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Stratified wakes past an isolated conical seamount are simulated at a Froude number of
𝐹𝑟 = 0.15 and Rossby numbers of 𝑅𝑜 = 0.15, 0.75, and ∞. The wakes exhibit a Kármán
vortex street, unlike their unstratified, non-rotating counterpart. Vortex structures are studied
in terms of large-scale global modes, as well as spatially localised vortex evolution, with
a focus on rotation effects. The global modes are extracted by spectral proper orthogonal
decomposition (SPOD). For all three studied 𝑅𝑜 ranging from mesoscale, submesoscale, and
non-rotating cases, the frequency of the SPOD modes at different heights remains coupled
as a global constant. However, the shape of the SPOD modes changes from slanted ‘tongues’
at zero rotation (𝑅𝑜 = ∞) to tall hill-height columns at strong rotation (𝑅𝑜 = 0.15). A
novel method for vortex centre tracking shows that, in all three cases, the vortices at different
heights advect uniformly at about 0.9𝑈∞ beyond the near wake, consistent with the lack
of variability of the global modes. Under system rotation, cyclonic vortices (CVs) and
anticyclonic vortices (AVs) present considerable asymmetry, especially at 𝑅𝑜 = 0.75. The
vorticity distribution as well as the stability of AVs are tracked downstream using statistics
conditioned to the identified vortex centres. At 𝑅𝑜 = 0.75, intense AVs with relative vorticity
up to 𝜔𝑧/ 𝑓c = −2.4 are seen with small regions of instability but all AVs evolve towards
a more stable state. Recent stability analysis that accounts for stratification and viscosity is
found to improve on earlier criteria.

Key words: Rotating flows; stratified flows; wakes; vortex dynamics;

1. Introduction
The planet that we live on is full of multi-scale eddies, generated by various sources ranging
from uneven thermal energy distribution at the largest scales, wind-driven ocean surface
motions, to relatively more localised obstacle-induced flows. The dynamics of such eddies
are greatly enriched by incorporating stratification, rotation, and turbulence. Understanding
these dynamics is essential to geophysics. This work will be focused particularly on the last
example – wake eddies generated by obstacles.

In the deep ocean, seamounts and hills are stirring rods; they induce vortical motion,
turbulence, and internal gravity waves, which enhance heat and mass transport and hence
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crucially impact the ocean state. In the atmosphere, mountains commonly trigger wakes and
waves, and orographic lifting is a source of convective weather, including air unsteadiness,
formation of cumulonimbus clouds, and precipitation. Both the ocean and the atmosphere
are stratified, and the scales of motions are large enough to feel the effect of Earth’s
rotation, leading to distinctive wake dynamics. The understanding of the wakes behind three-
dimensional (3D) obstacles from a fluid dynamics perspective would benefit the modelling
and prediction of the multi-scale motions of oceanic and atmospheric bottom boundary flows.

In this study, we consider the wake of a steady uni-directional mean flow (𝑈∞) perturbed
by an isolated conical seamount/hill submerged in the fluid (figure 1). The background has
stable density stratification that is linear so that the buoyancy frequency 𝑁 =

√︁
−𝑔𝜕𝑧 �̄�/𝜌0 is

a constant. The Coriolis frequency 𝑓c = 2Ωc is a negative constant (Southern hemisphere).
The conical obstacle, which has base diameter 𝐷, height ℎ, and slope of 30◦, is placed on a
flat bottom wall.

Two non-dimensional numbers, the vertical Froude number (𝐹𝑟 = 𝑈∞/𝑁ℎ) and the Rossby
number (𝑅𝑜 = 𝑈∞/| 𝑓c |𝐷) are the main controlling parameters. An additional (but not
independent) non-dimensional number, the Burger number (𝐵𝑢 = 𝑁2ℎ2/ 𝑓 2

c 𝐷
2 = (𝑅𝑜/𝐹𝑟)2)

that characterises the importance of stratification relative to rotation will also be used.

Stratified hill wakes have been studied extensively through laboratory experiments, field
observations, and numerical simulations. Hunt & Snyder (1980) showed experimentally, that
for relatively strong stratification (𝐹𝑟 < 0.4), there is a potential energy barrier below which
the flow does not have sufficient kinetic energy to go over the hill and, instead, flows around
the hill to form a quasi-two-dimensional (Q2D) Kármán vortex shedding (VS) pattern. This
is a significant qualitative difference between stratified and unstratified flow past a three-
dimensional obstacle. Without stratification, the flow goes over the obstacle and horseshoe
structures are formed (Garcia-Villalba et al. 2009). Castro et al. (1983) showed in stratified
flow past a finite-span ridge that, as 𝐹𝑟 decreases from above to below unity, the wake behind
the hill transitions from a lee-wave-dominated regime to a vortex-dominated regime, with
the latter regime being the focus of this work. They found that at or below 𝐹𝑟 = 0.2 (their
figure 7, last row), the modulation of the vortex wake by the lee waves can be neglected
except near the peak of the ridge. Boyer et al. (1987) studied experimentally the effect of
system rotation on stratified hill wakes in the regime of 𝑅𝑜 = 𝑂 (0.1), 𝐹𝑟 = 𝑂 (0.1)-𝑂 (1),
equivalently 𝐵𝑢 = 𝑂 (1)-𝑂 (10) variation. They found that the VS frequency is not strongly
affected by changing 𝑅𝑜. However, the Reynolds number (𝑅𝑒𝐷 < 1200) was not sufficient for
the wake to be turbulent. For non-rotating hill wakes, Vosper et al. (1999) varied the Froude
number and the shape of the wake generator, and found that the VS frequency is a weak
increasing function of 𝐹𝑟 , and the 𝑆𝑡-𝐹𝑟 relationships collapses for different object shapes
if the reference velocity is corrected for blockage. More recently, Teinturier et al. (2010);
Lazar et al. (2013b) performed laboratory experiments on the LEGI-Coriolis platform at
moderate-to-high Reynolds number (𝑅𝑒𝐷 ∼ 𝑂 (103)-𝑂 (104)) that featured the asymmetry
between cyclonic and anticyclonic vortices generated behind a towed cylinder tank.

In terms of field observations, island wakes have acquired much attention recently and
wakes have been studied near Palau (MacKinnon et al. 2019; Zeiden et al. 2021), the Green
Island off the coast of Taiwan (Chang et al. 2019), and in the lee of Guadalupe (Horvath
et al. 2020), to name a few. A strong sign of a narrow-band VS mode stood out from
the broadband turbulence signal. Those observations were made in in situ conditions that
have the complications of irregular terrain, tidal motion, and nonlinear stratification, but the
amount of data – both in space and in time – is insufficient for a more comprehensive study
of the spatio-temporal structure of the wake. This limitation along with the possibility of a
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Figure 1. Flow configuration (not to scale). The background density is linearly stratified.
The frame is rotating at a constant angular velocity Ωc = Ω sin 𝜑, where Ω is the Earth’s
angular velocity and 𝜑 is the latitude. The Coriolis frequency, 𝑓c = 2Ωc, is negative.
Gravity, density stratification and the axis of rotation all point to negative 𝒛.

controlled parametric study motivates our high-fidelity numerical simulations in an idealized
setting.

For rotating stratified hill wakes, numerical studies include the utilization of the hydrostatic
regional oceanic modelling system (ROMS) (Shchepetkin & McWilliams 2005), such as
Dong et al. (2007); Perfect et al. (2018); Perfect (2019); Srinivasan et al. (2021); Jagannathan
et al. (2021), and the hydrostatic version of the MIT-GCM model (Marshall et al. 1997b,a),
such as Liu & Chang (2018).

Recently, Puthan et al. (2021, 2022a,b) conducted large-eddy simulation (LES) of stratified
hill wakes without the hydrostatic approximation. The focus was on the role of tidal
modulation of a mean current in a regime with weak rotational effects. The findings included
tidal synchronization (vortex shedding at specific tidal subharmonics that depend on the tidal
excursion number), phases with enhanced turbulent dissipation, and higher form drag. A
similar numerical procedure will be followed in this work while excluding the periodic tide
and focussing on rotation effects.

The susceptibility of the flow to rotation can be categorised according to the characteristic
Rossby number (𝑅𝑜 = 𝑈/(| 𝑓c |𝐷) = (𝑈/𝐷)/| 𝑓c |), which is the ratio of rotation timescale to
the advection timescale. When 𝑂 (𝑅𝑜) ≪ 1, rotation is fast enough to establish a geostrophic
balance between Coriolis force and pressure gradient. Such is the case with mesoscale
motion or the even larger general circulation. When 𝑂 (𝑅𝑜) ≫ 1, advective nonlinearity
evolves flow structures before they feel the presence of rotation. This regime is categorized
as small-scale stratified flow. When 𝑂 (𝑅𝑜) ∼ 1, the flow is away from geostrophic balance,
but rotation is equally important as advection and able to affect the flow. With a typical
order-unity Rossby number, and a length scale in physical space of 𝑂 (100 m) ∼ 𝑂 (10 km),
submesoscale dynamics (Taylor & Thompson 2023) has been an increasingly popular topic
in geophysical fluid dynamics, oceanography, and meteorology.

In this paper, we present results from seamount/hill wakes at 𝐹𝑟 = 0.15 and three repre-
sentative Rossby numbers, 𝑅𝑜 = 0.15, 0.75,∞, corresponding to mesoscale, submesoscale,
and non-rotating stratified flow regimes, respectively. There is near-wake turbulence but our
focus will be on the coherent wake vortices that are found beyond the near wake.

The rest of the paper is structured as follows: Section 2 introduces the numerical methods
and the LES simulations conducted as part of this work; section 3 elucidates the global
structures in the flow that are coherent in space and time via flow visualisations and spectral
proper orthogonal decomposition (SPOD); section 4 presents ensemble-averaged tracks of
the centres of vortices that are obtained by application of a pattern recognition method;
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section 5 is a systematic study of the asymmetry between and instabilities of cyclones and
anticyclones; section 6 concerns the evolution of the mean momentum wake; and, finally,
section 7 is a summary and discussion of the results.

2. Numerical simulations
The incompressible Navier-Stokes equations are solved in a Cartesian coordinate with 𝑥, 𝑦,

and 𝑧 being the streamwise, transverse, and vertical directions, as shown in figure 1. In the
momentum equation, density variation appears only in the buoyancy as per the Boussinesq
approximation and system rotation is represented by the Coriolis force. The dimensional
governing equations in index notation are as follows:

𝜕𝑢𝑖

𝜕𝑥𝑖
= 0, (2.1)

𝜕𝑢𝑖

𝜕𝑡
+
𝜕𝑢𝑖𝑢 𝑗

𝜕𝑥 𝑗

− 𝑓c𝜖𝑖 𝑗3(𝑢 𝑗 −𝑈∞𝛿 𝑗1) = − 1
𝜌0

𝜕𝑝∗

𝜕𝑥𝑖
+
𝜕𝜏𝑖 𝑗

𝜕𝑥 𝑗

− 𝜌∗𝑔

𝜌0
𝛿𝑖3, (2.2)

𝜕𝜌

𝜕𝑡
+ 𝜕𝜌𝑢𝑖

𝜕𝑥𝑖
=

𝜕𝐽𝜌,𝑖

𝜕𝑥𝑖
, (2.3)

𝜏𝑖 𝑗 = (𝜈 + 𝜈sgs) (
𝜕𝑢𝑖

𝜕𝑥 𝑗

+
𝜕𝑢 𝑗

𝜕𝑥𝑖
), 𝐽𝜌,𝑖 = (𝜅 + 𝜅sgs)

𝜕𝜌

𝜕𝑥𝑖
. (2.4)

The total density 𝜌 is decomposed into the reference density 𝜌0, the background density
�̄�(𝑧), and the density perturbation 𝜌∗ due to fluid motion,

𝜌(𝑥, 𝑦, 𝑧, 𝑡) = 𝜌0 + �̄�(𝑧) + 𝜌∗(𝑥, 𝑦, 𝑧, 𝑡). (2.5)

The total pressure is written as

𝑝(𝑥, 𝑦, 𝑧, 𝑡) = 𝑝0 + 𝑝𝑔 (𝑦) + 𝑝𝑎 (𝑧) + 𝑝∗(𝑥, 𝑦, 𝑧, 𝑡), (2.6)

where the reference pressure 𝑝0 is a constant, the hydrostatic (ambient) pressure 𝑝𝑎 has a
vertical gradient that balances the ambient density (𝜌𝑎 = 𝜌0 + �̄�(𝑧)), and the geostrophic
pressure 𝑝𝑔 has a transverse gradient that balances the Coriolis force due to the velocity 𝑈∞
of the freestream. Only the dynamic pressure 𝑝∗ appears in the momentum equation (2.2).

The LES is performed at a moderately high Reynolds number 𝑅𝑒𝐷 = 𝑈∞𝐷/𝜈 = 10 000.
Spatial derivatives are discretized with a second-order central finite difference on a staggered
grid, and the equations are advanced in time using a combined scheme with third-order
Runge-Kutta for the convection terms and Crank-Nicolson for the diffusion terms. Continuity
is enforced by solving the pressure Poisson equation. The obstacle is represented by an
immersed boundary method (Balaras 2004; Yang & Balaras 2006). The subgrid-scale model
is chosen to be the WALE model (Nicoud & Ducros 1999) with the sub-grid-scale Prandtl
number 𝑃𝑟 = 𝜇sgs/𝜅sgs set to unity. For more numerical details, the reader is referred to
Puthan et al. (2020).

The computational domain spans a volume of 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 = [−4, 15] × [−4, 4] × [0, 4]
in units of 𝐷 and the horizontal resolution of the immersed body and the turbulent near
wake (−1 < 𝑥/𝐷 < 2) is held constant at (Δ𝑥,Δ𝑦) ≊ (0.003𝐷, 0.006𝐷)⩽(4𝜂, 8𝜂), with
a mild stretching in the streamwise direction. Here 𝜂 is the minimum Kolmogorov length
scale at the centerline at different heights. The vertical resolution below 𝑧/ℎ = 1.2 is kept at
Δ𝑧 = 0.008ℎ ≊ 0.05𝑈∞/𝑁 to resolve the length scale for vertical overturning motion𝑈∞/𝑁 .

The inflow condition is a uniform velocity inlet, and the outflow is a Neumann-type
convective outlet. The lateral boundaries are periodic to reduce the blockage effect and to

Focus on Fluids articles must not exceed this page length
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Case 𝐵𝑢 𝑅𝑜 𝐹𝑟 (𝑁𝑥 , 𝑁𝑦 , 𝑁𝑧) 𝑁𝑡 𝑇𝑈∞/𝐷 color code

BuInf ∞ ∞
0.15 (1536,1280,320) 4000

295 red
Bu25 25 0.75 345 green
Bu1 1 0.15 322 blue

Table 1. Parameters of simulated cases. 𝑁𝑥 , 𝑁𝑦 , and 𝑁𝑧 are the number of grid points in
each direction and 𝑁𝑡 is the total number of available snapshots that will be used for all
statistics. 𝑇 is the time span of the stored data.

allow the wake to flap. The top boundary is shear free, and the bottom boundary is modelled
by a quadratic drag law as in Puthan et al. (2020); Jagannathan et al. (2021). The drag
coefficient is chosen as 𝑐𝐷 = 0.002 in common with oceanography applications (Haidvogel
& Beckmann 1999; Arbic & Scott 2008). Its value was validated in a stratified bottom
Ekman layer by Taylor & Sarkar (2008) and tested in stratified flow over complex geometry
by Rapaka & Sarkar (2016), among others. Sponge layers are placed at the inlet and the top
boundaries to reduce spurious reflected internal wakes. The overall numerical setting was
validated by Puthan et al. (2020, 2021).

The parameter space explored is shown in table 1. The stratification is held constant at
𝐹𝑟 = 0.15, a typical value for midsize topography in the ocean and the atmosphere, and is in
the ‘flow-around’ regime where coherent wake vortices dominate. Meanwhile, the rotation
Rossby number is varied as 𝑅𝑜 = 0.15, 0.75,∞, to study its effect on the vortex wake. These
three values of 𝑅𝑜 correspond to mesoscale, submesoscale, and non-rotating geophysical
flows. The induced Burger number are 𝐵𝑢 = 1, 25,∞, which will be used to label different
cases.

We compile a time-resolved numerical database that consists of three rotation strengths
and collect the data after statistical stationarity is reached. Each case has 𝑁𝑡 = 4000 snapshots
that span around 300 convective time units (𝑇 = 300𝐷/𝑈∞), which corresponds to roughly
80 VS periods. Statistics, to be discussed later, are obtained by averaging over the entire
interval, 𝑇 .

3. Large-scale coherent structures
In geophysical flows, coherent vortical structures are commonly observed. There is no
universal definition of coherent structures, but they are generally strong enough and have
relatively independent dynamics to distinguish themselves from the background flow, account
for a significant portion of the fluctuation energy of the system, are spatially organized, and
their lifetime is sufficient for them to be dynamically important. The wake eddies of this
paper have the aforementioned features.

Large-scale Kármán vortices, a specific type of coherent structure, are associated with
vortex shedding from bluff bodies. In geophysical applications, they are commonly found
in flows impinging on bottom or side topography, e.g. island wakes (Young & Zawislak
2006; Chang et al. 2019; Horvath et al. 2020), headland wakes (Pawlak et al. 2003), and in
laboratory flows (Hunt & Snyder 1980; Castro et al. 1983; Boyer et al. 1987; Teinturier et al.
2010), among others. In field observations and laboratory experiments, the features of the
coherent vortices are inferred from single- or multiple-point statistics and flow visualizations.
The data is limited in spatial coverage and resolution.

In what follows, coherent structures will be studied in two ways. First, individual snapshots
in which vortex structures are vividly visible are used for a qualitative overview of rotation
effects (section 3.1). Second, a more comprehensive quantitative assessment is obtained
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(a)

(b)

(c)

Figure 2. Visualisation of the isosurfaces of |𝜔𝑧 |𝐷/𝑈∞ = 1.5, 1.0, 3.0 for BuInf, Bu25,
and Bu1 (top to bottom), respectively. Red and blue indicate positive (anticyclonic since
𝑓c is negative) and negative (cyclonic) vorticity, respectively. Note the vertical axis is
normalised with the height ℎ of the hill, which is about 0.3 times the base diameter 𝐷.

by applying SPOD to the time-resolved LES database in table 1 to reveal the statistical
significance of the coherent structures. Section 3.2 reviews the theory and implementation of
SPOD, followed by the analysis of the temporal eigenspectra (section 3.3) and spatial modes
(section 3.4).

3.1. Flow visualisations
A first impression of the 3D spatial organization of the wake vortices is provided by the
isosurfaces of the vertical component of vorticity (𝜔𝑧 = (∇ × 𝒖)𝑧) in figure 2(a-c) for cases
BuInf, Bu25, and Bu1, respectively.

In the near-wake region (𝑥/𝐷 < 3), the 𝜔𝑧 isosurface is space-filling and multiscale,
indicating greater turbulence intensity than further downstream. But after 𝑥/𝐷 = 3, the
vortices quickly organise into spatially compact coherent structures that persist to the end
of the computational domain with little change. Rotation clearly influences the shape and
size of the structures. For case BuInf in figure 2(a), the structures are slanted ‘tongues’ with
horizontal dimensions greater than their height. As the strength of rotation is increased, the
horizontal size shrinks and the height increases as in figure 2(b) for Bu25. With further
increase of rotation, the vortex structures become aligned with the vertical axis, appearing
as tall ‘columns’ that extend from the flat bottom to the hill height, in figure 2(c).

The wake vortices are composed of cyclones (rotation is in the same direction as that of
the frame) and anticyclones. It is found in figure 2(b,c) that, with the presence of rotation, the
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(a) (b)

(c) (d)

Figure 3. (a,b,c) Instantaneous and (d) time-averaged 𝜔𝑧 at horizontal planes at
𝑧/ℎ = 0.75, 0.50, 0.12 (from top to bottom in each subfigure). (a,d) Cases BuInf, (b)
Bu25, (c) Bu1.

cyclones (negative vortices in blue) are different from anticyclones (positive vortices in red)
with regards to size, shape, and vorticity distribution as will be elaborated in later sections.
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In figure 2(c), cyclones are taller and thinner than anticyclones and, as will be shown, have
stronger interior vorticity.

Figure 3(a,b,c) show the instantaneous 𝜔𝑧 at several heights for all three cases. In all three
cases, a pattern of Q2D Kármán vortices is distinct in all planes at 𝑧/ℎ = 0.12, 0.25, 0.75.
The flow is akin to a vortex wake rather than its unstratified counterpart of a three-dimensional
turbulent wake (Garcia-Villalba et al. 2009).

The mean vertical vorticity (⟨𝜔𝑧⟩) of case BuInf is shown in figure 3(d). For the lower
two planes, the mean looks very similar to those obtained in low Reynolds number two-
dimensional cylinder wakes, such as in Barkley (2006); Mittal (2008), both at 𝑅𝑒𝐷 = 100.
Such similarity supports the Q2D feature of the hill wake at 𝐹𝑟 = 0.15. At the same time,
there is a notable difference: the flow in each horizontal place that cuts the hill does not
represent an independent two-dimensional (2D) flow around a cylinder with the local hill
diameter. Among different planes at different heights in figure 3(d), the length of the attached
shear layer (with dark colors), is approximately a constant, regardless of the variation of the
local hill diameter. This is consistent with the fact that the VS frequency is a global constant
which will be discussed in detail in the next section, as the shear layer length is correlated to
the shedding frequency (Williamson & Brown 1998).

In the SPOD analysis of the next section, the vertical vorticity on different horizontal planes
(𝜔𝑧 (𝑥, 𝑦, 𝑡; 𝑧)) is chosen as the quantity of interest since the large-scale wake structures involve
predominantly Q2D vortical motion (figures 2-3), the shedding and evolution processes of
which are well represented by 𝜔𝑧 . Moreover, the focus of this work is on the influence of
increasing rotation strength on the horizontal motion, which tends to constrain the flow to
be around the vertical axis at the large scales and significantly enhance 𝜔𝑧 as will be shown
later. In the rotating cases Bu25 and Bu1, the stability of the anticyclones will also be studied
(section 5) with 𝜔𝑧 being one of the most important metrics, hence we apply 𝜔𝑧 rather than
other vortex identification criteria for overall consistency.

As seen in figures 2-3, 𝜔𝑧 structures exhibit dissimilar vertical organisation at different
levels of rotation, although Kármán vortices are present in each horizontal plane. Owing to
stratification, a vertical length scale of 𝑈∞/𝑁 = 𝐹𝑟ℎ = 0.15ℎ is introduced to the flow, and
whether vortex structures remain coherent over vertical distances larger than𝑈∞/𝑁 regardless
of rotation (suggested affirmatively by figure 2) needs quantitative investigation. To that end,
we perform SPOD on vertically offset horizontal planes at 𝑧/ℎ = 0.12, 0.25, 0.50, 0.75
(𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 = 1538 × 1280 × 1) and the vertical center plane at 𝑦 = 0 (𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 =

1538 × 1 × 320) to allow the choice of different dominant (vortex shedding) frequencies at
different heights by the flow and avoid imposing a priori a global frequency.

3.2. Spectral POD and its numerical implementation
Proper orthogonal decomposition (POD) is a matrix-factorization-based modal decomposi-
tion of complex systems introduced into fluid mechanics by Bakewell Jr & Lumley (1967);
Lumley (1967, 1970).

Consider a statistically stationary square-integrable multi-variable signal 𝒒(𝒙, 𝑡) ∈ L2
W (𝛀)

with zero mean. Here L2
W is the Hilbert space equipped with a weighted inner product

(𝒒1, 𝒒2)W =

∫
𝛀
𝒒H

2 (𝒙)W (𝒙)𝒒1(𝒙) d𝒙 (3.1)

on a bounded domain 𝛀, and (·)H denotes Hermitian transpose. The weight matrix W is
Hermitian positive-definite and the weighted 2-norm is defined as ∥𝒒1∥W = (𝒒1, 𝒒1)1/2

W . The
symbol ⟨·⟩E denotes the ensemble average over all realizations, and it is equivalent to the
time average under ergodicity. The goal of POD is to find an empirical function 𝝍(𝒙) that
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solves the optimization problem

𝝍(𝒙) = arg max
∥𝝍 ∥W=1

⟨(𝒒,𝝍)W ⟩E, (3.2)

which defines 𝝍(𝒙) as the function on which the projection of 𝒒(𝒙, 𝑡) is maximized in the
sense of the least squares. Since L2

W is an infinite-dimensional space, a practical way to
obtain the empirical function 𝝍(𝒙) is to approximate it within a finite-dimensional space
spanned by {𝝍 (𝑖) }𝑀

𝑖=1, where 𝝍 (𝑖) is the 𝑖-th spatial mode and 𝑀 is the order of truncation. It
was shown in Holmes et al. (2012) that the optimization problem (3.2) can be converted to
a Fredholm eigenvalue problem as

R𝝍 (𝑖) (𝒙) =
∫
𝛀

R (𝒙, 𝒙′)W (𝒙′)𝝍 (𝑖) (𝒙′) d𝒙′ = 𝜆 (𝑖)𝝍 (𝑖) (𝒙), (3.3)

where R is a linear operator and R (𝒙, 𝒙′) = ⟨𝒒(𝒙)𝒒H(𝒙′)⟩E is the two-point correlation
tensor. Since R is Hermitian positive-definite, its eigenvalues 𝜆 (𝑖) are real positive that
each represents a fraction of the fluctuation energy, and the eigenvectors {𝝍 (𝑖) }𝑀

𝑖=1 form an
orthogonal basis under the inner product (3.1).

In the framework of spectral POD (SPOD), the eigenvalue problem (3.3) is cast as

R𝝍 (𝑖) (𝒙, 𝑡) =
∫
𝛀

∫ ∞

−∞
R (𝒙, 𝒙′, 𝑡, 𝑡′)W (𝒙′)𝝍 (𝑖) (𝒙′, 𝑡′) d𝒙′d𝑡′ = 𝜆 (𝑖)𝝍 (𝑖) (𝒙, 𝑡), (3.4)

and R (𝒙, 𝒙′, 𝑡, 𝑡′) = ⟨𝒒(𝒙, 𝑡)𝒒H(𝒙′, 𝑡′)⟩E is the two-point, two-time correlation tensor. With
time-homogeneity, it reduces to R (𝒙, 𝒙′, 𝜏) as a function of 𝜏 = 𝑡 − 𝑡′, and is the Fourier
transform pair of the spectral density tensor S (𝒙, 𝒙′, 𝑓 ) = ⟨�̂�(𝒙, 𝑓 ) �̂�H(𝒙′, 𝑓 )⟩E:

R (𝒙, 𝒙′, 𝜏) =
∫ ∞

−∞
S (𝒙, 𝒙′, 𝑓 )𝑒𝑖2𝜋 𝑓 𝜏 d 𝑓 . (3.5)

Hence, 𝝓 (𝑖) (𝒙, 𝑓 ) = 𝝍 (𝑖) (𝒙, 𝑡)𝑒−𝑖2𝜋 𝑓 𝜏 will be the corresponding eigenmodes of the following
eigenvalue problem

S𝝓 (𝑖) (𝒙, 𝑓 ) =
∫
𝛀

S (𝒙, 𝒙′, 𝑓 )W (𝒙′)𝝓 (𝑖) (𝒙′, 𝑓 ) d𝒙′ = 𝜆 (𝑖) ( 𝑓 )𝝓 (𝑖) (𝒙, 𝑓 ), (3.6)

which will be solved separately for each frequency. Here �̂�(𝒙, 𝑓 ) denotes the Fourier mode
of 𝒒(𝒙, 𝑡) at frequency 𝑓 , and can be represented by the eigenfunctions 𝝓 (𝑖) (𝒙, 𝑓 ) as

�̂�(𝒙, 𝑓 ) =
∞∑︁
𝑖=1

√︃
𝜆 (𝑖) ( 𝑓 )𝝓 (𝑖) (𝒙, 𝑓 ). (3.7)

In the occasion of spectral POD, the weighted inner-product in (3.1)-(3.2) will be a space-time
integral

(𝒒1, 𝒒2)W =

∫
𝛀

∫ ∞

−∞
𝒒H

2 (𝒙, 𝑡)W (𝒙)𝒒1(𝒙, 𝑡) d𝒙d𝑡. (3.8)

We note that at the same frequency 𝑓 , different eigenvectors 𝝓 (𝑖) (𝒙, 𝑓 ), 𝝓 ( 𝑗 ) (𝒙, 𝑓 ) are
orthogonal under the spatial inner product (3.1) due to the symmetric positive-definiteness
of S (𝒙, 𝒙′, 𝑓 ). But eigenvectors 𝝓 (𝑖) (𝒙, 𝑓1), 𝝓 (𝑖) (𝒙, 𝑓2) at the same rank (𝑖) associated with
different frequencies are not necessarily orthogonal under space-only inner product.

Our numerical implementation is similar to those in Towne et al. (2018); Schmidt &
Colonius (2020). Data are sampled into blocks of sequenced snapshots (shown below is the
𝑙-th block)

Q (𝑙)
= [q (𝑙)

1 ,q (𝑙)
2 , ...,q (𝑙)

𝑁FFT
] ∈ R𝑁𝑑×𝑁FFT , (3.9)
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where each column q (𝑙)
𝑖

is one snapshot. The total number of snapshots in one block
(ensemble) is 𝑁FFT. The degree of freedom of one snapshot is 𝑁𝑑 = 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 × 𝑁var,
where 𝑁var is the dimension of the vector 𝒒(𝒙, 𝑡). In this study, we apply SPOD on the vertical
component of vorticity (𝜔𝑧 , hence 𝑁var = 1) in horizontal and vertical two-dimensional
cross-sections of the flow (with either 𝑁𝑧 = 1 or 𝑁𝑦 = 1, respectively).

A discrete Fourier transform (DFT) is performed on each block Q (𝑙) to yield

Q̂
(𝑙)

= [q̂ (𝑙)
1 , q̂ (𝑙)

2 , ..., q̂ (𝑙)
𝑁FFT

] ∈ C𝑁𝑑×𝑁FFT . (3.10)

Then the Fourier modes are sorted according to frequency (labeled as the 𝑘-th discrete
frequency) to form

Q̂𝑘 = [q̂ (1)
𝑘

, q̂ (2)
𝑘

, ..., q̂ (𝑁blk )
𝑘

] ∈ C𝑁𝑑×𝑁blk . (3.11)

The sampled spectral density at the 𝑘-th frequency is then S𝑘 = Q̂𝑘Q̂
H
𝑘 /(𝑁blk −1) and the

discrete form of the eigenvalue problem (3.6) is

S𝑘W𝚽𝑘 = 𝚽𝑘𝚲𝑘 , (3.12)

with the weight matrix W containing the weights of numerical quadrature at each grid point.
In practice, (3.12) is typically solved with the method of snapshots of Sirovich (1987) by
replacing 𝚽𝑘 = Q̂𝑘𝚿𝑘 such that (3.12) becomes an equivalent eigenvalue problem

1
𝑁blk − 1

Q̂
H
𝑘 WQ̂𝑘𝚿𝑘 = 𝚿𝑘𝚲𝑘 . (3.13)

that has a much smaller dimension when 𝑁blk ≪ 𝑁𝑑 is true. Hence, the eigenmodes of S𝑘

are recovered as �̃�𝑘 = Q̂𝑘𝚿𝑘𝚲
−1/2
𝑘

such that the eigenvalue decomposition is

S𝑘 = �̃�𝑘𝚲𝑘�̃�
H
𝑘 =

𝑁blk∑︁
𝑖=1

𝜆
(𝑖)
𝑘
𝝓 (𝑖)
𝑘

(𝝓 (𝑖)
𝑘
)H. (3.14)

The physical meaning of the spatial modes �̃�𝑘 (𝒙) can be interpreted as either the eigenvector
of the spectral density tensor S𝑘 or the left singular vector of the Fourier mode q̂𝑘 , at a discrete
frequency 𝑓𝑘 .

SPOD takes advantage of extracting spatial modes that evolve at a single frequency from a
time-resolved database as in table 1. It was applied to analyse stratified wakes by Nidhan et al.
(2020, 2022), who showed that it can successfully extract the large-scale VS motions and
the associated characteristic frequency. In oceanography applications, Zeiden et al. (2021)
applied a similar approach called empirical orthogonal functions (EOF) therein to the flow
past an island and successfully separated the vortical modes and the tidal modes. But in their
case, the EOFs are fit to three mooring points instead of the bulk of the flow, hence are
different from ours where the eigenmodes will be emphasised as global modes.

When converting the time series into Fourier modes in (3.10), Welch’s method (Welch
1967) is used to reduce the variance of the spectrum, with 𝑁FFT = 512 snapshots in each
block, and a Hamming window on each block to enforce periodicity. An overlap ratio of 50%
(𝑁ovlp = 256) between two sequential blocks is chosen to offset the effect of low weights near
the edges of the window. We end up with 13 blocks and the ensemble average will be taken
over all blocks to obtain SPOD eigenspectra. The convergence of the method is checked via
reducing the frequency resolution to 𝑁FFT = 256, or reducing the total number of snapshots
from 𝑁𝑡 = 4000 to 3000, and 2000. A high confidence level is obtained for the largest six
eigenvalues as well as the sum of all eigenvalues, at each frequency. This follows the fact
that for general eigenvalue-revealing algorithms, large eigenvalues converge faster. And it is

Rapids articles must not exceed this page length
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noted that, in the present wakes, converging high-rank SPOD eigenvalues with much smaller
magnitudes is still challenging even with 𝑁𝑡 = 4000 snapshots. In this paper, no particular
analysis will be conducted for higher than the sixth eigenvalue at any frequency.

In this database, a constant maximal Courant–Friedrichs–Lewy (CFL) number is kept
during the simulation, which results in an uneven (but almost uniform) time spacing of
snapshots. To obtain uniformly spaced data for DFT, a piecewise cubic Hermite interpolation
(PCHIP) is performed in time.

3.3. SPOD eigenspectra and vortex shedding frequencies
Figure 4(a-c) shows the global vertical enstrophy spectra 𝑆𝜔𝑧𝜔𝑧

( 𝑓 ) at different 2D planes
for BuInf, Bu25, and Bu1, respectively. The spectral density at a discrete frequency 𝑓𝑘 is
computed by summing over all SPOD eigenvalues at this frequency:

𝑆𝜔𝑧𝜔𝑧
( 𝑓𝑘) =

𝑁blk∑︁
𝑖

𝜆 (𝑖) ( 𝑓𝑘) = tr(S𝑘W ) =
∫
𝛀

S (𝒙, 𝒙, 𝑓𝑘) d𝒙, (3.15)

and is the spectral density of the area-integrated squared 𝜔𝑧 . It is independent of SPOD.
For all three cases and all planes examined, the spectra display strong harmonic spikes,

with the strongest peak defined as the VS frequency ( 𝑓VS) in each plane. The VS frequency
is independent of the vertical location of the four horizontal planes, and is also the same
in the central vertical plane, even though performing SPOD on separate planes allows the
freedom of selecting different frequencies. This indicates that for each case, 𝑓VS is a global
constant (for the heights examined), and the VS modes are three-dimensional global modes.
The VS Strouhal number is 𝑆𝑡VS = 𝑓VS𝐷/𝑈∞ = 0.264, 0.249, 0.266 for BuInf, Bu25, and
Bu1, respectively. It is noted that, since the characteristic frequency of the global mode ( 𝑓VS)
does not depend on the height or the local hill diameter, normalising it with a different length
scale than the hill base diameter 𝐷 would just make 𝑆𝑡VS different by a scalar multiple.
However, as will be discussed later, the numerical values of 𝑆𝑡VS using 𝐷 correspond well
to that of vortex shedding from a circular cylinder. Also, since 𝐷 determines the size of the
largest scales in the flow, it is a natural choice for the normalizing scale. In the eigenspectra,
the successive peaks are harmonics of the VS frequency at 2𝑆𝑡VS, 3𝑆𝑡VS, and so on.

Perfect et al. (2018) found that whether the VS frequency is a global constant or is controlled
by the local hill diameter, depends on a non-dimensional parameter: Burger number (𝐵𝑢).
The Burger number characterises the relative importance of two counteracting mechanisms
for vertical coupling: rotation and stratification. When 𝐵𝑢 is small (rotation is strong), the
bulk of the flow adjusts to be around the axis of rotation quickly, and geostrophic balance
is established, where the vertical variation is minimized. As 𝐵𝑢 is increased, the vertical
intercommunication is progressively weakened by stratification. Perfect et al. (2018) use
the diameter at half-height to be the characteristic horizontal scale so that their values of
Rossby number (𝑅𝑜∗) and Burger number (𝐵𝑢∗) are related to our values by 𝑅𝑜∗ = 2𝑅𝑜
and 𝐵𝑢∗ = 4𝐵𝑢. They performed a number of simulations and found that 𝐵𝑢∗cri = 5.5,
equivalently 𝐵𝑢cri = 1.4, is a regime-separation criterion below which the rotation is strong
enough to couple different layers to form vertically aligned vortices. Also, when 𝐵𝑢∗ > 12,
equivalently 𝐵𝑢 > 3, they found stratification to be more prominent so that vortices are shed
at different layers relatively independently. Turning to the present results, in each of the cases
at 𝐹𝑟 = 0.15 whose 𝑅𝑜 span unity to infinity, the VS frequency is independent of height,
indicating a potential disagreement between Perfect et al. (2018) and our results. On the
other hand, for Froude numbers similar to 𝐹𝑟 = 0.15 in Perfect et al. (2018), almost all the
cases (see figure 4, therein) were labeled as ‘vertically coupled shedding’ and had strong
rotation with 𝑅𝑜 between 0.025 and 0.25. Only their weakest rotation case with 𝑅𝑜 = 0.25
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Figure 4. (a-c) Global power spectra 𝑆𝜔𝑧𝜔𝑧
of 𝜔𝑧 as a function of Strouhal number

(𝑆𝑡 = 𝑓 𝐷/𝑈∞). Spectra are shown at four horizontal planes 𝑧/ℎ = 0.12, 0.25, 0.50, 0.75,
and the central vertical plane at 𝑦 = 0. The VS Strouhal number is marked as 𝑆𝑡VS as well
as the VS harmonics. The values take 𝑆𝑡VS = 0.264, 0.249, and 0.266 in (a-c), for cases
BuInf, Bu25, and Bu1, respectively. (d) Decay of the largest eigenvalue at the VS
frequency 𝑓VS and the harmonics (indexed by 𝑛 = 𝑓 / 𝑓VS) for the horizontal plane
𝑧/ℎ = 0.25 (results are similar for other locations). Color codes same as in (a-c).

was labeled as ‘vertically decoupled shedding’. It is also worth noting that, in the ROMS
simulations, vertical motions and pressure correlations are quite approximate (specially in
the near wake where vortex shedding is accompanied by small-scale turbulence) since the
momentum equation in that direction is reduced to a hydrostatic balance, and the pressure
field might play an important role in coupling VS.

Nevertheless, the fact that the modes extracted by SPOD are global modes, and they evolve
at the same frequency, implies that the large-scale vortices at 𝐹𝑟 = 0.15 are horizontally and
vertically coherent, as opposed to layered dynamics in strongly stratified flows. Our findings
indicate that the stratification of 𝐹𝑟 = 0.15 is not strong enough to vertically decouple the
vortex dynamics in the wake of the conical seamount, regardless of the presence of rotation,
and inclusion of 𝐹𝑟 is necessary in addition to 𝐵𝑢. The pure Burger number criterion has
the limitation that, for instance, with no rotation and small stratification, 𝐵𝑢 will be far
larger than 𝐵𝑢cri but the VS frequency can still be a global constant. The 𝐹𝑟 that marks the
transition from vertically coupled to decoupled VS in non-rotating hill wakes is subject to
future research.

Boyer et al. (1987) studied experimentally the wake behind a conical obstacle in linearly
stratified rotating flows. Their parameters spanned 0.08 < 𝐹𝑟 < 0.28, 0.06 < 𝑅𝑜 < 0.4,
and for three Reynolds numbers 𝑅𝑒𝐷 = 380, 760, 1140. Based on the measurement on
single horizontal cross-sections, they found the VS Strouhal number to be only a weak
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Figure 5. SPOD eigenspectra: (a) BuInf, (b) Bu25, and (c) Bu1. Horizontal plane at
𝑧/ℎ = 0.25 is shown (results are similar for other locations). From top to bottom are the
summation of all eigenvalues (darkest, spectral density as in figure 4(a-c)), and the first to
the sixth eigenvalues (from dark to light: 𝑖 = 1, 2, 3, 4, 5, 6), as a function of Strouhal
number (𝑆𝑡 = 𝑓 𝐷/𝑈∞). The difference between the first and the second eigenvalue is
filled with color.

function of both 𝑅𝑒 and 𝑅𝑜. The robustness of the VS frequency to rotation strength is also
observed numerically in this work, in a similar 𝐹𝑟-𝑅𝑜 regime but at a turbulent Reynolds
number 𝑅𝑒𝐷 = 10 000. Even though their Strouhal numbers are measured as the vortex
advection velocity divided by the mean separation of two same sign vortices, and ranged
from 0.20 < 𝑆𝑡 < 0.35, our VS Strouhal numbers still present a good quantitative agreement
with theirs. Moreover, we interpret the VS frequency revealed by SPOD as the characteristic
frequency of the most energetic global mode, which also agrees with single-point frequency
measurements in the intermediate wake (𝑥/𝐷 > 3, not shown).

The values of 𝑆𝑡VS for all three cases are close to 𝑆𝑡 = 0.2665, which is the 𝑅𝑒 → ∞
asymptote of the 𝑆𝑡-𝑅𝑒 relationship in low Reynolds number 2D cylinder wakes proposed
by (Williamson & Brown 1998). Note that their relation 𝑆𝑡 = 0.2665 − 1.018

√
𝑅𝑒 is given

for 50 < 𝑅𝑒𝐷 < 180 which is before the transition to 3D wakes. This transition happens at
around 𝑅𝑒 = 188.5 according to a global Floquet instability of the periodic wake (Barkley
& Henderson 1996). As a result, the 𝑆𝑡-𝑅𝑒 relationship experiences a discontinuity as a
sudden jump of 𝑆𝑡 during this transition (Williamson & Brown 1998; Fey et al. 1998), and
the asymptote of 𝑆𝑡 = 0.2665 isn’t reached in three-dimensional cylinder wakes. Fey et al.
(1998) showed that the maximum VS Strouhal number in a cylinder wake of about 𝑆𝑡 = 0.21
is reached right before the onset of the Kelvin-Helmholtz instability in the shear layer. We
interpret the observed values of VS frequencies in our hill wakes as a saturation of the
Q2D VS, which won’t be observed in three-dimensional cylinder wakes at this Reynolds
number and above. This interpretation is consistent with the finding in Boyer et al. (1987)
that the robustness of 𝑓VS to rotation rate is not affected by the Reynolds number, in their
low-to-moderate Reynolds number experiments.

The enstrophy distribution among different eigenvalues is an important measure of the
complexity of the system. Figure 5 shows the sum of all eigenvalues, and also the first to
the sixth eigenvalues (from dark to light) according to their absolute value. For frequencies
at or close to the VS frequency and its harmonics, the first eigenvalue accounts for most of
the enstrophy, and is an order of magnitude larger than the second eigenvalue. However, for
larger frequencies (𝑆𝑡 > 2), the dominance of the leading eigenvalues is lost, as the degree of
freedom for small-scale motions is increased. The significance of low-rankness in the spectra
is therefore two-fold. There are strong harmonic spikes in the SPOD eigenspectra in figure
4(a-c), implying that a great portion of enstrophy is contained in the large-scale VS motions.
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For the VS shedding frequency and its harmonics, the first two eigenvalues contribute the
most of the enstrophy.

Moreover, the enstrophy distribution among the harmonics is shown in figure 4(d). The
decay of the first eigenvalue 𝜆 (1) as a function of the integer harmonic index 𝑛 = 𝑓 / 𝑓VS
is plotted. Similar to figure 5, one horizontal plane 𝑧/ℎ = 0.25 is chosen, but the results
are qualitatively similar for the other three selected horizontal planes. For all three Burger
numbers, 𝜆 (1) decays approximately as a power progression as 𝑛−3, which is slower than
the geometric decay of distinct POD eigenvalues in 2D cylinder wakes (Noack et al.
2003). Nevertheless, higher harmonics contain a progressively smaller amount of enstrophy.
Additionally, by comparing the absolute value of 𝜆 (1) in figure 4(d) and

∑
𝑖 𝜆

(𝑖) in figure
4(a-c), it is generally true that vertical enstrophy is increased as the rotating rate increases.
This is an effect of system rotation that promotes vortical motion around the rotation axis as
will be discussed in more detail in section 5.

In all, the large scales of the vortical motion can be well represented by a few characteristic
frequencies and the associated leading modes. Such low-rank behaviour suggests the
possibility of reduced-order modelling of stratified hill wakes even at large Reynolds numbers.

3.4. SPOD eigenfunctions and large-scale global modes
Apart from the temporal characteristics uncovered by SPOD eigenspectra, the SPOD
eigenmodes represent energetic flow structures that are coherent in space and time and,
therefore, dynamically important. The real parts of the leading SPOD modes (corresponding
to the largest eigenvalue at each frequency) are plotted in figures 6-7, for two frequencies 𝑓VS
and 2 𝑓VS and on various 2D planes. The eigenfunctions are free up to a scalar multiple and are
normalised by the largest modulus of the spatial mode in the same plane. The interpretation
of the magnitude of the eigenmodes (or the darkness of the colors) as the intensity of the
structures is only meaningful when the comparison is made within the same plane.

For case BuInf (no rotation), the VS mode in figure 6(a) is reminiscent of the marginally
stable global modes found in the linear stability analysis of low Reynolds number cylinder
wakes (Barkley & Henderson 1996; Mittal 2008). However, the phases of the global mode
are different in different planes, with the phases of higher planes leading. This is clearer in
the vertical plane (𝑦 = 0), which shows the tilting and elongation of the structures as an
effect of stratification. Note that the vertical coordinate is normalised by the hill height ℎ
which is about 0.3 times the base diameter; in un-normalized coordinates, the angle of the
slanted ‘tongues’ is very shallow. The tilting angle from the horizontal of the structures in
the top panel of figure 6(a) ranges from about 8◦ close to the bottom wall to 2◦ near the top,
with an average of about 4◦ which is almost constant during the evolution. Although the VS
structures are not vertical, they still evolve cohesively at 𝑓VS and experience little change
during the advection. In the later section 4, the lack of change of the tilting angle will be
shown to be a result of a roughly constant advection velocity of the vortices. Similar slanted
mode as in figure 6(a) was found in a stratified sphere wake by Chongsiripinyo et al. (2017)
(referred as ‘surfboards’ therein), but whether it is a common feature of stratified bluff-body
wakes is subject to future research.

Moreover, the standing-wave-like spatial modes of 𝑓VS in figure 6(a) are symmetric about
𝑦 = 0, representing the advection of the perturbation vorticity𝜔′

𝑧 = 𝜔𝑧−⟨𝜔𝑧⟩. The projection
of 𝜔′

𝑧 on the 𝑓VS mode has a period of 𝑇VS and the streamwise wavelength of the mode is
interpreted as the average spacing of the Kármán vortices. The appearance of the symmetric
𝑓VS mode on the antisymmetric mean flow (see figure 3d), in analogy to low Reynolds
number 2D cylinder wakes (Kumar & Mittal 2006), can be viewed as an accompaniment to
the symmetry-breaking bifurcation from a steady wake to periodic shedding.

The modes of 2 𝑓VS in figure 6(b) are antisymmetric, with a wavelength about half of
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Figure 6. Leading SPOD eigenmodes corresponding to 𝑓VS (a,c) and 2 𝑓VS (b,d), for
cases BuInf (a,b) and Bu25 (c,d). The plotted quantity is the real part of SPOD
eigenfunction on each plane, normalized by the maximum value in the plane. In each
figure, the top plane is a vertical plane is at 𝑦 = 0, and the lower planes are, from the
second row to bottom, horizontal planes at 𝑧/ℎ = 0.75, 0.50, 0.12.
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(a) (b)

Figure 7. For case Bu1. Caption same as in figure 6.

that in the 𝑓VS mode. A result of this reflection antisymmetry is that the eigenspectrum at
the vertical plane (black dashed line in figure 4a) doesn’t exhibit a peak at 2 𝑓VS, unlike the
spectra at horizontal planes. The antisymmetry implies a zero magnitude of the 2 𝑓VS mode
at the centreline (𝑦 = 0), hence the top row in mode 4(b) does not imply any dynamical
importance.

The imaginary parts of the eigenmodes are not shown, which are different from the real
parts by a streamwise phase shift of 𝜋/2, and are therefore representing the same VS dynamics.
The phase shift is essential for two standing-wave-like eigenmodes with the same streamwise
wavelength (such as the real and imaginary parts of the 𝑓VS mode) to accommodate a
traveling-wave-like structure (such as the advecting VS motion) as noted by Rempfer & Fasel
(1994).

For cases Bu25 and Bu1, the reflectional symmetry is broken by the Coriolis force and,
unlike BuInf, the peak at 2 𝑓VS is observed in the eigenspectra at the vertical plane (black
dashed lines). The rightward (−𝑦) shift of the vortex wake is consistent with the direction
of the Ekman veering of a bottom the unbalanced mean pressure gradient. This asymmetry
can also be found in the SPOD modes in figures 6(c,d) and 7(a,b), where the cyclones
(on the left side of the bulk of the wake, looking from above) are preferred and amplified,
as compared to the anticyclones. However, in the vertical mode (first row in figure 6(c,d)),
slanted structures are still statistically significant, even though figure 2(b) shows that, for case
Bu25, some anticyclones have already become columnar. This suggests that the stratification
in Bu25 is still dominating, and rotation has not been able to modify the spatial organisation
of the structures. However, the presence of rotation significantly alters the structure inside
the anticyclones, which will be analysed in section 5.

For case Bu1 (strong rotation), the global modes in figure 7(a-b) show excellent vertical
alignment, agreeing with the shed ‘columns’ in figure 2(c). In the vertical plane (see the
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first row in figure 7a), both cyclonic and anticyclonic structures extend slightly higher than
the obstacle peak, whereas the structures in cases Bu25 and BuInf are limited to below
the obstacle peak, signifying that the obstacle’s range of influence is vertically increased
by increasing rotation. We note that those ‘columns’ are different from the typical Taylor
column in rotating flow over obstacles. A Taylor column has an infinite height on the top
of a finite object that generates it, whereas the columnar global mode in case Bu1 has a
finite height. In figures 7(a,b) it can be seen that the parts of the global mode near the hill
(0 < 𝑥/𝐷 < 1) are smaller and slanted, and they eventually become organised into tall
‘columns’ during their advection downstream as rotation is experienced, instead of being
columnar at the generation.

4. Vortex centre tracking and advection velocity
The previous section on coherent structures was a macroscopic view that was enabled by the
extraction of global SPOD modes. In this section, we will take a microscopic (at the level of
individual vortices) view of the cyclonic (negative, note the Southern Hemisphere setting)
and anticyclonic (positive) vortices. To do so, individual vortex centers will be identified and,
by computation of statistics conditioned to them, various properties will be diagnosed on an
ensemble-average basis: vortex advection velocity discussed in this section and, in section 5,
the vorticity distribution inside the vortices and furthermore the stability of wake vortices as
inferred by the application of linear-theory-based stability criteria of varying complexity.

The advection velocity in turbulent wakes past the near-wake stage can be taken to be close
or equal to the freestream velocity 𝑈∞, e.g., beyond 𝑥 = 6𝐷 in the study by VanDine et al.
(2018) of non-rotating wakes at 𝐹𝑟 ⩾ 𝑂 (1). Whether this constancy holds everywhere in the
flow, and whether there is any asymmetric advection between the cyclonic and anticyclonic
sides, requires clarification for geophysical wakes.

The present time-resolved database enables temporal tracking of the vortices to study their
behaviour during the evolution. We apply a clustering method – mean shift to extract the
vortex centres in horizontal snapshots, and then follow each identified centre in time. An
example of identified vortex centres is illustrated in figure 8. Those centres are identified in
one horizontal plane (𝑧/ℎ = 0.50) which is shown in the bottom row, and their projection
onto the vertical central plane (𝑦 = 0) is shown in the top row. Symbols represent centres
and are superposed on the vorticity field. To avoid the turbulent near-wake region where the
wake vortices have not yet fully formed, the domain of vortex tracking starts at 𝑥/𝐷 = 2. The
outflow region (13 < 𝑥/𝐷 < 15) is also not considered for vortex tracking, to avoid possible
errors induced by the convective boundary condition. The implementation of the method is
presented in detail in Appendix A.

An example of the trajectory of vortex centres is shown in figure 9 for case Bu1 at
𝑧/ℎ = 0.50. Each trajectory is a sequence of streamwise locations of vortex centres 𝑥𝑐 as a
function of time 𝑡, and the local trajectory slope gives the local vortex advection velocity. It
can be seen in figure 9 that the local slope is almost a constant throughout the downstream
advection and the 𝑥𝑐-𝑡 trajectories are very close to straight lines.

In order to estimate the average vortex advection velocity (𝑈𝑐) using all available data,
a linear fit of each trajectory in the 𝑥𝑐-𝑡 diagram is performed to obtain the slope, and the
advection velocity at a certain height (𝑧/ℎ) is the ensemble average over all trajectories at the
same height. Since the advection velocity changes little as 𝑥 increases, only trajectories that
last longer than 50 snapshots (around one VS period) are considered to exclude the momentary
tracking of small vortices other than the Kármán vortices. No significant difference is found
in the results by changing this number to 25. In total, more than 80 trajectories are extracted
for either positive or negative vortices in each case. The 𝑅2 value of the linear regression
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(a) (b)

Figure 8. Visualisation of identified vortex centers, for cases (a) BuInf and (b) Bu1.
Circles and triangles mark the centres of positive and negative vortices, respectively.
Shown are the centres identified in a horizontal plane at 𝑧/ℎ = 0.50 (bottom row) and their
projection in the vertical central plane at 𝑦 = 0 (top row).
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Figure 9. The 𝑥𝑐-𝑡 diagram of the trajectories of centers of positive vortices at 𝑧/ℎ = 0.50
in case Bu1. Each black circle marks the instantaneous location 𝑥𝑐 of a positive vortex
centre, at a time 𝑡. The red dashed line has a non-dimensional slope of 0.9, corresponding
to a vortex advection velocity of 0.9𝑈∞. For clarity, vortex centres are plotted every five
snapshots.

exceeds 0.999 in all cases except for the positive vortices in Bu25, which has 𝑅2 > 0.99,
confirming the excellent constancy of the advection velocity throughout the investigated
domain, 𝑥/𝐷 = 3 to 𝑥/𝐷 = 13. Table 2 lists the advection velocity for all three Burger
numbers, for vertical planes 𝑧/ℎ = 0.12, 0.25, 0.50.

For BuInf, 𝑈𝑐 of positive and negative vortices are practically the same, as expected.
Furthermore, 𝑈𝑐 exhibits no significant variation from 𝑧/ℎ = 0.12 to 𝑧/ℎ = 0.50. In cases
Bu25 and Bu1, anticyclones (positive vorticity) tend to move slower than cyclones (negative
vortices), presumably due to their larger size (see figure 3), and this discrepancy is more
pronounced at higher planes where vorticity is weaker. Among all the cases, Bu1 has the
highest advection velocity as well as the smallest vortex sizes. Nevertheless, in all cases
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Location BuInf Bu25 Bu1
(+) (−) (+) (−) (+) (−)

𝑧/ℎ = 0.12 0.877 0.880 0.894 0.888 0.902 0.910

𝑧/ℎ = 0.25 0.889 0.890 0.877 0.885 0.901 0.914

𝑧/ℎ = 0.50 0.868 0.872 0.868 0.889 0.891 0.916

Table 2. Vortex advection velocity (𝑈𝑐) normalised by 𝑈∞. Positive and negative vortices
are denoted as ‘+’ and ‘−’, respectively. For all cases, the standard deviation for the
advection velocity is less than 5 × 10−3𝑈∞.
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Figure 10. Averaged trajectories of identified vortex centres: (a) BuInf, (b) Bu25, and (c)
Bu1. Solid lines with circles and dashed lines with triangles represent positive and
negative vortices, respectively. Dark colors are for a lower plane at 𝑧/ℎ = 0.12 and light
colors for a higher plane at 𝑧/ℎ = 0.50.

studied here, regardless of the sign of vorticity, location, and rotation Rossby number, the
vortex advection velocities are very close, and can be well approximated by a single value,
𝑈𝑐 = 0.9𝑈∞. The near constancy of𝑈𝑐 is consistent with the observation of the global modes
in section 3 that the tilting angles of the structures do not change as they evolve downstream.
It is worth noting that the present results agree well with the measurement by Zhou & Antonia
(1992) in laminar and turbulent cylinder wakes that the advection velocity is about 0.9𝑈∞.

The lateral motion of the vortices is also of physical and practical importance. Physically,
the lateral movement of the vortices away from the centreline indicates the expansion of
the wake and widening of the associated transport of mass, momentum, and any scalar
fields in the flow. Practically, the mean locations of vortex centres and their variability
are instructional to field observations as to where to place measurement stations and to
experiments as to where to probe the flowfield. The simple choice of data sampling on a
line at constant 𝑦 ≠ 0 is not ideal, as is shown by the curvature of the average path of
vortex centres in figure 10. The average is performed locally in circles of radius 𝐷/2 whose
successive centers (𝑥/𝐷 = 4, 5, ..., 12) have an increment of 𝐷. Each symbol represents data
from all vortex centres that fall in the range of ±𝐷/2 of the 𝑥-coordinate of the symbol.
Solid and dashed lines are the averaged paths of positive and negative vortices, respectively.
Results from two planes at 𝑧/ℎ = 0.12, 0.50 are shown.

For case BuInf, the distance between positive and negative vortices slightly increases as
they are advected downstream, as a result of diffusion of wake vorticity and the expansion
of the wake. Taking that as a baseline, increasing rotation can either widen (Bu25, excluding
positive vortices at 𝑧/ℎ = 0.50 where dipoles are formed) or narrow (Bu1) the wake,
indicating the nonlinear effect of rotation on wake width growth.
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For case Bu1 (figure 10 c), the lateral locations of vortex centres are closest to the centreline,
compared to the other two cases, and is consistent with the fact that both positive and negative
vortices are most compact and smallest at the same 𝑧/ℎ location in this case. Moreover, the
entire wake characterised by vortex centres is slightly titled to the right (−𝑦 direction), in
agreement with the direction of the Ekman veering due to an unbalanced pressure gradient
at the bottom boundary of rotating flows. In terms of the vertical alignment, the negative
vortices are almost aligned perfectly in vertical throughout the downstream evolution, while
positive vortices are not, indicating asymmetry between their properties which will be studied
in detail in the next section.

For case Bu25, the wake is the widest on the left side since the paths of negative vortices
have the most deviation from the centreline. It is worth mentioning that the light green
solid line (at 𝑧/ℎ = 0.50 in Bu25) is special. It represents the path of anticyclonic positive
vortices that, statistically speaking, don’t reside on the right side (𝑦 < 0) of the hill as other
anticyclones but deviate to the left side (𝑦 > 0) instead. This is due to the influence of the
stronger cyclonic negative vortices on the left side and the resultant formation of vortex
dipoles with uneven vorticity that translate leftward, as shown by the visualisation in the
middle row in figure 3(b). It is worth emphasizing that dipole formation and the resultant
leftward deviation of the anticyclones is statistically significant. Generally, anticyclones are
expected on the right side of the hill, but this is clearly not true for the particular case of
Bu25 at 𝑧/ℎ = 0.50.

5. Cyclones and anti-cyclones; marginal instability
In non-rotating unsteady wakes of bluff bodies with a symmetrical cross-section, there exists
no statistical asymmetry in the mean between positive or negative vorticity as the reflectional
symmetry is respected. As a result, in a classic cylinder wake or the present non-rotating
case (case BuInf), the mean vertical vorticity is antisymmetric with respect to the centreline
𝑦 = 0 (see figure 10d). However, the Coriolis force that accompanies system rotation breaks
this reflectional symmetry. As the Coriolis frequency ( 𝑓c) is negative in this study, positive
vortices (𝜔𝑧 > 0) are AVs and vice versa. The CVs and AVs present considerable differences
in the rotating cases as illustrated by the visualisations of figure 3.

This section is arranged as follows: section 5.1 compares the probability distribution
function (p.d.f.) of positive and negative 𝜔𝑧 in different cases and examines the systematic
asymmetries and biases that rotation introduces to vorticity; section 5.2 utilises the vortex
centres extracted in the previous section to obtain ensemble-averaged conditional statistics
to characterize how vortex structure depends on rotation; 5.3 elaborates on the stability
properties of AVs and their implication.

5.1. Probability distribution of vorticity
The p.d.f. of |𝜔𝑧 | for positive vorticity (solid line) and negative vorticity (dashed line) are
shown separately and on the planes 𝑧/ℎ = 0.12 (figure 11a) and 0.50 (figure 11b). Each
p.d.f. is normalised such that the area under each line is equal. For case BuInf, symmetry
is achieved for vorticity of all magnitudes, as expected. Comparing cases Bu25 and Bu1,
there is an increasing asymmetry between the p.d.f. of positive and negative vorticity, as the
rotation strength is increased.

Consider the Bu1 case (blue lines). In plane 𝑧/ℎ = 0.12 shown in figure 11(a), there is
a local peak for cyclonic vorticity (negative 𝜔𝑧) and one for anticyclonic vorticity (positive
𝜔𝑧), both being slightly larger than the system rotation rate and close to 1.1| 𝑓c |. In plane
𝑧/ℎ = 0.50 shown in figure 11(b), there is a local peak only for anticyclonic (positive)
vorticity at 0.7| 𝑓c |.



21

(a)

10−1 100 101 102

|ωz|D/U∞

10−6

10−5

10−4

10−3

10−2

10−1

p.
 d
. f
.

Bu=∞
Bu=25
Bu=∞

(b)

10−1 100 101 102

|ωz|D/U∞

10−6

10−5

10−4

10−3

10−2

10−1

 

Bu=∞
Bu=25
Bu=∞

Figure 11. P.d.f. of |𝜔𝑧 | at (a) 𝑧/ℎ = 0.12, and (b) 𝑧/ℎ = 0.50. Solid lines indicate
positive vorticity (AVs), and dashed lines indicate negative vorticity (CVs). The vertical
dotted lines represent the magnitude of the non-dimensional Coriolis frequency
| 𝑓c |𝐷/𝑈∞ = 1/𝑅𝑜, 4/3 for case Bu25 and 20/3 for case Bu1, respectively.

For case Bu25, the p.d.f. of cyclonic vorticity at 𝑧/ℎ = 0.12 shown in figure 11(a) also has
a peak above | 𝑓c | (with peak relative vorticity 3.1| 𝑓c |, which is significantly greater that in
case Bu1). On the other hand, anticyclonic vorticity does not show any observable peak near
| 𝑓c |.

The local peaks in p.d.f.s are interpreted as the values that are more commonly found in
the flow compared to their neighbours, instead of the most intense ones. In the next section,
we will show the existence and persistence of intense anticyclones (𝜔𝑧 > | 𝑓c |) in both Bu1
and Bu25 and discuss their stability.

5.2. Vorticity conditioned to individually tracked vortices
The vorticity distribution inside wake vortices is essential to the understanding of their
kinematics, the idealisation and modelling of such vortical wakes, and the role of vortex
stability. The previous section on vorticity p.d.f., while giving an overall statistical view of
cyclonic/anticyclonic vorticity, does not reveal the properties of individual coherent wake
vortices – the focus of this section. The identification of vortex centers in section 4 is
leveraged to quantify the vorticity conditioned to the identified vortex centres and thus reveal
the flow inside and around the vortices. As elaborated below, rotation significantly impacts
the downstream evolution of the vortex-conditioned distribution of 𝜔𝑧 and, notably, the
difference between AV and CV is larger for 𝐵𝑢 = 25 than for 𝐵𝑢 = 1.

Figure 12 shows profiles of the average of 𝜔𝑧 (𝑥), conditioned to instantaneous individual
vortex centres. Here, 𝑥 = 𝑥 − 𝑥𝑐 with 𝑥𝑐 denoting the streamwise location of the vortex
center. Since wakes are spatially developing, the results are presented at various values of
𝑥𝑐 to diagnose the downstream evolution of vortex-conditioned properties. Vortices with
centres apart less than 2𝐷 are assumed to possess similar properties and grouped for a
regional average. For example, the group located at 𝑥𝑐/𝐷 = 4 represents vortex centres that
fall in the section of 3 < 𝑥/𝐷 < 5 and so forth. Each vortex centre in the same group is
shifted to 𝑥 = 0 before the statistics are gathered. For each group, more than 2000 vortices
are available for the ensemble average.

For case BuInf shown in figure 12(a,b), vorticity profiles are Gaussian-like except close
to the edges. The peak magnitude decays and the width grows as a result of diffusion.
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Figure 12. Conditionally averaged vorticity distribution around vortex centres, 𝜔𝑧𝐷/𝑈∞
for positive vortices (AVs, solid) and −𝜔𝑧𝐷/𝑈∞ for negative vortices (CVs, dashed). (a,b)
BuInf, (c,d) Bu25, and (e,f) Bu1. Horizontal planes shown are at 𝑧/ℎ = 0.12 (a,c,e) in the
left column and at 𝑧/ℎ = 0.50 (b,d,f) in the right column. The horizontal dotted lines in
(c,d,e,f) indicates the case-dependent absolute magnitude of the Coriolis frequency (| 𝑓c |).
In plots (c-f), the strongest CVs have peak magnitudes of 𝜔𝑧/ 𝑓c = 5.1, 3.0, 2.2, 2.2, and
the strongest AVs have peaks 𝜔𝑧/ 𝑓c = −2.4,−1.2,−1.3,−0.8, respectively.

Otherwise, no significant change is present when 𝑥 increases. In figure 12(a) at 𝑧/ℎ = 0.12,
the magnitude of 𝜔𝑧 near 𝑥/𝐷 = ±1 is close to zero – the asymptotic far-field condition for
isolated vortices. However, in figure 12(b) at 𝑧/ℎ = 0.50, the vorticity can change sign when
𝑥/𝐷 varies between 0 and −1, becoming substantially negative for the group 𝑥𝑐/𝐷 = 4 but
less so further downstream. A similar sign change is not observed when 𝑥 varies between 0
and 1. As seen in the middle and bottom rows of figure 3(a), wake vortices of both signs at
𝑧/ℎ = 0.50 are more spatially diffuse than at 𝑧/ℎ = 0.12 and are almost side-by-side in the
region around 𝑥/𝐷 = 4, making possible the sign change of vorticity.
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CV AVcase 𝑧/ℎ 𝑥𝑐/𝐷 −𝜔𝑧, 𝑝𝐷/𝑈∞ −𝜔𝑧, 𝑝/| 𝑓c | 𝑙0.05/𝐷 𝜔𝑧, 𝑝𝐷/𝑈∞ 𝜔𝑧, 𝑝/| 𝑓c | 𝑙0.05/𝐷

Bu25
0.12 4 5.1 3.8 1.09 3.2 2.4 1.64

10 6.6 4.9 1.15 2.8 2.1 1.73

0.50 4 4.0 3.0 1.15 1.6 1.2 1.23
10 3.0 2.2 1.02 0.7 0.6 1.45

Bu1
0.12 4 13.5 2.0 0.74 8.7 1.3 0.88

10 13.0 2.0 0.80 8.4 1.3 0.93

0.50 4 15.0 2.3 0.75 5.5 0.8 0.80
10 12.3 1.9 0.82 5.2 0.8 1.04

Table 3. Summary of the properties of cyclonic and anticyclonic vortices, at two
horizontal planes 𝑧/ℎ = 0.12, 0.50 and two streamwise locations of vortex centres
𝑥𝑐/𝐷 = 4, 10. The peak vertical vorticity 𝜔𝑧, 𝑝 is given in convective (𝑈∞/𝐷) as well as
rotation ( 𝑓c) units. Vortex sizes are characterised by 𝑙0.05, which is the diameter at which
the intensity of 𝜔𝑧 decays to 0.05𝜔𝑧, 𝑝 .

For case Bu25 shown in figure 12(c,d), CVs and AVs are substantially different. CVs are
stronger and more compact, while AVs are weaker and wider. The latter is likely because
of the cyclo-geostrophic instability associated with the AVs upstream before the conditional
statistics are gathered. In figure 12(c), the vorticity distribution for 𝑥𝑐/𝐷 = 4 displays short-
wavelength wiggles and represents active instability of the AVs as can also be seen in the
bottom row of figure 3(b). We emphasize that the short-wavelength wiggles are in a profile
that is obtained by averaging over an ensemble of approximately 2000 members and are, thus,
statistically significant. This is later confirmed in section 5.3 where the generalised Rayleigh
discriminant on the left side of the aforementioned AVs is shown to lie beyond the stability
limit.

Figure 12(d) shows differentiated behavior between CVs and AVs when the vortex edge is
approached. The conditionally averaged vorticity in AVs (positive 𝜔𝑧) tends to change sign
toward the right end, while that around CVs (negative 𝜔𝑧) changes sign toward the left end.
This indicates a preferred configuration of vortex dipoles with a positive vortex on the left
and a negative vortex on the right, as can be seen in the middle row of figure 3(b). At the
same time, the dipoles are quite asymmetric; the positive 𝜔𝑧 AV is weaker and more spatially
diffuse than its partner, suggesting that the weaker AVs are more susceptible to the induced
motion of the CVs. It is also in case Bu25 that the asymmetry between CVs and AVs is
most pronounced. In terms of the strength of the AVs, the vorticity magnitude in the vortex
core exceeds | 𝑓c | at all streamwise locations in the plane at 𝑧/ℎ = 0.12. Thus, the absolute
vorticity stability criterion is not conclusive to the behavior of AVs since, contrary to that
stability criterion, AVs with |𝜔𝑧 | > 𝑓 are found to advect in a stable manner.

Strong rotation favors the formation of coherent vortices. For case Bu1 shown in figure
12(e,f), both CVs and AVs are strongest in units of 𝑈∞/𝐷 in all three cases. In the plane at
𝑧/ℎ = 0.12, both CVs and AVs have magnitude greater than | 𝑓c | while only CVs exceed | 𝑓c |
in the plane at 𝑧/ℎ = 0.50. Moreover, both CVs and AVs undergo little change in terms of
vorticity magnitude and distribution during their advection – a key difference from the other
two Burger numbers. This is in agreement with the mean flow characteristics to be discussed
in section 6 that the streamwise change in the momentum wake of Bu1 is slower than in the
other two cases.

Table 3 summarises the properties of CVs and AVs, in terms of peak intensity and vortex
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size. The peak intensity 𝜔𝑧, 𝑝 is the maximum of 𝜔𝑧 of each curve in figure 12, and the
vortex size 𝑙0.05 is the horizontal distance within which the magnitude of 𝜔𝑧 is greater than
0.05𝜔𝑧, 𝑝. It can be seen that at the same spatial location, vortex intensity is generally higher
in Bu1 in convective units (𝑈∞/𝐷). Moreover, the sizes of both CVs and AVs are consistently
smaller in case Bu1. In combination with greater peak vorticity, velocity gradients are much
larger in vortices in case Bu1 than in Bu25. In terms of vorticity in units of 𝑓c, Bu25 stands
out with the largest magnitude of 𝜔𝑧/ 𝑓c.

5.3. Stability of anticyclones
Vortex stability is an important question since it is related to the generation of turbulence and
small-scale motions. Here, we assess the ability of various criteria in the literature to identify
the stability characteristics of the advecting wake vortices of the present simulations. It will
be shown that more recent criteria that account for stratification and viscous dissipation
constitute a significant improvement over earlier attempts.

The study of the centrifugal (inertial) instability of swirling flows can be traced back to
Rayleigh (1917) who showed that the flow could become unstable if the squared angular
momentum decreases radially. The Rayleigh criterion is a necessary and sufficient condition
for the instability of inviscid columnar vortices subject to three-dimensional axisymmetric
perturbations (Drazin 2002). In a rotating frame, the Rayleigh criterion for inertial instability
is equivalent to the existence of a region with a negative product of Coriolis frequency and
absolute vorticity (Holton 1972),

𝑓c(𝜔𝑧 (𝑟) + 𝑓c) < 0, (5.1)
or in terms of the local Rossby number (note 𝑓c can take either sign),

𝑅𝑜L(𝑟) =
𝜔𝑧 (𝑟)
𝑓c

< −1. (5.2)

The criterion for inertial instability, (5.1), is widely used and implies that anticyclones with
vorticity magnitude exceeding | 𝑓𝑐 | are unlikely. However, it assumes a sheared parallel flow
as the base state (Holton 1972). Kloosterziel & Van Heijst (1991) found in their experiment
that CVs could be unstable too, contrary to (5.2) . With the inclusion of the centrifugal term,
a generalised Rayleigh discriminant (Kloosterziel & Van Heijst 1991; Mutabazi et al. 1992)
for centrifugal instability in rotating vortical flows was established as

𝜒(𝑟) = [𝜔𝑧 (𝑟) + 𝑓c] [2
𝑢𝜃 (𝑟)
𝑟

+ 𝑓c] < 0, (5.3)

where 𝜔𝑧 + 𝑓c is interpreted as the absolute vorticity and 𝑢𝜃 + 𝑓c𝑟/2 as the absolute velocity.
It implies instability when the absolute velocity and absolute vorticity are of opposite signs.
Equation (5.3) assumes a specific form (axisymmetric) of perturbations. Nevertheless, (5.3)
is good enough in many circumstances since axisymmetric perturbations are, in general,
more unstable than non-axisymmetric ones (Billant & Gallaire 2005).

The inclusion of stable stratification as well as finite vertical dissipation further complicates
the determination of stability. With stratification that suppresses small wavenumbers and
finite vertical dissipation that suppresses large wavenumbers, the range of unstable vertical
wavenumbers is reduced and (5.3) overestimates the unstable region (Lazar et al. 2013a). To
reduce the predicted unstable region, Lazar et al. (2013a) proposed a new criterion for the
curve of marginally stable Burger number:√︁

𝐵𝑢v =

(
3

8|𝑎0 |

)3/2 1
√
𝐸𝑘

( |2𝑅𝑜v + 1|)7/4

|𝑅𝑜v |
, (5.4)
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Figure 13. Conditionally averaged generalized Rayleigh discriminant 𝜒/ 𝑓 2
c for AVs in

cases Bu25 (a,b) and Bu1 (c,d). Horizontal planes shown are at 𝑧/ℎ = 0.12 (a,c), and at
𝑧/ℎ = 0.50 (b,d). Streamwise locations, 𝑥/𝐷 = 4, 6, 8 and 10 are shown in dark to light
colors. The dashed line in each figure marks the stability criterion of 𝜒 = 0.

where

𝑅𝑜v =
𝑉max
𝑓c𝑟max

; 𝐵𝑢v =

(
𝑁ℎ

𝑓c𝑟max

)2
; 𝐸𝑘 =

𝜈

| 𝑓c |ℎ2 (5.5)

are the vortex Rossby number, the vortex Burger number, and the vertical Ekman number.
Here, 𝑉max and 𝑟max refer to the peak magnitude of the azimuthal velocity and its location,
respectively. Positive and negative 𝑅𝑜v represent cyclones and anticyclones, respectively.
The constant 𝑎0 = −2.338 is the first zero of the Airy function. In the parameter space
of 𝐵𝑢v-𝑅𝑜v, Eq. (5.4) at each constant 𝐸𝑘 corresponds to a stability curve that separates
regimes that are stable and unstable to axisymmetric perturbations.

Moreover, Yim et al. (2019) found that the most unstable azimuthal wavenumber of the
centrifugal mode is not necessarily 𝑚 = 0 (axisymmetric), but depends on 𝐵𝑢v and will
have an impact on the determination of stability. Accordingly, they suggested the use of the
stability curve given as √︁

𝐵𝑢v =
0.23
√
𝐸𝑘

(𝑅𝑜v + 0.3)2√︁
|𝑅𝑜v |

, (5.6)

which considered the dependence of the most unstable azimuthal wavenumbers on 𝐵𝑢v. In
this section, we will compare the absolute vorticity criterion (5.1), the generalised Rayleigh
discriminant (5.3), as well as the new criteria (5.4) and (5.6), and assess their ability to
predict the stability of the wake vortices in the simulations.

As was shown in figure 12(c,e), anticyclones at 𝑧/ℎ = 0.12 are observed to possess a large
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Figure 14. Vortex properties: (a) conditionally averaged maximum azimuthal velocity
𝑉max and corresponding location 𝑟max and (b) square-root of the vortex Burger number√
𝐵𝑢v and the vortex Rossby number 𝑅𝑜v. Bu25 is shown in green and Bu1 in blue.

Colors from dark to light indicate planes at 𝑧/ℎ = 0.12, 0.25, 0.50. Each circle marks one
of the locations from 𝑥/𝐷 = 4, 6, 8, 10. The circles are connected by lines following the
order of 𝑥-locations and the last location (𝑥/𝐷 = 10) is marked with the largest circle. In
(b), dashed lines denote the stability curves (5.4) by Lazar et al. (2013a) and dotted lines
(5.6) by Yim et al. (2019) for cases Bu1 (blue) and Bu25 (green). The Ekman numbers are
𝐸𝑘 = |𝑅𝑜 |/𝑅𝑒𝐷 (𝐷/ℎ)2 = 8.33 × 10−4 and 1.67 × 10−4 for cases Bu25 and Bu1,
respectively. The left side of the neutral stability curves is stable.

region with |𝜔𝑧 | > | 𝑓c |, although they advect as stable vortices for a significant range of
downstream evolution distance. Hence, the absolute vorticity condition (5.1) is not sufficient
for instability.

Figure 13 shows the conditionally averaged generalized Rayleigh discriminant 𝜒(𝑥) in
(5.3) as a function of streamwise distance from the vortex centre. It can be seen that the
unstable region is reduced significantly compared to (5.1). In case Bu25 and at 𝑧/ℎ = 0.12
(figure 13a), at roughly 𝑥/𝐷 = 4 (the darkest green line), there is a small region, located
near the left edges of the AVs, that is found to be unstable, but otherwise, all regions have
at least marginally stable 𝜒. Furthermore, the vortices tend to evolve to a more stable state.
For Bu1, the AVs in the 𝑧/ℎ = 0.50 plane (figure 13b) have stable discriminant 𝜒, while
the peripheries of the AVs in the plane 𝑧/ℎ = 0.12 have marginally unstable 𝜒 which does
not experience noticeable change during the advection. The statistics of 𝜒 of the AVs in
the plane at 𝑧/ℎ = 0.25 are similar to those at 𝑧/ℎ = 0.12 and are not shown. Consistent
with the instantaneous snapshots in figure 3 and the statistics in figure 12, AV instability is
only observed for Bu25 at 𝑧/ℎ = 0.12, and is captured properly by the generalized Rayleigh
discriminant (5.3). On the other hand, in case Bu1 at 𝑧/ℎ = 0.12 (figure 13c) where the
discriminant is marginally unstable at the periphery of the vortices, no actual change to the
vorticity profile of the AVs is observed (see figure 12e). Hence, a sufficient condition for
stability requires other considerations, e.g., stratification and dissipation (Lazar et al. 2013a;
Yim et al. 2019).

Prior to applying (5.4) and (5.6), the vortex sizes and shapes in terms of 𝑉max and 𝑟max are
required. The radial direction is substituted by the streamwise (𝑥) direction and the azimuthal
velocity component by the spanwise velocity (𝑣). The peak velocity 𝑉max is defined as the
maximum azimuthal (herein transverse) velocity and the corresponding peak location 𝑟max
is interpreted as vortex radius.

Figure 14(a) shows 𝑉max and 𝑟max for Bu 25 and Bu1 at various streamwise locations. It
can be seen that for both Bu1 and Bu25, the vortex radii agree reasonably well with the radial
location of the least stable 𝜒 (figure 13), consistent with theoretical analysis and experimental
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observation that the edges of vortices are the least stable regions (Kloosterziel & Van Heijst
1991; Carnevale et al. 1997; Lazar et al. 2013a; Yim et al. 2016). Moreover, AVs in Bu25
have a much larger radii as well as variability during the evolution, compared to Bu1. The
AVs in Bu1, which have greater 𝑉max (over twice stronger than Bu25) and smaller vortex
radii, have the largest average vorticity.

Figure 14(b) shows the evolution of AVs, on average, in the 𝐵𝑢v-𝑅𝑜v parameter space.
The AVs in both Bu25 and Bu1 are characterised by vortex Rossby numbers of 𝑂 (0.5).
The stability curves (5.4) and (5.6) are also plotted for cases Bu1 and Bu25. The left side
of a stability curve is the stable region, and vice versa. It can be seen that all AVs in both
cases fall on the stable side, and they all tend to evolve to a more stable state (lower |𝑅𝑜v |
and further away from the stability limit). The stability results are in agreement with our
observation that there is no apparent sign of instability of AVs except for at 𝑧/ℎ = 0.12 in
Bu25, where AVs are still not independently distinguishable from the turbulent near wake.
The more conservative determination of cyclo-geostrophic instability in the present wakes
utilising (5.4) and (5.6) as compared to (5.3) also confirms the point of view in Lazar et al.
(2013a); Yim et al. (2019) that in real geophysical environments, stratification and vertical
dissipation will further shrink the range of unstable vertical wavenumbers from the low- and
high-wavenumber end, respectively, and lead to a greater range of stability.

6. Mean momentum wake
Stratified wakes in engineering applications, e.g. submersibles in the ocean, typically have
𝐹𝑟 ⩾ 𝑂 (1) and negligible rotation effects. Momentum wakes in these applications are
known to have very different properties compared to their unstratified counterparts, e.g. a
buoyancy-induced slowdown in the decay of mean momentum deficit in the so-called non-
equilibrium stage (Spedding 1997; Brucker & Sarkar 2010; Diamessis et al. 2011; de Stadler
& Sarkar 2012). Stratified wakes, which have been extensively studied for the sphere, have
been investigated recently for a blunt body – a disk (Chongsiripinyo & Sarkar 2020) and a
slender body – a 6:1 prolate spheroid (Ortiz-Tarin et al. 2023). In rotating stratified wakes
studied here, with the presence of coherent wake vortices and cyclo-geostrophic balance, the
mean flow is further influenced as will be elaborated below. Examination of the momentum
deficit profiles of this section shows enhanced persistence of the wake that has implications
in oceanography and meteorology. For example, even at 𝑥 = 12𝐷, the wake deficit behind the
near-bottom portion of the hill/seamount is as large as 0.4𝑈∞. Thus, absent other interacting
flow features, bottom roughness or other bathymetry, the wake of a steep 10 km base-diameter
hill would be preserved for 120 km. Also, a steep 3D topographic feature would lead to a
bottom flow (outside the viscous boundary layer) with significant shear, for instance, a
difference over obstacle height of 0.2 to 0.4 times 𝑈∞.

Figure 15(a) shows profiles of mean velocity deficit, 𝑈𝑑 (𝑦) = 𝑈∞ − ⟨𝑈⟩(𝑦), at various
streamwise locations in the plane 𝑧/ℎ = 0.12 (a,c,e) and figure 15(b) shows the streamwise
evolution of the centerline deficit velocity (𝑈0 = 𝑈𝑑 (𝑦 = 0)) along various heights (b,d,f).
The symbol ⟨·⟩ denotes the time average over the duration of data storage listed in table 1.

The non-rotating case BuInf (figure 15a) exhibits 𝑈𝑑 (𝑦) profiles that are laterally sym-
metric. The centerline velocity deficit (𝑈0(𝑥) in figure 15b) initially decreases after the
recirculation bubble but then increases again. This is consistent with the expansion and
shrinking of the ⟨𝜔𝑧⟩(𝑦) width in figure 3(d). In low-𝑅𝑒 two-dimensional cylinder wakes,
𝑈0(𝑥) has a similar non-monotonic behaviour (Kumar & Mittal 2012) and the vorticity
profile width also has a non-monotone variation (Barkley 2006). On the other hand, after the
recirculation zone, 𝑈0(𝑥) exhibits monotone decay in three-dimensional unstratified wakes.
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Figure 15. Time-averaged velocity deficit in the wake for cases BuInf (top row), Bu25
(middle row) and Bu1 (bottom row). Left column (a,c,e) shows transverse profiles of
velocity deficit at 𝑧/ℎ = 0.12 and various 𝑥/𝐷 = 1, 3, 5, 7, 9 (from dark to light). Right
column (b, d, f) shows the streamwise evolution of the centerline (𝑦 = 0) deficit at various
elevations, 𝑧/ℎ = 0.12, 0.25, 0.50, 0.75 (from dark to light).

This similarity of the mean deficit between two-dimensional wakes and non-rotating stratified
wakes, where the third dimension is confined by buoyancy, is intriguing.

In the rotating cases Bu25 and Bu1, the lateral symmetry of the mean wake is lost as
shown in figure 15(c,e). Rotation at 𝑅𝑜 = 0.75 (Bu25) leads to the instability and diffusivity
of AVs (commented on previously) and results in a wider wake compared to BuInf. However,
stronger rotation at 𝑅𝑜 = 0.15 (Bu1) creates tall shedding ‘columns’ that are compact
and almost ‘frozen’ during evolution, leading to a narrower wake instead. Comparing the
centreline deficit (figure 15), case Bu1 sustains the highest overall velocity deficit (roughly
above 0.2𝑈∞ at all planes) compared to the other two cases, presumably due to the lower
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diffusivity and higher degree of vortex coherence. In the lower portion of the hill (𝑧/ℎ = 0.12)
all three cases exhibit significant 𝑈0 ≈ 0.4𝑈∞ showing persistence of the near-bottom wake
in stratified flow, independent of rotation.

7. Concluding remarks
Wake vortices in stratified flows past an isolated bottom obstacle are studied via LES, at
moderately high Reynolds number (𝑅𝑒𝐷 = 10 000) and moderately strong stratification
(𝐹𝑟 = 0.15). The rotation Rossby number is varied to include cases representing non-
rotating (𝑅𝑜 = ∞), submesoscale (𝑅𝑜 = 0.75), and mesoscale (𝑅𝑜 = 0.15) wakes, resulting
in Burger numbers of ∞, 25, 1. In all three cases studied, the wakes present Q2D Kármán
vortex shedding in horizontal planes in the core of the wakes, which is a distinct feature of
strongly stratified wakes.

The statistical spatio-temporal coherence of the Kármán vortices is analysed with SPOD. It
is found that, at the present stratification (𝐹𝑟 = 0.15) and regardless of the rotation strength,
the shedding frequency is a global constant in each case that is independent of height from
𝑧/ℎ = 0.12 to 𝑧/ℎ = 0.75, which is the core of the wake away from the bottom boundary
layer and the region influenced by the lee waves near the top of the hill. This implies that, at
the present stratification, VS frequency can stay coupled vertically, instead of varying as a
function of the local (𝑧-dependent) diameter. The vertical coupling occurs even when rotation
is weak compared to stratification, a result that is inconsistent with the result of Perfect et al.
(2018) that vortices are vertically decoupled when 𝐵𝑢∗ > 12 or, converting to our definition,
𝐵𝑢 > 3. However, it is quite possible that, when stratification is further increased, the VS
frequency could vary with elevation.

Boyer et al. (1987) measured the VS frequency in a single plane as part of their experimental
study of the wake behind a conical obstacle in linearly stratified rotating flows. The frequency
showed little variation in their parametric study that spanned 0.08 < 𝐹𝑟 < 0.28, 0.06 < 𝑅𝑜 <

0.4, and three Reynolds numbers 𝑅𝑒𝐷 = 380, 760, 1140. The lack of rotational influence on
the VS frequency in the present work, which is at an order of magnitude larger 𝑅𝑒𝐷 , agrees
with Boyer et al. (1987).

Another implication of a global shedding frequency is that the spatial assemblies of SPOD
eigenmodes shown in figures 6-7 are 3D global modes that optimally represent the vertical
enstrophy of the flow. In the non-rotating case BuInf (figure 6(a,b)), VS structures are slanted
(yet three-dimensionally coherent) ‘tongues’ that tilt to the direction of the flow and form a
very shallow angle (steeper near the bottom and shallower above, but at 4◦ on average) with
the horizontal. The streamwise inclination of the structures appears to be preserved during
the downstream evolution and was explained by a constant advection velocity of vortices at
different heights. Rotation is found to have an influence on the vertical complexity of the
global modes, as the shape of the global modes change from slanted structures to vertical
‘columns’ as the rotation increases. However, the value of VS frequency was almost constant
(only a mild change of 𝑆𝑡VS over 0.25-0.27) for the different Rossby numbers investigated.

It is worth noting that despite the turbulence in the near wake, the flow exhibits overall low-
rank behaviour globally owing to the emergence of coherent structures. The low-rankness is
two-fold. First, the enstrophy spectra in figure 4 show dominant spikes at the VS shedding
frequency and its harmonics. Second, the gaps between eigenspectra shown in figure 5
indicate increasingly lower enstrophy in higher-order modes at each frequency. That being
said, the large scales of the flow can be well described by a finite set of harmonic modes.
This simplicity might encourage future reduced-order modelling of the coherent motion of
wake eddies in similar parameter regimes.

Besides the macroscopic view of the vortex structures as global modes and how they vary at



30

different 𝑅𝑜, a detailed examination of the profiles and evolution of the vortices is conducted.
A novel way of tracking vortices automatically in time-resolved snapshots is applied on the
LES database. Vortex centres (centres of regions of strong 𝜔𝑧) are extracted with the mean
shift algorithm (Fukunaga & Hostetler 1975; Comaniciu & Meer 2002) in each snapshot
on 2D horizontal planes. Then the history of vortex centres in time is compiled into graphs
that represent evolution trajectories. Finally, conditional statistics are gathered and ensemble
averaged on the paths of vortex evolution.

The vortex advection velocity, extracted from the time history of vortex centres, is found to
be near 0.9𝑈∞ in all three 𝐵𝑢 cases, which is quite constant vertically as well. The vertically
constant advection velocity explains the preserved vertical orientation of vortex structures
during evolution, in all cases. However, it is slightly different for cyclones and anticyclones
in the rotating cases presumably due to their size difference.

In geophysical flows, individual vortices are greatly influenced by background rotation. The
adjustment of 𝜔𝑧 to rotation as well as the cyclo-geostrophic instability of AVs, are analysed
by computing the statistics conditioned to identified vortex centres. The conditionally
averaged vorticity profiles reveal that dynamical processes during the downstream advection
of the vortices depend substantially on rotation. In case BuInf, the distribution of 𝜔𝑧 is
Gaussian-like, with the diffusion-induced downstream increase of size and decrease of peak
vorticity being the major feature. In case Bu25, the asymmetry between CVs and AVs is most
significant among all three cases, and the magnitude of |𝜔𝑧/ 𝑓c | is also higher than in the
other rotating case (Bu1). In case Bu1, both the CVs and AVs achieve the greatest magnitude
of vorticity in convective units, i.e., |𝜔𝑧𝐷/𝑈∞ |, due to the enhancement by rotation. Also,
both AVs and CVs experience little change during their evolution, implying that the vortices
in case Bu1 are already in a balanced state.

Relatively strong anticyclones (e.g., core relative vorticity 𝜔𝑧/ 𝑓c ≊ −1.3,−2.4 for Bu1 and
Bu25 respectively, at 𝑧/ℎ = 0.12) are found stable for a considerable distance of advection
(figure 12(c,e)). They would be unstable according to the absolute vorticity criterion (5.1),
which implies inertial instability when anticyclonic vorticity is stronger than the Coriolis
frequency (𝜔𝑧/ 𝑓c < −1). The inclusion of centrifugal contribution is shown as necessary
by examining the generalised Rayleigh criterion (Kloosterziel & Van Heijst 1991; Mutabazi
et al. 1992), which predicts overall stability in the bulk of the AVs and marginal instabilities
at the edges, in agreement with observations of stable AVs in the wake. Two new recently
proposed criteria (Lazar et al. 2013a; Yim et al. 2019) considering the effects of stratification
and vertical dissipation are also tested. Both criteria are in terms of the marginal stability
curves given by (5.4) and (5.6) in the parameter space of 𝐵𝑢v-𝑅𝑜v, where 𝐵𝑢v and 𝑅𝑜v
are the local (vortex) Burger and Rossby numbers specific to the local vorticity profile.
Further restricting the range of unstable vertical wavenumbers by including stratification and
dissipation, the criteria (5.4) and (5.6) both determine the AVs in the present work as stable
as shown in figure 14(b). The only marginally unstable wake vortices are found in case Bu25
at 𝑧/ℎ = 0.12 (see 𝑥/𝐷 = 2-3 in the last row of figure 3b and figure 13a), where the left side
of the eddies at downstream location 𝑥/𝐷 ∼ 4 is unstable. Further downstream, the region
of instability disappears.

Statistically, when the AVs evolve downstream, they tend to approach a more stable state
characterised by a larger (more stable) 𝜒 (figure 13), a smaller vortex Rossby number 𝑅𝑜v
(figure 14a), and a greater distance from the marginal stability curve (figure 14b). It is noted
that in the present wakes, AVs are observed to be stable in the streamwise extent of vortex
tracking (after 𝑥/𝐷 ∼ 3). Since both Rossby numbers studied (0.75 and 0.15) are smaller
than order unity, a Rossby radius of deformation defined as 𝑈∞/| 𝑓c | = 𝑅𝑜𝐷 which can be
regarded as a distance required for cyclo-geostrophic adjustment, will be smaller than 3𝐷
downstream. It is possible that at larger Rossby numbers, more unstable AVs will be observed
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further than 𝑥/𝐷 > 3 where the vortex tracking and stability determination are not obscured
by near-wake turbulence.

In terms of future work, it would be useful to study wake vortices in other parameter
regimes with non-hydrostatic simulations. Cases at lower 𝐹𝑟 and a wide range of 𝑅𝑜 are of
particular interest with respect to the variation of vortex shedding frequency. Submesoscale
instabilities at high 𝑅𝑜 and high 𝑅𝑒 are possible and need investigation. Near-wake turbulence
and mixing are also important follow-up topics in the context of the broader theme of ocean
turbulence and mixing. Theoretical global stability analyses of stratified wakes would also
provide a more complete picture.
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Appendix A. A vortex tracking method for time-resolved databases
Mean shift (Fukunaga & Hostetler 1975; Comaniciu & Meer 2002) is a widely used method
for pattern recognition in data analysis. It identifies centroids of condensed data points and
then segments the data according to the centroids they belong to. This method can be applied
to physical science as a means of data clustering, where some shared properties are expected
for data points in the same cluster. It is unsupervised in the sense that either the number
of clusters is required or the shape of clusters is prescribed. The basic idea is to move a
provisional centroid iteratively toward the local maximum of the population density, hence
it is also called a density-based method.

Similar to the implementation in Gong (2015), the mean shift algorithm is summarised as
follows:
Step 1. Randomly select an initial seed for the 𝑖-th centroid𝑉 (0)

𝑖
from all unclustered points,

or use the centroid computed in the 𝑛-th iteration 𝑉
(𝑛)
𝑖

.
Step 2. Compute the centre of geometry (the so-called mean, denoted as𝑉 (𝑛+1)

𝑖
) of the data

points that fall in the open ball B(𝑉 (𝑛)
𝑖

, 𝑟BW), where 𝑉
(𝑛)
𝑖

is the ball centre and 𝑟BW is the
radius.
Step 3. If the Euclidean distance |𝑉 (𝑛+1)

𝑖
− 𝑉

(𝑛)
𝑖

| between 𝑉
(𝑛+1)
𝑖

and 𝑉
(𝑛)
𝑖

is below the
tolerance, accept 𝑉 (𝑛+1)

𝑖
as 𝑉𝑖 . Otherwise, use 𝑉 (𝑛+1)

𝑖
as the new seed to restart Step 1.

Step 4. Compare the Euclidean distance of the centroid 𝑉𝑖 , to all existing centroids {𝑉𝑙}𝑖−1
𝑙=1

from previous iterations, and if ∃ 𝑗 , s.t. |𝑉𝑖 −𝑉 𝑗 | < 1/2𝑟BW(0 < 𝑗 < 𝑖), merge 𝑉𝑖 and 𝑉 𝑗 and
label their mean as 𝑉 𝑗 . Run through the distance check in Step 4 for 𝑉 𝑗 in the set {𝑉𝑙}𝑖−1

𝑙=1,𝑙≠ 𝑗
.

Step 5. Check if there are unvisited points. If yes, start over from Step 1; otherwise,
terminate.

The core steps 2-3 are illustrated in figure 16, where the shift of the mean is indicated by
an arrow. Based on the mean shift algorithm, the vortex centre identification and tracking
process utilised in this paper is summarised as follows:

(1) Mask the vorticity field. Convert each 2D vorticity field at a certain height𝜔𝑧 (𝑥, 𝑦, 𝑡; 𝑧)
into a binary field, with ones denoting points with 𝜔𝑧 > 𝛼 (if identifying positive vortex
centres) or 𝜔𝑧 < −𝛼 (if identifying negative vortex centres), and zeros denoting the rest.
Here a positive constant 𝛼(𝑧) is a threshold individually selected for each horizontal plane
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Figure 16. Illustration of the principle of the mean shift algorithm. Data points are
randomized and are for illustration purposes only. The symbol B(𝑉 (𝑛)

𝑖
, 𝑟BW) denotes an

open ball with its centre at 𝑉 (𝑛)
𝑖

and radius 𝑟BW, where 𝑉 (𝑛)
𝑖

is the 𝑛-th iteration of the
𝑖-th centroid, and 𝑟BW is the half bandwidth. The centroid 𝑉

(𝑛+1)
𝑖

represents the geometric
centre of all data points enclosed by the ball B(𝑉 (𝑛)

𝑖
, 𝑟BW) shown in red. The arrow

denotes the shift of the mean (centroid).

to disconnect vortices from each other. We note that the hill wake is inhomogeneous in all
three spatial directions and a global constant 𝛼 does not apply.

(2) Apply the mean-shift algorithm to identify (usually a handful of in our flow) centres
in each snapshot. Use 𝑉𝑖,𝑘 to label the 𝑖-th vortex centre (1 ⩽ 𝑖 ⩽ 𝑛max, where 𝑛max is the
maximum number of centres allowed) in the 𝑘-th snapshot (1 ⩽ 𝑘 ⩽ 𝑁𝑡 ). The half bandwidth
𝑟BW(𝑧) needs to be selected as a parameter individually for each plane, and is chosen to be
roughly 1.5 times the radius of a vortex, which is also smaller than the separation between
two same-sign vortices.

(3) Construct the graphs of vortex centre trajectories, with each centre 𝑉𝑖,𝑘 (1 ⩽ 𝑖 ⩽
𝑛max, 1 ⩽ 𝑘 ⩽ 𝑁𝑡 ) being a node. Only the connections (edges) between two nodes from
two consecutive snapshots are considered, with the connection weights being the Euclidean
distance between these two nodes Δ𝑥𝑐 = |𝑥𝑐 (𝑉𝑖,𝑘) − 𝑥𝑐 (𝑉 𝑗 ,𝑘+1) |, where 𝑥𝑐 stands for the
streamwise location of the centre. Two nodes are considered to belong to the history of the
same vortex (and hence belong to the same subgraph) if Δ𝑥𝑐 < 1.5𝑈∞Δ𝑡, where Δ𝑡 is the
time elapsed between these two snapshots. All connection weights that don’t satisfy this
restriction will be set to zero. The choice of the separation distance 1.5𝑈∞Δ𝑡 is meant to be
inclusive since it is unlikely for the vortex centres to travel much faster than the background
flow. On the other hand, this distance is small enough compared to the distance between
two distinct vortices. After doing so, it is almost ensured that each centre will only have one
forward and one backward connection in time. Each self-connected subgraph represents a
vortex evolution trajectory within the domain.

It is noted that the identification and tracking method described above has limitations,
such as requiring user input of a constant radius of searching, which is a priori knowledge
about the physical system and was chosen to be around 1.5 times the radius of Kármán
vortices in each plane. Hence, this method may not work in more complicated situations
such as in flows that have a wide range of scales of vortices, or in processes involving vortex
merging or splitting where two same-sign vortices can get too close. But for the present vortex
wakes and other similar vortical flows where the organisation and evolution of vortices is
clear, the computer-aided identification and tracking scheme is shown to be useful and easy
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to implement. Owing to the continuing advancement of computer power and experimental
techniques, time-resolved databases are becoming more available, where our snapshot-based
tracking method may facilitate the analysis of coherent structures in other types of flows and
will therefore be of broader interest.
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