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Introduction

* Wireless loT devices are useful for deployment when
physical access to infrastructure is restricted (costly,
untrusted, unavailable)

* These devices are constrained (limited CPU, RAM, data
storage) to maximise lifetime when battery powered

* These devices will have expensive tasks that they need
to perform

* As the devices are constrained, expensive tasks can be
offloaded to Edge nodes with greater capabilities

* Which Edge node is chosen for these tasks to offload?
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Trust Assessment

* Use a measure of behavioural trust to assess which Edge is
most likely to perform well

* Typically assessed reactively based on past events

* Instead, this work investigates proactive trust assessment

loT Node

1. Record Interactions Edge Node

Response

2. Evaluate Interaction
3. Build trust model
based on interactions




This Talk

1. Formalise the offloading problem

2. Prove:

1. It cannot be solved in an asynchronous network
2. It can be solved by a trust tracker device in synchronous networks
3. That the trust tracker device cannot be implemented

3. Probabilistic offloading

4. Evaluate experimental results from a small (6 node) testbed



Note: permanently
does not mean
forever here, but

OfﬂOading PrOblem long enough for the

system to make
progress

* For an loT node, there exists an Edge node such that:

* Correctness: The loT node offloads to the Edge node only if it
trusts the Edge node

* Trust: Eventually, the 10T node trusts the Edge node
permanently

An loT node trusts an Edge node if it expects it to:
1. Acknowledge submitted tasks

2. Deliver a correct result

3. Theresultis delivered within a deadline



Offloading Engine (O)

* There is a software device that is responsible for offloading
 Safety: O returns a set of trusted nodes
* Liveness: Eventually, O returns a set of Edge nodes

* There might not be any good Edge nodes, so can’t expect a
non-empty set!



Impossibility of Correct Offloading in an Asynchronous

Network

* Asynchronous network = no bounds on time to perform
computation or communication

* Edge node can become bad at the same time an loT node
decides to offload to it
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Trust Tracker Device (Z) for Synchronous Networks

* Maintain an epoch number, that is incremented every time a
change in behaviour occurs (bad - good or good - bad)

* Change in behaviour assess by a challenge

* Completeness: All bad Edge nodes are eventually suspected by
all loT nodes, or the epoch number is unbounded

e Accuracy: For some Edge nodes, all loT nodes eventually

permanently trust those Edge nodes and their epoch number
stops changing

* O and % are equivalent
* Test trust via the challenge
* If there are any well-behaved Edges, will eventually identify them



Impossibility of Implementing the Trust Tracker Device
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Probabilistic Offloading

* Cannot deterministically determine trustworthy behaviour
* Correctness: loT node only offloads to an Edge if it trusts the Edge with

high probability
* Trust: Eventually, the 10T node permanently trust the Edge with high

probability
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Figure 2: The probability of a correct offload (p.) when varying: the number of resource-rich nodes (R), the probability of a
resource-rich node being fake (p), the number of samples performed (o), and the number of trustworthy nodes (|GTrustR|).



Proactive Trust Assessment

* loT nodes periodically send a challenge to Edge nodes testing
their behaviour

* Idea: If Edge nodes are willing to dedicate resources to an
expensive challenge, they will be willing to do an expensive job

* Borrowed proof-of-work from blockchain as the Zolertia RE-
Motes have hardware acceleration for SHA256

1. loT generates random 32 bytes b, difficulty d and a deadline t, send
to Edge node

2. Edge node finds a prefix to b such that the first d bytes of
SHA256(p||b) are O

* Consider: This does not assess Edge’s ability to correctly
execute tasks
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Figure 3: Challenge performance when
both resource-rich nodes are good.

Challenge Overhead on Edge Nodes

* The challenge should be expensive to
compute and not take too long

* A balance needs to be found between
the cost of the challenge and resources
dedicated to executing tasks

* Also (somewhat) important that there is
no bias in which Edge nodes receive
harder challenges
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(b) Times at which resource-constrained
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Figure 4: Results for when both
resource-rich nodes 2 and 6 are good.
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Figure 5: Results for when resource-rich
node 2 is good and 6 is bad.

Stable Behaviour

* Two experiments

* Both edge nodes
always good

* One edge node
(rr2) always good,
the other (rr6)
always bad
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(¢) The true status of resource-rich nodes and the number of tasks
submitted to them in a time window where their behaviour was

stable.
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(b) Times at which resource-constrained nodes trusted resource-rich

nodes. Events that led to loss of trust are indicated.
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Figure 6: Results for when resource-rich node 2 is good and 6 is unstable.
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Table I Error matrices showing the percentage of time resource-
constrained nodes (wsn) considered resource-rich nodes (rr) as
being trusted or not. T = trusted, U = untrusted, AG = actually
good, AB = actually bad.

Unstable
Behaviour

* One always good
edge node (rr2)

* One unstable (rr6)



Conclusions

* Cannot perform deterministic proactive trust assessment in
asynchronous or synchronous systems

* Probabilistic is the best that can be achieved

Limitations:

* Proactive assessment does not assess willingness to perform the
actual task

* How often a challenge is performed impacts the accuracy
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