
Trust Assessment in 32 KiB of RAM: 
Multi-application Trust-based Task 
Offloading for Resource-constrained 
IoT Nodes

Matthew Bradbury, Arshad Jhumka and Tim Watson

02:10-03:50 and 12:10-13:50 UTC, 22nd March 2021

Dependable, Adaptive, and Secure Distributed Systems Track of the 
Symposium of Applied Computing



• Wireless IoT devices are useful for deployment when 
physical access to infrastructure is restricted (costly, 
untrusted, unavailable).

• These devices are constrained (limited CPU, RAM, data 
storage) to maximise lifetime when battery powered.

• These devices will have expensive tasks that they need 
to perform.

• As the devices are constrained, expensive tasks can be 
offloaded to Edge nodes with greater capabilities.

• Which Edge node is chosen for these tasks to offload?

Introduction

Resource-
constrained IoT
• 16 MHz CPU
• 32 KiB RAM
• Battery Powered



• A fair amount of investigation has been done for 
resource-rich systems (e.g., vehicular/cellular networks)

• The same solutions will not translate to resource-
constrained IoT systems
• Communication

• Security layer

• Edge selection approaches

Multi-access Edge Computing (MEC)



1. Introduce an example trust model

2. Describe the middleware to support trust-based task 
offloading, including disseminating information required 
by different trust models

3. Examine results from a deployment, looking at:
1. Cryptographic operation costs

2. RAM/Flash usage

3. Middleware overhead (in terms of bytes sent and received)

This Talk

Resource-
constrained IoT
• 16 MHz CPU
• 32 KiB RAM
• Battery Powered



• There are several low-memory trust models suitable for use in 
assessing trust in edge nodes

• BRS – two counters α (number of “good” interactions) and β
(number of “bad” interactions), ranking = α / (α + β)

• The challenge is that in order to know how much memory is 
available for the trust models, the middleware supporting task 
offloading needs to be implemented and measured.

Trust-based Task Offloading

Resource-
constrained
• 16 MHz CPU
• 32 KiB RAM
• Battery Powered



• Assess trust independently on each IoT node 
for multiple applications (edge capabilities)

• Aim to answer three questions:
1. Did an edge acknowledge and accept a task?

2. Did that edge provide a timely result for the 
task?

3. Was the task’s result correct?

• The trust model cannot store a complete list 
of all these interactions due to limited 
memory

Example Trust Model

Resource-
constrained
• 16 MHz CPU
• 32 KiB RAM
• Battery Powered



• Maintain three Beta distributions:
• For every edge, did that edge respond

that they had accepted a task

• For every edge, did that edge provide a result for a task

• For every capability on every edge, was the result returned for that 
application correct.

• Calculate trust by finding the weighted sum of the expected 
value of these distributions

• By default, start each distribution at (1, 1)

• Allow distributions to be initialised using stereotypes

• Update the distributions when interacting with an Edge

Example Trust Model

Resource-
constrained
• 16 MHz CPU
• 32 KiB RAM
• Battery Powered



Required functionality:

1. Ability to supply digital certificates 
to IoT devices without them

2. Discovery of capabilities of edge 
nodes

Middleware for Trust-based Task Offloading

Resource-
constrained
• 16 MHz CPU
• 32 KiB RAM
• Battery Powered

3. Request Stereotypes of edge 
nodes

4. Disseminate reputation

5. Application request/response



• Tasks may contain sensitive information, so messages 
need to be protected

• Typically, would do so with DTLS, but some recent issues 
were identified with multiple implementations [1]

• Decided to use OSCORE which provides confidentiality, 
integrity and authenticity protection for CoAP messages

• Plan for the use of Group OSCORE (draft-ietf-core-
oscore-groupcomm-10) for multicasted messages that 
need non-repudiation

• OSCORE only protects some header fields

Message Protection – OSCORE (RFC8613)

[1] P. Fiterau-Brostean, B. Jonsson, R. 
Merget, J. de Ruiter, K. Sagonas, and J. 
Somorovsky. 2020. Analysis of DTLS 
Implementations Using Protocol State 
Fuzzing. In 29th USENIX Security 
Symposium. USENIX Association, Boston, 
MA, 2523–2540.

(From RFC8613)



• Lightweight EC digital certificate using 
secp256r1

• Inspired by XIOT certificates in [2]

• X.509 are too large for these systems 
(ASN.1 less efficient encoding than CBOR)

• These systems may not have a global view 
of time (due to cost of time 
synchronisation) = For now, certificates do 
not expire

PKI - Digital Certificates

[2] J. Höglund, S. Lindemer, M. Furuhed, and 
S. Raza. 2020. PKI4IoT: Towards public key 
infrastructure for the Internet of Things. 
Computers & Security 89 (2020), 101658. 
https://doi.org/10.1016/j.cose.2019.101658



Capability Discovery

• Fits well with a publish/subscribe protocol

• IoT devices subscribe to capabilities

• Edge nodes publish capabilities

• MQTT would be a natural fit, but it uses TCP, which 
required too much RAM

• MQTT-SN uses UDP but is not provided by Contiki-NG

• MQTT-SN would also not be protected
with OSCORE

• An MQTT-to-CoAP bridge was
implemented



Stereotypes

• Trust models can make use of stereotypes to bootstrap 
new entrants

• Avoids needing to “take a risk” on an unknown entity

• Assumption: Stereotypes are in the same language as 
the trust model

• Limitation: The implementation only uses stereotypes to 
describe an edge, not the application it runs



Reputation Dissemination

• Reputation is very useful for trust models

• Needs to provide non-repudiation, cannot allow an 
IoT device to claim they previously sent a different 
reputation

• Two modes supported:
• Periodic dissemination

• Request current views on an specific edge node



Application

• Example of periodic task submission

• Triggered by edge nodes notifying they have the 
appropriate capability

• Aperiodic applications also possible

• Task information may need to be private, so 
confidentiality guarantees from OSCORE are 
important



• Elliptic curve signing, verifying and 
Diffie-Hellman is very expensive

• AES-CCM is much faster, so use it for 
the majority of communication

• Use ECC for shared secret derivation 
and to sign reputation dissemination 
messages

• ECC facilitated by co-processor so 
CPU can continue working while 
performing ECC operations

Cryptographic Operation Performance



• Nearing RAM limit of hardware

• Lots of Flash remaining

• Trust model and ECC crypto support are 
both expensive in terms of RAM

• Will work on optimisations when needed

• Highlights benefits of design decisions 
(e.g., MQTT-over-CoAP)

RAM and Flash usage



• 1 root node, 2 edge nodes and 3 IoT nodes; two applications

• Both edge nodes always “good” for monitoring, rr6 always 
bad for routing

• Trust model eventually excludes tasks from being sent to rr6

Results



• Overhead:

• Trust 
dissemination: 
17% Tx, 5% Rx

• Maximum
50% Tx, 27% Rx

• Challenges with 
tooling

Results



• A common assumption in the agent-based systems community 
is that “more information” == “better trust model”

• With these resource constraints it is not feasible to do so

• Trust models need to work within a few KiBs of RAM and will 
only have limited information from the middleware

For the future:

• Consider providing additional features used by trust models 
(e.g., witness statements)

• Investigate attacks on the middleware that can impact trust 
evaluation and which edge is selected for task offloading

Conclusions

Resource-
constrained
• 16 MHz CPU
• 32 KiB RAM
• Battery Powered



• This work was supported by the PETRAS National 
Centre of Excellence for IoT Systems Cybersecurity 
EPSRC Grant EP/S035362/1.

• https://petras-iot.org

• You can find out more about the project at:
• https://petras-iot.org/project/evaluating-trustworthiness-

of-edge-based-multi-tenanted-iot-devices-team

• https://mbradbury.github.io/projects/project-6-TEAM

Thank you for listening!

Acknowledgement

https://petras-iot.org/
https://petras-iot.org/project/evaluating-trustworthiness-of-edge-based-multi-tenanted-iot-devices-team/
https://mbradbury.github.io/projects/project-6-TEAM

