Trust Assessment in 32 KiB of RAM:
Multi-application Trust-based Task
Offloading for Resource-constrained
loT Nodes

Matthew Bradbury, Arshad Jhumka and Tim Watson

02:10-03:50 and 12:10-13:50 UTC, 224 March 2021

Dependable, Adaptive, and Secure Distributed Systems Track of the
Symposium of Applied Computing

WARWICK

Introduction

* Wireless loT devices are useful for deployment when
physical access to infrastructure is restricted (costly,
untrusted, unavailable).

* These devices are constrained (limited CPU, RAM, data
storage) to maximise lifetime when battery powered.

* These devices will have expensive tasks that they need
to perform.

* As the devices are constrained, expensive tasks can be
offloaded to Edge nodes with greater capabilities.

* Which Edge node is chosen for these tasks to offload?

Resource-
constrained loT
16 MHz CPU
32 KiB RAM
Battery Powered

Multi-access Edge Computing (MEC)

A fair amount of investigation has been done for
resource-rich systems (e.g., vehicular/cellular networks)

* The same solutions will not translate to resource-
constrained loT systems
* Communication
 Security layer
* Edge selection approaches

This Talk

Introduce an example trust model

2. Describe the middleware to support trust-based task
offloading, including disseminating information required
by different trust models

3. Examine results from a deployment, looking at:

1. Cryptographic operation costs
2. RAM/Flash usage
3. Middleware overhead (in terms of bytes sent and received)

Trust-based Task Offloading

* There are several low-memory trust models suitable for use in
assessing trust in edge nodes

* BRS — two counters a (hnumber of “good” interactions) and B
(number of “bad” interactions), ranking = a / (ot + B)

* The challenge is that in order to know how much memory is
available for the trust models, the middleware supporting task
offloading needs to be implemented and measured.

Example Trust Model

* Assess trust independently on each loT node
for multiple applications (edge capabilities)

* Aim to answer three questions:
1. Did an edge acknowledge and accept a task?

2. Did that edge provide a timely result for the
task?
3. Was the task’s result correct?

* The trust model cannot store a complete list
of all these interactions due to limited

memory

tified of removal of edge capability Eg J

Algorithm 1 Update state based on a situation and interaction

> a is an application, s is a situation, i is an interaction
function UPDATE(q, s, i)

Example Trust Model

1:
2 for m € M(a) do
3 if RELEVANTINTERACTION(a, s, i, m) then
; 0 IO i
 Maintain three Beta distributions: ; e e s 1
* For every edge, did that edge respond ; else%(e 0 T (earfet

that they had accepted a task
* For every edge, did that edge provide a result for a task

* For every capability on every edge, was the result returned for that
application correct.

 Calculate trust by finding the weighted sum of the expected
value of these distributions

By default, start each distribution at (1, 1)
* Allow distributions to be initialised using stereotypes
* Update the distributions when interacting with an Edge

Middleware for Trust-based Task Offloading

Required functionality: 3. Request Stereotypes of edge

- . . e nodes
1. Ability to supply digital certificates
to loT devices without them 4. Disseminate reputation
2. Discovery of capabilities of edge 5. Application request/response
nodes
Root Mosauitto Resource-rich Resource-constrained
MQTT
fd00::1 (global) Server fd00::212:4b00:14d5:2bdé6 (global) fd00::212:4b00:14d5:da27 (global)
fe00::1 (link) I fe80::212:4b00:14d5:2bd6 (link) fe80::212:4b00:14d5:da27 (link)
Resource- B Resource-
Certificate Stereotype MQTT-over- - . ich . . trained
sewr || sener || cone e || oot || [ovtatens o || ey || | vt
|]
Serial Line IP (SLIP) + RPL Border Router .) Reputati Trust Model:
| | ol I vl Bl Revidin pasbrct | | aton | | S
issem. History

Message Protection — OSCORE (RFC8613) B
» Tasks may contain sensitive information, so messages G) g 121
need to be protected T 1]
* Typically, would do so with DTLS, but some recent issues | = "= * |
were identified with multiple implementations [1] SN T

* Decided to use OSCORE which provides confidentiality, — :: oo ey sroeer mmen
integrity and authenticity protection for COAP messages i o meotession of cons cocion:

(From RFC8613)
* Plan for the use of Group OSCORE (draft-ietf-core-
oscore-groupcomm-10) for multicasted messages that
need non-repudiation

[1] P. Fiterau-Brostean, B. Jonsson, R.

. Merget, J. de Ruiter, K. Sagonas, and J.

* OSCORE only protects some header fields somorovsky. 2020. Analysis of oL
Implementations Using Protocol State
Fuzzing. In 29th USENIX Security
Symposium. USENIX Association, Boston,
MA, 2523-2540.

PKI - Digital Certificates

* Lightweight EC digital certificate using
secp256rl

* Inspired by XIOT certificates in [2]

* X.509 are too large for these systems
(ASN.1 less efficient encoding than CBOR)

* These systems may not have a global view
of time (due to cost of time
synchronisation) = For now, certificates do
not expire

Certificate = [
tbscertificate
signature

]

TBSCertificate = [
serial_number
issuer
validity

subject

public_key

]

StereotypeTags = [
device_class

]

: TBSCertificate,
: bytes .size 64

:uint,
: bytes .size 8,
: [notBefore: uint,

notAfter: uint],

: bytes .size 8,
stereotype_tags :
: bytes .size 32

StereotypeTags,

: uint

[2] J. HOglund, S. Lindemer, M. Furuhed, and
S. Raza. 2020. PKl4loT: Towards public key

infrastructure for the Internet of Things.
Computers & Security 89 (2020), 101658.

https://doi.org/10.1016/j.cose.2019.101658

msc Ldge Capability Dissemination

MQTT mqit-conp-bridge RR. Nodes RC Nades
e [reve)]
to topica (Annouce, unannouce, publish ac 1 publi muve)J
forward sub-req b-req
ack sub-req I ack
sub-req
\
f
sub-ack
announce resource-rich node r]
forward ann-req 1-req
ack ann-reg anu-resp
v resp
unannounce resource-rich node r |
seward unann-req n-req
ack unann-req 1-resp

publish add / publish remove resc

purce-rich r eapability :;J

forward [add/rem|-cap-req

[add/rem]-cap-req

ack [add/rem)-eap-req

[add/reru]

[add /rem|-c

ap-resp

Capability Discovery

* Fits well with a publish/subscribe protocol
* |oT devices subscribe to capabilities
* Edge nodes publish capabilities

* MQTT would be a natural fit, but it uses TCP, which
required too much RAM

* MQTT-SN uses UDP but is not provided by Contiki-NG

* MQTT-SN would also not be protected
with OSCORE

* An MQTT-to-CoAP bridge was
implemented

Stereotypes

* Trust models can make use of stereotypes to bootstrap o
new entrants 2

* Avoids needing to “take a risk” on an unknown entity

* Assumption: Stereotypes are in the same language as
the trust model

* Limitation: The implementation only uses stereotypes to
describe an edge, not the application it runs

Reputation Dissemination

* Reputation is very useful for trust models

* Needs to provide non-repudiation, cannot allow an
loT device to claim they previously sent a different
reputation

* Two modes supported:
* Periodic dissemination
* Request current views on an specific edge node

PKI

msc Trust and Reputation Dissemination

RR and Other RC Node(s)

[oma]

[]
|

RC Node

e

Periodic disseminat

ion every Ty :«e{:rmd:«J

Broad; ust
resp
Ta
Periodic disse T seconds |
Broadeast trust
esp
merge
putatior
jith local
data
Ty
Request mmJ
— — —

Application

* Example of periodic task submission

* Triggered by edge nodes notifying they have the
appropriate capability

* Aperiodic applications also possible

* Task information may need to be private, so

confidentiality guarantees from OSCORE are
important

Periodic action every T, seconds

£
>L 3
Il

Cryptographic Operation Performance

* Elliptic curve signing, verifying and
Diffie-Hellman is very expensive

* AES-CCM is much faster, so use it for
the majority of communication

* Use ECC for shared secret derivation
and to sign reputation dissemination
messages

* ECC facilitated by co-processor so
CPU can continue working while
performing ECC operations

Operation Mean Cost Units
SHA256 637 +11.6 ns/B
EC Sign (sepc256r1) 360 £ 0.04 ms
EC Verify (sepc256r1) 711+£0.03 ms
ECDH 344 + 0.02 ms
AES-CCM-16-64-128 Encrypt 0.94 +£0.01 ps/B
AES-CCM-16-64-128 Decrypt 1.01 +£0.01 ps/B

RAM and Flash usage

* Nearing RAM limit of hardware
* Lots of Flash remaining

* Trust model and ECC crypto support are

both expensive in terms of RAM

* Will work on optimisations when needed

* Highlights benefits of design decisions

(e.g., MQTT-over-CoAP)

Flash RAM
Category ® @ ® @
applications/monitoring 1388 1.2 353 1.2
applications/routing 3868 3.3 474 1.6
contiki-ng 7280 6.2 846 2.9
contiki-ng/cc2538 14 556 12.4 2356 8.0
contiki-ng/coap 8556 7.3 2388 8.1
contiki-ng/net 26824 229 8232 278
contiki-ng/oscore 5512 4.7 1010 3.4
newlib 26415 22.6 2534 8.6
system/common 3188 2.7 37 0.1
system/crypto 6210 5.3 5173 17.5
system/mqtt-over-coap 1490 1.3 503 1.7
system/trust 11846 10.1 5659 19.1
Total Used 117133 100 29565 100
Total Available 524 288 32768

Name Count Entry (B) Total Size (B)
Certificates 12 288 3456
Stereotypes 5 24 120
Edges 4 52 208
Edge Capabilities 12 28 336
Peers 8 32 256
Peer Edges 32 32 1024
Peer Edge Capabilities 96 16 1536

—— wsn3 eval rr2 —— wsn4 eval rr2 —— wsn5 eval rr2
—— wsn3 eval rr6 —— wsn4 eval rr6 —— wsnb eval rr6

Results : ——
Sm—————
0.8
N
£ 0.6
E
=
B 04
=
0.2
0.0 -
08:10 08:20 08:30 08:40 08:50 09:00
Time
(a) Monitoring

w ~
Number of tasks submitted (bars)

T
[

(=2

T
w

T
—_

I
=

Trust Value (lines)

—— wsn3 eval rr2 —— wsn4 eval rr2 —— wsnb eval rr2

1.0

wsn3 eval rrb

wsn4 eval rr6

wsnb eval 6

0.6 1

08:10 08:20

7

0.0- | |

T

08:40 08 50
Time

(b) Routing

* 1 root node, 2 edge nodes and 3 IoT nodes; two applications

* Both edge nodes always “good” for monitoring, rr6 always

bad for routing

* Trust model eventually excludes tasks from being sent to rr6

09:00

QICI = (<1 (=]
Number of tasks submitted (bars)

[}

—_

Results

70000

60000

50000

40000

30000

20000

10000

Message Length (bytes) Sent During Window

30000

25000

20000

15000

10000

5000

Message Length (bytes) Received During Window

. 6lowpan-fragment . coap-ack W rpl-control
approuting aseore sereotype
s capability-pub-sub ping-request rrust-dissem
certificate
. H
L
_- -
— a
= = =
s
3
—_ = H
£
—)
5
P
- H
£
=
08:10 08:20 08:30 08:40 08:50 09:00
Time
(a) rr2
Figure 9:
== 6lowpan-fragment certificate == rpl-control
approuting oscore stereotype
B capability-pub-sub WSS ping-reply ~ WEEN trust-dissem
g
2
i :
®
a
| 3
m
g
| - &
| -]
. H
| =
S
5
o
- -
]
=
| |
-
08:10 08:20 08:30 08:40 08:50 09:00
Time
(a) rr2

Overhead:

app-routing oscore stereotype BN 6lowpan-fragment EEEI coap-ack = rplcontrol
W capability-pub-sub ping-request BN trust-dissem W capability-pub-sub ‘oscore. stereotype
crtfcate - rpcontrol certifcate pingrequest MR trust-cssem L] r u S
70000 70000 - . -
2 .
wom Lo Issemination:
®
- o 1 7 (y T 5 (y R
S
40000 £ 40000 0 X) 0 X
H
30000 g 30000
=3 .
* Maximum
10000 g 10000
= 50% Tx, 27% Rx
08:10 08:20 08:30 08:40 08:50 09:00 08:10 08:20 08:30 08:40 08:50 09:00 0 ’ 0
Time Time
(b) wsn3 (c) rr6 H
° dalienges wi
Length of messages sent over 5 min windows
t I .
- g"’"’:u"l":'a"”e"' - :;::"‘ - ;'L:L"‘: = Glowpan fragment oscore stereotype. g
— ::ergmsuh [— ““Mi;m bty pub s W ping.reply B trust cisem
certificate . rpl-control
certificate
30000 30000
I :
2
25000 * = 25000
5 a,
20000 3 20000
2
g
15000 & 15000
N e = T
. e 5
10000 = 10000
53
ki
5000 i & 5000
@
- BN]
| ——
08:10 08:20 08:30 08:40 08:50 09:00 08:10 08:20 08:30 08:40 08:50 09:00
Time ime
(b) wsn3 (c) rr6

Figure 10: Length of messages received over 5 min windows

Conclusions

* A common assumption in the agent-based systems community
is that “more information” == “better trust model”

e With these resource constraints it is not feasible to do so

* Trust models need to work within a few KiBs of RAM and will
only have limited information from the middleware

For the future:

* Consider providing additional features used by trust models
(e.g., witness statements)

* Investigate attacks on the middleware that can impact trust
evaluation and which edge is selected for task offloading

Acknowledgement

* This work was supported by the PETRAS National
Centre of Excellence for 1oT Systems Cybersecurity
EPSRC Grant EP/S035362/1.

* https://petras-iot.org

* You can find out more about the project at:

* https://petras-iot.org/project/evaluating-trustworthiness-

of-edge-based-multi-tenanted-iot-devices-team
* https://mbradbury.github.io/projects/project-6-TEAM

Thank you for listening!

https://petras-iot.org/
https://petras-iot.org/project/evaluating-trustworthiness-of-edge-based-multi-tenanted-iot-devices-team/
https://mbradbury.github.io/projects/project-6-TEAM

