
A Spatial Source Location Privacy-Aware Duty Cycle for
Internet of Things Sensor Networks

MATTHEW BRADBURY, University of Warwick, UK

ARSHAD JHUMKA, University of Warwick, UK

CARSTEN MAPLE, University of Warwick, UK

Source Location Privacy (SLP) is an important property for monitoring assets in privacy-critical sensor network

and Internet of Things applications. Many SLP-aware routing techniques exist, with most striking a trade-off

between SLP and other key metrics such as energy (due to battery power). Typically, the number of messages

sent has been used as a proxy for the energy consumed. Existing work (for SLP against a local attacker)

does not consider the impact of sleeping via duty cycling to reduce the energy cost of an SLP-aware routing

protocol. Therefore, two main challenges exist: (i) how to achieve a low duty cycle without loss of control

messages that configure the SLP protocol and (ii) how to achieve high SLP without requiring a long time

spent awake. In this paper, we present a novel formalisation of a duty cycling protocol as a transformation

process. Using derived transformation rules, we present the first duty cycling protocol for an SLP-aware

routing protocol for a local eavesdropping attacker. Simulation results on grids demonstrate a duty cycle of

10%, while only increasing the capture ratio of the source by 3 percentage points, and testbed experiments on

FlockLab demonstrate an 80% reduction in the average current draw.
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1 INTRODUCTION
Large deployments of wireless sensor networks (WSNs) as a component of the Internet of Things

(IoT) are becoming increasingly utilised for applications such as assetmonitoring and tracking [1, 31].

In an asset monitoring application, when the asset is detected a message is transmitted from the

asset-detecting node (known as a source node) back to a base station (referred to as the sink).
Since the communication range of the sensor nodes is typically less than the geographical distance

between the source and sink, the message is routed over multiple hops to reach the sink.

To protect the content of this data, messages can be encrypted, however, the act of routing the

message to the sink reveals context information about the event that encryption does not protect.
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One example of context information that needs to be protected is the location of the source, as

revealing this information would allow an attacker to follow messages through the network to

the source and capture the asset. The SLP problem was originally presented as the panda hunter

game [25, 39], where pandas are being monitored by a sensor network and information is being

reported to conservationists working at a base station via wireless nodes in the network.

Much work has been undertaken developing new routing strategies that provide SLP since the

seminal work [12]. How effective these strategies are at protecting the location of the source against

an attacker is the most important SLP metric. However, the energy consumption of the protocol

is another crucial metric which needs to be minimised, as sensor nodes are typically powered by

constrained power supplies (such as by 2 AA batteries). The number of messages sent is often used

as a proxy for the energy usage of the protocol. This is useful as sending and receiving messages

can individually be the most energy expensive tasks performed by a sensor node [31]. However,

this does not factor in the energy cost of leaving the radio and CPU in an idle state while listening

for messages. To save energy, sensor nodes tend to spend the majority of their lifetime asleep [19]

and only periodically wakeup, a technique known as duty cycling.

The duty cycle of a node is defined as the percentage of time it spends awake. An efficient duty
cycle protocol will have a sensor node sleep as long as possible. While a node is asleep it cannot

receive messages, meaning there is a need for a reliable wakeup strategy to ensure nodes are ready

to receive messages. This issue is crucial for SLP, as the time at which messages are sent and

received (and if they are received) can affect the performance of an SLP-aware routing protocol as

will be demonstrated in this work. Therefore, care needs to be taken to ensure messages are not lost

due to the receiving node being asleep and that there is minimal delay in forwarding a message.

This paper proposes a duty cycle technique to reduce the energy cost of spatial SLP protocols,

whilst ensuring a high level of SLP is provided against a local attacker. To achieve this, we present a

novel formalisation of the duty cycling process, where duty cycling is considered as a transformation

of one schedule into another. This enables the transformation technique to be applicable to a wider

range of SLP routing protocols. To illustrate the duty cycle transformation process, DynamicSPR
(previously presented in [6]) is used as a case study. We use a concise model of a schedule for

non-duty cycled DynamicSPR and then apply a transformation to switch the state of the radio

(on/off), based on the model, to obtain DynamicSPR-S.
Experiments via simulations and a real-world deployment show that a wakeup strategy based on

this timing analysis can lead to large reductions in the time nodes are awake and performing idle

listening. A duty cycle of 50% is achievable (where nodes spend 50% of their time sleeping) in cases

in which 1 message is sent every second. Longer source periods produce lower duty cycles, with

10% achievable when 1 message is sent every 8 seconds. Experimental results from the FlockLab

testbed show that the lower duty cycles lead to a reduced energy cost and make DynamicSPR-S
more practical for deployment.

We make the following contributions in this paper:

(1) We propose a novel formalisation of duty cycling as a transformation process from one

schedule to another.

(2) For a class of SLP-aware routing protocols, known as spatial routing protocols, we propose
transformation rules to implement the transformation process.

(3) We model the schedule generated by a state-of-the-art non-duty cycled SLP-aware routing

protocol, known as DynamicSPR.
(4) We present DynamicSPR-S, the duty-cycled version of DynamicSPR obtained after transform-

ing it using the identified rules. The rules ensure that nodes only require local knowledge,

thereby ensuring scalability.
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(5) Simulations using COOJA and experimental deployments on real hardware via the FlockLab

testbed demonstrate that a low duty cycle can be achieved whilst retaining high SLP levels

on grid networks, non-grid networks, and non-grid networks with a hole. A comparison

against TinyOS’s LPL show that the duty cycle obtain from the developed transformation

rules performs better.

(6) A comparison against a modified Phantom Routing shows that arbitrary duty cycling will

lead to poor SLP performance in other types of spatial SLP routing protocols.

The remainder of the paper is structured as follows. In Section 2 we discuss the related work

before presenting a the models and a formalisation of the problem in Section 3. We then model the

schedule generated by DynamicSPR in Section 4, and present the duty cycle algorithm in Section 5.

Section 6 contains the experimental setup for the results in Section 7. We discuss implications in

Section 8 and finally conclude with a summary in Section 9.

2 RELATEDWORK
2.1 Source Location Privacy
The SLP problem first appeared around 2004 in the seminal work of [25, 39] in which the definition

of the panda-hunter game was proposed. In the problem definition, an attacker who is physically

present in the network attempts to locate valuable assets (pandas) by abusing a WSN deployed

to monitor them. As the WSN periodically sends messages about the states of a panda to a base

station, the attacker eavesdrops messages from nearby nodes and uses this information to identify

the direction of the proximate source of a message. Using this information, they trace back through

the network hop-by-hop to find the ultimate source of the message. Flooding was demonstrated to

provide no privacy, as the attacker traces messages along the shortest path to find the source.

2.1.1 Routing-based Solutions. Phantom routing was proposed in the seminal work where the

technique first sends messages along a directed random walk of a given length to a phantom node.

After reaching the phantom node, the message is routed to the sink either via flooding [39] or by

single-path routing [25]. The aim of phantom routing is to lead the attacker to the phantom source

first, thus delaying the attacker on its way to the source. Privacy in this work was evaluated by an

increase in the safety period, which is the time that it took for the adversary to capture the source.

Many solutions have aimed to improve upon the phantom routing strategy, such as choosing

the next node based on angles between key nodes [32, 45], routing messages in a ring around the

sink [17, 48, 51], and grouping messages to reduce the number of moves an attacker can make [5].

Alternatively, messages can be handed to a data mule to avoid revealing context information

through broadcasts [41]. Of these solutions only [5] describes the use of retransmissions after

failing to receive an acknowledgement to ensure reliability. Retransmissions are typically required

when duty cycling, and in doing so the time at which a message is received is delayed, which will

lead to different attacker behaviour.

2.1.2 Fake Source-based Solutions. An alternative technique initially proposed in the seminal work

was to use fake sources that broadcast identical messages to the real source(s). Fake sources provide

SLP by generating ⟨fake⟩ messages that lead the attacker away from the real sources [24]. Recent

work has focused on dynamically determining parameter values online [6]. Fake source techniques

are often criticised for their high energy usage, an issue we will address in this paper.

2.1.3 Hybrid Routing/Fake Source Solutions. Many techniques have since combined routing and

fake sources to improve the levels of SLP provided. One example is tree-based diversionary rout-

ing [30], which imposes a tree structure on the network and then routes fake messages through the

tree. PEM [47] extended the routing path from source to sink with branches of fake sources. The
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idea of fogs or clouds [13, 49] involves routing a message around a group of nodes called a fog and

then onwards to other fogs before being forwarded to the source. Fog routing takes advantage of

fake messages to provide additional privacy. In [21] the authors calculated where to allocate fake

sources and for how long to broadcast fake messages based on the probability that an attacker is

at that potential fake source location. An energy model is used to evaluate this technique, but it

focuses on the cost to send and receive data and does not consider the impact of a node sleeping.

2.1.4 Other Solutions. Other techniques to provide SLP against a local attacker, include using

space in MAC beacon frames to disseminate messages from the source to other areas in the network

before being routed to the sink [44]. Alternatively it is possible to allocate slots in a TDMA Data

Aggregation Schedule in such a way that SLP is provided [27]. This TDMA-based technique did not

investigate duty cycling the nodes and they always remained on. However, as TDMA is an effective

way to achieve a low duty cycle, it is likely to lead to a low power consumption once implemented.

2.1.5 Multiple Sources. Few techniques have investigated protecting multiple sources simultan-

eously due to the complexities in provisioning temporal or spatial redundancy for multiple sources.

The Red Paths protocol [3] avoided using previously used nodes in a path. However, the technique

has a high capture ratio on small (>60%) and large (>20%) networks with multiple sources.

2.1.6 Adversary With Global Visibility. Techniques against a global attacker, often involve periodic

broadcasting of all nodes in the network [34, 50] or via traffic decorrelation [40]. These techniques

typically have an obvious duty cycle associated with them, but do not always lead to a low duty

cycle. For example, [52] splits the network into a grid and then assigns half the nodes to one colour

and half to another, a 50% duty cycle is obtained by alternating which coloured nodes should be on

and which should be off.

2.1.7 SLP Energy Models. Many works adopt an energy model based on the cost to send and receive

messages (e.g., [18, 30, 36]), but does not consider the impact of sleep states. Therefore, an issue with

existing SLP protocols that provide privacy against a local attacker is that no duty cycle protocol is

considered, which means that the energy cost of running these protocols is high since they do not

put nodes to sleep. Furthermore, some of these techniques do not specify a retransmission strategy,

meaning the applicability of techniques in popular operating systems such as ContikiMAC [14]

and TinyOS’s Low Power Listening [35] is uncertain. Using duty cycling may also lead to changes

in the timing of messages or the path these messages take, so it is important to evaluate the impact

a duty cycle protocol has on the ability of an SLP-aware routing protocol to continue protecting

SLP. This means there is a need for evaluation of the impact of a duty cycle protocol, or for new

duty cycle protocols for techniques that provide SLP against a local eavesdropping attacker.

2.2 Duty Cycling in WSNs
Many approaches have been developed to duty cycle wireless sensor nodes [11, 43]. These ap-

proaches are typically categorised based upon how nodes synchronise their wakeups and trans-

missions, either via (i) global time synchronisation, (ii) synchronising time across a subset of

nodes (semi-synchronous), (iii) or not attempting to synchronise time (asynchronous). Approaches

such as TDMA provide a straightforward way to assign slots of global time in which nodes are

allowed to broadcast. This slot assignment can also be used to determine when a node should sleep.

Existing work has already been performed to allocate a TDMA DAS schedule that provides SLP

by assigning slots in a specific way [26]. Alternatively nodes could be clustered, using techniques

such as LEACH [20], in order to synchronise time among a cluster of nodes. The cluster heads then

interact with each other asynchronously.
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Name Symbol Description

Local Wakeup 𝑡𝑠 How long the radio sleeps for after a wakeup.

Remote Wakeup 𝑡𝑡𝑥 How long a packet’s retransmission will be attempted for.

Delay After Receive 𝑡𝑑 = 100ms Keep the radio on for this period after receiving a message.

Maximum CCAs 𝑐𝑐𝑎 = 400 The maximum number of CCAs that a receiving node performs.

Minimum Samples

Before Detect

𝑚𝑠𝑏𝑑 = 3

The minimum number of detection while performing CCA

before a packet is detected.

ACK Wait Delay

𝑡𝑎𝑐𝑘 =

256 jiffies

The amount of time a sender waits for an acknowledgement

packet.

Table 1. Parameters to TinyOS’ DefaultLPL component

Due to the cost of synchronising time, the majority of duty cycling techniques are asynchronous.

TinyOS’s LPL [35] performs periodic sampling for a preamble, if one is detected then another node

is preparing to send a message and the radio should remain on to receive the message after the

preamble. Alternatively, the receiver can periodically broadcast a beacon to indicate it is willing to

receive a message [46]. One of the main downsides to both of these approaches is the high latency

introduced. Since the radio only needs to be duty cycled to address the high cost of idle listening,

if another radio has a low energy cost to perform idle listening, then it can be used to detect

wakeup signals [4]. The problem is that this type of technique requires non-standard hardware

that sensor nodes are not usually equipped with. Another technique is Chase [10], which focuses

on duty-cycling for flooding messages when nodes are broadcasting concurrently by dynamically

extended the radio on time to improve delivery. Finally, if a WSN is sufficiently dense, then nodes

can randomly wakeup and it will be likely that a node will be awake when a message is being sent.

As TinyOS is being used to develop these protocols, its duty cycle approach called Low Power

Listening (LPL) will be used as a comparison. There are multiple stages to LPL; initially when the

radio is listening for messages, a number of Clear Channel Assessment (CCA) checks are performed.

CCA checks aim to detect a high energy signal being emitted by the radio on the sending node.

Multiple checks are needed to ensure that a message is being received and to avoid staying awake

when noise is detected. Once a certain number CCAs have been detected then the radio switches

to receive mode. Once the radio is done with receiving then it will turn off for a period. When

sending a message, the radio will be turned on and packets will be retransmitted for a period

specified at compile time. Once an acknowledgement is received the radio has the option to turn

off immediately. TinyOS has a number of parameters for its LPL as shown in Table 1. However,

there have been several proposals to change a number of these parameters [22, 42].

A problem with these duty cycle approaches is that they require the routing protocols to re-

transmit messages if an acknowledgement is not received. However, this is an issue for SLP-aware

routing protocols since they typically require that messages are sent at specific times. The delay

introduced by long sequences of retransmissions causes messages to be broadcasted at different

times than scheduled, so typical duty cycle techniques are unsuitable. Therefore, in order to reduce

the energy cost of using DynamicSPR, a duty cycle technique will be developed based on extending

the timing analysis from [6]. If nodes can predict when their neighbours will send messages, they

can schedule their wakeups accordingly.
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3 SYSTEMMODELS AND PROBLEM STATEMENT
In this section, we first describe the models assumed in this work and subsequently define the duty

cycling transformation problem. We use the same models as in [6] in order to later facilitate a direct

comparison with this previous work.

3.1 Network Model
A wireless sensor node (or node, for short) is a computing device that has limited computational

capabilities and is equipped with a wireless radio to facilitate communication. A node also contains

a number of sensors to gather data from its immediate environment. A WSN is a set of wireless

sensor nodes with ad-hoc communication links between pairs of nodes. Each node in the network

has a unique identifier. The nodes that are able to directly communicate with a node 𝑛 are called

the neighbours of 𝑛 and this set of nodes is called the neighbourhood of 𝑛.

There exists one distinguished node in the network called a sink, which is responsible for

collecting data and which acts as a bridge between the WSN and external networks. The nodes

continuously sense for the occurrence(s) of predefined events, such as temperature exceeding a

certain threshold. In this paper, (normal) nodes sense the presence of an asset, such as the presence

of an endangered wildlife species, and then route the data via ⟨normal⟩ messages along a computed

route (using some routing algorithm) to the sink for collection. Any node can be a data source

and we assume there to be a single data source at any time. We assume that the network is event-
triggered, i.e., when a node senses an event, it starts sending messages periodically to the sink for a

certain amount of time. The duty cycling scheme we present in this paper will be operational once

this event is triggered.

We assume two types of messages in the network: (i) control and (ii) application (or ⟨normal⟩)
messages. We assume ⟨normal⟩ messages to be encrypted and that the source node includes its

ID in the encrypted messages. Using the ID, the sink can infer an asset’s location as we assume

that the locations at which nodes are deployed by network administrators will be recorded. We

do not assume that WSN nodes have access to GNSS in order to provide geolocation or timing

information due to the resulting increase in energy cost. Control messages are messages used for

network maintenance.

3.2 Safety Period Model
Given a long enough time, a solution for the attacker is to perform an exhaustive search of the WSN.

To rule out such trivial solution, a metric called safety period was introduced in [25] to measure the

privacy provided by SLP routing protocols. Safety period was defined as the number of messages

that needed to be sent (or equivalently the time taken) before the attacker captured the source. A

higher safety period indicated a higher level of privacy. However, this definition of safety period

allows for an attack to take unlimited time to capture an asset, which is impractical, as the event

may cease to exist during this search time. This means that the SLP problem can only be considered

when it is time-bounded, i.e., the asset has to be captured within a certain time window. Therefore,

we use an alternate, but analogous definition of safety period, where if the attacker fails to capture

the source within this time period, it is considered to have failed to capture the source. How the

safety period is calculated and what values are used will be described in Section 6.

3.3 Attacker Model
In [2] a classification of attacker strength for WSNs was defined using a combination of two

dimensions: presence and actions. Presence captures the location and/or the radio range of the

attacker, while actions capture the kinds of attacks the attacker can undertake. For example, presence
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could be local, distributed, or global; while actions could include eavesdropping and reprogramming.

The attacker we assume is a local distributed eavesdropper based on the patient adversary, introduced
in [25]. The attacker is classified as distributed because it has local visibility but is also mobile, thus

gathering information at various nodes. Such an attacker is reactive in nature and it is specified

using a start and an end condition and rules for movement, which are as follows:

(1) Start: The attacker initially starts at the sink.

(2) End: Once the source has been found, the attacker will cease moving.

(3) Move rules: When the attacker is co-located at a node 𝑛 and eavesdrops a ⟨normal⟩ message

that it has not received before from a neighbour 𝑚, the attacker moves to 𝑚. Thus, in a

normal setting, the attacker is geared to moving closer to the source as it only follows unique

messages.

Previous work (such as [25]) has assumed that the attacker has the ability to identify whether a

message has been previously responded to. We also make this assumption and implement it by

having the attacker record and compare the message type and sequence number. If this assumption

is not made, then any routing protocol may lead the attacker away from the source. The attacker

will respond to both ⟨normal⟩ and ⟨fake⟩ messages, as ⟨fake⟩ messages are encrypted and padded

to be indistinguishable from ⟨normal⟩ messages. The attacker will ignore any encrypted control

messages, such as network health maintenance, neighbour detection, etc.

We assume that the attacker has the capability to perfectly detect which direction a message

arrived from, that it has the same radio range as the nodes in the network, and also has a large

amount of memory to keep track of information such as messages that have been heard. This is

commensurate with the attacker models used in [6, 24, 25].

In this work, the attacker starts at the sink because the sink is the one location in the network

where the attacker is guaranteed to eavesdrop a message from the source node, irrespective of the

routing protocol used. The attacker could potentially start at any location in the network, however,

the attacker may not receive messages due to their location not being on the route from the source

to the sink. We assume that the sink is located at a base known to the attacker such as a military

base or a field station used by scientists monitoring wildlife.

3.3.1 Capabilities. This attacker model is classified on the bottom of the total order of attacker

capabilities (shown in Figure 1). This is because some stronger attacks would weaken the attacker’s

ability to capture the source by leaking information to the WSN regarding the attacker’s position.

For example, if the attacker attempted to disrupt the functioning of the network (e.g., by jamming

transmissions), the attack would reduce the quantity of useful information that could be gathered.

If an attacker attempted to broadcast messages to influence the routing protocol or to collaborate

with other attackers, then the WSN could potentially detect an intrusion attack and respond by

ceasing to broadcast around the attacker (similar to [37]).

eavesdrop→ crash→ disturbing→ limited passive→ passive→ reprogramming

Fig. 1. Attacker capability hierarchy proposed in [2].

Performing certain attacks such as breaking into a sensor node to obtain encryption keys (i.e.,

passive attacks) are good strategies for an attacker trying to defeat SLP. The problem with such an

attack is that it is also time consuming. In [2, p. 11] it was predicted that a key stealing attack takes

around 30 minutes to perform in the field (not counting preparation time elsewhere or the time

it takes to find, obtain, and open a sensor). As our solution to SLP aims to provide a high level of

SLP within a specific safety period, if the time taken to obtain encryption keys is larger than the
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Algorithm 1 Attacker interaction with Duty Cycle

⊲ A schedule sched is a sequence of activities (node_id, activity, time) where activity is one of

{on, off, rcv(M), send(M, 𝑟 )}
captured← 0

A← Sink ⊲ Attacker’s start position

1: for s ∈ sched do
2: switch s do
3: case (𝑖, recv(M), 𝑡) do pass
4: case (𝑖, on, 𝑡) do pass
5: case (𝑖, off, 𝑡) do pass

⊲ If attacker receives a unique ⟨normal⟩ message from a neighbour, then it moves there.

6: case (𝑖, send(M, 𝑟 ), 𝑡) do
7: if A ∈ Neighbour(𝑖) then
8: if ShouldMove(A, 𝑖,M, 𝑟 , 𝑡) then ⊲ As defined by the rules in Section 3.3

9: A← 𝑖

10: if 𝑖 = src then ⊲ If the attacker has reached the source, then stop

11: captured← 1

12: return

safety period then the attacker will have failed to capture the source within this safety period. Then

the attacker would have achieved better results by simply eavesdropping. Thus, in the context of

SLP in WSNs, one of the most powerful type of local attackers that can be had is the distributed

eavesdropper which we assume in this work.

3.4 Problem Statement Formalisation
There are two main classes of SLP-aware routing protocols: spatial and temporal [23]. The objective

of a spatial SLP-aware routing protocol is to ensure that the attacker takes a path which is longer

than the shortest path to reach the asset. Conversely, the objective of temporal SLP-aware routing

protocols is to delay the attacker on its way to the asset, even if it takes the shortest path. The

problem we address in this paper focuses on spatial routing protocols. Typically, such protocols

make use of fake sources to lure the attacker onto longer paths to the source. Thus, there will be

⟨normal⟩, ⟨fake⟩, and control messages in the network.

Given a network topology𝐺 = (𝑉 , 𝐸), the location of a source, the location of the sink, we model

the specification of an SLP routing protocol as a set of schedules. A schedule is a sequence of events,
where an event is a 3-tuple (node_id, activity, time). In a non-duty cycled SLP routing protocol,

there are two types of activities to be considered:

(1) Sending a message: send(M, 𝑟 ).
(2) Receiving a message: rcv(M).

A message can be of the following types: ⟨normal⟩, ⟨fake⟩, or control. send(M, 𝑟 ) specifies the
type of messageM to be sent while 𝑟 captures whether the transmission is a unicast or broadcast.

If it is a unicast, then 𝑟 is a node id, while nothing is specified if it is a broadcast. Thus, the schedule

generated by a non duty cycled SLP routing protocol is an interleaving of send and receive events.

3.5 Duty Cycling Modelling
Having modelled an SLP routing protocol as a schedule, we view a duty cycled SLP-aware routing

protocol as a transformed schedule. The schedule is a sequence of annotated activities called events

such as the radio or CPU being powered on when a message needs to be received or sent. Since
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Symbol Description

N , C, F ⟨Normal⟩, ⟨Choose⟩ and ⟨Fake⟩ messages (M is used as a placeholder these three types)

𝑆𝑖 (M) The time at which node 𝑖 sends messageM
𝑅𝑖 (M) The time at which node 𝑖 receives messageM
𝛼 The time it takes a message to travel one hop

Δ(𝑖, 𝑗) The distance in hops between nodes 𝑖 and 𝑗

𝑃𝑠𝑟𝑐
The Source Broadcast Period (the difference between the time two sequential ⟨normal⟩
messages are sent from the source)

𝐸𝑊 (M) Early Wakeup for messageM
𝐿𝑆 (M) Late Sleep for messageM
TFS Temporary Fake Source

PFS Permanent Fake Source

TailFS Tail Fake Source

#F ( 𝑗) The number of ⟨fake⟩ messages sent by TFS 𝑗

𝐷𝑇𝐹𝑆 ( 𝑗) The duration of a TFS 𝑗

𝑃𝑇𝐹𝑆 ( 𝑗) The period at which TFS 𝑗 sends ⟨fake⟩ messages

𝑃𝑃𝐹𝑆 ( 𝑗) The period at which PFS 𝑗 sends ⟨fake⟩ messages

𝐼𝑇𝐹𝑆 ( 𝑗) The initial delay between 𝑗 becoming a TFS and it sending its first ⟨fake⟩ message

𝜏𝑇𝐹𝑆 ( 𝑗) The time the node 𝑗 becomes a TFS

Table 2. List of Symbols and Acronyms

the duty cycled SLP protocol is the result of a transformation, we now consider four activities, to

include two new ones:

(1) Sending a message: send(M, 𝑟 ).
(2) Receiving a message: rcv(M).
(3) Switching on: on. Which only switches on when the radio was off.

(4) Switching off: off . Which only switches off if the radio is not in use.

An SLP protocol with a 100% duty cycle will have a sequence of on activities at the head of the

schedule and a sequence of off events at the end of the schedule, i.e., ∀𝑛 ∈ 𝑉 · (𝑛, on, 0) appears as
a subsequence at the start of the schedule and ∀𝑛 ∈ 𝑉 · (𝑛, off,∞) appears as a tail of the sequence.
There will then be an interleaving of send and rcv activities in between these two subsequences.

Then, using this model, we view the design of a duty cycled SLP-aware routing protocol as the

transformation of a (non-duty cycled SLP routing) protocol to a (duty cycled SLP routing) protocol,

whereby the transformation process inserts on and off events into the schedule at specific times.

As such, the movement of an eavesdropping attacker in the presence of a duty cycled schedule is

given in Algorithm 1. The attacker only updates its position when a node in its neighbourhood is

sending a message (lines 9–15) else they dismiss any other event in the schedule. How an attacker

decides to move (line 8) is implemented using the rules specified in Section 3.3.

Overall, we consider a duty cycle 𝐷𝐶 , to be a function 𝐷𝐶 : 𝑆𝐶𝐻𝐸𝐷𝑈𝐿𝐸 → 𝑆𝐶𝐻𝐸𝐷𝑈𝐿𝐸. In the

next section, we present simple rules to transform the original protocol in a duty cycled protocol.

The focus on using simple rules is to ensure that the rules do not negatively impact on the efficiency

of the non-duty cycled SLP-aware protocol.

4 TRANSFORMATION RULES AND DYNAMICSPR
In this section we propose a set of rules for the transformation of a spatial non-duty cycled SLP-

aware routing protocol to its corresponding duty cycled protocol. We will subsequently show how
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Source Sink TFS

(a) The source floods the
network with ⟨normal⟩
messages, repeating
every 𝑃𝑠𝑟𝑐 seconds.

Source Sink TFS

(b) After the sink receives
the first ⟨normal⟩ mes-
sage it sends a ⟨choose⟩
message to start the fake
source allocation.

Source Sink TFS

(c) The ⟨fake⟩ message
flood lures the attacker
away from the source.

������ ���	 
�� ���������

(d) The DynamicSPR fake
source spread in a direc-
ted random walk away
from the sink over time.

Fig. 2. Initial steps and fake source spread of the DynamicSPR algorithm [6].

they are applied to the DynamicSPR routing protocol [6] a non-trivial state-of-the-art non-duty

cycled SLP-aware routing protocol to obtain DynamicSPR-S a duty cycled version of the protocol.

4.1 Transformation Rules
A spatial SLP-aware routing protocol defines a schedule for message transmissions. We denote the

original schedule by S, which is a sequence of activities where, for all nodes, 𝑜𝑛 starts at time 0

and off starts at time∞, i.e., they begin in an on state and never switch off. Using S, we obtain S′,
the duty cycled schedule, as follows:

(1) When a node 𝑛 sends a messageM, at time 𝑡 in S, then 𝑛 sendsM at 𝑡 in S′ and then

switches off at 𝑡 + 𝛼 , i.e., (𝑛, send(M, 𝑟 ), 𝑡) ∈ 𝑆 ⇒ ((𝑛, on, 𝑡 − 𝜖) ∈ 𝑆 ∧ (𝑛, send(M, 𝑟 ), 𝑡) ∈
𝑆 ′ ∧ (𝑛, off, 𝑡 + 𝛼) ∈ 𝑆 ′).

(2) In order for a node 𝑛 to receive a messageM, at time 𝑡 in S, then 𝑛 will need to switch on

at 𝑡 − 𝐸𝑊 (M) and off at 𝑡 + 𝐿𝑆 (M) if no other component is using the radio. The early

wakeup 𝐸𝑊 (M) and late sleep 𝐿𝑆 (M) capture the difference between the time at which a

message is expected to be delivered and when it is delivered. Specifically, (𝑛, rcv(M), 𝑡) ∈
S ⇒ ((𝑛, on, 𝑡 − 𝐸𝑊 (M)) ∈ S′ ∧ (𝑛, off, 𝑡 + 𝐿𝑆 (M)) ∈ S′ ∧ (𝑛, rcv(M), 𝑡) ∈ S′).

Executing these translation rules is linear in time with respect to the number of events in the

schedule S, hence 𝑂 ( |S|). The complexity of this transformation can be related to the network

𝐺 = (𝑉 , 𝐸) on which the routing protocol is deployed as follows: Denote by \ , a routing protocol-

dependent maximum number of send and receive events that occurs on a node and by |𝑉 | the
number of nodes in the network. Then the complexity of the transformation can also be expressed

as𝑂 (\ |𝑉 |) as |S| ∝ \ |𝑉 |. This is because, for each event on each node, the complexity to transform

that event into a duty cycled event is 𝑂 (1) and the cardinality of S equals the sum of the number

of events for each node 𝑛 ∈ 𝑉 .

4.2 DynamicSPR Summary
In this section we present a brief summary of the DynamicSPR algorithm introduced in [6]. The

algorithm works as follows:

(1) Initially the sink node sends messages to establish certain network knowledge (such as each

node’s sink distance).
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(2) When an asset is detected, the source node repeatedly sends a ⟨normal⟩ message N𝑖 with a

time period between messages of 𝑃𝑠𝑟𝑐 , beginning with N1.

(3) When the sink receives N1 it unicasts a ⟨choose⟩ message C to the neighbour it wants to

become a fake source.

(4) When a node receives C it becomes a temporary fake source (TFS), or permanent fake source

(PFS) if the node believes itself to be the furthest node from the sink.

(5) A TFS broadcasts a ⟨fake⟩ message F𝑖 with period 𝑃𝑇𝐹𝑆 for a duration of 𝐷𝑇𝐹𝑆 . When the

duration expires it unicasts a ⟨choose⟩ message C to the next fake source and also becomes a

tail fake source (TailFS), that sends ⟨fake⟩ messages until a further fake source is detected.

(6) A PFS broadcasts a ⟨fake⟩ message F𝑖 with period 𝑃𝑃𝐹𝑆 .

The aim of DynamicSPR is to have the fake sources perform a directed random walk away from

the sink and source to a location that is far from both nodes as shown in Figure 2d. ⟨Fake⟩ messages

are used to lure the attacker to the location of the fake source instead of the real source.

4.3 Schedule Model for DynamicSPR
In this section we present a schedule model generated by DynamicSPR. We will then present the

transformation for DynamicSPR, making it duty cycled DynamicSPR-S.
Existing asynchronous duty cycling techniques are unsuitable for DynamicSPR (as will be demon-

strated with experiments using TinyOS LPL in Section 7). Therefore an alternate technique needs

to be developed to duty cycle the nodes. To achieve this, the timing analysis performed in [6] will

be extended to develop a schedule for when the radio should be turned on and off. There are two

components that need to be implemented, one that focuses on the ⟨Normal⟩ messages that contain

data from the source and another that focuses on the protection provided with ⟨Fake⟩ and ⟨Choose⟩
messages (which are protocol messages that control the spread of fake sources).

An important caveat (of this implementation) is that the timings need to be deterministic. This

means that some previous definitions of DynamicSPR that were left unspecified, now need to be

defined. Further, other parameters that involve a random component cannot be used. For example,

the number of ⟨fake⟩ messages to be sent under the Rnd strategy (where either 1 or 2 messages are

randomly sent per the TFS duration), cannot be used.

A benefit of this timing analysis is that it occurs locally on each node. This means that there is

no need for time synchronisation across the network and no need for extra protocol messages to

disseminate timing information. It is important that this scheme does not add much computation

overhead, otherwise the expected broadcast times will not match the actual broadcast times which

will cause the duty cycle to fall out of synchronisation.

4.4 ⟨Normal⟩ Message Timings
This section details when a node should wakeup and sleep to ensure delivery of ⟨normal⟩ messages.

The source 𝑠𝑟𝑐 (or 𝑠) periodically sends the 𝑖th ⟨Normal⟩ message at 𝑆𝑠𝑟𝑐 (N𝑖 ).

𝑆𝑠𝑟𝑐 (N𝑖 ) = 𝑖𝑃𝑠𝑟𝑐 (1)

A node 𝑗 will receiveN𝑖 at the time 𝑅 𝑗 (N𝑖 ), where Δ(𝑠𝑟𝑐, 𝑗) is the distance between the source and

𝑗 in hops, and 𝛼 is the time a message takes to be broadcasted at each hop.

𝑅 𝑗 (N𝑖 ) = 𝑆𝑠𝑟𝑐 (N𝑖 ) + 𝛼Δ(𝑠𝑟𝑐, 𝑗) (2)

The time between a node 𝑗 receiving N𝑖 and N𝑖+1 is 𝑅 𝑗 (N𝑖 ):

𝑅 𝑗 (N𝑖 ) = 𝑅 𝑗 (N𝑖+1) − 𝑅 𝑗 (N𝑖 ) = 𝑃𝑠𝑟𝑐 (3)
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Fig. 3. Timing of events for the source 𝑠 sending ⟨Normal⟩ messages N𝑛 and a node 𝑗 receiving them. With
⟨normal⟩ messages represented by dot-dashed arrows.

Due to unreliability in the network, messages will not always arrive precisely at this time. Figure 7a

shows the spread in the amount of time it takes a ⟨normal⟩ message to travel from the source to

the sink. In some cases there can be up to 120ms difference in the time it takes a node to receive a

message. Therefore, it is important to wake up early 𝐸𝑊 (N) and sleep later 𝐿𝑆 (N) around the

expected delivery time of the next ⟨normal⟩ message. The times that the node 𝑗 is asleep and awake

(starting from boot at time 0) are defined by:

𝑎𝑤𝑎𝑘𝑒 (N1) =
[
from 0

to 𝑅 𝑗 (N1) + 𝐿𝑆 (N)
(4)

𝑎𝑤𝑎𝑘𝑒 (N𝑖 ) =
[
from end(𝑎𝑠𝑙𝑒𝑒𝑝 (N𝑖−1))
to end(𝑎𝑠𝑙𝑒𝑒𝑝 (N𝑖−1)) + 𝐸𝑊 (N) + 𝐿𝑆 (N))

(5)

𝑎𝑠𝑙𝑒𝑒𝑝 (N𝑖 ) =
[
from end(𝑎𝑤𝑎𝑘𝑒 (N𝑖 ))
to end(𝑎𝑤𝑎𝑘𝑒 (N𝑖 )) + 𝑅 𝑗 (N𝑖 ) − 𝐸𝑊 (N) − 𝐿𝑆 (N))

(6)

A diagram of the timing of events when sending ⟨normal⟩ messages is shown in Figure 3. The

source node sends ⟨normal⟩ messages to the normal node 𝑗 every 𝑃𝑠𝑟𝑐 which is represented by

the dot-dashed arrows. Node 𝑗 receives a ⟨normal⟩ message 𝛼Δ(𝑠, 𝑗) time units after it is sent,

since this is the expected amount of time it takes messages to travel through the network along

the shortest path. Once node 𝑗 receives a ⟨normal⟩ message𝑚 at 𝑅 𝑗 (N𝑚) it knows that the next
⟨normal⟩ message𝑚 + 1 will arrive at 𝑅 𝑗 (N𝑚) + 𝑃𝑠𝑟𝑐 and during this time interval node 𝑗 can sleep.

4.5 ⟨Fake⟩ and ⟨Choose⟩ Timings
For ⟨fake⟩ and ⟨choose⟩ messages, there is additional complexity to consider when compared

to ⟨normal⟩ messages and this needs addressing. After a node becomes a fake source there is a

short delay before it starts to send messages 𝐼𝑇𝐹𝑆 ( 𝑗) to help space out ⟨fake⟩ messages. This value

was previously undefined for DynamicSPR, but now needs to be be deterministically specified. To

simplify the implementation, it is set to be a constant for all nodes.

𝐼𝑇𝐹𝑆 ( 𝑗) =
𝑃𝑇𝐹𝑆 ( 𝑗)

4

(7)

A TFS at node 𝑗 will send its 𝑛th ⟨fake⟩ message F𝑇𝐹𝑆 𝑗

𝑛 during its duration as a fake source at the

following times:

𝑆𝑇𝐹𝑆 𝑗
(F𝑇𝐹𝑆 𝑗

𝑛 ) = 𝜏𝑇𝐹𝑆 ( 𝑗) + 𝐼𝑇𝐹𝑆 ( 𝑗) + (𝑛 − 1)𝑃𝑇𝐹𝑆 ( 𝑗) (8)
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The set of times ⟨fake⟩ messages will be sent by TFS 𝑗 is:

𝑆𝑇𝐹𝑆 𝑗
(F𝑇𝐹𝑆 𝑗 ) =

{
𝑆𝑇𝐹𝑆 𝑗

(F𝑇𝐹𝑆 𝑗

𝑛 ) | 𝑛 ∈ [1 . . #𝑇𝐹𝑆 ( 𝑗)]
}

(9)

Thus we expect a node 𝑘 to receive ⟨Fake⟩ messages from the TFS at node 𝑗 at the following times:

𝑅𝑘 (F𝑇𝐹𝑆 𝑗 ) =
{
𝑡 + 𝛼Δ(𝑘, 𝑗) | 𝑡 ∈ 𝑆𝑇𝐹𝑆 𝑗

(F𝑇𝐹𝑆 𝑗 )
}

(10)

The time between two fake nodes 𝑗 and 𝑘 sending their first ⟨fake⟩ message, where 𝑗 precedes 𝑘 , is:

𝐵( 𝑗, 𝑘) = 𝑆 𝑗 (F𝑇𝐹𝑆𝑘
1
) − 𝑆𝑖 (F

𝑇𝐹𝑆 𝑗

1
) = 𝐷𝑇𝐹𝑆 ( 𝑗) + 𝛼 + 𝐼𝑇𝐹𝑆 (𝑘) − 𝐼𝑇𝐹𝑆 ( 𝑗) (11)

As a TFS at 𝑗 moves to 𝑘 ( 𝑗 becomes a normal node and 𝑘 becomes a TFS) its distance in hops with

respect to another node 𝑖 can change. This change will be to increase the distance with respect to

the source as the fake sources move away from the real source during the directed random walk,

and there will be no change once a PFS has been allocated. However, the fake sources will get closer

to other nodes in the network as they move away from the source. This means that the duty cycling

needs to be able to handle messages arriving earlier and later than at the expected arrival time.

(Δ(𝑖,𝑇 𝐹𝑆𝑘 ) − Δ(𝑖,𝑇 𝐹𝑆 𝑗 )) ∈ { −1, 0, +1 } (12)

4.5.1 TailFS Timings. A TFS 𝑗 becomes a TailFS after its duration expires to ensure a reliable

progression of fake sources.

𝜏𝑇𝑎𝑖𝑙𝐹𝑆 ( 𝑗) = 𝜏𝑇𝐹𝑆 ( 𝑗) + 𝐷𝑇𝐹𝑆 ( 𝑗) (13)

A TailFS will send a ⟨fake⟩ message with same period and duration as a TFS after the same initial

start delay. Essentially a TailFS is a TFS, but without a fixed duration. Once the duration period

expires it will send another ⟨choose⟩ message to try to select the next TFS, but will remain a TailFS.

Once a TailFS receives a message from a further TailFS or PFS, it will cease broadcasting ⟨fake⟩
messages and return to being a normal node.

𝐷𝑇𝑎𝑖𝑙𝐹𝑆 ( 𝑗) = 𝐷𝑇𝐹𝑆 ( 𝑗) (14) 𝐷𝑇𝑎𝑖𝑙𝐹𝑆 ( 𝑗) = 𝐷𝑇𝐹𝑆 ( 𝑗) (15) 𝐷𝑇𝑎𝑖𝑙𝐹𝑆 ( 𝑗) = 𝐷𝑇𝐹𝑆 ( 𝑗) (16)

4.5.2 PFS Timings. The time at which the TFS 𝑗 hands off to a PFS 𝑘 is shown in Equation (17).

The 𝛼 component represents the time cost of sending a ⟨choose⟩ message from TFS 𝑗 to the node 𝑘

that becomes the PFS.

𝜏𝑃𝐹𝑆 (𝑘) = 𝜏𝑇𝐹𝑆 ( 𝑗) + 𝐷𝑇𝐹𝑆 ( 𝑗) + 𝛼 (17)

The PFS 𝑘 also has an initial start delay 𝐼𝑃𝐹𝑆 (𝑘). To simplify the implementation this is set to the

same constant used by both TFSs and TailFSs:

𝐼𝑃𝐹𝑆 (𝑘) = 𝐼𝑇𝑎𝑖𝑙𝐹𝑆 (𝑘) = 𝐼𝑇𝐹𝑆 (𝑘) =
𝑃𝑇𝐹𝑆 (𝑘)

4

(18)

A PFS 𝑘 will send its 𝑛th ⟨fake⟩ message F 𝑃𝐹𝑆𝑘
𝑛 at the following times:

𝑆𝑃𝐹𝑆𝑘 (F
𝑃𝐹𝑆𝑘
𝑛 ) = 𝜏𝑃𝐹𝑆 (𝑘) + 𝐼𝑃𝐹𝑆 (𝑘) + (𝑛 − 1)𝑃𝑃𝐹𝑆 (𝑘) (19)

As the duration of a PFS is potentially unbounded, the set of all ⟨fake⟩ messages that the PFS 𝑘

could send is:

𝑆𝑃𝐹𝑆𝑘 (F 𝑃𝐹𝑆𝑘 ) =
{
𝑆𝑃𝐹𝑆𝑘 (F

𝑃𝐹𝑆𝑘
𝑛 ) | 𝑛 ∈ N1

}
(20)

The time between each ⟨fake⟩ message from a PFS is its period 𝑃𝑇𝐹𝑆 (𝑘). An issue is that the PFS

period adjusts based on the percentage of ⟨fake⟩ messages the source has received (𝜓𝑠𝑟𝑐 (F )), a
lower receive ratio at the source leads to a faster ⟨fake⟩ message generation rate at the PFS. The

network is not expected to know when this change will occur or what the new period will be set
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to. Instead the change in the PFS period is required to occur slowly in order to allow the duty cycle

to catch a ⟨fake⟩ message sent using the new period.

4.5.3 Sleep Schedule. Using these timings a sleep schedule can be developed for ⟨fake⟩ and ⟨choose⟩
messages. Aswith ⟨normal⟩messages the nodes will wake up earlier and sleep later for bothmessage

types. This early wakeup and late sleep will also help account for the changing PFS period. The

early wakeup and late sleep for ⟨choose⟩ messages will be represented as 𝐸𝑊 (C) and 𝐿𝑆 (C). The
early wakeup and late sleep for ⟨fake⟩ messages will be represented as 𝐸𝑊 (F ) and 𝐿𝑆 (F ). There
are four timing aspects that need to be kept track of:

(1) When the next ⟨fake⟩ message for the same TFS will be sent (considers the TFS period)

(2) When the next TFS will send its first ⟨fake⟩ message (considers the TFS duration)

(3) When a neighbouring TFS will send its ⟨choose⟩ message (considers the TFS duration)

(4) When a PFS will send its next ⟨fake⟩ message (considers the PFS period)

After receiving the 𝑛th ⟨fake⟩ message from 𝑗 at node 𝑘 the following knowledge about future

message receives is known:

• The next ⟨fake⟩ message 𝑛 + 1 will be received at

𝑅𝑘 (F
𝑇𝐹𝑆 𝑗

𝑛+1 ) = 𝑅𝑘 (F
𝑇𝐹𝑆 𝑗

𝑛 ) + 𝑃𝑇𝐹𝑆 ( 𝑗) (21)

and every subsequent ⟨fake⟩ message from this TFS each 𝑃𝑇𝐹𝑆 ( 𝑗) after.
• If the node did not receive the first ⟨fake⟩ message from a TFS for some reason. The time it

should have been received can be calculated by:

𝑅𝑘 (F
𝑇𝐹𝑆 𝑗

1
) = 𝑅𝑘 (F

𝑇𝐹𝑆 𝑗

𝑛 ) − (𝑛 − 1)𝑃𝑇𝐹𝑆 ( 𝑗) (22)

• The ⟨choose⟩ from TFS 𝑗 at:

𝑅𝑘 (C) = 𝑅𝑘 (F
𝑇𝐹𝑆 𝑗

1
) + 𝐷𝑇𝐹𝑆 ( 𝑗) − 𝐼𝑇𝐹𝑆 ( 𝑗) (23)

• The first ⟨fake⟩ message from the next TFS 𝑞 is received at 𝑘 at:

𝑅𝑘 (F
𝑇𝐹𝑆𝑞

1
) = 𝑅𝑘 (F

𝑇𝐹𝑆 𝑗

1
) + 𝐷𝑇𝐹𝑆 ( 𝑗) − 𝐼𝑇𝐹𝑆 (𝑞) + 𝐼𝑇𝐹𝑆 ( 𝑗) + 𝛼 (24)

As the initial delay is assumed to be constant (i.e., 𝐼𝑇𝐹𝑆 (𝑞) = 𝐼𝑇𝐹𝑆 ( 𝑗)), this simplifies to:

𝑅𝑘 (F
𝑇𝐹𝑆𝑞

1
) = 𝑅𝑘 (F

𝑇𝐹𝑆 𝑗

1
) + 𝐷𝑇𝐹𝑆 ( 𝑗) + 𝛼 (25)

4.6 Timing Demonstration
To aid understanding the times at which events can occur, this section will explain a number of

timing diagrams. These diagrams aim to show the standard cases that can occur, plus error cases

and how the duty cycle handles these.

4.6.1 TFS to TFS Hand-off. In Figure 4 the timing of events for when a TFS 𝑞 hands off to a TFS 𝑟

is shown. The subsequent conversion of TFS 𝑞 into TailFS 𝑞 is omitted to maintain the simplicity of

the diagram. The diagram shows ⟨fake⟩ messages being sent periodically after some initial start

delay (𝐼𝑇𝐹𝑆 (𝑞)). The ⟨fake⟩ messages are represented by solid arrows from the TFS 𝑞 or TFS 𝑟 to the

normal node 𝑗 . The normal node 𝑗 will receive messages from TFS 𝑞 with the same period between

the messages (𝛼Δ( 𝑗, 𝑞)). However, there is a gap when transitioning from TFS 𝑞 sending, to TFS 𝑟 .

This is due to the time cost (𝛼) of sending ⟨choose⟩ messages (represented by dashed arrows) plus

the initial start delay (𝐼𝑇𝐹𝑆 (𝑟 )). Node 𝑗 calculates when to wake up for TFS 𝑟 ’s ⟨fake⟩ messages by

considering the TFS duration.
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4.6.2 TFS to PFS Hand-off. The diagram in Figure 5 is very similar to Figure 4 except that TFS 𝑞

hands off to a PFS 𝑟 via the ⟨choose⟩ message. Node 𝑗 can calculate when to expect PFS 𝑟 ’s first

message using the duration of TFS 𝑞 because 𝐼𝑇𝐹𝑆 (𝑞) = 𝐼𝑃𝐹𝑆 (𝑟 ).

4.6.3 TFS to TFS Hand-off With Lost Messages. The timing diagram in Figure 6 shows TFS 𝑞

becoming a TailFS and includes how it remains a TailFS until a ⟨fake⟩ message from a further node 𝑟

is received. In the first period of TFS 𝑟 the two messages sent are lost, perhaps due to collisions, high

noise, or some other error. These lost messages are represented by solid lines that terminate with a

circle. When TFS 𝑟 becomes a TailFS, it continues broadcasting with the same interval between

⟨fake⟩ messages after the initial start delay because 𝑃𝑇𝐹𝑆 (𝑞) = 𝑃𝑇𝑎𝑖𝑙𝐹𝑆 (𝑞). TailFS 𝑞 then receives

this message and becomes a normal node since it has detected a further TailFS to take over its role.

In this case the second round of ⟨fake⟩ messages are sent slightly earlier as there is no delay from

sending a ⟨choose⟩ message. As this time is expected to be small it will be handled by the early

wakeup and late sleep for ⟨fake⟩ messages. Note that in this scenario a second ⟨choose⟩ message

was sent by TailFS 𝑞, since it was not aware that a further fake node had been created.
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Fig. 7. Histograms showing the receive time difference from the expected receive time on a 7× 7 grid network
when the early wakeup and late sleep are both large, with a fitted normal distribution curve.

5 ALGORITHM
This section describes the duty cycle algorithm for DynamicSPR-S. An important aspect of these

modifications are the early wakeup and late sleep for ⟨normal⟩, ⟨fake⟩ and ⟨choose⟩ messages and

what values should be used. Hence, before describing the algorithm implementation the values for

the wakeup and sleep times are considered.

5.1 Early Wakeup and Late Sleep
Due to a variety of factors that there will be a difference between when messages are expected to

be received and when they are actually received. For example, messages may not take the shortest

path through the network due to collisions. This is a key reason why early wakeup (𝐸𝑊 (M)) and
late sleep (𝐿𝑆 (M)) times are used. Different wakeup times will be specified for ⟨normal⟩ messages

(N ), ⟨fake⟩ messages (F ), and ⟨choose⟩ messages (C).
An example of how the actual receive times differed from the expected receive time is shown in

Figure 7 for a 7 × 7 grid where the distance between sink and source is 6 hops. Ideally the majority

of messages should be received around a difference of 0ms, however, there can be up to 120ms
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Algorithm 2 Duty Cycling Control

⊲ Always start the radio when requested to

1: event StartRadio() →
2: signal StartRadioHardware()

⊲ Only stop the radio if all components are not using it.

⊲ The sink node never duty cycles. The source node ignores turn off rules for ⟨normal⟩ messages.

3: event StopRadio() →
4: if ¬IsSinkNode() ∧ (IsSourceNode() ∨ NormalCanTurnOff()) ∧ FakeCanTurnOff() ∧ ¬sending then
5: signal StopRadioHardware()

Algorithm 3 Send Duty Cycling

sending← 0

1: event Send(msg) →
2: signal StartRadio()
3: SendOnRadio(msg)

4: sending← 1

5: event SendDone() →
6: sending← 0

7: signal StopRadio()

between ⟨normal⟩ messages being delivered in this example. Results in real-world scenarios will be

different, therefore, a way of specifying early wakeup and late sleep values is required.

5.2 Implementation
The implementation of DynamicSPR-S requires a minor change to DynamicSPR. In DynamicSPR,
when a ⟨fake⟩ message is sent, the protocol will retry to send it until it is successful. This is not

performedwhen duty cycling is enabled, since it causes ⟨fake⟩messages to go out of synchronisation

with their expected times. If a node was to receive one of these delayed ⟨fake⟩ messages, it would

expect to receive future ⟨fake⟩ messages at later times than they would actually be delivered.

The controls for the radio hardware are shown in Algorithm 2. When one component is finished

using the radio, the component signals for the radio to be switched off. Only once no components

are using the radio, is it switched off. When any single component asks for the radio to be switched

on it is always switched on. When a node is sending a message it requests the radio be turned on

and leaves it on until sending is complete as shown in Algorithm 3.

Duty cycling for ⟨normal⟩ messages in Algorithm 4 follows the Equations 4, 5, and 6. The

usage of Equation (4) can be seen in StartOffTimerFromMessage(), Equation (5) can be seen in

StartOffTimer(), and Equation (6) in StartOnTimer(). The duty cycling starts when a ⟨normal⟩
message is received. The time at which the radio received the message is recorded. It is important to

use this time because the WSN needs the duty cycle to be anchored to when messages are actually

received instead of when they are processed. If the current node time was used, then the duty

cycling may fall out of synchronisation with respect to the source node that is sending messages.

When a ⟨normal⟩ message is received the OffTimer is started which times until the radio should

turn off. When the OffTimer fires, the OnTimer is started which will turn the radio back on when

the timer fires. As one ⟨normal⟩ message is expected to be received each time the radio is on,

once that message has been received the radio can be turned off. When the radio is turned off in

OffTimer the offEarly flag is reset. The radio can only turn off when OnTimer is running (the node

is waiting to turn on) and OffTimer is not running (the node is not waiting to turn off), or when

the radio can be turned off early.

The duty cycling for ⟨fake⟩ and ⟨choose⟩ messages is shown in Algorithm 5. The algorithm is

event triggered from the first new ⟨fake⟩ message received. If the ⟨fake⟩ message arrives from a TFS

or TailFS then the TempOff timer (to turn the radio off) is started, the DurationOn timer is started
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Algorithm 4 ⟨Normal⟩ Duty Cycling

offEarly← 0

OnTimer, OffTimer←⊥, ⊥
1: receive Normal⟨. . . ⟩ →
2: now←MessageReceiveTime()
3: if isNew() then
4: offEarly← 1 ⊲ Turn off radio after receiving message

5: signal StopRadio()
6: StartOffTimerFromMessage(now)

7: timeout (OnTimer) at now→
8: signal StartRadio()
9: StartOffTimer(now)

10: function StartOnTimer(now)

11: if ¬IsRunning(OnTimer) then
12: StartAt(OnTimer, now, 𝑃𝑠𝑟𝑐 − 𝐸𝑊 (N) − 𝐿𝑆 (N))
13: function NormalCanTurnOff

14: return offEarly ∨ (IsRunning(OnTimer) ∧
¬IsRunning(OffTimer))

15: timeout (OffTimer) at now→
16: offEarly← 0

17: signal StopRadio()
18: StartOnTimer(now)

19: function StartOffTimer(now)

20: if ¬IsRunning(OffTimer) then
21: StartAt(OffTimer, now, 𝐸𝑊 (N) + 𝐿𝑆 (N))
22: function StartOffTimerFromMessage(now)

23: if ¬IsRunning(OffTimer) then
24: StartAt(OffTimer, now, 𝐿𝑆 (N))

(if not running) which turns the radio on to receive a ⟨fake⟩ message from the next fake node, and

the ChooseOn timer is started (if the node is adjacent to the fake source) to wake the node up to

receive the ⟨choose⟩ message from the fake source. If the ⟨fake⟩ message arrives from a PFS then

the PermOff timer is started. The offEarly flag is set to allow the radio to turn off immediately and

the radio is signalled to stop because no other ⟨fake⟩ message from a PFS is expected. Starting the

PermOff timer leads to the PermOn timer being fired after the PFS period.

When receiving a ⟨fake⟩ message, if it has not come from a TFS or TailFS, TempNoReceive is

incremented, if the message has come from a TFS or TailFS then it is reset. If three rounds of ⟨fake⟩
messages are missed from TFSs or TailFSs, then both the TempOff and TempOn timers are stopped.

The reason for this is that once a PFS has been allocated, TFSs and TailFSs should revert to being

normal nodes. To save energy the awake periods reserved for ⟨fake⟩ messages from TFSs and

TailFSs are no longer needed, so these timers (which perform the wakeups) can be stopped.

The radio can be turned off for this component when all of the following are true: (i) it is not in

the receive window for a ⟨fake⟩ message from a TFS or TailFS, or receiving a ⟨fake⟩ message from

these node types is disabled, (ii) it is not the receive window for a ⟨fake⟩ message from a PFS or

the radio can be turned off early as this ⟨fake⟩ has been received, and (iii) it is not in the receive

window for a ⟨choose⟩ message.

6 EXPERIMENTAL SETUP
In this section we describe the simulation environment and protocol configurations that were

used to generate the results presented in Section 7. A combination of simulations and experiments

on real-world hardware are used to demonstrate the efficacy of DynamicSPR-S. Simulations are

primarily used to explore the impact of different network sizes on the protocol’s performance and

test with many different combinations of parameters to the developed duty cycle and TinyOS’

LPL. A deployment on the FlockLab testbed is used to test performance in a real-world radio

environment, to obtain current draw measurements and on a non-grid network topology.
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Algorithm 5 ⟨Fake⟩ and ⟨Choose⟩ Duty Cycling

offEarly, tempDisabled, tempNoReceive← 0, 0, 0

ChooseOn, ChooseOff , DurationOn, DurationOff ←⊥, ⊥, ⊥, ⊥ ⊲ Timers are initialised to not fire at any time

TempOn, TempOff, PermOn, PermOff ←⊥, ⊥, ⊥, ⊥
⊲ ult_fake_cnt is 0 for the first ⟨fake⟩ message

1: function RecvFromTempOrTail(now, ult_fake_cnt)

2: if isNew() then
3: StartTempOffTimerFromMessage(now)

⊲ How long ago the first ⟨fake⟩ from this TFS/TailFS was

sent

4: d← 𝑃𝑇𝐹𝑆 × ult_fake_cnt
5: if ¬IsRunning(DurationOn) then
6: StartAt(DurationOn, now, 𝐷𝑇𝐹𝑆 − d − 𝐸𝑊 (F))
7: if isAdjacent() ∧ ¬IsRunning(ChooseOn) then
8: StartAt(ChooseOn, now, 𝐷𝑇𝐹𝑆 − 𝐼𝑇𝐹𝑆 − d − 𝐸𝑊 (C))
9: function RecvFromPerm(now)

10: if isNew() then
11: StartPermOffTimerFromMessage(now)

12: offEarly← 1 ⊲ Turn off radio after receiving msg

13: signal StopRadio()

14: receive Fake⟨src_type, ult_fake_cnt, . . . ⟩ →
15: now←MessageReceiveTime()
16: if src_type ∈ { TempFake,TailFake } then
17: RecvFromTempOrTail(now, ult_fake_cnt)

18: else if src_type ∈ { PermFake } then
19: RecvFromPerm(now)

20: if ¬tempDisabled then
21: if IsRunning(TempOff) ∧
¬IsRunning(TempOn) then

22: tempNoReceive← 0

23: else
24: tempNoReceive← tempNoReceive + 1
25: if tempNoReceive ≥ 3 then
26: tempDisabled← 1

27: Stop(TempOff)

28: Stop(TempOn)

Algorithm 6 ⟨Fake⟩ and ⟨Choose⟩ Duty Cycling: On and Off Timers

29: timeout (DurationOn) at now→
30: signal StartRadio()
31: StartAt(DurationOff, now, 𝐸𝑊 (F) + 𝐿𝑆 (F))
32: timeout (TempOn) at now→
33: signal StartRadio()
34: StartTempOffTimer(now)

35: timeout (PermOn) at now→
36: signal StartRadio()
37: StartPermOffTimer(now)

38: timeout (ChooseOn) at now→
39: signal StartRadio()
40: StartAt(ChooseOn, now, 𝐸𝑊 (C) + 𝐿𝑆 (C))

41: timeout (DurationOff) at now→
42: signal StopRadio()
43: Stop(TempOn)

44: StartTempOn(now)

45: timeout (TempOff) at now→
46: signal StopRadio()
47: StartTempOn(now)

48: timeout (PermOff) at now→
49: offEarly← 0

50: signal StopRadio()
51: StartPermOn(now)

52: timeout (ChooseOff)→
53: signal StopRadio()

Algorithm 7 ⟨Fake⟩ and ⟨Choose⟩ Duty Cycling

54: function StartTempOn(now)

55: if ¬IsRunning(TempOn) then
56: StartAt(TempOn, now, 𝑃𝑇𝐹𝑆 − 𝐸𝑊 (F) − 𝐿𝑆 (F))
57: function StartTempOffTimer(now)

58: if ¬IsRunning(TempOff) then
59: StartAt(TempOff, now, 𝐸𝑊 (F) + 𝐿𝑆 (F))
60: function StartTempOffTimerFromMessage(now)

61: if ¬IsRunning(TempOff) then
62: StartAt(TempOff, now, 𝐿𝑆 (F))

63: function StartPermOffTimer(now)

64: if ¬IsRunning(PermOff) then
65: StartAt(PermOff, now, 𝐸𝑊 (F) + 𝐿𝑆 (F))
66: function StartPermOffTimerFromMessage(now)

67: if ¬IsRunning(PermOff) then
68: StartAt(PermOff, now, 𝐿𝑆 (F))
69: function FakeCanTurnOff

70: return ( (IsRunning(TempOn) ∧
¬IsRunning(TempOff)) ∨ tempDisabled) ∧ (offEarly ∨
¬IsRunning(PermOff)) ∧ ¬IsRunning(ChooseOff)

6.1 Simulation Environment and Network Configuration
The protocol

1
was implemented using TinyOS [28] and simulated using COOJA [38]. COOJA is

a cycle accurate WSN simulator that accurately models hardware in order to execute compiled

1
Source code for the protocol and analysis scripts available at: https://github.com/MBradbury/slp
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Fig. 8. The three simulated network configurations

binaries for hardware platforms. It is also capable of modelling the communications between sensor

nodes. A square grid network layout of size 𝑛 × 𝑛 was used in the majority of experiments, where

𝑛 ∈ {7, 9, 11, 13}, i.e., networkswith 49, 81, 121 and 169 nodes respectively. The node neighbourhoods
were modelled using the unit disk graph model (UDGM) with a communication range of 4.75m,

and nodes were located 4.5m away from their north, south, west and east neighbours. A single

source node generated messages and a single sink node collected messages. The source and sink

nodes were distinct and assigned positions in the SourceCorner configuration from [24] where the

source is located in the top left corner of the network and the sink in the centre. The rate at which

messages from the real source were generated was varied and is given by 𝑃𝑠𝑟𝑐 ∈ {0.5, 1, 2, 4, 8}
seconds. At least 200 repeats were performed for each combination of parameters.

For a small number of simulations a network with a random layout was generated using Bridson’s

algorithm [8] for Poisson Disk Sampling, with and without a hole between the sink and source.

PoissonDiskConnected has 169 nodes and PoissonDiskWithHole was derived from PoissonDiskCon-

nected by removing nodes that were 6.75m from the centre point of the network. Simulations

for these configurations instead use the LogisticLoss Radio Model [16] which uses a log-distance

path loss model. Nodes had a communication range of 4.75m, otherwise the default parameters

to LogisticLoss were used. These configurations are used to demonstrate the applicability of the

presented techniques to unstructured networks with a different communication model. The Source-

Corner grids are necessary to evaluate the impact of varying network sizes on the performance of

the proposed techniques, as their regular structure allows expansion to different network sizes.

6.2 Comparison with Phantom Routing
A comparison with Phantom Routing is performed, where it is tested with TinyOS’s LPL. Phantom

Routing has two main parameters, the landmark node which messages are routed towards or away

from and the maximum phantom path length. In these experiments the landmark node is set to be

the top right corner of the network and the maximum phantom path length is set to the sink-source

distance, so size 7, 9 and 11 networks will respectively have a maximum phantom path length of

6, 8 and 10 hops. The same TinyOS LPL parameters used for DynamicSPR are used for Phantom

Routing. At least 250 repeats were performed for simulations of Phantom Routing.

As the original description of Phantom Routing did not consider several practical implementation

aspects, changes have been made to Phantom Routing to improve its performance
2
. The first major

change is that retransmissions are performed along the directed random walk to reduce packet

loss during duty cycling. The second is to terminate the random walk early, when no further valid

nodes exist to continue the directed random walk, by beginning the flood of messages from the

2
Implementation available at: https://github.com/MBradbury/slp/tree/master/algorithm/phantom
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Network Source Period (seconds/message)
Size 8.0 4.0 2.0 1.0 0.5

7 × 7 78.13 39.06 19.53 9.77 5.03

9 × 9 110.00 54.85 27.39 13.76 7.07

11 × 11 140.63 70.31 35.16 17.58 9.01

13 × 13 172.94 86.55 43.25 22.07 11.08

Table 3. Safety Period (in seconds) for the Source-
Corner configuration in the COOJA simulator using
the UDGM radio model.

Source Period 1.0 2.0 8.0

Safety Period 8.82 17.02 76.18

Table 4. Safety Period (in seconds) for the FlockLab
testbed.

Source Period (seconds/message)
Configuration 8.0 4.0 2.0 1.0 0.5

PoissonDiskConnected 444.43 220.20 109.66 56.26 27.67

PoissonDiskWithHole 980.46 463.05 239.65 118.29 58.26

Table 5. Safety Period (in seconds) for two random network configurations in the COOJA simulator using
the LogisticLoss radio model.

terminating node. The third is that when choosing which direction that walk should go (towards

or away from the landmark node), experiments found that bias in the random number generated

by MLCG (TinyOS’ PRNG) caused one direction to be used more than the other leading to higher

capture ratios. This implementation samples from a higher bit in order to mitigate this bias.

6.3 Safety Period
As flooding has been shown to provide no SLP (as identified in the seminal work [25]) we use the

average time it takes the attacker to capture the source as a baseline and double it to calculate the

safety period (shown in Tables 3 and 5 for COOJA, and Table 4 for FlockLab) for the protocol in

this paper. Flooding provides no SLP as it allows an attacker to trace back to the location of the

source hop-by-hop each time the source broadcasts.

6.4 Simulation Experiments
An experiment constituted a single execution of the simulator using a specified protocol con-

figuration, network size, and safety period. An experiment finished when the source node had

been captured by an attacker or the safety period elapsed. An attacker was implemented based

on the log output from COOJA. It maintains internal state of its location using node identifiers.

When a node receives a message, if the attacker is at the same location it will move based on the

attacker model specified in Section 3.3. The DynamicSPR algorithm being tested has one parameter

which specifies if one or two messages should be sent per source period, these are called Fixed1
and Fixed2. The duty cycle for DynamicSPR has 6 parameters and the 5 combinations of these

parameters investigated are shown in Table 7. Experiments were also run using the TinyOS Low

Power Listening duty cycle implementation for comparison, with the parameters shown in Table 6.

The default values for𝑚𝑠𝑏𝑑 and 𝑡𝑎𝑐𝑘 are used.

7 RESULTS
This section presents the results for DynamicSPR, the DynamicSPR-S duty cycle algorithm, Dynam-
icSPR using TinyOS LPL for comparison and Phantom Routing with and without using TinyOS LPL.

The COOJA simulator was used for all simulated experiments as it is capable of simulating MAC

layers. Only the Fixed1 and Fixed2 approaches of DynamicSPR was simulated and not the Rnd
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𝑡𝑠 (ms) 𝑡𝑡𝑥 (ms) 𝑡𝑑 (ms) 𝑐𝑐𝑎

1 50 50 10 1150

2 50 50 100 400

3 75 75 10 1150

4 75 75 10 2300

5 75 75 100 400

Table 6. Parameters for TinyOS LPL

𝐸𝑊 (N) 𝐿𝑆 (N) 𝐸𝑊 (F ) 𝐿𝑆 (F ) 𝐸𝑊 (C) 𝐿𝑆 (C)

1 200 200 250 250 75 75

2 80 80 120 130 5 50

3 40 40 120 130 5 50

4 35 35 100 100 5 50

5 35 35 60 60 5 50

Table 7. Wakeup intervals for DynamicSPR in milliseconds
 DynamicSPR TinyOS LPL Max
 DynamicSPR TinyOS LPL Min

 DynamicSPR-S ((200, 200, 250, 250, 75, 75))

 DynamicSPR-S ((35, 35, 100, 100, 5, 50))
 DynamicSPR-S ((35, 35, 60, 60, 5, 50))

 DynamicSPR-S ((40, 40, 120, 130, 5, 50))

 DynamicSPR-S ((80, 80, 120, 130, 5, 50))
DynamicSPR (no duty cycle)
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Fig. 9. DynamicSPR Variants: The Average Duty Cycle when varying wakeup intervals and network sizes.

approach. This is because DynamicSPR-S only supports deterministic approaches. Only the results

for the Fixed2 approach are presented for brevity.

Results are shown for wakeup intervals in the form of this 6-tuple: (𝐸𝑊 (N), 𝐿𝑆 (N), 𝐸𝑊 (F ),
𝐿𝑆 (F ), 𝐸𝑊 (C), 𝐿𝑆 (C)), which includes the early wakeup and late sleep values for ⟨normal⟩
messages (N ), ⟨fake⟩ messages (F ), and ⟨choose⟩ messages (C). Five different sets of wakeup

intervals are simulated (shown in Table 7), to test the effects of different duty cycles on the selected

metrics. The graphs include results for DynamicSPR without duty cycling enabled, to allow a

comparison which indicates performance differences due to duty cycling. The experiments allowed

various metrics of the performance of DynamicSPR to be collected. The following metrics will

be analysed in Sections 7.1 to 7.4 for DynamicSPR-S, compared with TinyOS LPL in Section 7.5,

compared with Phantom Routing in Section 7.6, and evaluated for experiments using the LogisicLoss

radio model in Section 7.7 and experiments run on FlockLab in Section 7.8:

(1) Duty Cycle — The average percentage of time that the radio was on.

(2) Received Ratio — The percentage of messages that were sent by the source and received by

the sink.

(3) Average Number of Messages Sent — The average number of messages sent across all

nodes per second.

(4) Capture Ratio — The percentage of runs in which the attacker reaches the location of the

source, i.e., captures the source, within the safety period.

7.1 Duty Cycle
The graphs in Figure 9 show that the duty cycle technique for DynamicSPR reduces the amount of

time that the radio is on. Smaller wakeup intervals lead to a lower duty cycle. Decreasing the ⟨fake⟩
message wakeup intervals lead to a larger decrease as more ⟨fake⟩ messages are sent than ⟨normal⟩
messages. The DynamicSPR and Phantom Routing without duty cycling result shows a duty cycle

of 100% because the radio is left on permanently. A larger source period led to smaller duty cycles

because fixed sized wakeups are used. When fewer messages are sent it means that there is a

reduction in the number of radio wakeups that need to be performed. Since fewer absolute wakeups

are performed over the same period of time, the ratio of awake time to asleep time decreases.
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Fig. 10. Phantom Routing Variants: The Average Duty Cycle when varying TinyOS LPL parameters and

networks sizes.
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Fig. 11. DynamicSPR Variants: The Received Ratio when varying wakeup intervals and network sizes.
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Fig. 12. Phantom Routing Variants: The Received Ratio when varying TinyOS LPL parameters and networks

sizes.

7.2 Received Ratio
The received ratio shown in Figure 11 is above 80%. The received ratio increases for larger source

periods, as fewer messages are sent over the same period of time thus reducing the chance of

message losses due to collisions. Larger networks have higher receive ratios. Due to the increase in

the number of paths available for messages to travel, a collision has less effect in larger networks.

The results for DynamicSPR without duty cycling have a higher received ratio compared to when

duty cycling is enabled. This is because there is no chance for a ⟨normal⟩ message to be lost because

a node’s radio is off. Smaller wakeup intervals have a lower received ratio for the opposite reason,

since there is a greater chance for messages to be missed because the radio is off for longer.

7.3 Messages Sent
In Figure 13 it can be seen that fewer messages are sent when duty cycling is enabled compared

to when it is disabled. This is because when duty cycling is enabled there is the possibility that a

message might be sent outside the range the target node is awake. The reason that there appears to

be a large difference between when duty cycle is enabled and when it is disabled, is because if a

message is lost early in its path then it will not be received to be forwarded later.
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Fig. 13. DynamicSPR Variants: The total messages sent per node per second when varying wakeup intervals

and network sizes.
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Fig. 14. Phantom Routing Variants: The total messages sent per node per second when varying TinyOS LPL

parameters and networks sizes.
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Fig. 15. DynamicSPR Variants: The Capture Ratio when varying wakeup intervals and network sizes.

Phantom TinyOS LPL (50, 50, 10, 1150)
Phantom TinyOS LPL (50, 50, 100, 400)

Phantom TinyOS LPL (75, 75, 10, 1150)
Phantom TinyOS LPL (75, 75, 10, 2300)

Phantom TinyOS LPL (75, 75, 100, 400)
Phantom (no duty cycle)

 0

 5

 10

 15

 20

 25

0.51.0 2.0 4.0 8.0

C
a
p
tu

re
 R

a
ti

o
 (

%
)

Source Period

(a) 7 × 7

 0

 5

 10

 15

 20

 25

0.51.0 2.0 4.0 8.0

C
a
p
tu

re
 R

a
ti

o
 (

%
)

Source Period

(b) 9 × 9

 0

 5

 10

 15

 20

 25

0.51.0 2.0 4.0 8.0

C
a
p
tu

re
 R

a
ti

o
 (

%
)

Source Period

(c) 11 × 11

 0

 5

 10

 15

 20

 25

0.51.0 2.0 4.0 8.0

C
a
p
tu

re
 R

a
ti

o
 (

%
)

Source Period

(d) 13 × 13
Fig. 16. Phantom Routing Variants: The Capture Ratio when varying TinyOS LPL parameters and networks

sizes.

Lower wakeup intervals lead to a lower number of messages sent. As there is less time when a

node is awake, the probability of it receiving a message is lower. However, there only tends to be a

small difference in the quantity of messages sent between the different wakeup interval parameters.

7.4 Captured
The final metric that will be investigated is the capture ratio shown in Figure 15.When enabling duty

cycling a higher capture ratio is observed, with different increases for different parametrisations. It

was expected that smaller networks would experience a larger capture ratio than larger networks,
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as this pattern was previously reported. This result was indeed observed for the 7× 7 scenario, as it
has higher capture ratios than the larger 9 × 9 and 11 × 11 networks. The reason for this is that

there is a greater distance between the sink and source, which provides more time for DynamicSPR
to recover if the attacker makes moves towards the source.

In most cases, when the duty cycle had larger wakeup intervals, the results show that the capture

ratio is lower. This is because fewer messages are lost due to the radio being off. This means that

there is a trade-off to be made between power consumption and SLP. To provide better reliability

when forwarding a message and thus a lower capture ratio, a node will need to wakeup for a longer

period. This is due to the difference in the time it takes for messages to travel through the network.

7.5 Comparison With TinyOS LPL
The duty cycle developed using knowledge of how DynamicSPR operates performs better than

TinyOS LPL. The delivery ratio is worse for high source periods, but improves as the rate of sending

messages slows. The capture ratio remains similar to DynamicSPR-S, but the duty cycle provided by
TinyOS LPL is outperformed by DynamicSPR-S for source periods of 1.0 s and higher. The reason for

this is that DynamicSPR-S takes advantage of how DynamicSPR operates and then uses fixed length

wakeups to send and receive messages. This is in comparison to TinyOS LPL which periodically

wakes up even if there is nothing to be done. As the source period increases (and the rate of sending

messages slows) DynamicSPR-S will have a lower duty cycle due to the fixed length wakeups.

7.6 Comparison with Phantom Routing
Comparing the results for Phantom Routing using TinyOS LPL to DynamicSPR using TinyOS LPL

and DynamicSPR-S show that Phantom Routing is not well suited to having an arbitrary duty

cycle applied to it. In Figure 10 the duty cycle obtained is less than or equal to 40% with some

parameterisations reaching 10%. The minimum and maximum duty cycles were lower for Phantom
Routing than for DynamicSPR due to the smaller number of messages sent by Phantom Routing
as shown in Figure 14. One of the main advantages of Phantom Routing over fake source based

techniques is that fewer messages need to be sent compared to DynamicSPR. Our results show that

Phantom Routing requires between 2 and 5 times fewer messages sent per node per second.

While Phantom Routing outperforms DynamicSPR and its duty cycled variants in terms of the

duty cycle and number of messages sent, it delivers worse results for the received ratio and capture

ratio. For Phantom Routing in Figure 12 the received ratio worsens as the network size (and thus

the sink-source distance) increases. The received ratio is highest when no duty cycling is used

and is lower for TinyOS LPL parameters that lead to a lower duty cycle, indicating that the time

spent sleeping is leading to lost messages. Typically, a lower receive ratio also leads to a lower

capture ratio as fewer messages reach a location near the sink and are eavesdropped by the attacker.

However, Phantom Routing’s ability to prevent the attacker from capturing the source when using

TinyOS LPL tends to be worse than both DynamicSPR using TinyOS LPL and DynamicSPR-S.
This shows that TinyOS LPL, an SLP-unaware duty cycle, leads to performance degradation in

terms of SLP when applied to Phantom Routing. We conjecture that other WSN duty cycle protocols

(such as ContikiMAC [14]) will lead to similar results as they alter temporal and spatial aspects of

packet routing which SLP-aware routing protocols are attempting to control in a specific manner.

7.7 Simulations with Random Layout and LogisticLoss Radio Model
Results for simulations using COOJA and the LogisticLoss radio model for the PoissonDiskConnec-

ted and PoissonDiskWithHole configurations are shown in Figures 17 and 18 respectively. These

results are included to demonstrate the performance of DynamicSPR-S on unstructured networks

with a more realistic radio model. These results show similar patterns to the results obtained on a
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Fig. 17. Results comparing DynamicSPR-S and
DynamicSPR on PoissonDiskConnected using the

LogisticLoss radio model
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Fig. 18. Results comparing DynamicSPR-S and
DynamicSPR on PoissonDiskWithHole using the

LogisticLoss radio model
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with the probability of receiving a
message along a directional link [7].

grid network with a UDGM radio model in terms of the patterns observed in the received ratio,

average duty cycle and number of messages sent metrics. The main difference is in terms of the

capture ratio which when compared to results in a observed in a grid network is up to 10 percentage

points higher for PoissonDiskConnected, 15 percentage points higher for PoissonDiskWithHole,

and 10 percentage points higher for PoissonDiskWithHole when excluding the DynamicSPR-S
parameters with the smallest wake up window. The worse performance with PoissonDiskWithHole

is partly caused by the introduction of a hole in the network as demonstrated by DynamicSPR (with

no duty cycle) having a higher capture ratio in Figure 18a compared to Figure 17a. However, the

use of the LogsticLoss radio model or unstructured network topology has also had an impact on

the performance of DynamicSPR. Whilst there is a worsening of the capture ratio and receive ratio,

the routing protocol still provides SLP, future work is needed to address the performance loss due

to complex network topologies.

7.8 Real World Experimental Results (via FlockLab)
DynamicSPR and DynamicSPR-S were also deployed on the FlockLab [29] testbed with the source

at node 1 and the sink at node 23 in the topology shown in Figure 19. The testbed is equipped with
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Fig. 20. Results for DynamicSPR and DynamicSPR-S
Fixed1 on the FlockLab testbed
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Fig. 21. Results for DynamicSPR and DynamicSPR-S
Fixed2 on the FlockLab testbed

27 TelosB nodes. The results for the duty cycle, receive ratio, and capture ratio showed similar

patterns to those obtained when simulating on COOJA. The testbed has the ability to record the

current draw of the nodes, of which the average is presented in Figures 20e and 21e. These results

show that a 37% reduction in current draw
3
can be achieved with duty cycling DynamicSPR when

1 message is sent by the source every second, and an 80% reduction is achievable when a message

is sent every 8 seconds. This means that the duty cycle approach presented in this paper is capable

of producing large energy usage saving, making DynamicSPR-S suitable for deployment.

8 DISCUSSION
One of the main changes that was made to DynamicSPR was to set TailFSs to use parameters from

TFSs. Previously [6] TailFSs used the parameters from PFSs because TailFSs have a potentially

unbounded duration. However, this parametrisation did not work for this duty cycle because the

PFS period changes depending on the percentage of ⟨fake⟩ messages received at the source. These

TailFSs led the duty cycle to go out of sync. By using TFS timings this issue was addressed.

3
Power consumption could be calculated by multiplying the current draw by the expected voltage of 3.3V supplied to the

sensor nodes. However, as FlockLab does not log the voltage along with the current draw we cannot be sure of the voltage

and therefore power consumption at a specific time [7].
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8.1 Handling Clock Drift
Over time a sensor node’s clock will drift. For a 32.768 kHz oscillator with a clock stability of

±20ppm, time could drift 52.7ms a day. This drift is slow enough to not be an issue over a small

number of messages as each node has a large wakeup period to allow it to handle difference in the

times at which a message may be delivered at a node. However, over time this drift could cause

issues for which there are two solutions. The first is to perform some form of clock synchronisation

(such as FTSP [33]), however would add an extra energy cost when running DynamicSPR-S. An
alternate approach would be to periodically reset the time from which subsequent wakeups are

computed in relation to. In this implementation all wakeups are computed relative to the first

⟨normal⟩ and ⟨fake⟩ received. Instead the wakeup calculation could be reset and calculated from a

different message at certain times. Another approach would adjust the early wakeup and late sleep

each time a message is received. The aim would be to keep the next message’s arrival time in the

middle of the wakeup period. This would be able to adjust for latency changes and clock drift.

As DynamicSPR-S is triggered by the asset detection, clock synchronisation only needs to be

considered during the time DynamicSPR-S is active. Outside of this time, other duty cycles and clock

synchronisation techniques should be used. When choosing a maximum time for the activation

of DynamicSPR-S for an asset, the potential clock drift during that time should be used to inform

values for early wakeups and late sleeps. Future work could evaluate the performance of increasing

the awake window the longer DynamicSPR-S runs. This approach to handle clock drift is best-effort
and so if stronger guarantees are needed clock synchronisation algorithms should be run during

the execution of DynamicSPR-S.

8.2 Applicability to Other Techniques
In this paper, we viewed the superposition of a duty cycle atop an SLP protocol as a transformation

process. We proposed two rules, based on message transmissions, for the transformation. We

conjecture that the transformation process can be applied to other spatial SLP protocols [23]

modelled as schedules, as shown in Figures 20 and 21, where two different variants of DynamicSPR
were considered. As such, once the non-duty cycled SLP protocol has been modelled as a schedule,

then similar transformation rules can be applied, with the difference being in the size of the

windows. The sizes will be dependent, among others, on environmental factors such as line of

sight communication, noise levels, etc. However, such transformation process cannot be used for

temporal SLP protocols (e.g. [5]) as the protocols cannot be adequately modelled as a periodic

schedule since nodes intentionally delay message transmissions. Nor can this approach be applied

to techniques that either react nondeterministically to events or undertake proactive protection. As

temporal SLP techniques induce delays intentionally, the use of existing duty cycle techniques (e.g.,

TSCH [15]) may be applicable, but further work is needed to investigate their impact.

8.3 Multiple Sources
The technique proposed selects a set of nodes to act as fake sources. Specifically, it is the case that

a node selected as fake source did not previously act as a message relay. In the case of multiple

sources, this issue is challenging as a node may be a relay for one source and a fake source for

another. Thus, this interference needs to be factored in when choosing fake sources. Removing

nodes which act as a relay reduces the size of the set of potential fake sources, making it nearly

impossible when the number of sources is large because there is insufficient spatial redundancy [23].

In these cases, using a temporal SLP-aware routing protocol, such as [5], is advisable.
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8.4 Minimising Power State Transitions
In this work we have developed a duty cycle that focused on reducing the time nodes spend awake

while continuing to ensure a high level of SLP. However, there is also a cost to these transitions

between power states in terms of both energy and time [9]. Future improvements to duty cycles

for spatial SLP-routing protocols should consider these costs and factor the wakeup time of the

specific radio used on a sensor into the calculations of when to wakeup and sleep. Future work

could also consider the cost related to the number of sleep-state transitions and also design a duty

cycle which aims to avoid transitioning between sleep states if not beneficial.

9 CONCLUSIONS AND FUTUREWORK
In this paper, we have presented a novel formalisation of duty cycling as a transformation process.

We then presented scheduling model for DynamicSPR and transformed the schedule via a timing

analysis to obtain a duty cycled DynamicSPR (DynamicSPR-S). Different early wakeup and late

sleep intervals have been investigated for different message types. Simulations and real-world

experiments on the FlockLab testbed show that significant energy savings are achieved at the

expense of a relatively very small decrease in SLP levels. For future work we plan to prove the

correctness of the transformation and this duty cycle protocol. We also intend to investigate

dynamically determining the wakeup parameters in response to a changing network environment.
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