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Learning Objectives

Why do we need lenses?

Understand where the idea of
lenses come from, and how one
could have come up with them.

I

How can I use them?

Know the basic functions and op-
erators and know how to discover
new ones.

II

What else is there?

Know of other lens-like abstrac-
tions, why we presumably need
them, and how they differ.

III

WTF are those types?

Understand the ins and outs of
the lens package and every type.

IV
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1. What
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1 What are lenses

type Lens s t a b = forall f. Functor f =>= (a ->- f b) ->- s ->- f t

What is the purpose of a lens, according to the types above?

A: A package for creating visualizations B: A tool for handling nested ADTs

C: A framework for building UIs D: A package for simulating optical lenses

In Haskell, types provide a pretty good explanation
of what a function does. Good luck deciphering
lens types.

Roman Cheplyaka
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1 What are lenses

Well, “lens” is also a package … Here are some random functions and
operators from that package:

view _1 allOf

set ^. anyOf

over ^?! concatOf

We’ll shortly see what they do and how we can use them.
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2. Why
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2.1 Why do we need them
Imagine you want to parse configuration files in Haskell. To model
them, you come up with the following ADTs:

data File = File {

name ::: String,

entries ::: [Entry]

}

data Entry = Entry {

key ::: String,
value ::: Value

}

data Value = Value {

curr ::: String,

def ::: String

}
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2.2 Why do we need them

Let’s say we parsed a file into the following configuration:

config = File "~/.config/nvim/init.lua" [

Entry "expandtab" (Value "" "true"),

Entry "cmdheight" (Value "0" "1"),

Entry "textwidth" (Value "88" "")

]

Cool, isn’t it. Now we want to work with this representation.
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2.3 Why do we need them

getEntry ::: String ->- File ->- Entry

getEntry k = head . filter ((===) k . key) . entries

getCurrentValue ::: Entry ->- String
getCurrentValue = curr . value

setCurrentValue ::: String ->- Entry ->- Entry

setCurrentValue newValue entry = entry {

value = (value entry) {
curr = newValue

}

}

Oof, this sucks. And it get’s even worse the deeper the ADT gets!

data File = File {

name ::: String,

entries ::: [Entry]

}

data Entry = Entry {

key ::: String,

value ::: Value

}

data Value = Value {

curr ::: String,

def ::: String

}
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2.4 Let’s reinvent the lens
Let’s see, if we can improve this by adding some modifier functions:

modifyCurrentValue ::: (String ->- String) ->- Value ->- Value

modifyCurrentValue f value = value {

curr = f $ curr value

}

modifyEntriesValue ::: (Value ->- Value) ->- Entry ->- Entry

modifyEntriesValue f entry = entry {

value = f $ value entry

}

modifyEntriesCurrentValue ::: (String ->- String) ->- Entry ->- Entry

modifyEntriesCurrentValue = modifyEntriesValue . modifyCurrentValue

data File = File {

name ::: String,

entries ::: [Entry]

}

data Entry = Entry {

key ::: String,

value ::: Value

}

data Value = Value {

curr ::: String,

def ::: String

}
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2.5 Let’s reinvent the lens

We can use our modify-functions to implement a setter:
setCurrentValue' ::: String ->- Entry ->- Entry
setCurrentValue' = modifyEntriesCurrentValue . const

The getter is still fine:
getCurrentValue' ::: Entry ->- String
getCurrentValue' = def . value

data File = File {

name ::: String,

entries ::: [Entry]

}

data Entry = Entry {

key ::: String,

value ::: Value

}

data Value = Value {

curr ::: String,

def ::: String

}
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2.6 Let’s reinvent the lens
Now, we can build our lens abstraction:
data Lens s a = Lens {

get ::: s ->- a,

modify ::: (a ->- a) ->- s ->- s

}

We need to reimplement the function composition:
compose ::: Lens a b ->- Lens b c ->- Lens a c

compose (Lens g m) (Lens g' m') = Lens {

get = g' . g,

modify = m . m'

}

For easier handling, we also define set as a little helper:
set ::: Lens s a ->- a ->- s ->- s

set (Lens _ modify) = modify . const
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2.7 Let’s reinvent the lens
Finally, we can build lenses for our ADTs:

currentValueL ::: Lens Value String

currentValueL = Lens {

get = curr,

modify = \f value ->- value { curr = f $ curr value }

}

entryValueL ::: Lens Entry Value

entryValueL = Lens {

get = value,

modify = \f entry ->- entry { value = f $ value entry }

}

entryCurrentValueL ::: Lens Entry String

entryCurrentValueL = entryValueL `compose` currentValueL

data File = File {

name ::: String,

entries ::: [Entry]

}

data Entry = Entry {

key ::: String,

value ::: Value

}

data Value = Value {

curr ::: String,

def ::: String

}

data Lens s a = Lens {

get ::: s ->- a,

modify :::

(a->-a) ->- s ->- s

}
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2.8 Let’s reinvent the lens

Now we only have to plug our lens into set , get , or modify :

setCurrentValue'' ::: String ->- Entry ->- Entry
setCurrentValue'' = set entryCurrentValueL

getCurrentValue'' ::: Entry ->- String
getCurrentValue'' = get entryCurrentValueL
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2.9 Let’s reinvent the lens
Puh, that was kinda complicated. But again, think of how much less
code you have to write:
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let f = _foo v
b = _bar f

z = _baz b in

v { _foo = f {

_bar = b {
_baz = z + 1

} } }

v & foo . bar . baz +~ 1

We can now think “How can I traverse through this?” instead of “How
do I un- and repack all of this?”.
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2.10 Let’s reinvent the lens

Our solution looks more flexible than what we had before. But there
are still some problems:

• Still feels a bit clunky and boilerplate-heavy
• We always have to create Lens values
• No support for polymorphic updates

It’s definitely not impossible to overcome these limitations, but we’ll
skip this for now.

data Pair a b = Pair {e1 ::: a, e2 ::: b}

p ::: Pair Int String
p = Pair 420 "is fun"

p { e1 = "FP" } Caret-right Pair { e1 = "FP", e2 = "is fun" }

Caret-right Notice that the type has changed from Pair Int String

to Pair String String . This is what we call polymorphic
update.

Polymorphic Update
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2.11 What are lenses Revisited

Lenses are:
• A way to focus on a part of a data structure

Or more precisely:
• Just another abstraction
• Functional references
• Getters and Setters
• Highly composable and flexible

• “The Power is in the Dot” Edward Kmett
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2.12 A little history lesson [Kme20]

Luke Palmer creates a pattern he calls Accessors to ease stateful
programming in Haskell [Pal07b]. He uses C’s preprocessor to
generate readVal and writeVal functions.‹1›

Palmer generalizes his Accessors into something more like today’s
lenses. [Pal07a]

Twan van Laarhoven comes up with a novel way to express lenses
using the Functor class [Laa09]. We call them van Laarhoven
lenses.

‹1›In another blog post he then swaps out the preprocessor in favour of Template Haskell.
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2.13 A little history lesson [Kme20]

Russell O’Connor realises van Laarhoven lenses have always
supported polymorphic updates. [OCo12]

Edward Kmett realises that you can put laws on the notion of
polymorphic updates. [Kme12]

Kmett pushed the first commit to the lens repository on GitHub
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3. How
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3.1 A little Overview
Lenses basically provide two kinds of operations:
• view ::: Lens' s a ->- s ->- a

• set ::: Lens' s a ->- a ->- s ->- s

To use them, we need the actual lens. It determines what part of the
structure we want to focus on.
• _1 ::: Lens' (a,b) a

• _2 ::: Lens' (a,b) b

With all that in place, we can now combine the operation with a lens
(or a combination of lenses) and data:
• set _2 "cool" ("FP is", "") Caret-right ("FP is", "cool")

• view _1 ("hi", "there") Caret-right "hi"
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3.2.1 Lens Laws

Like with functors, applicatives, and monads, lenses should follow
some rules:
1. Get-Put
2. Put-Get
Put-Put

We’ll look at them in a bit more detail.
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3.2.2 Lens Laws Get-Put

If you modify something by changing its subpart to exactly what it was
before, nothing should happen.

set entryValueL (get entryValueL entry) entry === entry

Caret-right The lens should not modify the value or structure by itself.
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3.2.3 Lens Laws Put-Get

If you modify something by inserting a particular subpart and then
view the result, you’ll get back exactly that subpart.

get entryValueL (set entryValueL v entry) === v

Caret-right Setting values should be independent of any previous state.
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3.2.4 Lens Laws Put-Put

If you modify something by inserting a particular subpart a , and then
modify it again inserting a different subpart b , it’s exactly as if you
only did the second insertion.

set entryValueL v2 (set entryValueL v1 entry) === set
entryValueL v2 entry = 1

Caret-right Previous updates should not leave any traces.
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3.2.5 Do I really have to follow them?

• Yes, you should! Otherwise your lenses might behave weird.
• And weird unpredictable things are for OOP

• But, we can get around them
• In fact, we can get around the whole process of creating a lens by
hand
• You remember Template-Haskell, do you?
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3.2.6 Do I really have to follow them?

{-# LANGUAGE TemplateHaskell #-}

import Control.Lens

data File = File {_name ::: String, _entries ::: [Entry]}

data Entry = Entry {_key ::: String, _value ::: Value }

data Value = Value {_curr ::: String, _def ::: String }

makeLenses ''File
makeLenses ''Entry
makeLenses ''Value
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3.3.1 The lens Package

• Until now, we have only used view and set

• But there are actually a lot more functions and operators
• I mean a loooooooooooooooooot; easily over 100

• Let’s try to find a pattern in their names
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3.3.2 The lens Package

Operators beginning with ^ be-
have like view functions:

Value "c" "d" ^. def Caret-right "d"

(1,2) ^... both Caret-right [1,2]

Right 42 ^? _Left Caret-right Nothing

Operators ending in ~ behave
like set functions:

(_2 .~ 3) (0, 0) Caret-right (0,3)

(_2 +~ 3) (0, 39) Caret-right (0,42)

(_1 %~ (+1)) (3,2) Caret-right (4,2)

Writing lens .~ value $ adt every time is not very nice. But as always, there’s
a special operator to our rescue: & ::: a ->- (a ->- b) ->- b .
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3.3.3 The lens Package

With this knowledge aquired, we can finally write concise
Haskell-code:

(6, 2) & both *~ 7 Caret-right (42, 14)

lens = entries . _last . value . curr

val = config ^?! lens Caret-right "88"
config & lens .~ val +++ "0" Caret-right curr = "880" inside config

over lens (+++"0") config Caret-right curr = "880" inside config

(0, "upd.") & _1 .~ "poly." Caret-right ("poly.", "upd.")c
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3.3.4 The lens Package Gotchas

You might have notices that lenses compose backwards:

entries _last value curr

lens

Haskell

This makes it weird for FP-enjoyers, but intuitive for OOP-weirdos.
The same applies for all kinds of operators:

lens Haskell
5 & (+1) (+1) $ 5

Just 5 <&> (+1) (+1) <$<$> (Just 5)

Backward composition of lenses. It’s a minor is-
sue, and I wouldn’t mention it if it wasn’t a great
demonstration of how lens goes against the con-
ventions of Haskell.

Roman Cheplyaka
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3.3.5 The lens Package Getters

Writing a Getter is really easy. We can simply promote any function or
value to a Getter.

• to builds a Getter from any function

("Hello", "FP2") ^. to snd Caret-right "FP2"

• like always returns a constant value

("Hello", "FP2") ^. like 42 Caret-right 42
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3.3.6 The lens Package Setters

Writing a Setter is only slightly more complicated, as we don’t set the
value directly, but apply a function on the focused part.

• setting receives a function, that applies another function to
the correct value inside a structure

(4,1) & setting (\f (x,y) ->- (x,f y)) .~ 2 Caret-right (4,2)

• sets is in theory a bit more flexible, but that’s out of scope for
today

(4,1) & sets (\f (x,y) ->- (x,f y)) .~ 2 Caret-right (4,2)
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3.3.7 The lens Package Getter + Setter

Having a separate Getter and Setter is not always desirable. Now, we
want to create our own lens that we can use as both Getter and Setter.
This time, makeLenses doesn’t count!

• We can use lens to combine a viewing and setting function
g = snd

s = (\(a,_) b ->- (a,b))
_2 = lens g s

• You can also simply write a custom function with the type
l ::: forall f. Functor f =>= (a ->- f b) ->- s ->- f t

that satisfies all three lens laws. Good luck! We’ll try it anyway.
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3.3.8 The lens Package How lens works [Rom19]

type Lens s t a b = forall f. Functor f =>= (a ->- f b) ->- s ->- f t
type Lens' s a = Lens s s a a

The type of the whole structure
The inner type we’re interested in

lens ::: Functor f =>= (s->-a) ->- (s->-a->-s) ->- (a->-f a) ->- s ->- f s
lens get set f s = .....

• We need to get from s ->- a and s ->- a ->- s to f s

• We can get an a from our getter: get s

• With a and f we can make an f a : f $ get s
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3.3.9 The lens Package How lens works [Rom19]

lens ::: Functor f =>= (s->-a) ->- (s->-a->-s) ->- (a->-f a) ->- s ->- f s

lens get set f s = set s <$<$> f (get s)

• We need to get from s ->- a and s ->- a ->- s to f s

• We can get an a from our getter: get s

• With a and f we can make an f a : f $ get s

• Now, to get an f s , we an simply use

fmap ::: Functor f =>= (a ->- b) ->- f a ->- f b

set s f $ get s
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4. More Goodies
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4.1 Virtual lenses

A Getter does not always have to be backed by an actual structure.
Theoretically, it can return anything:
get virtualProp(): number {

return 42

}

We can easily achieve this behavior with lenses, too:
virtualProp = like 42

(0,0) ^. virtualProp Caret-right 42
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4.2.1 Prisms
So far, we only looked at product types. But what about sum types?
Prisms to the rescue!

data CanteenMeal = MainCourse String CanteenMeal

| Dessert String

meal1 = MainCourse "Sattmacher" (Dessert "Pudding")
meal2 = Dessert "Yogurt"

meal1 ^? _MainCourse . _2 . _Dessert Caret-right Just "Pudding"

meal2 ^? _MainCourse . _2 . _Dessert Caret-right Nothing

meal1 & _MainCourse . _2 . _Dessert .~ "Yogurt"
Caret-right Dessert "Yogurt" inside meal1
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4.2.2 Prisms
• We already used a prism: remember _last ?
• We can usually use them like a normal lens (there’s just a little

Maybe in the way)

versusversusversusversusversusversusversusversusversusversusversusversusversusversusversusversusversus

case meal1 of

MainCouse _ (Dessert d) ->- MainCourse {

dessert = Dessert "Yogurt" }
_ ->- meal1

meal1 & _MainCourse . _2 . _Dessert .~ "Yogurt"
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4.3.1 Traversals

Wouldn’t it be nice to have a lens that focuses on a specific element of
a traversable container? Let’s start with every element:
["Hello", "there"] ^. traverse Caret-right "Hellothere"

Huh?! What’s that? I would’ve expected ["Hello", "there"].
When viewing the result of traverse , it gets shoved through
mappend first. That’s why you typically ^... .

[1...5] ^... traverse Caret-right [1,2,3,4,5]

[(1,2),(3,4)] ^... traverse . _2 Caret-right [2,4]

[1...5] & traverse +~ 1 Caret-right [2,3,4,5,6]

Lukas Pietzschmann Lenses More Goodies Traversals Page 37 / 49



4.3.2 Traversals

As promised, here’s how we can focus on a specific element of a
traversable:
[1...5] ^... ix 1 Caret-right [2]

[1...5] ^... ix 5 Caret-right []

Returning an empty list on failure does not seem very nice. Let’s use
the prism-view-operator to get a Maybe :

[1...5] ^? ix 1 Caret-right Just 2

[1...5] ^? ix 5 Caret-right Nothing
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4.4.1 Isos

Here’s a very short summary:
• An Iso is a connection between two types that are equivalent in
every way
• Isos should follow the following laws:
forward . backward = id

backward . forward = id

• We can write our own Iso by providing a forward and backward
mapping
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4.4.2 Isos

maybeToEither = maybe (Left ()) Right

eitherToMaybe = either (const Nothing) Just

someIso ::: Iso' (Maybe a) (Either () a)
someIso = iso maybeToEither eitherToMaybe

Just "hi" ^. someIso Caret-right Right "hi"

Left "ho" ^. from someIso Caret-right Nothing
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5. Summary
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5.1 Summary

• Focus on a single part of a data
structure
• ^. returns the focused part
directly

Lens
• Focus on a single part that may
not exist
• ^? returns the focused part
inside a Maybe

Prism

• Focus on multiple parts (also
zero) of a data structure

• ^... returns list of the focused
parts

Traversals
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5.2 And so much more

General idea

Lens lawsComposable
lenses

Lens
Prism

TraversalFoldIso

Index
preserving

Bazaar

Subtyping
Typesig-
natures
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