
BIP32-Ed25519
Hierarchical Deterministic Keys over a Non-linear

Keyspace
Dmitry Khovratovich

Evernym, Inc.
University of Luxembourg
khovratovich@gmail.com

Jason Law
Evernym, Inc.

jason.law@evernym.com

Abstract—We show how to adapt the Bitcoin BIP32 proposal
for deterministic key generation for the Ed25519 curve which has
non-linear key space. We also demonstrate that the alternative
proposal by Chain.com is insecure and deviates from the EdDSA
standard.

I. INTRODUCTION

Bitcoin [6] users tend to use every public/private key pair
infrequently to minimize private key leakage and privacy loss.
It is is a common practice to generate a new key pair for each
transaction, and a set of such key pairs is called a wallet.

The Bitcoin Improvement Proposal 32 (shortly, BIP32) [9]
specifies the deterministic generation of wallet keys from a
single seed to minimize the amount of secret information
needed to operate with the wallet. Bitcoin uses elliptic curve
signatures on curve secp256k1, where private keys form a
linear space. Thanks to this fact, a new public key can be
generated by adding1 [x]B to the public key [k]B, where B
is the base point, k is the private key, and [x] is scalar, so that
the new private key scalar will be [k] + [x]. BIP32 provides
a deterministic procedure to compute x as a function of some
input parameters, and this way of wallet generation is widely
used in Bitcoin clients.

Ed25519 is an elliptic curve standard for digital signatures
developed in [2] and notable for high speed, constant-time
implementations, and no requirement for randomness in sig-
nature generation. It is natural to try to adapt the BIP32
for Ed25519 so that architectures using Ed25519 could use
the deterministic key generation (this is helpful when users,
not necessarily of cryptocurrencies, would like to generate a
number of keys/identities for themselves out of the same seed).

However, Ed25519 is also notable for its public key genera-
tion involving hashing and bit manipulations, which seemingly
prevents its use for BIP32. We show that it is in fact possible
with only minor modifications to BIP32 and working with
“after-hash” private keys of Ed25519. Thus we maintaining
almost complete compatibility to both standards, and a poten-
tial implementation can reuse most of the code.

1Here and later we denote strings by s, their interpretation as integers by
[s], and the representation of integer q as a string by 〈q〉.

Shortly before the submission of this paper, we were
informed of another approach to the same problem by
Chain.com [4]. Apparently, a more aggressive adaptation
strategy made their specification not only incompatible to
the Ed25519 signature generation, but also re-enabled a side-
channel attack vector via timing leakage.

II. BIP32

The BIP32 standard [9] specifies not just a derivation of
several keys for a wallet, but a hierarchy of keys. We start
with a single private-public key pair and generate a number
of enumerated child key pairs. A child public key can be
derived from the parent public key using a secret (or selectively
shared) chain code and a public child index. Simultaneously,
the private child key is derived from the private parent key
using the same values. This allows the user to generate a
new public key on an untrusted machine and use it at some
transaction as a receiver, and compute the private key only
when he decides to spend the transaction.

Full specification of BIP32 can be found in [9]. Here is the
short summary, crucial to our paper:

• A base point B of order n is the Bitcoin base point on
the elliptic curve secp256k1.

• The 256-bit root private key k and the root chain code
c are generated as (k, c)← Fw(S), where F is HMAC-
SHA512, the key w is a public string, and S is a seed.
We compute the root public key A← [k]B.

• The root has 232 children, indexed from 0 to 232−1. For
each i < 231 we compute the 512-bit Z ← Fc(A, i) and
split it into the 256-bit parts ZL||ZR.

• The child private key ki is 〈[k] + [ZL] mod n〉, so that
the corresponding public key Ai is A+ [ZL]B.

• A child may have children too, for which its chain code
is ci ← ZR. Thus we have a tree of descendants from
the original key pair.

• A child with i ≥ 231 is called hardened as its private key
is determined by parent private key: Z ← Fc(0x00, k, i)
and ki ← 〈[k]+ [ZL] mod n〉. Such children do not have
children.

The crucial property of this concept is that child public keys
can be determined by anyone knowing the chain code (or l
codes, if the child is l nodes away from the root).

III. ED25519

A. Setup

Ed25519 is described in [2] and is a part of an IETF draft
in [5].

The coordinates (x, y) are pairs of elements of the prime
field Fp, where p = 2255 − 19.

The base point B has a base order n of 2252 +
27742317777372353535851937790883648493. The infinity
point is (0, 0) and the identity point is (0, 1).

B. Keys and signature

The private key k̃ is a 32-byte cryptographically-secure
random value. The public key A is derived as follows:

1) Let H512() be SHA512. Hash the 32-byte private key
k̃ using H512, storing the digest in a 64-byte buffer,
denoted k. We call k an extended private key. Split k
into the lower 32 bytes kL and upper 32 bytes kR.

2) Modify kL: the lowest 3 bits of the first byte of are
cleared2, the highest bit of the last byte is cleared, and
the second highest bit of the last byte is set3.

3) Interpret kL as a little-endian integer and perform a
fixed-base scalar multiplication [kL]B.

4) The public key A is the encoding of the point [kL]B
as follows. First encode the y coordinate (in the range
0 ≤ y < p) as a little-endian string of 32 octets. The
most significant bit of the final octet is always zero.
To form the encoding of the point [kL]B, copy the least
significant bit of the x coordinate to the most significant
bit of the final octet. The result is the public key.

Signature for message M is produced as follows:
1) Compute H512(kR||M) and interpret the result as a

little-endian-encoded integer r. Compute r ← r mod n.
2) Compute point [r]B and let R be its encoding.
3) Compute x ← H512(R||A||M), and interpret the 64-

byte digest as a little-endian integer.
4) Compute S = (r + x · [kL]) mod n.
5) The string R||S is the signature.

IV. BIP32-ED25519

The curve secp256k1 has an important property – its private
keys form an affine (and even linear) space. This is not the
case for the curve Ed25519; however, it is possible to modify
the BIP32 proposal slightly so that all the produced extended
private keys lie in some affine space.

The crucial security requirement to the extended private
key in Ed25519 is that it has certain bits set and cleared
(as documented in Section III-B) to avoid a class of timing

2This is done for key compatibility with Curve25519, where it serves as a
countermeasure against low-order attack.

3This is done to avoid timing leakage in multiplication algorithms that
search for highest active bit.

attacks and for compatibility with Curve25519 keys, where
small-order-group attacks are relevant.

Our modifications are summarized as follows:
1) We work with the extended private key (64-byte) k in

Ed25519, instead of the original 32-byte key k̃. All
extended keys have the bits set and cleared exactly as
specified in [5]. Signing and verifying procedures remain
the same as in Section III-B. However, some Ed25519
libraries have a signing function that takes the 32-byte
k̃ and expands it for every signing, while other libraries
sign using the extended 64-bit k. Due to the way child
Ed25519 keys are derived, they will not have the 32-
byte master secret key. We note that the NaCl library [3]
provides the necessary interface to the extended private
key.

2) We admit only those k̃ such that the third highest bit of
the last byte of kL is zero.

3) We make another HMAC call to take a longer private
key into account.

4) The string ZL that affects the kL part of the extended
private key is trimmed to 28 bytes in order to guarantee
that the second highest bit in the last byte of child kL
is always 1.

5) The maximum number of levels in the tree is 220 =
1048576.

6) Integers are serialized in the little-endian format (least
significant bytes first), and byte strings are interpreted
as little-endian integers.

V. BIP32-ED25519: SPECIFICATION

This section describes the BIP32 proposal adapted for
the use of the curve Ed25519 instead of the Bitcoin curve.
The new proposal is called BIP32-Ed25519. The scheme is
outlined at Figure 1.

The master secrets of BIP32-Ed25519 and root extended
private keys are backward compatible with Ed25519 keys.
In other words, all BIP32-Ed25519 master secrets are valid
Ed25519 private keys, and root extended private keys are valid
Ed25519 extended private keys.

A. Root keys

Let k̃ be 256-bit master secret. Then derive k = H512(k̃)
and denote its left 32-byte by kL and right one by kR. If the
third highest bit of the last byte of kL is not zero, discard k̃.
Otherwise additionally set the bits in kL as follows: the lowest
3 bits of the first byte of kL of are cleared, the highest bit of
the last byte is cleared, the second highest bit of the last byte
is set. The resulting pair (kL, kR) is the extended root private
key, and A ← [kL]B is the root public key after encoding.
Derive c← H256(0x01||k̃), where H256 is SHA-256, and call
it the root chain code.

B. Child keys

The root key can have 232 child keys indexed from 0 to
232− 1; the first 231 of them can have their own children and

so on. The procedure of child key derivation is the same for
the root and its children.

Let cP be the chain code. Let kP = (kPL , k
P
R) be the

extended private key and AP the public key. Recall that FK

stands for HMAC-SHA512 with key K.

C. Private child key

Extended private key ki = (kL, kR) for child i is produced
as follows:

1) {
Z ← FcP (0x02||AP ||i), i < 231;
Z ← FcP (0x00||kP ||i), i ≥ 231.

where AP is serialized as little-endian 32-byte string,
kP is viewed as (kPL , k

P
R) and both values are serialized

as little-endian, and i is serialized as little-endian 4-byte
string.

2)

kL ← 〈8[ZL] + [kPL]〉, (1)

kR ← 〈[ZR] + [kPR] mod 2256〉. (2)

where ZL is the left 28-byte part of Z, and ZR is the
right 32-byte part of Z. If kL is divisible by the base
order n, discard the child.

3) The child chain code is defined as
{

ci ← FcP (0x03||AP ||i), i < 231;
ci ← FcP (0x01||kP ||i), i ≥ 231.

where the output of F is truncated to the right 32 bytes.
The child public key Ai is derived as Ai = [kL]B.

D. Public child key

Public key Ai for child i is produced as follows:
1) {

Z ← FcP (0x02||AP ||i), i < 231;
Z ← FcP (0x00||kP ||i), i ≥ 231.

where AP is serialized as little-endian 32-byte string,
and i is serialized as little-endian 4-byte string. Note that
like in the original BIP32 the public key for i ≥ 231 can
be computed only by the private key owner and those
knowing the parent private key.

2)
Ai ← AP + [8ZL]B,

where ZL is the left 28-byte part of Z interpreted as
224-bit integer using the little-endian representation. If
Ai is the identity point (0, 1), discard the child.

3) The child chain code is defined as
{

ci ← FcP (0x03||AP ||i), i < 231;
ci ← FcP (0x01||kP ||i), i ≥ 231.

where the output of the HMAC function truncated to the
right 32 bytes.

E. Key tree
Child with i < 231 can be a parent for his children with his

own chain code ci. Proceeding with this, we can create a tree
of keys where each non-leaf node is a parent for its children
and is a child for its parent. A path m → i1 → . . . → il
from the original parent m to a child at level l thus uniquely
identifies the node.

F. Security
a) Master key security: We set 6 bits in the 512-bit

extended key. Therefore, the extended key can be guessed after
2506 attempts by brute-force, or by trying 2256 different master
secrets. Since the Ed25519 scheme claims the security level
of 128 bits, our manipulations with the extended private key
yield no security loss.

b) Child key collisions: There are 2224 distinct ML,
so we expect that collisions in kL and thus the public key
collisions are possible for 2112 keys and more. However, such
collisions do not help to forge signatures as the kR part of
the extended key is independent of kL. Therefore, we do not
see any degradation in the overall security because of our
modifications.

It is easy to prove that all produced values a do not violate
the requirements outlined in the Ed25519 specification:

• Highest bit of the last byte is cleared, second highest bit
is set;

• Three lowest bits of the first byte are cleared.
Indeed, the root a has the form a = 2254+8b, where b < 2250

since we clear the third highest bit. The value aj at level
j is defined as aj = a +

∑
j′<j 8M

j′

L . Since ML < 2224,
we get that aj ≤ a + j2227. Since j ≤ 220, we get aj ≤
2254 + 2253 + 2247. As it is divisible by 8, the requirements
are satisfied.

VI. EXTENSION TO OTHER CURVES AND PRIMITIVES

Our method can be extended to handle other curves with
non-linear keyspace and other hashing primitives. For instance,
the SHA-512/256 hash function can be used to produce the
256-bit chain code. The SHAKE hash functions [7] can be
used to produce extended keys that are longer than 64 bytes,
such as in the Ed448 curve [5] with 224-bit security level.
Finally, the HMAC calls can be replaced by the very recent
variable-length KMAC (currently standardized by NIST) so
that the (Z, c) pair is produced in a single call.

VII. INSECURITY OF THE BIP32-ED25519 PROPOSAL BY
CHAIN

Earlier in 2016 Chain.com introduced its own proposal on
generating hierarchical deterministic keys on the Ed25519
curve [4]. Here we review it and identify weaknesses that lead
to side-channel attacks.

A. Key generation
The root private key kL||kR is generated exactly as de-

scribed in Section III-B.
The root extended public key is [kL]B||kR, thus making kR

public (for some reason it is called salt in the proposal).

k̃

H

for public key for signatures

B

kL

A

M

H

message

H

public key

Rs

signature

HMAC

child index

private child key derivation

kL

28 bytes 32bytes

Byte 0

000**** *

Byte 1 Byte 31

010 **** *

r

x

kR

setting bits

ZL ZR

Fig. 1. BIP32-Ed25519.

B. Private child key

Extended private key k = (kL, kR) is produced as follows:
{

Z ← H512(0x01||AP ||kPR ||l(c)||c) for non-hardened keys.
Z ← H512(0x00||kPL ||kPR ||l(c)||c) for hardened keys.

where AP , kPR , k
P
L are serialized as little-endian 32-byte string,

and c is a secret.
Then Z is divided into 256-bit parts ZL and ZR, and ZL

is modified as in Step 2, Section III-B. Then we set

[kL]← ([ZL] + [kPL]) mod n; kR ← ZR.

The public key are generated from this private key as A =
[kL]B||kR.

C. Signatures

The signature generation is not compatible with Ed25519.
Here is the modified version with the difference in italic:

1) Compute H512(0x02||kL||kR), truncate it to the first 32
bytes and denote by z.

2) Compute H512(z||M) and interpret the result as a little-
endian-encoded integer r. Compute r ← r mod n.

3) Compute point [r]B and let R be its encoding.
4) Compute x ← H512(R||A||M), and interpret the 64-

byte digest as a little-endian integer.
5) Compute S = (r + x · [kL]) mod n.
6) The string R||S is the signature.
Thus r is now dependent on kL too, and the signature

algorithm is different from that of Ed25519 (though similar).
The signature verification procedure remains the same.

D. Weaknesses

We identify the following problems and weaknesses of the
scheme.

1) The child private key is no longer a valid EdDSA
extended private key. Since both ZL and kPL have their
highest bit cleared and the second highest bit set, the
value ([ZL] + [kPL]) exceeds 2255 and thus will be
reduced modulo n to a number smaller than n. The
resulting string kL has no guarantee on its highest bits
set or cleared, thus contradicting the definition of the
EdDSA keys.

2) The resulting extended private key is vulnerable to
timing attacks on a bit-searching multiplication imple-
mentation [1]. Even if the value ([ZL] + [kPL]) is not
reduced modulo n, there will be a guaranteed overflow
in the second highest bit and thus the highest bit will be
set to 1. This again contradicts the private key standard
of Ed25519.

3) The signature procedure is no longer compatible with
EdDSA. As a result, the signature generation code from
existing libraries can not be fully reused.

4) The kR string is exposed to public for unknown rea-
son. We have not identified any attack vector, but the
rationale for this design is unclear.

5) The authors write ”We believe the scheme is equivalent
to RFC 6979 that derives the nonce by hashing the secret
scalar. As an extra safety measure, the secret scalar
is concatenated with the salt (which is not considered
secret in this scheme) in order to make derivation

function not dependent solely on the key” [4]. We note
that even though RFC 6979 [8] follows the EdDSA
approach to deterministic signature generation, the salt
is not involved. Moreover, RFC 6979 does not expose
any part of the private key.

VIII. ACKNOWLEDGEMENTS

We thank the anonymous reviewers for fruitful comments
that helped to improve the paper.

IX. CONCLUSION

We demonstrate how to adapt the hierarchical keys proposal
from the Bitcoin curve to the Ed25519 curve by keeping all
the code for the Ed25519 public key generation and signatures
valid and compatible. Our approach can be simplified using a
variable-length MAC. In turn, the approach by Chain.com is
much harsher as it breaks compatibility with the signature pro-
cedure and introduces potential side-channel vulnerabilities.

REFERENCES

[1] Daniel J. Bernstein. Curve25519: New diffie-hellman speed records. In
Public Key Cryptography, volume 3958 of Lecture Notes in Computer
Science, pages 207–228. Springer, 2006.

[2] Daniel J Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin
Yang. High-speed high-security signatures. Journal of Cryptographic
Engineering, 2(2):77–89, 2012.

[3] Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. NaCl: Networking
and cryptography library, 2013. https://nacl.cr.yp.to/.

[4] Chain.com. Chain key derivation, 2016. https://chain.com/docs/protocol/
specifications/chainkd.

[5] S. Josefsson and I. Liusvaara. Edwards-curve digital signature algorithm
(EdDSA), 2016. https://tools.ietf.org/html/draft-irtf-cfrg-eddsa-05.

[6] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2009.
http://www.bitcoin.org/bitcoin.pdf.

[7] NIST. SHA-3 standard: Permutation-based hash and extendable-output
functions, 2015. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.
pdf.

[8] Thomas Pornin. Rfc 6979: Deterministic usage of the digital signature
algorithm (dsa) and elliptic curve digital signature algorithm (ecdsa),
2013. https://tools.ietf.org/html/rfc6979.

[9] Pieter Wuille. BIP 32: Hierarchical deterministic wallets, 2012. https:
//github.com/bitcoin/bips/blob/master/bip-0032.mediawiki.

https://nacl.cr.yp.to/
https://chain.com/docs/protocol/specifications/chainkd
https://chain.com/docs/protocol/specifications/chainkd
https://tools.ietf.org/html/draft-irtf-cfrg-eddsa-05
http://www. bitcoin.org/bitcoin.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://tools.ietf.org/html/rfc6979
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

	Introduction
	BIP32
	Ed25519
	Setup
	Keys and signature

	BIP32-Ed25519
	BIP32-Ed25519: specification
	Root keys
	Child keys
	Private child key
	Public child key
	Key tree
	Security

	Extension to other curves and primitives
	Insecurity of the BIP32-Ed25519 proposal by Chain
	Key generation
	Private child key
	Signatures
	Weaknesses

	Acknowledgements
	Conclusion
	References

