Systems".

ProgramVariables
  Real x;
  Real y;
End.

Problem
  x=1 & y=1/8
  ->
  [
    {x'=x-y^2, y'=y*(x-y^2)}@invariant(y^2 < x)
  ] !(x<0)
End.

Tactic "Scripted proof"
  implyR(1); dC("y^2 < x",1); <(
    dW(1); QE,
    dbx(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Arrowsmith Place Fig_3_5e page 79"

Description "Fig 3.5e Page 79".
Citation "D. K. Arrowsmith and C. M. Place. An Introduction to Dynamical Systems".

ProgramVariables
  Real x;
  Real y;
End.

Problem
  x=1 & y=-1
  ->
  [
    {x'=x^2+(x+y)/2, y'=(-x+3*y)/2}@invariant(y-x+1<=0 & y<=0)
  ] !(y>0)
End.

Tactic "Scripted proof"
  implyR(1);
  dC("y-x+1<=0 & y<=0",1); <(
    dW(1); QE,
    ODEinv(1)
  )
End.

Tactic "Automated proof (from annotations)"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Ben Sassi Girard 20104 Moore-Greitzer Jet"

Description "6.1 Moore-Greitzer jet engine model".
Citation "Mohamed Amin Ben Sassi, Antoine Girard. Controller synthesis for robust invariance of polynomial dynamical systems using linear programming".
Link "https://doi.org/10.1016/j.sysconle.2012.01.004".

ProgramVariables
  Real x;
  Real y;
End.

Problem
  -1/5000 + (1/20+x)^2 + (3/200 + y)^2 <= 0
  ->
  [
    {x'=(-3*x^2)/2-x^3/2-y, y'=3*x-y}@invariant(0.073036*x^6-0.014461*x^5*y+0.059693*x^4*y^2-0.0063143*x^3*y^3+0.029392*x^2*y^4+0.0036316*y^6+0.064262*x^5+0.24065*x^4*y-0.082711*x^3*y^2+0.28107*x^2*y^3-0.015542*x*y^4+0.036437*y^5+0.47415*x^4-0.56542*x^3*y+1.1849*x^2*y^2-0.22203*x*y^3+0.19053*y^4-0.59897*x^3+1.8838*x^2*y-0.59653*x*y^2+0.47413*y^3+1.0534*x^2-0.51581*x*y+0.43393*y^2-0.35572*x-0.11888*y-0.25586<=0)
  ] !(49/100 + x + x^2 + y + y^2 <= 0)
End.

Tactic "Scripted proof"
  useSolver("Mathematica");
  implyR(1);
  dC("0.073036*x^6-0.014461*x^5*y+0.059693*x^4*y^2-0.0063143*x^3*y^3+0.029392*x^2*y^4+0.0036316*y^6+0.064262*x^5+0.24065*x^4*y-0.082711*x^3*y^2+0.28107*x^2*y^3-0.015542*x*y^4+0.036437*y^5+0.47415*x^4-0.56542*x^3*y+1.1849*x^2*y^2-0.22203*x*y^3+0.19053*y^4-0.59897*x^3+1.8838*x^2*y-0.59653*x*y^2+0.47413*y^3+1.0534*x^2-0.51581*x*y+0.43393*y^2-0.35572*x-0.11888*y-0.25586<=0",1); <(
    dW(1); QE,
    ODEinv(1)
  )
End.

Tactic "Automated proof (from annotations)"
  useSolver("Mathematica");
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Ben Sassi Girard Sankaranarayanan 2014 Fitzhugh-Nagumo"

Description "Fitzhugh-Nagumo system".
Citation "Mohamed Amin Ben Sassi, Antoine Girard, Sriram Sankaranarayanan. Iterative computation of polyhedral invariants sets for polynomial dynamical systems".
Link "10.1109/CDC.2014.7040384".

ProgramVariables
  Real x;
  Real y;
End.

Problem
  -1/20 + (5/4+x)^2 + (-5/4+y)^2 <= 0
  ->
  [
    {x'=7/8+x-x^3/3-y, y'=(2*(7/10+x-(4*y)/5))/25}@invariant(x*((-73)+23*x) < 157+y*(134+81*y))
  ] !(36/5 + 5*x + x^2 + 2*y + y^2 <= 0)
End.

Tactic "Scripted proof"
  implyR(1);
  dC("x*((-73)+23*x) < 157+y*(134+81*y)",1); <(
    dW(1); QE,
    barrier(1)
  )
End.

Tactic "Scripted proof (2)"
  implyR(1);
  dC("0.12152*x^4+0.22807*x^3*y+0.214*x^2*y^2-0.71222*y^4-0.27942*x^3-0.48799*x^2*y-0.2517*x*y^2-0.3366*y^3-0.21526*x^2+0.16728*x*y-0.44613*y^2+0.35541*x-0.21594*y-0.72852<=0",1); <(
    dW(1); QE,
    ODEinv(1)
  )
End.

Tactic "Automated proof (from annotations)"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Bhatia Szego Ex_2_4 page 68"

Description "Ex 2.4 Page 68".
Citation "Bhatia, N. P. and Szego, G. P.. Stability Theory of Dynamical Systems".

ProgramVariables
  Real x;
  Real y;
End.

Problem
  x^2 + (-1/2 + y)^2 < 1/24
  ->
  [
    {x'=-x+2*x^3*y^2 , y'=-y & x^2*y^2<1}@invariant(4*x*(1821+5601250*x)+4827750*x*y+125*(76794+(-45619)*x^3)*y^2 < 1375*(4891+3332*y))
  ] !(x <= -2 | y <= -1)
End.

Tactic "Scripted proof"
  useSolver("Mathematica");
  implyR(1); dC("4*x*(1821+5601250*x)+4827750*x*y+125*(76794+(-45619)*x^3)*y^2 < 1375*(4891+3332*y)", 1); <(
    dW(1); QE,
    barrier(1)
  )
End.

Tactic "Scripted proof (2)"
  implyR(1);
  dC("-0.00028346*x^6*y^3 - 0.00049999*x^5*y^4 + 0.00018784*x^4*y^5 + 0.0002836*x^3*y^6 - 0.00020211*x^2*y^7 - 0.00011251*x*y^8 + 0.00032872 *y^9 - 0.00032162*x^7*y - 0.0012954*x^6*y^2 - 0.0038775*x^5*y^3 - 0.0085289*x^4*y^4 + 0.0016293*x^3*y^5 + 0.0018949*x^2*y^6 - 0.0035577 *x*y^7 + 0.011859*y^8 - 0.00043993*x^7 - 0.0050214*x^6*y - 0.0047617*x^5 *y^2 + 0.011009*x^4*y^3 + 0.012178*x^3*y^4 + 0.0055785*x^2*y^5 + 0.0037099*x*y^6 - 0.062198*y^7 - 0.0023971*x^6 + 0.005244*x^5*y + 0.0031699*x^4*y^2 + 0.00069299*x^3*y^3 + 0.14159*x^2*y^4 - 0.081176*x *y^5 + 0.27277*y^6 + 0.0089006*x^5 + 0.10703*x^4*y + 0.0021026*x^3*y^2 - 0.39217*x^2*y^3 + 0.17202*x*y^4 - 0.85217*y^5 + 0.052331*x^4 - 0.008468*x^3*y - 0.21988*x^2*y^2 - 0.19426*x*y^3 + 1.3672*y^4 - 0.067608*x^3 - 1.3917*x^2*y - 1.3541*x*y^2 - 1.0593*y^3 - 0.80894*x^2 - 2.9459*x*y + 1.0078*y^2 - 1.8819*x - 2.2726*y - 1.433 <= 0 & y>=0 & x>=-2",1); <(
    dW(1); QE,
    ODEinv(1) /* todo */
  )
End.

Tactic "Automated proof (from annotations)"
  useSolver("Mathematica");
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Collin Goriely page 60"

ProgramVariables
  Real x;
  Real y;
End.

Problem
  (2+x)^2 + (-1+y)^2 <= 1/4
  ->
  [
    {x'=x^2+2*x*y+3*y^2, y'=2*y*(2*x+y)}@invariant(x<y, x+y<0)
  ] !(x>0)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("x < y", 1) ; <(
    dC("x+y < 0", 1) ; <(
      dW(1) ; QE,
      dbx(1)
    ),
    dbx(1)
  )
End.

Tactic "Scripted proof (2)"
  implyR(1);
  dC("y>=0 & x+y<=0",1); <(
    dW(1); QE,
    ODEinv(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Dai Gan Xia Zhan JSC14 Ex. 2"

Description "Example 2".
Citation "Liyun Dai, Ting Gan, Bican Xia, Naijun Zhan. Barrier certificates revisited; J. Symb. Comput.".
Link "https://doi.org/10.1016/j.jsc.2016.07.010".

ProgramVariables
  Real x;
  Real y;
End.

Problem
  x^2 + (2+y)^2 <= 1
  ->
  [
    {x'=2*x-x*y, y'=2*x^2-y}@invariant(0.0052726*x^10+0.013182*x^8*y^2+0.013181*x^6*y^4+0.0065909*x^4*y^6+0.0016477*x^2*y^8+0.00016477*y^10-0.060426*x^8*y-0.11666*x^6*y^3-0.08401*x^4*y^5-0.02829*x^2*y^7-0.0026618*y^9-0.0093935*x^8+0.25715*x^6*y^2+0.35556*x^4*y^4+0.18385*x^2*y^6+0.017843*y^8-0.22922*x^6*y-0.82409*x^4*y^3-0.6654*x^2*y^5-0.072582*y^7+0.38533*x^6+1.6909*x^4*y^2+1.7759*x^2*y^4+0.20099*y^6+1.8855*x^4*y-0.83113*x^2*y^3-0.10854*y^5-4.9159*x^4-11.581*x^2*y^2-1.9047*y^4+6.644*x^2*y+7.8358*y^3+1.5029*x^2-13.2338*y^2+10.8962*y-3.4708<=0&0.10731*x^10+0.26827*x^8*y^2+0.26827*x^6*y^4+0.13413*x^4*y^6+0.033534*x^2*y^8+0.0033532*y^10-1.2677*x^8*y-2.4914*x^6*y^3-1.8208*x^4*y^5-0.59588*x^2*y^7-0.057773*y^9-0.82207*x^8+4.1107*x^6*y^2+6.7924*x^4*y^4+3.4828*x^2*y^6+0.36938*y^8+6.8306*x^6*y-0.93431*x^4*y^3-5.9328*x^2*y^5-0.95223*y^7+2.2556*x^6-17.4284*x^4*y^2-6.4448*x^2*y^4-0.33741*y^6-1.2936*x^4*y+16.8675*x^2*y^3+8.8828*y^5-16.1915*x^4-39.7751*x^2*y^2-25.8126*y^4+43.7284*x^2*y+39.2116*y^3-12.7866*x^2-33.0675*y^2+15.2878*y-3.1397<=0)
  ] !(x^2+(-1+y)^2 <= 9/100)
End.

Tactic "Scripted proof"
  useSolver("Mathematica");
  implyR(1);
  dC("0.0052726*x^10+0.013182*x^8*y^2+0.013181*x^6*y^4+0.0065909*x^4*y^6+0.0016477*x^2*y^8+0.00016477*y^10-0.060426*x^8*y-0.11666*x^6*y^3-0.08401*x^4*y^5-0.02829*x^2*y^7-0.0026618*y^9-0.0093935*x^8+0.25715*x^6*y^2+0.35556*x^4*y^4+0.18385*x^2*y^6+0.017843*y^8-0.22922*x^6*y-0.82409*x^4*y^3-0.6654*x^2*y^5-0.072582*y^7+0.38533*x^6+1.6909*x^4*y^2+1.7759*x^2*y^4+0.20099*y^6+1.8855*x^4*y-0.83113*x^2*y^3-0.10854*y^5-4.9159*x^4-11.581*x^2*y^2-1.9047*y^4+6.644*x^2*y+7.8358*y^3+1.5029*x^2-13.2338*y^2+10.8962*y-3.4708<=0&0.10731*x^10+0.26827*x^8*y^2+0.26827*x^6*y^4+0.13413*x^4*y^6+0.033534*x^2*y^8+0.0033532*y^10-1.2677*x^8*y-2.4914*x^6*y^3-1.8208*x^4*y^5-0.59588*x^2*y^7-0.057773*y^9-0.82207*x^8+4.1107*x^6*y^2+6.7924*x^4*y^4+3.4828*x^2*y^6+0.36938*y^8+6.8306*x^6*y-0.93431*x^4*y^3-5.9328*x^2*y^5-0.95223*y^7+2.2556*x^6-17.4284*x^4*y^2-6.4448*x^2*y^4-0.33741*y^6-1.2936*x^4*y+16.8675*x^2*y^3+8.8828*y^5-16.1915*x^4-39.7751*x^2*y^2-25.8126*y^4+43.7284*x^2*y+39.2116*y^3-12.7866*x^2-33.0675*y^2+15.2878*y-3.1397<=0",1); <(
    dW(1); QE,
    ODEinv(1)
  )
End.

Tactic "Automated proof (from annotations)"
  useSolver("Mathematica");
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Dai Gan Xia Zhan JSC14 Ex. 5"

Description "Example 5".
Citation "Liyun Dai, Ting Gan, Bican Xia, Naijun Zhan. Barrier certificates revisited; J. Symb. Comput.".
Link "https://doi.org/10.1016/j.jsc.2016.07.010".

ProgramVariables
  Real x;
  Real y;
End.

Problem
  (1+x)^2 + ((-2)+y)^2 <= 4/25
  ->
  [
    {x'=y, y'=2*x-x^3-y-x^2*y}@invariant(0.23942*x^6 + 0.097208*x^5*y + 0.06013*x^4*y^2 - 0.0076888*x^3*y^3
                                           - 0.022097*x^2*y^4 + 0.067444*x*y^5 + 0.063249*y^6 - 0.11511*x^5
                                           - 0.093461*x^4*y - 0.061763*x^3*y^2 + 0.065902*x^2*y^3 + 0.053766*x*y^4
                                           - 0.1151*y^5 - 0.95442*x^4 + 0.38703*x^3*y + 0.46309*x^2*y^2 - 0.14691*x
                                           *y^3 + 0.11756*y^4 - 0.021196*x^3 - 0.40047*x^2*y - 0.28433*x*y^2
                                           - 0.028468*y^3 - 0.020192*x^2 - 0.37629*x*y - 0.13713*y^2 + 1.9803*x
                                           - 1.4121*y - 0.51895<=0)
  ] !(((-1)+x)^2 + y^2 <= 1/25)
End.

Tactic "Scripted proof"
  useSolver("Mathematica");
  implyR(1);
  dC("0.23942*x^6 + 0.097208*x^5*y + 0.06013*x^4*y^2 - 0.0076888*x^3*y^3 - 0.022097*x^2*y^4 + 0.067444*x*y^5 + 0.063249*y^6 - 0.11511*x^5 - 0.093461*x^4*y - 0.061763*x^3*y^2 + 0.065902*x^2*y^3 + 0.053766*x*y^4 - 0.1151*y^5 - 0.95442*x^4 + 0.38703*x^3*y + 0.46309*x^2*y^2 - 0.14691*x*y^3 + 0.11756*y^4 - 0.021196*x^3 - 0.40047*x^2*y - 0.28433*x*y^2 - 0.028468*y^3 - 0.020192*x^2 - 0.37629*x*y - 0.13713*y^2 + 1.9803*x - 1.4121*y - 0.51895<=0",1); <(
    dW(1); QE,
    ODEinv(1)
  )
End.

Tactic "Automated proof (from annotations)"
  useSolver("Mathematica");
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Darboux Christoffel Int Goriely page 58"

ProgramVariables
  Real x;
  Real y;
End.

Problem
  x^2+y^2<=1
  ->
  [
    {x'=3*((-4)+x^2), y'=3+x*y-y^2}
    @invariant(
      x^2<4,
      -0.0013138*x^5+0.00048141*x^4*y+0.000828*x^2*y^3-0.0016748*x*y^4+0.0008106*y^5+0.010722*x^4-0.0018729*x^3*y+0.0041383*x^2*y^2-0.013911*x*y^3+0.0085091*y^4-0.039948*x^3-0.0060006*x^2*y-0.046355*x*y^2+0.054433*y^3-0.028132*x^2+0.13217*x*y+0.10916*y^2+0.62004*x-0.88775*y-1.1161<=0&(-0.00011438)*x^4*y^2+0.00015105*x^2*y^4-0.0018063*x^5+0.0012699*x^3*y^2+0.0014498*x^2*y^3-0.0014334*x*y^4+0.0013001*y^5+0.017567*x^4+0.0050023*x^3*y-0.0016674*x^2*y^2-0.015315*x*y^3+0.01038*y^4-0.072259*x^3-0.035874*x^2*y-0.050558*x*y^2+0.058708*y^3-0.05097*x^2+0.042626*x*y+0.19257*y^2+1.3148*x+0.014613*y-1.2585<=0,
      x^2+y^2-16<=0)
  ] !(x < (-4) | y < (-4) | x>4 | y>4)
End.

Tactic "Scripted proof"
useSolver("Mathematica");
implyR('R=="x^2+y^2<=1->[{x'=3*((-4)+x^2),y'=3+x*y-y^2}](!(x < (-4)|y < (-4)|x>4|y>4))");
dC("-0.0013138*x^5+0.00048141*x^4*y+0.000828*x^2*y^3-0.0016748*x*y^4+0.0008106*y^5+0.010722*x^4-0.0018729*x^3*y+0.0041383*x^2*y^2-0.013911*x*y^3+0.0085091*y^4-0.039948*x^3-0.0060006*x^2*y-0.046355*x*y^2+0.054433*y^3-0.028132*x^2+0.13217*x*y+0.10916*y^2+0.62004*x-0.88775*y-1.1161<=0&(-0.00011438)*x^4*y^2+0.00015105*x^2*y^4-0.0018063*x^5+0.0012699*x^3*y^2+0.0014498*x^2*y^3-0.0014334*x*y^4+0.0013001*y^5+0.017567*x^4+0.0050023*x^3*y-0.0016674*x^2*y^2-0.015315*x*y^3+0.01038*y^4-0.072259*x^3-0.035874*x^2*y-0.050558*x*y^2+0.058708*y^3-0.05097*x^2+0.042626*x*y+0.19257*y^2+1.3148*x+0.014613*y-1.2585<=0", 'R=="[{x'=3*((-4)+x^2),y'=3+x*y-y^2}](!(x < (-4)|y < (-4)|x>4|y>4))"); <(
  "Use":
    dC("x^2+y^2-16<=0", 'R=="[{x'=3*((-4)+x^2),y'=3+x*y-y^2&true&-0.0013138*x^5+0.00048141*x^4*y+0.000828*x^2*y^3-0.0016748*x*y^4+0.0008106*y^5+0.010722*x^4-0.0018729*x^3*y+0.0041383*x^2*y^2-0.013911*x*y^3+0.0085091*y^4-0.039948*x^3-0.0060006*x^2*y-0.046355*x*y^2+0.054433*y^3-0.028132*x^2+0.13217*x*y+0.10916*y^2+0.62004*x-0.88775*y-1.1161<=0&(-0.00011438)*x^4*y^2+0.00015105*x^2*y^4-0.0018063*x^5+0.0012699*x^3*y^2+0.0014498*x^2*y^3-0.0014334*x*y^4+0.0013001*y^5+0.017567*x^4+0.0050023*x^3*y-0.0016674*x^2*y^2-0.015315*x*y^3+0.01038*y^4-0.072259*x^3-0.035874*x^2*y-0.050558*x*y^2+0.058708*y^3-0.05097*x^2+0.042626*x*y+0.19257*y^2+1.3148*x+0.014613*y-1.2585<=0}](!(x < (-4)|y < (-4)|x>4|y>4))"); <(
      "Use":
        dW('R=="[{x'=3*((-4)+x^2),y'=3+x*y-y^2&(true&-0.0013138*x^5+0.00048141*x^4*y+0.000828*x^2*y^3-0.0016748*x*y^4+0.0008106*y^5+0.010722*x^4-0.0018729*x^3*y+0.0041383*x^2*y^2-0.013911*x*y^3+0.0085091*y^4-0.039948*x^3-0.0060006*x^2*y-0.046355*x*y^2+0.054433*y^3-0.028132*x^2+0.13217*x*y+0.10916*y^2+0.62004*x-0.88775*y-1.1161<=0&(-0.00011438)*x^4*y^2+0.00015105*x^2*y^4-0.0018063*x^5+0.0012699*x^3*y^2+0.0014498*x^2*y^3-0.0014334*x*y^4+0.0013001*y^5+0.017567*x^4+0.0050023*x^3*y-0.0016674*x^2*y^2-0.015315*x*y^3+0.01038*y^4-0.072259*x^3-0.035874*x^2*y-0.050558*x*y^2+0.058708*y^3-0.05097*x^2+0.042626*x*y+0.19257*y^2+1.3148*x+0.014613*y-1.2585<=0)&x^2+y^2-16<=0}](!(x < (-4)|y < (-4)|x>4|y>4))");
        QE,
      "Show":
        ODEinv('R=="[{x'=3*((-4)+x^2),y'=3+x*y-y^2&true&-0.0013138*x^5+0.00048141*x^4*y+0.000828*x^2*y^3-0.0016748*x*y^4+0.0008106*y^5+0.010722*x^4-0.0018729*x^3*y+0.0041383*x^2*y^2-0.013911*x*y^3+0.0085091*y^4-0.039948*x^3-0.0060006*x^2*y-0.046355*x*y^2+0.054433*y^3-0.028132*x^2+0.13217*x*y+0.10916*y^2+0.62004*x-0.88775*y-1.1161<=0&(-0.00011438)*x^4*y^2+0.00015105*x^2*y^4-0.0018063*x^5+0.0012699*x^3*y^2+0.0014498*x^2*y^3-0.0014334*x*y^4+0.0013001*y^5+0.017567*x^4+0.0050023*x^3*y-0.0016674*x^2*y^2-0.015315*x*y^3+0.01038*y^4-0.072259*x^3-0.035874*x^2*y-0.050558*x*y^2+0.058708*y^3-0.05097*x^2+0.042626*x*y+0.19257*y^2+1.3148*x+0.014613*y-1.2585<=0}]x^2+y^2-16<=0")
    ),
  "Show":
    boxAnd('R=="[{x'=3*((-4)+x^2),y'=3+x*y-y^2}](-0.0013138*x^5+0.00048141*x^4*y+0.000828*x^2*y^3-0.0016748*x*y^4+0.0008106*y^5+0.010722*x^4-0.0018729*x^3*y+0.0041383*x^2*y^2-0.013911*x*y^3+0.0085091*y^4-0.039948*x^3-0.0060006*x^2*y-0.046355*x*y^2+0.054433*y^3-0.028132*x^2+0.13217*x*y+0.10916*y^2+0.62004*x-0.88775*y-1.1161<=0&(-0.00011438)*x^4*y^2+0.00015105*x^2*y^4-0.0018063*x^5+0.0012699*x^3*y^2+0.0014498*x^2*y^3-0.0014334*x*y^4+0.0013001*y^5+0.017567*x^4+0.0050023*x^3*y-0.0016674*x^2*y^2-0.015315*x*y^3+0.01038*y^4-0.072259*x^3-0.035874*x^2*y-0.050558*x*y^2+0.058708*y^3-0.05097*x^2+0.042626*x*y+0.19257*y^2+1.3148*x+0.014613*y-1.2585<=0)");
    andR('R=="[{x'=3*((-4)+x^2),y'=3+x*y-y^2}]-0.0013138*x^5+0.00048141*x^4*y+0.000828*x^2*y^3-0.0016748*x*y^4+0.0008106*y^5+0.010722*x^4-0.0018729*x^3*y+0.0041383*x^2*y^2-0.013911*x*y^3+0.0085091*y^4-0.039948*x^3-0.0060006*x^2*y-0.046355*x*y^2+0.054433*y^3-0.028132*x^2+0.13217*x*y+0.10916*y^2+0.62004*x-0.88775*y-1.1161<=0&[{x'=3*((-4)+x^2),y'=3+x*y-y^2}](-0.00011438)*x^4*y^2+0.00015105*x^2*y^4-0.0018063*x^5+0.0012699*x^3*y^2+0.0014498*x^2*y^3-0.0014334*x*y^4+0.0013001*y^5+0.017567*x^4+0.0050023*x^3*y-0.0016674*x^2*y^2-0.015315*x*y^3+0.01038*y^4-0.072259*x^3-0.035874*x^2*y-0.050558*x*y^2+0.058708*y^3-0.05097*x^2+0.042626*x*y+0.19257*y^2+1.3148*x+0.014613*y-1.2585<=0"); <(
      "[{x'=3*((-4)+x^2),y'=3+x*y-y^2}]-0.0013138*x^5+0.00048141*x^4*y+0.000828*x^2*y^3-0.0016748*x*y^4+0.0008106*y^5+0.010722*x^4-0.0018729*x^3*y+0.0041383*x^2*y^2-0.013911*x*y^3+0.0085091*y^4-0.039948*x^3-0.0060006*x^2*y-0.046355*x*y^2+0.054433*y^3-0.028132*x^2+0.13217*x*y+0.10916*y^2+0.62004*x-0.88775*y-1.1161<=0":
        ODEinv('R=="[{x'=3*((-4)+x^2),y'=3+x*y-y^2}]-0.0013138*x^5+0.00048141*x^4*y+0.000828*x^2*y^3-0.0016748*x*y^4+0.0008106*y^5+0.010722*x^4-0.0018729*x^3*y+0.0041383*x^2*y^2-0.013911*x*y^3+0.0085091*y^4-0.039948*x^3-0.0060006*x^2*y-0.046355*x*y^2+0.054433*y^3-0.028132*x^2+0.13217*x*y+0.10916*y^2+0.62004*x-0.88775*y-1.1161<=0"),
      "[{x'=3*((-4)+x^2),y'=3+x*y-y^2}](-0.00011438)*x^4*y^2+0.00015105*x^2*y^4-0.0018063*x^5+0.0012699*x^3*y^2+0.0014498*x^2*y^3-0.0014334*x*y^4+0.0013001*y^5+0.017567*x^4+0.0050023*x^3*y-0.0016674*x^2*y^2-0.015315*x*y^3+0.01038*y^4-0.072259*x^3-0.035874*x^2*y-0.050558*x*y^2+0.058708*y^3-0.05097*x^2+0.042626*x*y+0.19257*y^2+1.3148*x+0.014613*y-1.2585<=0":
        dC("x^2<4", 'R=="[{x'=3*((-4)+x^2),y'=3+x*y-y^2}](-0.00011438)*x^4*y^2+0.00015105*x^2*y^4-0.0018063*x^5+0.0012699*x^3*y^2+0.0014498*x^2*y^3-0.0014334*x*y^4+0.0013001*y^5+0.017567*x^4+0.0050023*x^3*y-0.0016674*x^2*y^2-0.015315*x*y^3+0.01038*y^4-0.072259*x^3-0.035874*x^2*y-0.050558*x*y^2+0.058708*y^3-0.05097*x^2+0.042626*x*y+0.19257*y^2+1.3148*x+0.014613*y-1.2585<=0"); <(
          "Use":
            ODEinv('R=="[{x'=3*((-4)+x^2),y'=3+x*y-y^2&true&x^2 < 4}](-0.00011438)*x^4*y^2+0.00015105*x^2*y^4-0.0018063*x^5+0.0012699*x^3*y^2+0.0014498*x^2*y^3-0.0014334*x*y^4+0.0013001*y^5+0.017567*x^4+0.0050023*x^3*y-0.0016674*x^2*y^2-0.015315*x*y^3+0.01038*y^4-0.072259*x^3-0.035874*x^2*y-0.050558*x*y^2+0.058708*y^3-0.05097*x^2+0.042626*x*y+0.19257*y^2+1.3148*x+0.014613*y-1.2585<=0")
            ,
          "Show":
            ODEinv('R=="[{x'=3*((-4)+x^2),y'=3+x*y-y^2}]x^2<4")
        )
    )
)
End.

Tactic "Automated proof (from annotations)"
  useSolver("Mathematica");
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Djaballah Chapoutot Kieffer Bouissou 2017 Ex. 2"

Description "Example 2, p. 293".
Citation "Adel Djaballah, Alexandre Chapoutot, Michel Kieffer, Olivier Bouissou; Construction of parametric barrier functions for dynamical systems using interval analysis; Automatica 78 (2017) 287–296.".
Link "https://doi.org/10.1016/j.automatica.2016.12.013".

ProgramVariables
  Real x;
  Real y;
End.

Problem
  -1/20 + (5/4 + x)^2 + (-5/4 + y)^2 <= 0
  ->
  [
    {x'=x+y , y'=x*y-y^2/2}@invariant(y>0, y*((-104420)+(-73565)*x+18407*y) < 44444)
  ] !((5/2 + x)^2 + (-4/5 + y)^2 <= 1/20)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("y>0", 1) ; <(
    dC("y*((-104420)+(-73565)*x+18407*y) < 44444", 1) ; <(
      dW(1) ; QE,
      barrier(1)
    ),
    dbx(1)
  )
End.

Tactic "Automated proof (from annotations)"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Dumortier Llibre Artes Ex. 10_11"

Description "Exercise 10.11".
Citation "Freddy Dumortier, Jaume Llibre, Joan C. Artes. Qualitative Theory of Planar Differential Systems".

ProgramVariables
  Real x;
  Real y;
End.

Problem
  x^2 + y^2 < 1/4
  ->
  [
    {x'=(-70)-100*x+70*x^2+100*x^3-200*y+200*x^2*y, y'=146*x+100*y+140*x*y+100*x^2*y+200*x*y^2}
    @invariant(1+x>0, x < 1)
  ] !(2*x >= 3 | x <= (-3)/2)
End.

Tactic "Scripted proof"
implyR('R=="x^2+y^2 < 1/4->[{x'=(-70)-100*x+70*x^2+100*x^3-200*y+200*x^2*y,y'=146*x+100*y+140*x*y+100*x^2*y+200*x*y^2}](!(2*x>=3|x<=(-3)/2))");
dC("1+x>0", 'R=="[{x'=(-70)-100*x+70*x^2+100*x^3-200*y+200*x^2*y,y'=146*x+100*y+140*x*y+100*x^2*y+200*x*y^2}](!(2*x>=3|x<=(-3)/2))"); <(
  "Use":
    dC("x < 1", 'R=="[{x'=(-70)-100*x+70*x^2+100*x^3-200*y+200*x^2*y,y'=146*x+100*y+140*x*y+100*x^2*y+200*x*y^2&true&1+x>0}](!(2*x>=3|x<=(-3)/2))"); <(
      "Use":
        dW('R=="[{x'=(-70)-100*x+70*x^2+100*x^3-200*y+200*x^2*y,y'=146*x+100*y+140*x*y+100*x^2*y+200*x*y^2&(true&1+x>0)&x < 1}](!(2*x>=3|x<=(-3)/2))");
        QE,
      "Show":
        ODEinv('R=="[{x'=(-70)-100*x+70*x^2+100*x^3-200*y+200*x^2*y,y'=146*x+100*y+140*x*y+100*x^2*y+200*x*y^2&true&1+x>0}]x < 1")
    ),
  "Show":
    ODEinv('R=="[{x'=(-70)-100*x+70*x^2+100*x^3-200*y+200*x^2*y,y'=146*x+100*y+140*x*y+100*x^2*y+200*x*y^2}]1+x>0")
)
End.

Tactic "Automated proof"
  autoClose
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Dumortier Llibre Artes Ex. 10_11b"

Description "Exercise 10.11b".
Citation "Freddy Dumortier, Jaume Llibre, Joan C. Artes. Qualitative Theory of Planar Differential Systems".

ProgramVariables
  Real x;
  Real y;
End.

Problem
  (-1 + x)^2 + (1 + y)^2 < 1/4
  ->
  [
    {x'=1+x+x^2+x^3+2*y+2*x^2*y, y'=-y+2*x*y+x^2*y+2*x*y^2}@invariant(y<0)
  ] !(y >= 1)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("y < 0", 1) ; <(
    dW(1) ; QE,
    dbx(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Dumortier Llibre Artes Ex. 10_15_i"

Description "Exercise 10.15".
Citation "Freddy Dumortier, Jaume Llibre, Joan C. Artes. Qualitative Theory of Planar Differential Systems".

ProgramVariables
  Real x;
  Real y;
End.

Problem
  x > -1 & x < -3/4 & y <= 3/2 & y >= 1
  ->
  [
    {x'=-42*x^7+50*x^2*y+156*x^3*y+258*x^4*y-46*x^5*y+68*x^6*y+20*x*y^6-8*y^7,
     y'=y*(1110*x^6-3182*x^4*y-220*x^5*y+478*x^3*y^3+487*x^2*y^4-102*x*y^5-12*y^6)}@invariant(y>0)
  ] !(x > 1 + y)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("y>0", 1) ; <(
    dbx(1),
    dbx(1)
  )
End.

Tactic "Automated proof (from annotations)"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Dumortier Llibre Artes Ex. 10_15_ii"

Description "Exercise 10.15 (modified)".
Citation "Freddy Dumortier, Jaume Llibre, Joan C. Artes. Qualitative Theory of Planar Differential Systems".

ProgramVariables
  Real x;
  Real y;
End.

Problem
  x > -1 & x < -1/2 & y <= -1/10 & y >= -3/10
  ->
  [
    {x'=315*x^7+477*x^6*y-113*x^5*y^2+301*x^4*y^3-300*x^3*y^4-192*x^2*y^5+128*x*y^6-16*y^7,
     y'=y*(2619*x^6-99*x^5*y-3249*x^4*y^2+1085*x^3*y^3+596*x^2*y^4-416*x*y^5+64*y^6)}@invariant(x<y)
  ] !(x > 1 + y)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("x < y", 1) ; <(
    dW(1) ; QE,
    dbx(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Dumortier Llibre Artes Ex. 10_9"

Description "Exercise 10.9".
Citation "Freddy Dumortier, Jaume Llibre, Joan C. Artes. Qualitative Theory of Planar Differential Systems".

ProgramVariables
  Real x;
  Real y;
End.

Problem
  (-1 + x)^2 + (1 + y)^2 < 1/4
  ->
  [
    {x'=x^4+2*x*y^2-6*x^2*y^2+y^4+x*(x^2-y^2), y'=2*x^2*y-4*x^3*y+4*x*y^3-y*(x^2-y^2)}@invariant(y < 0)
  ] !(y>=1)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("y < 0", 1) ; <(
    dW(1) ; QE,
    dbx(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Dumortier Llibre Artes Ex. 1_11a"

Description "Exercise 1.11".
Citation "Freddy Dumortier, Jaume Llibre, Joan C. Artes. Qualitative Theory of Planar Differential Systems".

ProgramVariables
  Real x;
  Real y;
End.

Problem
  x > -1/2 & x < -1/3 & y < 0 & y >= -1/2
  ->
  [
    {x'=2*x-x^5-x*y^4, y'=y-x^2*y-y^3}@invariant(x < 0, y < 0)
  ] !(x + y > 0)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("x < 0", 1) ; <(
    dC("y < 0", 1) ; <(
      dW(1) ; QE,
      dbx(1)
      ),
    dbx(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Dumortier Llibre Artes Ex. 1_9a"

Description "Example 1.9a".
Citation "Freddy Dumortier, Jaume Llibre, Joan C. Artes. Qualitative Theory of Planar Differential Systems".

ProgramVariables
  Real x;
  Real y;
End.

Problem
  x>-1/2 & x < -1/3 & y<0 & y>=-1/2
  ->
  [
    {x'=x*(1-x^2-y^2)+y*((-1+x^2)^2+y^2), y'=y*(1-x^2-y^2)-y*((-1+x^2)^2+y^2)}@invariant(y < 0, x+y < 0)
  ] !(x>=0)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("y < 0", 1) ; <(
    dC("x+y < 0", 1) ; <(
      dbx(1),
      dbx(1)
    ),
    dbx(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Dumortier Llibre Artes Ex. 5_2"

Description "Example 5.2".
Citation "Freddy Dumortier, Jaume Llibre, Joan C. Artes. Qualitative Theory of Planar Differential Systems".

ProgramVariables
  Real x;
  Real y;
End.

Problem
  x > (-1) & x < (-1)/2 & y < (-1)/2 & y >= (-1)
  ->
  [
    {x'=y, y'=x^5-x*y}@invariant(x^5-x*y-4*x^3*y<=0, y<=0)
  ] !(x + y > 1)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("x^5-x*y-4*x^3*y<=0", 1) ; <(
    dC("y<=0", 1) ; <(
      dW(1) ; QE,
      ODEinv(1)
    ),
    ODEinv(1)
  )
End.

Tactic "Scripted proof (2) fails"
  implyR(1);
  dC("x+1/2<=0 & y+1/2<=0",1); <(
    dW(1); QE,
    ODEinv(1) /* todo */
  )
End.

Tactic "Automated proof (from annotations)"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Dumortier Llibre Artes Ex. 5_2_ii"

Description "Exercise 5.2 ii".
Citation "Freddy Dumortier, Jaume Llibre, Joan C. Artes. Qualitative Theory of Planar Differential Systems".

ProgramVariables
  Real x;
  Real y;
End.

Problem
  x > -4/5 & x < -1/3 & y < 0 & y >= -1
  ->
  [
    {x'=2*x-2*x*y, y'=-x^2+2*y+y^2}@invariant(x < 0, y < 0)
  ] !((x = 0 & y = 0) | x + y > 1)
End.

Tactic "Scripted proof"
  implyR(1);
  dC("x < 0", 1); <(
    "Use":
      dC("y < 0", 1); <(
        "Use": dW(1); QE,
        "Show": dbx(1)
      ),
    "Show":
      dbx(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Fitzhugh Nagumo Ben Sassi Girard 2"

Description "Fitzhugh-Nagumo system (modified)".
Citation "Mohamed Amin Ben Sassi, Antoine Girard, Sriram Sankaranarayanan. Iterative computation of polyhedral invariants sets for polynomial dynamical systems".
Link "10.1109/CDC.2014.7040384".

ProgramVariables
  Real a;
  Real y;
End.

Problem
  -1<=a & a<=-0.5 & 1<=y & y<=1.5
  ->
  [
    {a'=7/8+a-a^3/3-y, y'=(2*(7/10+a-(4*y)/5))/25}@invariant(0.12152*a^4+0.22807*a^3*y+0.214*a^2*y^2-0.71222*y^4-0.27942*a^3-0.48799*a^2*y-0.2517*a*y^2-0.3366*y^3-0.21526*a^2+0.16728*a*y-0.44613*y^2+0.35541*a-0.21594*y-0.72852<=0)
  ] !(-2.5<=a & a<=-2 & -2<=y & y<=-1.5)
End.

Tactic "Scripted proof"
  useSolver("Mathematica");
  implyR(1);
  dC("0.12152*a^4+0.22807*a^3*y+0.214*a^2*y^2-0.71222*y^4-0.27942*a^3-0.48799*a^2*y-0.2517*a*y^2-0.3366*y^3-0.21526*a^2+0.16728*a*y-0.44613*y^2+0.35541*a-0.21594*y-0.72852<=0",1); <(
    dW(1); QE,
    barrier(1)
  )
End.

Tactic "Automated proof (from annotations)"
  useSolver("Mathematica");
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Forsman Phd Ex 6_1 page 99"

ProgramVariables
  Real x;
  Real y;
End.

Problem
  x^2 + (-2 + y)^2 < 1/24
  ->
  [
    {x'=-x+2*x^2*y, y'=-y}@invariant(y>0, 12299+9595*x>0)
  ] !(x <= -2 | y <= -1)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("y>0", 1) ; <(
    dC("12299+9595*x>0", 1) ; <(
      dW(1) ; QE,
      barrier(1)
    ),
    dbx(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Forsman Phd Ex 6_14 page 119"

ProgramVariables
  Real x;
  Real y;
End.

Problem
  x^2 + (-1 + y)^2 < 1/8
  ->
  [
    {x'=-2*x+y^4, y'=-y+3*x*y^3}@invariant(y>0)
  ] !(y <= -1)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("y>0", 1) ; <(
    dW(1) ; QE,
    dbx(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Hamiltonian System 1"

ProgramVariables
  Real x;
  Real y;
End.

Problem
  (2/3 + x)^2 + y^2 <= 1/24
  ->
  [
    {x'=-2*y, y'=-2*x-3*x^2}@invariant(x^2*(1+x)<=1855/12521+y^2, x^2*(1+x)>=121/1235+y^2)
  ] !(x>0)
End.

Tactic "Scripted proof"
  implyR(1) ;
  dC("x^2*(1+x)<=1855/12521+y^2", 1) ; <(
    dC("x^2*(1+x)>=121/1235+y^2", 1) ; <(
      ODEinv(1),
      dI(1)
    ),
    dI(1)
  )
End.

Tactic "Scripted proof (2)"
  implyR(1);
  dC("-(x^2+x^3-y^2)<0 & x<0",1); <(
    dW(1); QE,
    ODEinv(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Hybrid Controller Mode 1"

Citation "Hui Kong, Sergiy Bogomolov, Christian Schilling, Yu Jiang, Thomas A. Henzinger. Invariant Clusters for Hybrid Systems; CoRR abs/1605;01450 (2016)".

ProgramVariables
  Real x;
  Real y;
End.

Problem
  (x-9)^2+(y-20)^20 <= 4
  ->
  [
    {x'=y^2+10*y+25, y'=2*x*y+10*x-40*y-200 & 5<=x&x<=35}@invariant(5133+8*((-40)+x)*x>=4*y*(10+y))
  ] y<=48
End.

Tactic "Scripted proof"
  implyR(1) ; dC("5133+8*((-40)+x)*x>=4*y*(10+y)", 1) ; <(
    dW(1) ; QE,
    dI(1)
  )
End.

Tactic "Scripted proof (2)"
  implyR(1) ; cut("\exists u11 \exists u12 (u11^2+u12^2!=0 & invcluster(x,y,u11,u12)=0)") ; <(
    existsL('Llast)*2 ; dC("invcluster(x,y,u11,u12)=0", 1) ; <(
      dWplus(1); QE,
      ODEinv(1)
    )
    ,
    hideR(1) ; QE
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Hybrid Controller Mode 2"

Citation "Hui Kong, Sergiy Bogomolov, Christian Schilling, Yu Jiang, Thomas A. Henzinger. Invariant Clusters for Hybrid Systems; CoRR abs/1605;01450 (2016)".

ProgramVariables
  Real x;
  Real y;
End.

Problem
  (x-9)^2+(y-20)^20 <= 4
  ->
  [
    {x'=-y^2-10*y-25, y'=8*x*y+40*x-160*y-800 & 5<=x&x<=35}@invariant(1961/13+x^2+1/8*y*(10+y)<=40*x)
  ] y<=48
End.

Tactic "Scripted proof"
  implyR(1) ; dC("1961/13+x^2+1/8*y*(10+y)<=40*x", 1) ; <(
    dW(1) ; QE,
    dI(1)
  )
End.

Tactic "Scripted proof (2)"
  implyR(1) ; cut("\exists u21 \exists u22 (u21^2+u22^2!=0 & invcluster(x,y,u21,u22)=0)") ; <(
    existsL('Llast)*2 ; dC("invcluster(x,y,u21,u22)=0", 1) ; <(
      dWplus(1); QE,
      dI(1)
    )
    ,
    hideR(1) ; QE
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Invariant Clusters Example 6"

Citation "Hui Kong, Sergiy Bogomolov, Christian Schilling, Yu Jiang, Thomas A. Henzinger. Invariant Clusters for Hybrid Systems; CoRR abs/1605;01450 (2016)".

ProgramVariables
  Real x;
  Real y;
End.

Problem
  (x+15)^2+(y-17)^2-1<=0
  ->
  [
    {x'=y^2, y'=x*y}@invariant(4490/41+x^2>=y^2)
  ] !((x-11)^2+(y-16.5)^2-1<=0)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("4490/41+x^2>=y^2", 1) ; <(
    dW(1) ; QE,
    dI(1)
  )
End.

Tactic "Scripted proof (2)"
  implyR(1); cut("\exists u1 \exists u3 (u1^2+u3^2!=0 & invcluster(x,y,u1,u3)=0)"); <(
    existsL('Llast)*2; dC("invcluster(x,y,u1,u3)=0", 1); doall(ODEinv(1)); done
    ,
    hideR(1) ; QE
  )
End.

Tactic "Scripted proof (3)"
  implyR(1); dC("x^2-y^2 - (old(x)^2-old(y)^2) = 0", 1); doall(ODEinv(1)); done
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Invariant Clusters Example 7"

Citation "Hui Kong, Sergiy Bogomolov, Christian Schilling, Yu Jiang, Thomas A. Henzinger. Invariant Clusters for Hybrid Systems; CoRR abs/1605;01450 (2016)".

ProgramVariables
  Real x;
  Real y;
End.

Problem
  1-(x+6)^2 - (y+6)^2 >= 0
  ->
  [
    {x'=y^2-2*y, y'=x^2+2*x}@invariant(3*x^2*(3+x)<=1181+3*((-3)+y)*y^2)
  ] !(1-(x-8.2)^2 - (y-4)^2 >= 0)
End.

Tactic "Scripted proof"
  implyR(1) ;
  dC("3*x^2*(3+x)<=1181+3*((-3)+y)*y^2", 1) ; <(
    dW(1) ; QE,
    dI(1)
  )
End.

Tactic "Scripted proof (1)"
  implyR(1) ; cut("\exists u1 \exists u3 (u1^2+u3^2!=0 & invcluster(x,y,u1,u3)=0)") ; <(
    existsL('Llast)*2 ; dC("invcluster(x,y,u1,u3)=0", 1) ; <(
      dWplus(1) ; QE,
      dI(1)
    )
    ,
    hideR(1) ; QE
  )
End.

Tactic "Scripted proof (2)"
  /* disprovable */ /*invcluster(x,y,-3081.9,7.1798)=0*/
  implyR(1); dC("invcluster(x,y,-3081.9,21.539)<=0", 1);
  doall(ODEinv(1)); done
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Locally stable nonlinear system"

ProgramVariables
 Real x;   /* x-coordinate */
 Real y;   /* y-coordinate */
End.

Problem
  x^2 <= 1/2 & (y + 2)^2 <= 1/3
  ->
  [
    {x'=-x + y - x^3, y'=-x - y + y^2}@invariant(2*x^2+(y+3/2)^2-4<=0)
  ] ((-1 + x)^2 + (-3/2 + y)^2 > 1/4)
End.

Tactic "Scripted proof"
  implyR(1) ;
  dC("2*x^2+(y+3/2)^2-4<=0", 1) ; <(
    dW(1) ; QE,
    barrier(1)
  )
End.

Tactic "Automated proof (from annotations)"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/MIT astronautics Lyapunov"

ProgramVariables
 Real x;   /* x-coordinate */
 Real y;   /* y-coordinate */
End.

Problem
  x^2 <= 1/2 & y^2 <= 1/3
  ->
  [
    {x'=y - x^7*(x^4 + 2*y^2 - 10), y'=-x^3 - 3*(y^5)*(x^4 + 2*y^2 - 10)}
    @invariant(x^4 + 2*y^2 <= 10)
  ] ((-2 + x)^2 + (-3 + y)^2 > 1/4)
End.

Tactic "Scripted proof"
implyR('R=="x^2<=1/2&y^2<=1/3->[{x'=y-x^7*(x^4+2*y^2-10),y'=-x^3-3*y^5*(x^4+2*y^2-10)}](-2+x)^2+(-3+y)^2>1/4");
dC("x^4+2*y^2<=10", 'R=="[{x'=y-x^7*(x^4+2*y^2-10),y'=-x^3-3*y^5*(x^4+2*y^2-10)}](-2+x)^2+(-3+y)^2>1/4"); <(
  "Use":
    dW('R=="[{x'=y-x^7*(x^4+2*y^2-10),y'=-x^3-3*y^5*(x^4+2*y^2-10)&true&x^4+2*y^2<=10}](-2+x)^2+(-3+y)^2>1/4");
    QE,
  "Show":
    dbx('R=="[{x'=y-x^7*(x^4+2*y^2-10),y'=-x^3-3*y^5*(x^4+2*y^2-10)}]x^4+2*y^2<=10")
)
End.

Tactic "Automated proof"
  autoClose
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Man Maccallum Goriely Page 57"

ProgramVariables
  Real x;
  Real y;
End.

Problem
  x^2 + y^2 <= 1/4
  ->
  [
    {x'=-y+2*x^2*y, y'=y+2*x*y^2}@invariant(2*x^2 < 1)
  ] !(x > 3)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("2*x^2 < 1", 1) ; <(
    dW(1) ; QE,
    dbx(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Nonlinear Circuit Example 3"

Citation "Mohamed H. Zaki, William Denman, Sofiène Tahar, Guy Bois. Integrating Abstraction Techniques for Formal Verification of Analog Designs".

ProgramVariables
  Real x1;
  Real x2;
End.

Problem
  x1>=2 & x2^2<=1
  ->
  [
    { x1'=-x2^3, x2'=x1-x1^3 }@invariant(x1^4>=50000/7143+2*x1^2+x2^4)
  ] x1>=1
End.

Tactic "Scripted proof"
  implyR(1) ; dC("x1^4>=50000/7143+2*x1^2+x2^4", 1) ; <(
    barrier(1),
    dI(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Nonlinear Circuit Example 4"

Citation "Mohamed H. Zaki, William Denman, Sofiène Tahar, Guy Bois. Integrating Abstraction Techniques for Formal Verification of Analog Designs".

ProgramVariables
  Real x1;
  Real x2;
End.

Problem
  -1.1<=x1&x1<=-0.7 & 0.5<=x2&x2<=0.9
  ->
  [
    { x1'=-x2^3, x2'=x1-x1^3 }
  ] x1^2+x2-3<0
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Nonlinear Circuit RLC Circuit Oscillator"

Citation "Mohamed H. Zaki, William Denman, Sofiène Tahar, Guy Bois. Integrating Abstraction Techniques for Formal Verification of Analog Designs".

ProgramVariables
  Real Il;
  Real Vc;
End.

Problem
  Il=1 & Vc=1
  ->
  [
    { Il'=-Vc-1/5*Vc^2, Vc'=-2*Il-Il^2+Il^3 }@invariant(4993/2416+Il^4+2*Vc^2+4/15*Vc^3<=4/3*Il^2*(3+Il))
  ] Vc<=3
End.

Tactic "Scripted proof"
  implyR(1) ; dC("4993/2416+Il^4+2*Vc^2+4/15*Vc^3<=4/3*Il^2*(3+Il)", 1) ; <(
    dW(1) ; QE,
    dI(1)
  )
End.

Tactic "Scripted proof (2)"
  implyR(1);
  dC("1-5*Il^3-15*Il^2+Vc^3+15/2*Vc^2+15/4*Il^4 <= 0", 1); /* invariant from paper */
  <(ODEinv(1), ODEinv(1))
End.

Tactic "Automated proof"
  auto
End.

End.


ArchiveEntry "Benchmarks/Nonlinear/Prajna PhD Thesis 2-4-1 Page 31 (Variant)"

Description "Variant of Page 31 with x'=x instead of x'=y".
Citation "Prajna, Stephen (2005) Optimization-based methods for nonlinear and hybrid systems verification; Dissertation (Ph.D.), California Institute of Technology.".
Link "http://resolver.caltech.edu/CaltechETD:etd-05272005-144358".

ProgramVariables
  Real x;
  Real y;
End.

Problem
  (-3/2 + x)^2 + y^2 <= 1/4
  ->
  [
    {x'=x, y'=-x+x^3/3-y}@invariant(x>0)
  ] !((1 + x)^2 + (1 + y)^2 <= 4/25)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("x>0", 1) ; <(
    dW(1) ; QE,
    dbx(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Stable Limit Cycle 2"

ProgramVariables
  Real a;
  Real y;
End.

Problem
  a^2 + y^2 < 1/16
  ->
  [
    {a'=a-a^3+y-a*y^2, y'=-a+y-a^2*y-y^3}@invariant(a^2+y^2<=1)
  ] !(a < -1 | y < -1 | a > 1 | y > 1)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("a^2+y^2<=1", 1) ; <(
    dW(1) ; QE,
    ODEinv(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Strogatz Example 6_3_2"

Description "Example 6.3.2".
Citation "Steven H. Strogatz. nonlinear Dynamics And Chaos: With Applications To Physics, Biology, Chemistry, And Engineering".

ProgramVariables
  Real x;
  Real y;
End.

Problem
  x > -4/5 & x < -1/3 & y < 3/2 & y >= 1
  ->
  [
    {x'=-x+x*(x^2+y^2), y'=x+y*(x^2+y^2)}@invariant(3305*(x+y)>596)
  ] !(x < -1/3 & y >= 0 & 2*y < 1 & x > -4/5)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("3305*(x+y)>596", 1) ; <(
    dW(1) ; QE,
    barrier(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Strogatz Example 6_8_3"

Description "Example 6.8.3".
Citation "Steven H. Strogatz. nonlinear Dynamics And Chaos: With Applications To Physics, Biology, Chemistry, And Engineering".

ProgramVariables
  Real x;
  Real y;
End.

Problem
  2*(-1/3 + x)^2 + y^2 < 1/16
  ->
  [
    {x'=x^2*y, y'=x^2-y^2}@invariant(x>0)
  ] !(x <= -2)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("x>0", 1) ; <(
    dW(1) ; QE,
    dbx(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Strogatz Exercise 6_1_5"

Description "Exercise 6.1.5".
Citation "Steven H. Strogatz. nonlinear Dynamics And Chaos: With Applications To Physics, Biology, Chemistry, And Engineering".

ProgramVariables
  Real x;
  Real y;
End.

Problem
  (-1/3 + x)^2 + 2*(-1/3 + y)^2 < 1/25
  ->
  [
    {x'=x*(2-x-y), y'=x-y}@invariant(x>0, 19801*x^2+10*y*((-22888)+11079*y)+x*(64611+33500*y) < 97121)
  ] !(x >= 2 | x <= -2)
End.

Tactic "Scripted proof"
implyR(1) ; dC("x>0", 1) ; <(
  dC("19801*x^2+10*y*((-22888)+11079*y)+x*(64611+33500*y) < 97121", 1) ; <(
    dW(1) ; QE,
    barrier(1)
  ),
  dbx(1)
)
End.

Tactic "Scripted proof (2)"
  implyR(1);
  dC("x>=0 & y > 0 & x<2",1); <(
    dW(1); QE,
    ODEinv(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Strogatz Exercise 6_1_9 Dipole"

Description "Exercise 6.1.9".
Citation "Steven H. Strogatz. nonlinear Dynamics And Chaos: With Applications To Physics, Biology, Chemistry, And Engineering".

ProgramVariables
  Real x;
  Real y;
End.

Problem
  (-1/3 + x)^2 + y^2 < 1/25
  ->
  [
    {x'=2*x*y, y'=-x^2+y^2}@invariant(x>0)
  ] !(x <= -2)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("x>0", 1) ; <(
    dW(1) ; QE,
    dbx(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Strogatz Exercise 6_6_1 Reversible System"

Description "Exercise 6.6.1".
Citation "Steven H. Strogatz. nonlinear Dynamics And Chaos: With Applications To Physics, Biology, Chemistry, And Engineering".

ProgramVariables
  Real x;
  Real y;
End.

Problem
  (-1/3 + x)^2 + (-1/3 + y)^2 < 1/16
  ->
  [
    {x'=(1-x^2)*y, y'=1-y^2}@invariant(1+x>0, x<1)
  ] !(x >= 2 | x <= -2)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("1+x>0", 1) ; <(
    dC("x < 1", 1) ; <(
      dW(1) ; QE,
      dbx(1)
    ),
    dbx(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Strogatz Exercise 6_6_2 Limit Cycle"

Description "Exercise 6.6.2".
Citation "Steven H. Strogatz. nonlinear Dynamics And Chaos: With Applications To Physics, Biology, Chemistry, And Engineering".

ProgramVariables
  Real x;
  Real y;
End.

Problem
  (-1/3 + x)^2 + (-1/3 + y)^2 < 1/16
  ->
  [
    {x'=y, y'=-x+y*(1-x^2-y^2)}@invariant(x^2+y^2 < 1, 346400*(x^2+y^2)>8503)
  ] !(x^2 + y^2 = 0 | x >= 2 | x <= -2)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("x^2+y^2 < 1", 1) ; <(
    dC("346400*(x^2+y^2)>8503", 1) ; <(
      dW(1) ; QE,
      dbx(1)
    ),
    dbx(1)
  )
End.

Tactic "Scripted proof (2)"
  implyR(1);
  dC("x^2 + y^2 - 2 <=0 & -(x^2 + y^2 - 0.01) <= 0",1); <(
    dW(1); QE,
    ODEinv(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Strogatz Exercise 7_3_5"

Description "Exercise 7.3.5".
Citation "Steven H. Strogatz. nonlinear Dynamics And Chaos: With Applications To Physics, Biology, Chemistry, And Engineering".

ProgramVariables
  Real x;
  Real y;
End.

Problem
  (-1/3 + x)^2 + (-1/3 + y)^2 < 1/16
  ->
  [
    {x'=-x-y+x*(x^2+2*y^2), y'=x-y+y*(x^2+2*y^2)}@invariant(x^2+y^2>0, 5*x^2+2*x*y+7*y^2 < 4)
  ] !((x = 0 & y = 0) | x <= -2 | y <= -1)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("x^2+y^2>0", 1) ; <(
    dC("5*x^2+2*x*y+7*y^2 < 4", 1) ; <(
      dW(1) ; QE,
      dbx(1)
    ),
    dbx(1)
  )
End.

Tactic "Scripted proof (2)"
  implyR(1);
  dC("-4/5 + x^2 + 2*x*y/5 + 7*y^2/5 <= 0 & x^2+y^2!=0",1); <(
    dW(1); QE,
    ODEinv(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Unstable Unit Circle 2"

ProgramVariables
  Real b;
  Real y;
End.

Problem
  b = 1/2 & y = 1/2
  ->
  [
    {b'=-b+b^3-y+b*y^2, y'=b-y+b^2*y+y^3}@invariant(b^2+y^2 < 1)
  ] !(b^2 + y^2 > 2)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("b^2+y^2 < 1", 1) ; <(
    dW(1) ; QE,
    dbx(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Wien bridge oscillator"

ProgramVariables
 Real x;   /* x-coordinate */
 Real y;   /* y-coordinate */
End.

Problem
  x^2 <= 1/2 & y^2 <= 1/3
  ->
  [
    {x'=-x - (1117*y)/500 + (439*y^3)/200 - (333*y^5)/500, y'=x + (617*y)/500 - (439*y^3)/200 + (333*y^5)/500}
    @invariant(x^2 + x*y + y^2 - 111/59 <= 0)
  ] (x - 4*y < 8)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("x^2+x*y+y^2-111/59<=0", 1) ; <(
    dW(1) ; QE,
    barrier(1)
  )
End.

Tactic "Scripted proof (2)"
  implyR(1); dC("x^2 + x*y + y^2 - 111/59 <= 0", 1); doall(ODEinv(1)); done
End.

Tactic "Automated proof (from annotations)"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Wiggins Example 17_1_2"

ProgramVariables
  Real x;
  Real y;
End.

Problem
  (-1/3 + x)^2 + (-1/3 + y)^2 < 1/16
  ->
  [
    {x'=(2+x)*(-((1-x)*x)+y), y'=-y}@invariant(2+x>0)
  ] !(x <= -5/2)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("2+x>0", 1) ; <(
    dW(1) ; QE,
    dbx(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Wiggins Example 18_7_3_n"

ProgramVariables
  Real x;
  Real y;
End.

Problem
  (-1/3 + x)^2 + (-1/3 + y)^2 < 1/16
  ->
  [
    {x'=-x+2*y+x^2*y+x^4*y^5, y'=-y-x^4*y^6+x^8*y^9}@invariant(y>0)
  ] !(x <= -1 | y <= -1)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("y>0", 1) ; <(
    ODEinv(1),
    dbx(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/ZYLZCL Example C1"

Description "Example C1 (initial set expanded)".
Citation "Yifan Zhang, Zhengfeng Yang, Wang Lin, Huibiao Zhu, Xin Chen, Xuandong Li. Safety Verification of nonlinear Hybrid Systems Based on Bilinear Programming;".

ProgramVariables
  Real x1;
  Real x2;
End.

Problem
  4 <= x1 & x1 <= 4.5 &
  1 <= x2 & x2 <= 2 ->
  [
    {x1'=-11/2*x2 + x2^2 , x2' = 6*x1-x1^2 &
    1 <= x1 & x1 <= 5 &
    1 <= x2 & x2 <= 5}@invariant(349+4*((-9)+x1)*x1^2+x2^2*((-33)+4*x2)<=0)
  ]
  !(
    1 <= x1 & x1 <= 2 &
    2 <= x2 & x2 <= 3
  )
End.

Tactic "Scripted proof"
  implyR(1) ; dC("349+4*((-9)+x1)*x1^2+x2^2*((-33)+4*x2)<=0", 1) ; <(
    dW(1) ; QE,
    dI(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/ZYLZCL Example C3"

Description "Example C3".
Citation "Yifan Zhang, Zhengfeng Yang, Wang Lin, Huibiao Zhu, Xin Chen, Xuandong Li. Safety Verification of nonlinear Hybrid Systems Based on Bilinear Programming;".

ProgramVariables
  Real x1;
  Real x2;
End.

Problem
  -1/5 <= x1 & x1 <= 1/5 &
  3/10 <= x2 & x2 <= 7/10 ->
  [
    {x1' = -x1 + 2*x1^3*x2^2, x2' = -x2 &
    -2 <= x1 & x1 <= 2 &
    -2 <= x2 & x2 <= 2}@invariant(x1*x2 < 1)
  ]
  !(
    -2 <= x1 & x1 <= -1 &
    -2 <= x2 & x2 <= -1
  )
End.

Tactic "Scripted proof"
  implyR(1) ; dC("x1*x2 < 1", 1) ; <(
    dW(1) ; QE,
    dbx(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/ZYLZCL Example C4"

Description "Example C4".
Citation "Yifan Zhang, Zhengfeng Yang, Wang Lin, Huibiao Zhu, Xin Chen, Xuandong Li. Safety Verification of nonlinear Hybrid Systems Based on Bilinear Programming;".

ProgramVariables
  Real x1;
  Real x2;
End.

Problem
  -1 <= x1 & x1 <= 0 &
  -1 <= x2 & x2 <= 0 ->
  [
    {x1' = -1 + x1^2 + x2^2, x2' = 5*(-1 + x1*x2) &
    -2 <= x1 & x1 <= 2 &
    -2 <= x2 & x2 <= 2}@invariant(22667*x1^2+x2*(257910+6221*x2)+x1*(141840+15973*x2) < 42786)
  ]
  !(
    1 <= x1 & x1 <= 2 &
    1 <= x2 & x2 <= 2
  )
End.

Tactic "Scripted proof"
  implyR(1) ; dC("22667*x1^2+x2*(257910+6221*x2)+x1*(141840+15973*x2) < 42786", 1) ; <(
    dW(1) ; QE,
    barrier(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/ZYLZCL Example C6"

Description "Example C6".
Citation "Yifan Zhang, Zhengfeng Yang, Wang Lin, Huibiao Zhu, Xin Chen, Xuandong Li. Safety Verification of nonlinear Hybrid Systems Based on Bilinear Programming;".

ProgramVariables
  Real x1;
  Real x2;
End.

Problem
  -1/10 <= x1 & x1 <= 1/10 &
  -1/10 <= x2 & x2 <= 1/10 ->
  [
    {x1' = -2*x1 + x1^2 + x2, x2' = x1 - 2*x2 + x2^2 &
    -1 <= x1 & x1 <= 1 &
    -1 <= x2 & x2 <= 1}@invariant(x1*(189+111470000*x1)+x2*(189+111470000*x2) < 43801000)
  ]
  !(
    1/2 <= x1 & x1 <= 1 &
    1/2 <= x2 & x2 <= 1
  )
End.

Tactic "Scripted proof"
  implyR(1) ; dC("x1*(189+111470000*x1)+x2*(189+111470000*x2) < 43801000", 1) ; <(
    dW(1) ; QE,
    barrier(1)
  )
End.

Tactic "Automated proof (from annotations)"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/ZYLZCL Example C7"

Description "Example C7".
Citation "Yifan Zhang, Zhengfeng Yang, Wang Lin, Huibiao Zhu, Xin Chen, Xuandong Li. Safety Verification of nonlinear Hybrid Systems Based on Bilinear Programming;".

ProgramVariables
  Real x1;
  Real x2;
End.

Problem
  -3/2 <= x1 & x1 <= -1/2 &
  -3/2 <= x2 & x2 <= -1/2 ->
  [
    {x1' = -x1 + x1*x2, x2' = -x2 &
    -2 <= x1 & x1 <= 2 &
    -2 <= x2 & x2 <= 2}@invariant(x2 < 0)
  ]
  !(
    -1/2 <= x1 & x1 <= 1/2 &
     1/2 <= x2 & x2 <= 3/2
  )
End.

Tactic "Scripted proof"
  implyR(1) ; dC("x2 < 0", 1) ; <(
    dW(1) ; QE,
    dbx(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/ZYLZCL Example C8"

Description "Example C8".
Citation "Yifan Zhang, Zhengfeng Yang, Wang Lin, Huibiao Zhu, Xin Chen, Xuandong Li. Safety Verification of nonlinear Hybrid Systems Based on Bilinear Programming;".

ProgramVariables
  Real x1;
  Real x2;
End.

Problem
  -1/4 <= x1 & x1 <= 1/4 &
   3/4 <= x2 & x2 <= 3/2 ->
  [
    {x1' = -x1 + 2*x1^2*x2, x2' = -x2 &
    -2 <= x1 & x1 <= 2 &
    -2 <= x2 & x2 <= 2}@invariant(x1*x2 < 1)
  ]
  !(
     1 <= x1 & x1 <= 2 &
     1 <= x2 & x2 <= 2
  )
End.

Tactic "Scripted proof"
  implyR(1) ; dC("x1*x2 < 1", 1) ; <(
    dW(1) ; QE,
    dbx(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Papachristodoulou Prajna 2002: Example 2 (Chemical Oscillator)"

Citation "Antonis Papachristodoulou, Stephen Prajna. On the Construction of Lyapunov Functions using the Sum of Squares Decomposition. 2002.".
Link "https://doi.org/10.1109/CDC.2002.1184414".

Definitions
  Real a, b;
End.

ProgramVariables
  Real u, v;
End.

Problem
  a >= 0.25 & b>= 0 & u = 0.01 & v = 0
  ->
  [{u' = a - u + u^2*v,
    v' = b - u^2*v
   }/* @invariant(origin is a stable equilibrium with these values of a and b) */
]!(u^2 + v^2 > 10)
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Prajna PhD Thesis 2-4-1 Page 31"

Description "Page 31".
Citation "Prajna, Stephen (2005) Optimization-based methods for nonlinear and hybrid systems verification; Dissertation (Ph.D.), California Institute of Technology.".
Link "http://resolver.caltech.edu/CaltechETD:etd-05272005-144358".

ProgramVariables
  Real x;
  Real y;
End.

Problem
  (-3/2 + x)^2 + y^2 <= 1/4
  ->
  [
    {x'=x, y'=-x+x^3/3-y}
    @invariant(x>=0)
  ] !((1 + x)^2 + (1 + y)^2 <= 4/25)
End.

Tactic "Scripted proof"
implyR('R=="(-3/2+x)^2+y^2<=1/4->[{x'=x,y'=-x+x^3/3-y}](!(1+x)^2+(1+y)^2<=4/25)");
dC("x>=0", 'R=="[{x'=x,y'=-x+x^3/3-y}](!(1+x)^2+(1+y)^2<=4/25)"); <(
  "Use":
    dW('R=="[{x'=x,y'=-x+x^3/3-y&true&x>=0}](!(1+x)^2+(1+y)^2<=4/25)");
    QE,
  "Show":
    dbx('R=="[{x'=x,y'=-x+x^3/3-y}]x>=0")
)
End.

Tactic "Automated proof"
  autoClose
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Ferragut Giacomini 2010: Example 1"

Citation "Antoni Ferragut, Hector Giacomini: A New Algorithm for Finding Rational First Integrals of Polynomial Vector Fields; Qual. Theory Dyn. Syst. (2010)".

ProgramVariables
  Real x;
  Real y;
End.

Problem
  (-3)<=x & x<=(-2) & (-3)<=y&y<=(-2)
  ->
  [{x'=4 + 21*x - 7*y + 42*x^2 - 24*x*y + 4*y^2 + 27*x^3 - 9*x^2*y + 6*x^4,
    y'=12 + 71*x -21*y + 150*x^2 -80*x*y + 12*y^2 + 99*x^3 - 39*x^2*y + 2*x*y^2 + 18*x^4}
    @invariant(3+x>=0, 3+y>=0, 4+3*x*(1+x)*(7+x*(7+2*x))+4*y^2>(7+3*x*(8+3*x))*y, 1+x*(3+x)>y, 1+3*x*(2+x)>2*y, 2+3*x < y, x < 0, y < 0)
  ]!(x >= 0 | y >= 0)
End.

Tactic "Scripted proof"
implyR('R=="(-3)<=x&x<=(-2)&(-3)<=y&y<=(-2)->[{x'=4+21*x-7*y+42*x^2-24*x*y+4*y^2+27*x^3-9*x^2*y+6*x^4,y'=12+71*x-21*y+150*x^2-80*x*y+12*y^2+99*x^3-39*x^2*y+2*x*y^2+18*x^4}](!(x>=0|y>=0))");
dC("3+x>=0", 'R=="[{x'=4+21*x-7*y+42*x^2-24*x*y+4*y^2+27*x^3-9*x^2*y+6*x^4,y'=12+71*x-21*y+150*x^2-80*x*y+12*y^2+99*x^3-39*x^2*y+2*x*y^2+18*x^4}](!(x>=0|y>=0))"); <(
  "Use":
    dC("3+y>=0", 'R=="[{x'=4+21*x-7*y+42*x^2-24*x*y+4*y^2+27*x^3-9*x^2*y+6*x^4,y'=12+71*x-21*y+150*x^2-80*x*y+12*y^2+99*x^3-39*x^2*y+2*x*y^2+18*x^4&true&3+x>=0}](!(x>=0|y>=0))"); <(
      "Use":
        dC("4+3*x*(1+x)*(7+x*(7+2*x))+4*y^2>(7+3*x*(8+3*x))*y", 'R=="[{x'=4+21*x-7*y+42*x^2-24*x*y+4*y^2+27*x^3-9*x^2*y+6*x^4,y'=12+71*x-21*y+150*x^2-80*x*y+12*y^2+99*x^3-39*x^2*y+2*x*y^2+18*x^4&(true&3+x>=0)&3+y>=0}](!(x>=0|y>=0))"); <(
          "Use":
            dC("1+x*(3+x)>y", 'R=="[{x'=4+21*x-7*y+42*x^2-24*x*y+4*y^2+27*x^3-9*x^2*y+6*x^4,y'=12+71*x-21*y+150*x^2-80*x*y+12*y^2+99*x^3-39*x^2*y+2*x*y^2+18*x^4&((true&3+x>=0)&3+y>=0)&4+3*x*(1+x)*(7+x*(7+2*x))+4*y^2>(7+3*x*(8+3*x))*y}](!(x>=0|y>=0))"); <(
              "Use":
                dC("1+3*x*(2+x)>2*y", 'R=="[{x'=4+21*x-7*y+42*x^2-24*x*y+4*y^2+27*x^3-9*x^2*y+6*x^4,y'=12+71*x-21*y+150*x^2-80*x*y+12*y^2+99*x^3-39*x^2*y+2*x*y^2+18*x^4&(((true&3+x>=0)&3+y>=0)&4+3*x*(1+x)*(7+x*(7+2*x))+4*y^2>(7+3*x*(8+3*x))*y)&1+x*(3+x)>y}](!(x>=0|y>=0))"); <(
                  "Use":
                    dC("2+3*x < y", 'R=="[{x'=4+21*x-7*y+42*x^2-24*x*y+4*y^2+27*x^3-9*x^2*y+6*x^4,y'=12+71*x-21*y+150*x^2-80*x*y+12*y^2+99*x^3-39*x^2*y+2*x*y^2+18*x^4&((((true&3+x>=0)&3+y>=0)&4+3*x*(1+x)*(7+x*(7+2*x))+4*y^2>(7+3*x*(8+3*x))*y)&1+x*(3+x)>y)&1+3*x*(2+x)>2*y}](!(x>=0|y>=0))"); <(
                      "Use":
                        dC("x < 0", 'R=="[{x'=4+21*x-7*y+42*x^2-24*x*y+4*y^2+27*x^3-9*x^2*y+6*x^4,y'=12+71*x-21*y+150*x^2-80*x*y+12*y^2+99*x^3-39*x^2*y+2*x*y^2+18*x^4&(((((true&3+x>=0)&3+y>=0)&4+3*x*(1+x)*(7+x*(7+2*x))+4*y^2>(7+3*x*(8+3*x))*y)&1+x*(3+x)>y)&1+3*x*(2+x)>2*y)&2+3*x < y}](!(x>=0|y>=0))"); <(
                          "Use":
                            dC("y < 0", 'R=="[{x'=4+21*x-7*y+42*x^2-24*x*y+4*y^2+27*x^3-9*x^2*y+6*x^4,y'=12+71*x-21*y+150*x^2-80*x*y+12*y^2+99*x^3-39*x^2*y+2*x*y^2+18*x^4&((((((true&3+x>=0)&3+y>=0)&4+3*x*(1+x)*(7+x*(7+2*x))+4*y^2>(7+3*x*(8+3*x))*y)&1+x*(3+x)>y)&1+3*x*(2+x)>2*y)&2+3*x < y)&x < 0}](!(x>=0|y>=0))"); <(
                              "Use":
                                dW('R=="[{x'=4+21*x-7*y+42*x^2-24*x*y+4*y^2+27*x^3-9*x^2*y+6*x^4,y'=12+71*x-21*y+150*x^2-80*x*y+12*y^2+99*x^3-39*x^2*y+2*x*y^2+18*x^4&(((((((true&3+x>=0)&3+y>=0)&4+3*x*(1+x)*(7+x*(7+2*x))+4*y^2>(7+3*x*(8+3*x))*y)&1+x*(3+x)>y)&1+3*x*(2+x)>2*y)&2+3*x < y)&x < 0)&y < 0}](!(x>=0|y>=0))");
                                chaseAt('R=="!(x>=0|y>=0)");
                                propClose,
                              "Show":
                                ODEinv('R=="[{x'=4+21*x-7*y+42*x^2-24*x*y+4*y^2+27*x^3-9*x^2*y+6*x^4,y'=12+71*x-21*y+150*x^2-80*x*y+12*y^2+99*x^3-39*x^2*y+2*x*y^2+18*x^4&((((((true&3+x>=0)&3+y>=0)&4+3*x*(1+x)*(7+x*(7+2*x))+4*y^2>(7+3*x*(8+3*x))*y)&1+x*(3+x)>y)&1+3*x*(2+x)>2*y)&2+3*x < y)&x < 0}]y < 0")
                            ),
                          "Show":
                            ODEinv('R=="[{x'=4+21*x-7*y+42*x^2-24*x*y+4*y^2+27*x^3-9*x^2*y+6*x^4,y'=12+71*x-21*y+150*x^2-80*x*y+12*y^2+99*x^3-39*x^2*y+2*x*y^2+18*x^4&(((((true&3+x>=0)&3+y>=0)&4+3*x*(1+x)*(7+x*(7+2*x))+4*y^2>(7+3*x*(8+3*x))*y)&1+x*(3+x)>y)&1+3*x*(2+x)>2*y)&2+3*x < y}]x < 0")
                        ),
                      "Show":
                        dbx('R=="[{x'=4+21*x-7*y+42*x^2-24*x*y+4*y^2+27*x^3-9*x^2*y+6*x^4,y'=12+71*x-21*y+150*x^2-80*x*y+12*y^2+99*x^3-39*x^2*y+2*x*y^2+18*x^4&((((true&3+x>=0)&3+y>=0)&4+3*x*(1+x)*(7+x*(7+2*x))+4*y^2>(7+3*x*(8+3*x))*y)&1+x*(3+x)>y)&1+3*x*(2+x)>2*y}]2+3*x < y")
                    ),
                  "Show":
                    dbx('R=="[{x'=4+21*x-7*y+42*x^2-24*x*y+4*y^2+27*x^3-9*x^2*y+6*x^4,y'=12+71*x-21*y+150*x^2-80*x*y+12*y^2+99*x^3-39*x^2*y+2*x*y^2+18*x^4&(((true&3+x>=0)&3+y>=0)&4+3*x*(1+x)*(7+x*(7+2*x))+4*y^2>(7+3*x*(8+3*x))*y)&1+x*(3+x)>y}]1+3*x*(2+x)>2*y")
                ),
              "Show":
                dbx('R=="[{x'=4+21*x-7*y+42*x^2-24*x*y+4*y^2+27*x^3-9*x^2*y+6*x^4,y'=12+71*x-21*y+150*x^2-80*x*y+12*y^2+99*x^3-39*x^2*y+2*x*y^2+18*x^4&((true&3+x>=0)&3+y>=0)&4+3*x*(1+x)*(7+x*(7+2*x))+4*y^2>(7+3*x*(8+3*x))*y}]1+x*(3+x)>y")
            ),
          "Show":
            ODEinv('R=="[{x'=4+21*x-7*y+42*x^2-24*x*y+4*y^2+27*x^3-9*x^2*y+6*x^4,y'=12+71*x-21*y+150*x^2-80*x*y+12*y^2+99*x^3-39*x^2*y+2*x*y^2+18*x^4&(true&3+x>=0)&3+y>=0}]4+3*x*(1+x)*(7+x*(7+2*x))+4*y^2>(7+3*x*(8+3*x))*y")
        ),
      "Show":
        ODEinv('R=="[{x'=4+21*x-7*y+42*x^2-24*x*y+4*y^2+27*x^3-9*x^2*y+6*x^4,y'=12+71*x-21*y+150*x^2-80*x*y+12*y^2+99*x^3-39*x^2*y+2*x*y^2+18*x^4&true&3+x>=0}]3+y>=0")
    ),
  "Show":
    ODEinv('R=="[{x'=4+21*x-7*y+42*x^2-24*x*y+4*y^2+27*x^3-9*x^2*y+6*x^4,y'=12+71*x-21*y+150*x^2-80*x*y+12*y^2+99*x^3-39*x^2*y+2*x*y^2+18*x^4}]3+x>=0")
)
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Ferragut Giacomini 2010: Example 1 (Variant)"

Citation "Antoni Ferragut, Hector Giacomini: A New Algorithm for Finding Rational First Integrals of Polynomial Vector Fields; Qual. Theory Dyn. Syst. (2010)".

ProgramVariables
  Real x;
  Real y;
End.

Problem
  (1 + x)^2 + (2 + y)^2 <= 1/4
  ->
  [{x'=4 + 21*x + 42*x^2 + 27*x^3 + 6*x^4 - 7*y - 24*x*y - 9*x^2*y + 4*y^2,
    y'=12 + 71*x + 150*x^2 + 99*x^3 + 18*x^4 - 21*y - 80*x*y - 39*x^2*y + 12*y^2 + 2*x*y^2}
  ](-2 + x)^2 + (2 + y)^2 > 1/4
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Ferragut Giacomini 2010: Example 2"

Citation "Antoni Ferragut, Hector Giacomini: A New Algorithm for Finding Rational First Integrals of Polynomial Vector Fields; Qual. Theory Dyn. Syst. (2010)".

ProgramVariables
  Real x;
  Real y;
End.

Problem
  (x + 2)^2 + (y + 2)^2 <= 5
  ->
  [{x'=x+2*y-y^2, y'=-y+y^2}@invariant(x+y < 0, x < ((-2)+y)*y)]2*x+y < 0
End.

Tactic "Scripted proof"
implyR('R=="(x+2)^2+(y+2)^2<=5->[{x'=x+2*y-y^2,y'=-y+y^2}]2*x+y < 0");
dC("x+y < 0", 'R=="[{x'=x+2*y-y^2,y'=-y+y^2}]2*x+y < 0"); <(
  "Use":
    dC("x < ((-2)+y)*y", 'R=="[{x'=x+2*y-y^2,y'=-y+y^2&true&x+y < 0}]2*x+y < 0"); <(
      "Use":
        ODEinv('R=="[{x'=x+2*y-y^2,y'=-y+y^2&(true&x+y < 0)&x < ((-2)+y)*y}]2*x+y < 0"),
      "Show":
        ODEinv('R=="[{x'=x+2*y-y^2,y'=-y+y^2&true&x+y < 0}]x < ((-2)+y)*y")
    ),
  "Show":
    dbx('R=="[{x'=x+2*y-y^2,y'=-y+y^2}]x+y < 0")
)
End.

Tactic "Automated proof"
  autoClose
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Ferragut Giacomini 2010: Example 2 (Variant)"

Citation "Antoni Ferragut, Hector Giacomini: A New Algorithm for Finding Rational First Integrals of Polynomial Vector Fields; Qual. Theory Dyn. Syst. (2010)".

ProgramVariables
  Real x;
  Real y;
End.

Problem
  (x - 4)^2 + y^2 <= 1
  ->
  [{x'=x+2*y-y^2, y'=-y+y^2}@invariant(y<=1, 273630+y*((-32671)+81001*y) < 123190*x)]!(x < 2 | y > 1)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("y<=1", 1) ; <(
    dC("273630+y*((-32671)+81001*y) < 123190*x", 1) ; <(
      dW(1) ; QE,
      barrier(1)
    ),
    dbx(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Ferragut Giacomini 2010: Example 3"

Citation "Antoni Ferragut, Hector Giacomini: A New Algorithm for Finding Rational First Integrals of Polynomial Vector Fields; Qual. Theory Dyn. Syst. (2010)".

ProgramVariables
  Real x;
  Real y;
End.

Problem
  (x+3)^2+(y+3)^2<=1
  ->
  [{x'=3*x+y^2, y'=5*y & -6<=x & x<= 6 & -6 <= y & y<=6}@invariant(63232*x^3+x^2*((-66727)+176350*y)+10*x*(42940+y*(55669+25688*y))+10*(808140+y*(289690+9*y*(9466+1595*y))) < 0)]x + y < -2
End.

Tactic "Scripted proof"
  implyR(1) ; dC("63232*x^3+x^2*((-66727)+176350*y)+10*x*(42940+y*(55669+25688*y))+10*(808140+y*(289690+9*y*(9466+1595*y))) < 0", 1) ; <(
    dW(1) ; QE,
    barrier(1)
  )
End.

Tactic "Automated proof (from annotations)"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Ferragut Giacomini 2010: Example 4"

Citation "Antoni Ferragut, Hector Giacomini: A New Algorithm for Finding Rational First Integrals of Polynomial Vector Fields; Qual. Theory Dyn. Syst. (2010)".

ProgramVariables
  Real x;
  Real y;
End.

Problem
  y >= 2.5 | x >= 0
  ->
  [{x'=6*x^2 - 6*x*y + 4*y^2 + 3*x^3 - 9*x^2*y + 6*x^4,
    y'=-6*x*y + 10*y^2 + 27*x^3 - 39*x^2 + 2*x*y^2 + 18*x^4}
  ](x + 3)^2 + (y + 2)^2 > 3
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Ferragut Giacomini 2010: Example 5"

Citation "Antoni Ferragut, Hector Giacomini: A New Algorithm for Finding Rational First Integrals of Polynomial Vector Fields; Qual. Theory Dyn. Syst. (2010)".

ProgramVariables
  Real x;
  Real y;
End.

Problem
  (x + 3)^2 + (y + 3)^2 <= 1
  ->
  [{x'=x+y+x^2, y'=x*(1+y)}@invariant(1+y < 0, 70030000+331*x^2+5*y*(4429100+61943*y) < 50*x*((-629110)+27787*y))] x+y < -2
End.

Tactic "Scripted proof"
  implyR(1) ; dC("1+y < 0", 1) ; <(
    dC("70030000+331*x^2+5*y*(4429100+61943*y) < 50*x*((-629110)+27787*y)", 1) ; <(
      dW(1) ; QE,
      barrier(1)
    ),
    dbx(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Ferragut Giacomini 2010: Example 5 (Variant 1)"

Citation "Antoni Ferragut, Hector Giacomini: A New Algorithm for Finding Rational First Integrals of Polynomial Vector Fields; Qual. Theory Dyn. Syst. (2010)".

ProgramVariables
  Real x;
  Real y;
End.

Problem
  (x - 4)^2 + (y - 4)^2 <= 1
  ->
  [{x'=x+y+x^2, y'=x*(1+y)}@invariant(1+y>0, x^2 < y*(x+y), 387150000+426*x^2+85*y < 36465000*x*y)](x - 2)^2 + (y - 2)^2 > 3
End.

Tactic "Scripted proof"
  implyR(1) ; dC("1+y>0", 1) ; <(
    dC("x^2 < y*(x+y)", 1) ; <(
      dC("387150000+426*x^2+85*y < 36465000*x*y", 1) ; <(
        dW(1) ; QE,
        barrier(1)
      ),
      dbx(1)
    ),
    dbx(1)
  )
End.

Tactic "Automated proof (from annotations)"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Ferragut Giacomini 2010: Example 5 (Variant 2)"

Citation "Antoni Ferragut, Hector Giacomini: A New Algorithm for Finding Rational First Integrals of Polynomial Vector Fields; Qual. Theory Dyn. Syst. (2010)".

ProgramVariables
  Real x;
  Real y;
End.

Problem
  (x + 1)^2 + (y - 4)^2 <= 1
  ->
  [{x'=x+y+x^2, y'=x*(1+y)}@invariant(1+y>0, 23921*x+18696*y+2089*x*y>5916)](x + 2)^2 + (y + 2)^2 > 2
End.

Tactic "Scripted proof"
  implyR(1) ; dC("1+y>0", 1) ; <(
    dC("23921*x+18696*y+2089*x*y>5916", 1) ; <(
      dW(1) ; QE,
      barrier(1)
    ),
    dbx(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.


ArchiveEntry "Benchmarks/Nonlinear/Yang Wu Lin 2020: Benchmark C1"

Citation "Z. Yang, M. Wu and W. Lin, nonlinear Analysis: Hybrid Systems (36), 2020, Benchmark C1".

ProgramVariables
  Real x;
  Real y;
  Real u1, u2, u3, u4;
End.

Problem
  (x-1.5)^2+y^2<=0.25 &
  0.99<=u1&u1<=1.01 & 0.96<=u2&u2<=1.04 & 0.32<=u3&u3<=0.347 & 0.98<=u4&u4<=1.02
  ->
  [{x'=u1*y, y'=-u2*x+u3*x^3-u4*y & -2<=x&x<=2 & -2<=y&y<=2}
  ]!(x+1)^2+(y+1)^2<=0.16
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Yang Wu Lin 2020: Benchmark C1 (Nonparametric)"

Citation "Z. Yang, M. Wu and W. Lin, nonlinear Analysis: Hybrid Systems (36), 2020, Benchmark C1".

ProgramVariables
  Real x;
  Real y;
  Real u1, u2, u3, u4;
End.

Problem
  (x-1.5)^2+y^2<=0.25 &
  u1=1 & u2=1 & u3=0.33 & u4=1
  ->
  [{x'=u1*y, y'=-u2*x+u3*x^3-u4*y & -2<=x&x<=2 & -2<=y&y<=2}
  ]!(x+1)^2+(y+1)^2<=0.16
End.

End.


ArchiveEntry "Benchmarks/Nonlinear/Yang Wu Lin 2020: Benchmark C2"

Citation "Z. Yang, M. Wu and W. Lin, nonlinear Analysis: Hybrid Systems (36), 2020, Benchmark C2".

ProgramVariables
  Real x;
  Real y;
  Real u1, u2;
End.

Problem
  (x-1)^2+y^2<=0.04 &
  -1.1<=u1&u1<=-0.9 & 2.98<=u2&u2<=3.02
  ->
  [{x'=u1*y-3/2*x^2-1/2*x^3, y'=u2*x-y & -2<=x&x<=2 & -2<=y&y<=2}
  ]!(x+1.8)^2+y^2<=0.16
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Yang Wu Lin 2020: Benchmark C2 (Nonparametric)"

Citation "Z. Yang, M. Wu and W. Lin, nonlinear Analysis: Hybrid Systems (36), 2020, Benchmark C2".

ProgramVariables
  Real x;
  Real y;
  Real u1, u2;
End.

Problem
  (x-1)^2+y^2<=0.04 &
  u1=-1 & u2=3
  ->
  [{x'=u1*y-3/2*x^2-1/2*x^3, y'=u2*x-y & -2<=x&x<=2 & -2<=y&y<=2}
   @invariant(x*((-26090)+x*(34696+12539*x))+38464*y < 61620)
  ]!(x+1.8)^2+y^2<=0.16
End.

Tactic "Scripted proof"
  implyR(1);
  dC("x*((-26090)+x*(34696+12539*x))+38464*y < 61620", 1); <(
    "Use":
      dW(1);
      QE,
    "Show": barrier(1)
  )
End.

Tactic "Automated proof (from annotations)"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Djaballah Chapoutot Kieffer Bouissou 2017: Example 3"

Description "Example 3, p; 293".
Citation "Adel Djaballah, Alexandre Chapoutot, Michel Kieffer, Olivier Bouissou; Construction of parametric barrier functions for dynamical systems using interval analysis; Automatica 78 (2017) 287–296.".
Link "https://doi.org/10.1016/j.automatica.2016.12.013".

ProgramVariables
  Real x1, x2;
End.

Problem
  (x1+1.125)^2 + (x2-0.625)^2 - 0.0125 <= 0
  ->
  [{x1'=-x1+x1*x2, x2'=-x2}@invariant(x1 < 0)
  ]!((x1-0.875)^2 + (x2-0.125)^2 - 0.0125 <= 0)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("x1 < 0", 1) ; <(
    dW(1) ; QE,
    dbx(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Djaballah Chapoutot Kieffer Bouissou 2017: Example 5"

Description "Example 5, p; 293".
Citation "Adel Djaballah, Alexandre Chapoutot, Michel Kieffer, Olivier Bouissou; Construction of parametric barrier functions for dynamical systems using interval analysis; Automatica 78 (2017) 287–296.".
Link "https://doi.org/10.1016/j.automatica.2016.12.013".

Definitions
  Real d;
End.

ProgramVariables
  Real x1, x2;
End.

Problem
  (x1-1.5)^2 + x2^2 - 0.25 <= 0
  & 0.9<=d&d<=1.1
  ->
  [{x1'=x2, x2'=-x1+d/3*x1^3 - x2}
  ]!((x1+0.8)^2 + (x2+1)^2 - 0.25 <= 0)
End.

End.

/* 3D Problems */

ArchiveEntry "Benchmarks/Nonlinear/3D Lotka Volterra (I)"

Citation "Hui Kong, Sergiy Bogomolov, Christian Schilling, Yu Jiang, Thomas A. Henzinger. Invariant Clusters for Hybrid Systems; CoRR abs/1605;01450 (2016)".

Definitions
  Real invcluster(Real x, Real y, Real z, Real u3, Real u4) = ( u3*x+u3*y+u3*z+u4 );
End.

ProgramVariables
  Real x;
  Real y;
  Real z;
End.

Problem
  x=1 & y=1 & z=1
  ->
  [{ x'=x*y-x*z, y'=y*z-y*x, z'=z*x-z*y }@invariant(x>0, y>0, z>0)
  ](x + 2*y + z^3 > 0)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("x>0", 1) ; <(
    dC("y>0", 1) ; <(
      dC("z>0", 1) ; <(
        dW(1) ; QE,
        dbx(1)
      ),
      dbx(1)
    ),
    dbx(1)
  )
End.

Tactic "Scripted proof (2)"
  implyR(1) ; cut("\exists u3 \exists u4 (u3^2+u4^2!=0 & invcluster(x,y,z,u3,u4)=0)") ; <(
    existsL('Llast)*2 ; dC("invcluster(x,y,z,u3,u4)=0", 1) ; doall(ODEinv(1)) ; done
    ,
    hideR(1) ; QE
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/3D Lotka Volterra (II)"

Citation "Hui Kong, Sergiy Bogomolov, Christian Schilling, Yu Jiang, Thomas A. Henzinger. Invariant Clusters for Hybrid Systems; CoRR abs/1605;01450 (2016)".

Definitions
  Real invcluster(Real x, Real y, Real z, Real u5, Real u10, Real u16, Real u19, Real u20) = (
    u5*x*y*z+u10*x^3+3*u10*x^2*y+3*u10*x^2*z+3*x*y^2*u10+3*x*z^2*u10+u10*y^3+
               3*u10*y^2*z+3*u10*y*z^2+u10*z^3+u16*x^2+2*u16*x*y+2*u16*x*z+
               u16*y^2+2*u16*y*z+u16*z^2+u19*x+u19*y+u19*z+u20 );
End.

ProgramVariables
  Real x;
  Real y;
  Real z;
End.

Problem
  x=-1 & y=-1 & z=-1
  ->
  [{ x'=x*y-x*z, y'=y*z-y*x, z'=z*x-z*y }@invariant(x<0, y<0, z<0)
  ](x^5 + 12*y + z^3 < 0)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("x < 0", 1) ; <(
    dC("y < 0", 1) ; <(
      dC("z < 0", 1) ; <(
        dW(1) ; QE,
        dbx(1)
      ),
      dbx(1)
    ),
    dbx(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/3D Lotka Volterra (III)"

Citation "Sriram Sankaranarayanan. Automatic Invariant Generation for Hybrid Systems Using Ideal Fixed Points".

ProgramVariables
  Real x;
  Real y;
  Real z;
End.

Problem
  x=1 & y=1 & z=-1
  ->
  [{ x'=x*y-x*z, y'=y*z-y*x, z'=z*x-z*y }@invariant(x>0, y>0, z<0)
  ](x + y - z > -2)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("x>0", 1) ; <(
    dC("y>0", 1) ; <(
      dC("z < 0", 1) ; <(
        dW(1) ; QE,
        dbx(1)
      ),
      dbx(1)
    ),
    dbx(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Alongi Nelson Ex_4_1_9 page 143"

Description "Ex 4.1.9 Page 143".
Citation "John M. Alongi and Gail S. Nelson. Recurrence and Topology".

ProgramVariables
  Real x;
  Real y;
  Real z;
End.

Problem
  x = 1 & y = 0 & z = 0 ->
  [{x'=x*z , y'=y*z , z'=-x^2-y^2 & x^2+y^2+z^2=1}@invariant(x+y>0)]
  !((x > -1 -> x^2 > 2) | z > 1)
  /* Known invariant: (x <= 1 & z <= 0) */
End.

Tactic "Scripted proof"
  implyR(1) ; dC("x+y>0", 1) ; <(
    dW(1) ; QE,
    dbx(1)
  )
End.

Tactic "Scripted proof (2)"
  implyR(1) ; dC("x<=1&z<=0", 1) ; <(
    ODEinv(1),
    ODEinv(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Constraint-based Example 8 (Phytoplankton Growth)"

Citation "Sumit Gulwani and Ashish Tiwari. Constraint-based Approach for Analysis of Hybrid Systems".

ProgramVariables
 Real x1;
 Real x2;
 Real x3;
End.

Problem
 x1 = 0 & x2 = 0 & x3 = 0
 ->
 [
  {x1'=1 - x1 - (x1*x2)/4, x2'=x2*(-1 + 2*x3), x3'=x1/4 - 2*x3^2 }@invariant(x2=0, x1<=5)
 ] (x1 <= 5 & x2 <= 5 & x3 <= 5)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("x2=0", 1) ; <(
    dC("x1<=5", 1) ; <(
      boxAnd(1) ; andR(1) ; <(
        dW(1) ; prop,
        boxAnd(1) ; andR(1) ; <(
          dW(1) ; QE,
          dbx(1)
        )
      ),
      dbx(1)
    ),
    dbx(1)
  )
End.

Tactic "Automated proof (from annotations)"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Invariant 3-dim sphere"

ProgramVariables
  Real x;
  Real y;
  Real z;
End.

Problem
  x = 1/4 & y = 1/8 & z = 1/10
  ->
  [
    {x'=x^2-x*(x^3+y^3+z^3), y'=y^2-y*(x^3+y^3+z^3), z'=z^2-z*(x^3+y^3+z^3)}@invariant(x^2+y^2+z^2 < 1)
  ] !(x > 10 | y > 5 | z <= -20)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("x^2+y^2+z^2 < 1", 1) ; <(
    dW(1) ; QE,
    dbx(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Invariant Clusters Example 4"

Citation "Hui Kong, Sergiy Bogomolov, Christian Schilling, Yu Jiang, Thomas A. Henzinger. Invariant Clusters for Hybrid Systems; CoRR abs/1605;01450 (2016)".

ProgramVariables
  Real x;
  Real y;
  Real z;
End.

Problem
  x=1 & y=2 & z=3
  ->
  [
    {x'=y*z, y'=x*z, z'=x*y }@invariant(5+y^2=z^2)
  ] !(x=5 & y^2=27 & z^2=34)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("5+y^2=z^2", 1) ; <(
    dW(1) ; QE,
    dI(1)
  )
End.

Tactic "Scripted proof (2)"
  implyR(1) ; cut("\exists u0 \exists u5 \exists u6 (u0^2+u5^2+u6^2!=0 & invcluster(x,y,z,u0,u5,u6)=0)") ; <(
    existsL('Llast)*3 ; dC("invcluster(x,y,z,u0,u5,u6)=0", 1) ; doall(ODEinv(1)) ; done
    ,
    hideR(1) ; QE
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Invariant Clusters Example 5"

Citation "Hui Kong, Sergiy Bogomolov, Christian Schilling, Yu Jiang, Thomas A. Henzinger. Invariant Clusters for Hybrid Systems; CoRR abs/1605;01450 (2016)".

ProgramVariables
  Real x;
  Real y;
  Real z;
End.

Problem
  x=1 & y=2 & z=3
  ->
  [
    { x'=y*z, y'=x*z, z'=x*y }@invariant(5+y^2=z^2)
  ] !(x=5 & y^2=27 & z^2=34)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("5+y^2=z^2", 1) ; <(
    dW(1) ; QE,
    dI(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Looping Particle"

Citation "Hui Kong, Sergiy Bogomolov, Christian Schilling, Yu Jiang, Thomas A. Henzinger. Invariant Clusters for Hybrid Systems; CoRR abs/1605;01450 (2016)".

Definitions
  Real g;
  Real r;
  Real invcluster(Real x, Real y, Real omega, Real u0, Real u2, Real u5) = ( u5*x^2+u5*y^2+u2*omega^2+2*u2*g/r^2*y+u0 );
End.

ProgramVariables
  Real x;
  Real y;
  Real omega;
End.

Problem
  x=2 & y=0 & r=2
  ->
  [{ x'=-y*omega, y'=x*omega, omega'=-g/r^2*x }@invariant(x^2+y^2>=4)
  ]2*x^2+y^2 > 3
End.

Tactic "Scripted proof"
  implyR(1) ; dC("x^2+y^2>=4", 1) ; <(
    dW(1) ; QE,
    dI(1)
  )
End.

Tactic "Scripted proof (2)"
  implyR(1) ; dC("x^2+y^2=r^2", 1) ; <(
    dW(1) ; QE,
    dI(1)
  )
End.

Tactic "Scripted proof (3)"
  implyR(1) ; cut("\exists u0 \exists u2 \exists u5 (u0^2+u2^2+u5^2!=0 & invcluster(x,y,omega,u0,u2,u5)=0)") ; <(
    existsL('Llast)*3 ; dC("invcluster(x,y,omega,u0,u2,u5)=0", 1) ; doall(ODEinv(1)) ; done
    ,
    hideR(1) ; QE
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Shimizu Morioka System"

ProgramVariables
  Real x;
  Real y;
  Real z;
End.

Problem
  x = 5 & y = 3 & z = -4 -> [{x'=y, y'=x-y-x*z, z'=x^2-z}@invariant(z>=-5)]!(z < 0 & z^2 > 26+x^2)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("z>=-5", 1) ; <(
    dW(1) ; QE,
    dbx(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/ZYLZCL Example C2"

Description "Example C2".
Citation "Yifan Zhang, Zhengfeng Yang, Wang Lin, Huibiao Zhu, Xin Chen, Xuandong Li. Safety Verification of nonlinear Hybrid Systems Based on Bilinear Programming;".

ProgramVariables
  Real x1;
  Real x2;
  Real x3;
End.

Problem
  -0.25 <= x1 & x1 <= 0.75 &
  -0.25 <= x2 & x2 <= 0.75 &
  -0.75 <= x3 & x3 <= 0.25 ->
  [
    {x1' = -x2, x2' = -x3, x3' = -x1 - 2*x2 - x3 + x1^3 &
    -2 <= x1 & x1 <= 2 &
    -2 <= x2 & x2 <= 2 &
    -2 <= x3 & x3 <= 2}@invariant(7*x1*(425300+3161*x1^2) < 5*(909080+23721*x2+295290*x3))
  ]
  !(
     1 <= x1 & x1 <= 2 &
    -2 <= x2 & x2 <= -1 &
    -2 <= x3 & x3 <= -1
  )
End.

Tactic "Scripted proof"
  implyR(1) ; dC("7*x1*(425300+3161*x1^2) < 5*(909080+23721*x2+295290*x3)", 1) ; <(
    dW(1) ; QE,
    barrier(1)
  )
End.

Tactic "Automated proof (from annotations)"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Yang Wu Lin 2020: Benchmark C3"

Citation "Z. Yang, M. Wu and W. Lin, nonlinear Analysis: Hybrid Systems (36), 2020, Benchmark C3".

ProgramVariables
  Real x, y, z;
  Real u1, u2, u3;
End.

Problem
  (x-1.5)^2+y^2+z^2<=0.0625 &
  -1.1<=u1&u1<=-1 & 0.9<=u2&u2<=1 & 4.7<=u3&u3<=4.8
  ->
  [{x'=u1*x+y-z, y'=-x*(z+1)-u2*y, z'=-0.77*x-u3*z & -2<=x&x<=2 &-2<=y&y<=2 & -2<=z&z<=2}
   @invariant(2.7699+2.7025*x+1.4255*y-1.0938*z+0.95692*x^2+0.29671*y*x+0.72331*y^2-0.62314*x*z+0.26337*z*y-0.17821*z^2>=0)
  ]!(x+1)^2+(y+1)^2+(z-1)^2<=0.0625
End.

/* Proving invariant stuck */

End.

ArchiveEntry "Benchmarks/Nonlinear/Yang Wu Lin 2020: Benchmark C3 (Nonparametric)"

Citation "Z. Yang, M. Wu and W. Lin, nonlinear Analysis: Hybrid Systems (36), 2020, Benchmark C3".

ProgramVariables
  Real x, y, z;
  Real u1, u2, u3;
End.

Problem
  (x-1.5)^2+y^2+z^2<=0.0625 &
  u1=-1 & u2=1 & u3=4.75
  ->
  [{x'=u1*x+y-z, y'=-x*(z+1)-u2*y, z'=-0.77*x-u3*z & -2<=x&x<=2 &-2<=y&y<=2 & -2<=z&z<=2}
   @invariant(12583*x+97936*z < 60051)
  ]!(x+1)^2+(y+1)^2+(z-1)^2<=0.0625
End.

Tactic "Scripted proof"
  implyR(1) ; dC("12583*x+97936*z < 60051", 1) ; <(
    dW(1) ; QE,
    barrier(1)
  )
End.

Tactic "Automated proof (from annotations)"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Yang Wu Lin 2020: Benchmark C4"

Citation "Z. Yang, M. Wu and W. Lin, nonlinear Analysis: Hybrid Systems (36), 2020, Benchmark C4".

ProgramVariables
  Real x1, x2, x3;
  Real u1, u2, u3, u4;
End.

Problem
  0<=x1&x1<=0.5 & 0<=x2&x2<=0.5 & -0.5<=x3&x3<=0 &
  -0.9<=u1&u1<=-0.8 & -1.2<=u2&u2<=-1.1 & -1.2<=u3&u3<=-1 & 2.1<=u4&u4<=2.4
  ->
  [{x1'=u1*x2, x2'=u2*x3, x3'=u3*x1-u4*x2-x3+x1^3 & -2<=x1&x1<=2 & -2<=x2&x2<=2 & -2<=x3&x3<=2}
   /* Not implied by precondition @invariant(0.289+0.1*x1*x2-0.2*x1*x3-0.34*x2*x3+0.87*x2+0.55*x3-1.12*x1+0.23*x1^2+0.4*x2^2+0.02*x3^2>=0) */
  ]!(0.5<=x1&x1<=2 & -2<=x2&x2<=-1.5 & -2<=x3&x3<=-1.5)
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Yang Wu Lin 2020: Benchmark C4 (Nonparametric)"

Citation "Z. Yang, M. Wu and W. Lin, nonlinear Analysis: Hybrid Systems (36), 2020, Benchmark C4".

ProgramVariables
  Real x1, x2, x3;
  Real u1, u2, u3, u4;
End.

Problem
  0<=x1&x1<=0.5 & 0<=x2&x2<=0.5 & -0.5<=x3&x3<=0 &
  u1=-0.85 & u2=-1.15 & u3=-1.16 & u4=2.2
  ->
  [{x1'=u1*x2, x2'=u2*x3, x3'=u3*x1-u4*x2-x3+x1^3 & -2<=x1&x1<=2 & -2<=x2&x2<=2 & -2<=x3&x3<=2}
   @invariant(722620*x1+17021*x1^3 < 890220+33020*x2+318530*x3)
  ]!(0.5<=x1&x1<=2 & -2<=x2&x2<=-1.5 & -2<=x3&x3<=-1.5)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("722620*x1+17021*x1^3 < 890220+33020*x2+318530*x3", 1) ; <(
    dW(1) ; QE,
    barrier(1)
  )
End.

Tactic "Automated proof (from annotations)"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Gorbuzov Pranevich 2012: Example 1.2"

Citation "V.N. Gorbuzov, A.F. Pranevich: First integrals of ordinary linear differential systems;".

ProgramVariables
  Real x1, x2, x3;
End.

Problem
  x1^2 + x2^2 + x3^2 >= 5
  ->
  [{x1'=2*x1+x2,
    x2'=x1+3*x2-x3,
    x3'=-x1+2*x2+3*x3
   }]!(x1^2+x2^2+x3^2 < 1)
End.

Tactic "Scripted proof"
  implyR(1) ; dbx(1)
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Gorbuzov Pranevich 2012: Example 1.4"

Citation "V.N. Gorbuzov, A.F. Pranevich: First integrals of ordinary linear differential systems;".

ProgramVariables
  Real x1, x2, x3;
End.

Problem
  x2 < x1 & x2 < x3 & x3 > 0 & x3 < 12
  ->
  [{x1'=4*x1-5*x2+2*x3,
    x2'=5*x1-7*x2+3*x3,
    x3'=6*x1-9*x2+4*x3}@invariant(x1+x3>=2*x2)
  ] !(x1 < 0.5 & x3 < 0.5 & x2 > 1)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("x1+x3>=2*x2", 1) ; <(
    dW(1) ; QE,
    dbx(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Gorbuzov Pranevich 2012: Example 1.5 Variant 1"

Citation "V.N. Gorbuzov, A.F. Pranevich: First integrals of ordinary linear differential systems;".

ProgramVariables
  Real x1, x2, x3;
End.

Problem
  ((x2 >= 0 & 2*x2 < x3 & 3*x2 < x1) | (x2 <= 0 & x1 >= -0.4 &
   x3 > 0.5))
  ->
  [{x1'=4*x1-x2,
    x2'=3*x1+x2-x3,
    x3'=x1+x3}@invariant(x1+x3>x2)
  ] !(4*x1 < x2 & x3 < x1 & x2 > 0.5)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("x1+x3>x2", 1) ; <(
    dW(1) ; QE,
    dbx(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Gorbuzov Pranevich 2012: Example 1.5 Variant 2"

Citation "V.N. Gorbuzov, A.F. Pranevich: First integrals of ordinary linear differential systems;".

ProgramVariables
  Real x1, x2, x3;
End.

Problem
  (x3 > 1 & x1 > (x1 - x3)^2 & x3 > x2)
  ->
  [{x1'=4*x1-x2,
    x2'=3*x1+x2-x3,
    x3'=x1+x3}@invariant((x1-x3)^2-2*x3*(x1-x2+x3) < 0)
  ] !(x3 < 0 & x1 - x2 + x3 > 0)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("(x1-x3)^2-2*x3*(x1-x2+x3) < 0", 1) ; <(
    dW(1) ; QE,
    dbx(1)
  )
End.

Tactic "Automated proof (from annotations)"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Gorbuzov Pranevich 2012: Example 1.5 Variant 3"

Citation "V.N. Gorbuzov, A.F. Pranevich: First integrals of ordinary linear differential systems;".

ProgramVariables
  Real x1, x2, x3;
End.

Problem
  x1 > 0 & x2 > 0 & x3 > 0 & x1 > x2 & x3 > x1
  ->
  [{x1'=4*x1-x2,
    x2'=3*x1+x2-x3,
    x3'=x1+x3}@invariant((x1-x3)^2-2*x3*(x1-x2+x3) < (x1-x2+x3)^2)
  ] !(x2 = x3 & x3 > 5 & x1 < 1/5)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("2*x2*(x1+2*x3) < x2^2+2*x3*(3*x1+x3)", 1) ; <(
    dW(1) ; QE,
    dbx(1)
  )
End.

Tactic "Scripted proof (2)"
  implyR(1) ; dC("(x1-x3)^2-2*x3*(x1-x2+x3) < (x1-x2+x3)^2", 1) ; <(
    dW(1) ; QE,
    dbx(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.


ArchiveEntry "Benchmarks/Nonlinear/Djaballah Chapoutot Kieffer Bouissou 2017: Example 7"

Description "Example 7, p; 293".
Citation "Adel Djaballah, Alexandre Chapoutot, Michel Kieffer, Olivier Bouissou; Construction of parametric barrier functions for dynamical systems using interval analysis; Automatica 78 (2017) 287–296.".
Link "https://doi.org/10.1016/j.automatica.2016.12.013".

ProgramVariables
  Real x1, x2, x3;
End.

Problem
  (x1+14.5)^2 + (x2+14.5)^2 + (x3-12.5)^2 - 0.25 <= 0
  ->
  [{x1'=10*(x2-x1), x2'=x1*(28-x3)-x2, x3'=x1*x2-8/3*x3}
  ]!((x1+16.5)^2 + (x2+14.5)^2 + (x3-2.5)^2 - 0.25 <= 0)
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Llibre Zhang 2002: Lorenz System (Parametric)"

Citation "Jaume Llibre, Xiang Zhang. On the invariant algebraic surfaces of the Lorenz systems. J. Math. Phys. 43, 1622 (2002)".
Link "https://doi.org/10.1063/1.1435078".

Definitions
  Real b, r, s;
End.

ProgramVariables
  Real x, y, z1;
End.

Problem
  ((s = -z1 | (s > 0.5 & z1 < -0.5 & x > 1)) & b = 2*s)
  ->
  [{x'=s*(y-x),
    y'=r*x-y-x*z1,
    z1'=-b*z1+x*y
   }@invariant((x^2 - 2*s*z1) >= 0)
  ]!((s > z1 | s > 2*z1) & z1 > x & x > 1)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("x^2-2*s*z1>=0", 1) ; <(
    dW(1) ; QE,
    ODEinv(1)
  )
End.

Tactic "Automated proof (from annotations)"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Llibre Zhang 2002: Lorenz System (p. 1623 b=2s Variant s=1 r=1)"

Citation "Jaume Llibre, Xiang Zhang. On the invariant algebraic surfaces of the Lorenz systems. J. Math. Phys. 43, 1622 (2002)".
Link "https://doi.org/10.1063/1.1435078".

Definitions
  Real b, r, s;
End.

ProgramVariables
  Real x, y, z2;
End.

Problem
  z2 > 5*x & x > 0 & x < 4 & b=2 & s=1 & r=1
  ->
  [{x'=s*(y-x),
    y'=r*x-y-x*z2,
    z2'=-b*z2+x*y
   }@invariant(x^2 - 2*s*z2 <= 0)
  ]!((s <=1 & s >= -1) & (z2 <= 1 & z2 >= -1) & x > 1.8)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("x^2 < 2*z2", 1) ; <(
    dW(1) ; QE,
    ODEinv(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Llibre Zhang 2002: Lorenz System (p. 1623 b=0 s=0.33)"

Citation "Jaume Llibre, Xiang Zhang. On the invariant algebraic surfaces of the Lorenz systems. J. Math. Phys. 43, 1622 (2002)".
Link "https://doi.org/10.1063/1.1435078".

Definitions
  Real b, r, s;
End.

ProgramVariables
  Real x, y, z3;
End.

Problem
  x=y & r < -1 & z3>x^2
  & b=0 & s=1/3
  ->
  [{x'=s*(y-x),
    y'=r*x-y-x*z3,
    z3'=-b*z3+x*y
   }@invariant(-r()*x^2+1/3*y^2+2/3*x*y+x^2*z3-3/4*x^4>=0)
  ]!(y < 0 & z3 < -1 & r < 0 & z3 < r & x > -y)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("-r()*x^2+1/3*y^2+2/3*x*y+x^2*z3-3/4*x^4>=0", 1) ; <(
    dW(1) ; QE,
    ODEinv(1)
  )
End.

Tactic "Automated proof (from annotations)"
  auto
End.

End.


ArchiveEntry "Benchmarks/Nonlinear/Llibre Zhang 2002: Lorenz System (p. 1623 b=0 s=0.33 Variant r=1)"

Citation "Jaume Llibre, Xiang Zhang. On the invariant algebraic surfaces of the Lorenz systems. J. Math. Phys. 43, 1622 (2002)".
Link "https://doi.org/10.1063/1.1435078".

Definitions
  Real b, r, s;
End.

ProgramVariables
  Real x, y, z4;
End.

Problem
  z4 > 1 & x > 0 & y > 3*x^2 & b=0 & s=1/3 & r=1
  ->
  [{x'=s*(y-x),
    y'=r*x-y-x*z4,
    z4'=-b*z4+x*y
   }@invariant(-r*x^2 + 1/3*y^2 + 2/3*x*y + x^2*z4 - 3/4*x^4 >= 0)
  ]!(x > 1 & y > 0 & z4 < 0 & -z4 > y^2 + y)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("-r()*x^2+1/3*y^2+2/3*x*y+x^2*z4-3/4*x^4>=0", 1) ; <(
    dW(1) ; QE,
    ODEinv(1)
  )
End.

Tactic "Automated proof (from annotations)"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Llibre Zhang 2002: Lorenz System (p. 1623 b=1 r=0)"

Citation "Jaume Llibre, Xiang Zhang. On the invariant algebraic surfaces of the Lorenz systems. J. Math. Phys. 43, 1622 (2002)".
Link "https://doi.org/10.1063/1.1435078".

Definitions
  Real b, r, s;
End.

ProgramVariables
  Real x, y, z5;
End.

Problem
  2*y^2 + z5^2 <= 0.5 & b=1 & r=0
  ->
  [{x'=s*(y-x),
    y'=r*x-y-x*z5,
    z5'=-b*z5+x*y
   }@invariant(y^2+z5^2<=1)
  ] (y^2 + 2*z5^2 <= 5)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("y^2+z5^2<=1", 1) ; <(
    dW(1) ; QE,
    ODEinv(1)
  )
End.

Tactic "Automated proof (from annotations)"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Llibre Zhang 2002: Lorenz System (p. 1623 b=1 r=0 Variant s=1)"

Citation "Jaume Llibre, Xiang Zhang. On the invariant algebraic surfaces of the Lorenz systems. J. Math. Phys. 43, 1622 (2002)".
Link "https://doi.org/10.1063/1.1435078".

Definitions
  Real b, r, s;
End.

ProgramVariables
  Real x, y, z6;
End.

Problem
  y^2 + 2*z6^2 <= 1 & b=1 & r=0 & s=1
  ->
  [{x'=s*(y-x),
    y'=r*x-y-x*z6,
    z6'=-b*z6+x*y
   }@invariant(y^2+z6^2 <= 2)
  ](y^2 + 0.5*z6^2 <= 3)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("y^2+z6^2<=2", 1) ; <(
    dW(1) ; QE,
    ODEinv(1)
  )
End.

Tactic "Scripted proof (2)"
  implyR(1) ; dC("1047*(y^2+z6^2) < 1979", 1) ; <(
    dW(1) ; QE,
    barrier(1)
  )
End.

Tactic "Automated proof (from annotations)"
  auto
End.

End.

/* Higher-D Problems */

/* 4 D */

ArchiveEntry "Benchmarks/Nonlinear/Coupled Spring-Mass System (I)"

Citation "Hui Kong, Sergiy Bogomolov, Christian Schilling, Yu Jiang, Thomas A. Henzinger. Invariant Clusters for Hybrid Systems; CoRR abs/1605;01450 (2016)".

Definitions
  Real m1;
  Real m2;
  Real k1;
  Real k2;
  Real k;
  Real u1;
  Real u8;
  Real u10;

  Real invcluster(Real x1, Real x2, Real v1, Real v2) = (
    u8*v1*v2+k2*x1*x2*(m1*u8-2*m2*u10)/(m1*m2) + u10*v1^2+u1
        + 1/2*v2^2*(k1*m2*u8-k2*m1*u8+k2*m2*u8+2*k2*m2*u10)/(k2*m1)
        + 1/2*(2*k1*m2*u10-k2*m1*u8+2*k2*m2*u10)*x1^2/(m1*m2)
        + 1/2*(k1*m2*u8-k2*m1*u8+2*k2*m2*u10)*x2^2/(m1*m2) );
End.

ProgramVariables
  Real x1;
  Real x2;
  Real v1;
  Real v2;
End.

Problem
    x1=0
  & v1=0
  & x2=7/8
  & v2=0
  & k1=-1
  & k2=-1
  & k=-1
  & m1=5
  & m2=1
  & u10=0
  & u1=0
  & u8=320/49
  ->
  [{ x1'=v1, v1'=-k1/m1*x1-k2/m1*(x1-x2), x2'=v2, v2'=-k2/m2*(x2-x1) }@invariant(v1*v2+(-3)/10*v2^2+1/2*x1^2+(-1)*x1*x2+2/5*x2^2>=358/1169)
  ]!invcluster(x1,x2,v1,v2) < -v1^2
End.

Tactic "Scripted proof"
  implyR(1) ; dC("v1*v2+(-3)/10*v2^2+1/2*x1^2+(-1)*x1*x2+2/5*x2^2>=358/1169", 1) ; <(
    dW(1) ; QE,
    dI(1)
  )
End.

Tactic "Scripted proof (2)"
  implyR(1) ; dC("invcluster(x1,x2,v1,v2)>=0", 1) ; <(
    dW(1) ; QE,
    dbx(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Coupled Spring-Mass System (II)"

Citation "Sriram Sankaranarayanan. Automatic Invariant Generation for Hybrid Systems Using Ideal Fixed Points".

Definitions
  Real k;
End.

ProgramVariables
  Real x1;
  Real x2;
  Real v1;
  Real v2;
End.

Problem
    x1=0
  & x2=0
  & v1=1
  & v2=-1
  ->
  [{ x1'=v1, x2'=v2, v1'=-k*x1-k/5*(x1-x2), v2'=k*(x1-x2) }
  ](25*v1^2+60*v1*v2+11*v2^2+50*k*x1*x2+5*k*x2^2 > -25 - v1^2 - v2^2)
  /* Invariants from paper:
    576+1200*v1^2+625*v1^4+2880*v1*v2+3000*v1^3*v2+528*v2^2+4150*v1^2*v2^2+1320*v1*v2^3+121*v2^4-1860*k*x2^2+2750*k*v1^2*x2^2+1600*k*v1*v2*x2^2+710*k*v2^2*x2^2+525*k^2*x2^4 = 0,
    240*x1+250*v1^2*x1+600*v1*v2*x1+110*v2^2*x1+396*x2-525*v1^2*x2-260*v1*v2*x2-131*v2^2*x2-105*k*x2^3 = 0,
    24+25*v1^2+60*v1*v2+11*v2^2+50*k*x1*x2+5*k*x2^2 = 0,
    -21+25*v1^2+10*v1*v2+6*v2^2+25*k*x1^2+5*k*x2^2 = 0
   */
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Damped Mathieu System"

Citation "James Kapinski, Jyotirmoy V. Deshmukh, Sriram Sankaranarayanan, and Nikos Arechiga. 2014. Simulation-guided Lyapunov analysis for hybrid dynamical systems; In Proceedings of the 17th International Conference on Hybrid systems: computation and control (HSCC '14). ACM, New York, NY, USA, 133-142. DOI=http://doi.org/10.1145/2562059.2562139".

Definitions
  Real LyapunovCandidate(Real x1, Real x2) = ( 98*x1^2 + 24*x1*x2 + 24*x2*x1 + 55*x2^2 );
End.

ProgramVariables
  Real x1;
  Real x2;
  Real sint;
  Real cost;
End.

Problem
  x1 = 1/20 & x2 = 1/32 & sint=0 & cost=1 /* t=0 initially */
  ->
  [{ x1'=x2, x2'=-x2-(2+sint)*x1, sint'=cost, cost'=-sint }@invariant(cost^2+sint^2<=100000/99999, cost^2+sint^2>=1)]LyapunovCandidate(x1, x2) < 1
End.

Tactic "Scripted proof"
  implyR(1) ; dC("cost^2+sint^2<=100000/99999", 1) ; <(
    dC("cost^2+sint^2>=1", 1) ; <(
      expand("LyapunovCandidate");
      dbx(1),
      dI(1)
    ),
    dI(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Flight Maneuvers (I)"

Citation "Khalil Ghorbal, Jean-Baptiste Jeannin, Erik Zawadzki, André Platzer, Geoffrey J. Gordon, and Peter Capell; Hybrid Theorem Proving of Aerospace Systems: Applications and Challenges".

Definitions
  Real w1;
End.

ProgramVariables
  Real x;
  Real y;
  Real cost;
  Real sint;
End.

Problem
    w1<0
  & cost = 1 & sint = 0
  & w1^2*(x^2 + y^2) - 8*w1*y > -8*w1 + w1^2
  ->
  [{ x' = 2*cost - 2 + w1*y, y' = 2*sint - w1*x, cost' = 2*w1*sint, sint' = -2*w1*cost }
  ](x^2 + y^2 > 1)
  /* Known invariant: w1^2*(x^2 + y^2) + 4*w1*sint*x + 4*w1*(-1 - cost)*y + 8*cost > 8 - 8*w1 + w1^2 */
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Gorbuzov Pranevich 2012: Example 1.1"

Citation "V.N. Gorbuzov, A.F. Pranevich: First integrals of ordinary linear differential systems;".

ProgramVariables
  Real x1, x2, x3, x4;
End.

Problem
  x1 = 1 & x2 = 1 & x3 = 1 & x4 = 1
  ->
  [{x1'=x1 - 2*x2 - x4,
    x2'=-x1 + 4*x2 - x3 + 2*x4,
    x3'=2*x2 + x3 + x4,
    x4'=2*x1 - 4*x2 + 2*x3 - 2*x4}@invariant(x1+x3=x2+x4)]!(x1=10 & x2=0 & x3=2 & x4=3)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("x1+x3=x2+x4", 1) ; <(
    dW(1) ; QE,
    dbx(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Gorbuzov Pranevich 2012: Example 1.3 Variant 1"

Citation "V.N. Gorbuzov, A.F. Pranevich: First integrals of ordinary linear differential systems; ".

ProgramVariables
  Real x1, x2, x3, x4;
End.

Problem
  0.5*(x1 + x3 + 2*x4)^2 > 3
  ->
  [{x1'=-3*x1+x2+4*x3+2*x4,
    x2'=8*x1-3*x2-2*x3+6*x4,
    x3'=-9*x1+3*x2+4*x3-4*x4,
    x4'=6*x1-3*x2-4*x3+2*x4
   }@invariant((-x2 + x4)^2 + (x1 + x3 + 2*x4)^2 > 3)
   ] ((-x2 + x4)^2 + 2*(x1 + x3 + 2*x4)^2 > 1)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("(-x2+x4)^2+(x1+x3+2*x4)^2>3", 1) ; <(
    dW(1) ; QE,
    dbx(1)
  )
End.

Tactic "Scripted proof (2)"
  implyR(1) ; dC("x2^2+(x1+x3)^2+2*(2*x1+(-1)*x2+2*x3)*x4+5*x4^2>=50003/8334", 1) ; <(
    dW(1) ; QE,
    dbx(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Gorbuzov Pranevich 2012: Example 1.3 Variant 2"

Citation "V.N. Gorbuzov, A.F. Pranevich: First integrals of ordinary linear differential systems; ".

ProgramVariables
  Real x1, x2, x3, x4;
End.

Problem
  3*(x1 - x2 + 2*x4)^2 + 2*(-x1 + 2*x2 + 2*x3)^2 < 1.5 ->
  [{x1'=-3*x1+x2+4*x3+2*x4,
    x2'=8*x1-3*x2-2*x3+6*x4,
    x3'=-9*x1+3*x2+4*x3-4*x4,
    x4'=6*x1-3*x2-4*x3+2*x4
   }@invariant((x1 - x2 + 2*x4)^2 + (-x1 + 2*x2 + 2*x3)^2 < 2)
   ] !(x2 > 1 & x1 > 4*x2 & x4 > 0)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("(x1-x2+2*x4)^2+(-x1+2*x2+2*x3)^2 < 2", 1) ; <(
    dW(1) ; QE,
    dbx(1)
  )
End.

Tactic "Automated proof (from annotations)"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Yang Wu Lin 2020: Benchmark C5"

Citation "Z. Yang, M. Wu and W. Lin, nonlinear Analysis: Hybrid Systems (36), 2020, Benchmark C5".

ProgramVariables
  Real x, y, z, v;
  Real u1, u2, u3, u4;
End.

Problem
  1<=x&x<=2 & -0.5<=y&y<=0.5 & -0.5<=z&z<=0.5 & -0.5<=v&v<=0.5 &
  0.9<=u1&u1<=1 & 10<=u2&u2<=11 & 1<=u3&u3<=1.2 & -12.5<=u4&u4<=-12
  ->
  [{x'=u1*y, y'=-0.1*y-u2*z+x*v^2, z'=u3*v, v'=u4*x-8*y-11*z-11*v & -2<=x&x<=2 & -2<=y&y<=2 & -2<=z&z<=2 & -2<=v&v<=2}
   @invariant(1.7232+2.0033*x+0.2440*y+1.9113*z+0.2391*v+0.8790*x^2-0.0610*x*y+0.06351*y^2+0.07210*x*z-0.4338*y*z+0.8232*z^2-0.1248*x*v-0.1016*y*v-0.1525*z*v-0.07057*v^2>=0)
  ]!(-1.5<=x&x<=-0.5 & -1.5<=y&y<=-0.5 & -1.5<=z&z<=-0.5 & 0.5<=v&v<=1.5)
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Yang Wu Lin 2020: Benchmark C5 (Nonparametric)"

Citation "Z. Yang, M. Wu and W. Lin, nonlinear Analysis: Hybrid Systems (36), 2020, Benchmark C5".

ProgramVariables
  Real x, y, z, v;
  Real u1, u2, u3, u4;
End.

Problem
  1<=x&x<=2 & -0.5<=y&y<=0.5 & -0.5<=z&z<=0.5 & -0.5<=v&v<=0.5 &
  u1=0.95 & u2=10.5 & u3=1.1 & u4=-12.3
  ->
  [{x'=u1*y, y'=-0.1*y-u2*z+x*v^2, z'=u3*v, v'=u4*x-8*y-11*z-11*v & -2<=x&x<=2 & -2<=y&y<=2 & -2<=z&z<=2 & -2<=v&v<=2}
   @invariant(1.7232+2.0033*x+0.2440*y+1.9113*z+0.2391*v+0.8790*x^2-0.0610*x*y+0.06351*y^2+0.07210*x*z-0.4338*y*z+0.8232*z^2-0.1248*x*v-0.1016*y*v-0.1525*z*v-0.07057*v^2>=0)
  ]!(-1.5<=x&x<=-0.5 & -1.5<=y&y<=-0.5 & -1.5<=z&z<=-0.5 & 0.5<=v&v<=1.5)
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Yang Wu Lin 2020: Benchmark C6"

Citation "Z. Yang, M. Wu and W. Lin, nonlinear Analysis: Hybrid Systems (36), 2020, Benchmark C6".

ProgramVariables
  Real x1, x2, x3, x4;
  Real u1, u2, u3, u4, u5, u6, u7, u8;
End.

Problem
  -1.6<=x1&x1<=1.6 & -1.6<=x2&x2<=1.6 & -1.6<=x3&x3<=1.6 & -1.6<=x4&x4<=1.6 &
  0.8<=u1&u1<=1 & 0.6<=u2&u2<=0.8 & 1<=u3&u3<=2 & 0.8<=u4&u4<=1.2 &
  0.9<=u5&u5<=1.2 & 1<=u6&u6<=2 & 0.8<=u7&u7<=1.05 & 1<=u8&u8<=1.2
  ->
  [{x1'=u1*x2-x3-x4+(u2-x1^2-x2^2-x3^2-x4^2)*x1,
    x2'=-x1+u3*x3-x4+(u4-x1^2-x2^2-x3^2-x4^2)*x2,
    x3'=x1-x2+u5*x4+(u6-x1^2-x2^2-x3^2-x4^2)*x3,
    x4'=x1+u7*x2-x3+(u8-x1^2-x2^2-x3^2-x4^2)*x4 &
    -2<=x1&x1<=2 & -2<=x2&x2<=2 & -2<=x3&x3<=2 & -2<=x4&x4<=2}
    @invariant(8.2997-0.18912*x1-0.19551*x2-0.19371*x3-0.18707*x4-0.37075*x1^2
     -0.37215*x2^2-0.37283*x3^2-0.37155*x4^2-0.14238*x1*x2-0.14189*x1*x3
     -0.14254*x2*x3-0.14137*x1*x4-0.14203*x2*x4-0.14327*x3*x4>=0)
  ]!(1.8<=x1&x1<=2 & 1.8<=x2&x2<=2 & 1.8<=x3&x3<=2 & 1.8<=x4&x4<=2)

End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Yang Wu Lin 2020: Benchmark C6 (Nonparametric)"

Citation "Z. Yang, M. Wu and W. Lin, nonlinear Analysis: Hybrid Systems (36), 2020, Benchmark C6".

ProgramVariables
  Real x1, x2, x3, x4;
  Real u1, u2, u3, u4, u5, u6, u7, u8;
End.

Problem
  -1.6<=x1&x1<=1.6 & -1.6<=x2&x2<=1.6 & -1.6<=x3&x3<=1.6 & -1.6<=x4&x4<=1.6 &
  u1=0.9 & u2=0.7 & u3=1.5 & u4=1 & u5=1 & u6=1.5 & u7=1 & u8=1.1
  ->
  [{x1'=u1*x2-x3-x4+(u2-x1^2-x2^2-x3^2-x4^2)*x1,
    x2'=-x1+u3*x3-x4+(u4-x1^2-x2^2-x3^2-x4^2)*x2,
    x3'=x1-x2+u5*x4+(u6-x1^2-x2^2-x3^2-x4^2)*x3,
    x4'=x1+u7*x2-x3+(u8-x1^2-x2^2-x3^2-x4^2)*x4 &
    -2<=x1&x1<=2 & -2<=x2&x2<=2 & -2<=x3&x3<=2 & -2<=x4&x4<=2}
    @invariant(8.2997-0.18912*x1-0.19551*x2-0.19371*x3-0.18707*x4-0.37075*x1^2
     -0.37215*x2^2-0.37283*x3^2-0.37155*x4^2-0.14238*x1*x2-0.14189*x1*x3
     -0.14254*x2*x3-0.14137*x1*x4-0.14203*x2*x4-0.14327*x3*x4>=0)
  ]!(1.8<=x1&x1<=2 & 1.8<=x2&x2<=2 & 1.8<=x3&x3<=2 & 1.8<=x4&x4<=2)

End.

Tactic "Automated proof (from annotations)"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Papachristodoulou Prajna 2002: Example 3 (Whirling Pendulum)"

Citation "Antonis Papachristodoulou, Stephen Prajna. On the Construction of Lyapunov Functions using the Sum of Squares Decomposition. 2002.".
Link "https://doi.org/10.1109/CDC.2002.1184414".

Definitions
  Real theta, g, lp;
End.

ProgramVariables
  Real x1, x2;
  Real u1, u2;
End.

Problem
  x2 > 0 & x2 < 1 & u1 > 0 & u1 < 1 & u2 > -1/2 & u2 < 1 &
  theta = 1 & lp = 1 & g = 10 &
  u1^2+u2^2=1
  ->
  [{x1' = x2,
    x2' = theta^2*u1*u2 - g/lp*u1,
    u1' = x2*u2,
    u2' = -x2*u1
   }@invariant(((-20)+u2)*u2+x2^2<=45/4)
   ]!(u2 < -0.75 & x2 = 4)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("((-20)+u2)*u2+x2^2<=45/4", 1) ; <(
    dW(1) ; QE,
    dI(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Lunar lander descent guidance (slow descent low thrust)"

Citation "Hengjun Zhao, Mengfei Yang, Naijun Zhan, Bin Gu, Liang Zou, Yao Chen. Formal Verification of a Descent Guidance Control Program of a Lunar Lander; FM 2014.".

Definitions
  import kyx.math.{min,max};
  Real Isp1   = 2500;  /* thrust engine impulse (low thrust) */
  Real Isp2   = 2800;  /* thrust engine impulse (high thrust) */
  Real gM     = 1.622; /* gravitational acceleration on the moon */
  Real vslw   = -2;    /* target velocity slow descent */
  Real vmax   = 5;     /* max velocity */
  Real DeltaT = 0.128; /* controller sampling time */
  Real mMin   = 1100;  /* minimum lander mass */
  Real mMax   = 3000;  /* maximum lander mass */
  Real c1     = 0.01;  /* control coefficient */
  Real c2     = 0.6;   /* control coefficient */
End.

ProgramVariables
  Real r;   /* altitude relative to lunar surface */
  Real v;   /* vertical velocity */
  Real m;   /* lunar lander mass */
  Real Fc;  /* lander thrust */
  Real t;   /* time */
  Real isp; /* engine impulse depending on thrust */
  Real a;
  Real alC;
End.

Problem
  m=1250 & r=30 & v=-2
  & a = 2027.5/m
  & alC = max(-c1*(a-gM) - c2*(v-vslw) + gM, 1500/m)
  & Fc = max(min(m*alC, 5000), 1500) /* <=3000 */
  & t=0
  & (Fc <= 3000 -> isp=Isp1) & (Fc>3000 -> isp=Isp2)
  ->
  [
   /* recast per paper */
   { r'=v, v'=a-gM, a'=a^2/isp, t'=1 & r>=0 & t<=DeltaT & mMin<=m&m<=mMax }
  ]v^2<=vmax^2
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Lunar lander descent guidance (slow descent high thrust)"

Citation "Hengjun Zhao, Mengfei Yang, Naijun Zhan, Bin Gu, Liang Zou, Yao Chen. Formal Verification of a Descent Guidance Control Program of a Lunar Lander; FM 2014.".

Definitions
  import kyx.math.{min,max};
  Real Isp1   = 2500;  /* thrust engine impulse (low thrust) */
  Real Isp2   = 2800;  /* thrust engine impulse (high thrust) */
  Real gM     = 1.622; /* gravitational acceleration on the moon */
  Real vslw   = -2;    /* target velocity slow descent */
  Real vmax   = 5;     /* max velocity */
  Real DeltaT = 0.128; /* controller sampling time */
  Real mMin   = 1100;  /* minimum lander mass */
  Real mMax   = 3000;  /* maximum lander mass */
  Real c1     = 0.01;  /* control coefficient */
  Real c2     = 0.6;   /* control coefficient */
End.

ProgramVariables
  Real r;   /* altitude relative to lunar surface */
  Real v;   /* vertical velocity */
  Real m;   /* lunar lander mass */
  Real Fc;  /* lander thrust */
  Real t;   /* time */
  Real isp; /* engine impulse depending on thrust */
  Real a;
  Real alC;
End.

Problem
  m=1250 & r=30 & v=-5
  & a = 2027.5/m
  & alC = max(-c1*(a-gM) - c2*(v-vslw) + gM, 1500/m)
  & Fc = max(min(m*alC, 5000), 1500) /* >3000 */
  & t=0
  & (Fc <= 3000 -> isp=Isp1) & (Fc>3000 -> isp=Isp2)
  ->
  [
   /* recast per paper */
   { r'=v, v'=a-gM, a'=a^2/isp, t'=1 & r>=0 & t<=DeltaT & mMin<=m&m<=mMax }
  ]v^2<=vmax^2
End.

End.

/* 5D */

ArchiveEntry "Benchmarks/Nonlinear/Gorbuzov Pranevich 2012: Example 1.13"

Citation "V.N. Gorbuzov, A.F. Pranevich: First integrals of ordinary linear differential systems; ".

ProgramVariables
  Real x1, x2, x3, x4, x5;
End.

Problem
  x1 > 1 & x3 > x1 & x4 > x3
  ->
  [{x1'=2*(x1-3*x2+2*x3+x5),
    x2'=2*x1-x2+2*x3+2*x4,
    x3'=x2-x3,
    x4'=-3*x1+5*x2-4*x3-x4-2*x5,
    x5'=4*x2-2*x3+x4
   }@invariant(x1 + x3 + x4 > 0, x2^2+4*(x1+x4)*(x1+x3+x4)>0)
   ] !(x1 < -5 & x3 = -x4)
End.

Tactic "Automated proof"
  autoClose
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Space Craft: Collision Avoidance"

Citation "Fabian Immler, Matthias Althoff, Xin Chen, Chuchu Fan, Goran Frehse, Niklas Kochdumper, Yangge Li, Sayan Mitra, Mahendra Singh Tomar, and Majid Zamani. ARCH-COMP18 Category Report: Continuous and Hybrid Systems with nonlinear Dynamics".

Definitions
  Real n;
  Real mu = 3.986*10^14*60^2;
  Real r  = 42164*10^3;
  Real irc;
  Real mc = 500;
End.

ProgramVariables
  Real x;
  Real y;
  Real vx;
  Real vy;
  Real t;
  Real ux;
  Real uy;
End.

Problem
    n^2  = mu/r^3
  & 1 = irc^2 * ((r+x)^2 + y^2)
  & -925 <= x & x <= -875
  & -425 <= y & y <= -375
  & vx = 0
  & vy = 0
  & t = 0
  ->
  [{ x'=vx, y'=vy, vx'=n^2*x+2*n*vy+mu/r^2-mu*irc^3*(r+x)+ux/mc, vy'=n^2*y-2*n*vx-mu*irc^3*y+uy/mc, t'=1 & t<=200
   }
  ]( x^2 > 0.2^2 | y^2 > 0.2^2 )
End.

End.

/* 6D */

ArchiveEntry "Benchmarks/Nonlinear/Yang Wu Lin 2020: Benchmark C7"

Citation "Z. Yang, M. Wu and W. Lin, nonlinear Analysis: Hybrid Systems (36), 2020, Benchmark C7".

ProgramVariables
  Real x1, x2, x3, x4, x5, x6;
  Real u1, u2, u3, u4, u5, u6;
End.

Problem
  (x1-3.05)^2+(x2-3.05)^2+(x3-3.05)^2+(x4-3.05)^2+(x5-3.05)^2+(x6-3.05)^2<=0.05^2 &
  0.9<=u1&u1<=1 & 0.9<=u2&u2<=1 & 1<=u3&u3<=1.1 & 1<=u4&u4<=1.1 & 0.9<=u5&u5<=1 & 1<=u6&u6<=1.1
  ->
  [{x1'=-u1*x1^3+4*x2^3-6*x3*x4,
    x2'=-x1-u2*x2+x5^3,
    x3'=x1*x4-u3*x3+x4*x6,
    x4'=x1*x3+x3*x6-u4*x4^3,
    x5'=-2*x2^3-u5*x5+x6,
    x6'=-3*x3*x4-x5^3-u6*x6 &
    0<=x1&x1<=10 & 0<=x2&x2<=10 & 2<=x3&x3<=10 & 0<=x4&x4<=10 & 0<=x5&x5<=10 & 0<=x6&x6<=10}
    @invariant(-0.1182-0.06094*x1-0.00726*x2+0.3824*x3+0.3248*x4-0.1632*x5-0.1656*x6
      +0.03366*x1*x2-0.006225*x1*x3-0.004584*x1*x4-0.009548*x1*x5+0.01588*x1*x6
      -0.003326*x2*x3+0.005185*x2*x4+0.01407*x2*x5-0.01693*x2*x6+0.04518*x3*x4
      -0.0167*x3*x5-0.008248*x3*x6+0.004361*x4*x5+0.01167*x4*x6+0.0214*x5*x6
      -0.009488*x1^2-0.009429*x2^2-0.06402*x3^2-0.08304*x4^2+0.005361*x5^2-0.007063*x6^2>=0)
  ]!((x1-4.05)^2+(x2-4.15)^2+(x3-4.25)^2+(x4-4.35)^2+(x5-4.45)^2+(x6-4.55)^2<=0.05^2)
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Yang Wu Lin 2020: Benchmark C7 (Nonparametric)"

Citation "Z. Yang, M. Wu and W. Lin, nonlinear Analysis: Hybrid Systems (36), 2020, Benchmark C7".

ProgramVariables
  Real x1, x2, x3, x4, x5, x6;
  Real u1, u2, u3, u4, u5, u6;
End.

Problem
  (x1-3.05)^2+(x2-3.05)^2+(x3-3.05)^2+(x4-3.05)^2+(x5-3.05)^2+(x6-3.05)^2<=0.05^2 &
  u1=0.95 & u2=0.95 & u3=1.05 & u4=1.05 & u5=0.95 & u6=1.05
  ->
  [{x1'=-u1*x1^3+4*x2^3-6*x3*x4,
    x2'=-x1-u2*x2+x5^3,
    x3'=x1*x4-u3*x3+x4*x6,
    x4'=x1*x3+x3*x6-u4*x4^3,
    x5'=-2*x2^3-u5*x5+x6,
    x6'=-3*x3*x4-x5^3-u6*x6 &
    0<=x1&x1<=10 & 0<=x2&x2<=10 & 2<=x3&x3<=10 & 0<=x4&x4<=10 & 0<=x5&x5<=10 & 0<=x6&x6<=10}
    @invariant(-0.1182-0.06094*x1-0.00726*x2+0.3824*x3+0.3248*x4-0.1632*x5-0.1656*x6
      +0.03366*x1*x2-0.006225*x1*x3-0.004584*x1*x4-0.009548*x1*x5+0.01588*x1*x6
      -0.003326*x2*x3+0.005185*x2*x4+0.01407*x2*x5-0.01693*x2*x6+0.04518*x3*x4
      -0.0167*x3*x5-0.008248*x3*x6+0.004361*x4*x5+0.01167*x4*x6+0.0214*x5*x6
      -0.009488*x1^2-0.009429*x2^2-0.06402*x3^2-0.08304*x4^2+0.005361*x5^2-0.007063*x6^2>=0)
  ]!((x1-4.05)^2+(x2-4.15)^2+(x3-4.25)^2+(x4-4.35)^2+(x5-4.45)^2+(x6-4.55)^2<=0.05^2)
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Gorbuzov Pranevich 2012: Example 1.6"

Citation "V.N. Gorbuzov, A.F. Pranevich: First integrals of ordinary linear differential systems;".

ProgramVariables
  Real x1, x2, x3, x4, x5, x6;
End.


Problem
  x5 > -5 & x5 < x1 & x2 > x1 + 8 & x1 >= -1
  ->
  [{x1'=x1-2*x2+x3-2*x6,
    x2'=3*x2-x3-x5+2*x6,
    x3'=-x1+x3+2*x4+2*x5,
    x4'=-x1+x4+x5+x6,
    x5'=x1+x2+x5,
    x6'=x1-x2+x3-x4-x6 &
    x5 < 0
   }@invariant(x1+x2+x5 >= 0)
  ]!(x2 < 0 & x1 < x2 & x5 < x2)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("x1+x2+x5>=0", 1) ; <(
    dW(1) ; QE,
    dbx(1)
  )
End.

Tactic "Automated proof (from annotations)"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Djaballah Chapoutot Kieffer Bouissou 2017: Example 8"

Description "Example 8, p; 293".
Citation "Adel Djaballah, Alexandre Chapoutot, Michel Kieffer, Olivier Bouissou; Construction of parametric barrier functions for dynamical systems using interval analysis; Automatica 78 (2017) 287–296. From Antonis Papachristodoulou, Stephen Prajna. On the Construction of Lyapunov Functions using the Sum of Squares Decomposition. 2002. (Example 1)".
Link "https://doi.org/10.1016/j.automatica.2016.12.013".

ProgramVariables
  Real x1, x2, x3, x4, x5, x6;
End.

Problem
  (x1-3.05)^2 + (x2-3.05)^2 + (x3-3.05)^2 + (x4-3.05)^2 + (x5-3.05)^2 + (x6-3.05)^2 - 0.0001 <= 0
  ->
  [{x1' = -x1^3 + 4*x2^3 - 6*x3*x4,
    x2' = -x1 - x2 + x5^3,
    x3' = x1*x4 - x3 + x4*x6,
    x4' = x1*x3 + x3*x6 - x4^3,
    x5' = -2*x2^3 - x5 + x6,
    x6' = -3*x3*x4 - x5^3 - x6
    & 0<=x1 & x1<=10
    & 0<=x2 & x2<=10
    & 2<=x3 & x3<=10
    & 0<=x4 & x4<=10
    & 0<=x5 & x5<=10
    & 0<=x6 & x6<=10
   }
  ]!((x1-7.05)^2 + (x2-3.05)^2 + (x3-7.05)^2 + (x4-7.05)^2 + (x5-7.05)^2 + (x6-7.05)^2 - 0.0001 <= 0)
End.

End.

/* 7 D */

ArchiveEntry "Benchmarks/Nonlinear/ZYLZCL Example C9"

Description "Example C9".
Citation "Yifan Zhang, Zhengfeng Yang, Wang Lin, Huibiao Zhu, Xin Chen, Xuandong Li. Safety Verification of nonlinear Hybrid Systems Based on Bilinear Programming;".

ProgramVariables
  Real x1;
  Real x2;
  Real x3;
  Real x4;
  Real x5;
  Real x6;
  Real x7;
End.

Problem
  0.99 <= x1 & x1 <= 1.01 &
  0.99 <= x2 & x2 <= 1.01 &
  0.99 <= x3 & x3 <= 1.01 &
  0.99 <= x4 & x4 <= 1.01 &
  0.99 <= x5 & x5 <= 1.01 &
  0.99 <= x6 & x6 <= 1.01 &
  0.99 <= x7 & x7 <= 1.01 ->
  [
    {
      x1' = -0.4*x1 + 5*x3*x4,
      x2' = 0.4*x1 - x2,
      x3' = x2 - 5*x3*x4,
      x4' = 5*x5*x6 - 5*x3*x4,
      x5' = -5*x5*x6 + 5*x3*x4,
      x6' = 0.5*x7 - 5*x5*x6,
      x7' = -0.5*x7 + 5*x5*x6 &
      -2 <= x1 & x1 <= 2 &
      -2 <= x2 & x2 <= 2 &
      -2 <= x3 & x3 <= 2 &
      -2 <= x4 & x4 <= 2 &
      -2 <= x5 & x5 <= 2 &
      -2 <= x6 & x6 <= 2 &
      -2 <= x7 & x7 <= 2
    }@invariant(x1+x2+x3<=706/233)
  ]
  !(
    1.8 <= x1 & x1 <= 2 &
    1.8 <= x2 & x2 <= 2 &
    1.8 <= x3 & x3 <= 2 &
    1.8 <= x4 & x4 <= 2 &
    1.8 <= x5 & x5 <= 2 &
    1.8 <= x6 & x6 <= 2 &
    1.8 <= x7 & x7 <= 2
  )
End.

Tactic "Scripted proof"
  implyR(1) ; dC("x1+x2+x3<=706/233", 1) ; <(
    dW(1) ; QE,
    dI(1)
  )
End.

Tactic "Automated proof (from annotations)"
  auto
End.

End.

/* 8 D */
ArchiveEntry "Benchmarks/Nonlinear/Collision Avoidance Maneuver (I)"

Citation "Sriram Sankaranarayanan. Automatic Invariant Generation for Hybrid Systems Using Ideal Fixed Points".

Definitions
  Real a;
  Real b;
  Real r1;
  Real r2;
  Real w;
  Real theta;
End.

ProgramVariables
  Real x1;
  Real x2;
  Real d1;
  Real d2;
  Real y1;
  Real y2;
  Real e1;
  Real e2;
End.

Problem
    x1=r1 & y1=r1
  & x2=r2 & y2=r2
  & d1=a
  & d2=0
  /* seems like there is a typo in the paper, e1,e2 should be flipped */
  & e1=0
  & e2=b
  ->
  [
    {x1'=d1, x2'=d2, d1'=-w*d2, d2'=w*d1, y1'=e1, y2'=e2, e1'=-theta*e2, e2'=theta*e1}
    @invariant(e1^2+e2^2-b()^2=0, d1^2+d2^2-a()^2=0, e1-r2()*theta()+theta()*y2=0, -a()+d1-r2()*w()+w()*x2=0)
  ]
  (e1 - r2*theta + theta * y2) != e2^2 + 1
  /* Invariants from paper:
    e1^2 + e2^2 - b^2 = 0
    d1^2 + d2^2 - a^2 = 0
    e1 - r2*theta + theta * y2 = 0
    -a + d1 - r2*w + w*x2 = 0
    b - e2 - r1*theta + theta*y1 = 0
    -b*r1 + b*y1 + e1*r2 - e1*y2 - e2*r1 + e2*y1 = 0
    b*r2 - b*y2 - e1*r1 + e1*y1 - e2*r2 + e2*y2 = 0
    -d2 - r1*w + w*x1 = 0
    a*d2*r2 - a*d2*x2 + d1*d2*r2 - d1*d2*x2 - r1*d2^2*r1 + d2^2*x1 = 0
    a*r1 - a*x1 - d1*r1 + d1*x1 - d2*r2 + d2*x2 = 0
  */
End.

Tactic "Scripted proof"
  implyR(1) ; dC("e1^2+e2^2-b()^2=0", 1) ; <(
    dC("d1^2+d2^2-a()^2=0", 1) ; <(
      dC("e1-r2()*theta()+theta()*y2=0", 1) ; <(
        dC("-a()+d1-r2()*w()+w()*x2=0", 1) ; <(
          dW(1) ; QE,
          dI(1)
        ),
        dI(1)
      ),
      dI(1)
    ),
    dI(1)
  )
End.

Tactic "Automated proof (from annotations)"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/ATC: 2 Aircraft Tangential Roundabout Maneuver (ODE)"

Description "Essentials of Tangential Roundabout Maneuver (TRM) in Air Traffic Control (ATC)".
Citation "Andre Platzer. Differential-algebraic dynamic logic for differential-algebraic programs; Journal of Logic and Computation, 20(1), pages 309-352, 2010.".
Link "https://doi.org/10.1093/logcom/exn070".

Definitions
  Real p;  /* protected zone radius */
  Real om;   /* angular velocity of aircraft 1 */
  Real omy;  /* angular velocity of aircraft 2 */
  Real c1;   /* x-position of center of roundabout circle */
  Real c2;   /* y-position of center of roundabout circle */

  Bool safeSeparation(Real x1, Real y1, Real x2, Real y2) <->
    ( (x1-y1)^2 + (x2-y2)^2 >= p^2 );
End.

ProgramVariables
  Real x1;   /* x-position of aircraft 1 */
  Real x2;   /* y-position of aircraft 1 */
  Real d1;   /* x-direction of aircraft 1 */
  Real d2;   /* y-direction of aircraft 1 */
  Real y1;   /* x-position of aircraft 2 */
  Real y2;   /* y-position of aircraft 2 */
  Real e1;   /* x-direction of aircraft 2 */
  Real e2;   /* y-direction of aircraft 2 */
End.

Problem
    safeSeparation(x1, y1, x2, y2)
  & d1 =-om*(x2-c2) & d2=om*(x1-c1)
  & e1 =-om*(y2-c2) & e2=om*(y1-c1)
  ->
  [{x1'=d1, x2'=d2, d1'=-om*d2, d2'=om*d1,
    y1'=e1, y2'=e2, e1'=-om*e2, e2'=om*e1}@invariant(d1-e1=-om()*(x2-y2)&d2-e2=om()*(x1-y1))
  ]safeSeparation(x1, y1, x2, y2)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("d1-e1=-om()*(x2-y2)&d2-e2=om()*(x1-y1)", 1) ; <(
    dI(1),
    dI(1)
  )
End.

Tactic "Automated proof (from annotations)"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Collision Avoidance Maneuver (II)"

Citation "Jiang Liu, Naijun Zhan, Hengjun Zhao. Computing Semi-algebraic Invariants for Polynomial Dynamical Systems".

Definitions
  Real w1;
  Real w2;
  Real xi1;
  Real xi2;
  Real di1;
  Real di2;
  Real yi1;
  Real yi2;
  Real ei1;
  Real ei2;
End.

ProgramVariables
  Real x1;
  Real x2;
  Real d1;
  Real d2;
  Real y1;
  Real y2;
  Real e1;
  Real e2;
End.

Problem
  x1 = xi1 &
  x2 = xi2 &
  d1 = di1 &
  d2 = di2 &
  y1 = yi1 &
  y2 = yi2 &
  e1 = ei1 &
  e2 = ei2
  ->
  [
    {x1'=d1, x2'=d2, d1'=-w1*d2, d2'=w1*d1, y1'=e1, y2'=e2, e1'=-w2*e2, e2'=w2*e1}
    @invariant(w1*x2 + d1 - w1*xi2 - di1 = 0, -w1*x1 + d2 + w1*xi1 - di2 = 0, -w1*x1 + w1*x2 + d1 + d2 + w1*xi1 - w1*xi2 - di1 - di2 = 0, d1^2 + d2^2 - di1^2 - di2^2 = 0)
  ]
  -w1*x1 + 3*w1*x2 + 3*d1 + d2 + w1*xi1 - 3*w1*xi2 - 3*di1 - di2 >= -d1^2
End.

Tactic "Scripted proof"
  implyR(1) ; dC("w1()*x2+d1-w1()*xi2()-di1()=0", 1) ; <(
    dC("-w1()*x1+d2+w1()*xi1()-di2()=0", 1) ; <(
      dC("-w1()*x1+w1()*x2+d1+d2+w1()*xi1()-w1()*xi2()-di1()-di2()=0", 1) ; <(
        dC("d1^2+d2^2-di1()^2-di2()^2=0", 1) ; <(
          dW(1) ; QE,
          dI(1)
        ),
        dI(1)
      ),
      dI(1)
    ),
    dI(1)
  )
End.

Tactic "Automated proof (from annotations)"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Collision Avoidance Maneuver (III)"

Citation "Khalil Ghorbal and André Platzer. Characterizing algebraic invariants by differential radical invariants. In Erika Ábrahám and Klaus Havelund, editors, Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2014, Proceedings, volume 8413 of LNCS, pp; 279-294. Springer, 2014.".

Definitions
  Real w1;
  Real w2;
End.

ProgramVariables
  Real x1;
  Real x2;
  Real d1;
  Real d2;
  Real y1;
  Real y2;
  Real e1;
  Real e2;
End.

Problem
    w1=w2
  & d1=2
  & d2=4
  & e1=-2
  & e2=-4
  ->
  [{ x1'=d1, x2'=d2, d1'=-w1*d2, d2'=w1*d1, y1'=e1, y2'=e2, e1'=-w2*e2, e2'=w2*e1
   }
  ]
  ((d1+d2+e1+e2)^2 < 1 & (d1-d2+e1-e2)*(d1+d2+e1+e2) > -1)
  /* Invariant (family) from paper:
    g1*d1 + g2*d2 + g3*e1 + g4*e2 = 0 & g2*d1 - g1*d2 + g4*e1 - g3*e2 = 0
  */
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Laub-Loomis"

Citation "Fabian Immler, Matthias Althoff, Xin Chen, Chuchu Fan, Goran Frehse, Niklas Kochdumper, Yangge Li, Sayan Mitra, Mahendra Singh Tomar, and Majid Zamani. ARCH-COMP18 Category Report: Continuous and Hybrid Systems with nonlinear Dynamics".

Definitions
  Real W;
  Bool in(Real v, Real c, Real w) <-> ( c-w <= v & v <= c+w );
End.

ProgramVariables
  Real x1;
  Real x2;
  Real x3;
  Real x4;
  Real x5;
  Real x6;
  Real x7;
  Real t;
End.

Problem
    W=0.1
  & in(x1,1.2,W)
  & in(x2,1.05,W)
  & in(x3,1.5,W)
  & in(x4,2.4,W)
  & in(x5,1,W)
  & in(x6,0.1,W)
  & in(x7,0.45,W)
  & t=0
  ->
  [{ x1'=1.4*x3-0.9*x1, x2'=2.5*x5-1.5*x2, x3'=0.6*x7-0.8*x2*x3, x4'=2-1.3*x3*x4, x5'=0.7*x1-x4*x5, x6'=0.3*x1-3.1*x6,
     x7'=1.8*x6-1.5*x2*x7, t'=1 & t<=20 }](x4 < 5)
End.

End.

/* 9 D */

ArchiveEntry "Benchmarks/Nonlinear/Planar 2-body problem"

Definitions
  Real m;
End.

ProgramVariables
  Real x1;
  Real y1;
  Real vx1;
  Real vy1;
  Real x2;
  Real y2;
  Real vx2;
  Real vy2;
  Real r;
End.

Problem
  r = 1 &
  x1 = 0 & y1 = 0 & vx1 = 0 & vy1 = -1 &
  x2 = 1 & y2 = 0 & vx2 = 0 & vy2 = 1 &
  m = 5 ->
  [{
      r' = -r^3*((x1 - x2)*(vx1 - vx2) + (y1 - y2)*(vy1 - vy2)),
      x1' = vx1,
      vx1' = -m*(x1 - x2)*r^3,
      y1' = vy1,
      vy1' = -m*(y1 - y2)*r^3,
      x2' = vx2,
      vx2' = -m*(x2 - x1)*r^3,
      y2' = vy2,
      vy2' = -m*(y2 - y1)*r^3
   }]
  (x1-x2)^2+(y1-y2)^2 <= 2
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/ZYLZCL Example C10"

Description "Example C10".
Citation "Yifan Zhang, Zhengfeng Yang, Wang Lin, Huibiao Zhu, Xin Chen, Xuandong Li. Safety Verification of nonlinear Hybrid Systems Based on Bilinear Programming;".

ProgramVariables
  Real x1;
  Real x2;
  Real x3;
  Real x4;
  Real x5;
  Real x6;
  Real x7;
  Real x8;
  Real x9;
End.

Problem
  0.99 <= x1 & x1 <= 1.01 &
  0.99 <= x2 & x2 <= 1.01 &
  0.99 <= x3 & x3 <= 1.01 &
  0.99 <= x4 & x4 <= 1.01 &
  0.99 <= x5 & x5 <= 1.01 &
  0.99 <= x6 & x6 <= 1.01 &
  0.99 <= x6 & x6 <= 1.01 &
  0.99 <= x7 & x7 <= 1.01 &
  0.99 <= x8 & x8 <= 1.01 &
  0.99 <= x9 & x9 <= 1.01 ->
  [
    {
      x1' = 3*x3 - x1*x6,
      x2' = x4 - x2*x6,
      x3' = x1*x6 - 3*x3,
      x4' = x2*x6 - x4,
      x5' = 3*x3 + 5*x1 - x5,
      x6' = 5*x5 + 3*x3 + x4 - x6*(x1 + x2 + 2*x8 + 1),
      x7' = 5*x4 + x2 - 0.5*x7,
      x8' = 5*x7 - 2*x6*x8 + x9 - 0.2*x8,
      x9' = 2*x6*x8 - x9 &
      -2 <= x1 & x1 <= 2 &
      -2 <= x2 & x2 <= 2 &
      -2 <= x3 & x3 <= 2 &
      -2 <= x4 & x4 <= 2 &
      -2 <= x5 & x5 <= 2 &
      -2 <= x6 & x6 <= 2 &
      -2 <= x7 & x7 <= 2 &
      -2 <= x8 & x8 <= 2 &
      -2 <= x9 & x9 <= 2
    }@invariant(x2+x4<=101/50)
  ]
  !(
    1.8 <= x1 & x1 <= 2 &
    1.8 <= x2 & x2 <= 2 &
    1.8 <= x3 & x3 <= 2 &
    1.8 <= x4 & x4 <= 2 &
    1.8 <= x5 & x5 <= 2 &
    1.8 <= x6 & x6 <= 2 &
    1.8 <= x7 & x7 <= 2 &
    1.8 <= x8 & x8 <= 2 &
    1.8 <= x9 & x9 <= 2
  )
End.

Tactic "Scripted proof"
  implyR(1) ; dC("x2+x4<=101/50", 1) ; <(
    dW(1) ; QE,
    dI(1)
  )
End.

Tactic "Automated proof (from annotations)"
  auto
End.

End.

/* 12D */

ArchiveEntry "Benchmarks/Nonlinear/ATC: 3 Aircraft Tangential Roundabout Maneuver (ODE)"

Description "Essentials of Tangential Roundabout Maneuver (TRM) in Air Traffic Control (ATC)".
Citation "Andre Platzer. Differential-algebraic dynamic logic for differential-algebraic programs; Journal of Logic and Computation, 20(1), pages 309-352, 2010.".
Link "https://doi.org/10.1093/logcom/exn070".

Definitions
  Real p;  /* protected zone radius */
  Real om;   /* angular velocity of aircraft 1 */
  Real omy;  /* angular velocity of aircraft 2 */
  Real omz;  /* angular velocity of aircraft 3 */
  Real c1;   /* x-position of center of roundabout circle */
  Real c2;   /* y-position of center of roundabout circle */

  Bool safeSeparation(Real x1, Real y1, Real x2, Real y2) <->
    ( (x1-y1)^2 + (x2-y2)^2 >= p^2 );

  Bool safeSeparation3(Real x1, Real y1, Real x2, Real y2, Real z1, Real z2)
    <->
      safeSeparation(x1, y1, x2, y2)
    & safeSeparation(y1, z1, y2, z2)
    & safeSeparation(x1, z1, x2, z2);
End.

ProgramVariables
  Real x1;   /* x-position of aircraft 1 */
  Real x2;   /* y-position of aircraft 1 */
  Real d1;   /* x-direction of aircraft 1 */
  Real d2;   /* y-direction of aircraft 1 */
  Real y1;   /* x-position of aircraft 2 */
  Real y2;   /* y-position of aircraft 2 */
  Real e1;   /* x-direction of aircraft 2 */
  Real e2;   /* y-direction of aircraft 2 */
  Real z1;   /* x-position of aircraft 3 */
  Real z2;   /* y-position of aircraft 3 */
  Real f1;   /* x-direction of aircraft 3 */
  Real f2;   /* y-direction of aircraft 3 */
End.

Problem
  safeSeparation3(x1, y1, x2, y2, z1, z2)
  & d1=-om*(x2-c2) & d2=om*(x1-c1)
  & e1=-om*(y2-c2) & e2=om*(y1-c1)
  & f1=-om*(z2-c2) & f2=om*(z1-c1)
  ->
  [
   {x1'=d1, x2'=d2, d1'=-om*d2, d2'=om*d1,
    y1'=e1, y2'=e2, e1'=-om*e2, e2'=om*e1,
    z1'=f1, z2'=f2, f1'=-om*f2, f2'=om*f1}@invariant(d1=-om()*(x2-c2())&d2=om()*(x1-c1())&e1=-om()*(y2-c2())&e2=om()*(y1-c1())&f1=-om()*(z2-c2())&f2=om()*(z1-c1()))
  ]safeSeparation3(x1, y1, x2, y2, z1, z2)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("d1=-om()*(x2-c2())&d2=om()*(x1-c1())&e1=-om()*(y2-c2())&e2=om()*(y1-c1())&f1=-om()*(z2-c2())&f2=om()*(z1-c1())", 1) ; <(
    dI(1),
    dI(1)
  )
End.

Tactic "Automated proof (from annotations)"
  auto
End.

End.

/* 16D */

ArchiveEntry "Benchmarks/Nonlinear/ATC: 4 Aircraft Tangential Roundabout Maneuver (ODE)"

Description "Essentials of Tangential Roundabout Maneuver (TRM) in Air Traffic Control (ATC)".
Citation "Andre Platzer. Differential-algebraic dynamic logic for differential-algebraic programs; Journal of Logic and Computation, 20(1), pages 309-352, 2010.".
Link "https://doi.org/10.1093/logcom/exn070".

Definitions
  Real p;  /* protected zone radius */
  Real om;   /* angular velocity of aircraft 1 */
  Real omy;  /* angular velocity of aircraft 2 */
  Real omz;  /* angular velocity of aircraft 3 */
  Real omu;  /* angular velocity of aircraft 4 */
  Real c1;   /* x-position of center of roundabout circle */
  Real c2;   /* y-position of center of roundabout circle */

  Bool safeSeparation(Real x1, Real y1, Real x2, Real y2) <->
    ( (x1-y1)^2 + (x2-y2)^2 >= p^2 );

  Bool safeSeparation4(Real x1, Real y1, Real x2, Real y2,
                       Real z1, Real z2, Real u1, Real u2) <->
      safeSeparation(x1, y1, x2, y2)
    & safeSeparation(y1, z1, y2, z2)
    & safeSeparation(x1, z1, x2, z2)
    & safeSeparation(x1, u1, x2, u2)
    & safeSeparation(y1, u1, y2, u2)
    & safeSeparation(z1, u1, z2, u2);
End.

ProgramVariables
  Real x1;   /* x-position of aircraft 1 */
  Real x2;   /* y-position of aircraft 1 */
  Real d1;   /* x-direction of aircraft 1 */
  Real d2;   /* y-direction of aircraft 1 */
  Real y1;   /* x-position of aircraft 2 */
  Real y2;   /* y-position of aircraft 2 */
  Real e1;   /* x-direction of aircraft 2 */
  Real e2;   /* y-direction of aircraft 2 */
  Real z1;   /* x-position of aircraft 3 */
  Real z2;   /* y-position of aircraft 3 */
  Real f1;   /* x-direction of aircraft 3 */
  Real f2;   /* y-direction of aircraft 3 */
  Real u1;   /* x-position of aircraft 4 */
  Real u2;   /* y-position of aircraft 4 */
  Real g1;   /* x-direction of aircraft 4 */
  Real g2;   /* y-direction of aircraft 4 */
End.

Problem
  safeSeparation4(x1, y1, x2, y2, z1, z2, u1, u2)
  & d1=-om*(x2-c2) & d2=om*(x1-c1)
  & e1=-om*(y2-c2) & e2=om*(y1-c1)
  & f1=-om*(z2-c2) & f2=om*(z1-c1)
  & g1=-om*(u2-c2) & g2=om*(u1-c1)
  ->
  [
   {x1'=d1, x2'=d2, d1'=-om*d2, d2'=om*d1,
    y1'=e1, y2'=e2, e1'=-om*e2, e2'=om*e1,
    z1'=f1, z2'=f2, f1'=-om*f2, f2'=om*f1,
    u1'=g1, u2'=g2, g1'=-om*g2, g2'=om*g1}@invariant((d1=-om()*(x2-c2())&d2=om()*(x1-c1()))&(e1=-om()*(y2-c2())&e2=om()*(y1-c1()))&(f1=-om()*(z2-c2())&f2=om()*(z1-c1()))&g1=-om()*(u2-c2())&g2=om()*(u1-c1()))
  ]safeSeparation4(x1, y1, x2, y2, z1, z2, u1, u2)
End.

Tactic "Scripted proof"
  implyR(1) ; dC("(d1=-om()*(x2-c2())&d2=om()*(x1-c1()))&(e1=-om()*(y2-c2())&e2=om()*(y1-c1()))&(f1=-om()*(z2-c2())&f2=om()*(z1-c1()))&g1=-om()*(u2-c2())&g2=om()*(u1-c1())", 1) ; <(
    dI(1),
    dI(1)
  )
End.

Tactic "Automated proof (from annotations)"
  auto
End.

End.

/* Product System Problems */

/* 4 D */

ArchiveEntry "Benchmarks/Nonlinear/Product of Arrowsmith Place Fig_3_5e page 79 and Dumortier Llibre Artes Ex. 10_9"

ProgramVariables
  Real yleft;
  Real xleft;
  Real xright;
  Real yright;
End.

Problem
  (xleft=1&yleft=-1)&(-1+xright)^2+(1+yright)^2 < 1/4->[{xleft'=xleft^2+(xleft+yleft)/2,yleft'=(-xleft+3*yleft)/2,xright'=xright^4+2*xright*yright^2-6*xright^2*yright^2+yright^4+xright*(xright^2-yright^2),yright'=2*xright^2*yright-4*xright^3*yright+4*xright*yright^3-yright*(xright^2-yright^2)&true&true}](!yleft>0&!yright>=1)
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Product of Ben Sassi Girard Sankaranarayanan 2014 Fitzhugh-Nagumo and Strogatz Example 6_8_3"

ProgramVariables
  Real yleft;
  Real xleft;
  Real xright;
  Real yright;
End.

Problem
  -1/20+(5/4+xleft)^2+(-5/4+yleft)^2<=0&2*(-1/3+xright)^2+yright^2 < 1/16->[{xleft'=7/8+xleft-xleft^3/3-yleft,yleft'=2*(7/10+xleft-4*yleft/5)/25,xright'=xright^2*yright,yright'=xright^2-yright^2&true&true}](!36/5+5*xleft+xleft^2+2*yleft+yleft^2<=0&!xright<=-2)
End.


End.

ArchiveEntry "Benchmarks/Nonlinear/Product of Dai Gan Xia Zhan JSC14 Ex. 2 and Fitzhugh Nagumo Ben Sassi Girard 2"

ProgramVariables
  Real yleft;
  Real aright;
  Real xleft;
  Real yright;
End.

Problem
  xleft^2+(2+yleft)^2<=1&-1<=aright&aright<=-0.5&1<=yright&yright<=1.5->[{xleft'=2*xleft-xleft*yleft,yleft'=2*xleft^2-yleft,aright'=7/8+aright-aright^3/3-yright,yright'=2*(7/10+aright-4*yright/5)/25&true&true}](!xleft^2+(-1+yleft)^2<=9/100&!(-2.5<=aright&aright<=-2&-2<=yright&yright<=-1.5))
End.


End.

ArchiveEntry "Benchmarks/Nonlinear/Product of Dai Gan Xia Zhan JSC14 Ex. 2 and Strogatz Exercise 6_6_1 Reversible System"

ProgramVariables
  Real yleft;
  Real xleft;
  Real xright;
  Real yright;
End.

Problem
  xleft^2+(2+yleft)^2<=1&(-1/3+xright)^2+(-1/3+yright)^2 < 1/16->[{xleft'=2*xleft-xleft*yleft,yleft'=2*xleft^2-yleft,xright'=(1-xright^2)*yright,yright'=1-yright^2&true&true}](!xleft^2+(-1+yleft)^2<=9/100&!(xright>=2|xright<=-2))
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Product of Dumortier Llibre Artes Ex. 1_11a and ZYLZCL Example C4"

ProgramVariables
  Real yleft;
  Real xleft;
  Real x1right;
  Real x2right;
End.

Problem
  (xleft>-1/2&xleft < -1/3&yleft < 0&yleft>=-1/2)&-1<=x1right&x1right<=0&-1<=x2right&x2right<=0
  ->
  [{xleft'=2*xleft-xleft^5-xleft*yleft^4,yleft'=yleft-xleft^2*yleft-yleft^3,
    x1right'=-1+x1right^2+x2right^2,x2right'=5*(-1+x1right*x2right)&true&-2<=x1right&x1right<=2&-2<=x2right&x2right<=2
   }@invariant(xleft < 0, yleft < 0, 22667*x1right^2+x2right*(257910+6221*x2right)+x1right*(141840+15973*x2right) < 42786)
  ](!xleft+yleft>0&!(1<=x1right&x1right<=2&1<=x2right&x2right<=2))
End.

Tactic "Automated proof"
  autoClose
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Product of Forsman Phd Ex 6_1 page 99 and ZYLZCL Example C7"

ProgramVariables
  Real yleft;
  Real xleft;
  Real x1right;
  Real x2right;
End.

Problem
  xleft^2+(-2+yleft)^2 < 1/24&-3/2<=x1right&x1right<=-1/2&-3/2<=x2right&x2right<=-1/2
  ->
  [{xleft'=-xleft+2*xleft^2*yleft,yleft'=-yleft,x1right'=-x1right+x1right*x2right,
    x2right'=-x2right&true&-2<=x1right&x1right<=2&-2<=x2right&x2right<=2
   }@invariant(x2right+yleft>0, x2right^2+x2right*yleft+yleft^2>0, x1right < 0, x2right < 0, xleft*yleft < 1)
  ](!(xleft<=-2|yleft<=-1)&!(-1/2<=x1right&x1right<=1/2&1/2<=x2right&x2right<=3/2))
End.

Tactic "Scripted proof"
  implyR(1) ; dC("x2right+yleft>0", 1) ; <(
    dC("x2right^2+x2right*yleft+yleft^2>0", 1) ; <(
      dC("x1right < 0", 1) ; <(
        dC("x2right < 0", 1) ; <(
          dC("xleft*yleft < 1", 1) ; <(
            ODEinv(1),
            dbx(1)
          ),
          dbx(1)
        ),
        dbx(1)
      ),
      dbx(1)
    ),
    dbx(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Product of Hamiltonian System 1 and Nonlinear Circuit Example 4"

ProgramVariables
  Real yleft;
  Real xleft;
  Real x1right;
  Real x2right;
End.

Problem
  (2/3+xleft)^2+yleft^2<=1/24&-1.1<=x1right&x1right<=-0.7&0.5<=x2right&x2right<=0.9
  ->
  [{xleft'=-2*yleft,yleft'=-2*xleft-3*xleft^2,x1right'=-x2right^3,x2right'=x1right-x1right^3&true&true}
   @invariant(x2right+yleft>0, x2right^2+x2right*yleft+yleft^2>0, x1right < 0, x2right < 0, xleft*yleft < 1)
  ](!xleft>0&x1right^2+x2right-3 < 0)
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Product of Man Maccallum Goriely Page 57 and ZYLZCL Example C1"

ProgramVariables
  Real yleft;
  Real xleft;
  Real x1right;
  Real x2right;
End.

Problem
  xleft^2+yleft^2<=1/4&4<=x1right&x1right<=4.5&1<=x2right&x2right<=2
  ->
  [{xleft'=-yleft+2*xleft^2*yleft,yleft'=yleft+2*xleft*yleft^2,x1right'=-11/2*x2right+x2right^2,x2right'=6*x1right-x1right^2&true&1<=x1right&x1right<=5&1<=x2right&x2right<=5}
   @invariant(349+4*((-9)+x1right)*x1right^2+x2right^2*((-33)+4*x2right)<=0, 2*xleft^2 < 1)
  ](!xleft>3&!(1<=x1right&x1right<=2&2<=x2right&x2right<=3))
End.

Tactic "Scripted proof"
  implyR(1) ; dC("349+4*((-9)+x1right)*x1right^2+x2right^2*((-33)+4*x2right)<=0", 1) ; <(
    dC("2*xleft^2 < 1", 1) ; <(
      dW(1) ; QE,
      dbx(1)
    ),
    dI(1)
  )
End.

Tactic "Automated proof"
  auto
End.

End.

/* 5 D */

ArchiveEntry "Benchmarks/Nonlinear/Product of Arrowsmith Place Fig_3_5e page 79 and 3D Lotka Volterra (I)"

ProgramVariables
  Real yleft;
  Real xleft;
  Real xright;
  Real yright;
  Real zright;
End.

Problem
  (xleft=1&yleft=-1)&xright=1&yright=1&zright=1->[{xleft'=xleft^2+(xleft+yleft)/2,yleft'=(-xleft+3*yleft)/2,xright'=xright*yright-xright*zright,yright'=yright*zright-yright*xright,zright'=zright*xright-zright*yright&true&true}](!yleft>0&xright+2*yright+zright^3>0)
End.


End.

ArchiveEntry "Benchmarks/Nonlinear/Product of Darboux Christoffel Int Goriely page 58 and Invariant Clusters Example 5"

ProgramVariables
  Real yleft;
  Real xleft;
  Real xright;
  Real yright;
  Real zright;
End.

Problem
  xleft^2+yleft^2<=1&xright=1&yright=2&zright=3->[{xleft'=3*(-4+xleft^2),yleft'=3+xleft*yleft-yleft^2,xright'=yright*zright,yright'=xright*zright,zright'=xright*yright&true&true}](!(xleft < -4|yleft < -4|xleft>4|yleft>4)&!(xright=5&yright^2=27&zright^2=34))
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Product of Djaballah Chapoutot Kieffer Bouissou 2015 Ex. 1 and Invariant Clusters Example 4"

ProgramVariables
  Real yleft;
  Real xleft;
  Real xright;
  Real yright;
  Real zright;
End.

Problem
  -1/20+(5/4+xleft)^2+(-5/4+yleft)^2<=0&xright=1&yright=2&zright=3->[{xleft'=xleft+yleft,yleft'=xleft*yleft-yleft^2/2,xright'=yright*zright,yright'=xright*zright,zright'=xright*yright&true&true}](!(5/2+xleft)^2+(-4/5+yleft)^2<=1/20&!(xright=5&yright^2=27&zright^2=34))
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Product of Forsman Phd Ex 6_14 page 119 and ZYLZCL Example C2"

ProgramVariables
  Real x3right;
  Real yleft;
  Real xleft;
  Real x1right;
  Real x2right;
End.

Problem
  xleft^2+(-1+yleft)^2 < 1/8&-0.25<=x1right&x1right<=0.75&-0.25<=x2right&x2right<=0.75&-0.75<=x3right&x3right<=0.25->[{xleft'=-2*xleft+yleft^4,yleft'=-yleft+3*xleft*yleft^3,x1right'=-x2right,x2right'=-x3right,x3right'=-x1right-2*x2right-x3right+x1right^3&true&-2<=x1right&x1right<=2&-2<=x2right&x2right<=2&-2<=x3right&x3right<=2}](!yleft<=-1&!(1<=x1right&x1right<=2&-2<=x2right&x2right<=-1&-2<=x3right&x3right<=-1))
End.


End.

ArchiveEntry "Benchmarks/Nonlinear/Product of Locally stable nonlinear system and Invariant 3-dim sphere"

ProgramVariables
  Real yleft;
  Real xleft;
  Real xright;
  Real yright;
  Real zright;
End.

Problem
  (xleft^2<=1/2&(yleft+2)^2<=1/3)&xright=1/4&yright=1/8&zright=1/10->[{xleft'=-xleft+yleft-xleft^3,yleft'=-xleft-yleft+yleft^2,xright'=xright^2-xright*(xright^3+yright^3+zright^3),yright'=yright^2-yright*(xright^3+yright^3+zright^3),zright'=zright^2-zright*(xright^3+yright^3+zright^3)&true&true}]((-1+xleft)^2+(- 3/2+yleft)^2>1/4&!(xright>10|yright>5|zright<=-20))
End.

End.

ArchiveEntry "Benchmarks/Nonlinear/Product of Invariant 3-dim sphere and Invariant Clusters Example 4"

ProgramVariables
  Real yleft;
  Real xleft;
  Real xright;
  Real zleft;
  Real yright;
  Real zright;
End.

Problem
  (xleft=1/4&yleft=1/8&zleft=1/10)&xright=1&yright=2&zright=3->[{xleft'=xleft^2-xleft*(xleft^3+yleft^3+zleft^3),yleft'=yleft^2-yleft*(xleft^3+yleft^3+zleft^3),zleft'=zleft^2-zleft*(xleft^3+yleft^3+zleft^3),xright'=yright*zright,yright'=xright*zright,zright'=xright*yright&true&true}@invariant(xleft^2+yleft^2+zleft^2 < 1, 5+yright^2=zright^2)](!(xleft>10|yleft>5|zleft<=-20)&!(xright=5&yright^2=27&zright^2=34))
End.

Tactic "Scripted proof"
unfold;
dC("xleft^2+yleft^2+zleft^2 < 1", 'R=="[{xleft'=xleft^2-xleft*(xleft^3+yleft^3+zleft^3),yleft'=yleft^2-yleft*(xleft^3+yleft^3+zleft^3),zleft'=zleft^2-zleft*(xleft^3+yleft^3+zleft^3),xright'=yright*zright,yright'=xright*zright,zright'=xright*yright&true&true}](!(xleft>10|yleft>5|zleft<=-20)&!(xright=5&yright^2=27&zright^2=34))"); <(
  "Use":
    dC("5+yright^2=zright^2", 'R=="[{xleft'=xleft^2-xleft*(xleft^3+yleft^3+zleft^3),yleft'=yleft^2-yleft*(xleft^3+yleft^3+zleft^3),zleft'=zleft^2-zleft*(xleft^3+yleft^3+zleft^3),xright'=yright*zright,yright'=xright*zright,zright'=xright*yright&(true&true)&xleft^2+yleft^2+zleft^2 < 1}](!(xleft>10|yleft>5|zleft<=-20)&!(xright=5&yright^2=27&zright^2=34))"); <(
      "Use":
        dW('R=="[{xleft'=xleft^2-xleft*(xleft^3+yleft^3+zleft^3),yleft'=yleft^2-yleft*(xleft^3+yleft^3+zleft^3),zleft'=zleft^2-zleft*(xleft^3+yleft^3+zleft^3),xright'=yright*zright,yright'=xright*zright,zright'=xright*yright&((true&true)&xleft^2+yleft^2+zleft^2 < 1)&5+yright^2=zright^2}](!(xleft>10|yleft>5|zleft<=-20)&!(xright=5&yright^2=27&zright^2=34))");
        QE,
      "Show":
        ODE('R=="[{xleft'=xleft^2-xleft*(xleft^3+yleft^3+zleft^3),yleft'=yleft^2-yleft*(xleft^3+yleft^3+zleft^3),zleft'=zleft^2-zleft*(xleft^3+yleft^3+zleft^3),xright'=yright*zright,yright'=xright*zright,zright'=xright*yright&(true&true)&xleft^2+yleft^2+zleft^2 < 1}]5+yright^2=zright^2")
    ),
  "Show":
    ODE('R=="[{xleft'=xleft^2-xleft*(xleft^3+yleft^3+zleft^3),yleft'=yleft^2-yleft*(xleft^3+yleft^3+zleft^3),zleft'=zleft^2-zleft*(xleft^3+yleft^3+zleft^3),xright'=yright*zright,yright'=xright*zright,zright'=xright*yright&true&true}]xleft^2+yleft^2+zleft^2 < 1")
)
End.

Tactic "Automated proof"
  autoClose
End.

End.