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Abstract

The following report is aimed at analyzing the evolution of solutions to the max-flow
problem in networks. It will clearly and thoroughly demonstrate how improvements
can be made upon the Edmonds-Karp algorithm.
Finding the maximum flow that can be routed through a network posed a significant
challenge for decades, since the first solution was introduced by L. R. Ford Jr. and
D. R. Fulkerson in 1956. Their algorithm runs in O(mf) time were f represents the
maximum flow in the network.
Given the rapid growth and dynamic nature of connections (especially virtual ones),
determining the maximum flow of a network is a crucial problem. If solved efficiently,
it allows for traffic optimization within the network, minimizing both waste and
slowdowns.
For example, if we consider the internet, it consists of numerous connected devices
that continuously receive and forward packets to other devices. Naturally, each
device has different performance capabilities and can handle varying amounts of
data flow. By identifying the maximum flow capacity, we can determine how fast
information can travel from one point to another within the network. This allows us
to maximize resource utilization without exceeding limits, which could otherwise
cause bottlenecks.
Furthermore, since network topologies are highly dynamic, with many nodes and
branches, quickly identifying the maximum routable data flow becomes crucial to
ensure that information transfer is correct and efficient.
This thesis will focus on the O(nm) solution for sparse graphs. Computational cost
becomes particularly challenging when there are few edges, as the costs of other
phases of the solution tend to increase.
An algorithm with O(nm) complexity has existed since 1992 the King-Goldberg-
Tarjan algorithm by V. King, S. Rao, and R. Tarjan (which is not covered in
this thesis). However, this solution only achieves the declared complexity on rela-
tively dense graphs. By contrast, Orlin’s 2013 solution achieves O(nm) complexity
specifically for sparse graphs.
In conclusion, we will show that it is possible to find the maximum flow for any type
of graph. By reconstructing all intermediate algorithms, from Edmonds-Karp to the
most recent ones, even a less experienced reader will be able to understand the final
solution while learning all the necessary concepts.
The algorithms are presented in chronological order, starting with Dinic’s algo-
rithm, continuing with Goldberg-Rao, and culminating with Orlin’s most recent
and effective solution. However, before delving into these algorithms, a chapter is
dedicated to explaining some preliminary graph theory concepts that are essential
for understanding how the solutions work.
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Chapter 1

Introduction and preliminaries

Graph theory is the branch of computer science which focuses on the study of graphs.
More broadly, it can be seen as the study of connections, since a graph represents
the most general form of ’objects’ and how they can be linked together.
The objects are referred to as nodes and are represented by points. These points are
connected by edges, which are depicted as lines.

Definition 1.1 (Graph). A graph G = (N, E) is a structure composed of a set of
nodes N and a set of edges E that connect two nodes in N

(i, j) ∈ E =⇒ i, j ∈ N

The set of nodes in a graph G is denoted by N(G), and similarly, the set of edges is
denoted by E(G). Often, the following labels will be used to indicate the cardinality
of these sets:

n = |N(G)|
m = |E(G)|

Various types of graphs exist in theory, just as various types of connections exist in
the real world. An edge can be:

• directed, with an assigned direction to each connection

• undirected, indicating that each connection can be traversed in both direc-
tions.
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There are also simple graphs, where no more than one edge connects the same
two nodes and no edges start and end at the same node, and multigraphs, where
such parallel edges are allowed.
Sometimes it is easy to see how something can be represented as a graph, other
times the representation is more abstract.
Graph theory originated in 1736 with the Swiss mathematician Leonhard Euler.
Euler wanted to know if it was possible to cross all the bridges of the city of
Königsberg in a single walk, without crossing the same bridge twice.

Definition 1.2. A walk is an ordered sequence of edges where each edge starts
from the node where the previous one ends (except for the first edge, of course).
A path is a walk in which no node is visited more than once.

P := {(n0, n1), (n1, n2), ..., (nk−1, nk)} =⇒ ∄(a, b), (c, d) ∈ P |a = c ∨ b = d

A circuit is path that begins and ends at the same vertex.

In this case, the bridges can be represented as a multigraph where two distinct edges
connect the same nodes.

Definition 1.3 (Degree of a node). The degree of a node refers to the number of
edges incident to that node.
In directed graphs, we can also distinguish between the out-degree and in-degree of
a node, depending on the direction of the edges adjacent to it.

In the end, Euler concluded that, for a graph to have an Eulerian path, it must have
zero or two nodes with an odd degree, while for an Eulerian circuit, all nodes must
have an even degree. With this, he demonstrated that the bridges of Königsberg do
not have an Eulerian path, paving the way for a deeper study of graphs.
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1.1 Networks and flows

Nowadays, connections are expanding at an ever-increasing pace, forming networks
that are becoming larger and more complex, whether physical or virtual. For this
reason, from this point forward, we will focus on a specific type of graph: the network.
We will analyze its properties and challenges in order to address various problems
as efficiently as possible.

Definition 1.4 (Network). In graph theory a network is a structure composed of a
graph G = (N, E) and a function u : E → N+ ∪ {+∞} which denotes the capacity
of each edge.

u(i, j) = capacity of the edge (i, j)

we will denote the capacity u(i, j) below with the abbreviation uij

When we refer to the capacity of an edge, we are talking about the maximum amount
of flow that can pass through it.

Observation 1.1 (Integer capacities). The condition that the capacities are integers
doesn’t restrict the problem since we can always scale.
If the capacities U := {u1, u2, ..., uk} ∧U ⊆ Q then we can multiply all the capacities
by gcd(u1, u2, ..., uk) so all the values are now integers.
For real numbers, we can use a rational approximation so the solution is the same.

In real-world applications, flow can represent different things, such as the transfer of
data in a network, the flow of water through a pipe, or even traffic flow on a road.
The concept is versatile and applies to a wide range of scenarios depending on the
context.
In each network there exists two special nodes, s the source and t the sink. The
network aims to send a certain flow from the source to the sink. The edges in a
network are directed, and except for s and t, for all (i, j) in a network G, (j, i) ∈ E(G).
We assume that the source s has no incoming edges, just as the sink t has no outgoing
edges. When representing two nodes in a network where the flow can only be routed
in one direction, we can set the capacity of the flow in the opposite direction to zero.
Note that u(i, j) refers specifically to the capacity of the edge from i to j, and the
capacity from j to i may be different.

s

1

2

3

4

5

t

Figure 1.1. A classic example of a network
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Definition 1.5 (Umin, Umax). In each network we define:

• Umin: the smallest non zero capacity associated to an edge:

Umin = uij |(i, j) ∈ E ∧ uij > 0 ∧ ∄(k, l) ∈ E : 0 < ukl < uij

• Umax: the largest finite capacity

Umax = uij |(i, j) ∈ E ∧ uij ̸= +∞ ∧

∄(k, l) ∈ E : uij < ujl < +∞

Moreover, we divide the edges into two categories:
External Arcs := {(x, y)|(x, y) ∈ E ∧ (x = s ∨ y = t)}
Internal Arcs := {(x, y)|(x, y) ∈ E ∧ x ̸= s ∧ y ̸= t} i.e. E \ External edges

For simplicity, we assume that for each internal edge (i, j) ∈ E there exists the edge
(j, i) ∈ E.
The same is true for any internal node for which there always exists an edge that
links it with s and t, even if it has zero capacity.

∀i ∈ N =⇒ {(s, i), (i, t)} ⊆ E

We can now give a formal definition of flow and the properties which it must respect.

Definition 1.6 (Flow). We define the flow as the function f : E → R+ ∪ {0} which
associates to each edge the amount of flow that is routed through ti. A flow function
must satisfy the flow conservation rule:∑

j:(i,j)∈E

fij −
∑

j:(j,i)∈E

fji = 0 ∀i ∈ N \ {s, t}

that ensures that there is no loss of flow as there are no unexpected entries.

We call a flow feasible if it respects the capacity constraint:

∀(i, j) ∈ E, fij ≤ uij

Definition 1.7 (Flow value). The value of a flow is given by the sum of all the
outgoing edges of s (or by the sum of all the incoming edges of t; it is the same)

val(f) =
∑

∀(s,x)∈E(G)
fsx =

∑
∀(y,t)∈E(G)

fyt

Definition 1.8 (Residual capacity). The residual capacity of an edge (i, j) means
the amount of flow which can be routed through this edge before we saturate it.

rij = uij + fji − fij

When we talk about residual capacity according to different flows we could also use
the notation:

uf (i, j)
that means the residual capacity of the edge (i, j) which has routed the flow f .
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We will often talk later about the residual function or the array of residual capacities,
in fact we are referring to any function or structure that associates each arc with its
residual capacity.

Definition 1.9 (Residual Graph). Given a network G and a flow f , we can define
a residual graph as follows

G[r] := (N(N ), {(i, j)|(i, j) ∈ E(N ) ∧ rij > 0})

The notation G[r] refers to a graph designed from the residual capacity function r.
We will refer to the residual graph also using the notation Gf that underlines the
representation of the original network under the effect of the routed flow f

Definition 1.10 (s-t Cut). Given a network G we define an s-t cut on G as a
partition into two subsets (S, T ) such that:

1. s ∈ S

2. t ∈ T

3. S ∩ T = ∅

4. S ∪ T = N

The cutting capacity is defined as:

u(S, T ) =
∑

i∈S∧j∈T

uij

the residual of a cut is defined as:

r(S, T ) =
∑

i∈S∧j∈T

rij

Lemma 1.1 (Max residual flow min residual cut). Given a residual graph G[r]
and a cut (S,T) then r(S, T ) represents the upper bound of the flow from s→ t. In
particular, the maximum increase in flow with respect to r is the smallest residual
capacity of an s-t cut.

Proof. Omitted.

The lemma states that the problem of finding the maximum flow on a network is
dual to that of finding a minimum capacity cut on the same network since this will
represent the bottleneck that acts as an upper bound to the increase in flow.
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Definition 1.11. (Anti-symmetric subset) Let E(j) be de set of edges incident to a
node j, we define the Anti-symmetric subset of j as:

E′(j) := {(x, y)|(x, y) ∈ E(j) ∧ (x, y) ∈ E′(j) ⇐⇒ (y, x) ̸∈ E′(j)}

Example:

E(j) E′(j)

j

b

c

a

d

j

b

c

a

d

Lemma 1.2 (Anti-symmetry lemma). Given E′(j) an anti-symmetric subset of
E(j) and a flow f on G with r = r[f ] then it holds that:∑

(i,j)∈E′(j)
rij −

∑
(j,i)∈E′(j)

rji =
∑

(i,j)∈E′(j)
uij −

∑
(j,i)∈E′(j)

uji

Proof. ∑
(i,j)∈E′(j)

rij −
∑

(j,i)∈E′(j)
rji −

∑
(i,j)∈E′(j)

uij +
∑

(j,i)∈E′(j)
uji = 0 =⇒

∑
(i,j)∈E′(j)

(uij − rij) +
∑

(j,i)∈E′(j)
(uji − rji) = 0

since rij = uij − fji + fij =⇒ uij − rij = fji − fij∑
(i,j)∈E′(j)

(fji − fij) +
∑

(j,i)∈E′(j)
(fij − fji) =

∑
(i,j)∈E(j)

(fji − fij) = 0

so we deduce the conservation flow constraint.

1.2 Flow decomposition and transfer

Definition 1.12 (Flow decompositon). Given f an s-t flow on a network N , we
define a flow-decomposition as a collection of s-t directed path

P1, ..., Pk where k < m

To each path Pi there is a corresponding value ϕi ∈ N+|ϕi > 0 which is the value of
the path flow.
In a flow decomposition the following rules must be respected:
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1. ∀Pi, Pj , |Pi ∩ Pj | ≠ |Pi| ∧ |Pi ∩ Pj | ≠ |Pi| So each path in the decomposition
must differ for at least one edge

2. val(f) =
∑k

i=1 ϕi

Note that the maximum number of path in our decomposition for any flow is m
sonce the capacities are integer.

s

a

b

c

d

t

Example of a decomposed flow

Now that we have established what it means to decompose a flow, we can talk about
capacity transfer

Definition 1.13 (Tranfer). Given an edge (i, j) ∈ E and a path P i → j with
|P | ≥ 2, to transfer δ unity of capacity from P to (i, j) means subtracting δ unity
of residual capacity from each edge in P and incrementing the (i, j) residual capacity
of the same δ unity

Lemma 1.3 (Capacity tranfer lemma). Let P be path in G from node i to node j
and let (S, T ) be an s-t cut. If we transfer δ capacity from the path P to the edge
(i, j) and r and r′ are respectively the residual capacity of the network before and
after the transfer then is true that:

r′(S, T ) ≤ r(S, T )

Proof. The proof is trivial if i, j ∈ S ∨ i, j ∈ T since u′(P ) ≤ u(P ) =⇒ u′(S, T ) ≤
u(S, T ).
Otherwise if i ∈ S ∧ j ∈ T , if we consider (l, k) ∈ P such that l ∈ S ∧ k ∈ T it holds
that:

u′(S, T )− u(S, T ) ≤ (u′
kl + u′

ij)− (ukl + uij) = −δ + δ = 0
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i

s 2

j

4

6
5

s-t cut

s

i

2 4

6

j

s-t cut

The path P in red, the edge (i,j) in green

We conclude that transferring capacity from a path to an edge doesn’t increase the
maximum routable flow in a network
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1.3 Admissible Graphs

We usually think about graphs composed of nodes linked by edges and measure the
distance between two nodes i and j as the minimum number of edges on any path
from i to j. This is true just because we don’t specify the length of an edge and
assume that it is one. Instead, we can specify the length of each edge and still define
the distance from a specified node. To do this, we have to define some additional
properties which will allow us to achieve our goal. First of all we establish what a
valid distance labeling is:

Definition 1.14 (Valid distance labeling). Let N be a network, f a feasible flow on
N and l a function that takes as input an edge in G and returns its length.
The distance function d : N(G)→ N is valid with respect to the residual graph
G[r] if it satisfies the following properties

1. d(t) = 0

2. d(i) ≤ d(j) + l((i, j))

Observation 1.2 (Valid distance label property). A valid distance label d preserves
the following properties:

1. d(i) is a lower bound of the length of the shortest path from i → t in the
residual graph

2. d(s) ≥ n =⇒ ∄ a path P in G[r] from s to t

Another way to phrase the second property that a valid distance label mast respect
(d(i) ≤ d(j) + l((i, j))) is that:

¬(d(v) > d(w) + l(v, w))

This means that there cannot exist a node i which is more distant from t than any
node j adjacent to i, plus the length of the edge (i, j).

Definition 1.15 (Admissible graph). Let G be a network with a feasible flow f ,
a valid distance label d : N(Gf ) → N and a length function l. A residual arc is a
admissible arc if it satisfies:

d(v) = d(w) + l(v, w) ∀(v, w) ∈ E(G(f))

i.e.
d(v) > d(w) ∨ (d(v) = d(w) ∧ l(v, w) = 0)

The admissible graph is the graph formed by all admissible arcs. We will represent
the admissible graph with the notation A(f, l, d) or just A(f, d) if the length function
is trivial.

Observation 1.3. Let Gf be a residual graph, let Bs be an arborescence given by a
BFS on the graph Gf from node s and let A be the admissible graph of Gf then

E(Bs) ⊊ E(A)
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s
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Original graph Arborescence Admissible graph

Given the distance label definition, we can recall the notions about s-t cut to define
the canonical cut

Definition 1.16 (Canonical cut). Given a network N and a distance label d on N ,
a canonical cut is defined by a partition made as follows

(Sk, Tk) = (Sk := {v ∈ V (N )|d(v) ≥ k}, Tk := V (N ) \ Sk)

1.4 Finding the max flow

To find the maximum flow in a network in polynomial, we can use the Edmonds-
Karp algorithm[EK72].
This algorithm is an improvement of the Ford-Fulkerson[FF56] method since it’s
identical to that algorithm except that the Edmonds-Karp algorithm finds a shortest
path from the source to the sink P and augments the flow on the edges of the path
by the value x s.t.

x = min
∀(i,j)∈P

rij

In this way at each increment at least one edge is deleted from the residual graph
and in at most O(nm) increments the algorithm terminates. Since we need O(n+m)
time to use the BFS to find the shortest s-t path and another O(n) time to augment
the flow in this path, Edmonds-Karp algorithm take O(nm2) time to find a maximum
flow in any network.
Up to here, all notations that we need to recognize a network and its properties
were given. The Edmonds-Karp algorithm represents the first step in a series of
improvements that will lead us to find the max flow in O(nm). From here on, each
algorithm will bring a modification of the previous one while preserving the original
intuition. The last algorithm shows how to reach the desired cost even for sparse
graphs.
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Chapter 2

Dinic’s Algorithm

2.1 Introduction

Yefim Dinitz designed this algorithm in 1969 and published[Din06] in 1970. The
algorithm builds upon the Edmonds-Karp algorithm, but instead of increasing the
flow on just one shortest path Ps→t, it increases the flow on all s → t paths of
the same length as the shortest one. This significantly reduces the number of BFS
executions required. To simplify the process, the BFS returns a distance label
function d, which is used to compute the admissible graph, in which all paths from s
to t have the same length = d(s). It is within this graph that the flow is calculated.

2.2 Blocking flows

Since on each path Ps→t ∈ A(f, d), a flow of value δ is routed

δ = min
(i,j)∈A(f,d)

r(i, j)

all Ps→t ∈ A(f, d) will have at least one saturated edge at the end of the increment,
and thus, by the end of the increment, there will no longer be a path from s to t.
Such a flow is defined as a blocking flow.

Definition 2.1 (Blocking flow). A blocking flow refers to a flow in a network that
saturates at least one edge on every possible path from s to t.

Observation 2.1 (Max flow =⇒ blocking flow). In the admissible graph, the max
flow is a blocking flow, but the reverse implication is not true.
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2.3 The algorithm

We can now define an algorithm, but first, some useful observation are helpful in
understanding the algorithm:

• The algorithm takes as input the network and the function that assigns a
capacity to each edge.

• A function is created that associates a flow with each edge.

• For brevity and readability, the residual graph is denoted as Gf , which rep-
resents the residual graph where the flow f is routed, for the current flow
f .

• The BFS takes the residual graph as input and thus does not consider saturated
edges.

Algoritmh 1 Dinics-Algorithm(G, c)
1: fij = 0 ∀(i, j) ∈ E(G)
2: d = BFS(Gf )
3: A = A(d, f)
4: while d(s) ̸=∞ do
5: δ = min∀(i,j)∈P c(i, j)
6: fij = fij + δ ∀(i, j) ∈ P
7: P = findPath(A, s, t)
8: if P = ∅ then
9: d = BFS(Gf )

10: A = A(d, f)
11: end if
12: end while
13: return f

s

3

3

3

2

2

2

1

1

1

t

Here we have an example of an admissible graph extracted from a network. The
nodes are divided by distance labels from t. Note that all edges have a reverse; a
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dashed edge means that it is not admissible. It is also important to remember that
an edge can have zero capacity even if it is present in the representation (obviously,
since it is not admissible, it is represented as a dashed edge).

2.4 Time complexity

So, since you need O(m + n) time to perform a BFS and another O(nm) time to
find all the paths from s to t, the time required to find a blocking flow in each phase
is O(nm). Since every time we find a blocking flow, the distance from s increases by
at least one and can be at most n, the maximum number of blocking flows found
in the algorithm is O(n). Based on these two observations, we can conclude that
Dinic’s algorithm reduces the time complexity of the max flow problem from the
O(nm2) required by the Edmonds-Karp algorithm to O(n2m).



14

Chapter 3

Goldberg-Rao Algorithm

After understanding how Dinic’s algorithm works, we can move to the next step and
focus on the algorithm published by Andrew V. Goldberg and Satish Rao in 1998
[GR98].
By optimizing the Dinic’s Algorithm, the Goldberg-Rao algorithm achieves a com-
putational cost of

Õ(min{n2/3, m1/2} ·m)

on a network with integer capacities, which, when considering logarithmic factors,
becomes O(min{n2/3, m1/2}m log n log nU).
Note: From here on, we will abbreviate the expression min{n2/3, m1/2} using Λ.

3.1 Overview

At the core of the optimization is the idea of contracting the network according to
certain specific parameters. The speed-up lies in computing the flow in a contracted
graph, which is more efficient than computing it in the original one. The algorithm
is based on Valid distance labeling and introduces a new binary length function :
l̄((v, w)) : E → {0, 1}.
The new length function assigns a value of zero to all edges that meet certain capacity
requirements (which we will describe in more detail later), such edges are called
"zero-length".
By setting the length of the edges connecting two or more nodes to zero, we can
consider them as a single node. Thus, by contracting the components connected by
edges of length 0, it is possible to significantly reduce the number of flow increments
and therefore the computational cost of the algorithm.
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3.2 The ∆ parameter

The issue with contracting the graph is that when we send flow from the source
to the sink, we must ensure that this flow respects the capacity constraints of all
the edges, including those contracted. To ensure that the flow calculated on the
contracted graph is valid for the original graph as well, a parameter ∆ is used, which
serves two purposes. The first function is as a lower bound on the capacity of
zero-length edges. Edges with residual capacity greater than ∆ are first selected,
and the length of these edges is set to 0. Subsequently, all components connected
by zero-length edges are contracted. Finally, a blocking flow (exactly as in Dinic’s
algorithm) is calculated in the contracted graph. At this stage, the parameter ∆
serves its second function, which is as an upper bound for the blocking flow.
The computation of the blocking flow stops either when such a flow is found, or
just before the flow value exceeds ∆. This second condition ensures that the flow
remains feasible even for the original network.
By increasing the flow by at most ∆, we ensure that the capacity constraints are
respected, but we can no longer guarantee that the flow is blocking. Therefore, we
must choose a value for ∆ that is both small enough to contract the graph as much
as possible, but also adequately selected to keep the number of flow increments as
low as possible, thus ensuring the desired computational cost.

3.3 The stop condition

To terminate its execution, the algorithm estimates the difference between the
maximum achievable flow (which will be called F ) and the flow it has computed.
When this difference becomes less than 1, the algorithm terminates. Since the
capacities of the network are all integers, this ensures that the maximum possible
flow has been reached. An initial useful value for F is F = n · Umax, and later, the
residual capacity of the canonical cut will be used (further details will be provided
later).

3.4 Estimating the residual flow

We already know that the residual capacity of each cut r(S, T ) represents an upper
bound on the max flow (Max residual flow min residual cut). To estimate the
residual flow quickly and efficiently, we can analyze the Canonical cut.

Lemma 3.1. min r(Sk, Tk) in O(m) time The canonical cut with the minimum
capacity can be found in O(m) time.

Proof. Exploiting the fact that each edge has a length of at most 1, and therefore
can cross at most one canonical cut, we can define the following subroutine.
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Algoritmh 2 canCutCapacity(Gf , d, l)
1: for k ← 0 to d(s) do r(Sk, Tk) = 0
2: end for
3: for (u, v) ∈ E(Gf ) do
4: if d(v) > d(w) then r(Sd(v), Td(v))+ = r(v, w)
5: end if
6: end for
7: return argmin r(Sk, Tk)

The correctness and computational cost of this routine are fairly straightforward.

To manage the computational cost, we need to ensure that the value of F decreases
quickly enough without overburdening the algorithm. First, we can group all the
iterations of the algorithm into phases and update the value of F at the minimum
canonical cut only between the end of one phase and the start of a new one. If we
update the value of F only when min r(Sk, Tk) ≤ F/2, the algorithm will terminate
after at most log nUmax phases.

3.5 Binary length function

Two other issues arise from contracting the graph and modifying the length function:

1. Choosing a ∆ that is too small would make the flow increase too slowly while
choosing it too large would not contract the graph enough to justify the
management costs.

2. In Dinic’s algorithm, the blocking flow always guaranteed an increase in the
distance from s to t, but with zero-length edges, this is no longer guaranteed.

In this section, we show the choices that were made to address these two issues. While
the effectiveness of the solution to the second problem is promptly demonstrated,
the effectiveness of the choice of the ∆ parameter will only become clear in the
section where the various computational costs are proven.

3.5.1 How to zero lengths

As previously mentioned, we need an upper bound ∆ to respect the capacity
constraints. At the same time, to meet the declared computational cost, we need
the blocking flow increments to be at most Λ. Thus, we can initialize:

∆ = ⌈F/Λ⌉

The criterion for assigning zero-length to an edge is as follows:
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Definition 3.1 (Length function). Let r be the residual function of any residual
graph Gf . We define the length function l((u, v)) as a function that associate to the
edge (u, v) the value 1 or 0 as follow:

l(u.w) =
{

0 rvw ≥ 3∆
1 altrimenti

However, to achieve the desired computational cost, it is necessary to add a specifi-
cation to this function.

Definition 3.2 (Special Arc). Any edge (v, w) is said special If it meets all the
following requirements:

• 2∆ ≤ rv,w < 3∆

• d(v) = d(w)

• rwv ≥ 3∆

By applying this definition to the length function, we can define a more complex
function, which we distinguish from the first by calling it l̄. The modified function
also takes into account special edges:

l̄(u.w) =
{

0 rvw ≥ 3∆ ∨ specialArc((v, w))
1 altrimenti

Observation 3.1. Introducing special edges does not change the distance labeling:
dl = dl̄

Lemma 3.2 (From contract to original). Let’s suppose we have contracted the
original network as described so far, and routed a flow f through the contracted
graph.
The computational cost of adapting this flow through the original graph is O(m).

Proof. Through the following steps, it is intuitive how the flow can be adapted:
1. Choose any vertex in each contracted component.
2. Form an in-tree and an out-tree rooted at the chosen vertices.
3. Route the positive flow from the in-tree to the root.
4. From the out-tree, redirect the incoming flow from the root to all other

connected nodes.
Since the maximum flow we route is ∆ and all nodes in the contracted components
have a cost of at least 2∆, we are assured that the flow respects the capacities of
the network. This method has a cost directly proportional to the number of edges
in the connected components.
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3.5.2 How to increase distance

In Dinic’s Algorithm, the proof that the blocking flow strictly increases the distance
between s and t is quite obvious. The same cannot be said for the Goldberg-Rao
case due to the presence of zero-length edges. Therefore, it is essential to prove the
following theorem to ensure that the algorithm terminates.

Theorem 3.1. Blocking flow with binary length Let f̄ be a flow in A(f, l̄, dl), let
f ′ = f + f̄ be the increased flow, and let l′ is the length function corresponding to f ′.
Then:

1. dl is a distance labeling with respect to l′

2. dl′(s) ≥ dl(s)

3. if f̄ is blocking =⇒ dl′(s) > dl(s)

Proof. Let’s proceed point by point

1. dl is a distance labeling with respect to l′ By the definition of distance
labeling, dl(v) ≤ dl(w) + l̄(v, w) (remembering that dl = dl̄), we therefore need to
prove that dl(v) ≤ dl(w) + l′(v, w).
This is trivially true if dl(v) ≤ dl(w).
If dl(v) > dl(w) i.e. dl̄(v) > dl̄(w) then (w, v) is not admissible with respect to l̄.
Since l′(v, w) ≥ l̄(v, w), the statement follows.

2. dl′(s) ≥ dl(s) Let L := {l0, l1, ..., ln} be the ordered set of all length functions
calculated between the iterations of the algorithm. Then, for any 0 ≤ i ≤ j ≤ n, we
have dli(s) ≤ dlj (s).
We distinguish between two iterations as follows:

1. In iteration i: Let l(u, v) = li(u, v) be the length function and d(x) = dli(x)
be the distance. Together with the flow, they define A(f, li, dli). Let Γ be the
shortest s→ t path in A, where Γ ⊆ A.

2. In iteration j: Let l′(u, v) = lj(u, v) be the length function and d′(x) = dlj (x)
be the distance. Together with the flow, they define A′(f, lj , dlj ). Let Γ′ be
the shortest s→ t path in A′, where Γ′ ⊆ A′.

Suppose by contradiction that there exist two iterations 0 ≤ i ≤ j such that
d(s) > d′(s):

=⇒ ∃Γ s→ t, Γ′ s→ t :
∑

(v,w)∈Γ
l(v, w) ≥

∑
(v,w)∈Γ′

l′(v, w)

In other words, as the iterations progress, s and t have gotten closer.
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We immediately exclude the case where Γ = Γ′ since

∀(v, w) ∈ A ∩A′, l(v, w) ≤ l′(v, w) =⇒ l(Γ) ≤ l′(Γ′)

Note: l(Γ) =
∑

(v,w)∈Γ l(v, w).
Now consider Γ and Γ′. Let w be the last node in Γ for which d(w) > d′(w), and let
x be the next node:

w ∈ Γ : d(w) > d′(w) ∧ ∃x = succΓ(w) : d(x) ≤ d′(x)

w and x are always well defined because we assume d(s) > d′(s) and d(t) = d′(t) = 0
by definition.
Thus, there exists an arc (w, y) in Γ′ with y ̸= x such that d′(y) < d′(x). x ̸= y,
because if they were the same node, then:

d′(w) = d′(x) + l′(w, x) ≥ d(w)

which contradicts the hypothesis.
To summarize, we know that:

1. d(w) > d′(w) ⇐⇒ d(x) + l(w, x) > d′(y) + l′(w, y).
While we don’t know the exact distance d(y), we know that:

d′(y) =
∑

(a,b)∈y−t⊆Γ′

l′(a, b) ≥
∑

(a,b)∈y−t⊆Γ′

l(a, b)

Therefore, the path in iteration j is greater than or equal to the path in
iteration i.

2. d(y) + l(w, y) ≤ d′(y) + l′(w, y) < d(x) + l(w, x).

However, we know that d(w) = d(x) + l(w, x), which is absurd because it is not the
minimal distance from w → t, as it is greater than d(y) + l(w, y).
We know for certain that the path w − y → t exists in A because (unless there is a
shorter one) it represents the minimal distance from w → t.
From this contradiction, the only conclusions are that either the path through y was
not reachable in iteration i, making it impossible to reach it later, or if a shorter
s→ t path exists in iteration j than in iteration i, we made an error in considering
the path in iteration i.

3. Se f̄ è bloccante allora dl(s) < dl′(s) To show that the blocking flow in-
creases the distance of node s, we define the following notation:

c(v, w) := dl(w)− dl(v) + l′(v, w)

which represents the change in the length of an edge connecting two adjacent nodes.
We can assert that:

∀(v, w) ∈ E, c(v, w) ≥ 0
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since l′(v, w) ≥ l(v, w), which implies:

dl(w)− dl(v) < 0 ⇐⇒ l(v, w) = 1 =⇒ l′(v, w) = 1

Now, consider any path Γ in Gf ′ , the length of the path is equal to:

l′(Γ) = dl(s) + c(Γ)

Therefore, to show that the path is longer, we need to show that:

∀ shortest s− t path Γ ∈ Gf ′ =⇒ ∃(v, w) ∈ Γ where c(v, w) > 0

We now have a tool to demonstrate that the blocking flow increases the distance of
s.
Since f̄ is blocking in A(f, l̄, dl), Γ must contain an edge (v, w) that is not present
in A(f, l̄, dl).
Furthermore, we can state that dl(v) ≤ dl(w), either because (v, w) ∈ Gf , but then
if dl(v) > dl(w), we would have (v, w) ∈ A(f, l̄, dl), or because (v, w) /∈ Gf , but it
appears in Gf ′ , which is only possible if the flow is incremented in the opposite
direction, causing the residual edge to appear. Therefore, (w, v) ∈ A(f, l̄, dl), which
implies that dl(v) ≤ dl(w).
Now, suppose for contradiction that c(v, w) = 0, so dl(v) = dl(w) and l′(v, w) = 0.
The fact that (v, w) is not in A(f, l̄, dl) implies that either (v, w) is not in Gf , but
then we have already shown that the opposite edge (w, v) ∈ A(f, l̄, dl), or that
(v, w) ∈ Gf but does not meet the distance labeling requirements to belong to the
Admissible graph A(f, l̄, dl). Since dl(v) = dl(w), then l(v, w) = 1. We note that
1 = l(v, w) > l′(v, w) = 0, which implies that we have incremented the flow on the
opposite edge (w, v). Thus, in any case, the edge (w, v) ∈ A(f, l̄, dl).
As shown earlier, since dl(v) = dl(w),

(w, v) ∈ A(f, l̄, dl) ⇐⇒ l(w, v) = 0

We conclude that:

• During the flow increments, we routed a flow (of at most ∆) through the edge
(w, v)

• uf (w, v) ≥ 3∆ because l(w, v) = 0

• After this increment, we have uf ′(v, w) ≥ 3∆ because l′(v, w) = 0

• Thus uf (v, w) ≥ 2∆

• But then the edge (v, w) was a special edge even before the increment, since
dl(v) = dl(w) ∧ uf (w, v) ≥ 3∆ ∧ uf (v, w) ≥ 2∆

We therefore conclude that:

dl(v) = dl(w) =⇒ dl̄(v) = dl̄(w) ∧ l̄(v, w) = 0 =⇒ (v, w) ∈ A(f, l̄, dl)

which is a contradiction.



3.6 Complexity 21

3.6 Complexity

We have already shown how to find the maximum flow in the graph. Before diving
into the cost of a phase, let’s review the structure of the algorithm described so far.

Algoritmh 3 Goldberg-RaoAlgorithm(G, c)
1: n = |N(G)|
2: F = U · n
3: ∆ = F/Λ
4: for (i, j) ∈ E(G) do fij = 0
5: end for
6: while F ≥ 1 do
7: l = update_length(n, ∆) ▷ return a length function w.r.t. ∆
8: dl = BFS(Gf , l) ▷ return a distance labeling w.r.t. l
9: Gc = contract(Gf , l)

10: A = A(Gc, dl, l) ▷ return the admissible graph
11: f ′ = find_blocking_or_Delta_flow(A) ▷ Dinic’s style
12: fad = fit(f ′) ▷ the procedure to adapt the flow to the original graph
13: f = f + fad

14: c = r(canCutCapacity(Gf , d, l)) ▷ residual capacity of min canon. cut
15: if c ≤ F/2 : then
16: F = c
17: ∆ = F/Λ
18: end if
19: end while
20: return f

Remark:
The cost stated at the beginning is in:

O(min{n2/3, m1/2} ·m log n log mUmax)

Using more advanced data structures, you can achieve the cost of:

O(min{n2/3, m1/2} ·m log n2

m
log Umax)

We divided the number of phases so that the estimated maximum flow (F ) is
halved in each phase. This gives us several phases on the order of log(F ), which is
log(mUmax). We have shown how both the calculation of the minimum canonical
cut and the adjustment of the flow to the original network can be computed in O(m)
time. However, we still need to analyze the cost of each phase, that is, how quickly
the minimum canonical cut is halved.
From the corollary of the following lemma, we demonstrate what was previously
stated when we fixed the value of the parameter ∆. With this lemma, we estimate
the maximum capacity for the canonical cut, which is then used to estimate F , while
in the subsequent corollary, we show how the parameters for which we contract the
graph lead this capacity to halve within O(Λ) blocking flows.
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Lemma 3.3. The minimum capacity of a canonical cut (S̄, T̄ ) satisfies

uf (S̄, T̄ ) ≤ mM

dl(s)

where M represents the length-one edge with the highest capacity.

Proof. It is clear that the best way to maximize the capacity of the minimum
canonical cut is by assuming that all edges have the capacity of the edge with the
highest capacity, and then evenly dividing the edges among the various cuts.

From this initial estimate follows the corollary.

Corollary 3.1. During each phase, there are at most O(Λ) blocking flow increments.

Proof. Let us assume that Λ = m1/2. Since we have shown that each blocking
flow increases d(s) by at least one, we can be sure that after 6⌈Λ⌉ increments,
dl(s) ≥ 6m1/2. Thus, we can take the estimate from the lemma and state that:

uf (S̄, T̄ ) ≤ mM

dl(s) ≤
3m

dl(s)∆ ≤ 3m

6m1/2
F

m1/2 = F

2

Thus, after ⌈Λ⌉, the phase ends.
For Λ = n2/3, the proof is analogous and leads to the same conclusion. In conclusion,
the cost of each phase is on the order of O(Λ).
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At this point, the last bottleneck is represented by the cost of finding a blocking flow
or a flow of value ∆ (which are computationally equivalent): This would require a
cost of:

• O(mn) in a naive approach;

• O(m log n) using dynamic trees[SE83];

• O(m log(n2/m)) using size-bounded dynamic trees;

Combining the cost of:

× finding a blocking flow

× iterations in each phase

× the number of phases

× additional costs in O(m)

Conclusion

Goldberg and Rao published their algorithm in a 1998 paper. About four years
earlier, V. King, S. Rao, and R. Tarjan published a paper in which they presented
an algorithm capable of finding the maximum flow in O(nm) time, provided the
algorithm had enough edges relative to the number of nodes. The stated cost is
O(nm(logm/n log n n)), but if m/n = Ω(nε) for some ε > 0, the cost becomes O(nm).
However, the problem of finding the maximum flow in polynomial time remains
unresolved, as it is still unclear how to calculate it for sparser graphs than those
covered by the King-Rao-Tarjan[KRT92] algorithm. The next chapter analyzes
the solution proposed in 2013 by James B. Orlin[Orl13], which leverages a specific
condition of the Goldberg-Rao algorithm and develops a strategy for compacting
and contracting the graph, along with approximations in a series of optimal flows,
to make the algorithm strictly polynomial where King-Rao-Tarjan fails.
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Chapter 4

Orlin’s Algorithm

Before delving into Orlin’s algorithm, let’s review the current state of the problem.
The Goldberg-Rao algorithm achieves what is called a weakly polynomial time com-
plexity, solving the problem in log mU phases, each with a cost of O(Λm log(n2/m)),
where Λ = min{n2/3, m1/2}. If we aim to solve the maximum flow problem with
a strongly polynomial time complexity, there is the King-Rao-Tarjan algorithm.
However, this algorithm achieves a time cost of O(nm) only under the condition
that m = Ω(n1+ε) for some ε > 0. If the number of edges is insufficient, its cost is
O(nm logm/(n log n) n).
In the following algorithm, James B. Orlin proposes a solution that, by leveraging
the Goldberg-Rao algorithm, manages to solve the maximum flow problem in O(nm)
when m = O(n1+ε). This makes it possible to solve the problem in strictly polynomial
time for any values of n and m, without being limited by edge capacities.

4.1 Overview

The idea arises from several observations:
The Goldberg-Rao algorithm operates through increment phases that take a
∆-optimal flow and make it ∆/2-optimal. Furthermore, it is noted that log8m mU ≤
1 + log U ; in fact, from now on, log U increment phases will be considered. If we set
Λ = O(m1/2), we can observe that

log U < m7/16 =⇒ Õ(m3/2 ·m7/16) = Õ(m31/16)

(the notation Õ ignores logarithmic factors).
Delving deeper into the calculations, we observe

Õ(m31/16) = O(m ·m15/16 · log(n2/m)) = O(m · n(16/15)15/16 · log(n2/m))

since we are looking for an algorithm when m = O(n1+ε). If 1 + ε < 16/15 and
log U < m7/16, we can achieve an optimal solution with a polynomial cost of O(nm)
by using only the Goldberg-Rao algorithm.
However, this is only true if the number of edges is sufficiently large compared to
the edge with the maximum capacity.
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Hence, the idea of contracting and compacting the network arises to ensure the
calculation of the maximum flow under optimal conditions.
The algorithm presents two bottlenecks:

1. Creation of the compacted representation (more precisely, maintaining the
transitive closure)

2. Transitioning from the compacted flow to the extended flow.

4.2 The improvement phase

If the Goldberg-Rao algorithm, in a sense, ’wraps’ Dinic’s Algorithm into a higher
level of abstraction where the original graph is modified, Orlin does the same with
Goldberg-Rao.
A higher level of increment phase is introduced, within which a slightly modified
version of the Goldberg-Rao algorithm is executed. So let’s examine the input and
output of each phase:

• Input

1. a Flow f

2. a Residual Graph Gf ,
3. an s-t cut (S, T )

Since with the flow and the residual graph, we can compose the residual
function, when we consider the flow and the graph we can say to have also the
residual function "r".
We can represent the input as the tuple (r, S, T ).

• Output

1. a Flow f ′

2. a Residual Graph G′
f

3. an s-t cut (S′, T ′) such that r′(S′, T ′) ≤ r(S,T )
8m

This phase is called the ∆-improvement phase, where ∆ = r(S, T ). Alongside the
parameter ∆, a parameter Γ is introduced, where Γ ≤ ∆, which will be used to
create the Γ-compact network.
Depending on the conditions, the ∆-improvement will be executed either on the
original network G or on the Γ-compact network Gc, which we will introduce later.
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4.3 ∆-abundant the abundance graph

In questa sezione viene presentato il concetto di Abbondanza.

Definition 4.1 (∆-abundant arc). Let ∆ = r(S, T ) then any edge (i, j) is said
∆-abundant if rij ≥ 2∆

Lemma 4.1. Let (r, S, T ) be the input for a ∆-improvement phase. If the edge
(i, j) is abundant before the phase then it will be abundant for for all subsequent
phases.

Proof. Since ∆′ ≤ ∆
8m and recalling that rij ≥ 2∆ it follows that allora

r′
ij ≥ rij −∆ ≥ ∆ ≥ 2∆′

Definition 4.2 (Abundance Graph). Given a network G, its Abundance Graph
Gab is defined as:

Gab := (N(G), {(i, j)|(i, j) ∈ E(G) ∧ rij ≥ 2∆})

Observation 4.1. By lemma 4.1, as iterations proceed, the abundant graph can
only acquire new edges, and never lose them.

The abundant graph has two purposes:

1. All cycles formed by abundant edges are contracted into a single node.

2. All nodes adjacent only to abundant edges (or edges with capacity that is too
small) are compacted.

Additionally, the algorithm maintains the transitive closure of all nodes connected
by an abundant path, meaning a path composed only of abundant edges.
If there exists an abundant path between nodes i and j, this is indicated as i =⇒ j,
and the information is stored in an Mn×n matrix, where at position Mi,j is the node
that precedes j in the path starting from i. If multiple paths are created during the
iterations, the first one found is kept.
The transitive closure can be maintained in time O(nm) using Italiano’s algo-
rithm[Ita86]. In this way, it is always possible to reconstruct an abundant path P in
O(|P |) (we will see later that contracting the graph does not prevent this nor does
it alter its cost).
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4.4 Contractions in the abundance graph

Let’s now see how to exploit the abundant graph to contract the graph on which we
calculate the max-flow and make the algorithm more efficient.
We analyze three different examples of contractions:
Suppose there are two nodes i and j such that rij ≥ 2∆ and rji ≥ 2∆. We can
contract the two nodes into a single one, preserving the edges of both.

s i j
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1 2
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t
2∆

2∆
=⇒ i-js

1 2

3 4

t

Since there are no reverse edges for the external edges, it is possible to contract
external edges under the sole condition that they are abundant.
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And so all the abundant cycles
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Observation 4.2. It is possible that when the contracted graph is expanded again,
the flow conservation law may be violated.

However, this violation is minor, at most 2∆ units; thus, as shown by Goldberg
and Rao, the contraction, expansion, and adjustment for flow conservation can be
performed in O(m) time.
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4.5 How to compactify a network

In addition to the contraction of the graph, another transformation is necessary: the
compaction. To obtain a compact graph, we first demonstrate how to achieve an
intermediate version, namely the strongly compact network.
It is important to understand the difference between contracting and compacting:
In contraction, a single node is created that represents the abundant cycle, and the
original edges not belonging to the cycle are preserved. However, when compacting a
graph, a node that has all adjacent edges abundant is eliminated, and the outgoing
edges are consequently replaced by pseudo-edges.
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The following algorithm has a time complexity of O(m + |Esc|) since pseudo-edges
can be constructed in O(1) time, given that the transitive closure is dynamically
preserved.

Definition 4.3 (Strongly compact network). We define the Strongly compact as
Gsc = (N sc, Esc) originated from the network G:

1. Contract the graph of all abundant cycles and the external abundant edges.
Let (r, S, T ) be the input after contraction.

2. Let N sc ⊆ N(G) be the set of nodes that are adjacent to at least one non-
abundant edge.
We will refer to N(G) \N sc as the set of strongly compactible nodes.

3. We define the edges as Esc = E1 ∪ E2 where:
E1 = {(i, j) : i ∈ N sc ∧ j ∈ N sc ∧ (i, j) ∈ E(G)}
E2 = {(i, j) : i ∈ N sc ∧ j ∈ N sc ∧ i =⇒ j}
Thus, we have original edges in E1 and pseudo-edges that derive from the
abundant paths.

When we contract the graph, we are sure that if the flow routed in the contracted
graph is less than a certain parameter ∆ with which we contracted the graph, then
that flow is also adaptable to the original one. The following theorem shows us that
the same is true for strongly compact graphs.



4.6 From sc-compact to Γ-compact 29

Theorem 4.1 (fmax = fsc
max). Let fmax be the maximum flow in the network G and

let fsc
max be the maximum flow in Gsc. Then

fmax = f sc
max

Proof. We have already shown that any flow in Gsc can be rerouted in G. If we take
a flow in G, it can be routed in Gsc using the flow decomposition to obtain from
f a set of paths that differ by at least one edge,

f := {P 0, P 1, ..., P k}

We can further subdivide each P a ∈ f into subpaths

P a
i→j |i ∈ N sc ∧ j ∈ N sc ∧ ∀q ∈ P a

i→j , q ̸= i ∧ q ̸= j =⇒ q ∈ N \N sc

At this point, we replace each P a
i→j in G that is not entirely contained in Gsc with

the corresponding pseudo-edge (i, j).

4.6 From sc-compact to Γ-compact

An sc-compact graph is not sufficiently compacted for our purpose, so it will be
further compacted. To avoid confusion, we will use another parameter for this
additional compaction.
The second parameter is Γ. The Γ-compact graph (composed solely of Γ-critical
nodes) is formed starting from the sc-compact network and transferring capacities
from paths where the only Γ-critical nodes are the endpoints, to pseudo-edges that
connect these endpoints.
The parameter Γ is also used to ensure that in each improvement phase, there are
always "enough" nodes. Thus, Γ initially takes the same value as ∆, but if, in a given
improvement phase, the Γ-critical nodes are too few, a smaller Γ will be chosen to
increase their number.
The definition of "enough" nodes and how the value of Γ is selected will be shown
later.
Before proceeding, it’s important to distinguish between different types of edges.

Definition 4.4 (Capacity Classifications). An edge (i, j) with respect to Γ has:

1. small capacity if uij + uji < Γ/(64m3)

2. medium capacity if Γ/(64m3) ≤ uij + uji ∧ rij < 2∆ ∧ rji < 2∆

3. abundant capacity if rij ≥ 2∆

4. anti-abundant capacity if (j, i) ∈ Eab ∨ (i, j) is a non-abundant external
edge.
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Where Eab and E−ab represent, respectively, the set of abundant and anti-abundant
edges at the beginning of the improvement phase.

Observation 4.3. Since we have contracted abundant cycles,

(i, j) ∈ Eab =⇒ (j, i) ̸∈ Eab

Another necessary tool to decide which nodes to compact is the potential function.

Definition 4.5 (Potential function). Given a node j ∈ N , a residual capacity
function r, and a subset of edges adjacent to j (Ẽ(j)) we can define the potential
function as:

Φ(j, r, Ẽ(j)) =
∑

(i,j)∈Ẽ(j)

rij −
∑

(j,i)∈Ẽ(j)

rji

Based on these parameters, in each improvement phase, nodes that can be compacted
are distinguished from those that cannot. These two distinctions are referred to as
Γ-compactible nodes and Γ-critical nodes respectively.

Definition 4.6 (Γ-critical e Γ-compactible). A node j is said to be Γ-critical if it is
adjacent to at least one Γ-medium edge or if |Φ(j, r, E−ab)| > Γ/(16m2).
If a node is not Γ-critical, then it is said to be Γ-compactible.
Given a network G, we define the Γ-compact network of G as:

Gc := (N c, Ec)

where N c consists of all and only Γ-critical nodes, while Ec is the set of edges that
will be defined later.

To build the Γ-compact network, units of residual capacity are iteratively transferred
from various paths to pseudo-edges. The idea is to transfer capacity from paths
connecting two nodes i, j ∈ N to the edge (or pseudo-edge) (i, j), allowing further
compaction of the graph. However, these pseudo-edges are only part of the edges
comprising Ec, which can be defined as:

Ec = E1 ∪ E2 ∪ E3

E1 = {(i, j)|i, j ∈ N c ∧ (i, j) ∈ E(G)} meaning the original edges connecting two
Γ-critical nodes.
E2 = {(i, j)|i, j ∈ N c ∧ i =⇒ j}, i.e., the abundant edges.
The edges in E3 are the pseudo-edges created by transferring flow from paths
consisting of anti-abundant edges. The following lemma shows that, if selected based
on an appropriate criterion, the flow transfer does not reduce the capacity of any (S,
T) cut, thus preserving the maximum flow that can be computed.

Lemma 4.2 (Flow transfer safety). Let (S, T ) be an s-t cut in G with r(S, T ) ≤ ∆,
and let A′ = E−ab. Suppose there exists P ⊆ A′, a path from i → j, and that
(i, j) ∈ A′. If r′ is the new residual capacity function obtained by shifting δ units of
residual capacity from P to (i, j), then we can state that:
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1. ∀k ∈ N(G), Φ(k, r′, A′) = Φ(k, r, A′)

2. r′(S, T ) = r(S, T )

Proof. Let’s divide the proof by points:

1. The first point is intuitive because, for each node in P that is different from
i and j, I am subtracting the same residual capacity for both incoming and
outgoing edges, while for nodes i and j, the summations of Φ remain unchanged.

2. The second point is trivial if |P | = 1, so let’s consider the case where |P | ≥ 2.
Define P = p1, ..., pk,where p1 ∈ S and at least one pq ∈ T .
Since we have established that r(S, T ) ≤ ∆ and P ⊆ A′ we are definitely in a
situation like this:

i

1 2

j

S T

Because if an edge of P passed from T to S, it would violate r(S, T ) ≤ ∆ since
∀(a, b) ∈ A′(∆), rab < 2∆ ∧ rba ≥ 2∆, we would have:

i

1

2

j

S T

2∆

So the (S, T ) would have certainly a residual capacity ≥ ∆. Once this has
been established, it becomes clear that the transfer of residual capacity does
not affect the residual capacity of the cut.

We can then observe the following:

Definition 4.7 (Transferrable residual capacity). To transfer δ capacity from a
path P from i→ j to the arc (i, j), the following conditions must be satisfied:

1. |P | ≥ 2

2. r(P ) > 0

3. P ⊆ A′
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Moreover, when creating the Γ-compact network, the following additional conditions
are essential:

1. i, j ∈ N c

2. P \ {i, j} ⊆ N(G) \N c

The capacity transferred from P is given by:

δ = r(P ) = min
(a,b)∈P

r(a, b)

Thus, each time, at least one anti-abundant arc is saturated. If there exists a path
P ⊆ A′ from i → j but (i, j) /∈ E(G), a pseudo-arc is created. These are the
anti-abundant pseudo-arcs that will form E3.
We now analyze the procedure to transfer all residual capacities needed to form
E3 and return the set of arcs with their respective residual capacities rc

ij for every
(i, j) ∈ E3.
The algorithm takes as input (in addition to the residual function r) the set of
Γ-critical nodes and the set of anti-abundant arcs that do not connect two Γ-critical
nodes:

• Gc := {n | n ∈ N(G) ∧ Γ-critical(n)}

• H := {(i, j) | (i, j) ∈ E−ab ∧ (i /∈ Gc ∨ j /∈ Gc)}

Algoritmh 4 capacity-transfer(r, H, Gc)
1: for (i, j) ∈ H do
2: qij = rij

3: end for
4: while H ̸= ∅ do
5: pick i | ∃(i, k) ∈ H ∧ ∄(j, i) ∈ H
6: pick l | l ∈ N c ∨ ∄(l, k) ∈ H
7: P = DFS(i, l) ▷ use DFS to find a path from i to l
8: δ = min(a,b)∈P qab

9: if i, l ∈ N c then
10: A3 = A3 ∪ (i, l)
11: rc

il+=δ
12: end if
13: for (a, b) ∈ P do
14: qab-=δ
15: end for
16: H = H \ {(a, b)|qab = 0}
17: end whilereturn H, r

In step 6, a path from the selected node i to a node l is created using a **depth-first
search**, satisfying specific requirements. It’s important to note that it is not
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guaranteed that i and l are Γ-critical, meaning that this path (which always exists)
might be discarded.
When a path is discarded, we say that δ capacity has been lost. Thus, the maximum
flow in the Γ-compact graph is lower than the optimal one. However, the following
lemma shows that there is an upper bound to this lost residual capacity.

Lemma 4.3 (Bound on lost capacity in Γ-compact). Let fmax be the maximum
flow computed in G, the original network, and let f∗ be the flow computed in Gc,
the compacted network created by the capacity-transfer(r, H, Gc). Then:

f∗ ≤ fmax ≤ f∗ + Γ
16m

meaning that the maximum flow computed in Gc is underestimated by at most Γ
16m .

Proof. For a path to be discarded, it must start or end at a Γ-compactible node,
that is, a node j not adjacent to a medium arc such that:

|Φ(j, r, E−ab)| =

∣∣∣∣∣∣
∑

(i,j)∈E−ab

rij −
∑

(j,i)∈E−ab

rji

∣∣∣∣∣∣ ≤ Γ
16m2

However, for a non-critical node to be chosen, it must have only incoming or only
outgoing arcs, depending on which end of the path we are discussing.
We can estimate that the maximum capacity of a discarded path Ps is:

r(Ps) ≤ Γ
16m2

which represents the maximum residual value achievable by an arc at one of the
path’s ends.
Given that there can be at most n such paths, we have:

n · Γ
16m2 ≤ m · Γ

16m2 = Γ
16m

Therefore, the maximum capacity lost in creating Gc is precisely Γ/16m.

We now need to ensure that a flow computed in Gc, which we will call α-optimal,
can be transferred back to the original network G.
Let f ′ be the flow computed in Gc, and let f represent the transposition of f ′ in G:

• If f ′
i,j > 0 and (i, j) ∈ E(G), then fi,j = f ′

i,j , meaning it can be directly applied
without modification.

• If f ′
i,j > 0 and i⇒ j, it represents the compaction of an abundant path, and

to restore the flow, we can use the transitivity matrix.
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The most interesting case occurs when we need to transfer the flow from a pseudo-arc
of abundant edges back to the paths that generated it. It is important to recall that
the capacity of the pseudo-arc is the sum of the residual capacities of the paths that
were previously transferred.
Tracking all transferred paths would be too inefficient; however, by using dynamic
trees, we can enhance the algorithm previously used to keep a record of all operations
performed on the tree. This way, by consulting the record backward, we can
reconstruct in time k log n (where k is the number of operations on the link-cut
tree) the capacities transferred during the procedure, thereby adjusting the correct
portion of flow for each edge.
Let’s now study the adaptation from the perspective of the (S, T )-cut:
Let (S′, T ′) be a cut in G[r], and suppose there are no abundant edges from S to T .
A cut (Sc, T c) in Gc is said to be induced by (S′, T ′) if:

(Sc, T c) := (S′ ∩N(Gc), T ′ ∩N(Gc))

In other words, Sc is the intersection of S′ with the set of nodes in Gc, and similarly
for T c.
Conversely, a cut in Gc is said to be induced by one in G[r] if composed as follows:

Observation 4.4. We observe that if a cut (S′, T ′) is induced by (Sc, T c), then
(Sc, T c) is also induced by (S′, T ′).

(S′, T ′)← (Sc, T c) =⇒ (Sc, T c)← (S′, T ′)

The reverse is not true, as different cuts on G[r] can induce the same (Sc, T c).

Lemma 4.4. Suppose (S′, T ′) is a cut in G[r] and there are no abundant edges from
S to T . If (Sc, T c) is induced by (S′, T ′), then

r(Sc, T c) ≤ r(S′, T ′) ≤ r(Sc, T c) + Γ/16m

Proof. We know that the original edges in E1 contribute equally in both (Sc, T c)
and (S′, T ′). The abundant edges are absent by hypothesis, leaving only those in
E3.
We divide the paths computed by the capacity-transfer(r, H, Gc) into P ∪Q, where Q
are those that are eventually discarded. From lemma 4.2, we know that transferring
capacity does not affect the cut capacity. Therefore, the only edges that can influence
the residual capacity are those in Q.
But from lemma 4.3, we know that:∑

p∈Q

r(p) ≤ Γ/16m

From the previous lemmas, we can assert the following theorem:
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Theorem 4.2. Let y be an α-optimal flow in the Γ-compact network Gc. Let (Sc, T c)
be a cut in Gc such that

r(Sc, T c) ≤ val(y) + α.

If (S′, T ′) is the cut induced by (Sc, T c) in G[r] and y′ is the respective flow, then

val(y′) = val(y).

Moreover, y′ is said to be α′-optimal, where α′ = α + Γ/16m.
Therefore, r(S′, T ′) ≤ v + α′.

4.7 Max flow in O(nm) time

In this section, we will demonstrate how it is possible to compute the max flow in
time O(nm) when m = O(n1.06) (Note: 16/15 = 1.06̄). We will also show that the
bottleneck of this procedure is due to maintaining the transitive closure of Gab.

Algoritmh 5 Improve-approx-2(r,S,T)
1: ∆ := r(S, T )
2: c = |N c|
3: if c ≥ m9/16 then
4: Γ = ∆
5: find a Γ/(8m)-optimal flow in G[r]
6: else if m1/3 ≤ c ≤ m9/16 then
7: Γ = ∆
8: Gc := Γ-compact network
9: y = Γ/(8m)-optimal flow in Gc

10: y′ = induced(y, G[r])
11: update(r)
12: else if c < m1/3 then
13: Γ = choseGamma(c, ∆)
14: Gc := Γ-compact network
15: y = optimal flow in Gc

16: y′ = induced(y, G[r])
17: update(r)
18: end if

One of the first things we can understand by observing this algorithm is the com-
plexity required for the creation of the Γ-compact network, which we state in the
following theorem.

Theorem 4.3 (Constructing a compact network). Suppose the algorithm dynamically
maintains the transitive closure of the abundance graph and that the Γ parameter is
provided initially. Then, the algorithm takes O(m9/8) time to create the compact
graph Gc.

Proof. To contract the connected abundant components, as well as cycles, takes
O(m) time. Regarding the compacted graph:
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• The edges in E1 can be calculated in O(m);

• The edges in E3 can be calculated in O(m log m) using dynamic trees;

• The most complex to calculate are the abundant edges in E2, which are
determined based on the transitive closure that requires a cost of |N c|2 to
maintain.

However, the algorithm constructs Gc only if the number of Γ-critical nodes is less
than m9/16, thus the cost becomes

O((m9/16)2) = O(m9/8).

To demonstrate that the overall complexity of the algorithm is indeed as stated
initially, we need to establish bounds both on the actions performed and the objects
analyzed. The first thing to declare is that the total number of all Γ-critical nodes
analyzed during the various phases is O(m).

Theorem 4.4 (Max critical node in O(m)). Suppose that each improvement phase
meets the required conditions; then the Γ-critical nodes calculated during the iterations
total O(m).

Proof. For a node j to be Γ-critical, it must be adjacent to a Γmedium edge, or it
must not have adjacent Γmedium edges but have |Φ(j, r, E−ab)| > Γ/(16m2), i.e., it
must be Γ-special.
First, consider the nodes adjacent to a Γ-medium edge:
Claim: An edge can have medium Γ-capacity for at most 3 consecutive phases.
Proof: Let (i, j) be an edge with Γ-medium capacity, then uij +uji ≥ Γ/64m3. Given
that in each phase ∆′ = ∆

8m , in the immediate next phase, we have

uij + uji ≥ Γ/64m3 ≥ ∆′/8m2 = ∆′′/m = 8∆′′′

Thus, after 3 phases, uij + uji ≥ 8∆, implying that either (i, j) or (j, i) has become
abundant, and the edge is no longer Γ-medium. □

For the other Γ-special edges:
Claim: Let Γ be the compactness parameter of a given ∆-improvement phase, and
let j be a Γ-special node. If ∆∗ is the bound 4 phases after ∆, then there exists a
node k such that

rjk ≥ 2∆∗ and rkj ≥ 2∆∗

implying that (j, k) (and also (k, j)) is doubly-abundant, and thus will be contracted.
Proof:
First, define v∗ as the flow in phase ∆∗ such that r∗ = rij − vij + vji. From lemma
4.1, we know that every ∆-abundant edge will also be ∆∗-abundant. Furthermore,

r∗
ij > Γ/64m3 =⇒ r∗

ij > 8∆∗
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Suppose there exists an abundant edge (j, k) with v∗
jk > Γ/64m3; then for the

opposite edge (k, j), we have:

r∗
k,j = rkj − v∗

kj + r∗
jk > 8∆∗

Thus, the opposite is also ∆∗-abundant, and the nodes j and k will be contracted.
It remains to check the case where a node j is Γ-special without having abundant
edges with flow greater than Γ/64m3.
We know that:

|Φ(j, r, E−ab)| = |r̂out(j)− r̂in(j)| > Γ/(16m2)

Consider the case where r̂out(j)− r̂in(j) > Γ/(16m2) (the other case is similar). We
have: ∑

j:(j,k)∈E−ab

y∗
jk ≤

∑
j:(j,k)∈E

y∗
jk =

∑
j:(i,j)∈E

y∗
ij

due to flow conservation. Furthermore,∑
j:(i,j)∈E

y∗
ij <

∑
j:(i,j)∈E−ab

y∗
ij +

∑
j:(i,j)∈Eab

y∗
ij + mΓ/64m3

But since we have assumed that no abundant edge has flow greater than Γ/64m3,

< r̂in(j) + 2mΓ/64m3

< (r̂out(j)− Γ/16m2) + Γ/32m2

< r̂out(j)− Γ/32m2

=
∑

j:(j,k)∈E−ab rjk − Γ/32m2

Thus, there must exist some edge for which

y∗
jk < rjk − Γ/32m3 =⇒ r∗

jk ≥ rjk − y∗
jk > Γ/32m3 > 16∆∗

Therefore, there exists some (j, k) non-abundant edge in the ∆phase that becomes
abundant in the phase ∆∗, and since (k, j) is also abundant, the cycle will be
contracted. □

We have shown through the two claims that all Γ-critical nodes in a phase cannot
remain Γ-critical for more than a constant number of consecutive phases. The fact
that they have a "limited duration" and are at most O(m) proves the statement.

Knowing the number of nodes to analyze, the next step is to estimate the number
of improvement phases required to calculate the maximum flow. However, it is
necessary first to understand how the Γ parameter is chosen.
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Lemma 4.5 (Γ Parameter). The Γ parameter can be chosen in O(m + n log n) time.

Proof. We give a procedure that does this:

1. For each node j, calculate the largest Γ’ value for which j is Γ’-critical (time
required O(m)).

2. Order the nodes j by their Γ’ value (time required O(n log n)).

3. Choose the Γ value such that there are at most m1/3 nodes j with Γ′(j) ≥ Γ
(time required O(1)).

We now have all the tools to calculate the number of improvement phases:

Lemma 4.6. The number of improvement phases is O(m2/3).

Proof. From theorem 4.4, we know that the number of Γ-critical nodes analyzed is
O(m), and from lemma 4.5, we know that in each improvement phase at least m1/3

nodes are analyzed.
When we demonstrated that the number of nodes was O(m), the proof relied on
the fact that the nodes had a "deadline" and would be contracted in at most 3 or
4 consecutive phases. Thus, all at least m1/3 nodes analyzed in one phase will be
"consumed" in O(1) phases.
Consequently, the number of phases required to "consume" them all is O(m2/3).

From the following lemmas, we can derive the total time required to create all the
Gc.

Lemma 4.7. The total time to create all the compact networks is O(nm + m43/24).

Proof. We know that the Γ parameter requires time O(m + n log n).
We know that creating a compact network takes O(m9/8) time.
Since the number of phases is O(m2/3),
putting everything together, we obtain:

O(mn + m43/24)

Finding a flow that is α-optimal means finding a flow that is at most α less than
the maximum capacity flow. We have seen that if we search for the maximum flow
in the Γ-compact network Gc and then transfer it to the original network G, this is
already Γ/16m-optimal.
However, during the algorithm, we aim to obtain this approximation directly in
G. If we recall the functioning of the Goldberg-Rao algorithm, we can see that the
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algorithm terminates when its estimate of the maximum flow is less than 1. By
intervening on this maximum flow estimate, it is possible to terminate the algorithm
before reaching the optimal flow, resulting in a gap of at most a value of α of our
choosing.
Now let’s reason about the cost T of a phase of the Goldberg-Rao algorithm, knowing
that we are executing it on a graph with C nodes and O(C2) edges.

Λ = O(C2/3), T = Õ(C2/3 · C2) = Õ(C8/3)

We can now evaluate the cost of the Improve-approx-2(r,S,T) procedure.
Moreover, we can note that if we execute the Goldberg-Rao algorithm on a total of
O(m) nodes while performing a maximum of log U phases, the average number of
nodes in each improvement phase is

C = O

(
m

log U

)
This is the reason why we construct the compact graph only if C ≤ m9/16. In fact,
if the Goldberg algorithm is polynomial, then if log U ≤ m7/16:

C ≥ m9/16 =⇒ m

log U
≥ m9/16 =⇒ log U ≤ m

m9/16 = m7/16

Lemma 4.8 (Time of improve-max). The time to compute the optimal flow using
the improve-approx-2 procedure is

O(m31/16 log2 m)

Proof. Given that a total of O(m) Γ-critical nodes are computed, I will calculate
the cost of the procedure for a single node rather than for the number of phases:
Let T be the time required to find an α-optimal flow.
We know that if C ≥ m9/16, we can find an optimal flow with T = O(m3/2 log2 n) by
executing log n phases of the Goldberg-Rao algorithm on the original graph. When
scaled to the number of Γ-critical nodes, we have T/C = m15/16 log2 n.
If instead m1/3 ≤ C < m9/16, we work in the compact graph and seek the maximum
flow, executing log n phases of the Goldberg-Rao algorithm, thus T = O(C8/3 log n).
Therefore,

T/C = O(m5/3 log n = m15/16)

.
Finally, if C < m1/3, the small number of edges leads the cost to be T = O(C3),
resulting in T/C = O(C2) = O(m2/3).
We can assert that in every case, the cost of the procedure for each node is
O(m15/16 log2 n). Multiplying this result by the number of Γ-critical nodes across
all increments yields

O(m ·m15/16 log2 n) = O(m31/16 log2 n)

.
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Lemma 4.9. The total time to transform all the flows computed on Gc into flows
on the residual graph is

O(nm + m5/3 log n)

.

Proof. Let Gc be the compact graph derived from G[r] (the residual graph), and let
yc be the flow in Gc while y is the flow induced on the residual graph.
The edges of Gc are divided into three categories: Ec = E1 ∪E2 ∪E3, corresponding
to original edges, abundant pseudo-edges, and anti-abundant pseudo-edges.
For any edge (i, j) such that yc

ij > 0, we distinguish the three cases:

1. If (i, j) ∈ E1 =⇒ yij = yc
ij .

2. If (i, j) ∈ E2, we know that to reconstruct the abundant path we need
O(|P |) = O(n). Furthermore, by utilizing dynamic trees, we can keep the
number of edges with positive flow in E2 below the value C at a cost of
O(m log n), repeated for O(m2/3) phases, resulting in O(m5/3 log n). In this
way, all abundant paths are restored in O(nm). We always remember that the
cost of dynamically maintaining the transitive closure is O(nm).

3. Regarding the edges in E3, we again have to resort to dynamic trees to
reconstruct the anti-abundant paths that we contracted. Specifically, it is
not possible to keep track of all paths efficiently; however, we can maintain a
record of all operations performed on the graph to retrace and restore the old
paths. This procedure also has a total cost of O(m log n ·m2/3).

We conclude that the total time to induce the flow in Gc to G[r] for all m2/3 phases
is

O(nm + m5/3 log n)

From the previous lemmas, we can deduce the following theorem:

Theorem 4.5 (Max flow in O(nm)). If the flow in each improvement phase is
computed using the improve-approx-2 procedure, then the time to find the maximum
flow is

O(nm + m31/16 log2 n)

If m = O(n1.06), the running time is O(nm).
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Conclusions

In this thesis, we have outlined all the key intermediate steps that lead from the
Edmonds-Karp algorithm to Orlin’s algorithm. A crucial point that emerged is the
strong interconnection between the various algorithms.
Although each algorithm significantly enhances the efficiency of the previous one,
the core principles behind the solutions are not radically different. For instance,
we observed that Dinitz’s algorithm modifies only the sequence of the augmenting
phase and the BFS computation found in the Edmonds-Karp algorithm. In turn,
the Goldberg-Rao algorithm builds upon Dinitz’s work, executing the augmentation
phases on a more contracted graph.
Orlin’s algorithm further capitalizes on the Goldberg-Rao method, using it in its
original form to compute an α-optimal flow on a specially compacted graph, designed
to reduce computational costs even further.
For graphs that are even sparser (n = O(m)), Orlin proposed an alternative approach.
In this version, given the number of edges, the procedure for dynamic transitive
closure (one of the main bottlenecks of the algorithm) can be replaced with a more
efficient method, thereby reducing the computational cost by a logarithmic factor,
bringing it down to O(n2/ log n).
Further advances in this field were made in 2018, when Orlin, together with Xiao-
Yue Gong, introduced an algorithm[OG19] that strictly outperforms the King et al.
algorithm, particularly in cases where m = o(n log n), surpassing it by a factor of
log log n.
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