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Abstract: In this note we describe the theory and numerical implementation of proper orthogonal
decomposition (POD). The original form – space-only or more suitably, space-time, as well as its spectral
version (in frequency domain) will both be included. We note that POD along with its core mathematical
foundation – singularvalue/eigenvalue decomposition, are well established. The only innovation left for
us is to introduce and interpret them in a relatively newer way.

1 Proper orthogonal decomposition
1.1 The POD problem
The POD problem Lumley (1967, 1970); Holmes et al. (2012) is to solve the following eigenvalue problem
(EVP)

Rϕi(x) =
∫

A
R(x,x′)W (x′)ϕi(x′) dx′ = λiϕi(x), (1)

with {ϕi}∞
i=1 as the basis functions which are mutually orthogonal over the domain A. Here

R(x,x′) = ⟨q(x, t)q(x′, t)⟩

is the two-point correlation tensor of a zero-mean time-homogeneous statistically stationary process q(x, t)
and W (x) is a symmetric weight matrix that makes the following inner product,

(q1, q2)W =
∫

A
qT

2 (x)W (x)q1(x) dx, (2)

suitable for defining an energy norm (∥q∥W = (q, q)1/2). Typically, W contains the constants of numerical
quadrature in a discrete system.

The goal of POD is to solve an optimization problem such that the space {ϕi}∞
i=1 can be represented

by an optimal finite set of basis functions such that the energy of the signal is maximized when projected
onto this basis as compared to any other basis with the same number of functions. In other words, the
POD basis is the one that aligns best with the data in L2 (least-square) sense. The optimization problem
is

ϕ(x) = arg max
∥ϕ∥W =1

⟨(q,ϕ)W ⟩, (3)

or, in terms minimization problem,

ϕ(x) = arg min
∥ϕ∥W =1

⟨∥q − (q,ϕ)Wϕ∥2
W ⟩. (4)

The optimization problem above is shown via a variational approach (Holmes et al., 2012) to be equivalent
to a Fredholm EVP as in (1).
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1.2 Discrete estimate of the correlation tensor
The simulation data is arranged into

Q = [q1, q2, ...., qNt
] ∈ RNd×Nt (5)

where each qi ∈ RNd is one snapshot, Nd is the degree of freedom of the data (the dimension of the vector
qi multiplied by the number of discrete grid points), and Nt is the number of snapshots. The discrete
estimate of the correlation tensor is then

R = ⟨qqT⟩ = 1
Nt − 1QQT = 1

Nt − 1

Nt∑
i=1

qiq
T
i (6)

where the factor Nt − 1 is the Bessel’s correction such that the expectation of the sampled (co)variance
converges to the (co)variance of the random signals. We note that the convergence problem of POD
resides mostly in the convergence of the estimation of the correlation tensor R, which will then be eigen-
decomposed as R = ΦΛΦT.

1.3 Method of snapshots
We note that R = QQT/(Nt − 1) is real symmetric, and the non-zero eigenvalues of QQT and QTQ are
the same. The spaces spanned by corresponding eigenvectors (eigenspaces) have the relation

eig(QQT)\null(QQT) = eig(QTQ)\null(QTQ), (7)

where null(·) denotes the null space spanned by eigenvectors associated with zero eigenvalues. That being
said, we can choose to solve the eigen-decomposition of one of QQT and QTQ, whichever has a smaller
dimension. The dimension of the discrete EVPis min (Nd, Nt), which will commonly be Nt in numerical
or experimental databases and hence the POD is typically performed in the temporal domain via the
method of snapshot Sirovich (1987).

The discrete EVP reads
RW Φ = ΦΛ, (8)

or, equivalently, in the formulation of method of snapshots (Sirovich, 1987),

1
Nt − 1QTW QΨ = ΨΛ, (9)

where the POD eigenmodes are then recovered as

Φ̃ = QΨΛ−1/2, (10)

which is just another way of saying the singular value decomposition of Q:

Q = Φ̃ΣΨT, (11)

with the singular-value matrix being Σ = Λ−1/2. We note that the eigenvector of the original EVP, Φ,
and the eigenvector in method of snapshots, Ψ, are the left and right singular vectors of the data matrix
Q, and correspond to an eigen-expansion of R in spatial or temporal domain, respectively.

In the temporal domain, the eigen-expansion is now R = Φ̃ΛΦ̃T with the orthonormality condition
for the eigenmodes being Φ̃TW Φ̃ = I. For convenience, the tilde will be dropped from now on. The POD
expansion is then

q(x, t) =
Nt∑
i=1

ai(t)ϕi(x), (12)



where the time-dependent amplitude ai(t) =
√
λiψi(t) is the rescaled eigenfunctions in the temporal

domain and (12) can be regarded as either an eigen-expansion in space or in time. We note the equivalence
and separation of space and time in (12). It can be interpreted as an expansion in spatial domain, with
ϕi(x) being the eigenfunctions and ai(t) being the temporal coefficients, or in temporal domain, with ai(t)
being the eigenfunctions and ϕi(x) being the spatial coefficients. That’s also why we call it space-time
POD instead of space-only.

We also note the orthonormality conditions of the spatial modes, ΦTWΦ = I, or

(ϕi,ϕj)W = δij (13)

and of the temporal modes (different coefficients are uncorrelated, like Fourier)

⟨aiaj⟩ = δijλi, (14)

take the same form. For more discussions on the temporal domain and the equivalence, the readers are
referred to Luchtenburg et al. (2009).

We make a last comment that POD is just another Fourier expansion, but in inhomogeneous directions.
If POD is done in homogeneous directions, Fourier modes will be recovered.

2 Spectral POD
Spectral POD (SPOD) could be established similarly.

2.1 The EVP
We denote the two-point, two-time correlation tensor as

R(x,x′, t, t′) = ⟨q(x, t)qH(x′, t′)⟩ (15)

where (·)H denotes Hermitian transpose. With time-homogeneity, it reduces to R(x,x′, τ) as a function
of τ = t− t′, and is the Fourier transform pair of the spectral density tensor

S(x,x′, f) = ⟨q̂(x, f)q̂H(x′, f)⟩. (16)

Then the EVP (1) is cast as

Rψ(i)(x, t) =
∫

A

∫ ∞

−∞
R(x,x′, t, t′)W (x′)ψi(x′, t′) dx′dt′ = λ(i)ψ(i)(x, t), (17)

with the weighted inner-product being a space-time integral

(q1, q2)W =
∫

A

∫ ∞

−∞
qH

2 (x, t)W (x)q1(x, t) dxdt, (18)

over which is also the orthonormality defined. Replacing with

R(x,x′, τ) =
∫ ∞

−∞
S(x,x′, f)ei2πfτ df, (19)

the EVP (17) becomes

Sϕ(i)(x, f) =
∫

A
S(x,x′, f)W (x′)ϕi(x′, f) dx′ = λ(i)(f)ϕ(i)(x, f), (20)

with ϕ(i)(x, f) = ψ(i)(x, t)e−i2πfτ being the corresponding eigenmodes.



Here q̂(x, f) denotes the Fourier mode of q(x, t) at frequency f , and can be represented by the
eigenfunctions ϕ(i)(x, f) as

q̂(x, f) =
∞∑

i=1

√
λ(i)(f)ϕ(i)(x, f). (21)

We note that at the same frequency f , different eigenvectors ϕ(i)(x, f),ϕ(j)(x, f) are orthogonal under
the spatial inner product (2) due to the symmetric positive-definiteness of S(x,x′, f). But eigenvectors
ϕ(i)(x, f1),ϕ(i)(x, f2) at the same rank (i) associated with different frequencies are not necessarily or-
thogonal under space-only inner product.

2.2 Numerical implementation
The numerical implementation can be referred to Towne et al. (2018); Schmidt & Colonius (2020). Data
are sampled into blocks of sequenced snapshots (shown below is the l-th block)

Q(l) = [q(l)
1 ,q(l)

2 , ...,q(l)
NFFT

] ∈ RNd×NFFT , (22)

where each column q(l)
i is one snapshot. The total number of snapshots in one block (ensemble) is NFFT.

The degree of freedom of one snapshot is Nd = Nx ×Ny ×Nz ×Nvar, where Nvar is the dimension of the
vector q(x, t).

A discrete Fourier transform (DFT) is performed on Q to yield

Q̂
(l)

= [q̂(l)
1 , q̂(l)

2 , ..., q̂(l)
NFFT

] ∈ CNd×NFFT . (23)

Then the Fourier modes are sorted according to frequency (labeled as the k-th discrete frequency) to form

Q̂k = [q̂(1)
k , q̂(2)

k , ..., q̂(Nblk)
k ] ∈ CNd×Nblk , (24)

where Nblk the number of blocks used in Welch’s method (Welch, 1967).
The sampled spectral density at the k-th frequency is then Sk = Q̂kQ̂

H
k /(Nblk − 1). The eigenvalue

problem (20) takes the form of
SkWΦk = ΦkΛk. (25)

In the method of snapshots (Sirovich, 1987), (25) becomes

1
Nblk − 1 Q̂

H
k W Q̂kΨk = ΨkΛk. (26)

Hence, the eigenmodes of Sk are Φ̃k = Q̂kΨkΛ
−1/2
k such that the eigenvalue decomposition is

Sk = Φ̃kΛkΦ̃
H
k =

Nblk∑
i=1

λ
(i)
k ϕ̃

(i)
k (ϕ̃(i)

k )H. (27)

The physical meaning of the spatial modes Φ̃k(x) can be interpreted as either the eigenvector of the
spectral density tensor Sk or the left singular vector of the Fourier mode q̂k, at the discrete frequency fk.

We note that unlike the separation of space and time in (12), the coefficients of the spatial modes in
(21) are alreayd sorted to the selected frequency at which the EVP is solved.
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