Stratified wakes past an isolated topography: coherent structures and vortex dynamics

Introduction

- The understanding of their roles in the dynamics of oceanic or parameterization and prediction of their environmental impact.

Flow configuration:

- uniform current past an isolated conical hill on a flat bottom
- hill slope is 30 degree
- linearly stratified, non-rotating or rotating fluid

Governing equations and large-eddy simulations (LES):

- incompressible Navier-Stokes equations under Boussinesq approximation
- sub-grid-scale motions modeled by an eddy-viscosity approach (WALE)
- non-hydrostatic simulations solving all three momentum equations

$$\begin{aligned} \frac{\partial u_i}{\partial x_i} &= 0,\\ \frac{\partial u_i}{\partial t} + \frac{\partial u_i u_j}{\partial x_j} - f_c \epsilon_{ij3} (u_j - U_\infty \delta_{j1}) = -\frac{1}{\rho_0} \frac{\partial p^*}{\partial x_i} + \frac{\partial \tau_{ij}}{\partial x_j} - \frac{\rho^* g}{\rho_0} \delta_{i3}\\ \frac{\partial \rho}{\partial t} + \frac{\partial \rho u_i}{\partial x_i} = \frac{\partial J_{\rho,i}}{\partial x_i},\\ \tau_{ij} &= (\nu + \nu_{\text{sgs}}) (\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}), \ J_{\rho,i} = (\kappa + \kappa_{\text{sgs}}) \frac{\partial \rho}{\partial x_i} \end{aligned}$$

Non-dimensional parameters and numerical database:

- moderately high Reynolds number (Re = 10000)
- moderately strong stratification (Fr = 0.15)
- mesoscale, submesoscale, and non-rotating (Ro = 0.15, 0.75, inf)
- roughly 0.6 billion grid points, time-resolved database

$$Re_{D} = \frac{U_{\infty}D}{\nu}, \ Fr = \frac{U_{\infty}}{Nh}, \ Ro = \frac{U_{\infty}}{f_{c}D}, \ Bu = \left(\frac{Ro}{Fr}\right)^{2} = \left(\frac{Nh}{f_{c}D}\right)^{2}$$
Case *Bu Ro Fr* (*N_x*, *N_y*, *N_z*) *N_t TU_∞/D*
BuInf ∞ ∞ 295
Bu25 25 0.75 0.15 (1536,1280,320) 4000 345
Bu1 1 0.15 322

Jinyuan Liu¹, Pranav Puthan¹, and Sutanu Sarkar^{1,2} ¹University of California San Diego, ²Scripps Institution of Oceanography

Large-scale coherent vortex structures

Vortex center tracking and conditional statistics

- Individual vortex centers in horizontal planes are tracked in time with the mean shift algorithm. Statistics are conditioned to the vortex centers. - Asymmetry between cyclonic (CVs) and anticyclonic vortices (AVs) are observed in the rotating cases. Stable anticyclones with their vertical vorticity staying stronger than the rotating frequency are also found statistically.

Stability of the anticyclones

- Various criteria are applied to analyze the stability of the anticyclones:
 - the absolute vorticity criteria: $\omega_z/f_c < -1$ (instability)
 - the generalized Rayleigh discriminant: $(\omega_z + f_c)(2\frac{u_\theta}{d_e} + f_c) < 0$ (instability)
 - new criteria^{1,2} incorporating stratification and dissipation effects

- Anticyclones stronger than the rotating frequencies (in Bu25 and Bu1) are found to stay marginally stable during the evolution. The most unstable regions are the peripheries of the vortices.

- The new criteria^{1,2} have improved the stability of AVs, showing the stabilizing effects of stratification and turbulence.

- In the Ro_v - Bu_v parameter space, AVs tend to evolve towards more stable states (smaller Ro_v , away from the marginal stability curves).

Summary

- Non-hydrostatic large-eddy simulations are performed to study the wake of a conical hill. Dynamical regimes of moderately high Reynolds number, moderately strong stratification, and various rotation levels are explored.

- Coherent VS motions are identified with SPOD and are shown to be global modes. The VS frequency varies little as rotation changes.

- Vortex centers are extracted using the mean shift algorithm, and the statistics of vorticity and stability criteria are conditioned to the tracked centers. The asymmetry between the CVs and AVs is presented.

- The stability of AVs that have unstable absolute vorticity is observed, and analyzed using the generalized Rayleigh discriminant (that includes the centrifugal contribution) and two recently proposed criteria^{1,2} (that include the effects of stratification and dissipation).

This work is supported by ONR grant N00014-22-1-2024 **Pre-print:** arXiv:2401.02089 (QR code link on the right) Emails: jinyuanliu@ucsd.edu, pranavsuresh@ucsd.edu, and ssarkar@ucsd.edu

