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Abstract—Autonomous robotic systems systems are both safety- and security-critical, since a breach in system security may impact
safety. In such critical systems, formal verification is used to model the system and verify that it obeys specific functional and safety
properties. Independently, threat modelling is used to analyse and manage the cyber security threats that such systems may encounter.
Both verification and threat analysis serve the purpose of ensuring that the system will be reliable, albeit from differing perspectives. In
prior work, we argued that these analyses should be used to inform one another and, in this paper, we extend our previously defined
methodology for security-minded verification by incorporating runtime verification. To illustrate our approach, we analyse an algorithm for
sending Cooperative Awareness Messages between autonomous vehicles. Our analysis centres on identifying STRIDE security threats.
We show how these can be formalised, and subsequently verified, using a combination of formal tools for static aspects, namely
Promela/SPIN and Dafny, and generate runtime monitors for dynamic verification. Our approach allows us to focus our verification effort
on those security properties that are particularly important and to consider safety and security in tandem, both statically and at runtime.

Index Terms—Verification, Security, Safety, Threat Modelling, Connected Autonomous Vehicles, Cooperative Awareness Messages.
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1 INTRODUCTION

COMPLEX autonomous systems are often both safety- and
security-critical, meaning that they must be analysed

by experts in both areas to ensure that they behave correctly
in the presence of malicious adversaries. These analyses are
typically carried out by disparate teams and if one analysis
prompts changes to the system then it must be reconsidered
by both teams. This is a time consuming process, and since
both kinds of analysis share some commonalities, there is
clear benefit in holistically combining them.

Safety for these systems is typically verified using a
range and combination of non-formal (e.g., testing) and
formal (e.g., model-checking) methods. While a recent survey
on formal verification techniques for autonomous robotic
systems identified multiple challenges for applying formal
methods to these systems [3], cyber security as a distinct
challenge for formal methods has often been overlooked.
Specifically, identifying which cyber security properties to
verify can be difficult for formal methods practitioners [2].

In cyber security, threat analysis techniques identify the
threats that are most impactful and likely for systems. This
analysis essentially produces a set of events that can lead
to a system being in a bad state or taking bad actions, from
which properties that should hold in order for the system

This paper extends previously published work [1, 2].

to be secure can be derived. These properties are typically
written in abstract natural-language and are not formalised
in a logic that is typically used for formal verification.

In this paper, we extend and strengthen our security-
minded formal verification methodology [1] to incorporate
runtime verification. To illustrate our approach, we apply
this extended methodology to a previous case study of
the Cooperative Awareness Message (CAM) protocol, used
in vehicle-to-vehicle communications [4]. We presented an
initial approach to security-minded verification of CAM in [2]
and this paper applies our more detailed methodology to
this use case. As a result, we provide modified formal models
and runtime monitors for the CAM protocol that were not
present in our original work [2]. Our contributions are:

1) We improve the security-minded verification method-
ology that was presented in our previous work [1] by
incorporating Runtime Verification (RV) (§3).

2) We provide a more detailed threat modelling than in [2]
and compare with the threats identified by ETSI (§4).

3) We extend our prior case study [2] to demonstrate
how runtime monitors can be generated and applied
following our improved methodology (§5).

4) The verification artefacts presented in this paper were
drawn from [2] but they have been modified based on
the improved methodology and more detailed threat
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modelling in this paper. We also discuss mitigations and
alternative approaches that were not present in [2] (§6).

We begin by describing the relevant background material
and related work (§2). In §3 we present our framework
for combining formal verification with cyber security threat
analysis. In §4, we provide a threat analysis of the CAM
protocol using the STRIDE classification. §5 describes our
results of verifying properties related to Spoofing and Denial
of Service (DoS) attacks using model checking, theorem
proving and runtime verification. In §6 we discuss potential
mitigations against the identified threats. In §7 we reflect on
the approach taken. §8 concludes and outlines future work.

2 BACKGROUND AND RELATED WORK

This section outlines the relevant background on: (i) the
threat analysis techniques that we have used, (ii) formal
verification, (iii) Cooperative Awareness Messages [5], and
(iv) combining security and formal verification.

2.1 Threat Analysis

When engineering security-critical systems, developers em-
ploy threat analysis techniques to identify security vulnera-
bilities so that targeted mitigations can be put in place. There
are many techniques for threat modelling, and our approach
works equally well with any of them (e.g., CIA which stands
for Confidentiality, Integrity and Availability [6]), but for
ease of explanation, we adopt STRIDE [7].

The elements of STRIDE are: (i) Spoofing — an attacker
pretends to be another entity, (ii) Tampering — an attacker
manipulates data, (iii) Repudiation — an attacker can deny
sending a message that it sent, (iv) Information Disclosure
— an attacker can cause the system to reveal information to
those it is not intended for, (v) DoS — an attacker can prevent
the system from functioning, and (vi) Elevation of Privilege
— an attacker can perform more actions than allowed.

Analysing a system in terms of STRIDE threats helps
developers to secure the system by identifying vulnerable
areas so that mitigations can be introduced. The identified
threats will have their impact and likelihood assessed to
calculate the risk of each threat [8], allowing the prioritisation
of developing mitigations for threats with a higher risk.

2.2 Formal Verification

In order to assure the correctness of a software system, formal
methods provide an array of mathematically-based tools and
techniques for verifying that a system behaves correctly.
Formal methods are predominantly used in safety-critical
systems where a software failure can potentially cause harm.

In this paper, we use two distinct formal methods for
static verification; Promela/SPIN [9] and Dafny [10] to verify
properties about the CAM protocol1. In each case, we model
the CAM protocol at a different abstraction level; Promela
for system-level modelling and Dafny for algorithm-level
verification. Since these systems are typically very complex,
the use of multiple formal methods is necessary [11], and

1. We used version 6.4.6 of SPIN, version 2.2.0 of Dafny and version
1.41 of Visual Studio Code on Ubuntu 18.04.

cyber security threat analysis techniques highlight the most
relevant security properties to focus the verification effort.

Promela is a general purpose programming language,
particularly developed for protocol verification, where the
patterns of temporal behaviour that can be verified can
be complex and varied [12]. SPIN is a model-checker
that automatically checks temporal properties over system
models which are encoded in the Promela programming
language [9, 12]. Essentially, SPIN explores all possible
runs of Promela input models and assesses these against
an automaton capturing temporal behaviour that should
never occur. If all runs have been explored without finding a
violation of the temporal properties then the model is valid.
If a violation is found, it is returned as a counter-example.

Dafny is a programming language that facilitates the use
of specification constructs that allow the user to specify pre-
/post-conditions, loop invariants and variants [10]. Dafny is
used in the static verification of the functional correctness
of programs. Dafny programs are translated into the Boogie
intermediate verification language [13] and then the Z3
automated theorem prover discharges the associated proof
obligations [14]. We chose Dafny for this case study because
of its similarity to other programming languages making
it easy to communicate the verified solution to security
engineers that are unfamiliar with formal methods.

In addition to traditional, static, formal verification we de-
ploy runtime monitors to provide verification at runtime [15].
We use the LamaConv2 tool to generate runtime monitors.
Runtime Verification (RV) checks the traces of events that are
produced by the system execution against formal properties.
A runtime monitor reads a finite trace of events and yields a
verdict (e.g., inconclusive, satisfaction, or violation) based on
the formal property that it is checking. This serves two roles
in our methodology and case study: (1) any formal model of a
realistic system will be incomplete and so a runtime monitor
is useful for checking outside of the modelled envelope;
and (2) properties that are not amenable to static formal
verification may be tackled through verification at runtime.
As we will see later, an example of the second kind of
property is a DoS attack, which can be detected at runtime
by recognising an unexpectedly large number of messages.

2.3 Cooperative Awareness Messages (CAMs)
Emerging applications of autonomous robotic systems in-
clude Connected and Autonomous Vehicle (CAV) systems
where self-driving vehicles communicate with each other
to safely traverse different locations. This communication
typically occurs over a wireless network that is vulnerable
to attacks and these attacks could potentially impede the
safety of the passengers. Ensuring that both cyber security
and safety issues are properly addressed during the software
development process is crucial for these CAV systems.

CAMs are heartbeat messages that are broadcast by
vehicles in a CAV system to their neighbours providing basic
vehicle status information including position, velocity, accel-
eration, and heading [4]. Since these vehicles communicate
over an unsecured network, ensuring that CAMs are secure
is crucial as we move toward driverless cars. We briefly
summarise the CAM standard documentation [5] to give the

2. https://www.isp.uni-luebeck.de/lamaconv (Accessed 28/11/2023)

https://www.isp.uni-luebeck.de/lamaconv
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reader an understanding of the nature of the CAM protocol.
In autonomous vehicles, the CA Basic Service (facilities layer)
is responsible for operating the CAM protocol. It is composed
of two services: (1) the sending of CAMs, including their
generation and transmission, and, (2) the receiving of CAMs
and the modification of the receiving vehicle’s state in light
of the received messages. The CA Basic Service controls how
frequently CAMs are sent and interfaces to other services,
such as SF-SAP which provides some basic security services
(e.g. digital signatures and certificates) [5, §5.1].

CAMs are sent unencrypted as they are intended for
all vehicles within range of the sender so encryption and
decryption is not required. To ensure the authenticity of
the sender (that a CAM sent from vehicle v actually came
from vehicle v), digital signatures are used with a digital
certificate to verify a CAM’s origin and integrity. We focus
on the protocol for sending and receiving CAMs and the
threats that can be identified at this level rather than detailed
cryptographic protocols and digital signing.

Once CAMs are received by surrounding vehicles, the
receivers can modify their own state based on the received
messages. In particular, if a vehicle receives a message from
one proceeding it which indicates that the leading vehicle
is slowing down, then the vehicle that received this CAM
should also slow down in order to avoid a collision.

2.4 Combining Security and Verification

iUML-B and refinement in Event-B have been used to
analyse a known security flaw (double tagging) in a network
protocol [16]. Related, the TAMARIN prover has been used
to formally analyse and identify one known functional
correctness flaw and one unknown authentication flaw for
a revocation protocol [17] in a vehicular networking system.
Our work differs to these in that we use threat analysis to
guide our verification rather than use formal methods to
identify previously known bugs.

Vanspauwen and Jacobs have devised an approach to the
static verification of cryptographic protocol implementations
using their symbolic model of cryptography formalised
in VeriFast [18]. They attach contracts to the primitives
in an existing cryptography library. Their focus is on the
verification of cryptographic protocols whereas we focus on
using cyber security techniques to guide verification rather
than verifying cryptographic protocol implementations.

Huang and Kang [19] use a probabilistic extension
of the Clock constraint specification language (Ccsl) to
analyse safety and security timing-related properties for a
cooperative automotive system. They specified safety and
security constraints including spoofing, secrecy, tampering
and availability. Their work facilitates the verification, using
the UPPAAL model-checker, of safety and security properties
related to timing constraints. It does not, however, integrate
results from a security engineering perspective to define
these properties and focuses on timing-related properties.

The CSP process algebra has been used for protocol
verification [20–22] focusing on authentication [22] and non-
repudiation protocols [21]. Their approach involves specify-
ing the relevant protocol, agents and environment in CSP [20].
Notably, they remark that, by modelling the protocol in
CSP, they could provide a formal and verified specification

of the protocol which allowed them to clarify the, usually
informal, protocol description. Our modelling of the CAM
protocol also allowed us to clarify what was described in
the documentation but we focus on different properties as
identified by our STRIDE threat analysis of the CAM protocol.
Clarification of an informally specified protocol framework
using abstract state machines as compared to a concrete
implementation was considered in [23].

Kamali et al. [24] formally verified an autonomous
vehicle platooning system to demonstrate the use of different
formal techniques for distinct system subcomponents. In this
case, autonomous decision-making, real-time properties and
spatial aspects. Our approach uses different formal methods
to verify distinct security-related properties of the CAM
protocol at different levels of abstraction.

Security informed verification has been performed in
different domains. For example, an IoT system was modelled
using Alloy in [25], where specific sequences of events were
used to model two attacks: eavesdropping and spoofing.
Mitigations against each attack were also specified. A unified
development approach for safety and security concerns for
systems is advocated in [26] where the similarities and
differences in each area are considered and the barriers to
a joint approach discussed. These barriers are mainly con-
cerned with a lack of a mature methodology and appropriate
tool support for combining safety and security analyses.
This paper, and our related work in [1], illustrates a novel
methodology for combining these analyses.

In [27] a modelling and verification environment called
AVATAR is used to capture both safety and security elements.
The environment allows the system to be modelled and
properties to be specified with verification via the UPPAAL
and ProVerif tools. The paper focuses on security for an au-
tomotive example. However the security properties that can
be considered are limited to confidentiality and authenticity.

Other related work includes the use of machine learning
techniques to extract finite state machines from bank cards
which implement variants of the EMV (Europay-MasterCard-
Visa) protocol suite [28, 29]. These state machines can then
be used for security analysis of the implemented protocol,
although they do not appear to follow a cyber security threat
modelling for their analysis which focuses predominantly on
confidentiality and authentication properties.

3 SECURITY-MINDED VERIFICATION

In general, formal verification and threat modelling are dis-
tinct processes which are usually performed independently
of one another. Therefore, a naı̈ve approach to integrating
these processes might consist of first performing formal veri-
fication and then subsequently carrying out threat analysis.
Both the threat analysis or formal verification may result
in requiring modifications to the system, thereby forcing a
new system verification or analysis of the security threats to
the system. This process could be iterated until the system
meets its requirements. However, this can be ineffective since
each independent analysis can lead to significant changes,
and convergence can become a challenge. The advantage of
our approach is that expertise from both the cyber security
and formal methods domains is considered simultaneously.
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Documentation [5]

Threat Modelling
of CAM protocol

Build formal model(s)
of CAM protocol

Formalisation and
Verification of

Potential Threats

Fig. 1: Our high-level methodology for security-guided
formal verification of the CAM protocol from [2].

This potentially allows development time to be reduced by
applying these two techniques in a complementary fashion.

To enhance the software engineering process and to
encourage collaboration between cyber security and formal
methods experts our prior work on the CAM protocol
followed the high-level methodology in Fig. 1 [2]. We began
by analysing the available documentation that informally
describes the CAM protocol [5]. Then we independently
carried out threat analysis and constructed formal models of
the CAM protocol using the available documentation.

We subsequently developed a more detailed security-
minded verification methodology that was used for an
autonomous satellite docking scenario [1]. This paper further
extends this methodology to include runtime verification
as shown in Fig. 2. We explore how the artefacts produced
in our prior work [2] persist in this improved methodology
and include appropriate modifications of the previous formal
models and threat analysis. We also demonstrate the addition
of runtime monitors for the CAM use case.

We propose the security-minded verification methodol-
ogy, shown in Fig. 2, as a way to combine the usually distinct
approaches to formal verification and threat modelling. Our
approach to integrating security and verification follows
a tightly coupled procedure and is inspired by techniques
such as the agile software development methodology which
has been recognised to be well-suited to iteratively improve
systems [30].

Our security-minded verification methodology can be
integrated into system development. Each time that the
system is modified, the system model is updated and the
security-minded verification methodology is iterated upon
until a successful verification is performed where the security
risk is appropriately managed. This iterative, agile approach
should not only be managed at development time, but also
in operation, similar to other agile approaches. Such an
approach of performing continual, through-life adaptation
and verification can be accomplished procedurally with ease.
For brevity, we do not introduce the operations element
here. It should be recognised, however, that continually
refining a system in operation introduces challenges, such
as monitoring, resolving and updating that may impact on
operation and cost, so is non-trivial in practice.

Our approach is depicted in Fig. 2; the top half corre-
sponds to the usual formal verification methodology and
the bottom half to the threat modelling approach usually
followed by cyber security analysts. Instead of performing
formal verification and a security analysis sequentially,

Tasks Decisions Outputs

Verification

Threat Modelling

Common to both N/A

TABLE 1: Key to Figures.

aspects of these processes are performed in parallel. The
fundamental change is that the security properties are for-
malised and checked as part of the verification of the system.
Previously, these properties would have been identified
due to system changes if the threat modelling identified
that the risk of a threat to the system was too high. By
performing verification of security properties the verification
of the system has an explicit consideration of the important
security aspects that have been identified. Further, failures in
verification may uncover bugs that cause security flaws.

Both formal verification and threat modelling begin with
a System Definition that provides a unified starting point
for the security-minded verification methodology in Fig. 2.
We strengthen this starting point from a formal verification
perspective by incorporating the use cases identified via
threat modelling during the construction of the formal model
of the system. Interestingly, the integration of the use cases
that are identified by the cyber security approach helps to
provide developers building a formal model of the system
with more detail and focuses them on the relevant scenarios.

Central to our approach is using the results from threat
modelling to devise formal Security Properties via the
Formalise Threats step of Fig. 2. By assessing the Threat
Risk, we choose the security properties that are the most
interesting/important and these are subsequently formally
verified using a suitable formal method for static verification.

For complex systems it is unlikely that static verification
methods can verify all of the identified properties. These
methods tend to require a model of the system rather than the
final implementation so there is often a reality gap between
the verified model and implemented system [3]. To address
this and provide alternative means of verifying difficult prop-
erties we include a Generate Runtime Monitors step. These
dynamic checks can be performed on log files and/or during
execution. This extra verification layer serves to increase
our confidence that the system behaves correctly. Runtime
verification was not present in our original methodology [1]
but was added to support dynamic verification of systems.
Using the static and runtime verification results, we evaluate
whether the risk has been managed. This may inspire the
inclusion of mitigations causing our methodology to loop.

We believe that our integrated approach to security-
minded verification provides a more streamlined develop-
ment process and that the use of the security use cases in the
development of the formal model is hugely beneficial from
a verification perspective. Likewise, the formalisation and
subsequent verification of security properties of interest gives
more weight to the security analysis and helps to investigate
whether any mitigations put in place work correctly.

There are several points in the methodology where
developers may need to revise the system, model(s) and/or
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No
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Revise system

System incorrect

Generate Runtime 
Monitors

Runtime 
Monitors

Fig. 2: Our integrated approach to combining verification and security analysis from our prior work [1] has been expanded
to include the addition of runtime verification. The key in Table 1 indicates the nature of the elements in this diagram.

properties based on the outcomes of the verification and/or
threat modelling activities. This is common in software
development and can be time consuming if the system
does not have a modular structure. We step through our
methodology (Fig. 2), demonstrating how it can be applied in
the case of the CAM protocol. We begin with threat analysis.

4 THREAT ANALYSIS OF CAM
Common to both aspects of our methodology is starting by
defining the system. In our case the documentation for the
CAM protocol provided this high-level system definition [5].
After this step, we branch to building a formal model of the
system and/or to defining the use cases for threat analysis.
This section begins from the threat modelling perspective
and follows the steps in the lower part of Fig. 2.

Threat analysis is important for ensuring the security of
a system since it is used to identify the potential threats.
There are many threat modelling methods including STRIDE,
SAHARA, HARA, TARA and others that are suggested in
multiple industry standards (i.e., ISO26262, SAE J3061). In
this paper, we use the STRIDE classification [7].

We chose STRIDE since it is a stand-alone threat classi-
fication approach. This comes with multiple advantages,

the first is that it is not necessary to modify the stages
in an alternate threat modelling methodology to fit the
integrated approach to threat modelling that we use [1].
The second is that the identified security properties de-
rived from the threats are already classified by the type
of threat. This simplifies decision making about classes of
threats, specifically with which approach a security property
should be verified. Finally, STRIDE is used by the European
Telecommunications Standards Institute (ETSI) to perform an
analysis of intelligent transportation system threats, allowing
us to link the threats that we focus on to those ETSI identifies.

CAMs are vital to safe CAV systems since they are used by
each vehicle to inform surrounding vehicles of their current
status. Each vehicle must trust that the values contained
within a CAM are timely and accurate. If this is not the case
then autonomous vehicles could make incorrect and even
unsafe decisions. We start by identifying suitable Use Cases.

4.1 Use Cases

ETSI TR 102 638 [31, §6] defines a basic set of applications
with four high-level application classes: (i) Active road
safety, (ii) Cooperative traffic efficiency, (iii) Co-operative
local services, and (iv) Global internet services. Of these,
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(i) and (ii) specifically target CAM-provided functionality.
A wide variety of specific use-cases are provided in [31,
Table A.1] including approaching emergency vehicle, wrong
way driving, V2X road obstacle warning, overtaking vehicle,
intersection management and V2V lane change assistance.

To focus our analysis and illustrate the application of
our security-minded verification methodology (Fig. 2) we
use a single use case of collision detection and avoidance.
Here, CAMs are used to disseminate vital information (e.g.,
position, velocity and heading) which is used by vehicles to
detect if a collision will occur. If a collision will occur, then
vehicles will take action by reducing their speed.

Although we focus the remainder of this paper on the
collision detection and avoidance use case, in practice each
relevant use case should be considered for completeness.
Following Fig. 2, once a use case has been selected then the
next step involves identifying the associated Threat Actors.

4.2 Threat Actors
A threat actor is “an individual or a group posing a
threat” [32, Appendix B] and a threat is an action with
the potential to negatively impact a target. We identify the
threat actors for our use case in Table 2. These include
individuals, insiders, ad-hoc groups and large organised
groups [8, Appendix D]. ETSI have specified multiple high-
level descriptions of threat actors in [33, §10]:
• “malicious or mischievous use of an ITS-S (Vehicle) as

an attack proxy by a remote agent; or”
• “malicious or mischievous use as an ITS-S (Vehicle)

providing false or misleading information to other
vehicles”

Understanding threat actors is important for understand-
ing what attacks may be performed on a vehicle, how they
will be performed, and why. Different threat actors will have
varying capabilities, meaning that an attack such as DoS from
one threat actor (e.g., an outsider) may have limited impact
compared to DoS from a group with significant resources.
After identifying the potential threat actors, we examine the
specific Abuse Cases which represent the attacks they intend
to perform and the aims of these attacks.

4.3 Abuse Cases
Abuse cases [36] define the interaction between one or more
threat actors and their target system where those interactions
are intended to cause harm. There are many possible attacks
that an adversary may perform against CAMs. To focus our
threat analysis we specifically consider the generation of
CAMs (defined in [5]). In this scenario, an adversary wants
to interact with ITS stations generating CAMs or generate
its own CAMs. This could be for many reasons including: to
cause a collision, to cause reputation damage to commercial
competitors, for fun, or exploration of what is possible.

Table 3 describes four abuse cases where an adversary
attempts to impact the sending, receiving or use of CAMs for
the collision detection and avoidance use case. For example,
the first abuse case in Table 3 describes the scenario where
an attacker might intentionally cause vehicles to collide.

The next step in our methodology (Fig. 2) involves the
identification of specific Threats for the CAM protocol based
on the use case, actors and abuse cases identified previously.

4.4 Identifying Threats
We now identify the threats to the system that formed part
of the abuse cases in §4.3. We use the STRIDE framework to
classify these threats and compare them to those identified
by ETSI in order to evaluate if this is a sufficiently thorough
enumeration of threats. We focus on CAMs generated by
vehicle On-Board Units (OBU) rather than Road Side Units
(RSU) for two reasons: (1) the algorithm for CAM generation
from OBUs is more complex and thus more interesting from
a formal methods perspective, and (2) it is attacks against
vehicular OBU CAM generation that will lead to potential
safety violations (such as collisions between vehicles). For
the CAM protocol, we specialise the STRIDE threats as:
Spoofing: an attacker sends CAMs masquerading as another

vehicle.
Tampering: an attacker tampers with a CAM sent by another

vehicle.
Repudiation: a vehicle denies sending a CAM that it has

actually sent.
Information Disclosure: a vehicle receives and accesses

information from CAMs which are not intended for
them.

DoS: CAMs are not sent within a reasonable time frame.
Elevation of Privilege: an attacker sends CAMs without

having permission to do so.
ETSI, who publish the CAM specification, have previously
performed a general threat assessment [33] for Intelligent
Transport Systems (ITS). As part of this analysis the following
threats were identified:
[V-V1] DoS: A vehicle receives such a high volume of CAMs

that it cannot process in a timely manner causing CAMs
to be missed.

[V-V2] DoS: An attacker jams radio signals preventing
CAMs from being received.

[V-V3] Tampering: False information is received.
[V-V4] Spoofing: When a vehicle is unable to verify the

authenticity of a CAM quickly, spoofed CAMs may be
used to update local state.

[V-V5] Tampering: A CAM is received that contains incorrect
contents even when the authenticity can be verified.

[V-V6] Replay of old or expired CAMs.
[V-V7] Malware can be installed onto vehicles.
[V-V8] Information Disclosure: CAMs can be eavesdropped.
[V-V9] Repudiation: A vehicle may not send CAMs as

frequently as it should.
There exists overlap between our STRIDE threat modelling
and ETSI’s, however, there are also differences. Two threats
([V-V6] and [V-V7]) are not applicable to our investigation of
CAMs, as they are either out of scope ([V-V7]) or protected
against by mechanisms provided by the ETSI CAM stack
([V-V6]). Other overlaps and differences include:
Spoofing: [V-V4] matches our definition.
Tampering: [V-V3] and [V-V5] match our definition.
Repudiation: is not considered by ETSI in the same way.
Information Disclosure: [V-V8] matches our definition.
DoS: [V-V9] matches our definition which focuses on send-

ing CAMs. [V-V1] does not match our definition as it
focuses on ITS stations receiving and processing CAMs
in a timely manner. [V-V2] does not match our definition
as signal jamming is out of scope.
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Threat Actor Example Goals & Motivations Capabilities Presence Resources

So
lo

Outsider Hacktivist / Thief Personal satisfaction;
Passion; Ideology. Limited Remote access Minimal

Insider Employee /
Contractor

Financial gain;
Discontent

Moderate to
High Internal access Internal knowledge

G
ro

up

Ad hoc
A group formed in
response to an
event (e.g., climate) Dependant on group

purpose: Ideological,
financial, political

Limited to
Moderate Remote access Limited knowledge

and financial

Established A group (e.g.,
terror)

Moderate to
High Remote access

Moderate
knowledge and
financial

O
rg

an
is

at
io

n Competitor
Provides similar
services /
equipment

Corporate espionage;
Financial gain;
Reputation damage Dependent on

size of
organisation

Remote access
Dependent on size
of organisation

Partner
A supplier with
which a relationship
is ending

Information gain;
Financial gain

Limited internal access;
Knowledge of internal
structure

Nation-State Geopolitical rival State rivalry;
Geopolitics

Sophisticated;
Coordinated;
Access to
state secrets

Remote and internal
access

Extensive
knowledge &
financial; Advanced
equipment

TABLE 2: Example Threat Actors based on [8, Appendix D] and [34] with dimensions from [35].

Abuse Goal Description Threat Actors Techniques

Intentionally cause a
collision

Induce a collision by preventing V2V communication, spoofing
V2V communication with incorrect information, or repudiating
previously send information

Individual / Group
intent on causing harm;
Competitor causing
reputation damage

External
jammer

Reduce traffic on
intended route

Impersonate or otherwise disseminate messages that imply
heavy traffic (when there is none) on the adversary’s intended
route, or alternatively that traffic is lower (when it is not) on
other routes the adversary does not intend to take.

Individual Pose as genuine
vehicle

Facilitate vehicle theft
via influencing of its
route or position

An adversary may indicate an accident or roadworks exists
where there is none, or manufacture evidence of a fake accident
or roadworks in order to manipulate a vehicle into taking a
route where theft of the vehicle becomes easier

Individual; Established
Criminal Group

Malware on
target vehicle

Masquerade in order
to be given priority

An adversary may emulate an emergency vehicle based on
previously observed characteristics to be given priority in traffic. Individual Pose as genuine

vehicle

TABLE 3: Abuse cases derived from [33], with threat actors and relevant STRIDE threats identified.

Elevation of Privilege: is not considered by ETSI.
These differences are likely caused by a different threat

classification framework. For example, [V-V9] is a property
that we have classified as DoS, but ETSI has classified as
Repudiation [33, Table 13]. ETSI chose Repudiation as they
focused on the lack of a requirement for vehicles to maintain
auditable logs of the messages sent, whereas, in this paper,
we focus on the lack of messages sent being a DoS to other
vehicles. This highlights the subjectivity in how threats are
classified and that they have not been formally defined.

At this stage our methodology branches (Fig. 2). The
Threats are formalised for the formal verification branch. On
the other branch, we discuss how Threat Risk is evaluated.

4.5 Threat Risk
Assessing risk can be challenging [8]. Ideally a quantitative
data-driven approach would be used, however, for novel
systems there is insufficient data to undertake a quantitative
risk assessment [8]. For security-minded verification, a
detailed and highly accurate risk assessment is not required,
as risks are only used to prioritise which threats are focused

on during verification. Instead, quick to perform indicative
qualitative risk assessed by experts is sufficient and pre-
ferred. Further, as we lack quantitative data we describe the
likelihood of attacks being performed as anticipated.

Table 5 contains the risk assessment of the specific types
of threats identified for the abuse cases in Table 3. The risk
matrix in Table 4 is used to assign a risk value from the
impact and anticipated likelihood of the assessed threats.
Impact is determined by the attack’s effect on safety. A high
impact attack would lead to an unsafe situation for the
vehicle’s occupants, or nearby pedestrians. From these results
we can see that Spoofing and DoS attacks tend to have a
high or medium risk associated with them (Table 5). Some
Repudiation threats also have a medium impact. Next, we
use this risk analysis to distil the Selected Security Properties
(Fig. 2) that are most important for verification.

4.6 Selected Security Properties
We have identified multiple STRIDE threats and as part
of the threat analysis process have identified the risk that
those threats pose. Based on our analysis, we conclude that
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Anticipated Likelihood
High Medium Low

Im
pa

ct High High High Medium
Medium High Medium Low

Low Medium Low Low

TABLE 4: Risk is a combination of impact and likelihood.

Spoofing and DoS are the two most relevant and important
threats for our case study. For completeness, we describe
each of the threats in detail here and highlight why they are
or are not relevant and/or important for this case study.
Tampering: In practice, tampering of CAM content is mit-

igated via digital signatures and certificates, the ver-
ification of which is beyond the scope of this paper
(related work in [38]). Other aspects of the system may
be tampered with, such as inputs to the CAM generation
algorithm, under which the verification needs to ensure
that the availability properties are maintained.

Repudiation: We previously modelled and verified a Repu-
diation property for CAM in [2]. However, in practice
and similar to Tampering, Repudiation is mitigated by
the use of digital signatures and certificates. If a CAM is
received by a vehicle and the signature is verified, this
means that the private key of the sender must have been
used to sign the message. If the private key is revealed
then the origin of the sender cannot be guaranteed. This
threat can be mitigated by adding the compromised
certificate to a Certificate Revocation List [39] or by
using other public-key cryptography schemes [40].

Elevation of Privilege: The CA Basic Service, responsible
for operating the CAM protocol, interfaces with the SF-
SAP security entity [5, §5.1 & §6.2.2] which provides ac-
cess to security services for CAM such as digital signing
and certificates. Certificates belonging to each ITS station
indicate the holder’s permissions including whether
they are allowed to send CAMs. ITS stations receiving
CAMs accept incoming messages if the permissions
in the sender’s certificate allow them to send CAMs.
Certificates of an ITS station can be requested from
the Certification Authority [39]. Elevation of Privilege
attacks could enable a malicious ITS station to send
CAMs when lacking permissions as defined in [5, §6.2.2].
The response to receiving one of these messages that
lacks the necessary permissions is to not accept it (i.e.
not process the information contained in the CAM).

Information Disclosure: We don’t analyse Information Dis-
closure as CAMs are intended for all who receive them.

To our knowledge, no formal, mathematical definition of the
STRIDE properties exists since they are to be specialised for
a given system. However, if we wish to include these in our
formal verification of the CAM protocol then we must more
closely consider properties of interest (Spoofing and DoS):

Spoofing: an attacker pretends to be another vehicle and
sends false information about that vehicle (e.g., speed)
in CAMs. This could cause vehicles to collide and we
analyse this using Promela/SPIN in §5.1 by modelling
an attacker of the system.

DoS: a compromised vehicle does not send CAMs within
a reasonable amount of time. If a vehicle sends too

many CAMs then the network becomes overloaded.
Conversely, if a vehicle does not send CAMs frequently
enough then the most recent CAMs sent may be deemed
out of date and thus ignored. In particular, a replay
attack could occur where an attacker or a compromised
vehicle resends CAMs that have already been sent
causing a network overload. If suitable measures are
not taken to ensure that the time at which the message
was sent was not too far in the past then vehicles may
react to an out-of-date message. We address this using
Dafny in §5.2 by verifying an availability property of the
algorithm for sending CAMs. This is examined further
in §5.3 where discuss deploying runtime monitors to
recognise such situations.

Based on our threat analysis, we consider these threats to be
the most relevant/likely with respect to the CAM protocol
and we use them to guide our formal verification effort3.

5 FORMAL VERIFICATION

This section describes the formal verification steps in our
methodology (upper half of Fig. 2). It is increasingly the
case that complex autonomous systems require multiple
verification approaches to adequately verify different prop-
erties of the system at varying levels of abstraction [11]. As
a result, there are three distinct approaches used here: (1)
Promela/SPIN to investigate Spoofing via model-checking,
(2) Dafny to verify algorithmic properties and examine
DoS, and (3) runtime verification to capture properties that
could not be verified by other methods and to support
properties that were verified statically at runtime. We begin
by discussing model-checking with Promela/SPIN.

5.1 Model-Checking with Promela/SPIN
In this case study, it is easy to see that safety and security are
inextricably linked. For CAV systems, the most important
safety property is that collisions are avoided at all costs
(Table 5). Therefore, an attacker of the system who is attempt-
ing to cause harm will likely target security vulnerabilities
that have the potential to violate this safety property. We
recognise that there may be malicious vehicles on the road
that are attempting to cause collisions, perhaps a disgruntled
taxi driver who is unemployed due to the adoption of
autonomous vehicles. Such a collision could be caused by
Spoofing the CAMs sent between vehicles. Our analysis of
Spoofing and how it can impact the safety of the CAV system
is captured here in a SPIN analysis of a simplified scenario
involving CAMs between vehicles in a platoon/convoy.

5.1.1 Formal System Model and Functional Properties
We begin, following our methodology (Fig. 2), by building
a Formal System Model then we identify and verify the
basic functional safety property that we are interested in. We
investigated message passing between multiple autonomous
vehicles by applying SPIN to an abstracted Promela model
for sending and receiving CAMs. Fig. 3 illustrates three
vehicles travelling in a platoon/convoy: one leader; one
middle; and one tail vehicle. The leader sends messages

3. Artefacts available at: https://github.com/autonomy-and-verificat
ion/security-minded-verification (Accessed 28/11/2023)

https://github.com/autonomy-and-verification/security-minded-verification
https://github.com/autonomy-and-verification/security-minded-verification
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Adversary
Goal Type Impact Anticipated

Likelihood Risk Rationale and Justification

Intentionally
cause a
collision

S High Medium High Information containing spoofed data, or spoofing the presence of other
vehicles could lead to incorrect decision making [33, Table 10].

R Medium Low Low Repudiating previously sent accurate information will have limited
impact if the information has already been processed. Mitigations
exist [33, §11.4.1.4].

D High Medium High Preventing receiving or processing CAMs could lead to unsafe
situations. Partly caused by expensive public key cryptography
operations [33, §11.3.7 & §11.3.10] to mitigate other threats. Lowering
broadcast rate reduces timeliness of information [33, §11.3.1] and will
not prevent a capable adversary. Rated critical in [33, Table 9].

Reduce traffic
on intended
route

S Low Medium Low Dissemination of incorrect information can be used to negatively
impact traffic management techniques [37].

D Low Medium Low Preventing access to disseminated information (e.g., from RSUs) means
that vehicles are unaware of how they are being directed by a traffic
management system.

E Medium Low Low Adversary could escalate capabilities to act as a traffic management
system. Public Key Infrastructure (PKI) mitigates this [33, §11.3.7].

Facilitate
vehicle theft

S Medium Medium Medium Dissemination of incorrect information to cause traffic in specific areas
of the road network [37].

R Low Low Low Make claims that a vehicle acts upon and then repudiate them such
that the vehicle needs to keep re-evaluating its planned route.

D High Medium High Prevent access to routing information. Prevent target vehicle from
sending safety data that could be used for tracking or theft recovery.

Masquerade
to be given
priority

S Medium Medium Medium While plausibility tests could be used to identify masquerading via a
heuristic [33, §11.3.20], they will incur non-zero false negatives and
false positives which may lead to incorrect behaviour.

I Medium High High Information disclosed by the system could be used to build a profile
that the adversary will replicate [33, Table 12].

TABLE 5: Example threat risk allocation for STRIDE threats (classified by ‘Type’) forming the abuse cases in Table 3 with risk
calculated using Table 4. Impact and anticipated likelihood have been estimated based on details provided by other sources.

to both other vehicles while the tail sends messages to the
middle vehicle only. The middle and tail vehicles follow
simple protocols, as outlined in [2]:
• If either vehicle receives no CAMs then it continues

unchanged.
• If the middle vehicle receives exactly one CAM then sets

its speed to half the speed in the CAM4.
• If the middle vehicle receives two CAMs then it sets its

speed to the average of the two speeds (rounded down).
• If the tail vehicle receives a CAM then it sets its speed

to that in the CAM.
We used the following default conditions to analyse this
Promela model with SPIN: the leader chooses a random
discrete speed of 1, 3, or 5 every three time steps and
communicates this to the other vehicles. At the next time
step, the middle vehicle adjusts its speed and at the time step
after that the tail vehicle adjusts its speed and communicates
this new speed to the middle vehicle.

Each time that a vehicle modifies its speed, the distances
of the middle and tail vehicles from the leader are calculated
assuming that the speeds are measured in distance per time
step. The middle vehicle starts at a distance of 10 units
behind the leader and the tail vehicle at a distance of 25 units
behind the leader. This is more detailed than our Promela
model in [2] which did not calculate vehicle distances. The
properties that are checked have been updated to reflect this.

4. Only occurs at initialisation when the other vehicle’s speed is 0.

The safety property that we verified is that the ve-
hicles can never crash, that is that the middle vehicle’s
position is never less than or equal to zero and that the
tail vehicle’s position is never less than or equal to that
of the middle vehicle. We write this in temporal logic as:

�¬(vpos ≤ 0) ∧�¬(tpos ≤ vpos)
where ‘�’ is LTL’s [41] “always” operator, vpos is the position
of the middle vehicle relative to the lead vehicle and tpos is
the position of the tail vehicle relative to the lead vehicle.

We have successfully verified that this property holds of
our model using SPIN. Next, we use this model to investigate
how an attacker executing a Spoofing attack could lead to an
unsafe scenario for the vehicle platoon.

5.1.2 Investigating Spoofing
Inspired by the threat analysis in §4.6, we have modelled a
Spoofing attack in Promela for the above scenario. In order
to analyse this kind of threat, we include an attacker as a
process in our Promela model as shown in Fig. 3. At one
point in the execution trace the attacker may:
• replace a message on the channel between the leader

and middle vehicles stating that the leader’s speed is 1
or 5 (lines 8–13 in Fig. 4)

• replace a message on the channel between the tail and
middle vehicles stating that the tail’s speed is 1 or 5
(lines 14–19 in Fig. 4)

In each of these cases, both the speed, whether to insert a
message, and the time that the message is inserted are chosen
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Leader Vehicle Middle Vehicle Tail Vehicle

Attacker Vehicle

Fig. 3: Our three vehicle model. CAMs are sent from the
leader and tail to the middle vehicle, and from the leader to
the tail. An attacker vehicle executes a Spoofing attack.

1 proctype attacker(chan l_in, t_in) { /* attacker */
2 printf("starting\n");
3 int lin1, tin1;
4 bool head = 0, tl = 0;
5 A: (clock > 10); /* wait until under way */
6 if
7 :: (head == 0 && len(l_in) != 0) →
8 atomic{ printf("ins. vspeed of 1\n");
9 l_in?lin1; l_in!1; head = 1; } goto A;

10 :: (head == 0 && len(l_in) != 0) →
11 atomic{ printf("ins. vspeed of 5\n");
12 l_in?lin1; l_in!5; head = 1; } goto A;
13 :: (tl == 0 && len(t_in) != 0) →
14 atomic{ printf("ins. tspeed of 1\n");
15 t_in?tin1; t_in!1; tl = 1; } goto A;
16 :: (tl == 0 && len(t_in) != 0) →
17 atomic{ printf("ins. tspeed of 5\n");
18 t_in?tin1; t_in!5; tl = 1; } goto A;
19 :: (clock <= 100) → goto A;
20 :: (clock > 100) → goto FIN;
21 fi;
22 FIN: printf("finishing\n")
23 }

Fig. 4: Promela model (updated from [2]) of the attacker who
sends false speed messages between the vehicles violating
our safety property and causing a collision.

at random. Running SPIN with this attacker model and the
model described above, we can see that our safety property:

�¬(vpos ≤ 0) ∧�¬(tpos ≤ vpos)
has been violated and we get a counter-example trace. In
this case, a situation where the attacker informs the middle
vehicle that the leader’s speed is 1 when it is in fact 5. This
causes the middle vehicle to slow down sufficiently so that
the tail vehicle (matching the leader’s speed) crashes into it.
Thus, we have shown that a breach in security (Spoofing by
an attacker) can potentially lead to an unsafe scenario.

We are now on the No branch of Static Properties Verified?
in Fig. 2. Thus, we question whether the issue is caused by
the system, model or properties and respond with suitable
modifications. Here the system is the point of failure and we
discuss a possible way to mitigate this threat by modifying
the system definition to include LIDAR sensor data in §6.

Our Promela model describing an attacker and three
vehicles is only one potential scenario, particularly as there
may be more vehicles in a real-world scenario. To our
knowledge, there is no systematic way of identifying all
possible models of the system that include a Spoofing attack.
However, we can systematically work through the attributes
sent in CAMs as likely vulnerable to Spoofing to examine
how such attacks can influence safe system behaviour.

5.2 Deductive Verification with Dafny
To examine the CAM protocol at algorithm-level, we con-
struct and verify a CAM send and receive implementation
using Dafny [10]. We focus on two basic methods; sendCAM

(Fig. 5) and receiveCAM (Fig. 8). We have formalised the
specification of CAM using the available documentation [5,
§6.1.3] and followed its nomenclature. The Dafny model that
we present here is based on the one in [2] with some updates
that we highlight throughout this section.

Here, we focus on the DoS security threat at algorithm-
level. In our implementation we have simplified the structure
of CAMs from the ASN.1 encoding to focus on the semantic
contents of the message as follows:

CAM(id: int,time: int,heading: int,speed: int,
position: int)

Here, id refers to the vehicle that is sending the CAM and
time is the timestamp at which the CAM was sent. These
attributes are required by the documentation [5]. CAMs are
sent periodically, or when any of the status information (e.g.,
speed) contained in the CAM has changed since the last one
was sent. Several global constants can be configured, with
their default values from [5] shown in brackets below:
• T_GenCamMin: The minimum time between CAM gen-

erations (100 ms).
• T_GenCamMax: The maximum time between CAM gen-

erations (1000 ms).
• N_GenCamDefault: Used to limit the rate of CAM

generation (3).
• N_GenCamMax: Maximum value of N_GenCam (3).
• headingthreshold: Heading trigger threshold (4°).
• speedthreshold: Speed trigger threshold (0.5 m/s).
• posthreshold: Distance trigger threshold (4 m).

Using the above CAM structure and variables we now de-
scribe our Dafny implementation of the sendCAM algorithm.

5.2.1 Sending CAMs
Fig. 5 contains the verified Dafny code corresponding to the
sendCAM algorithm which is responsible for generation and
transmission of CAMs. We have made modifications to the
Dafny model from [2] that we indicate in the text below.

We capture the fact that CAMs should be sent periodically
within the time bounds specified by the CA Basic Service,
by the method’s first two input variables. T_CheckCamGen
describes how often to check if another CAM should be sent
and T_GenCam_DCC describes the minimum time interval
between two consecutive CAM generations. It returns a
sequence of CAMs that have been sent, called msgs, and the
current time given by the variable, now.

Other parameters specify the identity of the vehicle (j), at
what time the CAM generation starts (start was not present
in our previous model [2]) and the maximum number of
messages to send before terminating (max_msgs). Typically
CAM generation would continue until halted, however,
Dafny requires that termination is proven, so max_msgs
allows a finite number of messages to be considered instead.

The pre-conditions, indicated by the requires keyword
(lines 2–3), provide constraints on these variables, such as the
bounds for T_GenCam_DCC (line 2) [5, §6.1.3]. The conditions
on line 3 were not present in [2] but were added to improve
our reasoning related to DoS. The addition of these properties
caused us to update the post-condition on line 4 to refer to
start and thus improve our concept of timing.

The post-conditions on lines 4–6 use the ensures key-
word to specify that the expected number of CAMs have
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1 method sendCAM(T_CheckCamGen: int, T_GenCam_DCC: int, j: int, start: int, max_msgs: int) returns (msgs: seq<CAM>,now: int)
2 requires 0 < T_CheckCamGen ≤ T_GenCamMin ∧ T_GenCamMin ≤ T_GenCam_DCC ≤ T_GenCamMax;
3 requires start ≥ 0 ∧ max_msgs ≥ 0 ∧ 0 < N_GenCamDefault ≤ N_GenCamMax;
4 ensures T_GenCam_DCC * |msgs| ≤ (now - start) ≤ T_GenCamMax * |msgs|;
5 ensures |msgs| ≥ 2 =⇒ ∀ i: int • 1 ≤ i < |msgs| =⇒ T_GenCam_DCC ≤ msgs[i].time - msgs[i-1].time ≤ T_GenCamMax;
6 ensures |msgs| = max_msgs;
7 {
8 now, msgs := start, [];
9 var T_GenCam, T_GenCamNext, N_GenCam, trigger_two_count := T_GenCamMax, T_GenCam, N_GenCamDefault, 0;

10 var LastBroadcast, PrevLastBroadcast, prevsent := now, now, [];
11 var heading, speed, pos := GetHeading(j, now), GetSpeed(j, now), GetPosition(j, now);
12 var prevheading, prevspeed, prevpos := Nil, Nil, Nil;
13

14 while (|msgs| < max_msgs)
15 decreases max_msgs - |msgs|;
16 invariant 0 ≤ |msgs| ≤ max_msgs ∧ 0 < N_GenCam ≤ N_GenCamMax;
17 invariant T_GenCamMin ≤ T_GenCamNext ≤ T_GenCamMax ∧ T_GenCamMin ≤ T_GenCam ≤ T_GenCamMax;
18 invariant start ≤ PrevLastBroadcast ≤ now;
19 invariant now = LastBroadcast;
20 invariant now - T_GenCamMax ≤ PrevLastBroadcast ≤ LastBroadcast;
21 invariant |msgs| ≥ 1 =⇒ msgs[|msgs|-1].time = LastBroadcast;
22 invariant |msgs| ≥ 2 =⇒ msgs[|msgs|-2].time = PrevLastBroadcast;
23 invariant now > start =⇒ T_GenCam_DCC ≤ LastBroadcast - PrevLastBroadcast ≤ T_GenCamMax;
24 invariant now > start =⇒ CAM(j,now,heading,speed,pos) in msgs;
25 invariant now > start =⇒ |prevsent| + 1 = |msgs|;
26 invariant |msgs| ≥ 2 =⇒ ∀ i: int • 1 ≤ i < |msgs| =⇒ (T_GenCam_DCC ≤ msgs[i].time - msgs[i-1].time ≤ T_GenCamMax);
27 invariant T_GenCam_DCC * |msgs| ≤ (now - start);
28 invariant now > start =⇒ (now - start) ≤ T_GenCamMax * |msgs|;
29 {
30 prevsent, PrevLastBroadcast, T_GenCam := msgs, LastBroadcast, T_GenCamNext;
31 var statechanged := false;
32 now := now + T_GenCam_DCC; // Advance time to the earliest a CAM can be sent
33 while (true) // Find the time at which information has changed or we have waited T_GenCam
34 decreases LastBroadcast + T_GenCam - now;
35 invariant now - LastBroadcast ≤ T_GenCam_DCC ∨ now - LastBroadcast ≤ T_GenCam; {
36 heading, speed, pos := GetHeading(j, now), GetSpeed(j, now), GetPosition(j, now);
37 statechanged := HeadingChng(prevheading, heading) ∨ SpeedChng(prevspeed, speed) ∨ PosChng(prevpos, pos);
38 if (statechanged ∨ now - LastBroadcast + T_CheckCamGen ≥ T_GenCam) {
39 break; // Send CAM now because values have changed sufficiently or the interval time limit has been reached
40 } else {
41 now := now + T_CheckCamGen; // Sleep for T_CheckCamGen to advance time
42 }
43 }
44 msgs := msgs + [CAM(j,now,heading,speed,pos)];
45 if (statechanged) { // Trigger 1
46 T_GenCamNext := now - LastBroadcast;
47 trigger_two_count := 0; // Reset
48 } else if (now - LastBroadcast ≥ T_GenCam) { // Trigger 2
49 trigger_two_count := trigger_two_count + 1;
50 if (trigger_two_count = N_GenCam) { T_GenCamNext := T_GenCamMax; }
51 }
52 LastBroadcast := now;
53 prevheading, prevspeed, prevpos := Prev(heading), Prev(speed), Prev(pos);
54 }
55 return msgs, now;
56 }

Fig. 5: Dafny implementation of the sendCAM algorithm with a Denial of Service post-condition specified on lines 7–9.

been sent within the required time bounds. This corresponds
to the DoS threat by ensuring that messages are sent on time
and arrive within specified time bounds.

We initialise the relevant local variables on lines 8–12.
Some of these variables are specified in the CAM documen-
tation but others have been included for implementation
purposes. In particular, T_GenCam on line 9 represents the
current upper limit of the CAM generation interval, by
default this is equal to T_GenCam_Max [5, §6.1.3]. We assume
the existence of verified helper functions for GetHeading,
GetSpeed and GetPosition as used on line 11.

The first loop iterates until max_msgs CAMs are sent. The
loop variant is specified using the decreases keyword (line
15) to prove termination. The loop invariants on lines 16–18
ensure that particular variables stay within allowed bounds.
For example, the invariant on line 16 relates to the post-
condition on line 6 by specifying that the number of CAMs
sent so far is less than or equal to max_msgs. Invariants on

lines 19–25 ensure that once time has begun then one CAM
is sent per iteration. These have been modified from our
model [2] to refer to start. The invariant on line 26 ensures
that once more than one message has been sent, the interval
between these CAMs is correctly bound by the minimum
and maximum broadcast rate. The invariants on lines 27–28
ensure that the number of CAMs sent is correctly bound by
the rates at which CAMs can be sent and the time that has
elapsed. These have been modified from our prior model [2].

During each loop iteration we update the appropriate
variables. Note that we increment the current time, now, by
T_GenCam_DCC to allow time to advance until the earliest
time that the next CAM can be sent (line 32). This inner loop
(lines 33–43) checks if any state information has changed
and updates the statechanged variable accordingly. If the
vehicle’s state has changed (checked in Fig. 6) or it is time
to send another CAM then we break from this inner loop.
Otherwise, we loop to allow time to advance until either
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1 datatype Prev<T> = Nil | Prev(value: T)
2 function method HeadingChng(s: Prev<int>, c: int): bool {
3 match s
4 case Nil ⇒ true
5 case Prev(x: int) ⇒ abs(c - x) ≥ headingthreshold
6 }
7 function method SpeedChng(s: Prev<int>, c: int): bool {
8 match s
9 case Nil ⇒ true

10 case Prev(x: int) ⇒ abs(c - x) ≥ speedthreshold
11 }
12 function method PosChng(s: Prev<int>, c: int): bool {
13 match s
14 case Nil ⇒ true
15 case Prev(x: int) ⇒ Distance(c, x) ≥ posthreshold
16 }

Fig. 6: Dafny specification of detecting whether the vehicle
state has sufficiently changed.

1 function method GetHeading(j: int, now: int): int
2 ensures 0 ≤ GetHeading(j, now) ≤ 359
3

4 function method GetSpeed(j: int, now: int): int
5 ensures 0 ≤ GetSpeed(j, now) ≤ 100
6

7 function method GetPosition(j: int, now: int): int
8 ensures -10000 ≤ GetPosition(j, now) ≤ 10000

Fig. 7: Dafny specification of the helper functions that are
used to ascertain the status of the vehicle.

the state has changed or sufficient time has passed since the
last CAM was sent. Based on why the CAM was sent, i.e.
whether the state changed or it was time to send a CAM, the
relevant variables are updated (lines 46–52) [5, §6.1.3].

In this way, the Dafny algorithm illustrated in Fig. 5 is
verified with respect to the STRIDE DoS threat, which was
also identified by ETSI [33] ([V-V9] in §4.4). We verified
other correctness properties that were derived from the
documentation [5], e.g., specific variables remain within
particular bounds and loops terminate. We include Fig. 6
which contains the Dafny implementations of the functions
that we use to determine whether the vehicle’s state has
changed. These were not contained in our previous work [2].

5.2.2 Obtaining the Status of the Vehicle
The sensors can be used to obtain the vehicle’s status. For
example, GNSS sensors provide position, wheel rotation
sensors provide speed and a magnetometer provides the
heading. The returned sensor data should lie within specific
ranges. Our Dafny function specification (Fig. 7) of these
sensor queries omits their implementation, but specifies
bounds on the returned values. In this way, CAM generation
can be proved correct if any of these values are returned.
However, a downside is that the Dafny code can no longer
be compiled and executed in Visual Studio Code, as these
functions do not have an implementation. To overcome this,
we assigned random values to the output of these functions
to test that the Dafny implementation behaves as expected.

If an attacker has access to the internal systems of a
vehicle, they may manipulate the data provided to the CAM
generation algorithm. To ensure that CAM generation contin-
ues to maintain availability and sends messages within the
required time bounds, the post-conditions can be removed
from these functions. Even when they are removed, CAM
generation is verified to be correct. This shows resilience
against an adversary capable of manipulating the sensor

1 method receiveCAM(j: int, now: int, cams: seq<CAM>,
TTSFactor: real, HeadDist: int, SensDist: int)
returns (brake: bool)

2 requires |cams| > 0;
3 requires ∀ i: int • 0≤i<|cams| =⇒ cams[i].time < now;
4 requires TTSFactor ≥ 1.0 ∧ HeadDist ≥ 0 ∧ SensDist > 0;
5 ensures brake = ∃ k: int • 0 ≤ k < |cams|
6 ∧ abs(GetHeading(j,now) - cams[k].heading) ≤ HeadDist
7 ∧ (now - cams[k].time ≤ T_GenCamMax ∨
8 SensorDistance(j,cams[k].id,now) < SensDist)
9 ∧ TimeToStop(j,now) * TTSFactor ≤ TimeToCollision(j,

now,cams[k]);
10 {
11 brake := false;
12 var i := 0;
13 while (i < |cams|)
14 decreases |cams| - i;
15 invariant 0 ≤ i ≤ |cams|;
16 invariant brake = ∃ k: int • 0 ≤ k < i
17 ∧ abs(GetHeading(j,now) - cams[k].heading) ≤

HeadDist
18 ∧ (now - cams[k].time ≤ T_GenCamMax ∨

SensorDistance(j,cams[k].id,now) < SensDist)
19 ∧ TimeToStop(j,now) * TTSFactor ≤ TimeToCollision(j

,now,cams[k]);
20 {
21 // If travelling in a similar direction
22 if(abs(GetHeading(j,now) - cams[i].heading) ≤

HeadDist)
23 { // Recent CAM or close vehicle
24 if(now - cams[i].time ≤ T_GenCamMax ∨

SensorDistance(j,cams[i].id,now) < SensDist)
25 {
26 brake := brake ∨ TimeToStop(j,now) * TTSFactor

≤ TimeToCollision(j,now,cams[i]);
27 }
28 }
29 i := i + 1;
30 }
31 }
32 const Deceleration : real := 4.5; // m/s
33 function method TimeToStop(j: int, now: int): real {
34 GetSpeed(j,now) as real / Deceleration
35 }
36 function method TimeToCollision(j: int,now: int,c: CAM):

real
37 requires now > c.time
38 {
39 var timediff := now - c.time;
40 var d := Distance(c.position, GetPosition(j,now));
41 var d_early := d + GetSpeed(j,now) * -timediff;
42 var d_now := d + c.speed * timediff;
43 (dist_now - dist_early) as real / timediff as real
44 }
45 function method SensorDistance(j: int,k: int,now: int): int
46 ensures SensorDistance(j,k,now) = Distance(

GetPosition(j,now), GetPosition(k,now))

Fig. 8: Dafny implementation of the receiveCAM algorithm.

data available to the CAM generation algorithm. The content
of the CAMs may not reflect the physical truth when
considering this attacker, however, this verification is out
of the scope of analysing the generation of CAMs.

5.2.3 Receiving CAMs

Previously [2], we investigated a simple non-repudiation
property, for receiveCAM, by including the sender’s id as
input and verifying that the sender of the received CAM
matched the provided id. This was an abstract model of
the use of digital signatures to verify the authenticity of the
sender. However, it relies on a priori knowledge of who sent
a message and does not prove that a receiver can verify the
authenticity of the sender. We build upon our previous Dafny
implementation of receiveCAM [2] and, rather than address
the simple non-repudiation property that appeared in our
previous work, we focus on the safety of initiating the brakes
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in response to a received CAM. The revised implementation
that we present here considers a DoS threat.

Fig. 8 contains our implementation of the receiveCAM
algorithm which takes as input the id of the vehicle receiving
the CAM (j), the sequence of CAMs that have been sent
(cams), the current time (now), a real number variable
representing the time to stop (TTSFactor), HeadDist to
determine if the vehicles are travelling in the same direction
and SensDist to indicate the distance between vehicles as
measured by the vehicle’s sensors. This method outputs a
boolean flag that indicates whether the vehicle should brake.

We verify the safety property for this method on lines
5–8 of Fig. 8 with respect to when the vehicle should brake.
Specifically, we loop through the sequence of received cams
(lines 12–30) and if one is found which indicates that the
originating vehicle is travelling in the same direction as the
current one (line 21), then we brake if the CAM was recent
enough or the sensors indicate that we should (lines 23–
26). This condition was inspired by the identification of a
DoS threat so we ensure that, if the received CAM is out
of date (potentially due to jamming) then we rely on the
physical sensors to indicate when braking should occur. For
completeness, we provide the specifications for the helper
functions used by receiveCAM (Fig. 8, lines 31–45).

An open question in software verification is in ensuring
that the verified models faithfully capture the fully imple-
mented systems. This reality gap is difficult to traverse and
will almost always exist when devising abstract models of
program behaviour [11, 3]. Since real world implementations
of CAM should obey the specification in [5], we chose it as
our starting point for modelling the protocol. To address the
reality gap, the properties that we have verified are examined
at runtime via the Generate Runtime Monitors step in Fig. 1.

5.3 Runtime Verification (RV)

In this paper, we apply RV on two fronts: first, we synthesise
runtime monitors from existing properties that were formu-
lated during static verification (§5.1 and §5.2); and second,
we generate new properties and the corresponding runtime
monitors for checking DoS attacks in the CAM protocol. We
use the CAM logs from executions of a simulation of cars
exchanging CAMs as input to the monitors for verification.

First, we show the corresponding RV automata that are
synthesised from our existing static verification properties.
Note that we do not apply these automata to an existing
runtime environment, since the execution of the system
itself is out of scope for this work and we have already
defined models of the system for use with these properties.
When the system is deployed, it is necessary to attach these
monitors (via instrumentation). In the second case, we design
new properties to be used in RV for DoS attacks and we
briefly report the details of the simulation that we used as an
execution environment for DoS monitors. If monitors detect
violations, mitigations may be included as shown in Fig. 2.

5.3.1 Monitor Synthesis from Static Verification
Where we have identified specific threats and carried out
static verification we have a formal model of the system upon
which we can assess the required property. However, any
such formal model can be incomplete since it is an abstraction

q0 ?

q1

"r""p"

"s""q"

START Safety Property:
�¬(vpos ≤ 0) ∧�¬(tpos ≤ vpos)

where:
p = vpos ≤ 0
r = tpos ≤ vpos
q = vpos > 0
s = tpos > vpos

Fig. 9: Moore machine for safety property. Yellow states are
inconclusive and red states are violation.

of the final system. Thus, there may be actual behaviours of
the real system that do not fall within this model. An obvious
route is to deploy a runtime monitor to check the required
property on each actual execution. Typically, this is easy to
achieve by deriving a monitor from the formal property
(often as an automaton) assessed within static verification.

We use the LamaConv5 tool, an existing Java library
that converts temporal logic expressions into automata that
can be used to generate runtime monitors. LamaConv is
widely used to automatically generate runtime monitors
from formal properties specified in LTL (for example [42, 43]).
Since LTL does not support real-valued constraints, we
manually convert our Promela property (presented in §5.1.1)
by introducing symbols that abstract away the real-valued
constraints. The automaton in Fig. 9 is automatically gen-
erated from the LTL safety property. Our monitor has
an alphabet Σ = {p, q, r, s}, where events p and r are
abstractions of the two comparisons in our original property,
and the added q and s events are their respective opposites.
This monitor remains inconclusive while observing q and s
(these are the opposite of our bad states, making them good
states that can be ignored), and returns a violation if either p
or r are observed.

5.3.2 Runtime Verification for Denial of Service Attacks
Static verification of detailed runtime properties is often
difficult. It requires a detailed model of the operating
environment and the other actors. As this is rarely available,
or feasible to verify, then an alternative is to deploy a runtime
monitor to detect runtime properties. A simple example
involves DoS attacks. Here we see either a vastly reduced
response time (the effect) or a vastly increased number of
messages arriving to a vehicle (the cause). We can deploy
monitors to recognise these situations. For example, we might
have expectations about message traffic and can encode this
in a monitor. The monitor then watches the actual CAM traffic
and flags a problem if the behaviour is significantly different
to what is expected. The monitor used in this work simply
recognises a divergent pattern of CAMs.

First, we introduce our simulation environment used to
demonstrate the application of RV. VEINS, which simulates
vehicle movement and is based on OMNET++, was utilised
to conduct our simulations [44, 45]. In the simulation, a vehi-
cle enters a single-lane road at the rate of one vehicle every
2.5–2.9s. Cars send messages every 100ms (T_GenCam_Min).

We investigated two parameters of the ECSDA digital
signature scheme which can be used to verify the integrity

5. https://www.isp.uni-luebeck.de/lamaconv (Accessed 28/11/2023)

https://www.isp.uni-luebeck.de/lamaconv
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and authenticity of messages, and provide non-repudiation.
Secp256k1 uses a 256 bit signature and Secp192k1 uses a
192 bit signature, additionally Secp256k1 provides greater
security compared to Secp192k1 at higher space and compu-
tation costs. Each parameterisation takes a different amount
of time to verify the signature (Vt). Secp256k1 takes 14 ms
and Secp192k1 takes 8 ms. These verification times were
derived from profiling a vehicle’s OBU [46], where the OBUs
had an armv7l CPU with a clock speed of 792 MHz. When
a CAM is received it is put onto a queue. To emulate the
verification time, the top of the queue is popped Vt ms after
a CAM was added if the queue was empty, or Vt ms after the
previous CAM was popped from the top of the queue.

We have performed experiments with maximums of 2
cars and 50 cars because we expect the number of cars to
impact availability in terms of their ability to verify message
authenticity. Due to the rate at which CAMs are sent and
the time taken to verify a CAM signature, at some point a
vehicle will be incapable of processing all of the messages
that it receives in a 1 s window. For 2 cars, this should take a
long time to occur or never happen. However, with 50 cars
violations should be much more frequent.

Given this simulation environment, we want to verify
at runtime an availability property from the receiver’s
perspective. That is, that the receiver can verify and process
all of the messages that it receives. This will be violated
when the time to verify the digital signatures of the received
CAMs exceeds the processing speed that limits the number
of messages that can be verified per second. More formally,
given a message queue, we monitor that queue ≤ value,
and raise a warning whenever violation of this property is
detected. The value is determined by the number of CAMs
per second that the vehicle’s equipment can process and
which signature scheme is being used. For Secp256k1 we
monitor that queue ≤ 71, i.e., the receiver can process up
to 71 messages per second, while for Secp192k1 we monitor
that queue ≤ 125. Note that while this may be trivially
verified statically (given a model of the environment), it is not
possible to guarantee much in relation to DoS attacks, since
this is dynamic behaviour that can only occur at runtime.

LamaConv was used to implement this monitor and its
Java bindings [42] were used to run the monitor. A parser
was used to feed logs obtained from the simulation into the
monitor. The LTL property is simple, �q, which says it is
always the case that we should observe q. The alphabet is
defined by Σ = {p, q}, where p represents the event queue >
71 and q the event queue ≤ 71 when using Sepc256k1 (125
for Sepc192k1). To test this monitor four log files from the
simulation environment were used, one per signature scheme
(Secp256k1 or Secp192k1) with fifty vehicles or two vehicles.
One instance of the monitor was created per car. The results
in Table 6 are as expected, no violations are detected with
only two vehicles in the lane for either signature scheme.
With fifty vehicles we observe violations in both signature
schemes, with more in Secp256k1 due to its lower limit of
messages that can be processed per second. The results also
show that Secp256k1 had its first violation occur earlier in
the simulation (at 30.2 s) compared to Secp192k1 (at 48.4 s)
and that fewer vehicles had entered the simulation at the
first violation for Secp256k1 (10) compared to Secp192k1 (16).

When violations are detected, monitors output error

Signature Cars Total Events Violations (count and %)

Secp256k1 50 286 337 271 214 94.7%
2 3595 0 0 %

Secp192k1 50 290 343 195 614 67.3%
2 4025 0 0 %

TABLE 6: RV results. Events observed is the total number
of events observed by all monitors. Violations represent the
total number of violations detected in the observed events.

messages that contain the logged details of the event that
caused the violation. For example: “At time 30.28971822432
car with ID 0 violated the property, current queue of 72 is greater
than the limit of 71. Message ID52 was sent by car ID 8”.
This information can then be used to identify whether the
violation was caused by an attack. Depending on the results
of the monitors and static verification steps, mitigations may
be required if the risk is not sufficiently managed.

6 MITIGATIONS

Our verification revealed that the system was indeed vulnera-
ble to attacks. In this section we discuss potential mitigations
and associated implications for verification. This process is
indicated in the bottom right of Fig. 2 when we assess Is risk
managed for this use case and verification?

6.1 Mitigating Spoofing
Having identified that there is a potential issue if the vehicles
in the platoon rely on CAMs alone for safety we are able to
adapt our algorithms. We assume that each vehicle is fitted
with a LIDAR or similar sensor that informs it of the distance
to the vehicle in front of it. We adapted the protocol used by
the middle and tail vehicles as follows:
• If the vehicle in front is closer than 10 units then reduce

speed to 0.
• If the vehicle in front is further than 25 units away then

increase speed to 5.
• Otherwise behave as in previous protocol.

We modified our Promela model to use this protocol and,
with the attacker as in Fig. 4, they were unable to cause
a crash by Spoofing as described in §5.1. The position
information from the LIDAR detects imminent collisions
and the vehicle slows down to safely avoid crashing. It
is important to note that we did some basic calibration to
identify the safe distances required for the initial positions
of the vehicles and appropriate LIDAR thresholds. In more
realistic models these would be set automatically. Next, we
discuss the benefit of using both sensor data and CAMs.

6.2 Using CAMs and Sensor Data
There are two implementations to consider when vehicles
perform local decision making. These are using: (i) only in-
formation received from CAMs and (ii) information received
from sensors and CAMs. When performing decision making
solely based on information received in CAMs, the digital
signature needs to be verified to ensure the authenticity of
the message. Typically, if a signature is invalid, the CAM will
be rejected [5, §6.2.2.1]. However, information in CAMs may
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Compromise local 
vehicles remotely

Deploy malicious
vehicle locally

Compromise local 
vehicles remotely

Deploy malicious
vehicle locally

Deploy malicious 
vehicle locally with 

required equipment

OR OR

Generate Sufficient 
CAMs to perform 

DoS

Broadcast CAMs 
(locally) with false 

information

Blind or spoof
vehicle sensor

Objective:
Cause collision

AND IF A

Condition A: If vehicles perform sensor
fusion on CAM and sensor data (such
as LIDAR) to build knowledge about

other vehicle position

Fig. 10: An attack tree describing the multiple attacks needed
to cause a collision by spoofing CAMs.

1 method relaxedSendCAM(T_CheckCamGen: int, T_GenCam_DCC:
int, j: int, start: int, max_msgs: int)

2 returns (msgs: seq<CAM>, now: int, c_T_CheckCamGen: int,
c_T_GenCam_DCC: int)

3 requires start ≥ 0 ∧ max_msgs ≥ 0;
4 requires 0 < N_GenCamDefault ≤ N_GenCamMax;
5 ensures c_T_GenCam_DCC * |msgs| ≤ (now - start) ≤

T_GenCamMax * |msgs|;
6 ensures |msgs| ≥ 2 =⇒ ∀ i: int • 1 ≤ i < |msgs| =⇒

c_T_GenCam_DCC ≤ (msgs[i].time - msgs[i-1].time
) ≤ T_GenCamMax;

7 ensures |msgs| = max_msgs;
8 {
9 c_T_CheckCamGen := clamp(T_CheckCamGen,1,T_GenCamMin);

10 c_T_GenCam_DCC := clamp(T_GenCam_DCC,T_GenCamMin,
T_GenCamMax);

11 msgs, now := sendCAM(c_T_CheckCamGen,c_T_GenCam_DCC,j,
start,max_msgs);

12 }
13 function method clamp(x: int, min: int, max: int): int {
14 if x < min then min else
15 if x > max then max else x
16 }

Fig. 11: Dafny implementation of the relaxedSendCAM
algorithm. This ensures availability if an adversary manipu-
lates the inputs T_CheckCamGen and T_GenCam_DCC.

potentially be acted on if the vehicle’s resources are fully
consumed and will not be able to verify the signature of all
CAMs in a timely manner. When vehicles perform decision
making that considers additional data sources (e.g., LIDAR
or camera data), the input to these sensors will also need to
be spoofed or blinded for the attack to succeed.

Thus, in order to successfully cause vehicles to make
decisions under this threat model then an adversary would
either need to (i) generate sufficient CAMs that could not
all be verified in a timely manner and (ii) blind or Spoof
input to sensors to prevent them from detecting incorrect
information in unverified CAMs and (iii) generate a CAM
impersonating another vehicle with incorrect information
within it (see Fig. 10). While the impact to a vehicle would be
high (violation of safety), the likelihood of the attack is low
and can be mitigated further by considering sensor fusion of
multiple sources of input for autonomous decision making.

6.3 Relaxing sendCAM Pre-conditions
Other aspects of the CAM generation algorithm could
be manipulated by an adversary. For example, the input
parameters to sendCAM could be altered to be outside
of the bounds required. To ensure availability under this
threat model, we provide a relaxedSendCAM method that
constrains the values of the incorrect parameters such that

the parameters are valid. Fig. 11 shows T_CheckCamGen
and T_GenCam_DCC constrained by clamp which returns a
suitable value inside the range of [min, max]. The resulting
implementation of relaxedSendCAM does not require any
pre-conditions on T_CheckCamGen and T_GenCam_DCC.

An implementation of relaxedSendCAM is useful if
adversaries could manipulate the inputs to the algorithm.
Typically an adversary would gain access to the filesystem
of the vehicle which could either be via a local (e.g., physical
connection) or remote attack [47]. Depending on how the
configuration of relaxedSendCAM is managed, attackers
may need to escalate privileges to access the filesystem. For
example, exploiting remotely may only provide access to a
low privilege account that must be escalated to a higher
privilege account to modify the CAM configuration file.
Such an attack could be performed to prevent the vehicle
from sending CAMs, but with relaxedSendCAM the impact
of this attack would be mitigated as CAMs would still be
generated within the required time bounds.

6.4 Availability Against DoS

The availability property that we have verified in the
sendCAM method only ensures a vehicle is broadcasting
CAMs at a suitable rate. The availability property from the
perspective of receiving messages has been monitored via
runtime verification. As a vehicle will not be able to verify
all received CAMs in a timely manner in all circumstances,
an availability property where a vehicle processes received
messages would not be able to be maintained. Instead, mes-
sages may need to be prioritised according to some metric
(such as allocating messages into zones and calculating a
priority by distance, acceleration and velocity [48]). When
the system enters this state, other tools such as PRISM [49]
and STORM [50] for probabilistic verification may be useful
in analysing the efficacy of such prioritisation techniques.

7 DISCUSSION

STRIDE threats are not equipped with a formal, logical defini-
tion. Such a definition would be especially useful for formal
methods and the lack of one makes it difficult to accurately
formalise properties related to the threats in the Formalise
Threats step in Fig. 2. However, this methodology provides
a series of steps to guide system designers or developers to
focus their formalisation efforts on the most pertinent threats
for a specific system/use case. By systematically applying our
methodology to a large number of case studies we may be
able to extract more general definitions of these threats that
are useful from a formal methods perspective in future work.
For example, formalisation of threats could aid with better
automation of threat identification and modelling techniques.

In this paper, we leveraged multiple verification ap-
proaches. This is becoming more common as systems increase
in size and complexity to support the verification of different
aspects using appropriate tools/techniques [11]. A limitation
is in ensuring that multiple models of the same system are
indeed representative of the system and are consistent with
one another. This is important for both static and dynamic
verification. Models used for static verification should be
consistent with one another and be representative of the
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implemented system. The models and properties verified
at runtime should also be consistent with the static verifica-
tion models. This work relies on expert opinion to ensure
consistency between these artefacts and this is a common
approach in assurance [51]. However, more systematic ways
to compare and translate between models would be useful.

Notably, there is no end point in our methodology
(Fig. 2) because the inclusion of runtime monitors allows
the system to be continually monitored during execution.
This is important for autonomous systems whose operating
environment may be dynamic and unpredictable. Further,
attackers are continually devising sophisticated attacks and
our runtime monitors are used to identify potential attacks.

This paper focused on how violation of security proper-
ties impacts safety. We did not consider how violations of
safety properties impact security. Since the safety process
often involves a risk/hazard analysis process it might be
worth exploring how these analyses could be linked.

8 CONCLUSIONS AND FUTURE WORK

This paper builds on our methodology from [1] and presents
a more detailed case study than originally provided in [2]. We
demonstrate how cyber security threat analysis techniques
can guide formal methods practitioners in verifying security
properties, especially those that impact safety.

We carried out a STRIDE threat analysis of the CAM
protocol for sending and receiving messages between vehi-
cles and identified Spoofing and DoS attacks that may occur.
We modelled Spoofing by specifying the behaviour of an
attacker in our Promela model. DoS was considered statically
via an availability property in the Dafny implementation of
the algorithm for sending CAMs. DoS when receiving CAMs
was also addressed by runtime monitoring.

Previously, we discussed the need for the use of inte-
grated formal methods in the robotics domain and the exam-
ple that we present here is no different [11]. By modelling
the system at different levels of abstraction; system-level in
Promela/SPIN and algorithm-level in Dafny, we were able to
investigate and to verify properties related to STRIDE threat
analysis. In particular, model-checking with Promela/SPIN
is useful for examining high-level temporal properties. Con-
versely, theorem proving with Dafny allowed us to examine
properties of our CAM protocol implementation.

Our use of Promela/SPIN and Dafny has been motivated
by our familiarity with these tools and it is certainly the case
that other formal methods may have been a better choice
for our study. We intend to investigate this further in future
work. Future analysis of CAM with various tools will likely
provide a better understanding of which STRIDE properties
should be checked using different kinds of formal methods.
Along with (static) verification of the security properties, we
showed how runtime monitors could be incorporated into
our methodology to identify assumptions that have been
violated or for conditions that are difficult to verify statically.

Importantly, although it could be useful, the individ-
ual formal analyses do not need to be combined as in
holistic/compositional formal approaches [52–54]. Instead,
formal methods focus security analysis on to specific ar-
eas/scenarios highlighted by cyber security analysis as being
of high risk. Future work could involve proving that the

independent formal models do, in fact, capture the same
system. Additionally we focus on formal methods combined
with security analyses. We could also apply non-formal
verification techniques like simulation-based testing and
real vehicle experiments to complement formal verification
and further help provide assurances against security threats.
For example [55] uses different types of verification that
inform each other, to consider safety and reliability for a
collaborative manufacturing task for a robot assistant. This
work is a first step toward a detailed methodology of how
STRIDE properties should be treated in formal verification.
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