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Abstract—Wireless sensor networks (WSNs) have been widely
studied in the context of many-to-one communication, in which
multiple data sources send messages to a dedicated sink. However,
there has been little research in the area of many-to-many
communication. Many-to-many communication in WSNs is a
growing application area, with examples including fire detection
in both natural and urban areas, and the monitoring of heating
and air conditioning within buildings. In this paper, we propose
a scalable many-to-many routing protocol that makes use of Ant
Colony Optimisation (ACO) that is applicable for an arbitrary
number of sources and sinks. The protocol aggregates data sent
from multiple sources into a single, shared backbone of nodes to
reduce the total number of packets sent and so increase network
lifetime. Results from simulations using the Cooja Network
simulator show that the protocol is able to achieve packet delivery
ratios above 95%, with the algorithm becoming more efficient
with larger networks, sending fewer packets relative to the size
of the networks, as well as involving fewer nodes in routing.

Index Terms—Wireless Sensor Networks; Many-to-Many Rout-
ing; Ant Colony Optimisation

I. INTRODUCTION

Wireless sensor networks (WSNs) form the basis of many
applications in increasingly connected environments. Low
in power consumption, sensor nodes are deployed in large
numbers in many types of environment, both urban and natural.
Application areas of WSNs are numerous, and include habitat
monitoring [1], healthcare [2], and environmental monitor-
ing [3]. Traditionally, WSNs have been studied and applied
in many-to-one scenarios, where many sensor nodes gather
environmental data to forward them towards one dedicated
node, called a sink, in a process called convergecast. However,
with the advent of novel systems, such as wireless sensor and
actuator networks [4] and the Internet of Things (IoT), that are
deployed in an increasing number of settings and environments,
many-to-many communication within the network becomes
necessary. A large amount of research has been carried out
for many-to-one communication in WSNs, but many-to-many
communication is still not widely studied.

A common scenario requiring the use of many-to-many
communication in WSNs is a network in which multiple
actuators are used to respond to environmental changes. Home
automation is a possible application area of these wireless
sensor and actor networks [4], with smart devices in the
home such as thermostats, lightning, or other appliances acting

as sensors and actuators [5, 6]. A similar scenario is that
of temperature control in office buildings and other high
rises. Multiple actuators controlling air conditioning or heating
systems will receive information from multiple sensors placed
within rooms of the building, allowing control of airflow. This
can also lead to reduced emissions from the building, as the
environment control becomes more energy efficient [5]. Such
applications will require a routing protocol capable of dealing
with multiple sources and multiple sinks.

A number of solutions for many-to-many communications
in WSN have been presented, however they generally have
a number of issues. They are often not very scalable, for
instance needing periodic, network wide broadcasts for network
topology updates. This is inefficient and can lead to a reduction
in network lifetime. Additionally, this can mean that the
protocol does not react well to change, as the topology
may become out of date. We present a routing protocol that
communicates largely in the local neighbourhood and does not
keep track of the global topology. This makes the protocol
scalable, efficient, and adaptive to changes in the network.
This protocol uses Ant Colony Optimisation [7], a heuristic
algorithm based on the movements of ants in a colony. A
backbone of nodes is formed, where data is aggregated along
a shared path in order to reduce the total number of packets
that are sent in routing from sources to sinks.

The remainder of the paper is as follows: In Section II we
present a selection of related work. Section III describes our
problem specification and our ACO based routing algorithm
is presented in Section IV, including a description of the
implementation. Section V explains the experimental set up
and Section VI presents the results of simulations. Finally,
Section VII presents concluding remarks.

II. RELATED WORK

A. Routing in Many-to-One WSN

A number of routing protocols use a clustering based model.
Usually in such protocols, only the cluster head sensors are able
to communicate with the base station. Though each cluster head
acts as a sink node, each source can only communicate with one
sink, meaning these setups are many-to-one communication in
practice. Low Energy Adaptive Clustering Hierarchy (LEACH)
is a highly referenced protocol that makes use of this method [8].



PEGASIS is a chain based protocol similar to LEACH, with
the sensor nodes forming a chain [9]. PEGASIS assumes that
each node has global knowledge of the network, making the
algorithm centralised. In [10], Oyman and Ersoy study sink
placement in clustered wireless sensor networks, and find
solutions to the problem of choosing which nodes should
act as clusters.

Collection Tree Protocol builds trees routed at the sink. Data
from a source travels up the tree to reach that sink [11]. Often
CTP involves network wide broadcasts to keep topological
information up to date, which can be energy expensive. An
ACO based protocol should not require such broadcasts as a
centralised view of network topology is not required.

B. Routing in Many-to-Many WSN
Directed Diffusion is a data centric protocol in which nodes

receive interests, initiating data gathering for that interest [12].
Data is drawn back through the network to the requesting
node via gradients. Similarly to the ACO protocol presented
here, Directed Diffusion is largely determined by localised
interactions and reinforces successful paths between source
and sink. Directed Diffusion does this by sending additional
messages to reinforce good routes and negatively reinforce bad
routes, but with ACO, reinforcement of good paths is a natural
outcome through the process of pheromone evaporation.

With the Rumor routing protocol, queries are routed to
where the event occurs, as opposed to flooding the network
[13]. Long lived agents create paths directed to events, and
will optimise these paths when they encounter better routes.
When two agents meet, they are also able to aggregate paths
between multiple events. The use of long lived agents is similar
to the use of ants in the ACO protocol presented here. Rumor
Routing maintains only one path from source to sink, making
it less adaptable to topology changes in the network than an
ACO based protocol would be. In the case of node failure,
Rumour routing relies on agents from other events repairing
the single route from source to sink, but in ant based routing,
ants should route around any failures. Rumor routing relies
upon each node maintaining forwarding information to events.
ACO does not require such list, rather only making decisions
with local neighbour information when choosing which node
to forward to, meaning memory overhead is lower.

Multisource Multisink Trees for Energy-Efficient Routing
(MUSTER) is a distributed many-to-many routing protocol that
merges independently built trees from source to sink [14]. The
result is a shared path, or backbone, between the merged trees,
that will split at the last possible node in order to send packets
to both sinks. This backbone formation is similar to what takes
place in the ACO protocol developed here, however MUSTER
requires periodic network wide broadcasts to refresh trees in
order to account for topology changes. The ACO based protocol
presented here does not need this network wide refreshing of
routes, using less energy and fewer packets sent.

C. Ant Colony Optimisation in WSN
Ant Colony Optimisation was originally defined by Dorigo

et al. [7]. The heuristic approach can be used to provide near

optimal solutions to NP hard problems, with the advantage
of being versatile and robust. ACO has been applied in the
context of wireless sensor networks, but rarely does existing
work investigate its use on networks with multiple sources and
sinks [15].

An early example of the use of ACO in networks is AntNet
[16], a distributed protocol for routing in communications
networks. The protocol builds routing tables for each node,
which direct messages towards the next node in the network.
The use of AntNet is not focused on wireless sensor networks
but IP (Internet Protocol) datagram networks. Zhang et al.
extends this work to apply the protocol to wireless networks,
and introduces three variations upon it [17], making use of
flooding. These variations on the AntNet routing protocol does
not take into account multiple sinks, a generally involve a large
amount of packets sent.

In [18] ACO is applied to wireless sensor networks with the
goal of finding short paths to route messages, and therefore
minimising the amount of energy expended. The protocol,
Energy-Efficient Ant-based Routing Algorithm (EEABR), runs
for some iterations before a routing tree is built. The main goal
of EEABR is to reduce energy consumed by the sensor nodes,
as opposed to the protocol described in this report where fault
tolerance and reducing the number of packets sent is prioritised.
An example of a centralised ant based routing protocol is put
forward with the AntChain algorithm [19]. Assuming that every
node can communicate with the sink, AntChain forms low a
low cost chain from sensors to the sink.

De Castro et al. present a method for using ACO in wireless
sensor networks for computing minimum Steiner trees [20].
First, an offline centralised method is described, then an online
distributed version. The algorithm forms a minimum Steiner
tree that is rooted at the sink, and this tree can then be used
for routing from sources to the sink. The tree is formed when
two ants launched from source nodes towards the sink meet
and combine to form a single ant. The testing of the algorithm
is focused on a single sink node.

III. PROBLEM SPECIFICATION

In this paper, we focus on the problem of routing data from
multiple sources s1, . . . , sk to multiple sinks ∆1, . . . ,∆l such
that a minimum number of nodes are involved in routing. The
problem is a variant of the vehicle routing problem which is
known to be NP-hard [21]. Thus, in general, heuristics are
required to provide solutions for different problem instances.
However, heuristics are problem specific and are typically
greedy in nature. This can lead to instances where the solution
space is not properly explored, and the heuristic usually gets
trapped in a local optimum and fails, in general, to obtain the
global optimum solution. For this reason, we pursue the use
of what is called meta-heuristic. Meta-heuristics are heuristics
that are problem-independent. Thus, they do not take advantage
of any specific properties of the problem at hand. In general,
they are not greedy. In fact, they may even accept a temporary
deterioration of the solution, allowing them to do a better
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Symbol Definition

pi,j Probability of ant travelling from node i to node j
τi,j Pheromone value between node i and node j
ηj Average hop counts for node j
εj Hop range to sinks for node j

α, β, γ Constants indicating the weight of τi,j , ηj , and εj
N(i) The neighbours of node i
routea The route taken by ant a

∆τt Change in pheromone value; used during evaporation
lr Route length from sources to sinks (number of nodes)
lb Backbone length (number of nodes)
B Constant indicating weight of lb
ρ Constant defining rate of pheromone evaporation
C Maximum number of cycles
hn,i Smallest hop count for node n towards any sink i
s Length of timer waiting for multiple ants to be received

on the same node. Used to form backbone.

Table I: Symbol Definitions

exploration of the solution space to avoid getting trapped at
local optima.

In this paper, as we focus on constructing a routing protocol,
we use ant colony optimisation as meta-heuristic to solve the
problem. We explain the technique in more detail in the next
section.

IV. THEORY

A. Ant Colony Optimisation

Ant Colony Optimisation is a heuristic algorithm based on
the movements of ants in a colony. In nature, ants will travel
towards a desired destination, such as a food source, while
dropping a pheromone on the ground. Subsequent ants will
then follow the pheromone trails left by ants, preferring routes
with a higher level of pheromone. As the pheromone will
evaporate over time, shorter routes are reinforced more, and
so ants tend to follow these routes [7].

The protocol developed in this paper represents ants as
packets being sent through the network, travelling on a multihop
basis from the sources to the sinks. Every node will keep track
of its neighbours using a linked list which also contains a
pheromone value associated with each neighbour. Each ant
chooses the next node to travel to using a probability function.
The ants keep a memory of the route which is used to prevent
repeat visits to the same node. When the ant reaches a sink,
it is converted into a backward ant, which then uses the ant
memory to travel backwards through the network to the original
sources following the same route as the forward ant, updating
the variable ∆τ , as it passes through each node. The update
value depends on the success metrics of the forward route. The
pheromone value is also periodically reduced to account for
evaporation. Forward ants are launched periodically from the
sources, with the time between each launch referred to as a
cycle.

In addition to the base ACO implementation, the protocol
also aims to combine ants in order to aggregate data. When
the multiple forward ants meet on the same node (within some

Source 1 Source 2

Sink 1 Sink 2

Figure 1: Example of a 5x5 network with a backbone formed.

time period s), these ants are combined into a single ant. This
combined ant then travels along a shared path, or backbone
for a long as possible, before splitting into several ants again
such that all sinks are visited. An example network with such
a backbone is shown in Figure 1. Through this aggregation of
messages, the total number of packets sent will be less, thus
improving network lifetime.

B. Distributed Implementation

This protocol has been implemented using ContikiOS, an
operating system designed for the Internet of Things [22]. In
this implementation, each node only has information about its
immediate neighbours, with no knowledge of overall network
topology. Our implementation of a distributed version of ACO
for many-to-many Wireless Sensor Networks is informally
described below:

1) A set up phase takes place where each node sends local
broadcasts to identify neighbours. Each node, i, keeps
track of its neighbours using a linked list, denoted N(i),
which also stores the pheromone values to the neighbours.
Hop counts to sinks are also established during this phase,
and also stored in N(i). Hop counts were chosen as
the distance metric so that recalculation would not be
necessary. Each node maintains this knowledge of hop
counts for itself and its neighbours throughout.

2) Initially set all pheromone values to be some constant
c. Set a time variable t to be 1 and cycle count variable
to be 1. A cycle is defined to be the time between each
periodic broadcast of ants.

3) Forward ants are periodically launched from the source
nodes. Ants are implemented as messages being sent
between nodes in the network. Each ant, a, has a stored
ant memory containing the route, denoted routea. We
argue that this is not restrictive as the route length is
expected to be quite short, which we show later.

4) The forward ant chooses the next node to travel to with
probability:

pi,j =


[τi,j ]

α· 1
ηj

β · 1
εj

γ∑
k∈N(i)

[τi,k]α· 1
ηk

β · 1
εk

γ ∀j /∈ routea

0 otherwise

(1)
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where pi,j is the probability that the ant a will travel
from node i to node j, τi,j is the pheromone value
between node i and node j, ηj is the average hop count
to the sinks for node j, εj is the hop range to the sinks
for node j. α, β, and γ indicate the weight of these
parameters. routea indicates the memory of ant a and
N(i) represents the neighbours of node i.

5) When a node has received messages from multiple ants
within time s of each other, the data is aggregated and
a single ant is forwarded, forming the backbone. This
ant continues choosing nodes with Equation 1. Currently,
the backbone ants do not wait for more messages from
other sources to combine into the backbone.

6) The backbone ant will travel until it reaches a node
where there are no possible neighbours to travel to that
will decrease the hop counts for all sinks. At this point,
the backbone ants will split into individual forward ants
again. This is implemented using a broadcast, that is
received on all neighbouring nodes. Neighbouring nodes
that are not already part of the forward path, that is those
that are not in routea, will continue travelling towards
the sinks. After the backbone is split, the probability of
travelling to a neighbouring node becomes Equation 2,
taking into account the smallest hop count to any sink.

pi,j =


[τi,j ]

α· 1
hj

β∑
k∈N(i)

[τi,k]α· 1
hk

β ∀j 6∈ routea

0 otherwise

(2)

where pi,j is the probability that the ant a will travel from
node i to node j, τi,j is the pheromone value between
node i and node j, and hj is the smallest hop count to
any sink for node j. α and β indicate the weights of
these parameters. routea indicates the memory of ant a
and N(i) represents the neighbours of node i.

7) Once the ants reach the sinks, they are transformed
into backward ants. If a forward ant has reached a sink
without having formed a backbone, backward ants are
not generated, so that only paths where a backbone is
formed are reinforced. Backward ants follow the reverse
of routea, travelling back to the source nodes. The first
backward ant to reach the backbone continues along it,
such that only one backward ant traverses the backbone,
with subsequent ants halting. At the end of the backbone
the backward ant is split and continue to the sources using
a broadcast. As the backward ants travel, they update a
value in the neighbours list, ∆τ , which represents the
change in pheromone value, using:

∆τt = ∆τt−1 +
1

lr + (lb ·B)
(3)

where ∆τt indicates the change in pheromone value at
current time t, lr represents the total forward route length,
including the multiple routes to and from the backbone,
lb is the length of the backbone, and B is the weight of
the backbone length.

8) The pheromone value is periodically updated every 128
seconds, an amount of time approximately relating to
one cycle, using the equation:

τt = (ρ · τt−1) + ∆τt (4)

where τt represents the pheromone value at time t, ρ ∈
[0, 1] indicates the rate of evaporation, and ∆τ is the
trail change value.

9) Increment the cycle count by 1, t by 1, and launch one
ant from each source node.

The protocol is described further in Algorithms 1, 2, and
3. Algorithm 1 is continually ran by all nodes in the network,
with the current node represented as node. If a forward ant is
received, then Algorithm 2 is used; similarly Algorithm 3 is
called when a backward ant is received on a node.

Algorithm 1 Description of ACO Protocol
1: procedure ACO-PROTOCOL
2: cycle ← 0
3: t ← 0
4: cyclemax ← C
5: while cycle < cyclemax do
6: messages ← 0 . The number of messages received by this node
7: if node ∈ sources then
8: Choose next node n ∈ neighbours with Eqn (2)
9: Initiate forward ant memory, routea . A list of visited nodes

10: routea ← node
11: Send message from node towards n, with packetbuf routea
12: if node receives a forward ant then
13: FORWARDANTRECEIVED()
14: else if node receives a backward ant then
15: BACKWARDANTRECEIVED()
16: Evaporate pheromone between node and n with Equation 4
17:

V. EXPERIMENTAL SETUP

The protocol has been developed using ContikiOS, an
open source operating system for the internet of things [22].
Simulations were performed using Cooja [23], a network
simulator for Contiki, using emulated Sky motes with UDGM
radio medium. The source code1 and raw results2 can be found
online. The protocol is compared with flooding; comparison
with more state of the art protocols is difficult due to the lack
of protocols dealing with multiple sources and multiple sinks.

A. Network Configuration

All experiments were performed using a square grid of nodes
of size n×n, where n ∈ {5, 7, 9, 11, 13}. The distance between
nodes and transmission range is set up such that only horizontal
and vertical neighbours can communicate. Experiments have
been carried out using two sources and two sinks, with the
sources and sinks fixed in the corners of the grid. The two
sources are in the lower two corners and the two sinks in
the upper two corners. An example configuration is shown in
Figure 1. The configuration chosen at the start remains constant
until the end of the experiment. Forward ants were launched
from the sources periodically using a timer, both sources launch

1https://bitbucket.org/jasminegrosso/jg-contiki-public, commit 2019-03-11
2https://zenodo.org/record/2609159
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Algorithm 2 Description of Forward Ant Protocol
1: procedure FORWARDANTRECEIVED
2: Add node to ant memory
3: routea ← node
4: messages ← messages+ 1
5: if node ∈ sinks then
6: Reverse routec to form backward ant memory routebw
7: Choose next node n, the node in routea after node
8: Launch backward ant; send message from node towards n, with

packetbuf routebw
9: else

10: if Backbone has not been formed then
11: if messages 6= |sources| then
12: Store routea internally
13: Set a timer for s seconds.
14: while Timer is not yet finished do
15: Wait
16: if messages 6= |sources| then
17: messages ← 0
18: Choose next node n with probability (2)
19: Send message towards n, with packetbuf routea
20: else . Form the backbone
21: Combine routea with other stored routes to form routec.
22: Choose next node n with probability (2)
23: Send message towards n, with packetbuf routec
24: else
25: if ∃n ∈ N(n)→ (∀i ∈ sinks→ hn,i < hnode,i) then
26: Choose next node n with probability (1)
27: Send message towards n, with packetbuf routec
28: else . Split the backbone
29: Send |sinks| messages from node to the neighbours with

the smallest hn,i for any sink, with packetbuf routec
30:

Algorithm 3 Description of Backward Ant Protocol
1: procedure BACKWARDANTRECEIVED
2: bwmessages ← bwmessages+ 1
3: Update change in pheromone with equation (3)
4: if node ∈ sources then . Backward ant route complete
5: Stop ant, send no more messages.
6: else
7: if node is the first node of the backbone in routebw then
8: if bwmessages > 1 then
9: Stop ant, send no more messages

10: else if node is the last node of the backbone in routebw then
11: Broadcast messages to node ∈ N(n) where node ∈ routebw
12: else
13: Choose n the next node in routebw
14: Send message towards n with packetbuf routebw

ants at the same rate. Approximately 500 runs of each setup
will be performed on the simulator. Each run is finished when
115 cycles have been completed; insufficient cycles will lead
to that run being excluded from the results.

B. Parameters

The ACO based protocol involves setting a number of
parameters. The three factors for choosing the next node are
pheromone, average hops, and hop range. Pheromone indicates
that previous ants have followed this route before, with higher
values indicating more successful routes. The average hops
directs ants generally towards the sinks, so nodes with lower
average hops are preferred. Hop range was chosen for the
probability function as this will help to form the backbone; a
lower hop range indicates the middle route between sinks, and

so it is more likely for ants to meet. Each factor is weighted
using the impact parameters, which were set to be 4, 1, and
4 respectively, for all network sizes. These parameters were
found to be most effective through repeated testing.

Backbone length is a factor for pheromone updates; longer
backbones are encouraged, so more pheromone is laid. Back-
bone length impact was set to be 1. Additionally, route length
is also used when updating the trail change, as we wish to
encourage shorter routes overall.

The evaporation constant was set to be 0.8, which leads
to the pheromone value dropping very little between cycles,
leading to fast convergence on a route.

VI. RESULTS AND DISCUSSION

To determine success we will examine the following per-
formance metrics:

• Delivery Ratio: The ratio between total messages sent
and total messages successfully received. With the setup
here, this is the ratio between all messages sent launched
from both sources and all messages received at both sinks.

• Number of nodes involved: The mean number of nodes
involved in the communication from sources to sinks, as
a percentage of total number of nodes in the network.

• Packets Sent per cycle: The number of packets sent in
a cycle. This includes packets sent by both forward and
backward ants, but excludes packets sent during the set
up phase.

• Backbone length: The mean number of nodes in the
backbone formed. A longer backbone is considered
more successful, as benefits from the advantages of data
aggregation to a greater extent.

• Backbone Convergence: The converged backbone for an
experiment is considered to be the backbone that most
routes follow on that experiment. A higher percentage
of experiments following its converged route is more
successful.

Figure 3 shows that the ACO routing protocol achieves a
high mean delivery ratio for all network sizes, indicating the
consistent delivery of messages from both sources to both sinks.
The average delivery ratio is 93.3% between network sizes.
Additionally, the standard error in the delivery ratio shown
in Figure 2a is very small, which shows consistency between
experiments performed at each network size. The delivery ratio
remains similar between network sizes, but falls slightly at
the largest network size of 169 nodes. This could be due to
difficulty in forming the initial backbone, or just due to the
necessity for more packets needing to be sent overall leading
to more failures in delivery. The timer used for combining
ants into a backbone remained constant between network
sizes, so delivery ratio may be improved with increasing this
timer. Despite this, the protocol still has a high delivery ratio
consistently between network sizes.

Figure 2b shows the mean number of packets sent in each
cycle. Each cycle starts when ants are launched from the
sources and ends when backward ants are received. The packets
sent slowly increases with larger networks sizes for the ACO
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Figure 2: Experimental results

protocol. Similarly, when looking at the nodes involved in
routing, Figure 2c the ACO protocol uses more nodes as the
network size increases, but this increase is not linear, indicating
scalability. Figure 2d show that with an increase in network
sizes, the percentage of nodes involved decreases.

When analysing the role of the backbone in routing for the
ACO protocol, we found that the backbone length increased in
larger network sizes, as shown in Figure 3a. This is expected,
as the larger network size necessitates a larger number of hops
from source to sink. However, when looking at the backbone
length as a percentage of the total network size, this now
decreases with larger networks. We believe that this shows
the scalability of the protocol, as larger networks benefit from
the data aggregation of the backbone to a greater extent. This
is collaborated with Figure 2b, showing that the packets sent
increases with network size, but the size of this increase is
less with larger networks. When considering the length of the
backbone in proportion to the maximum distance between a
source and a sink, Figure 3c, we see that a similar decrease
happens, again indicating the scalability of the algorithm.

Figure 3d shows that the backbone is successfully formed
the majority of the time for all network sizes. The success rate
is lower for smaller networks, which may indicate that ants
tend towards the sinks when they are relatively close. There
is also a drop in the creation of backbone with the largest

network size, which may be due to similar issues regarding
delivery ratio. In some cases the backbone is formed more
than once in a cycle, leading to a percentage higher than 100%,
however this is a very rare occurrence and is not considered
to be affecting the running of the protocol in the vast majority
of cycles.

Backbone convergence is investigated in Figure 4 and
Figure 3e. Figure 4 shows that experiments tend to converge
on a backbone at approximately the third cycle. Ants then tend
to follow that converged backbone through subsequent cycles
to the end of the experiment, indicating a persistent route. The
converged backbone is defined as the backbone that is followed
by ants for the majority of the experiment. The smallest network
size of 25 nodes has more variation in convergence than larger
networks as well as a lower convergence rate, which may be
caused by similar issues involving backbone creation shown
in Figure 3d. Figure 3e shows the percentage of cycles that
follow the converged backbone route. Similar issues occur with
the smallest network size, however a large proportion of cycles
follow the converged backbone for other sizes. There is a small
drop for larger network sizes, consistent with other metrics.

When comparing the ACO with flooding, the equivalent
network tested with a flooding protocol achieved on average
lower delivery ratios and more packets sent overall. The
flooding protocol achieved an average delivery ratio of 69.2%,
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Figure 3: Experimental results

which is significantly lower than the ACO protocol. This
indicates that the ACO protocol improves over existing methods
for many-to-many routing, and that the protocol is reliable
for a number of network sizes. The packets sent increases
with network size, but at a significantly slower rate that the
equivalent increase of the flooding based protocol. We believe
that this shows that the ACO protocol is scaleable, and becomes
more efficient with larger networks in terms of packets sent. A
similar trend is seen with the nodes involved in route, shown
in Figures 2c and 2d.

VII. CONCLUSION AND FUTURE WORK

We present a routing protocol based on ant colony op-
timisation that is capable of routing in networks consisting
of multiple sources and multiple sinks. The main advantage
of the protocol is the ability to combine messages into a
single backbone, taking advantage of data aggregation and
minimising the number of nodes involved in routing. Results
have shown the protocol to have high delivery ratios while
sending relatively few packets that improves upon equivalent
results using flooding.
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Figure 4: Number of Experiments following the converged
backbone as a percentage of total experiments.

In future work, the protocol will be tested using a testbed
deployment on Flocklab [24] and FIT IoT-LAB [25]. We hope
to further investigate the impact of link failure upon the working

7



of the protocol, and how it recovers in such situation where
links fail. In doing this, we hope to show the fault tolerance
using ACO. In addition to this, the effect on changing the
network topology on the effeciveness of the protocol will be
tested. This will include varying the number of sources and
sinks, and changing source and sink placement away from the
corners of the network. We will also investigate adaptations
for energy conservation.
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