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Abstract: In this note we perform an analysis of the stability and dispersion properties of a certain
numerical scheme with second-order difference in space and third-order Runge-Kutta in time, for the one-
dimensional linear advection equation and the nonlinear advection equation (Burgers). This combination
is commonly used in some incompressible CFD solvers. We perform the modified differential equation on
the linear equation and finite difference numerical simulation of the nonlinear equation. It is demonstrated
analytically on the linear equation that the numerical dissipations are hard to avoid for CFL < 2, and
shown numerically on the nonlinear convection equation (Burgers equation) that this scheme will lead
to considerable numerical dispersion in the Burgers problem which can not be reduced by only refining
the grid, since numerical dispersion is related to numerical dissipation, in a nonlinear problem, which is
a note of caution for its application.

1 Linear advection equation

Consider the linear advection equation
ut + cux = 0 (1)

as a substitute to the nonlinear convection equation (Burgers equation, as a prototype for Navier-
Stokes/Euler in numerical analysis)

ut + uux = 0 (2)

for the sake of convenience in numerical analysis.

2 Runge-Kutta time-stepper

Consider the following family of RK3 scheme where un denotes the value of u(x, t) at tn,

k1 = f(un, tn) (3)

k2 = f(un + a21∆tk1, tn + a21∆t) (4)

k3 = f(un + a31∆tk1 + a32∆tk2, tn + (a31 + a32)∆t) (5)

un+1 = un +∆t(s1k1 + s2k2 + s3k3) (6)

where the coefficients are generic.
The Runge-Kutta-Wray scheme has

a21 =
8

15
, a31 =

1

4
, a32 =

5

12
, s1 =

1

4
, s2 = 0, s3 =

3

4
(7)
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while the Runge-Kutta-Ralston scheme has

a21 =
1

2
, a31 = 0, a32 =

3

4
, s1 =

2

9
, s2 =

1

3
, s3 =

4

9
. (8)

Note that for all RK3 schemes
s1 + s2 + s3 = 1. (9)

3 Central difference

Semi-discretize Eq. (1) we have

RHS = F(uj) = − c

2∆x
(uj+1 − uj−1) (10)

where F is the finite difference operator.
We also prepare the following finite difference relations (from Taylor expansion around un

j ) before
deriving the modified differential equation (MDE). Expansions till the orders shown below are necessary
for later calculations.

uj+1 − uj−1 =2∆xux +
1

3
∆x3uxxx +O(∆x5) (11)

un
j+2 − 2un

j + un
j−2 =4∆x2uxx +

4

3
∆x4uxxxx +O(∆x6) (12)

un
j+3 − 3un

j+1 + 3un
j−1 − un

j−3 =8∆x3uxxx + 4∆x5uxxxxx +O(∆x7) (13)

We also establish the following relations from Eq. (1)

ut = −cux (14)

utt = (−cux)t = (−cut)x = (c2ux)x = c2uxx (15)

uttt = −c3uxxx (16)

utttt = c4uxxxx (17)

Without further specifying, all derivatives at evaluated at un
j .

4 Modified differential equation

Apply RK3, we have

k1,j =− c

2∆x
(un

j+1 − un
j−1) (18)

k2,j =− c

2∆x
[un

j+1 + a21(−
c∆t

2∆x
)(un

j+2 − un
j )− un

j−1 + a21(
c∆t

2∆x
)(un

j − un
j−2)] (19)

k3,j =− c

2∆x
{un

j+1 + a31(−
c∆t

2∆x
)(un

j+2 − un
j ) (20)

+ a32(−
c∆t

2∆x
)[un

j+2 + a21(−
c∆t

2∆x
)(un

j+3 − un
j+1)− un

j + a21(
c∆t

2∆x
)(un

j+1 − un
j−1)] (21)

− un
j−1 + a31(

c∆t

2∆x
)(un

j − un
j−2) (22)

+ a32(
c∆t

2∆x
)[un

j + a21(−
c∆t

2∆x
)(un

j+1 − un
j−1)− un

j−2 + a21(
c∆t

2∆x
)(un

j−1 − un
j−3)]} (23)

where kl,j denotes the l-th (l = 1, 2, 3) step for xj in RK3.



From Eq. (6) we have

LHS =
un+1
j − un

j

∆t
= ut +

∆t

2
utt +

∆t2

6
uttt +

∆t3

24
utttt +O(∆t5) (24)

RHS =s1k1 + s2k2 + s3k3 ≜ RHS1 +RHS2 +RHS3 (25)

Replace the differences with derivatives, we have

RHS1 =− s1c[ux +
1

6
∆x2uxxx +O(∆x4)] (26)

RHS2 =− s2c[ux +
1

6
∆x2uxxx +O(∆x4)] + s2c

2a21∆t[uxx +
1

3
∆x2uxxxx +O(∆x4)] (27)

RHS3 =− s3c[ux +
1

6
∆x2uxxx +O(∆x4)] + s3c

2(a31 + a32)∆t[uxx +
1

3
∆x2uxxxx +O(∆x4)] (28)

− s3c
3∆t2a21a32[uxxx +

1

2
∆x5u(5) +O(∆x4)] (29)

Replace the temporal derivatives in LHS with spatial derivatives:

LHS = ut +
c2∆t

2
uxx − c3∆t2

6
uxxx +

c4∆t3

24
uxxxx +O(∆t5) (30)

Rearrange LHS such that
LHS = ut (31)

and the rest are put into RHS according to the order of spatial derivative:

RHS1 =− (s1 + s2 + s3)cux = −cux (32)

RHS2 =c2∆t[−1

2
+ s2a21 + s3(a31 + a32)]uxx (33)

RHS3 =c∆x2[−s3a21a32
c2∆t2

∆x2
− 1

6
(s1 + s2 + s3)]uxxx (34)

RHS4 =c2∆t∆x2[− c2∆t2

24∆x2
+

1

3
(s2a21 + s3(a31 + a32))]uxxxx (35)

The truncation error should be of the order O(∆t3,∆x2) to reach third-order in time and second-order
in space of RK3+central. The restrictions above give the constraints on RK3 parameters.

4.1 Numerical diffusion, dissipation, and stability

Consider Eq. (33). The necessary condition for this method to be stable is the numerical diffusivity
(coefficient of uxx) greater than or equal to zero, and to archive third order accuracy in time (implied by
(34), assuming ∆t ∝ ∆x with O(CFL) = 1) we require:

−1

2
+ s2a21 + s3(a31 + a32) = 0, (36)

which is the case for Runge-Kutta-Wray/Ralston shown in (7)-(8), implying that these two RK3 methods
have no numerical diffusion (the coefficient proportional to uxx) when applied on linear advection equation.

But we hope to have another physical constraint – the numerical dissipation (coefficient of uxxxx)
greater than zero, i.e.,

− c2∆t2

24∆x2
+

1

3
(s2a21 + s3(a31 + a32)) < 0 (37)

as well, for the energy of the system not to pile up. Plugging in the coefficients (from either RK-Wray or
RK-Ralston), the above equation reads

−CFL2 + 4 < 0 (38)



implying
CFL > 2 or CFL < −2 (39)

and since CFL > 0 the restriction is

CFL =
c∆t

∆x
> 2 (40)

which is not practical. Hence, the dissipation term uxxxx is always injecting energy, but the larger the CFL
is, the smaller the energy injection. In nonlinear problems we tend to be more conservative and use roughly
CFL = O(1) instead (since the CFL restrictions were typically established in linear problems/analysis).

Consider the Fourier representation

u(x, t) = ûk(t)e
ikx (41)

of the solution of
ut = Duxxxx, (42)

where the constant D is a dissipation coefficient. We have

û′
k(t) = D(ik)4ûk(t) (43)

implying

ûk(t) = ûk(0)e
Dk4t, (44)

with a stable solution requiring
D < 0. (45)

In this context,

Dnum = c2∆t∆x2[− c2∆t2

24∆x2
+

1

3
(s2a21 + s3(a31 + a32))] (46)

in (35) is positive when CFL ≤ 2 and corresponds to numerical amplification rather than numerical
dissipation.

4.2 Numerical dispersion

Consider the numerical dispersivity (coefficient of uxxx):

γnum = −c∆x2(s3a21a32
c2∆t2

∆x2
+

1

6
) < 0 (47)

simplified with
s1 + s2 + s3 = 1. (48)

Unfortunately numerical dispersion is never zero.
Consider the Fourier representation (41) of the solution of

ut = γuxxx (49)

we have
û′
k(t) = γ(ik)3ûk(t) (50)

implying

ûk(t) = ûk(0)e
−iγk3t. (51)

Since the numerical dispersivity γnum in Eq. (47) is negative, the phase error in computing ûk(t) will be
positive (leading) and will be an increasing function of wavenumber k (finer perturbations being more
dispersed). Since the exponential term in (51) is pure imaginary, there is no amplitude change as a
numerical consequence.

This results above appear to be independent on the specific RK3 scheme as well.



5 Numerical experiments on Burgers equation

Consider now the non-linear case. The inviscid Burger’s equation, written in conservative form, is

∂u

∂t
+

1

2

∂u2

∂x
= 0. (52)

Assume the following initial condition

u(x, 0) =

{
e−

(x−1.5)2

0.15 if x < 2.5

0 if x ≥ 2.5
(53)

in the domain 0 ≤ x ≤ 5 and 0 ≤ t ≤ 5 with one boundary condition u(x = 0, t) = 0. Use central+RK3
to obtain the solution within 0 ≤ t ≤ 5 and with ∆x = 0.01.

5.1 Effect of decreasing ∆t

Below are results from central+RK3 applied on Burgers. We can see that there is a considerable amount of
dispersion in Figs 1-2, as expected from the analysis above (on linear advection equation). The comparison
also confirms the statements made before that the larger the CFL is the smaller the dispersive error is,
assuming the associated velocity scale is c = 1 = maxu(x, 0).
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Figure 1: ∆t = 0.01, CFL = 1.
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Figure 2: ∆t = 0.001, CFL = 0.1.

But the effect of decreasing ∆t is not obvious yet. Reducing ∆t actually leads to larger dispersion
error, which is counter-intuitive. Since numerical dispersion is always nonzero, the only controllable
factor is dissipation. By selecting a larger ∆t, it can be shown from Eq. (35) that the actual amplification
factor is smaller and hence the amplitude of the dispersion is more controlled. In Burgers equation, the
convection speed depends on the amplitude (c is not a constant), hence smaller amplification error also
implies smaller dispersion error. This is not the case in a linear advection problem!

We’ve learned that controlling dissipation error is as important as controlling dispersion error in
nonlinear problems where these two are closely related. (an important lesson from nonlinearity: convection
speed ∝ amplitude; c = u)

5.2 Effect of decreasing ∆x

According to (47), |γnum| should decrease as ∆x decreases, if the equation is linear, which appear to be
true in Figs 3-4 as compared to Figs 1-2 when CFL is large. But when CFL is small, as mentioned, the
dispersion error and amplitude error go hand-in-hand, hence the effect of further reducing ∆x would not
be as wanted (Figs 5-6). Note the errors are larger with small CFL as mentioned before.
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Figure 3: ∆x = 0.01, CFL = 1.
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Figure 4: ∆x = 0.001, CFL = 1.
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Figure 5: ∆x = 0.01, CFL = 0.1.
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Figure 6: ∆x = 0.001, CFL = 0.1.
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Figure 7: Same as in fig 3, but with a′32 = 3a32.



5.3 Effect of artificial dissipation

We are probably at a point when physical/artificial dissipation is needed, unless (high-order) upwind
or Lax-Wendroff (which also contains artificial diffusion) are involved. Considering Eqns. (32)-(35),
multiplying a32 by a constant factor seems to be a good choice (which was found due to a coding mistake...)
as shown in the experiment in Fig 7.

5.4 Remarks

Stability is linked to accuracy. When considering improving numerical accuracy, attention should not
be only paid to changing the grid sizes, but also the stability property of the schemes. We also note
that central+RK3 is not a suitable scheme for hyperbolic convective laws, but is just for demonstration
purposes. In a continuous problem (has no shock waves), the maximum gradient is smaller and the scheme
would perform better.
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