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Abstract—Modern space systems are increasing in complexity.
The advent of the Internet of Space Things, coupled with the
commercialisation of space has resulted in an ecosystem that
is difficult to control and brings about new security challenges.
In such critical systems, it is common to conduct verification
strategies to ensure that the underpinning software is correct.
Formal verification is achieved by modelling the system and
verifying that the model obeys particular functional and safety
properties. Many connected systems are now the target of a vari-
ety of threat actors attempting to realise different goals. Threat
modelling is the approach employed to analyse and manage the
threats from adversaries. Common practice is that these two
approaches are conducted independently of one another. In this
paper, we argue that the two should be mutually informed, and
describe a methodology for security-minded formal verification
that combines these analysis techniques. This approach will
streamline the development process and give a more formal
grounding to the security properties identified during threat
analysis.
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1. INTRODUCTION
Space systems are an essential part of national and inter-
national infrastructure for the purposes of data communic-
ation [1], environment monitoring [2], scientific experiments,
global positioning, navigation [3], timing, and many others.
Currently, the space sector is experiencing substantial change
due to the advancement of technologies such as artificial
intelligence (AI) [4] and the Internet of Things (IoT) [5].
Ensuring that these complex systems operate as they are
intended is becoming increasingly challenging and important.
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Verification of complex systems remains a significant chal-
lenge. It is recognised that formal verification of complex
systems in open contexts [6] is beyond current techniques
and resources, fundamentally due to state explosion. On
the other hand, informal methods such as simulation, have
also long been recognised to have limitations; in particular,
their “effectiveness in finding corner-case bugs significantly
decreases” [7] over time. As such, hybrid techniques have
been proposed and used in research and practice for several
years [8]. These methods involve a mixed approach of formal
and informal methods for verification, to provide improved
levels of confidence in the system. For example, in [9]
different verification and validation techniques are applied to
a robot co-operative manufacturing task, in particular, formal
verification (model checking), simulation-based testing, and
user validation with experiments with a real robot. The results
from verification with one technique are used to improve the
inputs to the verification process or to guide the analysis for
the other techniques thus improving confidence in the system.
Given that such informal verification methods cannot cover
all states of the system it is important to consider which states
should be prioritised to provide adequate confidence in the
correct functioning of the system.

Space systems have previously been developed by a small,
closely controlled set of organisations, but, reduced costs and
access to technology [10] has led to a much wider ecosystem
with a more diverse supply chain [11]. This has, in turn, led
to a reduction in the ability for control and oversight, as well
as an increase in complexity. More commercial-off-the-shelf
components are now “commonly used to build small satellites
at the lower end of the cost range” [12]. Coupled with this is
an increase in the ability and attractiveness of attacking space
systems [13]. While verifying system operations in open (real-
world) environments is a challenge, introducing an adversary
into the consideration raises the challenge by at least an order
of magnitude.

To address the challenge of assuring complex space systems in
the presence of an adversary we present a novel methodology
that we term security-minded verification. In order to present
the concept, we discuss formal and informal techniques for
verification before undertaking a threat modelling exercise to
identify the threat actors, motivations and methods used to
compromise space systems. We then present a methodology
that combines the two approaches which results in the verific-
ation strategy being evaluated against threat modelling, and
conversely using threat modelling to inform the strategy for
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verification. The method provides the opportunity to redefine
the requirements of the system based upon the results of the
threat modelling.

We illustrate the methodology by discussing the scenario of
cooperative autonomous docking performed by two robots
in orbit (such as in order to perform orbital construction or
on-orbit servicing). Typically these robots may be considered
as cooperative, non-cooperative or semi-cooperative [14], and
requirements may be developed to consider the behaviours
of the robots in each of these cases. Rather than modelling
and verifying the system without considering an attacker, we
consider the changes to the specification in the case that
an attacker can control one of the robots so that it is anti-
cooperative. This leads to a change in the requirements and
specification before we then undertake the verification strategy.

To summarise, the main contribution of this paper is to present
an enhanced methodology for security-minded verification,
based upon previous work presented in [15]. The concept
presented in the previous work is enhanced by presenting a
methodology that is more detailed and integrated. To illustrate
the methodology, we present its application to an example
currently being examined by the Future AI and Robotics for
Space (FAIR-SPACE) Hub2. In this context, we introduce the
novel definition of an anti-cooperative robot, that is a robot that
has been compromised and is under the control of an adversary,
to complement the definitions of cooperative, non-cooperative
and semi-cooperative robots.

The remainder of this paper is structured as follows, in
Section 2 we present related work on formal verification and
security analyses of space systems. Section 3 presents the
two existing individual methodologies for formal verification
and threat modelling and Section 4 presents our proposed
combined methodology. In Section 5 we present the use case
of autonomous docking and apply this methodology to it. A
discussion and future work are provided in Section 6. Finally,
Section 7 concludes.

2. RELATED WORK
This section summarises pertinent related work for this paper
and comprises subsections concerning formal verification of
space systems, threat modelling of space systems and the
combination of formal verification and cyber security.

Formal Verification of Space Systems

A recent survey of formal specification and verification
techniques for autonomous robotic systems has revealed that,
although there are many tools and techniques available, im-
provements are still required for their successful deployment
in large, complex and autonomous systems [16, 17]. There
has been much interest in autonomy from the space industry to
support missions in these remote and dangerous environments
because remote operation may be problematic or impossible
due to distance, time lags or communication issues and manual
operation may be hazardous or impossible. Additionally,
autonomy can save time by removing the need for human
intervention as well as help mediate failures. Due to the
importance of many space systems and the services that they
provide, it is vital that they are correctly and robustly verified.
There are many approaches to formally verify such systems
and we describe some of these in what follows.

2https://www.fairspacehub.org

Brat et al. have proposed an approach for the verification
of autonomous space systems that is based on an assume-
guarantee framework [18]. Their work is relevant for systems
that are composed of 3 layers (planning, execution and
functional layers) and they make use of model-checking, static
analysis, synthesis and testing to demonstrate their approach.
In other work, the authors compared tools for static analysis,
model-checking and runtime verification against traditional
testing of rover flight software [19]. Each of these formal
techniques outperformed testing when locating concurrency
errors.

Alves et al. have used UML-based formal assertions and
runtime monitoring to verify and validate a Brazilian satellite
launcher flight software [20]. The data for the runtime monit-
oring JUnit tests was collected from log files. Also relating to
runtime monitoring, the R2U2 tool (Responsive, Realisable,
Unobtrusive Unit) has been used in the development of small
satellites [21, 22].

Event-B specifications have been combined with probabilistic
properties to derive reconfigurable architectures for an on-
board satellite system [23]. In this work, the models of recon-
figurations are checked using PRISM for both the derivation
(via refinement) of the system from its specification and the
probabilistic assessment of their reliability and performance.

Cyber Security for Space Systems

The space systems and services currently being developed
and deployed are highly dependent on cyber technologies, in-
cluding software, hardware and other digital components [24].
This provides threat actors with a large surface to attack space
systems. In addition to this increased surface, attackers are
enjoying cheaper, more widely available and more effective
tools with which to attack these systems. For example,
Software Defined Radios (SDRs), are rapidly decreasing in
cost and this thus the technology reduces barrier to entry for
interaction with satellites [25].

Housen-Couriel [26] reviewed the satellite communication
cyber attack conducted by the so-called Turla group, in the
context of new threats to the space systems and legal responses
in terms of international law. According to Kaspersky, the
Turla group was more hazardous and harder to distinguish
since they not only used complex and sophisticated resources
but also implemented an exquisite satellite-based command-
and-control system in their attack [27].

Livingstone and Lewis [13] have analysed the dependencies
of the wide range of critical infrastructures on space systems,
and how cyber security vulnerabilities pose serious and broad
risks for these critical infrastructures. The authors have also
identified future trends and changes in the space ecosystem,
and examined several potential types of cyber attacks including
an analysis of the impact if exploited. As in [26], they have
also recommended cooperation in international law for the
cyber security of space systems. The link between satellites
and critical infrastructures is further emphasised in [28], with
particular reference to the scope of NATO’s missions.

In [29], the author analyses the current state of the industry
and existing security practices. They recommend that several
policy changes should be made to improve the state of
space cyber security. Recommendations include that space
organisations should be more open concerning working with
cyber security researchers and facilitating information sharing.
The latter is a particularly important issue in the evolving
space sector, in which new entrants are unlikely to have the
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cyber and information security expertise and knowledge of
more established organisations.

The Centre for Strategic & International Studies (CSIS)
assessed the threats to space systems in [30]. In this report,
the threats of space are classified as three factors: (i) physical
(e.g., kinetic and non-kinetic), (ii) electronic (e.g., jamming
and spoofing radio communications) and (iii) cyber. The
authors distinguish electronic attacks from cyberattacks in
which the target is the data and components where this data is
flowing through. The report explains how data traffic patterns
can be used to monitor information itself as well as to insert
false or corrupted data into the system. It is argued that such
cyber attacks on space systems may cause data loss, system
disruption or even permanent loss of a satellite. The report
also contains details of geopolitical rivals to the USA with
capabilities of launching a space attack.

The Consultative Committee for Space Data Systems (CCSDS)
also published a report on current threats of space cyber
security [31]. In the report, the threat actors and the types
of threats they hold are discussed. The threats in different
scenarios are listed with assessments of the impact if these
threats are realised. The authors state that the threats identified,
impacts and mitigation will change when considered under
different scenarios compared to the hypothetical scenario
presented.

Combining Formal Verification and Cyber Security

Clearly, security and formal verification are important aspects
to providing robust space systems in the presence of an ad-
versary. However, it is not clear that there is a comprehensive
understanding of these requirements across all organisations
involved in the space sector. Having recognised the need and
challenge of security and formal verification of space systems,
we believe that an appropriate methodology is required to
ensure that these issues can be considered efficiently and
robustly.

It is recognised that cyber security is often “bolted on as an
afterthought” and that “this is not effective in practice” [32]
and indeed “dangerous” [33]. To overcome challenges in
the efficacy of formal verification and security, we propose
a methodology that combines the two processes: threat
modelling and formal verification. We call this approach
security-minded verification. Our previous work, presented
in [15], on using threat analysis techniques to guide the formal
verification effort of the Cooperative Awareness Messaging
(CAM) protocol (a common protocol used in autonomous
vehicle communications) provides a basis for our security-
minded verification methodology presented herein. In particu-
lar, here we provide a more detailed methodology rather than
a concept, and a case study from the space domain to illustrate
our approach.

There has been much work on applying formal verification
techniques to analyse and verify the security aspects of
particular systems as well as cryptographic protocols [34, 35,
36, 37, 38, 39]. However, such approaches are techniques to
verify that the security requirements of a system are met and
do not inform the verification process for the whole system.
The closest approach to combining security and verification is
perhaps that in which machine learning techniques are used to
extract finite state machines from bank cards which implement
variants of the EMV (Europay-MasterCard-Visa) protocol
suite [40, 41]. These finite state machines can then be used for
security analysis of the implemented protocol. However, this
approach falls short of what we propose here, and we have

not found any related work that describes a methodology for
linking these two techniques, which is independent of the tools
or approaches used for threat analysis and formal verification.

3. CURRENT METHODOLOGIES
In this section, we describe the current methodologies for
both formal verification and threat modelling. Figures 1
and 2 illustrate these methodologies, respectively, in terms
of a modified workflow diagram, with ovals representing the
start and end points, rectangles representing tasks, diamonds
representing decisions, and a rhombus (custom element)
indicating the output from a task. Tasks and outputs have
been coloured differently to aid in understanding how the
two methodologies are combined. Verification tasks have
been coloured green and outputs have been coloured lilac,
threat modelling tasks have been coloured orange and outputs
have been coloured blue, finally, tasks common to both have
been coloured yellow and output common to both have been
coloured pink. This is outlined in Table 1.

Tasks Decisions Outputs

Verification

Threat Modelling

Common to both N/A

Table 1. Key to Figures

Formal Verification

In this subsection, we describe the process for formal veri-
fication that is illustrated in Figure 1. Formal verification
is conducted as part of the software development process,
ideally beginning before the system is implemented. We
begin by defining the system under development. This may
involve the development of software requirements documents
or analysing existing documentation to provide the developer
with a detailed understanding of the system to be developed.

Once the system has been defined, a formal model of the
system is then constructed and the properties to verify are form-
alised. One approach would be via model-checking [42, 43],
where a model of the system is created, usually, as a state
transition system which is encoded as input to a model
checking tool. Properties derived from the requirements
document are encoded using a logic, such as Linear Temporal
Logic (LTL) [44].

A model-checking tool can be run to demonstrate that the
property holds on all runs through the transition system from
an initial state. An example of this would be to build a model
of the system using Promela, the input language to the SPIN
model checker [45] and then to formalise the properties to be
verified using LTL. Alternatively, we may wish to define the
model and properties in the same language. This could also
be performed with some form of temporal logic, for example,
LTL or the branching time temporal logic Computational Tree
Logic (CTL) [46]. Here both the model of the system and the
property are defined in the same logic and proof is carried out
within that logic using temporal proving tools for that logic,
for example, LTL theorem proving [47] via TRP++ [48] or
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Model incorrect

Revise properties Properties incorrect

System
Definition
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Yes

Define the system
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Revise system System Incorrect

Figure 1. The formal verification methodology typically starts with a system definition from which formal models and
properties to be verified are derived.

Define the system Define the use cases

Define the threat 
actors who are 

motivated to attack 
the system

System
Definition

Use Cases

Threat 
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Analyse the threats 
the system is 
vulnerable to

Threats

Calculate the risk 
(likelihood and 
impact) of the 

threats

Threat Risk

Revise the system 
to mitigate the risk 

from the threats

Is risk managed 
for this use case?

No

Consider next use 
case

Yes

Start
Are there more 

use cases?
Yes EndNo

Identify abuse cases

Abuse Cases

Select one use case

Figure 2. The threat modelling process begins with a system definition, from which use cases are derived and each is
subsequently analysed from a cyber security perspective.

CTL-RP [49].

Alternatively, this could be conducted with a formal method
such as Event-B [50]. Event-B, via its associated toolset, the
Rodin Platform, facilitates verification using the Atelier B
theorem prover. Its notation is ZF set theory and first-order
logic. At this stage, the artefacts that are produced are a
formal model (or a sequence of refined formal models) and
the properties that we wish to verify against the model(s) that
have been devised.

Next, we verify that the constructed model preserves the
properties that we have defined. This can be achieved through
model-checking with SPIN in the case of Promela, using a
temporal logic theorem proving for systems specified in LTL
or CTL, or theorem proving with Atelier B in the Rodin
Platform for Event-B. If the properties are verified then

we have completed our formal verification. Alternatively a
probabilistic verification approach could be used, for example
using the PRISM Probabilistic Model Checker [51]. In this
case, the developer must set some threshold that indicates
when the verification of a property is considered to be
sufficient/acceptable.

However, if the properties could not be verified against the
model then we must assess whether the system itself, our
formal model or the properties contain errors. This may cause
us to revise any of these and then progress again from the
point that the change was made, as illustrated in Figure 1.

In addition to these formal methods, there are a variety of
tools and techniques available for use in autonomous robotic
systems with each offering benefits and limitations [16]. The
methodology described in Figure 1 is not specific to any formal
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method and we envision its use for whichever technique that
the developer chooses.

Although informal verification techniques such as simulation-
based testing and experiments with the real system should also
be used to complement the formal system verification [9], our
work here focuses only on formal verification. However, as
part of our future work we plan to extend this methodology
to encompass the results from these informal verification
techniques.

Threat Modelling

Threat modelling is a technique commonly used for identifying
security issues in software or systems [52]. Threat modelling
involves identifying all possible threats to a system, irrespect-
ive of whether or not they can be exploited [53]. These threats
are analysed in terms of the likelihood and harm of their
exploitation, and the risk is then managed or accepted.

There are many tools and methodologies for performing
threat identification and categorisation (e.g., STRIDE [54],
PASTA [55] amongst others). An example of a high-level
process for performing modelling threats is presented in
Figure 2. Threat modelling can be performed at various stages
of a system’s development but it is ideally performed early and
revised as changes are made to a system during development.
For example, threat modelling could be performed on a system
model before implementation to understand what threats the
functionality will be subject to, it can be performed when
aspects of the system change to understand the impact of those
changes and it can be performed on a system implementation
to understand the implementation specific threats.

To begin with, the system being investigated must be described.
Unlike for formal verification, this description does not need
to be a formal definition of the system, however, it must
be sufficiently detailed to understand the functionality and
interactions of the system. Once the system has been described,
the use cases that describe how the system will be used can
be defined. These use cases specify how the system will be
used, by whom and what the user’s goal is when interacting
with the system.

For each use case, several steps are taken to evaluate how an
adversary will be attacked and the risk associated with the
attack. To begin with, the threat actors who are motivated to
attack the system in this use case are identified. This involves
specifying their goals, motivation, capabilities, resources and
presence. The use cases can then form the basis of misuse
or abuse cases [56, 57]. These abuse cases detail how the
threat actors can interact with the system to achieve their
goals. The threats to the system can now be considered from
these abuse cases. Using the threat actors, abuse cases and
identified threats, the likelihood and impact of these threats can
be evaluated. These values can be summarised as the risk to
the system. Finally, if the risk is not sufficiently low (allowing
it to be accepted) then the risk must be managed. Risks can be
managed through transference, avoidance or mitigation. The
latter two of these methods require the system definition to be
revised. If this managed risk results in a residual risk that is
deemed to be sufficiently low, then the next use case should
be analysed using the same procedure.

The majority of these tasks output information (as illustrated
by the blue rhombuses in Figure 2) which will be used by
subsequent tasks during the security analysis. Note that this
information should not be discarded when performing an
analysis of a subsequent use case, as many threat actors will

have an interest in attacking different use cases to achieve their
goals. Therefore, this information should be refined over the
course of the analysis.

4. SECURITY-MINDED VERIFICATION
METHODOLOGY

In this section, we describe our proposed security-minded
verification methodology based on the methodologies for
formal verification and threat modelling that were described
in the previous section.

In general, formal verification and threat modelling are distinct
processes which are usually performed independent of one
another. Therefore, a naı̈ve approach to integrating these
processes might consist of first performing formal verification
and then subsequently carrying out threat analysis. Both the
threat analysis or formal verification may result in requiring
modifications to the system, thereby forcing a new system
verification or analysis of the security threats to the system.
This process could be iterated until the system meets its
requirements. However, this can be very ineffective since
each independent analysis can lead to significant changes, and
convergence can become a challenge.

We propose the security-minded verification methodology,
illustrated in Figure 3, as a way to combine the usually distinct
approaches to formal verification and threat modelling. Our
approach to integrating security and verification follows a
tightly coupled procedure and is inspired by techniques such
as in the agile software development methodology. Agile
development has been recognised to be well-suited to complex
systems. A recent study by Ahimbisibwe et al. [58] examined
148 research papers through a systematic review to compare
agile development to traditional methods. Of the agile method
articles, 88.4% were addressing Technical Complexity as a
critical success factor (CSF) compared to 39% of articles
concerning traditional methods. The authors ranked 27
categories as CSFs from the literature based on number of
occurrences. For Agile methods, Technological Uncertainty
ranked first and Project Complexity ranked fourth (compared
to 24th and 25th, respectively, for traditional methods).

To address these CSFs our security-minded verification meth-
odology can be integrated into the system development in a
similar manner as testing is performed in Continuous Integra-
tion. Where the security-minded verification methodology is
first evaluated on an abstract system model, that is created
before a system is implemented. Each time the system
is modified, the system model is updated and the security-
minded verification methodology is iterated upon until a
successful verification is performed where the security risk
is appropriately managed. This iterative, agile approach
should can not only be managed at development time, but
also in operation, similar to many other agile and dynamic
approaches. Such an approach of performing continual,
through-life adaptation and verification can be accomplished
procedurally with ease. We do not introduce the operations
element here, for the sake of simplicity in describing the
approach and ease of representation through a flow-chart. It
should be recognised, however, that continually refining a
system in operation introduces a number of other challenges -
monitoring, resolving and updating that may have an impact
on operation and cost, so is non-trivial in practice.

Our approach is depicted in Figure 3; the top half corresponds
to the formal verification methodology described in Figure 1
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Figure 3. Integrated approach to combining verification and security analysis. Crucially, this security-minded verification
approach allows us to use results from the threat modelling when both building a formal model of the system and formalising the

properties to be verified.

and the bottom half to the threat modelling approach outlined
in Figure 2. Instead of performing formal verification and
a security analysis sequentially, aspects of these processes
are performed in parallel. The fundamental change is that
the security properties are formalised and checked as part of
the verification of the system. Previously, these properties
would have been identified due to system changes if the
threat modelling identified that the risk of a threat to the
system was too high. By always performing verification of
security properties the verification of the system has an explicit
consideration of the important security aspects that have been
identified.

We observe that both Figures 1 and 2 begin with a System
Definition and this provides a unified starting point for
the security-minded verification methodology in Figure 3.
We strengthen this starting point from a formal verification
perspective by incorporating the use cases identified via threat
modelling during the construction of the formal model of the
system. Interestingly, the integration of the use cases that
are identified by the cyber security approach helps to provide
developers building a formal model of the system with more

detail and focuses them on the relevant scenarios.

Central to our approach is our use of the results from the
threat modelling to devise formal Security Properties via the
Formalise Threats step of Figure 3. By assessing the Threat
Risk, we then choose which of these security properties are the
most interesting/important and these are subsequently formally
verified. If the verification is successful then we check whether
the risk is managed and proceed to examine any further use
cases.

We believe that this integrated approach to security-minded
verification provides a more streamlined development process
and that the use of the security use cases in the development
of the formal model is hugely beneficial from a verification
perspective. Likewise the formalisation and subsequent
verification of those security properties of interest gives more
weight to the security analysis and helps to investigate whether
any threat mitigation put in place works correctly.

We briefly illustrate how this methodology can be applied to
an autonomous docking example in the next section.
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Figure 4. Autonomous on-orbit docking between a chaser and a target is comprised of multiple stages including far range and
close range rendezvous.

5. EXAMPLE: AUTONOMOUS DOCKING
In this section, we describe a simple example of autonomous
docking and illustrate how our security-minded verification
methodology (Section 4) can be applied in this setting.

There are multiple applications where autonomous docking
may be useful in the future, such as automated orbital con-
struction [59], orbital repair [60] and resource sharing between
collaborating satellite swarms [61]. Automated docking will
be facilitated by machine learning models controlling the
actuation of thrusters and attitude control. Docking may
be performed in a cooperative [62] manner that involves
interaction such as via a communication protocol or guidance
images [63] to allow the satellites to collaborate in order to
dock.

Following the methodology described in Figure 3, we begin
with a System Definition.

System Definition

Two satellites, a target and a chaser wish to dock to per-
form a resupply of the target. This docking is performed
autonomously in a similar manner to the Orbital Express
Demonstration System flight in 2007 [66]. A typical on-orbit
servicing is mainly included: far range rendezvous, close
range rendezvous and target capturing [67, 68, 69]. Figure 4
illustrates an autonomous on-orbit rendezvous. This consists
of the following three basic operations.

Far range rendezvous: The main purpose of this operation
(in Figure 4 from P1 to P2) is approaching the target orbit,
reducing the approach velocity and synchronising the mission
timeline.

Close range rendezvous: This operation is composed of two
sub-phases: closing and final approach. The main purpose
of the closing phase is to reduce the distance from the chaser

to the target and achieve the appropriate position, velocity,
attitude, etc. for the final approach sub-phase to begin. The
methods of approach for proximity operations are: velocity
vector [70] and radial vector [71]. The main purpose of
the final approach is to satisfy the conditions of positions,
velocities, relative attitude and angular rates of the docking.
Normally, at the end of final approach (in Figure 4 at P3), the
chaser is about 250 m to 500 m to the target at radial vector.
The chaser is located in a the corn-shaped corridor where the
vertex is the target and the base faces to the chaser.

Docking: The docking starts when the target delivers the
docking interfaces to the chaser. During this operation,
the target cooperates with the chaser by adjusting its orbit
(velocities and relative attitude) as required to complete the
docking.

Next, we define the associated Use Case for this system.

Use Case

We consider the use case where the target cooperates with
the chaser by maintaining its attitude so that the chaser can
align docking ports with the target, accelerate towards the
target and then decelerate before docking. This docking is
performed autonomously by control systems locally on-board
both satellites; there will be no human-in-the-loop impacting
the operation of the docking.

At this point, Figure 3 shows that the process splits into two
parallel activities. In particular, the combination of this use
case and the system definition results in the development of a
formal model of the system (we have not included the detailed
formal model here). The other branch taken concurrently
incorporates the threat modelling methodology described in
Figure 2; we describe the constituent parts below.
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Threat Actor Example Goals & Motivations Capabilities Environment Resources

Privileged
Insider Employee Financial gain;

Discontent High
Internal access

with high
permissions

Internal knowledge

Competitor
An organisation
about to compete
for a tender for

services

Corporate espionage;
Financial gain;

Reputation damage
Organisation
size related Remote access Organisation size

related

Nation State Geopolitical rival State rivalry;
Geopolitics

Sophisticated;
Coordinated;

Access to state
secrets

Remote and
internal access

Extensive knowledge;
Extensive financial;

Advanced equipment

Table 2. Threat actors for the autonomous docking based on [64] with the dimensions from [65]

Threat Actors

The space race began nearly six decades ago leading up to
the launch of the first man-made satellite into orbit. Over
time, an agreement for international collaboration in space
has been made [72]. Currently, we are on the verge of a
huge change in the space ecosystem due to the advancements
in manufacturing, communication, and autonomous systems.
The space ecosystem is no longer solely accessible to nation
states but has also been opened to private organisations. In
this regard, a race has emerged through the competition
of private companies against each other, as well as state
agencies. Such changes will impact the threat actors trying
to attack space systems and bring new motivations, goals,
capabilities, and resources. The attacks can now be performed
by an individual or group of threat actors, organisations, or
nations/states, driven by various motivations from personal
satisfaction, ideology, financial gain to state rivalry [73]. A
categorisation of threat actors is presented in NIST’s Guide
for Conducting Risk Assessments [64], and the corresponding
dimensions have been presented in [65]. In our autonomous
docking use case, the threat actors may potentially hinder or
attack the system. A high-level view of the actors and their
motivations is presented in Table 2.

Abuse-cases and Threats

An attacker may aim to compromise the target robot to disrupt
the system. Ways in which the attacker may attempt to abuse
the system include:

• Forcing the chaser to consume excessive, or indeed all, fuel
during docking through the continuous or regular rotation of
the target in such a way that docking cannot be completed.
• Forcing the chaser out of its intended region, perhaps even
out of orbit, as it attempts to dock. This may be achieved by
moving the target away from, rather than towards, the target.

The possible threats can be categorised using the STRIDE
method. These categories are spoofing, tampering, reputation,
information disclosure, denial of service, and elevation of
privilege [54]. The target may be compromised with malicious
firmware through an elevation of privilege (i.e. performing
an unauthorised action) attack by one of the threat actors
identified in Table 2. This will enable the attacker to have
control of the target and realise the attacks described in the
abuse cases above.

Formalise Threats/Security Properties

Based on the above threats, we can now identify and formalise
the following security properties:

SEC1: Do not consume more than x kg of fuel while attempt-
ing to dock. This could be formalised as follows using the
LTL operator 2 (always now and in the future).

2(fuelremaining ≥ x)

SEC2: Ensure that the position (or orbit) after successful
docking or aborted docking is within ±y% of the desired
position (or orbit). This could be formalised as follows using
the LTL operator© (in the next state).

2(dock ⇒©(orbit = initialorbit± y%))

Risk Analysis

Risk is the possibility that a particular threat will cause an
impact on system by exploiting a particular vulnerability. It
is a function of likelihood and impact, and in its most basic
form is given by Risk = Likelihood x Impact [31]. According
to Kaplan and Garrick, risk analysis answers the following
questions [74]:

• What can go wrong?
• What is the likelihood that it would go wrong?
• What are the consequences?

In the literature, there are currently numerous risk analysis and
rating approaches in use. NASA has developed a framework
for analysing the risks in their organisational procedures [75].
The framework has been divided into two stages as (i) Risk-
Informed Decision Making and (ii) Continuous Risk Manage-
ment. Performance shortfalls are analysed in terms of safety
(e.g. avoidance of injury, fatality, or destruction of key assets),
technical (e.g. thrust or output, amount of observational data
acquired), cost (e.g. execution within allocated cost), and
schedule (e.g. meeting milestones) [76].

Regarding the threats in the autonomous docking use case,
we identify that the target satellite can be compromised by
three threat actors as (i) Privileged insider, (ii) Competitor,
and (iii) Nation state. These threat actors have different
goals, capabilities, environment and resources as presented
in Table 2. A nation state threat actor has more sophisticated
capabilities and resources with internal or remote access to
the target satellite. Therefore, we have quantified its attack
likelihood as High. Besides this, a privileged insider may
have high capabilities and resources but not as sophisticated as
nation state threat actors, and the competitor’s capabilities and
resources are related to the size of the organisation. In order
to differentiate the attack likelihoods of the privileged insider
and competitor, their environment can provide an insight. For
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example, a privileged insider has internal access whereas
a competitor has remote access. Thus, we have quantified
the likelihood of privilege insider as Medium and competitor
as Low. It is important to recognise that these are example
risk assessment levels for demonstrative purposes and a more
formalised risk approach should be undertaken for specific
scenarios.

Functional Properties

Next we consider the Functional Properties to be verified.

FUN1: The distance between the chaser and the target is
always decreasing. This could be formalised as follows using
LTL operators 2 and©.

2(distance(chaser, target) ≥ ©distance(chaser, target))

FUN2: Once the appropriate conditions are met then they will
dock successfully. This could be formalised as follows using
LTL operators 2 and ♦ (at some future moment).

2((cond1 ∧ cond2 ∧ . . . ∧ condn)⇒ ♦dock)

In particular, one of the condi refers to the range allowed for
velocity vector and radial vector as shown in Figure 4.

Verification of Properties

Next the properties should be verified on the formal model.
In the case where the target is cooperative and maintains
its attitude while the chaser attempts to dock, the properties
(SEC1, SEC2, FUN1 and FUN2) should hold. However, in
the case where the target is anti-cooperative and actively tries
to avoid docking these properties no longer hold.

In particular, a violation of FUN1 may result in the violation of
the fuel consumption security property (SEC1). Specifically,
this might happen when an anti-cooperative target keeps
moving away from the chaser to avoid docking. Similarly,
FUN2 might not hold even when each of the condi are met if
the target exhibits this anti-cooperative behaviour.

Revise Properties/Model/System

In the presence of an anti-cooperative target, it is clear that
mitigations are required so that the system becomes both
safe and secure. One potential mitigation would be to add
a description of the anti-cooperative behaviour so that the
chaser can identify when the target is misbehaving and abort
the mission rather than run out of fuel. However, this would
mean that functional properties may no longer be able to be
satisfied. The left hand side of the implication in FUN2 could
be strengthened to incorporate the assumption that the target
is co-operative. Similarly FUN1 could be re-written as an
implication including a pre-condition about the target being
co-operative, or not moving or similar.

Once this mitigation has been put in place then our method-
ology (shown in Figure 3) dictates that we must reevaluate
the security risks of the system and potentially formalise new
functional properties which are then verified. For example,
the functional properties could change from “the target and
chaser eventually dock”, to “the target and chaser eventually
dock if possible”. The process continues until we are satisfied
that there are no further threats to be considered and that the
risk has been managed. If the system needs to be evaluated
under a different threat model then the way in which the threat
actors and abuse cases are defined can be updated and the
process repeated. Changing the threat model may require

system implementation changes, changes to functional and
security properties, and will impact the system risk. Making
changes to manage this new threat model will need to consider
the previous threat models too and ensure those threats are
sufficiently managed.

6. DISCUSSION
The space ecosystem is evolving rapidly with enhancements in
communications technology, processing capability and process
improvements. It is benefitting from developments such as
the efficacy and affordability of artificial intelligence and the
expansion of the Internet of Things. As such the market is
creating new opportunities and attracting new entrants. This
is not without challenges, as new entrants are unlikely to
have the skills, experience, nor perhaps motivation to ensure
that systems are secure and verifiable. Given the increasing
importance of, and dependence on, these systems, addressing
this challenge is becoming critical. Through the use of a
tightly integrated and rapid development methodology, we
can address both security and verifiability concerns most
efficiently.

7. CONCLUSION AND FUTURE WORK
In this paper, we have presented a novel methodology for
security-minded verification. We have combined the usually
distinct methodologies for threat modelling and formal veri-
fication. The approach is intended to offer robust security and
verification in a manner that maximises efficiency by ensuring
that iterations are short and allow quicker convergence on a
solution that meets requirements. We have illustrated the
approach using the real example of autonomous docking
scenario in space, that is currently being explored by the FAIR-
SPACE Hub.

For future work, we will develop the verification and the threat
modelling further. For example, we will develop detailed
formal models on which to carry out verification of the
identified properties and mitigations to the identified threats
(both safety and security). We also intend to consider other
space use cases, for example, concerning coordination, control
and autonomy for planetary rovers.

In this work we have presented a methodology for performing
security-minded verification of space systems, where we
have focused solely on formal verification and have not
included informal verification approaches such as testing
and simulation. Whilst formal verification provides a proof
of correctness of the software system, considering all paths
through the system, usually it is only applied to an abstraction
of the system and not to its full implementation. Simulation
based testing and real world experiments can be applied to the
implementation itself but only a subset of all program traces
can be considered. The number of real world experiments may
be limited due to the time they take or because of dangerous
or difficult to access environments (such as space). More
runs can be carried out via simulation based testing but again
the simulation is an abstraction of the real world and only
a subset of all program traces can be checked. Similarly
the type of properties relating to these types of verification
are different requiring formal semantics for the properties
for formal verification but potentially incorporating softer,
informal aspects for real world experiments. To achieve high
levels of verification in a system, the formal and informal
approaches to verification should be used in a complementary
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fashion.

An example of the combination of formal verification, sim-
ulation based testing and real user experiments for a robot
assistant scenario was discussed in [9]. The authors used
the output from different verification methods is used to
enhance the inputs to other methods to improve our confidence
in the system. In the space domain or in other extreme
environments real experiments in situ are unlikely to be
possible but some aspects may be able to be investigated in test
environments (such as terrestrial testbeds). Our future work
will investigate including these aspects of informal verification
in the presented methodology, as well as demonstrating them
in representative use cases.
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