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Abstract: This note, intended for being used as quick reference, provides a collection of a wide range
of equations in fluid mechanics, from basic equations that can be found in introductory textbooks, to those
only left as an exercise or conclusion in graduate textbooks, monographs, or research papers, the detailed
derivations of which were typically not provided. We try to use symbols and notations as consistently as
possible throughout the entire note.
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1 Conservation laws

1.1 Continuity

Differential form; integral form:;

1.1.1 Compressibility

Note on incompressibility condition - Drho/Dt, and the volume change rate relation ,and the thermal

effects (EOS).

1.2 Momentum equation

Differential form; integral form;

1.3 Bernoulli theorem
Assumptions:

o Inviscid.

¢ Barotropic.

o Potential force.

¢ Steady.

1.3.1 Lamb-Gromyko

Consider the inviscid Euler equation:
0 1
o Vu= ——Vp+f
ot P

with a conservative force

f=-Vo.
Using Eq. (A.36) we have
2 2

(u~V)u:V%7ux(qu):V%7uxw

We defined
L=ux(Vxu)=uxw
which is called the Lamb vector.
The Euler equation becomes

and hence )
v (u + % + <I>> -L
which is called the Lamb-Gromyko equation. Define

2
=% +2.9
2
we have

VH =1L.

(1.1)

(1.2)

(1.5)

(1.6)

(1.7)

(1.8)

If the flow is irrotational, i.e., L = 0, we recover a special version (isentropic) of Bernuolli’s theorem.



1.3.2 Constitution relations

1.3.3 Jump conditions

1.4 Pressure Poisson

Take the divergence of the follow equation for incompressible flows (V - u = 0):

a—u +u-Vu= fEVp+VV2u
ot P
we have 1
—;VQp:V-(u-Vu) =Vu:uV+u-V(V-u)=Vu:uV
ie.

1 82]9 6‘u2 8Uj

;axiaxi - 78.’17j 8.’[]1'

(1.10)

(1.11)

In CFD, the continuity equation (V - u = 0) is responsible for solving pressure for the above reason.

1.5 Energy equation

1.5.1 A thermodynamics perspective
2 Vortex dynamics

2.1 Vorticity transport equation

The vorticity field is the curl of the velocity field:
w=Vxu

By Eq. (A.27) we know
V-w=0

i.e., the continuity of vorticity.
The incompressible Navier-Stokes equation in vector form:

Du 1 9

Using Eq. (A.36) we have
2
(u-V)qu%—ux (V x u)

Then we have

0 2 1
—u+Vu—+w><u:—pr+VV2u+f
ot 2 P

Using the (A.37) and take the curl of Eq. (2.5)

2
LHS:Vx(a—u—i—V%—kau)

ot
ow
—E—i—Vx(wxu)
0w

— 4 (uViw— (w-VutwV-u)—ulV-w)

ot



0w

= o +(u-Viw—(w-V)u (2.9)
1
RHS =V x (—=Vp +vVu + f) (2.10)
p
1
=vVPw+ VX f+—5VpxVp (2.11)
P
Equaling both sides we obtain
Ow 9 1
— 4+ u-Vw = w-Vu + yVw + Vxf +—=5VpxVp (2.12)
Iﬁl e;dvectiorll : vortex ! IviscousI t ITI ; lp 1
rate of stretching  diffusion a n%)il—ccrélr?ser?/gg;lvce 1geld baroclinic
change torque

Again, the stretching term w - Vu comes from the non-linear advection/inertial term in N-S. Tt is
important in the energy cascade in turbulence.

2.2 Enstrophy equation

1 1
L §w Cw = §wiwi (2.13)
Re-write (2.12) into tensor notation we have
ow; Ow; ou; 0%w; Ofr 1 op Op
Rt et e S 2.14
ot +“Jaxj wj@xj+yax? +€Jk8xj+p26jk8xj8xk (2.14)
w; X (2.14) we have
1 0 1 6u1 82 1 80.)1' &ui
o7 (Fwiw; i (Fwiwi) = wiw; >— + V5 (Fwiw;) — 2.15
or (geieoi) i (i) = wis g v g (e TV G o, (2.15)
Ofy 1 dp Op
ijkWi ijkWi A 2.16
+63kw P + 2€Jk) axj axk ( )

Note that €;;;, is the Levi-Civita symbol, not to be confused with the turbulent kinetic energy rate
or Reynols stresses dissipation rate e;;.
Re-write back into vector form:

%+u~VS:ww:Vu+VV257VVw:Vw+w~(V><f)er
ot —_—

Vp x Vp

- (2.17)

viscous
dissipation

Note that we are assuming an incompressible flow, hence V - u related terms are not appearing in Eq.
(2.17). A new mechanism compared to (2.12) is the viscous dissipation of enstrophy. This term is always
negative.

2.3 Velocity gradient tensor, its invariants and dynamics

Meneveau (2011)

3 Turbulent flows

3.1 Mean and fluctuation flows
3.1.1 Reynolds average

We denote time average as 6, space or ensemble average as (-), and sometimes use these notations
interchangeably given that they are equivalent under the ergodicity assumption. The properties proved for



one definition are expected to hold for another. Although Reynolds decomposition and RANS modelings
are not an accurate way of computing turbulence, they consist the foundation of our understanding of

turbulence.
Below we give briefly some properties of Reynolds averaging:

(i) (Definition) The time average of a physical variable A is

N
A= lim —/ Adt
T—oo T 0

(3.1)

In practice, the limit is often neglected and the average window is assumed to be long enough.

(ii) (Definition) The fluctuation of a physical variable A is

ALA-A

(iii) (Proposition) The average of fluctuation is zero.

A=A-A=A-A=0
3.1.2 Continuity and momemtum

Oui -
5‘:@ o
Du; _1 dp 0 ou;

Dt = pow | ow; Vo,

)

Taking the average of Eq. (3.4) we have

ow, o0 ,1 [T 1 (T ou, 1 T
= — dt) = = dt = — dt =

Hence we have the continuity for fluctuating velocity

where

ou,

Taking the average of Eq. (3.5) we have

1 T 9 ,_ / — / o /
LHS = (T/o dt) = [a(uz +u;) + (T + uj)—aa7 - (1 + ug)]
j

:8ﬂi+8u;+a' 8H—I—u ul 4+ u! ﬂ<+u’~£u
ot ot ox; ' Vox; v 9ox; ' oy
ou; _ 0 _ ’ 0 /

= 7(915 +’U/J87xjuz +'U/J87x]uz

o',

e e S T

ou; _ Ouy; 0 7

(3.2)

(3.3)



e 1o _ . , . 9.9, _

1 0p 0 o,

—_-r 4 = 3.15
pafﬂi + 8xj (Vaxj) ( )
Equaling both sides yields:

0u;
=0 3.16
oz, (3.16)
7% el A - — 3.17
ot t Ox;j p O0x; + Oz, Vascj uzu]) ( )

where the cross-correlation term having dimension of shear stress

TRey = —UjU (3.18)

is called the Reynolds stress term. It is a rank 2 tensor. It comes from the Reynolds averaging of the non-
linear advection term on the LHS of Navier-Stokes, and it distinguishes turbulent flows from laminar ones.
It represents the momentum transport due to turbulent motions, in anology to the molecular diffusion.

3.1.3 Transport equation of the fluctuating velocity

Denote the material derivative based on the mean flow advection as

D o _ 0

and subtract the Reynolds equation from N-S equation

Du, 10y 0, ouf —— P
Uzii /4 (I/ uz+u;u/l7u/4u/4 ; Oy

Dt N ;8351 87.% Oa:j J ¢ )7 ja(I}j

(3.20)

The last term shows the mean-flow stretching of the fluctuation, which is a generation mechanism be
shown later related to the shear production of turbulent kinetic energy.
3.1.4 Mean-flow and turbulent kinetic energy

The total kinetic energy of the flow can be devided into the mean kinetic energy (MKE) and the turbulent
kinetic energy (TKE)

1
Kiot = 5 Wil (3.21)

1

= 5 (@i + ) (@ + ) (3.22)
1 1

= —W; + ul + suhu) (3.23)
2 2
1 1
§ﬂlui + iu;ui (3.24)

—K+k (3.25)

We will show how these two parts are related dynamically.



3.1.5 MKE equation

Multiply the Reynolds equation (3.17) by @; we have

Du; DK

LHS = u; = — 3.26
"Dt = D (3.26)
1 op 1 opuw; 109u;
y(—— =2 P | 10U (3.27)
pdx;’ p dx;  pow
10pu;
— P (3.28)
p Ox;
10pu;
_ _opy; (3.29)
P 5‘xj
_ 0 o, —— o ., Ou; — ou; , Ou; 7
s — —uu) = —[u;(v—— — ulul)] — — 3.30
ou; Ouy ou; — / o 0 0K o0u; U;U;
= — — V=) —— 3.31
Vaxj Oz * ij it 8%( 8%) Oz (3:31)
Equaling both sides we have
DK a9 , 1 0K 1 ou;
=~ (—-p7, ; —5 P - )2 3.32
Dt 3xj( ppu] +V8x] —Uj u7u]) kk V(axj) ( )
pressure Iﬁl t(\llg)ulent production g3 T
d]stort]on Iél?ﬁ?l(;?o?lr 1rrusion fTK ISSIPH m0on
where the term
Pop = —2urar 24 (3.33)
I 0z ’

is the production term of the turbulent kinetic energy, and, on the other hand, is the sink in MKE.

3.1.6 TKE equation

Similarly, multiply (3.20) by u; and then take the average

ou! ou!,

LHS = ui(5t + T ) (3.34)

- aégfw + Uk 8(%$; : (3.35)

:% (3.36)

u;(—% gg; ; 85; (3.37)

= ‘;agxzk (3.38)

’(aik”ggk aik(”“4§§i>‘”§zi% (3.39)
1 / /

= e W v (3.40)

7 Ty (3.41)

T Oz 0wy, oy



ué(im) —0 (3.42)
k

ox
0 | oI TATATA
' Tl — 3.43
uz(axkuzuk> 2 axk ( )
1 au/ / I
= 3.44
2 axk ( )
ou; 8’u2
Equaling both sides we have
Dk 0 Ok Loy 1o 1 oul, . ou!
zr _ P — Ly (—2 3.46
Dt (%ck( oxy, + 2 Hitli Uy pp ) + o Kk V(axk oxy, ( )
L 1 | IS | I— L 1
molecular turbulent pressure production dissipation
diffusion diffusion djstortion of TKE
Comments:
(1) The turbulent kinetic energy generation term
ou;
P = —2ulu — 3.47
ek CCr (3.47)
can be expressed in tensor notation as
P = 2TRey : Vu = 2TRey : S (348)

where the inner product represents the projection of the velocity fluctuation correlation on the mean
shear/strain rate.

(2) The dissipation term

8 ou,
3.49
8$k al'k ( )
is always positive, representing the dissipation mechanism of turbulence kinetic energy.
3.1.7 Reynolds stress transport equation
The velocity fluctuation transport equation is
D, 1oy 9 , ou, —— , O,
= — ; 3.50
Dt p Ox; T oz, 0z v Oz i — ) = O (8:50)
Or if we exchange the two subscripts we obtain:
L N I — O
J J 1,1 ro! ! J
- - Y — 3.51
Dt p Oz; + axz( ox; + U witty) = ox; ( )
u; x (19) + uj x (20) and take the time average:
Las = 2 3.52

10



1. — 0 o —
RHS; = ——[-2p's;; + — (p'u/. —(p'u
RHS, = v, 2 (v 2% 2, 2%

2= uj ka 8xk i 8xk 8:Uk
_ 0O a0
Oz Oxy oxy, Oxp,

0 — 0 ——
RHS3 = o/ —ulu!, + v —u' )
Jaxk 1k 7 g 7k

=0

RHS, = —u;%(u;uk) + ugaixk(u;u%)

0 0 0

8 /
(Continuity, auk = 0, is used twice here.)
T
0
= ——ark u;u;uﬁC
Jtu; 0,
RHS- = —u/ 4. L J
g Uk J Oz k ’8azk
— ou; I, (%j
k J Oz k ’8xk
By equalizing both sides we obtain
Dy, 2 10 — 1o — o oul
J _ 7 1o,/ 1ol L)
— 2 = plg — —— W) — ——— u_a,_A'_iVi
Dt pp " p@xk(p 3% pé)xk(p )i axk( oxy, )
ou, Ou; 0 i ou
T T L L S T el v
8 au;u; Io oyl /!
= — » — —pluld;r — —p'ulo
Oz v Er. U U, U pp U; 04k pu; Lk)
[T — 7 ) o), O
(u;uga ! +u§€u§76 L)+ =p'si; 2V3x; 78:0;1
Equaling both sides we have
Du;u;
D = it P+ 0 — gy
where
a auiu; 1o, 0,7 '’ /
dij = 21 v i —uwjuiuy, — —p w0k — —p ujézk)
au; 0u;
— !,/ 1 Y J
P =~ g ~ i g,

11

(3.53)

(3.54)

(3.55)

(3.56)
(3.57)

(3.58)

(3.59)
(3.60)

(3.61)

(3.62)

(3.63)
(3.64)

(3.65)
(3.66)
(3.67)

(3.68)

(3.69)

(3.70)
(3.71)

(3.72)

(3.73)



1, ou} 5”}
sij = 5 oz, oz, (3.74)

Comments:

Du/u’,
iU

(1) The left hand side term —g; is the rate of change of the Reynolds stress along the particle line.

(2) The term d;; is the diffusion term in the equation, appearing in the form of gradient. It includes
viscous term, Reynolds stress term and pressure-velocity fluctuation coupling term.The diffusion is
resulted by the spatial non-uniformity of these property.

(3) The term P;; is the generation term of Reynolds stress, showed in the form of the product of
Reynolds stress and the mean flow strain rate.

(4) The term ®;; is the redistribution term. We note that the contraction of Reynolds stress transport
equation is the transport equation for turbulence kinetic energy. And the contraction of ®;; is
®;; = 2p/s; = 0 as continuity holds. So the term contributes nothing to the growth of turbulent
kinetic energy. It just takes the kinetic energy from one component of fluid motion to another
component.

(5) The term ¢;;, whose contraction is positive forever, representing the dissipation mechanism of kinetic
energy.

3.1.8 Dissipation rate transport equation

The dissipation term in Reynolds stresses transport equation is defined as

ey = w——1 (3.75)

ou’ . .
au” ai and take the time derivative we have:
ZTp OTp

Multiply equation (3.20) by 2v

D ou} 9u]  De 9 ouy, Oul; Ou,

LHS = Qyﬁazpﬂﬁ LR Pt (3.76)

2 ey ) = g o ot ) (3.77)
Vggiaip a%k ”ggi = aim(”a% -2 ’/af:gikﬁ (3.78)
2”2;% sz(J;%) =0 (3.79)
e ) = g G S G )
= G e gy 1)

2 e ) = s e G gt s

By equalizing both side we yield the transport equation for turbulence dissipation rate

De 0 2v Quy, Op Je —— ou; ol dul, ~ Ouj, Ouy,
2 G (A IP L, 9% gy 9 i MU T T .
Dt dxzy p Oz dzyp " Vaxk ) Vaxk Oxp Oxy - Oxy, Ox; ) (3:83)

12



ou! 0%y oul, O, Oul, ou;
— 2vuf, oyt ki oy~ )2 3.84
Ytk O0xp Oxp0xy, Vax,, Oz, Oz, Vﬁ%p@xk) (3:84)

The final equation of the equation agrees with that given in the turbulence book by Shi (1994). Second
moment equation closure problem Chou (1945) could be discussed briefly here.

3.1.9 Scalar flux, its mean and kinetic energy transport equations

Similar to Eq. (3.20) we have the transport equation for the mean and fluctuation of a passive scalar c:

Dée 0 0O —r
i a—x](ya—xj - cuf) (3.85)
and
D¢ 0 o — oe
- Y r I — Al — u —— 3.86
Dt axj( Oz; e ;) uj@:zcj ( )
where T' is the molecular diffusion coefficient of c.
Take ¢/ x (3.20) +u}x (3.86) and apply the average
Nl
LHS = % (3.87)
1 op 1 — oc
H — :_77//52___/ .
RHS; pC oz, p(axjpc i—p 81:1-) (3.88)
0 oc ou’, oul oc
RHS; = — (T'u/ — ) — I')— 3.89
2 8%( ulal'j tve 6‘z]) <V+ )Gscj 3xj ( )
o —
RHS; = _87(6/”;“;) (3.90)
J
—Ju; ——— O0c
RHSy = —cu/,— — v/u/,— 3.91
4 ' oz, upu oz, ( )
then we obtain the transport equation for scalar flux
boram
E:Z = djc + Pje + ®jc — €je (3.92)
where
0 oc ou, 1—— -
die = — (T, —L — —p/c 0 — dulu 3.93
1C 8$]( uz 8$j +vc 8{Ej pp & J c U’zuj) ( )
— 0, oc
1 oc
Qi = ;p’ 5;- (3.95)
ou’ oc
gie=w+T)=— (3.96)
v a’Ej aﬁj
Comments:

(1) Gradient diffusion: velocity-fluctuation scalar-diffusion correlation, momentum-diffusion scalar-fluctation
ccorelation, pressure diffusion, turbulence diffusion.

13



(2) Production: scalar flux interacting with mean shear, turbulent flux (Reynolds

with mean scalar gradient.
(3) Re-distribution.
(4) Dissipation.

Define scalar mean and fluctuation energy as

% (3.86) and apply the average

rHs — 2k
D
0 _ 0k,
HS, = —T7—-—
R Sl a.%'j ij
10 ——
RHSQ = 75673;].0/0/“0'
RHS; = —¢ u]aa—c

¢ oc
axj 8gcj

then we obtain the transport equation for scalar fluctuation energy

Dk. 0, 0
Dt _83:]-

3mj 2 J

1—
(T —k.— =ccu’) —

—— 0¢ Oc dc

jaxj &rj 8(Ej

stresses) interacting

(3.97)

(3.98)

(3.99)
(3.100)
(3.101)

(3.102)

(3.103)

For active scalar (for example, density which appears in the momentum equation as buoyancy force),

see section 5.5.

3.1.10 Poisson equation for mean and fluctuation pressure

The Reynolds average equation is

ou; _ Ou; 1 0p

— + 71, = —(v — ulu;
ot * Tox; p8x7+8mj< Ox;j i)
Take the divergence of the equation:
ou; Ou;
LHS = —~
81‘]’ 69@
RHS = v2 O ui
N b= O0x;0z;
Poisson equation for mean pressure:
_1V2ﬁ = aﬂz aﬂj 82 Z J
896]- a!L'Z 8x,8xj
The velocity fluctuation transport equation is
D 10p g, ou; — ,, , 0t;
Dt pox T ox, Oz, v Oz, i — i) — Oz,

14

(3.104)

(3.105)

(3.106)

(3.107)

(3.108)



Take the divergence of the equation:
8@ Gu;

LHS =
5 8302 aSL’j

(3.109)

HS = —2V2y — ——+J 377 7”777 11
RIS pv P O0x;0r;  Ox; Ox;  Oxj Ox; (8.110)

Poisson equation for fluctuation pressure:
L, O 0, 0w O Oy o) 0,
6331‘ 6l‘j 8xj 8331' 631‘1 833]‘ 81:1-83:]»
_ 0w oup Py o 91 0u;
dx; r;  Ox,0x; Ox; Oz

(3.111)

(3.112)

3.1.11 Turbulent vorticity and enstrophy

Similarly, vorticity can be decomposed into the mean and the pertubation. We give the equation of
pertuabtion vorticity without derivation:

Dw T %Z 1o} w;
B = iSij + w5 Si; + wiSi; — w;Si; — 36357 + T%(u;w; — ujwi) +v o (3.113)
where ?Z—j and Sl{j are the mean and the fluctuation shear, respectively.
We define the fluctuating enstrophy as
1——
&= i wiw] (3.114)
x (3.113) and take the time average
D&
LHS = — (3.115)
Dt
RHS; = w} w S” + WJ%SZ/] + W JS{] (3.116)
—&ui
RHS; = —wju] oz, (3.117)
RHS3 = —li(ul,w{w{) (3 118)
20x; 7" ’
325 Ol 0wl
RHS — 3.119
Y7007 T x; Oxy (8.119)
Equaling both sides we obtain
D&
— =Pg+Dg—c¢ 3.120
i & & — €& ( )
Ps = Wl Si; + wjulS] TS — ol 0% 3.121
g—w 1]+w]wz z]+wz j 1]7 zyax ( )
0, 08 1———
De= — (v=— — 4w 122
6= g Ve 3 %) (3.122)
Ow; 0w,
= 3.123
“¢ V@xj O0x; ( )

Comment: The energy balance process of fluctuation enstrophy obeys four principle processes in
nature (Kolmogorov):

change rate = production + diffusion + dissipation
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3.2 Farve average in compressible flows
3.3 LES equations

3.4 Homogeneous turbulence theory
K-H etc.

3.5 Free shear flows
3.5.1 Momentum integral

Similarity solutions (turbulent). Pope (2001).

3.5.2 Similarity solutions

The characteristic velocity and length scales are Uy and d5, respectively.

Flow type Us Os Us < ™ ds x " f(n)
Round jet (z,y = 0) T1/2 -1 1 1/(1+ an?)?
Plane jet u(z,r=0) Y1/2 —1/2 1 sech?(In(1 + v/2) )
Round wake Uso — u(z,y =0) T1/2 —2/3 1/3 exp(—In27?)
Plane wake Uso — u(z,7 =0) Y12 -1/2 1/2 exp(—In2n?)
Plane mixing layer U; — Uy Y0.9 — Yo.1 0 1 1/2erf(n/ov/?2)

Table 1: Self-similar solution table.

The example of plane jet is the easiest to understand and derive so we are the most detailed in that
case and more loosely on the others. The same principles and machinery apply to all cases.

3.5.3 Round jet

Characteristic scales:
The centerline velocity is
Us(z) = u(x,r =0)

and the characteristic length is the half width, §s = 71 /2(x), such that

Uda(x,r1/2) = u(,71/2(7)) = %Us(x).

Momentum integral constraint:
The boundary layer equation in cylindrical coordinates reads

ﬂ@ 1_]@ B _la(rW)
Ox o r or
Multiply the continuity equation
ou n 19(rv) _ 0
or r or

16

(3.124)

(3.125)

(3.126)

(3.127)



by ru and add it to (3.126) multiplied by r we obtain

d(run)  d(ruv) _ I(ruv')
5 T e = o (3.128)

Integrate (3.128) in r we obtain

0 or

and since /v’ and u are zero at infinity, we have

d <, B
1 (/0 U dr> =0 (3.130)

which implies the momentum flux
M(z) = / pu*2nr dr = Jy (3.131)
0

is conserved (as a result of both mass and momentum conservation), where Jy is the jet exit strength.
Self-similar assumptions:

u = Us(x)f(n), uv' = UZ(x)g(n) (3.132)

where 1 = r/d,(x) with s = /5. Substitute (3.132) into (3.131) we have

i) = o) 23) ([ s an) (3.133)

to be a constant and implying

d
—(U282)=0 3.134
UAH (3.134)
and hence 5. dU "
- =__= 3.135
Us dx dx ( )
Using the continuity equation we have
1 ["O(ru dds 1M
o= i) g, — v, (nf ~= [T dn) (3.136)
rJo Oz dx 1 Jo
We note that v switch sign from positive to negative when r is greater than a certain value (entrain-

ment).
Next we establish the constant spread rate of the round jet (i.e. dds/dx is a constant). Take v into
the momentum equation we have

dd f K

ds{fQ??-l-ff/U+<+f’>/ fndn] =g+4'n (3.137)
x U] 0

and then dd,/dx has to be a constant. Combining with momentum integral restriction we have

§s o<, Ug oc ™1, (3.138)
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3.5.4 Plane jet

Characteristic scales:

The centerline velocity is
Us(x) = u(x,y = 0) (3.139)

and the characteristic length is the half width, §s = yy/2(x), such that
_ 1
Ud(%?ﬂ/z) = u(xayl/Q(‘T)) = §U8(x) (3140)

Momentum integral constraint:
The boundary layer equation for the mean velocity simplifies to

_Ou _Ou ou'v’

Multiply the continuity equation
ou 0v
a—z + a—z =0 (3.142)
by @ and add it to (3.141) we obtain
duu | duv ou'v’
37 + Ty = — oy . (3.143)
Integrate (3.143) in y we obtain
/ % dy + 0|, = —u'v'| >, (3.144)

and since u/v’ and u are zero at infinity, we have
d / T d 0 (3.145)
— U = .
dr \J_ Y

M(z) = / h pu® dy = Jo (3.146)

which implies the momentum flux

is conserved (as a result of both mass and momentum conservation), where Jy is the jet exit strength.
Self-similar assumptions:

u = Us(x)f(n), u'v" = UZ(x)g(n) (3.147)
where n = y/0s(x) and we have
on  ndds
9 o, du (3.148)
on 1
et .14
9y . (3.149)

Ni(z) = (U3,) ( © Po dn) (3.150)



is a constant. So it must be d
dz
which gives the momentum flux constraint in terms of characteristic variables, and hence

(U%5,) =0 (3.151)

(Lsts __ldés
U, dz 2 dz

(3.152)

Using the continuity equation we have

<
I
|

Y ou dé, 1/
; £dy—US e (nf—Z/O fdn) (3.153)

Next we establish the constant spread rate of the plane jet (i.e. dds/dz is a constant). Take v into the
momentum equation we have

1dés , .9 , " ,

il = .154

de(f —I—f/ofdn) g (3.154)
and then

dos 2g'

ey L (3.155)

with the LHS only depend on z and RHS only depend on 7. Then both sides have to be constant.
Combining (3.155) and (3.151) we have

§s x z, Uy oxx 2~ 1/2. (3.156)
3.5.5 Round wake
Characteristic scales:
The centerline velocity deficit is
Up(z) = Us — u(z,r = 0) = Uy(x,0) (3.157)

and the characteristic length is the half width, §s = 71 /2(x), such that

Ua(x,71/2) = Uso — u(x,71/2(7)) = %Uo(ac). (3.158)

Momentum integral constraint:
Here we start from the simplified (see plane wake) momentum equation

ou 1 9(ru/v’)

Us =—-— < 3.159
ox r Or ( )
and the momentum deficit flux conservation
M(z) = / pUso(Uso — @) 277 dr. (3.160)
0

Note that we have already replaced the u with Uy, assuming (or by order of magnitude analysis) the
convection velocity is Ux.
Self-similar assumptions:

Uso — = Us(2)f(n), u'v' = UZ(z)g(n) (3.161)
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‘We have ;
M(m) = (Uség)(%eroo)/o fdn

is a constant and hence d
de (Us 65) =0.

Consider the momentum equation, the other constraint reads

U dds
T q B =g+ 9)
We define the spread rate as
g U dds
U, da’

it has to be a constant. Then
=S2fn+ f'n?) = (gn)
and including boundary conditions after integration we get
g=-5Snf

same as in plane wakes. Combining (3.163) and (3.165) we have

05 X x1/3, U oc x~2/3,

3.5.6 Plane wake

Characteristic scales:
The centerline velocity deficit is

Us(z) = Uy — u(z,y = 0) = Uy(z,0)

and the characteristic length is the half width, d, = y1/2(), such that

Ua(e,v1/2) = Use — (e, ae)) = U (@),

Momentum integral constraint:
The boundary layer equation:

0(u—Usx) | O0u—Uyx) _Ou  _Ou _
b Ox v oy ox v dy
Multiply the continuity equation
ou 0
oxr Oy

by & — Us and add it to (3.171) we obtain

Ou(u — Uy N 9(a —Us)  Ou'v/

Ox oy oy

Integrate (3.143) in y we obtain

oz -

— 00

20

/ 9@ — Ueo) dy + (i — Uso) %% = —u/V/|>

—00

(3.162)

(3.163)

(3.164)

(3.165)

(3.166)

(3.167)

(3.168)

(3.169)

(3.170)

(3.171)

(3.172)

(3.173)

(3.174)



and since /v’ and u — Uy, are zero at infinity, we have

d (/OO (i — Uoc)dy) =0 (3.175)

dz \J o

which implies the momentum deficit flux

M(z) = / " iU — ) dy (3.176)

— 00

is conserved (we note that we haven’t assumed far wake yet).
Self-similar assumptions:

Uso — = Us()f(n), w'v' = UZ(z)g(n) (3.177)

Substitute (3.177) into (3.176), and assume the far wake is reached (Us/Us < 1) we have

M (x) =/ pUss — Us f)Us fés dn (3.178)
e Usf., Us
- U2 1— =8 5 fé,d 3.179
2 oi-GhgE s (3179)
= pUOOUScSS/ fdn (3.180)
is a constant. Hence d
a -0 181
5 Usds) =0 (3.181)
Using the continuity equation we have
Y ou dds

b=— | —dy=-U,—=fn. 1

v /0 a5y W =—Us 1 (3.182)

Note the negative speed corresponding to wake entrainment (of high momentum into low momentum
region).

Now we consider another constraint. Since in the far wake, the velocity deficit U /Uy < 1, we have
the simplification of the momentum equation as

0u(i —Uy)  00(t —Uss) ou  ou
) BTy O8O0 (3.183)
where

o 2 Usfy, Us _

Wt —Us) = (Uso — Usf)(=Usf) =UL(1 — U—)(—U f)=-UsUsxf =Ux(t — Ux). (3.184)
And the scale for 0u(u — Uy)/0x is
U Us

> (3.185)

Y (Uﬁ) . (3.186)

Define the spread rate as

(3.187)



Take v into the simplified momentum equation we have

U ddy

Mg =9 (3.188)

with S depends only on = and the rest on 7 hence S has to be a constant. Then (3.188) can be rewritten
as

g +S(f+fm)=0 (3.189)
which is to say
(g+Snf) =o0. (3.190)
Integrate from 1 = 0 to n and note that g(0) = 0, we have
g=-5nf. (3.191)

Combining two conditions (3.181) and (3.187) we have

1/2

s x 2/, Ug x 12, (3.192)

3.5.7 Plane mixing layer

Characteristic scales:
The two velocities are Uy > U; with Us on the top. The mean convection velocity is

1
U, = §(U1 + Uz) (3.193)

and the characteristic velocity scale is
Us =Uy; — Us. (3.194)

The characteristic length is the mixing layer width,

0s(®) = Yo.9 — Yo (3.195)

with cross-stream location y, () such that
u(z,ya(z)) = U1 + alU. (3.196)
a reference position is
9= %(yo.l + Yo.9) (3.197)

such that the self-similar variable is defined as

(3.198)

3.6 Wall flows
3.6.1 von Karman momentum integral
3.6.2 Blasius similarity solution

The references are Schlichting & Gersten (2016); Kundu et al. (2015) with the definition of §(x) different
by a factor of v/2. Here we will follow the definition in Schlichting & Gersten (2016).
The boundary layer equations are
ou Ov

ou  ov _ 1
52+t 5y =" (3.199)

22



ou Ju 0%u
— — =v— 3.200
hrr v Oy Y ox? ( )
The idea of self-similar solutions is that the velocity profile u(y) will be the same under some proper
transformation/normalization of u and y. The scale for u is apparently Uy, while the scale for y is .

From the viscous scaling v ~ v/d and the scaling of the continuity equation v/§ ~ Us /2 we have
vx
6%~ —— 3.201
o (3.201)

and for the sake of simplification of the final result (ODE) we define

2xv
ox)=4/— 3.202
@ =/ (3:202)
such that the similarity transformation is
Y
=7 3.203
"= 5 (3.203)
such that u
where f(n) is the similarity function and 7 is the similarity coordinate.
We note that the streamfunction ¢ depends on v, Uy, x,y and dimensionally
1/J(37a y) = Uooé(s)f(n) =V 2VUooxf(77) (3205>
and hence
u=Usxf (3.206)
Usv
v= %(nf’ =) (3.207)
The derivatives are
ou Us
ou s U
— =Uy > 3.209
Jy / 2ux ( )
?u UL
87y2 = %f”/ (3210)
and then
ou U2,
Uz = —gf’f”n (3.211)
Ou 2
Vo= =l = ) (3:212)
Pu UL,
— === 3.213
and finally we have the ODE
[+ "=0 (3.214)
with the boundary conditions being
f(0)=0, f(0) =0, f'(c0) =1, (3.215)
corresponding to
viy=0)=0, uly=0)=0, uly =) = Ux. (3.216)

It is common to use a Runge-Kutta shooting method to solve (3.215).
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3.6.3 Turbulent channel flow

channel basic equation; FIK;

4 Navier-Stokes in curvilinear coordinates

4.1 Cylindrical coordinate

vorticity in cylindrical (shear vorticity and curvature vorticity); all necessary operators;

4.2 Spherical coordinate
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5 (Geophysical fluid dynamics
5.1 Basics

5.1.1 Centrifugal and Coriolis forces

5.1.2 Inertial oscillations: buoyancy and Coriolis frequencies
5.2 Boussinesq approximation

5.3 Hydrostatic and geostrophic balances

In balanced flow, there is a background horizontal pressure gradient that balances the Coriolis forces due
to horizontal motions and a vertical pressure gradient that balances the background unperturbed density:

1 0p
0=——22+fV 5.1
Po Ox +f ( )
10
0=-——2_ fU (5.2)
po Oy
190 *
po 9z po
with
Pg =P —Do, P =p—po— pv(2) (5.4)
and the background balance
Ipo
0=—-——+- 5.5

already subtracted. Note that the Boussinesq and hydrostatic approximations are already applied.
The above equations in vector form:

*

1
foxU=—-—Vp,+g. (5.6)
Po Po
We have 1 8 5
Pg Py
U=(UV,0) =-— — ——=0). 5.7
U.V.0) = ————(F2.~F2.0) (57)
And we have
Vin-U =0. (5.8)

5.3.1 Thermal wind relations

In hydrostatic Boussinesq flow. Taking the vertical gradient of (5.6) and using the hydrostatic
balance, we have

0= L% 15 (59)
Ongoaapy _ C%Z (5.10)
and hence U oV g op*  op*
(929 = ooy (1)
or in vector form,
?’le] - pffc x Vp* (5.12)
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In a more general case. Without introducing the hydrostatic balance and Boussinesq approximation,
we write

fex U= %Vp+g. (5.13)

Taking its curl:
LHS:Vx(fch):ffCVU:ffC%—g (5.14)
RHS = -V x (%Vp)+V><g:—p—12(Vp><Vp) (5.15)

Re-introduce hydrostatic (9,p = —pg) and Boussinesq, we have

0
Vp ~ a—lz’éz — —pgé, (5.16)
and
1 . *
— = (Vpx Vp) =D (e, x vp) (5.17)
P Po
-9 vy (5.18)
Po
hence we recover U
g *
—_— = x Vp*. 5.19
0z pOfc p ( )

Note:

5.4 Governing equations of unbalanced motions

It is reasonable to assume directions of both system rotation and gravity are in 2.

5‘ui
= 2
9z, O (5.20)

6’LLZ‘ aUﬂLj o

1 8p* OT: p*g
ot ox; Fe€ija(uj = Uj) = + =L -

= P9, 5.21
po Ox;  Ox;  po s (5:21)

Op Opu; 0J,;

et = .22
ot 61‘1 (‘)xz ’ (5 )
Ou;  Ou; ap
= 3 . — . 2
Tij V(a.’bj + 83:1)’ Jp’l H@xi (5 3)
In vector form,

V-ou=0 (5.24)

0 1 *
TV (wu)+ fox (u—U)=——Vp* +V.7- L%, (5.25)

ot Po Po

dp
E—FV- (pu) =V -J, (5.26)
where the stress and the scalar flux are

T=v(Vu+uV), J, =kVp. (5.27)
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The total density p is decomposed into the reference density pg, the background density pp(z), and
the density perturbation p* due to fluid motion,

p(x,y, 2,t) = po + pu(z) + p*(2,y, 2, 1). (5.28)
The total pressure is written as
p(xa Y, z, t) =Po + pg(xa y) + pa(Z) + p* ((E, Y, z, t)v (529)

where the reference pressure py is a constant, the hydrostatic (ambient) pressure p, has a vertical gradient
that balances the ambient density (pa = po + ps(2)), and the geostrophic pressure p, has a transverse
gradient that balances the Coriolis force due to the geostrophic wind U. Only the dynamic pressure p*
appears in the momentum equation (5.21).

5.5 Turbulence equations for an active scalar

5.5.1 Mean flow equations

gZz::O (5.30)
% + uj(,fgi _ aii (né?m’; - ) (5.32)
We note that

Pr=p—p=p —p =p". (5.33)

5.5.2 Fluctuation equations
g%i o (5.34)
%y Jgu' Jeeopsil, = _;%‘;*; + aij( ?g W — ) — 2;;; - ?523 (5.35)
(Z):Jrujg’;:j:(fzi( gp*,er*’u’—p u)—p*’g]; (5.36)

We will see later the Coriolis term won’t appear in the transport equations of MKE, TKE, and Reynolds
stresses. Coriolis just bends the direction of the velocity.

5.5.3 MKE, MPE, TKE, TPE, and buoyancy flux equations

Define the mean and turbulent kinetic and potential energy as

1
Lo (537)
_lp (5.38)
p - 2 .
and
1
k= §u;u2 (5.39)



1
by = 500 (5.40)

where the instantaneous, mean, and fluctuation buoyancy forces are

b:—’og,l;:—pg,b':—p g, (541)
Po Po Po
such that k and k, have the same dimension as the kinetic energy.
The MKE equations is (repeating (3.32)) :
0K _ 0K 0 1 oK —— —— (91,61 8@1' 6@1
—— i— =7— | ——DPu; — — T uiu - — 5.42
ot Y or;  Ox; ( ol * Yoz, " uluﬂ) M ox; | 0z, 0 (5.42)
The MPE equations is:
0K 0K 0 , 0K, b b db
L pa;—L = — (k=L — bV )+b'u—— (5.43)

ot o,  ox; " oz, 19z, "ox, 0x;
We note that the buoyancy flux b’u}@g/axj is a sink in the MPE equation and is a source in the TPE
equation.

The TKE equations is:

ok _ Ok 0 ok 1 1 ou,; 8u du; g

— tuj— = 7—(vy— + zuluju}, ——p'u},) —uiu — =w'p*’ 5.44
ot j@xj Oxy, axk 2 itly k. pp kl) t I 0x; 8:ck6':£kl 00 P . ( )
—_ L ]
E O T o e e
=V-T+P—-—c+B (5.45)
where the turbulent buoyancy flux
B=-9 57 = (5.46)
Po

consumes TKE and lead to the production of TPE.
The TPE equation is:

1 7 ab b
Ohy g Oh 0 Ohy Ly g O OV O (5.47)

ot U Oz o 62:]( 3% 2 Y 5'% Oxj Ox;j

We can see that the turbulent buoyancy flux B (negative, think —u;u;) works with the density dis-

tortion &b/0z to remove energy from TKE and MPE to produce TPE.
The buoyancy flux equation is:

ovul  obul

ot ax] =dyi+ P+ ®pi — 0 (5.48)
where
dpi = faij(nu;(,)ib; + ulygﬁ - pl—oﬁ(sij — buful) (5.49)
Py =V ;g;i - %aibj (5.50)
Oy = ip’ gi; (5.51)
ehi=V+r )gz] gi; (5.52)
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5.6 Inertial and buoyancy oscillations
5.6.1 Derivation of Coriolis force

5.6.2 Boussinesq approximation
5.7 Surface and bottom Ekman layer solutions

5.8 others

coriolis frequency; shallow water / wave equations; igw equations;

6 Stability theory

Drazin (2002); Schmid et al. (2002)

6.1 Linearized Navier-Stokes
6.2 Orr-Sommerfield
6.3 Adjoint of Navier-Stokes and non-modal stability

7 Computational fluid dynamics

7.1 Conservative forms

oU | 9F(U) , 9G(U)

— =0.
ot T on ay
7.1.1 2D Euler equation
The 2D Euler equations are
0
or in conservative form:
0
With the conserved vector variable
0
U
U= 1"
pv
E

it can be written as

7.2  Vorticity-streamfunction

7.2.1 Omega y and Laplacian v

A Vectors, tensors, and their calculus

Aris (1989) is a good reference.
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A.1 Levi-Civita symbol

A.1.1 Determinant representation

The matrix determinants can be expressed in terms of the Levi-Civita symbol. Assume A is a matrix

ailp a2 ais
det(A) = a1 (a2 X a3) = |ag; azs  az3| = €ijkA1i02;a3k

asz1 asz as3

where
a; = (a11,a12,a13)T, ag = (azl,azzyazs)T, as = (a31,0327a33)T

Therefore the Levi-Civita symbol can be expressed as

€ijk = det(éi,é]‘,ék) = éi . (éJ X ék)
Similarly, the outer product of vectors a and b can be written as
€ e é3
axb= a; as as| = Eijkajbkéi

by by b3
Example: w.

A.1.2 Epsilon identity

dit dim  Oin
€ijk€lmn = (041 5]' 5jn
Okt Okm  Okn

= 5il(5jm5kn - 5jn5km) + 5]1(5zn6km - 6zm5kn) + 6kl(5zm5]n - 51n5]m)
= 6i16jm6kn + 5im5jn5kl + 6i715jl5km - 5il5jn5km - 6in5jm6kl - 6im6jl5kn

A.1.3 Contracted epsilon identity
Let i = [ and notice 6;; = 3
€ijk€imn = OjmOkn — 0jnOkm
Futhur let k =m
€ijk€ijn = 20kn
Futhermore

€ijk€ijk = 6
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A.1.4 Pseudo-vector and associated antisymmetric rotation tensor

The velocity gradient tensor Vu is
ou v ow
ox ox ox
— | ou ov ow
Vu = 5 v s (A.11)
u ov Ow
ow ow ow

and in entity notation

ou;
(Vu);; = (“)xji (A.12)
We note the transpose as compared to the Jacobian
Ou;
Jij : A13
J axj ( )
Vorticity
w=Vxu (A.14)
é, €, é,
=10, 0Oy O, (A.15)
U v w
dw _ v
oy 0z
— | Ou ow
= |gu _ duw (A.16)
v _ Ou
ox oy

is a pseudo-vector (w; = €;;50;u) whose sign depends on the coordinate system (the order of 4, j, k;

left-hand or right-hand; cyclic or anticyclic), and is related to the antisymmetric part of velocity gradient
tensor Vu (the rotation rate tensor €2):

B 1 8uj c’)ul
Qij o 5 (8.%‘1 B 6.%’]) ' (A17)
or
Q= %(Vu —uV) (A.18)
o H(B-%) HE-®
=|-H(E-8) o H(B-8) (a-19)
G- a(-%) o

Each antisymmetric tensor € can be represented by a pseudo-vector w* (since it just has three inde-
pendent elements), such that

Qij = Eijsz (A20)
1
wZ = §€iijij (A21)

and the inner product of the tensor €2 with and arbitrary vector a can be written as

Q-a=axw" (A.22)
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It is easy to verify (A.20) by definition and (A.21) using (A.9).
Element-wise, the rotation tensor can be represented as

0 Wy —wy
Qij=|-wr: 0 Wi (A.23)
wy —wy 0
with
* L (0w _ Qv
Wy 2 (é)y 8z) 1
wi=lwpl =3 (%-92) | = FY- (A.24)
* 1(0 el
wr| (3(32-2)

Hence we show that w = 2w?*, i.e., vorticity is twice of the angular velocity of the local solid-body
rotation motion.
In the context of solid-body rotation (with no translation, up = 0), the definition of (A.23) becomes

0 —wl wy
Qij = | wi 0 —w (A.25)
—wy Wy 0
such that
d
u:d—?zﬂ-x:w*xw (A.26)

where w* is the angular velocity.

A.2 Vector identities

Assume ) is a scalar and a,b,c,d are vectors in R3. The identities below might be useful in fluids, some
of which have geometric implecations.

V- (Vxb)=0 ( )
V x (Vb)=0 ( )
V-(Ab) =VA-b+ A(V-b) ( )
V x (Ab) = A(V x b) —b x VA ( )
V(a-b)=b-Va+a-Vb+bx (Vxa)+ax(VxDb) ( )
a-(bxe)=b-(cxa)=c-(axb) (A.32)
Vi(axb)=(Vxa)-b—(Vxb) a ( )
(axb)-(cxd)=(a-)b-d)—(a d)(b-c) (A.34)
ax (bxe)=bla-c)—c(a-b) ( )

(A.36)

(A.37)

(A.38)

bx(be):V(%hb)—b-Vb

Vx(axb)=(®b-V)a—(a-V)b+a(V-b)—bV-a)
V x(Vxa)=V(V-a)-Va

Their proofs are left as exercises.
Comments:
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two facts in combinition gives the bases of a x (b x ¢).

(1) Eq. (A.27): A curl field is solenoidal (divergence-free).

(2) Eq. (A.28): A gradient field is irrotational (curl-free).

(3) Eq. (A.37): a x b is perpendicular to a and b, so its curl is in the space spaned by a and b.

(4) Eq. (A.35): a x (-) is perpendicular to a and (-) x (b x ¢) is in the space spaned by b and ¢. This

(5) Eq. (A.32): This is the volume spaned by (a, b, ¢), and the identity is basically the invariance of a

determinant with respect to row/column permutation.

(6) Eq. (A.34): By letting a = ¢ and b = d and noticing the inner product with itself is non-negative,

we re-discover the Cauchy-Schwartz inequality.
(7) From (A.31) it can be immediately seen that

u-Vu=V(u?/2) —u x (V x u).

A.3 Tensor eigenvalues and invariants
Consider a tensor A in Cartesian coordinate
ailp aiz aiz
A= a21 QA22 @23
asy asz as3

Its eigenvalues are roots of the characteristic polynomial

A—ann  —a —a13
det(AN — A) = | —ay;  A—agy —ag3 | =N —OAN2+LA—13=0
—as1 —az2 A —as3

with the three coefficients being the three principle invariants of A
I) = a1 + azg + ass
=tr(A)
= Q4
Iy = a11a22 + aa33 + a33a11 — 12021 — A23G32 — G13031
tr(A)? — tr(A?)

2
1

= 5((%)2 — a;jaj;)
Is = a11(a22a33 — assasz) — ai2(az1ass — agzasi) + a13(az1ase2 — a22a31)
= det(A)

in both element-wise and coordinate-independent expression.
Now we consider the factorization of the characteristic polynomial as

A =AD)A = X)X =A3) = A3 — (AL + X2+ 2327 4+ (A da + Xads + AsA)A — A da s =0,
and obtain the Vieta’s theorem for cubic equations as

L=XA+X+ A3
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I = At g + Aods + Ashy (A.52)
I3 = /\1)\2)\3 (A53)

which are the three principle invariants of tensor A.
Additionally, there are more invariants (although not independent) of A, such as the main invariants

Ji= M+ XA+ As=1 =tr(A) (A.54)
Jo =M+ N4 N =17 -2, =tr(A- A) (A.55)
=X N4+ =1 -3LL+3;=tr(A-A-A) (A.56)

which are the coefficients of the characteristic polynomial of the deviatoric part of A:

tr(A
A “3 )1, (A.57)
which is traceless and has eigenvalues
1
Ai— = A58
- (A.58)
A.3.1 Discriminant of a cubic equation
Consider
az® +br? +cx+d=0, (A.59)
its determinant is
A = (11 — x9)* (20 — x3)% (23 — 21)? (A.60)
= 18abed — 4b3d + b*c? — 4ac® — 27a*d? (A.61)

with x1, 22, x3 being the three roots.

1. A > 0: Three distinct real roots.
2. A = 0: All roots are real with at least two identical.

3. A < 0: One real and a pair of complex conjugate roots (proof: assume complex roots are x + iy).

Proof. The Vieta’s theorem for (A.59) and the invariant relations can be used to simplify (A.59) to
obtain (A.61).

Note: Eq. (A.61) can also be obtained as follows (with some reasons/meanings in algebraic geometry).
Consider a cubic equation in canonical form

f(z,w) = Az® + 3Bz*w + 3Czw? + Dw® = 0. (A.62)

The Hessain matrix is
6Ax +6Bw 6Bz +6Cw
H(f) = (A.63)
6Bx +6Cw 6Cx+ 6Dw
and the Hessain
det(H) = 36[(AC — B*)2? + (AD — BC)xw + (BD — C*)w?] (A.64)
2(AC - B?) (AD - BC) x

= 18|z, w] ; (A.65)
(AD — BC) 2(BD - C?)| |w
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in quadratic form. Define the Hessain

2(AC — B%) (AD - BC)
H— (A.66)
(AD — BC) 2(BD - C?)

The discriminant of the cubic is just the determinant of the Hessain H:
A = det(H) = —A?D? + 6ABCD — 4AC® — 4B*D + 3B*C?, (A.67)
and A > 0 for three real roots, A = 0 for double or triple real root, and A < 0 for single real root.

A.3.2 Examples

Utilizing and the discriminant A or the second invariant @ of Vu to identify vortices in fluid flows (Hunt
et al., 1988; Chong et al., 1990; Jeong & Hussain, 1995) and the invariants of the Reynolds stress tensor
—u;u’; to classify turbulent states (Lumley & Newman, 1977; Choi & Lumley, 2001) are useful.

We note that both the rate-of-strain tensor S and the Reynolds stress tensor —Tu; are real symmetric,
hence they have three real eigenvalues and three orthogonal eigenvectors (principle axes).

Vortex identification in incompressible flows:

In the case of incompressible flow (u;; = 0) with the invariants being (P, Q, R) = ({1, I3, I3). We have
P, the coefficient of the quadratic term being zero and the characteristic polynomial for Vu being in
the so-called ‘depressed’ form (an elliptic curve is called in Weierstrass form if it satisfies the Weierstrass
equation y? = 2% + ax + b)

MNP 4+QAN-R=X4+Q\-R=0. (A.68)
The discriminant for depressed cubic equation
2 tpr+q=0 (A.69)
reduces to
A = —4p* — 27¢°. (A.70)

So we have the discriminant for the gradient of a solenoidal field (with renormalized coefficients; note

the flipped sign)
1.\ 1.V
A = <3Q) + <2R) (A.71)

and if A > 0 there will be complex eigenvalues (in complex conjugate pair according to the algebra basic
theorem) and so-defined vortical motions.

Lumley triangle and invariant maps:

Consider the anisotropic (deviatoric) tensor of Reynolds stress

AT |

aij = ;kj - g%‘ (A.72)

and its three principle invariants
I=01+03+03 (A73)
Il = 0105 + 0903 + 0307 (A74)
III:010'20'3 (A75)

along with its three eigenvalues

01, 02, 03. (A76)
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Since a;; is a deviator, it is traceless and
I = Qg5 — 0.

Consider turbulence. and has zero determinant

det wiu\ 1 1 1
Sl Y —(01+§)(02+§)(03+§)

3
and we define

F=27IIT+9II +1
since I = 0.

/

1. Two-dimensional turbulence: the Reynolds stress tensor u,u/; can be diagonalized to

J
diag(a, k — a,0)

and has zero determinant (there’s a direction that has no turbulence). F' = 0.

AT

2. Three-dimensional isotropic turbulence: the Reynolds stress tensor u;uj

diag(k/3,k/3,k/3)

and we have ' = 1.

1 1
010203 + = (0102 + 0205 + 03071) + 5(01 + 09+ 03) + —

(A.77)

(A.78)

(A.79)

(A.80)

3. Axisymmetric turbulence. Similarly, the characteristic polynomial of a;; is in Weierstrass form and

the condition for repeated eigenvalues (same energy in two principle directions) is

1.\* 1 2
A= (3[1) + (2111') =0

3
I = £2 (g) ,

and hence

(A.81)

(A.82)

corresponding to the negative/left (pancake) and positive/right (cigar) limit curves of the Lumley

triangle.

B Matrix and linear transformation

B.1 Unitary matrix

Unitary transformations preserve inner products (and hence length and angle).

B.1.1 Rotation and reflection
B.2 Conformal mapping

B.3 Coordinate transformation
C Coordinate systems

C.1 Cylindrical coordinate

Consider the cylindrical transformation
(z,y) = (r,0)

36

(C.1)



where
x =rcosf (C.2)
y =rsinf (C.3)

or

= VBT (C4)

f = actan (ﬂ) (C.5)

€T

we have the corresponding relation between unit vectors

é. cos) —sinf| |é,
é, sinf cosf €9
and
é, cos) sinf| |é,
= . BE (C.7)
€y —sinf cosf| |€&,

which can be proven graphically. We note that the grid transformation matrix is unitary and has det() = 1
(rotation matrix).
The Jacobian of the forward transformation (r,0) = F(z,y) is

a(r,0) o & z 4 cos 6 sin 6 (©.8)
Ox,y) |20 90| |_y =z| |_lgng Leosh .
dx Oy r2 r2 r T
We note that the directions of the unit vectors é,, €y depend on space, i.e.,
0é, 0éy
- _0 C.9
or or (C.9)
0é, A R .
50— sin§é, + cosfé, = éy (C.10)
oe
% = —cosfé, —sinfé, = —é, (C.11)

which can also be seen graphically. These relations are crucial to later derivations.
Consider the chain rule
0 o 0r 0 00
-2 27 12
gz 0rdz | 000z (C12)

0 0or 090
Biy_aéiy—kﬁﬁiy (C13)

C.1.1 Operators in cylindrical coordinate
For a scalar function, say f(z,y) = f(r,0), the gradient operator can be expressed as

P P P
V=g, Teug, T g,

= <(“)87“ or + = 0 89) (cos0é, —sinféy) + (867" + 889) (sinfé, + cosBéy) + ézag (C.15)
0
"or

(C.14)

Az ' 90 9z ordy 000y 2
J@ d

+e %‘Fez&

PN

=&, (C.16)
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The factor r06 can be interpreted as infinitesimal length element in 6 direction.
The Laplace operator

Vi=V.V= ( aa+691§9+éz§z)~<ér§+éoi(§9+éz
_672+872+A 1|:8<A8+A18):|
T2 T a2 T ag \Tar T a0
L9 19 19 @2
“ ot Tror 2o T a2
10 0 1 02 0?
m%0w>+ﬂ%ow

Now consider a vector

and its derivatives.

Its divergence

vou (e

o
T or

19(ru

0
"or

U = é,u+ éyv + é,w

E_i_l@v
r  rof
) 10w

r

The convection term

Now we deal with V2u.

with

or

r 00

+ 550 T o2

oy, 0w 1
072

a> 1 02

0z
ow
9z

2 892

1 0%u

1 0%
r2 002
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2 892

1 9%w
r2 002

2

52

(éru

2 Ou

290

9w

+ 022

+ égv)

Ou\ 1&u_20v_ u  Ou
r r29002 2900 r?2 Oz

vy 4
rar
0

=)+
rar

r

)éz

82

- té 0 (éru+ égv + € w)
za_ : rU v 2z W
0z o

> (éru+ épv + é,w)

u) R

2 ) Er
U\ .

“F@ €9

0

dz

)

(C.17)
(C.18)

(C.19)

(C.20)

(C.21)

(C.22)

(C.23)

(C.24)

(C.25)
(C.26)
(C.27)

(C.28)

(C.29)
(C.30)
(C.31)
(C.32)

(C.33)

(C.34)



iﬁ(é )_igaégv_i(_z@e _vé _~_872Ué)
2002 " T 1209 a9~ 2\ Ta0% T VT 920

Moreover, the curl can be established as

Vxu= Ag—&-Alg—i—Ag X (é;u+ égv + é,w)
u = erar 697"39 ezaz é,u—+ égu + é,w

e, €y €,
1 N 0 vég
= |0, %89 0, + ;60 X ( )

00

u v w

10w v, ou Ow. . ov v 1 %

=Goe 2 G et gt e
_(laﬂ_@y +(@_8£)A +1(@_@)A
o0 0 o T % T v ar T ag’®

N A N

é, réy €,
= 87' 89 az

u rv w

PN

)€

(C.35)

(C.36)

(C.37)

(C.38)

(C.39)

(C.40)

We note that to the vertical vorticity w,, the shear vorticity 9,v and the curvature vorticity v/r have
equal contributions. The relation (C.40) is generalizable and will be shown in section C.3.

Examples.

1. Rigid body rotation with angular velocity Q2 and v = Qr. Vorticity w, = 2Q but there is no vortical

motion.

2. Potential point vortex with v = I'/27r. Vorticity w, = 0.

C.1.2 Navier-Stokes in cylindrical coordinate

The Navier-Stokes equation in cylindrical coordinate reads

ou ou  wvou ou v 10p V(l@(@u) 10%u 2 0v

o e T e v e VG Uar ) T e e

+

v dv v v v ww 1 0p <1 0 ( 8v> 1 0% 2 0u

o Yttty T et Gar Uar
ow ow vow ow  10dp , 10 r(“)fw i(’“)in_’_Bgiw
r Or or r2 002 0z2

o Yo Trae TV a: T ,0s

Q.E.D.

C.2 Spherical coordinate

Consider the transformation
((E, y7 Z) _> (r7 ¢7 6)

where

r = rsin¢cosf
y =rsin¢sinf

Z =1C0S ¢
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)

r2

v

o2 T Zog 2

8%v

oz

Lo
0z2

)

(C.41)
(C.42)

(C.43)

(C.44)

(C.45)
(C.46)
(C.47)



or
Ry (C.48)
2 2
6 — arctan <M> (C.49)

z
_ ¥
0 = arctan (x) (C.50)
or thought of as from cylindrical with
z=rcos¢ (C.51)
r’ =rsing (C.52)
x=r1"sind (C.53)
y=r1'cosf (C.54)

Here 6 is the azimuthal angle with z-axis on the equatorial plane and ¢ is the polar angle with z-axis
(North), for the convenience of going from cylindrical to polar and backwards.
We have the corresponding relation between unit vectors

é. sin¢cosf cos¢pcosf —sinf| |é,
é,| = |singsing cos¢sind  cosf éy (C.55)
é. cos ¢ —sin ¢ 0 €y
and
é, singcosf singsinf  coso é.
€y| = [cosgcosf cospsind —sing| |é,| s (C.56)
€y —sinf cos 6 0 é.,

which can be proven graphically. We note that the grid transformation matrix is unitary and has det() = 1
(rotation matrix).

C.2.1 From cylindrical to spherical

We have the transformation

é. sin¢cosf cospcosf —sinf| |é,
é,| = |sin¢gsing cos¢sind cosf és (C.57)
é, cos ¢ —sin ¢ 0 €y
that can be factorized as
é. singcosf cospcos) —sinf| |é,.
é,| = |singsinf cos¢sing cosf és (C.58)
é, cos @ —sin ¢ 0 ég
cosf —sinf 0| |[sing cos¢p 0] |é,
= |sinf cosf O 0 0 1| |és (C.59)
0 0 1| |cos¢p —sing 0Of |éy
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cosf —sinf 0] |[é,
= [sin® cos@® 0| |égy (C.60)
0 0 1| |é.
with
é, sing cos¢ 0| |é,
ép| =1 0 0 1| [éy (C.61)
€, cos¢p —sing 0| |éy

C.3 General curvilinear coordinates
Consider the coordinate transformations
¢ = qi(x1, 22, 23), i = xi(q1, q2,q3) (C.62)

where (z1, 22, x3) is the standard Cartesian coordinates and ¢; are mutually independent.

C.3.1 Length, area, and volume

Consider the change of the vector

T =216, + T26,, + 136, (C.63)
= q1h1 + ¢2h2 + g3hs (C.64)
where © = x(x;(g;)) as
dx = é,,dxy + é,,dzs + é;,dxs (C.65)
= %dQ1 + %d% + %d% (C.66)
and 9
hi= o (C.67)

We note that h; is the change of  with only changing ¢;, so it does define direction of coordinate
lines of ¢;. We denote with () unit vectors and note that h; are not necessary unit vectors.
Now consider the length of d:

ds? = dz - dx (C.68)
ox ox
= —dg; - =—d C.69
g, U 9, ™ (0.69)
= —dg;—d C.70
dg; " gy, (G.70)
= gjxdg;dqx (C.71)
with 921 &
T 00X
i = el C.72
g J 8(]1 3(]]' ( )
being the metric tensor. When ¢; are orthogonal coordinates,
Jxr Ox
Rl C.73
a(Zi 8(]] ¥ ( )
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and g;; only has diagonal elements and

ds® = g11(dq1)? + ga2(dgs)? + ga3(dgs)?
= h3(dg1)? + h3(dgs)® + h3(dgs)?

Define the Lamé parameters as
8I1 8$2 2 8.%3 2
= _— = h
h1 = /g1 \/ 3(]1 —|— (3(]1) + 20, [Py |
ho = 1/ 8x1 + ] ’ + Oz ’ = |ho|
2TV 3Q2 9q2 dg2) 7

a$1 (“)xg 2 85&3 2_
s =55 = V (5a) + () + () =

and unit vectors in ¢; directions as

- h; h;
h; = = —.
lhi| Ry
We note that the Lamé parameters can depend on the coordinates as
hi = hi(q1, g2, g3)-
The increment can be rewritten as
de = hldqlill + hqugilg + hgdq;gfl,?,
= dslill + dSQiLQ + dS3iL3

with
dSZ'

being the projection of dx on each coordinate.

(C.76)

(C.77)

(C.78)

(C.79)

(C.83)

Now consider the surface and volume of infinitesimal elements. The (directed) areas of surface elements

are

do; = h; - (h;dg;h; x hydgphy) = hijhedg;dgs,

or

doy = hihodgidgs
doy = hihsdgidgs
dos = hihodgidg

The volume element (e.g. in volumn integrals) spanned by the vector dz is

dV = (hldqlﬁl) . (h2dq2i7/2 X h3d(]3ilg)
= hydgqihadgahsdgs(hy) - (ha x hs)
= hi1hohsdq1dgodgs

when h; mutually orthogonal.
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C.3.2 Jacobian

Now we consider the Jacobian of the backward transformation
(91,92, 43) — (21,22, 73) (C.91)

which reads

Ozy Oz 9z
8( ) 9q1 9q2 9q3
_OL22,%3) | ow, 0wy Oxs (C.92)

(q1,92,q3) Oq1 g2 g3
813 8953 8953

91 0q2 g3
and the Jacobian determinant (with 3.J~1)

J =det(J) = det(J") (C.93)

dzy  Ozy  Oxs
dq1  Oq1  Oq1

_ | 021 Oxo Oz C.94
90z Oa: gz (C.94)
9z Ozy Oz
9q3 9q3 9q3

0z 0o Oxs
_ S 2, O A, . % Oxo Oz
(3(]1 o 9q, - R T (C.95)
% Oxo Ox3
dqs  OJqz  Ogs

ox oxr Oz
== = 2= C.96
oq (&12 5Q3> (G.96)
= hl . (hg X h3) (C97)
= hihahs (C.98)
#0 (C.99)
Hence we have
dV = dxidxadas = hihsohsdqidgedqs = Jdqidgadgs. (C.100)
C.3.3 Three major calculus theorems
1. Gradient theorem:
| wnai= fa) - s (C.101)
l:a:1~>m2
The integral is independent of path since V f is potential (conservative, curl-free).
2. Divergence theorem:
// (Vxu)-dA = u-dl (C.102)
Q 1=09

Implication: vorticity is circulation per unit area.

///V(V'“)dvz//ﬂzav'“'df‘ (C.103)

3. Curl theorem:
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C.3.4 Differential operators in curvilinear coordinate systems

Next, let’s consider differential operators in curvilinear coordinates. Consider a scalar f = f(q1, 92, q3)
and its gradient V f. Starting from

of
df = —dg,, 104
=5, (C.104)
due to the displacement . On the other hand,
df =Vf-dzx (C.105)
= (Vf)qds; (C.106)
= (Vf)g hidg; (C.107)
Compare (C.107) and (C.104) we have
1 0f
= 1
(V)= 4o (C.108)
where
Vi =(Vf)ghi (C.109)
1 0f 1 0f 1 0f
=—_“hi+——"hy+——"—h C.110
hidgi — hadgy © ' h3dgs ( )
Consider the divergence of a vector w in a coordinate-free form:
oag foevu-do
V-u= &1210 v (C.111)
1 hohsdgad hihsdg:d hihodgid
_ 1 (8(U1 2h3dgo qg)dq1+3(u2 1hsdg: (J3)dq2+5(us 1hadgy q2)dq3) (C.112)
\% oq g 0q3
_ 1 <8(U1h2h3) + 8(U2h1h3) + 8(U3h1h2)> (0113)
hihahs oq dqa 93

Consider the curl of a vector u in a coordinate-free form, its compoment along 7 (normal of the surface
S = Sn) is

AL T I
(Vxu) n= él_}rr}) 5 (C.114)
and (consider the area spanned by dsy = hodgs and dssz = hsdgs)
. fl u - dx
-hy = *%—— 11
(Vxu) hy 1o (C.115)
1
= ——— .11
hahsdgadgs luzhada; (C-116)
6UQh2
— (U2h2 + J dQ3)dQQ (0117)
q3
- U3h3dQ3 (0118)
q2
1 aU3h3 8u2h2)
= — C.120
hahs ( g2 dq3 ( )
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- 1
(VXU)-hQ—hlh3(

8u1h1 . 8u3h3 )

Jq3 oq

- 1
(VXU)'h3h1h2(

We note that the Lamé coefficient also changes as the coordinate changes.

In determinant form,

8u2h2 . 8u1h1 )

oq 0qa

hihy hohy hshs

VXxu=

1
Tahahs | On

aqz 8!13

hiui  hauy  hgus

(C.121)

(C.122)

(C.123)

The Laplacian can be obtained by taking the divergence of V f as combining (C.110) and (C.113)

Vif=V-(Vf)=

C.3.5 Derivatives of unit vectors

SERCTUANE N
hihahs \ O hy Oq 0q2 hy Oqo

0

dq3

(

(C.124)

In general curvilinear coordinates, the directions of unit vectors could change with coordinate as well. We

are basically concerned about

oh;
6(]]‘
and we will establish that R
oh; .~ .,
-//h js b 7é J-

First we have

N o
~ . < /9
h‘.ahl_ahl/ B

ox

' 0q2

oz
g3
ox

' oq

i = =0
g, dq;
and hence R
oh; .~ . .
7J_hi,Z .
24, #J
According to the orthogonality we have
ox Ox
hi - ho=— — . — =0
L 0q1 Ogq
and
_8<3w.3w>_8w. Po | Pz
O0gqz \Oq1 Oqq 0q1  0q20q3 0q10q3
_ Oz 8%z N 0%z
C 02 0g30q1  0g20q
_ Oz 8z N 0%z
93 010q2  9q30q2
then
O x| Oz Pz Oz Pz _,
0q1  0q20q3 O0qa  0q30q: gz 0q10q2
and then
Ow o= _
0q1 0q20q3
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ox O’z

_— =0 C.135
O0qa  0q10q3 ( )
ox O’z
_— = C.136
O0qz  0q10q2 ( )
From
ox O ox
0= —+  — [ — C.137
0q1 Oqa <GQ3) ( )
. Ohshs
= hih; - .1
1hy 902 (C.138)
. dhs . Ohs
=hihy- | hs—= + hy3— C.139
1hi ( 3 90 38q2> ( )
. Ohg
= hihshy - —= C.140
1hshy o0 ( )
we have (similarly)
ohi . ., .
Lhy, i#j#k#i. (C.141)
Jg;
Combining (C.128) and (C.141) we have
Oh; | »
ek} 'S C.142
5/ lhsr i # (C.142)
and using
0’z 0z
= C.143
0q:0q;  0q;0q; ( )
we have
0 (Ox 0 [0z
— (=)= = [ = C.144
9q; (3%’) 0y (5‘%’) ( )
. Oh; oh; . Oh; oh;
hi— +hji— =h;—~ + h;—~ C.145
dq; - dg; 7 g T dq; ( )

with repeated indices not implying summation. Since i # j, h; and ﬁj are linearly independent, we have

oh; 1 0h;,
= — h;. .14
dq;  h; 0q; (C.146)
Now we turn back and consider dh;/ Jq;.
= 147
9 9qi (G.147)
oh; Ohy,
=—Xxhy+h; x — C.148
9 Bl g X 9 ( )
1 0h;» .o 1 0hy
= — Zh,i><h, +h; x h;— ! C.149
h; dq; B I O ( )
1 P » 1 P a
(O O o) (C.150)

hj 8(]] J hk an
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without repeated indices being summed over.

Using the relations (C.146) and (C.150), gradient, curl, divergence, Laplacian, as well as operators like

Vu and u - Vu can be expressed.

Example: V - u.
We have before
_hi 0  hy &  hsy 0

v 1Y . o3
h190qi  ha dqz ~ hs Og3

and now consider Vu with R . .
u = urhy + usho + ushs
and we have
hi & hy & . hy 0 .
Vu=|———4+-—"—hos+——h
(hl oq ha 0gz ? hs 0gs3 ’
o ...
= ——(uih h h
h18q1(u1 1+ ushg +ughs) +
1 /0 h h
_ 1 <“1 L u20h WM)
hi \O0q1  ha Og2  hs3 Ogs
1 /0 Oh oh
< (15) + us 72 + U1 2)

) . (ulle + UQiLQ + U3FL3)

772 37(12 hi?, Jqs3 hil Iq1

1 (31@» L Ohs W%s)

hs \9qz ~ h10q1  hz Oqo

. 1 (8’[1,1 hg h3 (’)ug hl hg 8U3h1 h2 )
hihahs oq 0q2 dq3

References: Appendices in Batchelor (1967); Griffiths (2013), and text book of Wu (1982).

C.3.6 Examples

1. Cartesian. (q1,q2,q3) = (21, z2,x3)

Elements:
hi=ha=h3z=1
ds? = da? 4 da? + da?
dV = dl’ld.’Ele'g
Operators:
_af . L af. . of.
f 81‘1 1+ 81‘2 €2t 81‘3 €3
ou Ov Ow
Viusgetoayt o

= (0 T, (- e, 4 (30— Te
oy 020" 0z oz’ Y or oy ©

V2f:ixf 827f+&
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(C.152)

(C.153)

(C.154)
(C.155)
(C.156)
(C.157)

(C.158)

(C.159)
(C.160)
(C.161)

(C.162)

(C.163)

(C.164)
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2. Cylindrical. (q1,q2,q3) = (1,0, 2)

Elements:

Operators:

Vf

V-ou=

_9f,
T or

1

r

(3(ru) NI

or

_10(ru)

r Or

é

h1:h3:1,h2:7’

ds? = dr? + r2d6? + dz?

dV = rdrdfdz

10f. Of .

r 00

a0

e+ ——-€)+ &ez

d(rw)

)

Lo, ou
rod 0z

Tég éz

1
quz;ﬁr 89 82

Vif

Lo
e 06
_19

r

u

or

v w

,@)A +(@,@)A +1(@f@
9.’ e, T o T P ar T e
o\, 10 0

or r2 0602 022

(+

3. Spherical. (q1,¢2,q3) = (1, $,0), ¢ is the polar angle and 6 is the azimuthal.

Elements:

Operators:
Vf

V.ou=

V xu=

Vif =

T or

hi=1,hy =1,hg =rsing
ds? = dr? 4 r2d¢? + r? sin? ¢pd6?
dV = 72 sin ¢drdpde
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r2  Or rsing  0¢ rsin¢ 00
é. réy rsingéy
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D Hyperbolic functions
D.1 Defining ODEs
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