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1 About Me

Hi, I’m Lukas!

UNIVERSITYCaret-right Studies
I’m studying computer science for
my master’s degree at Ulm Uni-
versity. Currently, I’m working on
my thesis.

LIGHTBULB
Caret-right Interests
I enjoy various things, but compil-
ers, typesetting, and functional
programming spark the most joy
inside me.
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2 Motivation A first small example

Constraint Programming represents one of the closest ap-
proaches computer science has yet made to the holy grail
of programming: the user states the problem, the computer
solves it. (Eugene C. Freuder [Fre97])

min(N) \ min(M) <==>= N <<= M | true

First min constraint
Operation Second min constraint

Guard Result
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3.1 Introduction to CHR Rules

CHR knows about three kinds of rules:

Propagation

C =>= G | CN

CN is inferred if G holds

Simplification

C <==>= G | CN

CO is simplified to CN if
G holds

Simpagation

C1 \ C2 <==>= G | CN

C2 is simplified to CN if
G holds

C Head CHR Constraints
G Guard Conjunction of built-ins
CN Body CHR Constraints and conjunction of built-ins

Zig code

Behind the curtain, the embedding represents every rule as
a 4-tuple:

⟨𝐾𝐻, 𝑅𝐻, 𝐺, 𝐵⟩

𝐾𝐻: Kept Head 𝑅𝐻: Removed Head 𝐺: Guard 𝐵: Body

A propagation rule would then look like this: ⟨𝐾𝐻,∅, 𝐺, 𝐵⟩

Generalized Simpagation Rule
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3.2 Introduction to CHR Constraint Store

Angle-Right Query …

min(N) \ min(M) <==>= N <<= M | true

Angle-Right Add constraints to solve for
Constraint Store

min(3)min(1)

min(3)min(1)min(1) min(3)min(3)min(5) 311 335
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3.2 Introduction to CHR Constraint Store

Angle-Right min(3), min(1)

min(N) \ min(M) <==>= N <<= M | true

Angle-Right Add constraints to solve for
Constraint Store

min(3)min(1)

min(3)min(1)min(1) min(3)min(3)min(5) 311 335
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3.2 Introduction to CHR Constraint Store

Angle-Right min(3), min(1), min(5)

min(N) \ min(M) <==>= N <<= M | true

Angle-Right Add constraints to solve for
Constraint Store

min(3)min(1)

min(3)min(1)min(1) min(3)min(3)min(5) 311 335
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3.2 Introduction to CHR Constraint Store

Angle-Right min(3), min(1), min(5)Angle-Right min(3), min(1), min(5)

min(N) \ min(M) <==>= N <<= M | true

Angle-Right Check if we can find a matching for the
currently active constraint

Constraint Store

min(3)min(1)

min(3)min(1)min(1) min(3)min(3)min(5) 311 335
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3.2 Introduction to CHR Constraint Store

Angle-Right min(3), min(1), min(5)Angle-Right min(3), min(1), min(5)

min(N) \ min(M) <==>= N <<= M | true

Angle-Right Fire the rule that matched
Constraint Store
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3.2 Introduction to CHR Constraint Store

Angle-Right min(3), min(1), min(5)Angle-Right min(3), min(1), min(5)

min(N) \ min(M) <==>= N <<= M | true
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3.2 Introduction to CHR Constraint Store

Angle-Right min(3), min(1), min(5)Angle-Right min(3), min(1), min(5)

min(N) \ min(M) <==>= N <<= M | true

Angle-Right The remaining constraints in the store are
the solution

Constraint Store

min(3)min(1)

min(3)min(1)min(1) min(3)min(3)min(5) 311 335
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4.1 Inner workings of the Embedding

• Based on the concepts established in “FreeCHR: An
Algebraic Framework for CHR-Embeddings” [RF23]

• Every rule is represented as a 4-tuple (see slide 3)
• We then compose more complex programs from
subprograms — or ultimately from single rules

• Lastly, we apply the composition to a state until a
fixpoint is reached

192 S. Rechenberger and T. Frühwirth2.1 Basic DefinitionsThe disjoint union of two sets A and B
A \ B “ {lA(a) | a P A} Y {lB(b) | b P B}

is the union of both sets, with additional labels lA and lB added to the elements,

to keep track of the origin set of each element. We will also use the labels lA and

lB as injection functions lA : A Ñ A \ B and lB : B Ñ A \ B which construct

elements of A \ B from elements of A or B, respectively.

For two functions f : A Ñ C and g : B Ñ C, the function[f, g] : A \ B Ñ C[f, g] (l(x)) “
{
f(x), if l “ lAg(x), if l “ lB

is called a case analysis function of the disjoint union A \ B, and is a formal

analogue to a case ... of expression. Furthermore, we define two functions

f \ g : A \ B Ñ A ′ \ B ′(f \ g)(l(x)) “
{
lA′(f(x)), if l “ lAlB ′(g(x)), if l “ lB

f ˆ g : A ˆ B Ñ A ′ ˆ B ′(f ˆ g)(x, y) “ (f(x), g(y))
which lift two functions f : A Ñ A′ and g : B Ñ B ′ to the disjoint union and

the Cartesian product, respectively.2.2 EndofunctorsA Set-endofunctor1 F maps all sets A to sets FA and all functions f : A Ñ

B to functions Ff : FA Ñ FB, such that F idA “ idFA and F (g ◦ f) “

Fg ◦ Ff , where idX (x) “ x is the identity function on a set X 2. A signature

Σ “ {σ1/a1, ..., σn/an}, where σi are operators and ai their arity, generates a

functor

FΣX “ ⊔
σ/aPΣ

X a

FΣf “ ⊔
σ/aPΣ

f a

with X 0 “ 1 and f 0 “ id1, where 1 is a singleton set. Such a functor FΣ models

flat (i.e., not nested) terms over the signature Σ.

1
Since we only deal with endofunctors in Set, we will simply call them functors.

2
We will omit the index of id, if it is clear from the context.

FreeCHR: An Algebraic Framework for CHR-Embeddings 191[11,12,30]. However, there is yet no formal connection between CHR as an imple-

mented programming language and CHR as a formalism.
We introduce the framework FreeCHR which formalizes the embedding of

CHR, using initial algebra semantics. This concept which is commonly used

in functional programming is used to inductively define languages and their

semantics [16,18]. FreeCHR provides both a guideline and high-level architecture

to implement and maintain CHR implementations across host languages and a

strong connection between the practical and formal aspects of CHR. Also, by

FreeCHR-instances being internal embeddings, we get basic tooling, like syntax

highlighting and type-checking for free [9].Ultimately, the framework shall serve a fourfold purpose, by providing
– a general guideline on how to implement a CHR system in modern high-level

languages,
– a guideline for future maintenance of FreeCHR instances,
– a common framework for both formal considerations and practical implemen-

tations
– and a framework for the definition and verification of general criteria of cor-

rectness.

In this work, we will give first formal definitions of FreeCHR, upon which

we will build our future work. A follow-up paper will cover first instantiations

of FreeCHR. Section 2 will provide the necessary background and intuitions.

Section 3 introduces the syntax and semantics of Constraint Handling Rules and

generalizes them to non-Herbrand domains. Section 4 introduces the framework

FreeCHR. Section 4.1 lifts the syntax of CHR programs to a Set-endofunctor

and introduces the free algebra, generated by that functor, Sect. 4.2 lifts the

very abstract operational semantics ωa of CHR to the very abstract operational

semantics ω�
a of FreeCHR and Sect. 4.3 proves the correctness of ω�

a w.r.t. ωa.

Section 4.4 gives a short preview of future work, concerning the implementation

and verification of FreeCHR instances. Example instances of FreeCHR in Haskell

and Python can be found on GitHub [24].An extended preprint of this paper, including complete proofs and additional

examples, is available on arxiv.com [27].

2 Endofunctors and F -Algebras
In this section, we want to introduce endofunctors and F -algebras. Both con-

cepts are taken from category theory and will be introduced as instances in the

category of sets Set.We do not assume any previous knowledge of category theory, but to read-

ers more interested in the topic in general, we recommend [22] as introductory

literature.

FreeCHR: An Algebraic Framework
for CHR-Embeddings

Sascha Rechenberger(B) and Thom Frühwirth

Institute for Software Engineering and Programming Languages, Ulm University,
Albert-Einstein-Allee 11, 89069 Ulm, Germany

{sascha.rechenberger,thom.fruehwirth}@uni-ulm.de

Abstract. We introduce the framework FreeCHR which formalizes the
embedding of Constraint Handling Rules (CHR) into a host language,
using the concept of initial algebra semantics from category theory, to
establish a high-level implementation scheme for CHR as well as a com-
mon formalization for both theory and practice. We propose a lifting of
the syntax of CHR via an endofunctor in the category Set and a lifting of
the very abstract operational semantics of CHR into FreeCHR, using the
free algebra, generated by the endofunctor and give proofs for soundness
and completeness w.r.t. their original definition.

Keywords: embedded domain-specific languages · declarative
programming languages · constraint handling rules · operational
semantics · category theory · initial algebra semantics

1 Introduction

Constraint Handling Rules (CHR) is a rule-based programming language that
is usually embedded into a general-purpose programming language.

Having a CHR implementation available enables software developers to solve
problems in a declarative and elegant manner. Aside from the obvious task of
implementing constraint solvers [6,10], it can be used to solve scheduling prob-
lems [2], implement concurrent and multi-agent systems [20,21,31,32], for appli-
cations in music [13,29] and possibly game development [19]. In general, CHR is
ideally suited for any problem that involves the transformation of (multi-) sets of
data, as programs consist of a set of rewriting rules, hiding away the process of
finding suitable candidates for rule application. Hereby, we get a purely declara-
tive representation of the algorithm without the otherwise necessary boilerplate
code.

Implementations of CHR exist for a number of languages, such as Prolog
[28], C [36], C++ [3], Haskell [5,21], JavaScript [23] and Java [1,17,34,35]. These
implementations do not follow a common approach, though, which complicates
and often stops maintenance, altogether. There is also a rich body of theoreti-
cal work concerning CHR, formalizing its declarative and operational semantics

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Fensel et al. (Eds.): RuleML+RR 2023, LNCS 14244, pp. 190–205, 2023.
https://doi.org/10.1007/978-3-031-45072-3_14
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4.2 ZigCHR online

• The embedding’s source code is available on GitHub
• Clone it and try it out yourself!

• Also, the repo contains some of the examples we’re
discussing today

https://lukas.pietzschmann.org/

talks/zigtoberfest

Check it out!
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5.1 Anytime Algorithms

• We can interrupt the execution at anytime
• The intermediate state will be an approximation of the final result
• After that, the program will continue like nothing happened
• This is especially useful if we need to guarantee a certain
response time
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5.2 Easy Memorization
Angle-Right Quizz: Change three symbols to make this have linear complexity

fib(0, M) <==>= M = 1

fib(1, M) <==>= M = 1

fib(N, M) <==>= N >>= 2 |

fib(N-1,M1), fib(N-2,M2), M is M1 + M2

fib(0, M) ==>= M = 1

fib(1, M) ==>= M = 1

fib(N, M) ==>= N >>= 2 |

fib(N-1,M1), fib(N-2,M2), M is M1 + M2

• We have to change the simplification rules to propagations
• This way, we do not remove calculated values from the store
• But we remember them for future use
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5.3 Confluence What Confluence is

Rule order matters

throw(Coin) <==>= head

throw(Coin) <==>= tail

• Depending on which rule we
check first, we get a different
result

• That’s great for coin tossing
• Not so much for determinism

Constraint order matters

set(K,V), c(K,V') <==>= c(K,V)

• Imagine the following query:
c(x,0),set(x,1),set(x,2)

• Depending on what constraint
we select first, x will be set
differently

Angle-Right In confluent programs, the relation between the initial and final state is a function
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5.4 Confluence Achieve Confluence

• Both rules are applicable to a state
containing only a

• From this, we can derive the two new states
• Confluence requires then to be joinable

a =>= b
a =>= false

• We can make the two states joinable by
adding a single rule

a =>= b
a =>= false
b =>= false

a

false ≢ b

bfalse
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5.5 Confluence Gotchas

Check Not every program can be made confluent
a =>= true
a =>= false

Check Be aware of the semantics of your program
set(K, V), c(K, V') <==>= c(K, V)

Caret-Up does not equal Caret-Down
set(K, V), c(K, V') <==>= V = V' | c(K, V)
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5.6 Confluence Why we need it

• If a program terminates, we can check if it’s confluent
• If it is, we get more cool properties for free:

Incrementality

• We can add constraints during
the program’s execution

• They will eventually participate
in the computation

• The result will be the same as if
was there from the beginning

Parallelism

• The algorithm can be executed
in parallel

• Without any modifications
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5.7 Declarative Concurrency Map-Reduce in CHR

Angle-Right map(square), reduce(add), v(2), v(3), v(4), v(5)

map(OP) \ v(X) <==>=

C =... [OP, X, R],

call(C),

r(R)

reduce(OP) \ r(X), r(Y) <==>=

C =... [OP, X, Y, R],

call(C),

r(R)
Constraint Store

reduce(add)

map(square)

r(54)
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6 What’s left to say

Zig
is awesome

Constraint programming, too
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