
Sparky	Script	/	CANOpener
This	documents	defines	a	specification	for	a	scripting	language	that	is	meant	to	serve	as	an	easy	to	use	and	easy	to
implement	general	interface	between	humans	and	certain	kinds	of	networks	like	CANOpen,	I2C,	SPI,	etc.	It	is	written
specifically	with	CANOpen	in	mind,	but	could	in	theory	be	adapted	to	work	with	any	network	that	implements	a
master/slave	protocol.

This	should	be	treated	as	more	of	a	thought	experiment	than	anything	formal.	It	may	or	may	not	prove	to	be	a	good	idea,	but
is	potentially	worth	exploring.	Ideas	and	feedback	would	be	welcome,	especially	with	regards	to	the	name.	The	two	leading
ideas	as	of	now	are	a	pun	based	on	the	name	of	the	network,	and	an	homage	to	the	Lafayete	FSAE	car,	named	Sparky	by	the
2020	team

Motivation

The	CANOpen	network	on	the	Lafayette	FSAE	car	is	very	powerful,	but	also	very	difficult	to	use.	The	Motor	Controller,	for
example,	has	a	CANOpen	interface	that	exposes	hundreds	of	registers,	each	of	which	represents	a	different	sensor	or	control
interface,	and	performing	basic	procedures	like	booting	into	a	specific	mode,	setting	the	throttle,	and	collecting	sensor	data
often	require	complex	sequences	of	read	and	write	commands	across	several	distinct	registers.

To	assist	with	this,	the	Motor	Controller	(EmDrive	500)	ships	with	a	proprietary	program	for	performing	these	procedures
over	the	CAN	bus.	It	is	a	GUI	based	program	that	runs	on	windows	and	interfaces	with	the	CAN	bus	through	a	USB	to	CAN
adapter.	Currently,	engineers	perform	motor	tests	and	configuration	by	setting	up	a	PC	and	stool	just	outside	of	the	dyno
room,	running	a	CAN	cable	from	the	PC	into	the	test	setup,	and	using	this	program	to	send	the	necessary	commands.

While	this	method	works	for	doing	basic	operations,	it	is	less	than	ideal.	Some	of	the	drawbacks	include:

The	provided	program	can	only	be	run	on	windows,	meaning	it	requires	a	large	external	PC	to	be	physically	wired	to
the	car.	This	is	a	mild	inconvenience	during	dyno	testing,	but	could	prove	to	be	a	constant	source	of	problems	and
annoyance	during	any	kind	of	dynamic	testing	or	competition.	It	would	be	much	more	natural	for	an	equivilant	piece
of	software	to	run	on	the	integrated	SCADA	computer.

The	provided	program	only	supports	the	motor	controller	out	of	the	box.	As	more	and	more	CANOpen	compliant
nodes	get	added	to	the	car,	similar	configuration	and	testing	software	will	have	to	be	written	for	each	of	them.

The	program	is	difficult	to	learn.	It	consists	of	a	large	number	of	menus	and	windows	which	can	be	daunting	to	new
users.

There	is	currently	no	good,	well	defined	way	for	recording	sequences	of	commands,	sharing	them	with	other
engineers,	and	playing	them	back	at	arbitrary	times.

No	support	for	complicated	logic	or	interaction	with	external	systems.

It	is	my	opinion	that	the	solution	to	all	of	these	problems	can	be	found	in	the	form	of	a	scripting	language,	whose	job	it
would	be	to	map	a	human	readable	syntax	into	CANOpen	read	and	write	commands,	send	them	over	the	network,	and
record	their	responses.

A	general	purpose	scripting	language	like	python	or	javascript	could	accomplish	this,	but	being	general	purpose,	the	syntax
for	doing	highly	specific	tasks	like	this	tends	to	be	highly	verbose,	and	include	details	which	are	unimportant	to	the	general
user.

Instead,	a	new	scripting	language	is	proposed,	which	is	highly	specific	to	the	task	of	sending	read	and	write	commands	over
a	Master/Slave	network.	It	aims	to	be	simple	enough	that	basic	tasks	can	be	done	without	much	effort	or	thought,	but	also
flexible	enough	to	allow	for	very	complex	behavior.

Syntax
Each	CANOpener	script	is	conceptually	just	a	list	of	instructions.	Every	instruction	takes	up	exactly	one	line,	it	begins	with
a	keyword	representing	the	instruction	name	and	is	followed	by	a	series	of	0	or	more	arguments,	separated	by	spaces.

CANOpener	supports	two	kinds	of	data	storage,	which	are	referred	to	as	registers	and	variables.

Registers	always	begin	with	an	@	symbol,	and	store	addresses	for	certain	registers	on	the	network.	In	the	case	of	CANOpen,
this	consists	of	a	combination	of	node	id,	index,	and	subindex,	but	would	be	different	for	different	networks.

Variables	always	begin	wint	a	$	symbol,	and	represent	data	stored	locally	on	the	master	node.	Like	variables	in	a	traditional
scripting	language,	they	can	store	any	kind	of	data	and	can	be	manipulated	arbitrarily.

read	and	write

read	@<register>	$<variable	|	empty>
write	@<register>	$<variable	|	literal>

The	bread	and	butter	of	CANOpener	scripts	are	the	read	and	write	commands.	Each	one	takes	two	arguments,	a	register	and
a	variable.	Data	is	either	copied	from	the	register	into	the	variable	(read)	or	from	the	variable	into	the	register	(write)

In	the	case	of	read,	the	variable	argument	can	be	omitted,	and	the	data	from	the	register	will	instead	be	piped	into	stdout.	In
the	case	of	write,	the	variable	can	be	replaced	with	a	literal	number.

define

define	@<register>	<address>

Registers	are	defined	with	the	define	keyword,	they	accept	a	register	name	and	an	address	literal.	A	sequence	of	define
commands	is	meant	to	mimic	the	purpose	of	an	electronic	data	sheet,	with	the	idea	that	importing	an	EDS	be	an	alternative
to	defining	registers	manually.

procedure

procedure	<name>	begin
...
...
end

Sequences	of	read	and	write	commands	can	be	grouped	together	and	named	with	the	procedure	block,	which	consists	of	a
procedure	begin	instruction	and	an	end	instruction.	Procedures	are	named	procedures	to	distinguish	them	from	functions,
which	they	superficially	resemble,	but	are	distinct	from.	The	accept	no	arguments	and	return	no	value.	Instead,	procedures
interact	with	the	rest	of	the	program	by	reading	and	writing	to	variables,	which	are	all	global	in	scope.

run,	runif,	repeat

run	<procedure>
runif	$<variable>	<procedure>
repeat	<number	|	inf>	<procedure>

Procedures	can	be	run	with	the	run	instruction.	They	also	support	some	basic	flow	control	with	the	runif	command,	which
will	run	the	procedure	only	if	the	given	variable	is	nonzero,	and	the	repeat	instruction,	which	runs	the	procedure	a	set
number	of	times.

using	and	call

using	<function1>,	<function1>
call	<function>	(<arguments>)	->	(<variables>)

CANOpener	discourages	using	its	syntax	to	write	complicated	logic.	Instead,	it	recommends	exporting	this	behavior	to
other,	more	sophisticated	programs	via	the	call	instruction,	which	accepts	a	function	name,	a	list	of	arguments,	(either

variables	or	literals)	and	a	list	of	variables	to	write	the	result	to.

The	list	of	supported	functions	is	defined	by	the	parser.	The	script	tells	the	parser	which	functions	it	intends	to	use	with	the	
using	instruction.	These	can	be	almost	anything,	good	examples	include	stuff	like:

sleep	statements
prompting	the	user	for	input
reading	data	from	a	file
writing	csv	data
sending	alerts	to	the	user
assert	statements	(useful	during	tests)

These	functions	could	easily	be	defined	by	the	user	and	added	to	the	parser	as	plugins.

other

#	this	is	a	comment

Comments	are	any	line	begining	with	the	#	character

include	<filename>

include	statements	copy	all	contents	of	the	given	file	into	the	current	script.

Example:	Soft	Throttle
#	continually	polls	an	external	process	for	input,
#	then	writes	that	input	to	the	Motor	Controller	
#	throttle	register

using	input

define	@throttle_address	01:0x3A:00

procedure	main	begin
				call	input	()	->	($throttle_value)
				write	@throttle_address	$throttle_value
end

repeat	inf	main

Example:	Motor	Efficiency	Experiment

from	csv	use	record,	iterate

define	@throttle	01:0x2A:00	

#	other	addresses	omitted	so	I	didn't	have	to	make	any	more	up

define	@current	...	
define	@voltage	...	
define	@torque	...	
define	@rpm	...
	
procedure	sleep_and_read_values	begin
				call	sleep(1)

				read	@current	$current
				read	@voltage	$voltage
				read	@torque	$torque
				read	@rpm	$rpm

				call	record_csv	($throttle,	$current,	$voltage,	$torque,	$rpm)	
end

procedure	main	begin
				call	next_value	('throttles')	->	($throttle,	$has_next)

				call	print	('setting	throttle	to	')
				call	print	($throttle)
				call	print	('\n')

				write	@throttle	$throttle
				repeat	10	sleep_and_read_values
				runif	$has_next	main
end

run	main

