Trust Trackers for Computation
Offloading in Edge-Based loT
Networks

Matthew Bradbury, Arshad Jhumka and Tim Watson

2:00 —3:30 PM EDT, 11t May 2021
INFOCOM 2021

WARWICK

Introduction

* Wireless loT devices are useful for deployment when
physical access to infrastructure is restricted (costly,
untrusted, unavailable)

* These devices are constrained (limited CPU, RAM, data
storage) to maximise lifetime when battery powered

* These devices will have expensive tasks that they need
to perform

* As the devices are constrained, expensive tasks can be
offloaded to Edge nodes with greater capabilities

* Which Edge node is chosen for these tasks to offload?

Resource-
constrained loT
16 MHz CPU
32 KiB RAM
Battery Powered

Trust Assessment

* Use a measure of behavioural trust to assess which Edge is
most likely to perform well

* Typically assessed reactively based on past events

* Instead, this work investigates proactive trust assessment

loT Node

1. Record Interactions Edge Node

Response

2. Evaluate Interaction
3. Build trust model
based on interactions

This Talk

1. Formalise the offloading problem

2. Prove:

1. It cannot be solved in an asynchronous network
2. It can be solved by a trust tracker device in synchronous networks
3. That the trust tracker device cannot be implemented

3. Probabilistic offloading

4. Evaluate experimental results from a small (6 node) testbed

Note: permanently
does not mean
forever here, but

OfﬂOading PrOblem long enough for the

system to make
progress

* For an loT node, there exists an Edge node such that:

* Correctness: The loT node offloads to the Edge node only if it
trusts the Edge node

* Trust: Eventually, the 10T node trusts the Edge node
permanently

An loT node trusts an Edge node if it expects it to:
1. Acknowledge submitted tasks

2. Deliver a correct result

3. Theresultis delivered within a deadline

Offloading Engine (O)

* There is a software device that is responsible for offloading
 Safety: O returns a set of trusted nodes
* Liveness: Eventually, O returns a set of Edge nodes

* There might not be any good Edge nodes, so can’t expect a
non-empty set!

Impossibility of Correct Offloading in an Asynchronous

Network

* Asynchronous network = no bounds on time to perform
computation or communication

* Edge node can become bad at the same time an loT node
decides to offload to it

Has Offloads Has Offloads
job job job job
loT Node <§> (E}\\\\‘Vﬂ\ loT Node <§> <§)\\\\‘yﬁ\
Edge Node () Edge Node @ (&)
Receives Becomes Receives

job Bad job

Trust Tracker Device (Z) for Synchronous Networks

* Maintain an epoch number, that is incremented every time a
change in behaviour occurs (bad - good or good - bad)

* Change in behaviour assess by a challenge

* Completeness: All bad Edge nodes are eventually suspected by
all loT nodes, or the epoch number is unbounded

e Accuracy: For some Edge nodes, all loT nodes eventually

permanently trust those Edge nodes and their epoch number
stops changing

* O and % are equivalent
* Test trust via the challenge
* If there are any well-behaved Edges, will eventually identify them

Impossibility of Implementing the Trust Tracker Device

Perform Receive Receive
Cierfl?rrpl Check of 2 response response
ecko from 1 from 2

o 4<@\5A @\ //\ty /@
Edge Node 1 (ta) {ta)
Receives
Check \,\ Responds /
t: te

Edge Node 2 5B/ N
RE;?:ES Responds
Perf Perform Receive Receive
erform
response response
Check of 2
Check of 1 ecKo from 1 from 2

e Two runs, one with no
failures and one with,
both return the same
result — that all Edge
nodes are trusted

loT Node —@\‘A \tz/\ ts /‘\tp
Edge Node 1 (t:))

Perform
Check of 1
()
8

) o
Becomes .

Good Receives

00 Check

&) o
Receives Responds Becomes
Check P Bad
t3

Edge Node 2 {ta) {ts)

Receives

Check Responds

Probabilistic Offloading

* Cannot deterministically determine trustworthy behaviour
* Correctness: loT node only offloads to an Edge if it trusts the Edge with

high probability
* Trust: Eventually, the 10T node permanently trust the Edge with high

probability

GTrustR=2 0 = 8 GTrustR=2 ¢ = 18 GTrustR=R/2 0 = 8 GTrustR=R/2 0 = 18

07 07 07

Figure 2: The probability of a correct offload (p.) when varying: the number of resource-rich nodes (R), the probability of a
resource-rich node being fake (p), the number of samples performed (o), and the number of trustworthy nodes (|GTrustR|).

Proactive Trust Assessment

* loT nodes periodically send a challenge to Edge nodes testing
their behaviour

* Idea: If Edge nodes are willing to dedicate resources to an
expensive challenge, they will be willing to do an expensive job

* Borrowed proof-of-work from blockchain as the Zolertia RE-
Motes have hardware acceleration for SHA256

1. loT generates random 32 bytes b, difficulty d and a deadline t, send
to Edge node

2. Edge node finds a prefix to b such that the first d bytes of
SHA256(p||b) are O

* Consider: This does not assess Edge’s ability to correctly
execute tasks

167 o wsn2
144
124

)
8 104 .
3

Time Taken (

[S =] %
[

0 100000 200000 300000 400000 500000 600000 700000 800000
Iterations

(a) The number of prefixes searched to find

a solution versus the time taken.
800000 §

o
700000 4

600000
500000 4 °

w

z

2 400000 4

[

2
300000

=
200000 4
100000 4 &I l:jL—LI
04
wsnb

wsn2
Resource Rich Nodes

(b) A comparison between the load caused

by the challenge on two different resource-

rich nodes.

Figure 3: Challenge performance when
both resource-rich nodes are good.

Challenge Overhead on Edge Nodes

* The challenge should be expensive to
compute and not take too long

* A balance needs to be found between
the cost of the challenge and resources
dedicated to executing tasks

* Also (somewhat) important that there is
no bias in which Edge nodes receive
harder challenges

2007 —— \sn3 evaluating rr2
— 3 evaluating rr6
175 i wsna evalual Il'lg r
—— wsn4 evaluating rr2
1504 —— wsn4 evaluating rr6
—— wsnb5 evaluating rr2
E 1251 —— wsnb5 evaluating rr6
£
= 1.00
=
]
a
w 0.75 4
0.50
0.25 1
0.00 7

1300 1315 1330 1345 14.00 1415 1430 1445 15.00
Time

(a) Evolution of the Epoch number over time.

% ChallengeResponseType.NO_ACK

5
weno 4 @ ChallengeResponseType. TIMEQUT

eval rr6

wsn5 |
eval rr2

wsné |
@ eval 6
o
2
Y wsné |
eval rr2

wsn3 |
eval rr6

wsn3 |
eval rr2

13:00 13:15 13:30 13:45 14:00 14:15 14:30 14:45 15:00
Time

(b) Times at which resource-constrained
nodes trusted resource-rich node. Events that
led to loss of trust are indicated.

Figure 4: Results for when both
resource-rich nodes 2 and 6 are good.

20091 —— wsn3 evaluating rr2
~— wsn3 evaluating rr6
—— wsn4 evaluating rr2
1504 — wsn4 evaluating rrb

—— wsnb evaluating rr2

i

wsn5 evaluating rr6

Epoch Number

3

0.50

0.254

0.001

16:30 17:00 17:30 18:00 18:30 19:00
Time

(a) Evolution of the Epoch number over time.

wsn5
eval rrb

wsnb |
eval rr2

wsnd
§ eval rrb
I
v wsnd |
eval rr2

wsn3 |
eval rrb

ChallengeResponseType. NO_ACK
wsn3 | @ ChallengeResponseType. TIMEOUT
eval m2 % ChallengeResponseType. RESPONSE

1630 17.00 1730 1800 1830 19:00
Time

(b) Times at which resource-constrained
nodes trusted a resource-rich node. Events
that led to loss of trust are indicated.

Figure 5: Results for when resource-rich
node 2 is good and 6 is bad.

Stable Behaviour

* Two experiments

* Both edge nodes
always good

* One edge node
(rr2) always good,
the other (rr6)
always bad

—— wsn3 evaluating rr2
201 —— wsn3 evaluating 6
—— wsn4 evaluating rr2
—— wsn4 evaluating rr6
154 —— wsn5 evaluating 2
3 —— wsnb evaluating rr6
5
=
5 104
2
w
5
N r
14:00 1500 16:00 17:00 18:00 19:00 20:00 21:00
Time
(a) Evolution of the Epoch number over time.
. o2 [60
S torrb
I 50
b
F40
E
= F30
F20
2
F10
T T T T T T T T 0
14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00
Time

(¢) The true status of resource-rich nodes and the number of tasks
submitted to them in a time window where their behaviour was

stable.

Number of tasks submitted

wsnb |
eval rr6
wsnb |
eval rr2
wsnd |
@ eval rr6
=
Y wsnd |
eval rr2
- SENEEE
eval rr6
ChallengeResponseType.NO_ACK
wsn3 | @ ChallengeResponse Type. TIMEOQUT i {
eval M2 | 4 ChallengeResponseType.RESPONSE
14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00
Time

(b) Times at which resource-constrained nodes trusted resource-rich

nodes. Events that led to loss of trust are indicated.

wsnb
eval rr6

wsnb o
eval rr2

wsn4 1
eval rr6

Status

wsn4 1
eval rr2

wsn3
eval rr6

wsn3
eval rr2

14:00

(d) Was the trust correctly evaluated? TP = trusted when good, TN
= untrusted when bad, FP = trusted when bad, FN = untrusted when

good.

1800 1000 20:00 2100

Time

1500 1600 1700

Figure 6: Results for when resource-rich node 2 is good and 6 is unstable.

wsn3 wsnd wsn5
T u T U T U
w AC [0.95 0.02] AG {o.gs 0.02} AG [0.99 0.01]
AB 0.0 0.0 AB 0.0 0.0 AB[0.0 00
T U T u T u
e AC [0.43 0.[)8] A {0.43 0.08} AG [0.43 0.08]
AR [0.08 0.41 AB |0.08 041 AB |0.08 0.41

Table I Error matrices showing the percentage of time resource-
constrained nodes (wsn) considered resource-rich nodes (rr) as
being trusted or not. T = trusted, U = untrusted, AG = actually
good, AB = actually bad.

Unstable
Behaviour

* One always good
edge node (rr2)

* One unstable (rr6)

Conclusions

* Cannot perform deterministic proactive trust assessment in
asynchronous or synchronous systems

* Probabilistic is the best that can be achieved

Limitations:

* Proactive assessment does not assess willingness to perform the
actual task

* How often a challenge is performed impacts the accuracy

Acknowledgement

* This work was supported by the PETRAS National
Centre of Excellence for 1oT Systems Cybersecurity
EPSRC Grant EP/S035362/1.

* https://petras-iot.org

* You can find out more about the project at:

* https://petras-iot.org/project/evaluating-trustworthiness-

of-edge-based-multi-tenanted-iot-devices-team
* https://mbradbury.github.io/projects/project-6-TEAM

Thank you for listening!

https://petras-iot.org/
https://petras-iot.org/project/evaluating-trustworthiness-of-edge-based-multi-tenanted-iot-devices-team/
https://mbradbury.github.io/projects/project-6-TEAM

