

Deconstructing Source Location Privacy-aware Routing Protocols

WARWICK

Arshad Jhumka and Matthew Bradbury

SAC 2017

Outline

Introduction

- Related Work
- Models Used
- Example Techniques
- Source Location Privacy Components
- Case Studies

What is a Wireless Sensor Network?

A wireless sensor network (WSN) is a collection of computing devices called nodes, they have:

- ► a short range wireless radio
- ▶ an array of sensors such as light, heat and humidity
- ► a simple low powered CPU
- ► a battery with limited power supply

Applications include:

- Tracking
- Monitoring

What is Context Privacy?

- Privacy threats can be classified as either content-based or context-based
- Content-based threats have been widely addressed (using cryptography) (Perrig et al. [6])
- Context-based threats are varied
- We focus on protecting the location context of broadcasting nodes

The Problem of Source Location Privacy (SLP)

Given:

- A WSN that detects valuable assets
- A node broadcasting information about an asset

Found:

- An attacker can find the source node by backtracking the messages sent through the network.
- So by deploying a network to monitor a valuable asset, a way has been provided for it to be captured.

The Problem:

- Panda-Hunter Game
- Difficult

Related Work

- Attacker Models (Benenson et al. [1])
- Phantom Routing (Kamat et al. [3])
- ► Fake Sources: TFS/PFS (Bradbury et al. [2])
- Combination: Tree-based (Long et al. [4])
- Global Attacker: (Mehta et al. [5])

Privacy Model

- Aim of an SLP protocol: prevent the attacker from capturing an asset through information the WSN leaks.
- A stationary asset cannot be protected as an attacker can perform an exhaustive search.
- Mobile assets will only stay in detection range of a WSN node for a certain amount of time.
- ▶ The SLP problem can only be considered when it is time-bounded.
- ▶ This captures the maximum amount of time an asset will stay near a certain node.
- ▶ The safety period is how long the asset will be protected for.
- Other work has defined the safety period as unbounded and attempted to increase it.
- We assume a bounded safety period.

Attacker Model

- Attacker's aim is to reach the source within the safety period
- Assume a distributed eavesdropper present in the network
- Attacker range is limited to not cover the entire network
- Attacker is mobile
- Attacker follows first new packet it receives

Example: Protectionless Flooding

Example: Dynamic Fake Sources

Example: Phantom Routing

 \sim

Deconstruction

We argue that routing-based SLP techniques can be separated into two categories:

- Spatial
 - Lure the attacker to some other part of the network instead of the source-detecting node.
 - Requires spatial redundancy in the network.
- Temporal
 - Delay the attacker on its path to the source, so the safety period expires.
 - Requires delay-tolerant application.

Some algorithms will use a combination of these strategies to delay the attacker.

Component 1: Selection of Decoys

- ▶ Decoys need to be selected so there is little or no correlation between them and the source
- Decoy selection should not indirectly leak the source's location
- Spatial Selection
 - Attacker is made to travel a longer route (other than shortest path)
 - Decoys typically change slowly and subsequent decoys are close to one another
- ► Temporal Selection
 - Attacker is made to miss messages, causing it to be delayed
 - Decoys typically change frequently

Component 2: Use and Routing of Control Messages

Spatial Selection

- Aim to select decoys close to one another to lure the attacker along a path
- Decoys need to be chosen in a space away from the source
- Control messages need to select these decoys
- Allows different protocols for convergecast routing and control message routing

► Temporal Selection

- Aim to select decoys so that an attacker misses messages and is delayed
- Decoys can be spread out over an area
- The control messages typically form part of the convergecast route

Component 3: Use and Routing of Decoy Messages

Spatial

- Decoy nodes are luring the attacker, so want the attacker to receive these messages
- Flooding is a good protocol, as it should lure the attacker from anywhere in the network

Temporal

- Decoy messages typically not required
- As SLP is provided by the attacker missing hearing messages

Case Studies

(a) Dynamic Fake Sources: An example of spatial selection of decoys [2].

(b) Phantom routing: An example of temporal selection of decoys [3].

(c) Tree routing: An example of temporal delay by alternating which branch the source node attaches to.

What does this mean?

Routing-based SLP techniques need to:

- Provide spacial redundancy in which to allocate decoy nodes
- Delay messages in a suitable way
- ▶ Not all applications will be able to provide spacial redundancy
- Not all applications will be able to tolerate delays
- This categorisation helps identify requirements of algorithms that the network deployer needs to provide

Some Exclusions

- ▶ Not all SLP techniques can be categorised using these components
- ▶ We are focusing on protocols at the routing layer protecting against a local attacker

The following types of protocols are examples that will not decompose this way:

- MAC based protocols
- Data mule approaches
- Global privacy techniques

Summary

▶ Routing-based SLP techniques are either spatial, temporal or a combination

- Identified three key components
 - Decoy Selection
 - Routing of control messages
 - Routing of decoy messages
- Given three examples to demonstrate these points

Future Work:

- We will formalise the components
- Develop correctness proofs for the composition to yield SLP-aware protocols

Any questions?

References I

- Zinaida Benenson, Peter M. Cholewinski, and Felix C. Freiling. Wireless Sensors Networks Security, chapter Vulnerabilities and Attacks in Wireless Sensor Networks, pages 22–43. IOS Press, 2008.
- [2] M. Bradbury, M. Leeke, and A. Jhumka. A dynamic fake source algorithm for source location privacy in wireless sensor networks. In 14th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), pages 531–538, August 2015. doi: 10.1109/Trustcom.2015.416.
- [3] Pandurang Kamat, Yanyong. Zhang, W. Trappe, and C. Ozturk. Enhancing source-location privacy in sensor network routing. In 25th IEEE International Conference on Distributed Computing Systems (ICDCS'05), pages 599–608, June 2005. doi: 10.1109/ICDCS.2005.31.
- [4] Jun Long, Mianxiong Dong, K. Ota, and Anfeng Liu. Achieving source location privacy and network lifetime maximization through tree-based diversionary routing in wireless sensor networks. *IEEE Access*, 2:633–651, 2014. ISSN 2169-3536. doi: 10.1109/ACCESS.2014.2332817.
- [5] K. Mehta, D. Liu, and M. Wright. Protecting location privacy in sensor networks against a global eavesdropper. IEEE Trans. on Mobile Computing, 11(2):320–336, February 2012. ISSN 1536-1233. doi: 10.1109/TMC.2011.32.
- [6] Adrian Perrig, John Stankovic, and David Wagner. Security in wireless sensor networks. Commun. ACM, 47(6):53–57, June 2004. ISSN 0001-0782. doi: 10.1145/990680.990707.