

WARWICK

The Impact of Decreasing Transmit Power Levels on FlockLab To Achieve a Sparse Network

Matthew Bradbury, Arshad Jhumka and Carsten Maple CPS-loTBench 2019

Introduction

- ▶ It is vital to perform experiments on testbeds to check real world performance
- ▶ Testbeds tend to be located indoors and have a dense topology
- ▶ Not all applications will be deployed in this environment

A Brief Summary of Source Location Privacy

Given:

- ► A WSN that detects valuable assets
- ► A node broadcasting information about an asset

Found:

- ► An attacker can find the source node by backtracking the messages sent through the network.
- So by deploying a network to monitor a valuable asset, a way has been provided for it to be captured.

Solutions require one or a combination of:

- Spatial Redundancy
- ► Temporal Redundancy

Attacker Movement Without Protection

Figure 1: Attacker movements towards source

Attacker Movement With Protection

Figure 2: Attacker movements with protection

FlockLab Status

Obtaining A Sparse Network

To obtain a sparse network topology we can:

- ► Power off certain nodes (less useful for small testbeds)
- ► Reduce the transmit power

What is the impact of reducing transmit power?

- ► Less dense topology?
- ► Lower SNR?
- Invalid power consumption results?
- ► Impact on link asymmetry?

This means we want to go from this ...

...to this

Methodology

- Measuring Noise Floor
 - Continuously query background noise on a specific channel
 - ▶ Every 128 reads send minimum, maximum and average over the serial output
- ► Measuring Transmit and Receive Performance
 - ▶ One node sends a packet every 500 ms, all others listen for it
 - RSSI and LQI recorded
 - Used to calculate PRR
 - Only performed on channel 26 (to reduce the number of experiments)
 - ► Three transmit levels investigated: 31, 19, 7
- ► Measuring Current Consumption
 - Recorded for the three previous instances (Read RSSI, Transmit, Receive)
 - Also recorded when the nodes just sleep

All code, results and analysis scripts are available online

Transmit Power Levels

Power Level	Output Power (dBm)	Current Consumption (mA)
31	0	17.4
27	-1	16.5
23	-3	15.2
19	-5	13.9
15	_ 7	12.5
11	-10	11.2
7	-15	9.9
3	-25	8.5

Table 1: CC2420 Power levels

Noise Floor

Figure 5: Noise floor (dBm) readings for FlockLab nodes on IEEE 802.15.4 channels 11-26.

Link Metrics

(b) Broadcast power 7

Link Asymmetry

(b) Broadcast power 7

Current Draw

Figure 8: Average current draw (mA) in four different situations.

Experiences Using FlockLab

- ▶ No voltage measurements, only current draw
- ► Time Synchronisation
 - ► A change in the NTP server led to issues
 - Our logging showed messages being received before they were sent
 - Switching to a more accurate time server fixed this issue
 - Potential for logical clocks to mitigate this kind of issue?
- ▶ Node Availability
 - ► Not all nodes consistently available
 - ► Difficult to ensure reproducible network topology
 - ▶ When replacing nodes give them a new identifier, even if in the same location

Conclusions

- Decreasing transmit power is an effective way to obtain a less dense network
- ► Current measurements at different transmit powers have a low standard deviation

However:

- ▶ Each node has a different performance profile, including current draw for the same activity
- ► Some patterns will turn up in a testbed that would be unexpected in other scenarios (e.g., the higher levels of noise on the three WiFi channels)
- ► Logging over serial will impact current draw results
- ► Still need to consider the impact environmental aspects have: time of day, date, how busy the building is, and other factors

