
Developer Guide
Acknowledgements

Setting Up and Getting Started

Design

Architecture

UI component

Logic component

Model component

Storage component

Common classes

Implementation

[Implemented] Display trip’s events

Implementation

Design considerations:

[Implemented] Add event to trip

Implementation

Design considerations:

[Implemented] Display completed trips and events

Implementation

[Implemented] Display Travelr Summary Window

Implementation

Design considerations:

[Implemented] Sorting trips mechanism

Implementation

Documentation, Logging, Testing, Configuration, and DevOps

Appendix: Requirements

Product scope

User stories

Use Cases

Non-Functional Requirements

Glossary

Appendix: Instructions for Manual Testing

Launch and shutdown

Deleting a trip

Saving data

Travelr

Acknowledgements

This project is based on the AddressBook-Level3 project created by the SE-EDU initiative.

Implementation of the help command is inspired by Rachel Angelyn Gunawan, a

developer of PleaseHireUs. Check out their project here

Setting Up and Getting Started

Refer to the guide Setting up and getting started.

Design

Architecture

Tip: The .puml files used to create diagrams in this document can be found in the

diagrams folder. Refer to the PlantUML Tutorial at se-edu/guides to learn how to create

and edit diagrams.

https://se-education.org/
https://github.com/Rachel-AG
https://github.com/AY2223S1-CS2103T-W17-4/tp
https://ay2223s1-cs2103t-w17-1.github.io/tp/SettingUp.html
https://github.com/AY2223S1-CS2103T-W17-1/tp/tree/master/docs/diagrams/
https://se-education.org/guides/tutorials/plantUml.html

The Architecture Diagram given above explains the high-level design of the App.

Given below is a quick overview of main components and how they interact with each other.

Main components of the architecture

Main has two classes called Main and MainApp . It is responsible for,

At app launch: Initializes the components in the correct sequence, and connects them up

with each other.

At shut down: Shuts down the components and invokes cleanup methods where

necessary.

Commons represents a collection of classes used by multiple other components.

The rest of the App consists of four components.

UI : The UI of the App.

Logic : The command executor.
Model : Holds the data of the App in memory.
Storage : Reads data from, and writes data to, the hard disk.

How the architecture components interact with each other

The Sequence Diagram below shows how the components interact with each other for the

scenario where the user issues the command delete 1 , which is used to delete a trip at the
specified index.

https://github.com/AY2223S1-CS2103T-W17-1/tp/blob/master/src/main/java/seedu/travelr/Main.java
https://github.com/AY2223S1-CS2103T-W17-1/tp/blob/master/src/main/java/seedu/travelr/MainApp.java

Each of the four main components (also shown in the diagram above),

defines its API in an interface with the same title as the Component.

implements its functionality using a concrete {Component Name}Manager class (which

follows the corresponding API interface mentioned in the previous point.

For example, the Logic component defines its API in the Logic.java interface and

implements its functionality using the LogicManager.java class which follows the Logic
interface. Other components interact with a given component through its interface rather than

the concrete class (reason: to prevent outside component’s being coupled to the

implementation of a component), as illustrated in the (partial) class diagram below.

The sections below give more details of each component.

UI component

The API of this component is specified in Ui.java

https://github.com/AY2223S1-CS2103T-W17-1/tp/blob/master/src/main/java/seedu/travelr/ui/Ui.java

The UI consists of a MainWindow that is made up of parts e.g. CommandBox ,
ResultDisplay , TripListPanel , EventListPanel , StatusBarFooter etc. All these,

including the MainWindow , inherit from the abstract UiPart class which captures the

commonalities between classes that represent parts of the visible GUI.

The UI component uses the JavaFx UI framework. The layout of these UI parts are defined in

matching .fxml files that are in the src/main/resources/view folder. For example, the

layout of the MainWindow is specified in MainWindow.fxml

The UI component,

executes user commands using the Logic component.

listens for changes to Model data so that the UI can be updated with the modified data.

keeps a reference to the Logic component, because the UI relies on the Logic to

execute commands.

depends on some classes in the Model component, as it displays Trip and Event
objects residing in the Model .

Logic component

API : Logic.java

https://github.com/AY2223S1-CS2103T-W17-1/tp/blob/master/src/main/java/seedu/travelr/ui/MainWindow.java
https://github.com/AY2223S1-CS2103T-W17-1/tp/blob/master/src/main/resources/view/MainWindow.fxml
https://github.com/AY2223S1-CS2103T-W17-1/tp/blob/master/src/main/java/seedu/travelr/logic/Logic.java

Here’s a (partial) class diagram of the Logic component:

How the Logic component works:

1. When Logic is called upon to execute a command, it uses the TravelrParser class to

parse the user command.

2. This results in a Command object (more precisely, an object of one of its subclasses e.g.,

AddCommand) which is executed by the LogicManager .
3. The command can communicate with the Model when it is executed (e.g. to add a trip).

4. The result of the command execution is encapsulated as a CommandResult object which

is returned back from Logic .

The Sequence Diagram below illustrates the interactions within the Logic component for the

execute("delete 1") API call.

Here are the other classes in Logic (omitted from the class diagram above) that are used for

parsing a user command:

How the parsing works:

Note: The lifeline for DeleteCommandParser should end at the destroy marker (X)

but due to a limitation of PlantUML, the lifeline reaches the end of diagram.

When called upon to parse a user command, the TravelrParser class creates an

XYZCommandParser (XYZ is a placeholder for the specific command title e.g.,

AddCommandParser) which uses the other classes shown above to parse the user
command and create a XYZCommand object (e.g., AddCommand) which the
TravelrParser returns back as a Command object.

All XYZCommandParser classes (e.g., AddCommandParser , DeleteCommandParser , …)
inherit from the Parser interface so that they can be treated similarly where possible e.g,

during testing.

Model component

API : Model.java

The Model component,

stores the Travelr data i.e.,

all Trip objects (which are contained in a UniqueTripList object)

all Event objects (which are contained in a UniqueEventList object)

stores the currently ‘selected’ Trip objects (e.g., results of a search query) as a separate

filtered list which is exposed to outsiders as an unmodifiable ObservableList<Trip>

https://github.com/AY2223S1-CS2103T-W17-1/tp/blob/master/src/main/java/seedu/travelr/model/Model.java

that can be ‘observed’ e.g. the UI can be bound to this list so that the UI automatically

updates when the data in the list change.

stores the currently ‘selected’ Event objects (e.g., results of a search query) as a

separate filtered list which is exposed to outsiders as an unmodifiable

ObservableList<Event> that can be ‘observed’ e.g. the UI can be bound to this list so

that the UI automatically updates when the data in the list change.

stores a UserPref object that represents the user’s preferences. This is exposed to the

outside as a ReadOnlyUserPref objects.

does not depend on any of the other three components (as the Model represents data

entities of the domain, they should make sense on their own without depending on other

components)

Storage component

API : Storage.java

The Storage component,

can save both Travelr data and user preference data in json format, and read them back

into corresponding objects.

inherits from both TravelrStorage and UserPrefsStorage , which means it can be
treated as either one (if only the functionality of only one is needed).

depends on some classes in the Model component (because the Storage component’s

job is to save/retrieve objects that belong to the Model)

https://github.com/AY2223S1-CS2103T-W17-1/tp/blob/master/src/main/java/seedu/travelr/storage/Storage.java

Common classes

Classes used by multiple components are in the seedu.travelr.commons package.

Implementation

This section describes some noteworthy details on how certain features are implemented.

[Implemented] Display trip’s events

Implementation

The proposed display trip’s events mechanism is facilitated by the SelectCommand through

the use of an EventInItineraryPredicate .
It extends Predicate with a test that checks

if an event is part of the given Itinerary, which is stored
internally as an Itinerary . This
predicate is then set as the predicate of the filteredEventList , which
contains all events
added to Travelr.

Given below is an example usage scenario of how the display trip’s events mechanism behaves

at each step.

Step 1. The user launches the application for the first time. The Travelr will be initialised with

the
initial Travelr state.

Step 2. The user executes add n/Trip to Japan ... to add a new trip, and also executes

add-e n/Try Takoyakis ...
to add a new event to Travelr.

Step 3. The user adds the Event ‘Try Takoyakis’ to the Trip titled ‘Trip to Japan’, which

results in ‘Try Takoyakis’
being in its Itinerary .

Step 4. The user executes the select 1 command to display the 1st trip’s events.
A new

EventInItineraryPredicate will be created, with an internal Itinerary pointer that

points to the Itinerary
of the selected Trip . Model#updateFileredEvents will then be

called with the predicate supplied as an argument,
which will update the list of displayed

events to be those that are part of the selected trip’s itinerary.

The following sequence diagram shows how the select operation works:

The following activity diagram summarizes what happens when a user executes a new

command:

Design considerations:

Aspect: Format of display trip’s events command:

Alternative 1 (current choice): Use index as arguments

Pros: Will be easier for the user to look at/remember the index and use the command.

Cons: Comparatively more error prone.

Alternative 2: Use trip title as arguments.

Pros: Given the previous code structure, easy and fast to implement. Less error prone

in term of user mistakes.

Cons: Creates many dummy Objects. In entering the command, using the exact trip’s

titles’ name can be harder and time-consuming for the user.

[Implemented] Add event to trip

Implementation

The proposed add event to trip mechanism is facilitated by the use of

AddEventToTripCommand .
It extends Command with some tests that checks the event and

trip.

Given below is an example usage scenario of how the add event to trip’s mechanism behaves

at each step.

Step 1. The user launches the application for the first time. The Travelr will be initialised with

the
initial Travelr state.

Step 2. The user executes add n/Trip to Japan ... to add a new trip, and also executes

add-e n/Try Takoyakis ...
to add a new event to Travelr.

Step 3. The user executes add-et n/Try Takoyakis t/Trip to Japan , which adds the
Event ‘Try Takoyakis’ to the Trip titled ‘Trip to Japan’, which results in ‘Try Takoyakis’
being

in its Itinerary .

Note: For the command to work normally, the specified Event need to be in the

bucket list and the Trip should exist in the trip list

The following sequence diagram shows how the Add Event To Trip command works:

Design considerations:

Aspect: Format of add event to trip command:

Alternative 1 (current choice): Uses event and trip title as arguments

Pros: Given the previous code structure, easy and fast to implement. Less error prone

in term of user mistakes.

Cons: Creates many dummy Objects. In entering the command, using the exact titles’

name can be harder and time-consuming for the user.

Alternative 2: Uses event and trip index as shown in the GUI.
itself.

Pros: Will be easier for the user to look at/remember the index and use the command.

Cons: Comparatively more error prone regarding the argument provided compared to

the previous alternative.

[Implemented] Display completed trips and events

Implementation

The display completed trips and events mechanism is facilitated by the use of

EventCompletedPredicate
and TripCompletedPredicate . TripCompletedPredicate
and EventCompletedPredicate extends Predicate with
a test that checks if an event is

part of a list of itineraries belonging to completed trips.

These predicates are then set as the predicate of the filteredTripList and

filteredEventList respectively, which will result
in the display of completed trips and

events.

Given below is an example usage scenario of how the display trip’s events mechanism behaves

at each step.

Step 1. The user launches the application for the first time. Travelr will be initialised with the

initial Travelr state.

Step 2. The user executes add n/Trip to Japan ... to add a new trip, and also executes

add-e n/Try Takoyakis ...
to add a new event to Travelr.

Step 3. The user adds the Event ‘Try Takoyakis’ to the Trip titled ‘Trip to Japan’, which

results in ‘Try Takoyakis’
being in its Itinerary .

Step 4. The user executes mark 1 , which marks the first trip as well as the events in its
itinerary as completed.

Step 5. The user executes completed , which displays all completed trips and events, which
includes both ‘Trip to Japan’
and ‘Try Takoyakis’.

The following sequence diagram shows how the completed command works:

[Implemented] Display Travelr Summary Window

Implementation

The summary command is facilitated by SummaryVariables . It contains several fields which
are the property representing statistics of the Travelr app that will displayed to the user in

the Summary Window.

Here are some key properties

tripsProgress — A SimpleStringProperty which has a String value representing

the percentage of trips completed.

eventsProgress — A SimpleStringProperty which has a String value

representing the percentage of trips completed.

totalUniqueLocations — A SimpleIntegerProperty which has an Integer value

representing the total unique locations a User visited.

These methods added to the ModelManager helps to manage the SummaryVariables .

ModelManager#getSummaryVariables()  — Returns the SummaryVariables stored in

the ModelManager .
ModelManager#refreshSummaryVariables()  — Refreshes the SummaryVariables .

Given below is an example usage scenario and how the summary mechanism behaves at each

step.

Step 1. The user launches the application for the first time. The Travelr will be initialized with

the initial Travelr state.

Step 2. The user executes add n/Trip Name ... to add a new trip, and add-e n/Event
Name ... to add a new event. Throughout the usage of the app, the user adds multiple trips

and events to Travelr, and also uses add-et n/Event Name t/Trip Name ... to add

events to trips.

Step 3. The user now completes a Trip and marks it as completed using the mark
command. Throughout the usage of the app, the user mark multiple trips as he carries out his

trips.

Step 4. The user now decides that he wants to see a summary of his travels, and he does so

using the summary command. The summary command will call

Model#refreshSummaryVariables() , which calls SummaryVariables#refresh() to get

new updates for the summary variables and the list of completed trips.

The following sequence diagram shows how the summary command works:

Step 5. Now that the SummaryVariables are refreshed, the GUI will display a new window

through MainWindow#handleSummary .

The following sequence diagram shows how the GUI displays the Summary Window:

Note: The lifeline for SummaryCommand should end at the destroy marker (X) but due

to a limitation of PlantUML, the lifeline reaches the end of diagram.

Design considerations:

Aspect: How summary executes:

Alternative 1 (current choice): Show new window.

Pros: Easy to implement.

Cons: Poorer user experience from having to change windows.

Alternative 2: Overlay the summary panel over the trips and events panel in the main

window.

Pros: Easier for users to see the summary information from one window.

Cons: We must ensure that the implementation of each individual command are

correct.

[Implemented] Sorting trips mechanism

Implementation

The proposed sorting mechanism is facilitated by TripComparators . It contains a few
Comparator<Trip> used to sort the trips by various factors. This mechanism is used in

SortTripsCommand , AddCommand , MarkTripDoneCommand and

UnmarkDoneTripCommand .

Given below is an example usage scenario and how the sorting mechanism behaves at each

step.

Step 1. The user launches the application. The Travelr will be initialized with the past app

data.

Step 2. The user executes add n/Trip Name ... to add a new trip. Throughout the usage

of the app, the user adds multiple trips to Travelr. Each time the add command is called, the

trips are sorted by completion and the
uncompleted new trips are ordered before the

completed trips.

Step 3. The user now completes a Trip and marks it as completed using the mark
command. Throughout the usage of the app, the user mark multiple trips as he carries out his

trips. Each time the mark command is called, the
trips are sorted by completion and the

completed trips are ordered after the uncompleted trips.

Step 4. The user now un-mark a Trip and make it incomplete using the unmark command.

Through the usage of the app,
the user unmark multiple trips as he cancels some of his trips.

Each time the unmark command is called, the
trips are sorted by completion and the

uncompleted trips are ordered before the completed trips.

Step 5. The user now decides that he wants to sort his list of trips, and he does so using the

sort command. The SortTripsCommandParser firstly parses the command for optional

parameters, which may contain the factor to sort by and whether to sort in reverse order.

Subsequently, the trips are sorted based on the parameters the user supplied while keeping

uncompleted trips ordered before completed trips.

The following sequence diagram shows how the sort command works:

Documentation, Logging, Testing, Configuration, and

DevOps

Documentation guide

Testing guide

Logging guide

Configuration guide

DevOps guide

Appendix: Requirements

https://ay2223s1-cs2103t-w17-1.github.io/tp/Documentation.html
https://ay2223s1-cs2103t-w17-1.github.io/tp/Testing.html
https://ay2223s1-cs2103t-w17-1.github.io/tp/Logging.html
https://ay2223s1-cs2103t-w17-1.github.io/tp/Configuration.html
https://ay2223s1-cs2103t-w17-1.github.io/tp/DevOps.html

Product scope

Target user profile:

has a need to keep track of their bucket lists

wants to manage travel itineraries, bookings, and costs efficiently

prefer desktop apps over other types

can type fast

prefers typing to mouse interactions

is reasonably comfortable using CLI apps

Value proposition: manage trips itineraries, bookings, and costs faster than a typical

mouse/GUI driven app.

User stories

Priorities: High (must have) - * * * , Medium (nice to have) - * * , Low (unlikely to have) -

*

Priority As a …​ I want to …​ So that I can…​

* * * user
add events and

trips

keep track of what I want to

do

* * * user
delete events and

trips

remove the unwanted event

and trips

* * * user
add an event to a

trip
assign event to trip

* * * user
delete an event

from trip
unassign an event from trip

* * * user
view all the events

in the list
refer to it whenever I want

* * * user
save events into

local storage

access the data whenever I

want

* * * user
display events in a

trip

keep track of what events I

assigned to a trip

Priority As a …​ I want to …​ So that I can…​

* * * user
mark a trip as

done

remind myself that I have

completed a trip

* * * user
mark a trip as not

done

tell myself I have not

completed a trip

* * * user
view all trips I

have completed

see what trips and events I

have completed

* *
user who often

change his/her mind
update the details easily change things

* * user
categorize my

events
keep track of each category

* user
reuse past

itineraries
use it when I want to

* user
view the total

budget needed
keep track of the budget

Use Cases

Software System: Travelr

Use case: UC01 Delete a Trip

Actor: User

MSS :

1. User request the list of trips

2. Travelr lists the trips.

3. User requests to delete a certain trip.

4. Travelr deletes the specified trip.

Use case ends

Extensions:

2a. The list is empty.

Use case ends.

3a. The requested trip doesn’t exist

3a1. Travelr shows an error message.

Use case ends

3b. Invalid input

3b1. Travelr shows an error message.

Use Case Ends

Use case: UC02 Select a Trip

Actor: User

MSS :

1. User request the list of trips

2. Travelr lists the trips.

3. User requests to select a certain trip.

4. Travelr selects the specified trip.

5. Travelr lists the events contained in the trip.

Use case ends

Extensions:

2a. The list is empty.

Use case ends.

3a. The requested trip doesn’t exist

3a1. Travelr shows an error message.

Use case ends

3b. Invalid input

3b1. Travelr shows an error message.

Use Case Ends

Use case: UC03 Assign an Event to a Trip

Actor: User

MSS :

1. User request the list of trips and bucketList events

2. Travelr lists the trips and events.

3. User requests to move the specified event to the specified trip.

4. Travelr move the specified event to the trip.

Use case ends

Extensions:

2a. The list or bucketList is empty.

Use case ends.

3a. The requested trip doesn’t exist

3a1. Travelr shows an error message.

Use case ends

3b. Invalid input

3b1. Travelr shows an error message.

Use Case Ends

3c. The requested event doesn’t exist

3c1. Travelr shows an error message.

Use Case Ends

Use case: UC04 Remove an Event from a Trip

Actor: User

MSS :

1. User request the list of events in a trip.

2. Travelr lists the events in the trip.

3. User requests to move the specified event from the specified trip.

4. Travelr move the specified event from the trip to the bucketList.

Use case ends

Extensions:

2a. There is no events in the trip.

Use case ends.

3a. The requested trip doesn’t exist

3a1. Travelr shows an error message.

Use case ends

3b. Invalid input

3b1. Travelr shows an error message.

Use Case Ends

3c. The requested event doesn’t exist

3c1. Travelr shows an error message.

Use Case Ends

Use case: UC05 Mark a trip as done

Actor: User

MSS :

1. User request the list of trips.

2. Travelr lists trips.

3. User requests mark a trip as done.

4. Travelr marks the trip as done.

Use case ends

Extensions:

2a. There is trip list is empty.

Use case ends.

3a. The requested trip doesn’t exist

3a1. Travelr shows an error message.

Use case ends

3b. Invalid input

3b1. Travelr shows an error message.

Use Case Ends

4a. The trip is already marked as done.

Use case ends.

Use case: UC06 Mark a trip as not done

Actor: User

MSS :

1. User request the list of trips.

2. Travelr lists trips.

3. User requests to mark a trip as not done.

4. Travelr marks the trip as not done.

Use case ends

Extensions:

2a. The trip list is empty.

Use case ends.

3a. The requested trip doesn’t exist

3a1. Travelr shows an error message.

Use case ends

3b. Invalid input

3b1. Travelr shows an error message.

Use Case Ends

4a. The trip is already marked as not done.

Use case ends.

Use case: UC07 Delete event

Actor: User

MSS :

1. User request the list of events in bucket list.

2. Travelr lists events in bucket list.

3. User request to delete an event from the bucket list.

4. Travelr deletes the event.

Use case ends

Extensions:

2a. Bucket list is empty.

Use case ends.

3a. The requested event doesn’t exist

3a1. Travelr shows an error message.

Use case ends

3b. Invalid input

3b1. Travelr shows an error message.

Use Case Ends

Use case: UC08 Sort trips

Actor: User

MSS :

1. User request the list of trips.

2. Travelr lists trips in UniqueTripList.

3. User request to sort the list of trips.

4. Travelr sorts the trips according to the user’s request.

Use case ends

Extensions:

2a. UniqueTripList is empty.

Use case ends.

3a. The requested sorting factor does not exist

3a1. Travelr shows an error message.

Use case ends

3b. Invalid input

3b1. Travelr shows an error message.

Use Case Ends

Use case: UC09 Show completed trips and events

Actor: User

MSS :

1. User requests to see the trips they have completed as well as the events in these

completed trips.

2. Travelr lists trips user has completed as well as the events in these trips.

Use case ends

Use case: UC10 Show summary

Actor: User

MSS :

1. User requests to see a summary of all their trips and events in Travelr.

2. Travelr displays a summary of the user’s trips and events.

Use case ends

Non-Functional Requirements

1. Should work on any mainstream OS as long as it has Java 11 or above installed.

2. Should be able to hold up to 2000 events without a noticeable sluggishness in

performance for typical usage.

3. A user with above average typing speed for regular English text (i.e. not code, not system

admin commands) should be able to accomplish most of the tasks faster using commands

than using the mouse.

4. The UI should be resizable as users will likely be referencing other tabs while using this

product.

5. Should respond immediately to user input, as user will likely be using multiple commands.

6. Should be usable by novice travelers that have never planned a trip.

7. Should be able to work offline

Glossary

Mainstream OS: Windows, Linux, Unix, OS-X

UI: The User Interface that users will see when they use the product.

Appendix: Instructions for Manual Testing

Given below are instructions to test the app manually.

Launch and shutdown

1. Initial launch

a. Download the jar file and copy into an empty folder

b. Double-click the jar file Expected: Shows the GUI with a set of sample trips and events.

The window size may not be optimum.

2. Saving window preferences

a. Resize the window to an optimum size. Move the window to a different location. Close

the window.

Note: These instructions only provide a starting point for testers to work on;
testers

are expected to do more exploratory testing.

b. Re-launch the app by double-clicking the jar file.

Expected: The most recent window size and location is retained.

Deleting a trip

1. Deleting a trip while all trips are being shown

a. Prerequisites: List all trips using the list command. Multiple trips in the list.

b. Test case: delete 1
Expected: First trip is deleted from the list. Details of the deleted trip is shown in the status

message. Events in the deleted trip are returned to the bucket list.

c. Test case: delete 0
Expected: No trip is deleted. Error details shown in the status message.

d. Other incorrect delete commands to try: delete , delete x , ... (where x is larger

than the list size)

Expected: Similar to previous.

Saving data

Travelr data are saved locally automatically after any command.

1. Test case: Data folder is missing

a. On app launch, if no data folder is detected, a new Travelr instance with sample data will

be used.

b. Run any command and a new data folder containing a travelr.json file will be generated.

c. If you do not run any command and quit the app, no data folder or file will be generated.

2. Test case: travelr.json file is missing

a. On app launch, if there is a data folder but it is empty, a new Travelr instance with

sample data will be used.

b. Run any command and a new travelr.json file will be generated in the data folder.

c. If you do not run any command and quit the app, no file will be generated.

3. Test case: Data file is corrupted i.e does not follow the correct format

a. On app launch, if travelr.json file is corrupted, a new Travelr instance with no data will be

used.

b. Run any command and the contents of the travelr.json file will be overwritten to contain

the new data, which is of a correct format.

c. If you do not run any command and quit the app, no changes will be made to the

travelr.json file.

