
Lenses
Functional Programming II

Lukas Pietzschmann
lukas.pietzschmann@uni-ulm.de

Institute of Software Engineering and
Programming Languages
Ulm University

May 13th, 2024

This image was generated by AI (DALLE 3)

mailto:lukas.pietzschmann@uni-ulm.de

Agenda

1. What

2. Why

3. How
3.1 A little Overview 3.2 Lens Laws 3.3 The actual Package

4. More Goodies
4.1 Virtual lenses 4.2 Prisms 4.3 Traversals 4.4 Isos

5. Summary

6. References

Lukas Pietzschmann Lenses Agenda

Learning Objectives

Why do we need lenses?

Understand where the idea of
lenses come from, and how one
could have come up with them.

I

How can I use them?

Know the basic functions and op-
erators and know how to discover
new ones.

II

What else is there?

Know of other lens-like abstrac-
tions, why we presumably need
them, and how they differ.

III

WTF are those types?

Understand the ins and outs of
the lens package and every type.

IV

Lukas Pietzschmann Lenses Page 2 / 49

1. What

Lukas Pietzschmann Lenses Section 1

1 What are lenses

type Lens s t a b = forall f. Functor f =>= (a ->- f b) ->- s ->- f t

What is the purpose of a lens, according to the types above?

A: A package for creating visualizations B: A tool for handling nested ADTs

C: A framework for building UIs D: A package for simulating optical lenses

In Haskell, types provide a pretty good explanation
of what a function does. Good luck deciphering
lens types.

Roman Cheplyaka

Lukas Pietzschmann Lenses What Page 3 / 49

1 What are lenses

type Lens s t a b = forall f. Functor f =>= (a ->- f b) ->- s ->- f t

What is the purpose of a lens, according to the types above?

A: A package for creating visualizations B: A tool for handling nested ADTs

C: A framework for building UIs D: A package for simulating optical lenses

In Haskell, types provide a pretty good explanation
of what a function does. Good luck deciphering
lens types.

Roman Cheplyaka

Lukas Pietzschmann Lenses What Page 3 / 49

1 What are lenses

type Lens s t a b = forall f. Functor f =>= (a ->- f b) ->- s ->- f t

What is the purpose of a lens, according to the types above?

A: A package for creating visualizations B: A tool for handling nested ADTs

C: A framework for building UIs D: A package for simulating optical lenses

In Haskell, types provide a pretty good explanation
of what a function does. Good luck deciphering
lens types.

Roman Cheplyaka

Lukas Pietzschmann Lenses What Page 3 / 49

1 What are lenses

Well, “lens” is also a package … Here are some random functions and
operators from that package:

view _1 allOf

set ^. anyOf

over ^?! concatOf

We’ll shortly see what they do and how we can use them.

Lukas Pietzschmann Lenses What Page 4 / 49

https://hackage.haskell.org/package/lens

2. Why

Lukas Pietzschmann Lenses Section 2

2.1 Why do we need them
Imagine you want to parse configuration files in Haskell. To model
them, you come up with the following ADTs:

data File = File {

name ::: String,

entries ::: [Entry]

}

data Entry = Entry {

key ::: String,
value ::: Value

}

data Value = Value {

curr ::: String,

def ::: String

}

Lukas Pietzschmann Lenses Why Page 5 / 49

2.2 Why do we need them

Let’s say we parsed a file into the following configuration:

config = File "~/.config/nvim/init.lua" [

Entry "expandtab" (Value "" "true"),

Entry "cmdheight" (Value "0" "1"),

Entry "textwidth" (Value "88" "")

]

Cool, isn’t it. Now we want to work with this representation.

Lukas Pietzschmann Lenses Why Page 6 / 49

2.3 Why do we need them

getEntry ::: String ->- File ->- Entry

getEntry k = head . filter ((===) k . key) . entries

getCurrentValue ::: Entry ->- String
getCurrentValue = curr . value

setCurrentValue ::: String ->- Entry ->- Entry

setCurrentValue newValue entry = entry {

value = (value entry) {
curr = newValue

}

}

Oof, this sucks. And it get’s even worse the deeper the ADT gets!

data File = File {

name ::: String,

entries ::: [Entry]

}

data Entry = Entry {

key ::: String,

value ::: Value

}

data Value = Value {

curr ::: String,

def ::: String

}

Lukas Pietzschmann Lenses Why Page 7 / 49

2.4 Let’s reinvent the lens
Let’s see, if we can improve this by adding some modifier functions:

modifyCurrentValue ::: (String ->- String) ->- Value ->- Value

modifyCurrentValue f value = value {

curr = f $ curr value

}

modifyEntriesValue ::: (Value ->- Value) ->- Entry ->- Entry

modifyEntriesValue f entry = entry {

value = f $ value entry

}

modifyEntriesCurrentValue ::: (String ->- String) ->- Entry ->- Entry

modifyEntriesCurrentValue = modifyEntriesValue . modifyCurrentValue

data File = File {

name ::: String,

entries ::: [Entry]

}

data Entry = Entry {

key ::: String,

value ::: Value

}

data Value = Value {

curr ::: String,

def ::: String

}

Lukas Pietzschmann Lenses Why Page 8 / 49

2.5 Let’s reinvent the lens

We can use our modify-functions to implement a setter:
setCurrentValue' ::: String ->- Entry ->- Entry
setCurrentValue' = modifyEntriesCurrentValue . const

The getter is still fine:
getCurrentValue' ::: Entry ->- String
getCurrentValue' = def . value

data File = File {

name ::: String,

entries ::: [Entry]

}

data Entry = Entry {

key ::: String,

value ::: Value

}

data Value = Value {

curr ::: String,

def ::: String

}

Lukas Pietzschmann Lenses Why Page 9 / 49

2.6 Let’s reinvent the lens
Now, we can build our lens abstraction:
data Lens s a = Lens {

get ::: s ->- a,

modify ::: (a ->- a) ->- s ->- s

}

We need to reimplement the function composition:
compose ::: Lens a b ->- Lens b c ->- Lens a c

compose (Lens g m) (Lens g' m') = Lens {

get = g' . g,

modify = m . m'

}

For easier handling, we also define set as a little helper:
set ::: Lens s a ->- a ->- s ->- s

set (Lens _ modify) = modify . const

Lukas Pietzschmann Lenses Why Page 10 / 49

2.7 Let’s reinvent the lens
Finally, we can build lenses for our ADTs:

currentValueL ::: Lens Value String

currentValueL = Lens {

get = curr,

modify = \f value ->- value { curr = f $ curr value }

}

entryValueL ::: Lens Entry Value

entryValueL = Lens {

get = value,

modify = \f entry ->- entry { value = f $ value entry }

}

entryCurrentValueL ::: Lens Entry String

entryCurrentValueL = entryValueL `compose` currentValueL

data File = File {

name ::: String,

entries ::: [Entry]

}

data Entry = Entry {

key ::: String,

value ::: Value

}

data Value = Value {

curr ::: String,

def ::: String

}

data Lens s a = Lens {

get ::: s ->- a,

modify :::

(a->-a) ->- s ->- s

}

Lukas Pietzschmann Lenses Why Page 11 / 49

2.8 Let’s reinvent the lens

Now we only have to plug our lens into set , get , or modify :

setCurrentValue'' ::: String ->- Entry ->- Entry
setCurrentValue'' = set entryCurrentValueL

getCurrentValue'' ::: Entry ->- String
getCurrentValue'' = get entryCurrentValueL

Lukas Pietzschmann Lenses Why Page 12 / 49

2.9 Let’s reinvent the lens
Puh, that was kinda complicated. But again, think of how much less
code you have to write:

ve
rs
us

ve
rs
us

ve
rs
us

ve
rs
us

ve
rs
us

ve
rs
us

ve
rs
us

ve
rs
us

ve
rs
us

ve
rs
us

ve
rs
us

ve
rs
us

ve
rs
us

ve
rs
us

ve
rs
us

ve
rs
us

ve
rs
us

let f = _foo v
b = _bar f

z = _baz b in

v { _foo = f {

_bar = b {
_baz = z + 1

} } }

v & foo . bar . baz +~ 1

We can now think “How can I traverse through this?” instead of “How
do I un- and repack all of this?”.

Lukas Pietzschmann Lenses Why Page 13 / 49

2.10 Let’s reinvent the lens

Our solution looks more flexible than what we had before. But there
are still some problems:

• Still feels a bit clunky and boilerplate-heavy
• We always have to create Lens values
• No support for polymorphic updates

It’s definitely not impossible to overcome these limitations, but we’ll
skip this for now.

data Pair a b = Pair {e1 ::: a, e2 ::: b}

p ::: Pair Int String
p = Pair 420 "is fun"

p { e1 = "FP" } Caret-right Pair { e1 = "FP", e2 = "is fun" }

Caret-right Notice that the type has changed from Pair Int String

to Pair String String . This is what we call polymorphic
update.

Polymorphic Update

Lukas Pietzschmann Lenses Why Page 14 / 49

2.10 Let’s reinvent the lens

Our solution looks more flexible than what we had before. But there
are still some problems:

• Still feels a bit clunky and boilerplate-heavy
• We always have to create Lens values
• No support for polymorphic updates

It’s definitely not impossible to overcome these limitations, but we’ll
skip this for now.

data Pair a b = Pair {e1 ::: a, e2 ::: b}

p ::: Pair Int String
p = Pair 420 "is fun"

p { e1 = "FP" } Caret-right Pair { e1 = "FP", e2 = "is fun" }

Caret-right Notice that the type has changed from Pair Int String

to Pair String String . This is what we call polymorphic
update.

Polymorphic Update

Lukas Pietzschmann Lenses Why Page 14 / 49

2.11 What are lenses Revisited

Lenses are:
• A way to focus on a part of a data structure

Or more precisely:
• Just another abstraction
• Functional references
• Getters and Setters
• Highly composable and flexible

• “The Power is in the Dot” Edward Kmett

Lukas Pietzschmann Lenses Why Page 15 / 49

2.12 A little history lesson [Kme20]

Luke Palmer creates a pattern he calls Accessors to ease stateful
programming in Haskell [Pal07b]. He uses C’s preprocessor to
generate readVal and writeVal functions.‹1›

Palmer generalizes his Accessors into something more like today’s
lenses. [Pal07a]

Twan van Laarhoven comes up with a novel way to express lenses
using the Functor class [Laa09]. We call them van Laarhoven
lenses.

‹1›In another blog post he then swaps out the preprocessor in favour of Template Haskell.

Lukas Pietzschmann Lenses Why Page 16 / 49

2.13 A little history lesson [Kme20]

Russell O’Connor realises van Laarhoven lenses have always
supported polymorphic updates. [OCo12]

Edward Kmett realises that you can put laws on the notion of
polymorphic updates. [Kme12]

Kmett pushed the first commit to the lens repository on GitHub

Lukas Pietzschmann Lenses Why Page 17 / 49

https://github.com/ekmett/lens/commit/c5c8e5ffeeccdd7ac78f758dfc5723c411443d78
https://github.com/ekmett/lens

3. How

Lukas Pietzschmann Lenses Section 3

3.1 A little Overview
Lenses basically provide two kinds of operations:
• view ::: Lens' s a ->- s ->- a

• set ::: Lens' s a ->- a ->- s ->- s

To use them, we need the actual lens. It determines what part of the
structure we want to focus on.
• _1 ::: Lens' (a,b) a

• _2 ::: Lens' (a,b) b

With all that in place, we can now combine the operation with a lens
(or a combination of lenses) and data:
• set _2 "cool" ("FP is", "") Caret-right ("FP is", "cool")

• view _1 ("hi", "there") Caret-right "hi"

Lukas Pietzschmann Lenses How A little Overview Page 18 / 49

3.2.1 Lens Laws

Like with functors, applicatives, and monads, lenses should follow
some rules:
1. Get-Put
2. Put-Get
Put-Put

We’ll look at them in a bit more detail.

Lukas Pietzschmann Lenses How Lens Laws Page 19 / 49

3.2.2 Lens Laws Get-Put

If you modify something by changing its subpart to exactly what it was
before, nothing should happen.

set entryValueL (get entryValueL entry) entry === entry

Caret-right The lens should not modify the value or structure by itself.

Lukas Pietzschmann Lenses How Lens Laws Page 20 / 49

3.2.3 Lens Laws Put-Get

If you modify something by inserting a particular subpart and then
view the result, you’ll get back exactly that subpart.

get entryValueL (set entryValueL v entry) === v

Caret-right Setting values should be independent of any previous state.

Lukas Pietzschmann Lenses How Lens Laws Page 21 / 49

3.2.4 Lens Laws Put-Put

If you modify something by inserting a particular subpart a , and then
modify it again inserting a different subpart b , it’s exactly as if you
only did the second insertion.

set entryValueL v2 (set entryValueL v1 entry) === set
entryValueL v2 entry = 1

Caret-right Previous updates should not leave any traces.

Lukas Pietzschmann Lenses How Lens Laws Page 22 / 49

3.2.5 Do I really have to follow them?

• Yes, you should! Otherwise your lenses might behave weird.
• And weird unpredictable things are for OOP

• But, we can get around them
• In fact, we can get around the whole process of creating a lens by
hand
• You remember Template-Haskell, do you?

Lukas Pietzschmann Lenses How Lens Laws Page 23 / 49

3.2.6 Do I really have to follow them?

{-# LANGUAGE TemplateHaskell #-}

import Control.Lens

data File = File {_name ::: String, _entries ::: [Entry]}

data Entry = Entry {_key ::: String, _value ::: Value }

data Value = Value {_curr ::: String, _def ::: String }

makeLenses ''File
makeLenses ''Entry
makeLenses ''Value

Lukas Pietzschmann Lenses How Lens Laws Page 24 / 49

3.3.1 The lens Package

• Until now, we have only used view and set

• But there are actually a lot more functions and operators
• I mean a loooooooooooooooooot; easily over 100

• Let’s try to find a pattern in their names

Lukas Pietzschmann Lenses How The actual Package Page 25 / 49

3.3.2 The lens Package

Operators beginning with ^ be-
have like view functions:

Value "c" "d" ^. def Caret-right "d"

(1,2) ^... both Caret-right [1,2]

Right 42 ^? _Left Caret-right Nothing

Operators ending in ~ behave
like set functions:

(_2 .~ 3) (0, 0) Caret-right (0,3)

(_2 +~ 3) (0, 39) Caret-right (0,42)

(_1 %~ (+1)) (3,2) Caret-right (4,2)

Writing lens .~ value $ adt every time is not very nice. But as always, there’s
a special operator to our rescue: & ::: a ->- (a ->- b) ->- b .

Lukas Pietzschmann Lenses How The actual Package Page 26 / 49

3.3.3 The lens Package

With this knowledge aquired, we can finally write concise
Haskell-code:

(6, 2) & both *~ 7 Caret-right (42, 14)

lens = entries . _last . value . curr

val = config ^?! lens Caret-right "88"
config & lens .~ val +++ "0" Caret-right curr = "880" inside config

over lens (+++"0") config Caret-right curr = "880" inside config

(0, "upd.") & _1 .~ "poly." Caret-right ("poly.", "upd.")c
o
n
f
i
g
=
F
i
l
e
"
~
/
.
c
o
n
f
i
g
/
n
v
i
m
/
i
n
i
t
.
l
u
a
"
[

E
n
t
r
y
"
e
x
p
a
n
d
t
a
b
"
(
V
a
l
u
e
"
"
"
t
r
u
e
"
)
,

E
n
t
r
y
"
c
m
d
h
e
i
g
h
t
"
(
V
a
l
u
e
"
0
"
"
1
"
)
,

E
n
t
r
y
"
t
e
x
t
w
i
d
t
h
"
(
V
a
l
u
e
"
8
8
"
"
"
)

]

Lukas Pietzschmann Lenses How The actual Package Page 27 / 49

3.3.4 The lens Package Gotchas

You might have notices that lenses compose backwards:

entries _last value curr

lens

Haskell

This makes it weird for FP-enjoyers, but intuitive for OOP-weirdos.
The same applies for all kinds of operators:

lens Haskell
5 & (+1) (+1) $ 5

Just 5 <&> (+1) (+1) <$<$> (Just 5)

Backward composition of lenses. It’s a minor is-
sue, and I wouldn’t mention it if it wasn’t a great
demonstration of how lens goes against the con-
ventions of Haskell.

Roman Cheplyaka

Lukas Pietzschmann Lenses How The actual Package Page 28 / 49

3.3.4 The lens Package Gotchas

You might have notices that lenses compose backwards:

entries _last value curr

lens

Haskell

This makes it weird for FP-enjoyers, but intuitive for OOP-weirdos.
The same applies for all kinds of operators:

lens Haskell
5 & (+1) (+1) $ 5

Just 5 <&> (+1) (+1) <$<$> (Just 5)

Backward composition of lenses. It’s a minor is-
sue, and I wouldn’t mention it if it wasn’t a great
demonstration of how lens goes against the con-
ventions of Haskell.

Roman Cheplyaka

Lukas Pietzschmann Lenses How The actual Package Page 28 / 49

3.3.5 The lens Package Getters

Writing a Getter is really easy. We can simply promote any function or
value to a Getter.

• to builds a Getter from any function

("Hello", "FP2") ^. to snd Caret-right "FP2"

• like always returns a constant value

("Hello", "FP2") ^. like 42 Caret-right 42

Lukas Pietzschmann Lenses How The actual Package Page 29 / 49

3.3.6 The lens Package Setters

Writing a Setter is only slightly more complicated, as we don’t set the
value directly, but apply a function on the focused part.

• setting receives a function, that applies another function to
the correct value inside a structure

(4,1) & setting (\f (x,y) ->- (x,f y)) .~ 2 Caret-right (4,2)

• sets is in theory a bit more flexible, but that’s out of scope for
today

(4,1) & sets (\f (x,y) ->- (x,f y)) .~ 2 Caret-right (4,2)

Lukas Pietzschmann Lenses How The actual Package Page 30 / 49

3.3.7 The lens Package Getter + Setter

Having a separate Getter and Setter is not always desirable. Now, we
want to create our own lens that we can use as both Getter and Setter.
This time, makeLenses doesn’t count!

• We can use lens to combine a viewing and setting function
g = snd

s = (\(a,_) b ->- (a,b))
_2 = lens g s

• You can also simply write a custom function with the type
l ::: forall f. Functor f =>= (a ->- f b) ->- s ->- f t

that satisfies all three lens laws. Good luck! We’ll try it anyway.

Lukas Pietzschmann Lenses How The actual Package Page 31 / 49

3.3.8 The lens Package How lens works [Rom19]

type Lens s t a b = forall f. Functor f =>= (a ->- f b) ->- s ->- f t
type Lens' s a = Lens s s a a

The type of the whole structure
The inner type we’re interested in

lens ::: Functor f =>= (s->-a) ->- (s->-a->-s) ->- (a->-f a) ->- s ->- f s
lens get set f s =

• We need to get from s ->- a and s ->- a ->- s to f s

• We can get an a from our getter: get s

• With a and f we can make an f a : f $ get s

Lukas Pietzschmann Lenses How The actual Package Page 32 / 49

3.3.9 The lens Package How lens works [Rom19]

lens ::: Functor f =>= (s->-a) ->- (s->-a->-s) ->- (a->-f a) ->- s ->- f s

lens get set f s = set s <$<$> f (get s)

• We need to get from s ->- a and s ->- a ->- s to f s

• We can get an a from our getter: get s

• With a and f we can make an f a : f $ get s

• Now, to get an f s , we an simply use

fmap ::: Functor f =>= (a ->- b) ->- f a ->- f b

set s f $ get s

Lukas Pietzschmann Lenses How The actual Package Page 33 / 49

4. More Goodies

Lukas Pietzschmann Lenses Section 4

4.1 Virtual lenses

A Getter does not always have to be backed by an actual structure.
Theoretically, it can return anything:
get virtualProp(): number {

return 42

}

We can easily achieve this behavior with lenses, too:
virtualProp = like 42

(0,0) ^. virtualProp Caret-right 42

Lukas Pietzschmann Lenses More Goodies Virtual lenses Page 34 / 49

4.2.1 Prisms
So far, we only looked at product types. But what about sum types?
Prisms to the rescue!

data CanteenMeal = MainCourse String CanteenMeal

| Dessert String

meal1 = MainCourse "Sattmacher" (Dessert "Pudding")
meal2 = Dessert "Yogurt"

meal1 ^? _MainCourse . _2 . _Dessert Caret-right Just "Pudding"

meal2 ^? _MainCourse . _2 . _Dessert Caret-right Nothing

meal1 & _MainCourse . _2 . _Dessert .~ "Yogurt"
Caret-right Dessert "Yogurt" inside meal1

Lukas Pietzschmann Lenses More Goodies Prisms Page 35 / 49

4.2.2 Prisms
• We already used a prism: remember _last ?
• We can usually use them like a normal lens (there’s just a little

Maybe in the way)

versusversusversusversusversusversusversusversusversusversusversusversusversusversusversusversusversus

case meal1 of

MainCouse _ (Dessert d) ->- MainCourse {

dessert = Dessert "Yogurt" }
_ ->- meal1

meal1 & _MainCourse . _2 . _Dessert .~ "Yogurt"

Lukas Pietzschmann Lenses More Goodies Prisms Page 36 / 49

4.3.1 Traversals

Wouldn’t it be nice to have a lens that focuses on a specific element of
a traversable container? Let’s start with every element:
["Hello", "there"] ^. traverse Caret-right "Hellothere"

Huh?! What’s that? I would’ve expected ["Hello", "there"].
When viewing the result of traverse , it gets shoved through
mappend first. That’s why you typically ^... .

[1...5] ^... traverse Caret-right [1,2,3,4,5]

[(1,2),(3,4)] ^... traverse . _2 Caret-right [2,4]

[1...5] & traverse +~ 1 Caret-right [2,3,4,5,6]

Lukas Pietzschmann Lenses More Goodies Traversals Page 37 / 49

4.3.2 Traversals

As promised, here’s how we can focus on a specific element of a
traversable:
[1...5] ^... ix 1 Caret-right [2]

[1...5] ^... ix 5 Caret-right []

Returning an empty list on failure does not seem very nice. Let’s use
the prism-view-operator to get a Maybe :

[1...5] ^? ix 1 Caret-right Just 2

[1...5] ^? ix 5 Caret-right Nothing

Lukas Pietzschmann Lenses More Goodies Traversals Page 38 / 49

4.4.1 Isos

Here’s a very short summary:
• An Iso is a connection between two types that are equivalent in
every way
• Isos should follow the following laws:
forward . backward = id

backward . forward = id

• We can write our own Iso by providing a forward and backward
mapping

Lukas Pietzschmann Lenses More Goodies Isos Page 39 / 49

4.4.2 Isos

maybeToEither = maybe (Left ()) Right

eitherToMaybe = either (const Nothing) Just

someIso ::: Iso' (Maybe a) (Either () a)
someIso = iso maybeToEither eitherToMaybe

Just "hi" ^. someIso Caret-right Right "hi"

Left "ho" ^. from someIso Caret-right Nothing

Lukas Pietzschmann Lenses More Goodies Isos Page 40 / 49

5. Summary

Lukas Pietzschmann Lenses Section 5

5.1 Summary

• Focus on a single part of a data
structure
• ^. returns the focused part
directly

Lens
• Focus on a single part that may
not exist
• ^? returns the focused part
inside a Maybe

Prism

• Focus on multiple parts (also
zero) of a data structure

• ^... returns list of the focused
parts

Traversals

Lukas Pietzschmann Lenses Summary Page 41 / 49

5.2 And so much more

General idea

Lens lawsComposable
lenses

Lens
Prism

TraversalFoldIso

Index
preserving

Bazaar

Subtyping
Typesig-
natures

Lukas Pietzschmann Lenses Summary Page 42 / 49

6. References

Lukas Pietzschmann Lenses Section 6

6.1 Reading suggestions (I)

[Abr18] Joseph Abrahamson. A Little Lens Starter Tutorial. 2018. url:
https://www.schoolofhaskell.com/school/to-

infinity-and-beyond/pick-of-the-week/a-little-

lens-starter-tutorial (visited on 03/05/2024).
[Bha13] Aditya Bhargava. Lenses In Pictures. 2013. url:

https://www.adit.io/posts/2013-07-22-lenses-in-

pictures.html (visited on 04/25/2024).
[Laa09] Twan van Laarhoven. CPS based functional references. 2009.

url: https://www.twanvl.nl/blog/haskell/cps-
functional-references (visited on 04/18/2024).

Lukas Pietzschmann Lenses References Page 43 / 49

https://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial
https://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial
https://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial
https://www.adit.io/posts/2013-07-22-lenses-in-pictures.html
https://www.adit.io/posts/2013-07-22-lenses-in-pictures.html
https://www.twanvl.nl/blog/haskell/cps-functional-references
https://www.twanvl.nl/blog/haskell/cps-functional-references

6.1 Reading suggestions (II)

[OCo12] Russell O’Connor. Polymorphic Update with van Laarhoven
Lenses. 2012. url:
https://r6.ca/blog/20120623T104901Z.html (visited
on 04/18/2024).

[Rom19] Veronika Romashkina. Write yourself a lens. 2019. url:
https://vrom911.github.io/blog/write-yourself-a-

lens.

Lukas Pietzschmann Lenses References Page 44 / 49

https://r6.ca/blog/20120623T104901Z.html
https://vrom911.github.io/blog/write-yourself-a-lens
https://vrom911.github.io/blog/write-yourself-a-lens

6.2 References (I)

[Abr18] Joseph Abrahamson. A Little Lens Starter Tutorial. 2018. url:
https://www.schoolofhaskell.com/school/to-

infinity-and-beyond/pick-of-the-week/a-little-

lens-starter-tutorial (visited on 03/05/2024).
[Bha13] Aditya Bhargava. Lenses In Pictures. 2013. url:

https://www.adit.io/posts/2013-07-22-lenses-in-

pictures.html (visited on 04/25/2024).
[Che14] Roman Cheplyaka. Lens is unidiomatic Haskell. 2014. url:

https://ro-che.info/articles/2014-04-24-lens-

unidiomatic.html (visited on 04/09/2024).

Lukas Pietzschmann Lenses References Page 45 / 49

https://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial
https://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial
https://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial
https://www.adit.io/posts/2013-07-22-lenses-in-pictures.html
https://www.adit.io/posts/2013-07-22-lenses-in-pictures.html
https://ro-che.info/articles/2014-04-24-lens-unidiomatic.html
https://ro-che.info/articles/2014-04-24-lens-unidiomatic.html

6.2 References (II)
[GO09] Jeremy Gibbons and Bruno C d S Oliveira. “The essence of

the iterator pattern”. In: Journal of functional programming
19.3-4 (2009), pp. 377–402.

[Kme12] Edward Kmett. Mirrored Lenses. 2012. url: https:
//web.archive.org/web/20240301015449/https:

//comonad.com/reader/2012/mirrored-lenses/

(visited on 03/01/2024).
[Kme20] Edward Kmett. History of Lenses. 2020. url: https:

//github.com/ekmett/lens/wiki/History-of-Lenses

(visited on 04/18/2024).
[Laa09] Twan van Laarhoven. CPS based functional references. 2009.

url: https://www.twanvl.nl/blog/haskell/cps-
functional-references (visited on 04/18/2024).

Lukas Pietzschmann Lenses References Page 46 / 49

https://web.archive.org/web/20240301015449/https://comonad.com/reader/2012/mirrored-lenses/
https://web.archive.org/web/20240301015449/https://comonad.com/reader/2012/mirrored-lenses/
https://web.archive.org/web/20240301015449/https://comonad.com/reader/2012/mirrored-lenses/
https://github.com/ekmett/lens/wiki/History-of-Lenses
https://github.com/ekmett/lens/wiki/History-of-Lenses
https://www.twanvl.nl/blog/haskell/cps-functional-references
https://www.twanvl.nl/blog/haskell/cps-functional-references

6.2 References (III)

[OCo12] Russell O’Connor. Polymorphic Update with van Laarhoven
Lenses. 2012. url:
https://r6.ca/blog/20120623T104901Z.html (visited
on 04/18/2024).

[Pal07a] Luke Palmer. Haskell State Accessors (second attempt:
Composability). 2007. url: https:
//web.archive.org/web/20120303223802/https:

//lukepalmer.wordpress.com/2007/08/05/haskell-

state-accessors-second-attempt-composability/

(visited on 03/03/2012).

Lukas Pietzschmann Lenses References Page 47 / 49

https://r6.ca/blog/20120623T104901Z.html
https://web.archive.org/web/20120303223802/https://lukepalmer.wordpress.com/2007/08/05/haskell-state-accessors-second-attempt-composability/
https://web.archive.org/web/20120303223802/https://lukepalmer.wordpress.com/2007/08/05/haskell-state-accessors-second-attempt-composability/
https://web.archive.org/web/20120303223802/https://lukepalmer.wordpress.com/2007/08/05/haskell-state-accessors-second-attempt-composability/
https://web.archive.org/web/20120303223802/https://lukepalmer.wordpress.com/2007/08/05/haskell-state-accessors-second-attempt-composability/

6.2 References (IV)

[Pal07b] Luke Palmer. Making Haskell nicer for grame programming.
2007. url: https:
//web.archive.org/web/20220222032352/https:

//lukepalmer.wordpress.com/2007/07/26/making-

haskell-nicer-for-game-programming/ (visited on
02/22/2022).

[Rom19] Veronika Romashkina. Write yourself a lens. 2019. url:
https://vrom911.github.io/blog/write-yourself-a-

lens.

Lukas Pietzschmann Lenses References Page 48 / 49

https://web.archive.org/web/20220222032352/https://lukepalmer.wordpress.com/2007/07/26/making-haskell-nicer-for-game-programming/
https://web.archive.org/web/20220222032352/https://lukepalmer.wordpress.com/2007/07/26/making-haskell-nicer-for-game-programming/
https://web.archive.org/web/20220222032352/https://lukepalmer.wordpress.com/2007/07/26/making-haskell-nicer-for-game-programming/
https://web.archive.org/web/20220222032352/https://lukepalmer.wordpress.com/2007/07/26/making-haskell-nicer-for-game-programming/
https://vrom911.github.io/blog/write-yourself-a-lens
https://vrom911.github.io/blog/write-yourself-a-lens

6.2 References (V)

[Wik23] Wikibooks. Haskell/Lenses and functional references. 2023.
url: https:
//en.wikibooks.org/w/index.php?title=Haskell/

Lenses_and_functional_references&oldid=4342240

(visited on 03/05/2024).

Lukas Pietzschmann Lenses References Page 49 / 49

https://en.wikibooks.org/w/index.php?title=Haskell/Lenses_and_functional_references&oldid=4342240
https://en.wikibooks.org/w/index.php?title=Haskell/Lenses_and_functional_references&oldid=4342240
https://en.wikibooks.org/w/index.php?title=Haskell/Lenses_and_functional_references&oldid=4342240

Lukas Pietzschmann
Ulm, May 13th, 2024 lukas.pietzschmann@uni-ulm.de

mailto:lukas.pietzschmann@uni-ulm.de

	What
	Why
	How
	A little Overview
	Lens Laws
	The actual Package

	More Goodies
	Virtual lenses
	Prisms
	Traversals
	Isos

	Summary
	References

