
Towards Effective Performance Fuzzing
Yiqun Chen, Matthew Bradbury and Neeraj Suri

School of Computing and Communications, Lancaster University, UK
{y.chen101, m.s.bradbury, neeraj.suri}@lancaster.ac.uk

Abstract—Fuzzing is an automated testing technique that
utilizes injection of random inputs in a target program to
help uncover vulnerabilities. Performance fuzzing extends the
classic fuzzing approach and generates inputs that trigger poor
performance. During our evaluation of performance fuzzing tools,
we have identified certain conventionally used assumptions that do
not always hold true. Our research (re)evaluates PERFFUZZ [1] in
order to identify the limitations of current techniques, and guide
the direction of future work for improvements to performance
fuzzing. Our experimental results highlight two specific limitations.
Firstly, we identify the assumption that the length of execution
paths correlate to program performance is not always the case,
and thus cannot reflect the quality of test cases generated by
performance fuzzing. Secondly, the default testing parameters
by the fuzzing process (timeouts and size limits) overly confine
the input search space. Based on these observations, we suggest
further investigation on performance fuzzing guidance, as well
as controlled fuzzing and testing parameters.

Index Terms—performance fuzzing, input selection, metrics

I. INTRODUCTION

Typically, performance measures a program’s processing
capability. Performance issues obviously waste computational
resources, however, they can also lead to safety, liveness
and security violations. An attacker could provide inputs
which cause Denial-of-Service (DoS) attacks against running
programs by exploiting the worst algorithmic cases [2]. For
example, a hash table is usually implemented with amortized
constant complexity [3]. If the hash algorithm produces many
hash collisions, then the hash table’s performance degrades to
performing a linear search for the requested element.

There exist many performance diagnostic tools [4], which
provide runtime information such as function call graphs
annotated with performance overheads plus hardware and
software events. However, these approaches are typically unable
to identify causalities of performance issues without suitable
test cases. Therefore, performance fuzzing techniques [1], [5]
aim to generate test cases that trigger worst algorithmic cases.

1) The Basic Fuzzing Process: A typical fuzzing process
searches for vulnerabilities by providing randomly generated
inputs to a target software under test (SUT). On execution,
the fuzzer records all inputs that crash or hang, and selects
interesting inputs. The process of input selection is known as
guidance, which is typically performed based on an input’s
code coverage. Finally, the selected inputs will be randomly
mutated to yield input mutants, the fuzzing process is repeated
with these mutants as the inputs for subsequent iterations.

2) Performance Fuzzing: In performance fuzzing, the pro-
cess is guided by performance values and program components.
Typically, the program components can be visualized as the

edges of a control flow graph (CFG) [6], and the number of
traversals on each edge represent the performance values [1],
[5]. The path length is the number of hits on CFG edges1. Small
inputs that maximize the performance impacts are favoured (as
is the case with traditional fuzzing), because such test cases
with small inputs are not expected to yield bad performance.
PERFFUZZ [1] extends AFL by adding path length guidance in
addition to code coverage guidance. SLOWFUZZ [5] guides the
performance fuzzing solely by path length. Both works focus
on the path length yielded by an input, but neither measured
pertinent performance metrics, i.e., the execution time.

3) Observation 1: A longer path length means the SUT
executes more steps which implies a longer execution time.
However, inputs with the same path length will have different
execution times when the performance overhead of CFG nodes
differ. Therefore, the efficacy of a performance fuzzer should
be measured by the performance overhead of its test cases.

4) Observation 2: Default performance fuzzing parameters
limit the search space in order to constrain the time spent
evaluating inputs. However, a short timeout prevents the fuzzer
from searching for potentially interesting test cases that cause
slow execution. In recent works, timeout inputs are ignored
when evaluating input quality [1], [5]. Similarly, the default
limit on the input size (1MiB by AFL and PERFFUZZ) also
restricts the search space. As we will demonstrate, such limits
could restrict the search space for interesting test cases with
larger input sizes that lead to larger performance overheads.

Our research investigates two performance fuzzing problems
using AFL based on PERFFUZZ [1] as the research target.

1) Are path lengths a good indicator for performance?
2) Do default parameters overly limit the input search space?

II. EXPERIMENTAL SETUP AND INITIAL ANALYSIS

The SUT is libjpeg, which is a widely used library and
was also used by previous evaluations of PERFFUZZ [1]. The
experiments are carried out on a separate virtual machine with
8 Intel® Xeon® Gold 6248R CPUs (3.00GHz) with 8GiB
memory, running Ubuntu Linux 20.04.3 LTS with the Linux
kernel 5.4.0. We spawn 8 fuzzer instances running in parallel,
and measure the execution time in seconds of generated inputs
with time. Each measurement of the execution time is repeated
100 times to mitigate the impacts of external noises. We carried
out fuzzing with 2 setups and ran experiments on generated
test cases with a time budget of 18 hours. S1 is the setup

1In PERFFUZZ, the path length is the number of hits on CFG nodes. This is
equivalent to using CFG edges as the performance values will be accumulated.



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Path Length 1e9

0

1

2

3

4

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

on
d)

Normal Inputs
Linear Prediction

(a) Performance and path length

0.0 0.2 0.4 0.6 0.8 1.0
Input Size (MiB)

10 2

10 1

100

101

102
normal
hangs
Ph

Pn

(b) Performance and input size (S1)

0 20 40 60 80 100
Input Size (MiB)

10 2

10 1

100

101

102
1 MiB limit

Normal
Hangs
Ph

Pn

(c) Performance and input size (S2)

with default fuzzing parameters (1MiB and 1 s) and S2 is with
increased file size limits of 100MiB and the timeout of 10 s.
AFL selects timeout dynamically and the timeout parameter is
the upper bound of the actual timeout.

1) Problem 1: Fig. 1a shows the correlation between
execution time and path length. Each blue dot is the median
execution time, and we focus on normal inputs for simplicity.
The green line is the linear regression, with a Pearson’s
correlation coefficient of 0.64 and mean squared error of
0.025. The execution time is generally correlated with the path
length, but not all path lengths result in a similar execution
time. For example, the input with the highest execution time
(4.61 s) has a path length of 0.8× 109, while the input with
the longest path length (1.4× 109) has an execution time of
0.43 s. Therefore, the quality of generated test cases should
be evaluated using execution time, as some inputs with a long
path are not necessarily interesting for performance diagnostics.
Further research should explore more relevant performance
fuzzing guidance, e.g., memory allocation [1].

2) Problem 2: In our experiments, S1 has generated 17 912
normal inputs and 671 hanging inputs, while S2 produced
13 119 normal inputs and 336 hanging inputs. The difference
in the number of generated inputs is expected as the increased
input file size and timeout value slow the fuzzing process.
Figs. 1b and 1c show the relationship between input size and
the execution time, where blue dots are normal test cases,
red crosses hang, and the orange vertical line in Fig. 1c is
the default 1MiB input size limit. Two interesting inputs are
highlighted for each setup, which are the slowest normal test
case (denoted Pn) and the slowest hanging test case (denoted
Ph). The default fuzzing parameters (S1) limit the capability
of performance fuzzing to detect interesting test cases, because
the slowest normal test case finishes in 0.43 s. S2 can result
in test cases which are slower and have a smaller input sizes.
For example, the slowest S2 test case runs for 4.61 s, with one
tenth the input size of the slowest S1 test case (436B for Pn

in S2 and 4496B for Pn in S1). When analysing performance,
hanging cases are interesting as they yield longer execution
time than normal test cases. For example, S1 has a timeout
input with an execution time of 233.14 s and a small input size
(304B), while other inputs larger than 1MiB can be processed
within a second. Here, the input likely triggered slow code in
libjpeg which has the potential to be optimized. However,

hanging inputs are not fully explored by fuzzers and whether
a fuzzing process can produce interesting inputs which hang
is not deterministic. There exists a trade-off between a larger
search space and the cost to explore it. Larger input sizes
and timeouts allows for additional interesting parameters to be
found, but this incurs a time and computational cost to explore.

3) Open Issues: We have observed that testing parameters
have large impacts on performance fuzzing, which both overly
constrains the search space and insufficiently limits it. Secondly,
though the path length is partially correlated to execution time,
we find that it cannot replace performance metrics in terms of
selecting interesting inputs. Further research on performance
fuzzing should: 1) use performance metrics (e.g., execution
time or throughput) to select inputs for performance diagnostics,
2) identify suitable parameters for optimal input search space
of a SUT, and 3) explore further fuzzing guidance besides path
length, i.e., memory allocations and number of instructions [1].

ACKNOWLEDGMENT

This work was supported, in part, by EC H2020 CONCORDIA
GA No. 830927 and by the UKRI Trustworthy Autonomous
Systems Node in Security [EPSRC grant EP/V026763/1].

REFERENCES

[1] C. Lemieux, R. Padhye, K. Sen, and D. Song, “PerfFuzz:
Automatically Generating Pathological Inputs,” in Proc.
of the 27th ACM SIGSOFT Int. Symp. Softw. Test. Anal.,
2018, pp. 254–265. DOI: 10.1145/3213846.3213874.

[2] S. A. Crosby and D. S. Wallach, “Denial of Service
via Algorithmic Complexity Attacks,” in 12th USENIX
Security Symposium, USENIX Association, 2003.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, 3rd ed. The MIT Press, 2009.

[4] D. M. Berris, A. Veitch, N. Heintze, E. Anderson, and
N. Wang, XRay: A Function Call Tracing System, Online:
https://research.google/pubs/pub45287, 2016.

[5] T. Petsios, J. Zhao, A. D. Keromytis, and S. Jana,
“SlowFuzz: Automated Domain-Independent Detection
of Algorithmic Complexity Vulnerabilities,” in Proc. of
the 2017 ACM SIGSAC Conf. Comput. Commun. Secur.,
2017, pp. 2155–2168. DOI: 10.1145/3133956.3134073.

[6] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman,
Compilers: Principles, Techniques, and Tools, 2nd ed.
Addison Wesley, 2006, ISBN: 0321486811.

https://doi.org/10.1145/3213846.3213874
https://research.google/pubs/pub45287
https://doi.org/10.1145/3133956.3134073

	I Introduction
	I-1 The Basic Fuzzing Process
	I-2 Performance Fuzzing
	I-3 Observation 1
	I-4 Observation 2


	II Experimental Setup and Initial Analysis
	II-1 Problem 1
	II-2 Problem 2
	II-3 Open Issues



