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Abstract

The classification of complex data usually requires the composition of processing
steps. Here, a major challenge is the selection of optimal algorithms for preprocessing
and classification (including parameterizations). Nowadays, parts of the optimization
process are automized but expert knowledge and manual work are still required. We
present three steps to face this process and ease the optimization. Namely, we take
a theoretical view on classical classifiers, provide an approach to interpret the clas-
sifier together with the preprocessing, and integrate both into one framework which
enables a semiautomatic optimization of the processing chain and which interfaces
numerous algorithms.

First, we summarize the connections between support vector machine (SVM) vari-
ants and introduce a generalized model which shows that these variants are not to
be taken separately but that they are highly connected. Due to the more general
connection concepts, several further variants of the SVM can be generated including
unary and online classifiers. The model improves the understanding of relationships
between the variants. It can be used to improve teaching and to facilitate the choice
and implementation of the classifiers. Often, knowledge about and implementations
of one classifier can be transferred to the variants. Furthermore, the connections also
reveal possible problems when applying some variants. So in certain situation, some
variants should not be used or the preprocessing needs to prepare the data to fit to
the used variant. Last but not least, it is partially possible to move with the help
of parameters between the variants and let an optimization algorithm automatically
choose the best model.

Having complex, high dimensional data and consequently a more complex pro-
cessing chain as a concatenation of different algorithms, up to now it was nearly
impossible to find out what happened in the classification process and which com-
ponents of the original data were used. So in our second step, we introduce an ap-
proach called backtransformation. It enables a visualization of the complete pro-
cessing chain in the input data space and thereby allows for a joint interpretation
of preprocessing and classification to decode the decision process. The interpretation
can be compared with expert knowledge to find out that the algorithm is working as
expected, to generate new knowledge, or to find errors in the processing (e.g., usage
of artifacts in the data).

The third step is meant for the practitioner and hence a bit more technical. We
propose the signal processing and classification environment pySPACE which en-
ables the systematic evaluation and comparison of algorithms. It makes the afore-
mentioned approaches usable for the public. Different connected SVM models can be
compared and the backtransformation can be applied to any processing chain due to
a generic implementation. Furthermore, this open source software provides an in-
terface for users, developers, and algorithms to optimize the processing chain for the
data at hand including the preprocessing as well as the classification.

The benefits and properties of these three approaches (also in combination) are
shown in different applications (e.g., handwritten digit recognition and classification
of brain signals recorded with electroencephalography) in the respective chapters.






Zusammenfassung

Die Klassifizierung komplexer Daten erfordert fiir gewohnlich die Kombination
von Verarbeitungsschritten. Hierbei ist die Auswahl optimaler Algorithmen zur
Vorverarbeitung und Klassifikation (inlusive ihrer Parametrisierung) eine grofle Her-
ausforderung. Teile dieses Optimierungsprozesses sind heutzutage schon automa-
tisiert aber es sind immer noch Expertenwissen und Handarbeit notwendig. Wir
stellen drei Moglichkeiten vor, um diesen Optimierungsprozess besser handhaben zu
konnen. Dabei betrachten wir etablierte Klassifikatoren von der theoretischen Seite,
stellen eine Moglichkeit zur Verfiigung, den Klassifikator zusammen mit der Vorver-
arbeitung zu interpretieren, und wir integrieren beides in eine Software welche
die semiautomatische Optimierung der Verarbeitungsketten ermdéglicht und welche
zahlreiche Verarbeitungsalgorithmen zur Verfiigung stellt.

Im ersten Schritt, fassen wir die zahlreichen Varianten der Support Vector
Machine (SVM) zusammen und fithren ein verallgemeinerndes (generalizing) Mo-
dell ein, welches zeigt, dass diese Varianten nicht fiir sich allein stehen sondern
dass sie sehr stark verbunden sind. Mit Hilfe der Betrachtung dieser Verbindun-
gen ist es moglich weitere SVM-Varianten zu generieren wie zum Beispiel Online-
und Einklassenklassifikatoren. Unser Model verbessert das Verstandnis tiber die
Zusammenhénge zwischen den Varianten. Es kann in der Lehre verwendet wer-
den und um die Wahl und Implementierung eines Klassifikators zu vereinfachen.
Oftmals konnen Erkenntnisse und Implementierungen von einem Klassifikator auf
eine andere Variante tibertragen werden. Desweiteren, konnen die entdeckten
Verbindungen mogliche Probleme offenbaren, wenn man bestimmte Varianten an-
wenden mochte. In bestimmten Fillen sollten einige der Varianten nicht verwendet
werden oder aber die restliche Verarbeitungskette miisste angepasst werden um mit
dieser Variante verwendet werden zu konnen. Nicht zuletzt ist es teilweise moglich
mit Hilfe von Parametern sich zwischen den verschiedenen Varianten zu bewegen
und ein Optimierungsalgorithmus kénnte dadurch die Bestimmung des besten Algo-
rithmusses iibernehmen.

Wenn man mit komplexen und hochdimensionalen Daten arbeitet, verwendet
man oft auch komplexe Verarbeitungsketten. Bisher war es daher meist nicht
moglich herauszufinden, welche Teile der Daten fiir den gesamten Klassifikations-
prozess entscheidend sind. Um dies zu beheben, fiihren wir in unserem zweiten
Schritt die “Backtransformation” (Riicktransformation) ein. Sie ermoglicht die
Darstellung der kompletten Verarbeitungskette im Raum der Eingangsdaten und
lasst damit eine gemeinsame Interpretation von Vorverarbeitung und Klassifikation
zu, um den Entscheidungsprozess zu entschliisseln (decode). Die anschlieBende In-
terpretation kann mit existierendem Expertenwissen abgeglichen werden um her-
auszufinden, ob sich die verwendete Verarbeitung erwartungsgemdall verhilt. Sie
kann auch zu neuen Erkenntnissen fiihren oder Fehler in der Verarbeitungskette
aufdecken, wenn zum Beispiel sogenannte Artefakte in den Daten verwendet wer-
den.

Der dritte Schritt ist fiir den Praktiker gedacht und daher etwas mehr technisch.
Wir stellen unsere Signalverarbeitungs- und Klassifikationsumgebung pySPACE



vor, welche die systematische Auswertung und den Vergleich von Verarbeitungsal-
gorithmen erméglicht. Es stellt die zuvor genannten Ansitze der Offentlichkeit
zur Verfiigung. Die verschiedenen, stark verbundenen SVM-Varianten kénnen ver-
glichen werden und die Backtransformation kann auf beliebige Verarbeitungsketten
in pySPACE angewandt werden, dank einer generischen Implementierung. Des-
weiteren, stellt diese quelloffene Software eine Schnittstelle dar fiir Algorithmen,
Entwickler und Benutzer um Vorverarbeitung und Klassifikation fiir die jeweils vor-
liegenden Daten zu optimieren.

Die Vorteile und Eigenschaften unserer drei Ansétze (auch in Kombination) wer-
den in verschiedenen Anwendungen gezeigt, wie zum Beispiel der Handschrifterken-
nung oder der Klassifikation von Gehirnsignalen mit Hilfe der Elektroenzephalo-
grafie.
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Chapter 0

Introduction

0.1 General Motivation

Humans are able to detect the animal in the wood, to separate lentils thrown into
the ashes, to look for a needle in a haystack, to find the goal and the ball in a sta-
dium, to spot a midge on the wall, .... In everyday life, humans and animals often
have to base decisions on infrequent relevant stimuli with respect to frequent ir-
relevant ones. Humans and animals are experts for this situation due to selection
mechanisms that have been extensively investigated, e.g., in the visual [Treue, 2003]
and the auditory [McDermott, 2009] domain. In their book on signal detection the-
ory, Macmillan and Creelman argue that this comparison of stimuli is the basic psy-
chophysical process and that all judgements are of one stimulus relative to another
[Macmillan and Creelman, 2005].1

In short, humans and animals are the experts for numerous classification tasks
and their classification skills are important for their intelligence. It is a major chal-
lenge, to provide artificial systems like computers and robots with such a type of
artificial intelligence to automatically discover patterns in data [Bishop, 2006]. Es-
pecially when striving for longterm autonomy of robots, such capabilities are needed
(besides others) because a robot will certainly encounter new situations and should
be able to map them to previous experience.

The focus of this manuscript will be on computer algorithms for classifying data
into two categories (binary classification). Given some labeled data for a classifier, the
difficulty is not to generate any appropriate model but the model should be generated
quickly, provide a classification result quickly, be as simple as possible, and most
importantly generalize well to so far unseen data.

There is a tremendous number of classification applications (e.g., terrain classifi-
cation for robots [Hoepflinger et al., 2010, Filitchkin and Byl, 2012], image classifica-

! This paragraph contains text snippets from [Straube and Krell, 2014] by Dr. Sirko Straube.
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tion [LeCun et al., 1998, Golle, 2008, Le et al., 2012], color distinction for robot soccer
[Rofer et al., 2011], email spam detection [Blanzieri and Bryl, 2009], and analysis of
brain signals as input for intelligent man machine interfaces [Kirchner et al., 2013,
Kirchner et al., 2014a, Kim and Kirchner, 2013]).

There is also a very large number of approaches to solve these problems. Often
the original data (raw data) cannot be used by the classifier to build a model, but
an additional preprocessing is required which transforms the raw data to so-called
feature vectors which better describe the data, e.g., mean values, frequency power
spectra, and amplitudes after a low pass filtering.? When dealing with classification
tasks of complex data, the generation of meaningful features is a major issue. This is
due to the fact that the data often consists of a superposition of a multitude of signals,
together with dynamic and observational noise. Hence, the data processing usually
requires the combination of different preprocessing steps in addition to a classifier.
In fact, the generation of good features is usually more important than the actual
classification algorithm [Domingos, 2012].3

Unfortunately, the challenge to define an appropriate processing of the data is
so complicated, that expert knowledge is often required and that even with the help
of this knowledge, the optimal processing might not be found due to the variety of
possible choices of algorithms and parameterizations.* Testing every possible choice
is completely impossible.

The General Research Question

In this thesis, we present three related approaches to make this process easier. It is a
small step into requiring less manual work and expert knowledge and automatizing
this tuning process. It can be motivated by a general question. In this context, a
machine learning expert might ask:

“How shall I use which classifier (depending on the data at hand) and

what features of my data does it rely on?”

The “which” refers to the variety of possible algorithms. Even after choosing
the classifier, an implementation is required and the data needs to be preprocessed
(“how”) and after the processing the expert wants to know if the processing worked
correctly and if it is even possible to learn something from it (“what”).

2 In Section 2.2.1 more examples will be given and it will be shown, how algorithms are combined
for the feature generation to processing chains.

3 Without an appropriate preprocessing, a classifier is not able to build a general model, which will
give good results on unseen data.

4 To distinguish model parameters of algorithms from the meta-parameters, which customize the
algorithm, the latter are usually called hyperparameters.
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Unfortunately, there is no fully satisfactory answer to the first part
of this question according to the “no free lunch theorem” of optimization
[Wolpert and Macready, 19971.> The answer to the second part depends on the com-
plexity of the applied processing algorithms and might be very difficult to provide, es-
pecially when different algorithms are combined or adaptive or nonlinear algorithms
are used.

Besides the no free lunch theorem, the difficulty of choosing the “right” classifier
and answering the “which” is complicated by the dependence of the classifier on the
preprocessing and the high number of existing algorithms.® Advantages of certain
classifiers often depend on the application but also on the chosen way of tuning hy-
perparameters and implementing the algorithm (e.g., stop criterion for convergence).
A common approach to compare classifiers is to have a benchmarking evaluation with
a small subset of classifiers on a special choice of datasets. This can give a hint on
the usefulness of certain classifiers for certain applications/datasets but does not pro-
vide a deeper understanding of the classifiers and how they relate to each other. A
different approach is to clearly determine the relations between classifiers in order
to facilitate the choice of an appropriate one. Unfortunately, only few connections
between classifiers are known and, since they are spread all over the literature, it is
quite difficult to conceive of them as a whole. Hence, summarizing the already known
connections and deriving new ones is required to ease the choice of the classifier. This
even holds for the numerous variants of the support vector machine (SVM). We will
focus on that classifier, because it is very powerful and understanding the connection
to its variants is already helpful. It is reasonable to pick a group which has a certain
common ground, because it is impossible to connect all classifiers.

Additionally to looking at classifiers it is important to look at their input: the
feature vectors, which are used as data for building the classifier (training sam-
ples). For finding the relevant features in the data, there are several algorithms
in the context of feature selection [Guyon and Elisseeff, 2003, Saeys et al., 2007,
Bolon-Canedo et al., 2012]. Even though these algorithms can improve classification
accuracy and interpretability, they do not give information about the relevance of the
features for the classifier finally used in a data processing chain. The answer to the
question, “what features of my data does my classifier rely on”, can be difficult to pro-
vide because of three issues. First, the classifier might have to be treated as a black
box. Second, it might have nonlinear behavior, meaning that the relevance of certain
features in the data is highly dependent on the sample which is classified. The third

5 For our case, the theorem states that for every classification problem, where classifier a is better
than classifier b, there is a different problem where the opposite holds true.

8 With a different preprocessing a different classifier might be appropriate, e.g., with a nonlinear
instead of a linear model.
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and most important point is, that the classifier is not applied to the raw data but pre-
processed data. Hence, the classifier should not be regarded as a single algorithm,
but instead the complete decision algorithm consisting of preprocessing algorithms
and classifier and their interplay with the data need to be considered. For example,
in the extreme case where a classifier is not even really required because the features
are sufficiently good, it is important to look at the generation of the features to decode
the decision algorithm.

Last but not least, the question of “how” to apply the data processing is probably
the most time consuming part of designing a good data processing chain. Perform-
ing hyperparameter optimization and large scale evaluations is cumbersome. A lot
of time for programming and waiting for the results is required. Furthermore, when
trying to reproduce results from other persons there is no access to the used imple-
mentations and the details of the evaluation scheme. The most complicated part
might be to configure the processing for the needs of the concrete application and to
generate optimal or at least useful features.

To fix all these problems completely is impossible but it is possible to tackle parts
of them and go a step further towards a solution as outlined in the following section.

Despite this more general and abstract motivation, we will provide a more con-

crete motivation by an application in Section 0.4.

0.2 Objectives and Contributions

The main objective of this thesis is to provide (theoretical, practical, and techni-
cal) insights and tools for data scientists to simplify the design of the classi-
fication process. In contrast to other work, the goal is not to derive new algorithms
or to tweak existing algorithms.

Here, a “classification process” also includes the complete evaluation process with
the preprocessing, tuning of hyperparameters, and the analysis of results. Three
subgoals can be identified, derived from the previously discussed question: “How

shall I use which classifier and what features of my data does it rely on?”

c Theoretical aspect: Analyze the connections between SVM variants to derive a

more “general” picture.

9 Practical aspect: Construct an approach for decoding and interpreting the deci-
sion algorithm together with the preprocessing.

9 Technical aspect: Implement a framework for better automatizing the process of
optimizing the construction of an appropriate signal processing chain including
a classifier.
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Subgoal 1 targets the question of “which” classifier to use. The question of “what
features of my data does it (the classifier) rely on” is covered by the second subgoal.
The last subgoal requires us to answer the question of “how” to apply the classifier
and supports Subgoal 1 by providing a platform to compare and analyze classifiers.
It also supports Subgoal 2 as an interface for implementing it.

Note that this introduced numbering will also be used concerning the achieve-
ments of this thesis and the respective chapter numbers. Furthermore, it is impor-
tant to note that there are connections between the goals, because the respective
approaches can (and often have to) be combined. To face the three subgoals, the

following approaches are taken.

Contribution 1: Generalizing Due to the ever-growing number of classifica-
tion algorithms, it is difficult to decide which ones to consider for a given applica-
tion. Knowledge about the relations between the classifiers facilitates the choice
and implementation of classifiers. As such, instead of further specializing existing
classifiers we take a unifying view. Considering only the variants of the classical
support vector machine (C-SVM) [Vapnik, 2000, Cristianini and Shawe-Taylor, 2000,
Muiller et al., 2001, Scholkopf and Smola, 2002], some connections are already known
but the knowledge about these connections is distributed over the literature.

We summarize these connections and introduce the following three general con-
cepts building further intuitive connections between these classifiers.

The C-SVM belongs to the group of batch learning classifiers. These classifiers
operate on the complete set of training data to build their model consuming large
resources of memory and processing time. In contrast, online learning algorithms
update their model with each single sample and, later on, forget the sample. They
are very fast and memory efficient which is required for several applications but they
usually perform less well. The single iteration approach describes a way to transfer
batch learning to online learning classifiers. If the solution algorithm of the batch
learning classifier is repeatedly iterated over the single training samples to update
a linear classification function, an online learning algorithm can be generated by
performing this update only once for each incoming sample.

The second concept, called relative margin, establishes a connection between
the more geometrically motivated SVM and the regularized Fisher’s discriminant
(RFDA) coming from statistics.

The third concept, the origin separation approach, allows defining unary classi-

fiers with the help of binary classifiers by taking the origin as a second class.”

" Unary classifiers use only one class for building a model but they are usually applied to binary
classification problems, where the focus is to describe the more relevant class, or where not enough
training samples are available from the second class to build a model.
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Together with the existing more formal connection concepts (especially normal
and squared loss, kernel functions, and normal and sparse regularization), these
connections span the complete space of established SVM variants and additionally
provide new not-yet discovered variants.

Knowing the theory of these novel connections simplifies the implementation of
the algorithms and makes it possible to transfer extensions or modifications from
one algorithm to the other connected ones. Thus, it enables to build a classifier that
fits into the individual research aims. Furthermore, it simplifies teaching and getting
to know these classifiers. Note that the connections are not to be taken separately
but in most cases they can be combined.

Contribution 2: Decoding Having the knowledge about the relations between
classifiers is not always sufficient for choosing the best one. It is also important to
understand the final processing model to find out what lies behind the data and to
ensure that the classifier is not relying on artifacts (errors in the data). Existing
approaches visualize the data and the single processing steps, but this might not
be sufficient for a complete picture, especially when dimensionality reduction algo-
rithms are used in the preprocessing. This is often the case for high-dimensional
and noisy data. Hence, a representation of the entire processing chain including both
classification and preprocessing is required. Our novel approach to calculate this rep-
resentation is called backtransformation. It iteratively transforms the classification
function back through the signal processing chain to generate a representation in the
same format as the input data. This representation provides weights for each part
of the data to tell which components are relevant for the complete processing and
which parts are ignored. It can be directly visualized, when using classical data visu-
alization approaches as they are for example used for image, electroencephalogram
(EEG), and functional magnetic resonance imaging (fMRI) data. This practical con-
tribution opens up the black box of the signal processing chain and can now be used
to support the “close collaboration between machine learning experts and application
domain ones” [Domingos, 2012, p. 85]. It can provide a deeper understanding of the
processing and it can help to improve the processing and to generate new knowledge
about the data. In some cases even new expert knowledge might be generated.

Contribution 3: Optimizing For a generic implementation of the backtransfor-
mation an interface is required. Furthermore, it is still required to optimize the
hyperparameters of the classifiers and the preprocessing for further improvement
of the processing chain. Hence, it is necessary to have “an infrastructure that
makes experimenting with many different learners, data sources, and learning prob-
lems easy and efficient” [Domingos, 2012, p. 85]. To solve this problem, we de-
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veloped the Signal Processing And Classification Environment written in Python
(pySPACE) [Krell et al., 2013b]. It provides functionality for a systematic and au-
tomated comparison of numerous algorithms and (hyper-)parameterizations in a sig-
nal processing chain. Additionally, pySPACE enables the visualization of data, al-
gorithms, and evaluation results in a common framework. With its large number of
supporting features this software is unique and a major improvement to the existing
open source software.

0.3 Structure

In this thesis, we present our steps to improve and automatize the process of de-
signing a good processing chain for a classification problem (classifier connections,
backtransformation, pySPACE). This thesis is structured as follows.

First, the different SVM variants are introduced including the known connec-
tions and in the following three more general concepts are introduced which connect
them (Chapter 1). Second, the backtransformation concept is presented in Chapter 2.
Third, the pySPACE framework, the more technical part of this thesis, and its use
for optimization is shown in Chapter 3. All three main parts are also displayed in
Figure 1 using the same numbering. Finally, a conclusion and an outlook is given in
Chapter 4. In the appendix, all my publications are summarized. Furthermore, the
appendix contains detailed proofs, information on the used data, and some configu-
ration files used for the evaluations in the different chapters.

The related work and our proposed approaches are often highly connected and
consequently presented separately in the respective chapters and not in an extra
chapter about literature at the beginning of this thesis. Each approach integrates at
least a part of the related work.

Even though the contributions of this thesis are separated into three chapters,
they are still connected. For the evaluations in Chapter 1 and Chapter 2, the respec-
tive algorithms are integrated into pySPACE and the framework is used to perform
the evaluations using the concepts described in Chapter 3. Furthermore, the back-
transformation concept from Chapter 2 will be applied to the different classifiers from
Chapter 1 and additional knowledge about the classifiers will be incorporated into a
variant of the concept. Last but not least, all three parts should be combined to get
the best result when analyzing data.
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understand relations between
Support Vector Machine variants

interprete decision process
(classifier, preprocessing, and data)

OPTIMIZING
optimize classifier & preprocessing; | . PYSPACE: SIGNAL PROCESSING AND

evaluate & share approaches ’CLASSIFICATION ENVIRONMENT@
Figure 1: Graphical abstract of this thesis. The numbering is also used for the
corresponding subgoals and respective chapters. The first part provides a more gen-
eral picture of SVM variants by connecting them. The second part introduces the
backtransformation concept to decode data processing chains. Finally, the third part
presents our framework pySPACE which is an interface for optimizing signal pro-

cessing chains. Furthermore, the previous two parts can be used and analyzed with
this software.

Disclaimer: Text Reuse

Single sentences but also entire paragraphs of this thesis are taken from my own pub-
lications without explicit quotation because I am the main author® or I contributed
the used part to them.? Except for my summary paper [Krell et al., 2014c, see also
Section 2.4.4], which is somehow scattered over some introductory parts, I explicitly
mention these sources at the beginning of the respective chapters or sections where
they are used. Often parts of these papers could be omitted by referring to other
sections or they had to be adapted for consistency. On the other hand, additional
information, additional experiments, the relation to the other parts of this thesis, or
personal experiences are added.

8 [Krell et al., 2013b, Krell et al., 2014a, Krell et al., 2014c, Krell and Straube, 2015,
Krell and Wohrle, 2014]
9 [Feess et al., 2013, Straube and Krell, 2014]
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Notation

In this thesis mostly the “standard notation” is used and it should be possible to infer
the meaning from the context. Nevertheless, there is a list of acronyms and a list
of used symbols at the end of this document. If some notation is unclear we refer to
these lists. It will be directly mentioned, if the standard symbols are not used.

0.4 Application Perspective: P300 Detection

Even though the approaches derived in this thesis are very general and can be
applied in numerous applications, they were originally developed with a concrete
dataset/application in mind. We will first describe the general setting, continue with
a description of the experiment which generated the data, and finally highlight the
connection of the dataset to this thesis to provide an additional less abstract motiva-
tion.

0.4.1 General Background of the Dataset

Current brain-computer interfaces (BCIs) rely on machine learning techniques
as the ones discussed in this thesis. They can be used to detect the P300
event-related potential (ERP)!? for communication purposes (e.g., for P300 based
spellers [Farwell and Donchin, 1988, Krusienski et al., 2006] or for controlling a vir-
tual environment [Bayliss, 2003]), to detect interaction errors for automated cor-
rection [Ferrez and Millan, 2008, Kim and Kirchner, 2013], or to detect movement
preparation or brain activity that is related to the imagination of movements for
communication or control of technical devices [Bai et al., 2011, Blankertz et al., 2006,
Kirchner et al., 2014b].

The P300 is not only used to implement active BCIs for communication and
control but can furthermore be used more passively as it was investigated in
the dataset described in the following. For example, in embedded brain reading
(eBR) [Kirchner, 2014] the P300 is naturally evoked in case an operator detects and
recognizes an important warning during interaction. Thus, the detection of the P300
is used to infer whether the operator will respond to the warning or not and to adapt
the interaction interface with respect to the inferred upcoming behavior. A repeti-
tion of the warning by the interaction interface can be postponed in case a P300 is
detected after a warning was presented since it can be inferred that the operator
will respond to the warning. In case there is no P300 detected, the warning will be

19 This is a special signal in the measurement of electrical activity along the scalp (electroencephalo-
gram). The name refers to a positive peak at the parietal region which occurs roughly 300 ms (or with a
larger latency) after the presentation of a rare but important visual stimulus (see also Section 0.4.2).
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repeated instantly since it can be inferred that the operator did not detect and recog-
nize the warning and will therefore not respond [Wéhrle and Kirchner, 2014]. Since
in the explained case we are able to correlate the brain activity with the subject’s
behavior, the detected behavior can be used as a label to control for the correctness
of the predicted brain states and hence to adapt the classifier by online learning to
continuously improve classification performance [Wohrle et al., 2013b] (Section 1.2).

The previous description was created with the help of Dr. Elsa Andrea Kirch-
ner, who headed the experiments for the dataset. The following rather short dataset
description is adapted from [Feess et al., 2013] where the data was used to compare
different sensor selection algorithms. A very detailed description of the experiment
and related experiments is provided in [Kirchner et al., 2013].

0.4.2 Description of the Dataset

The data described in this section has been acquired from a BCI system that
belongs to the class of passive BCIs: the purpose is the gathering of informa-
tion about the user’s mental state rather than a voluntary control of a sys-
tem [Zander and Kothe, 2011, Kirchner, 2014]. Therefore, no deliberate participation
of the subject is required.

The goal of the system is to identify whether the subject distinctively perceived
certain rare target stimuli among a large number of unimportant standard stimuli.
It is expected that the targets in such scenarios elicit an ERP called P300 whereas
the standards do not [Courchesne et al., 1977].

Five subjects participated in the experiment and carried out two sessions on dif-
ferent days each. A session consisted of five runs with 720 standard and 120 target
stimuli per run. EEG data were recorded at 1kHz with an actiCAP EEG system
(Brain Products GmbH, Munich, Germany) from 62 channels following the extended
10-20 layout. (This system usually uses 64 channels. Electrodes TP7 and TP8 were
used for electromyogram (EMG) measurements and are excluded here.)!!

The data was recorded in the Labyrinth Oddball scenario (see Figure 2), a testbed
for the use of passive BCIs in robotic telemanipulation. In this scenario, partici-
pants were instructed to play a simulated ball labyrinth game, which was presented
through a head-mounted display. The insets in the photograph show the labyrinth
board as seen by the subject. While playing, one of two types of visual stimuli was
displayed every 1 second with a jitter of 100 ms. The corners arranged around the
board represent these stimuli. As can be seen, the difference in the standard and tar-
get stimuli is rather subtle: in the first case the top and bottom corners are slightly
larger and in the latter the left and right corners are larger. The subjects were in-

1 The electrode layout with 64 electrodes is depicted in Figure C.6.
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structed to ignore the standard stimuli and to press a button as a reaction to the rare
target stimuli.

Both standard and target stimuli elicit a visual potential as seen in the averaged
time series in Figure 2 (strong negative peak at around 200 ms after the stimuli). Ad-
ditionally, target stimuli induce a positive ERP, the P300, with maximum amplitude
around 600 ms after stimulus at electrode Pz. It is assumed that the P300 is evoked by

rare, relevant stimuli that are recognized, and cognitively evaluated by the subject.

Averaged ERP: Standards

0 300 600 ms

Averaged ERP: Targets

uv
-4 Pz

4 P300 xoges
0 300 600 ms

Figure 2: Labyrinth Oddball: The subject plays a physical simulation of a ball
labyrinth game. He has to respond to rare target stimuli by pressing a buzzer and
ignore the more frequent standard stimuli. The insets show the shape of the stimuli,
which can be distinguished by the length of the edges. The graphs to the left depict
the event-related potentials (ERPs) evoked by both stimulus types at electrode Pz.
Both stimuli elicit an early negative potential attributed to visual processing, but
only targets evoke an additional strong, positive potential around 600 ms after the
stimulus. Visualization and description taken from [Feess et al., 2013].

The BCI only needs to passively monitor whether the operator of the labyrinth
game correctly recognized and distinguished these stimuli. There is an objective
affirmation of the successful stimulus recognition, because a button has to be pressed,

whenever a target is recognized. No feedback is given to the user.

0.4.3 Relevance for this Thesis

Even though this data is not (yet) open source, it was used in this thesis for several
reasons as listed in the following.
e It provides numerous datasets to have a comparison of algorithms.'?
e EEG data classification is a very challenging task where the applied signal pro-
cessing chain usually performs much better than the human.

2 Up to 50 datasets/recordings, depending on the evaluation scheme.
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e The data has a very bad signal to noise ratio. Thus it is a challenge to optimize
the processing chain.

e The data was recorded in a controlled and somehow artificial scenario but in
fact it targets a much more promising application of a BCI where the humans
intentions are monitored with the help of the EEG during a teleoperation task
with many robots where robots act more autonomously. This task can be very
challenging and the monitoring can be used to avoid malfunction in the inter-
face. When analyzing the P300 data and tuning processing chains, we kept this
more complex application in mind.

e The dataset was the motivation for all findings in this thesis as described in the
following.

e The aforementioned more practical application requires online learning to in-
tegrate new training data for performance improvement and to account for the
different types of drifts in the data (see Section 1.2).

e Support vector machine and Fisher’s discriminant were common classifiers on
this type of data [Krusienski et al., 2006] (see Section 1.3).

e Depending on the application, which uses the P300, it might be very difficult
to acquire data from a second class and consequently a classifier is of interest,
which only works with one class (see Section 1.4). Altogether, a more general
model of classification algorithms and their properties and connections is help-
ful here.

e There is always the danger of relying on artifacts (e.g., muscle artifacts, eye
movement) and there is an interest from neurobiology to decode the processing
chain, which is built to classify the P300 (see Chapter 2). For the given dataset,
we could show that eye artifacts are not relevant.

e Finding a good processing chain for such demanding data requires a lot of hy-
perparameter optimization and comparison of different algorithms. Further-
more, it is useful to exchange processing chains between scientist to find flaws,
communicate problems and approaches, and help each other improving the pro-
cessing (see Chapter 3).

e There is an interest in using as few sensors and time points for the processing to
make the set up easier and the processing faster (see Section 3.4.3). To derive
such selection algorithm it can be helpful to combine the tools and insights,
derived in this thesis.

A reference processing chain for this data is depicted in Figure 3.4. In the eval-

uations in this thesis, only the difference to this processing scheme is reported. The
processing chain assumes that the data has already been segmented in samples of

one second length after the target or standard stimulus.
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The aim of this chapter is to summarize known and novel connections between SVM
variants to derive a more general view on this group of classifiers. This shall facilitate
the choice of the classifier given certain data or applications at hand.

Given some data-value pairs (z;,y;) with z; € R™ and j € {1,...,n} a common
task is to find a function F* which maps F'(z;) = y; as good as possible and which
should also perform well on unseen data. If y; is from a continuous space like R, an
algorithm deriving such a function [ is called regression algorithm. If y; is from a
discrete domain, the algorithm is a classifier. In this thesis, we will focus on the case
of binary classification with y; € {—1,+1}. In most cases, linear classifiers will be
used with f(z;) = (w,z;) + b, where w is the classification vector and b the offset. To
finally map the classification function to a decision ({—1,+1}), the signum function
is applied (F(x) = sgn(f(x))).

The classical support vector machine (C-SVM) [Vapnik, 2000,
Cristianini and Shawe-Taylor, 2000, Miiller et al., 2001, Scholkopf and Smola, 2002]
is a well-established binary classifier.! Good generalization properties, efficient
implementations, and powerful extensions like the kernel trick or possible sparsity
properties (explained in Section 1.1), make the SVM attractive for numerous vari-
ants and applications [LeCun et al., 1998, Guyon et al., 2002, Lal et al., 2004,
LaConte et al., 2005, Golle, 2008, Tam et al., 2011, Filitchkin and Byl, 2012,
Kirchner et al., 2013]. The most important variants are

e v support vector machine (v-SVM) [Schélkopf et al., 2000, Section 1.1.1.3],

e support vector regression (SVR) [Vapnik, 2000, Smola and Scholkopf, 2004, Sec-

tion 1.1.1.4],

e least squares support vector machine (LS-SVM) [Van Gestel et al., 2002, Sec-

tion 1.1.2],
e relative margin machine (RMM) [Shivaswamy and Jebara, 2010,
Krell et al., 2014a, Section 1.1.4 and 1.3],
e passive-aggressive algorithm (PAA) [Crammer et al., 2006, Sec-
tion 1.1.5, 1.1.6.2, and 1.2.4],
e support vector data description (SVDD) [Tax and Duin, 2004, Section 1.1.6.1],
e and classical one-class support vector machine (voc-SVM)
[Scholkopf et al., 2001b, Section 1.1.6.3].
e Furthermore, regularized Fisher’s discriminant (RFDA) can be seen as a SVM
variant, too [Mika, 2003, Krell et al., 2014a, Section 1.1.3 and 1.3].
In the literature these algorithms are usually treated as distinct classifiers. This also
holds for the evaluations. Some connections between these classifiers are known but

scattered erratically over the large body of literature. First, in Section 1.1 the models

! The C in the abbreviation probably refers to the hyperparameter C in the classifier definition and
is used to distinguish it from other related classifiers (see also Section 1.1.1).
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and these connections will be summarized. In the following, general concepts for a
unifying view are proposed to further connect these classifiers and ease the process
of choosing a fitting classifier:

e The single iteration concept creates online learning classifiers like PAA from
batch learning classifiers to save computational resources (Section 1.2).

e The relative margin concept intuitively connects SVM, SVR, RMM, LS-SVM,
and RFDA (Section 1.3).

e The origin separation concept transforms binary to unary classifiers like voc-
SVM for outlier detection or to data description (Section 1.4).

By combining these three approaches, a large number of additional variants can be
generated (see Fig. 1.1). In Section 1.5 the connections between the aforementioned
classifiers will be summarized and possible scenarios explained where the knowledge
of the connections is helpful (e.g., implementation, application, and teaching).

. _singe ___ ____ _
SVM iteration PAA
T 4 origin origin T
| \§eparation separation ¢ |
| |
| unary |single unary |
| SVM |iteration PAA |
I3 =5 =15 35
512 Ty B & 25
G = gl= gl= g =
515 5'|c<u 518 515
| 1 1 |
b unary
[ unary Jsingle | gepiv |
I BRMM |iteration PAA I
I 4 2 I
v . origin origin « v
$eparation separation’
[ single . SN BRMM
BRMM iteration ™1 Pan

Figure 1.1: 3D-Cube of our novel connections (commutative diagram). Com-
bining the approaches, introduced in Chapter 1: relative margin (vertical arrows)
to generate the balanced relative margin machine (BRMM) which is the connection
to the regularized Fisher’s discriminant (RFDA), single iteration (horizontal arrows)
to generate online classifiers like the passive-aggressive algorithm (PAA), and the
origin separation (diagonal arrows) to generate unary classifiers from binary ones.
Each approach is associated with one dimension of the cube and going along one edge
means to apply or remove the respective approach from the classifier at the edge.
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1.1 Support Vector Machine and Related Methods

In this section, we introduce all the aforementioned SVM variants including some
basic concepts and known connections which are pure parameter mappings and no
general concepts. For further reading, we refer to the large corpus of books about
SVMs. Readers who are familiar with the basics of support vector machines and its
variants can continue with the next section.

The models will be required in the following sections which introduce three gen-
eral concepts to connect them. Putting everything together in Section 1.5, we will
show that the SVM variants, introduced in this section, are all highly connected.

1.1.1 Support Vector Machine

In a nutshell, the principle of the C-SVMs is to construct two parallel hyperplanes
with maximum distance such that the samples belonging to different classes are sep-
arated by the space between these hyperplanes (see also Figure 1.2). Such space

between the planes is usually called margin—or inner margin in our context.
Commonly, only the Euclidean norm <]v||2 =4/ vf) is used for measuring

the distance between points but it is also possible to use an arbitrary p-norm

(HUHp = m) with p € [1,00].2

For getting the distance between two parallel hyperplanes or a point and a hy-

perplane instead, the respective dual p’-norm has to be used with % + z% =1
[Mangasarian, 1999]. If p = oo, p’ is defined to be 1. Having the two hyperplanes
H+1 and H_1 with

H, ={z|{w,z) + b=z}, (1.1)

their distance is equal to W according to Mangasarian. (In case of the Euclidean
P
norm, this effect is also known from the Hesse normal form.) The resulting model

reads as:

Method 1 (Maximum Margin Separation).

1
[wll

max ‘

w,b v (1.2)
st. yj((w,z;) +b) >1 Vj:1<j<n.
For new data, the respective linear classification function is:
f(z) = (w,zj) +b. (1.3)

% Due to convergence properties it holds ||v||__ := max |v;].
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Figure 1.2: Support vector machine scheme. The blue dots are training samples
with y = —1 and the red dot with y = +1 respectively. Displayed are the three parallel
hyperplanes H,;, Hy, and H_;.

To get a mapping to the class labels —1 and +1 we use the decision function

+1 if f(z) >0,

) (1.4)
—1 otherwise.

F(z) = y(z) = sgn(f(z)) == {
For better solvability, Method 1 is reformulated to an equivalent one. The fraction is
inverted, and the respective minimization problem is solved instead. Furthermore,
the root is omitted to simplify the optimization process and further calculations. An
additional scaling factor is added for better looking formulas when solving the opti-
mization problem. These superficial modifications do not change the optimal solution.
The resulting reformulated model reads:

Method 2 (Hard Margin Separation Support Vector Machine).

min Ll
w,b pee (1.5)
st yi((w,zj) +b) =1 Vj:1<j<n

Since strict separation margins are prone to overfitting or do not exist at all, some
disturbance in the form of samples penetrating the margin is allowed denoted with
the error variable ¢;.

When speaking of the C-SVM, normally the Euclidean norm is used (p = p’ = 2):
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Method 3 (L1-Support Vector Machine).

min [[w|; +C Yt

w,b,t

st yi((w,z;)+b) >1—t; Vj:1<j<mn, (1.6)
t; >0 Vi:1<j<n.

The hyperparameter C defines the compromise between the width of the margin
(regularization term % ||w\|§) and the amount of samples lying in or on the wrong
side of the margin (¢; > 0).2 This principle is called soft margin, because the margins
defined by the two hyperplanes H,; and H_; can be violated by some samples (see
also Figure 1.3). In the final solution of the optimization problem only these samples
and the samples on the two hyperplanes are relevant and provide the SVM with its

name.
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Figure 1.3: Soft margin support vector machine scheme. In contrast to Fig-
ure 1.2, some samples are on the wrong side of the hyperplanes within the margin.

Definition 1 (Support Vector). The vectors defining the margin, i.e., those data ex-
amples x; where t; > 0 or where identity holds in the first inequality constraint

(Method 3), are the support vectors.

The L1 in the method name of the SVM (Method 3) refers to the loss term
t]; = > tj for t; > 0 in the target function. A L2 variant that uses ||t\|§ instead
was suggested but is rarely used in applications, especially when kernels are used.
When using kernels, it is important to have as few support vectors as possible and
the L2 variant often has much more support vectors [Mangasarian and Kou, 2007]
(see also Section 1.1.1.2).

3 C is called regularization constant, cost factor, or complexity.
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1.1.1.1 Lagrange Duality

For deriving solution algorithms for the optimization problem of the C-SVM and
for the introduction of kernels—presently one of the most important research top-
ics in SVM theory— it is useful to apply duality theory* from optimization, e.g.,
[Burges, 1998]. Solving the dual instead of the primal (original) optimization prob-
lem can be easier in some cases and if certain requirements are fulfilled, then
the solutions are connected via the Karush-Kuhn-Tucker (KKT) conditions, e.g.,
[Boyd and Vandenberghe, 2004]. Finally, duality theory enables necessary optimality
conditions, which can be used to solve the optimization problems. Even though the
following calculations will be only performed for the C-SVM, the concepts also apply
for numerous variants and the respective calculations are similar (as partially shown
in the appendix).

To avoid a degenerated optimization problem, it is required to check if at least
one point fulfills all restrictions (feasible point), if there is a solution of the optimiza-
tion problem, and if the problem can be “locally linearized”, i.e., fulfills a constrained
qualification, e.g., [Boyd and Vandenberghe, 2004]. These points are usually ignored
in the SVM literature probably because they seem obvious from the geometrical per-

spective. Nevertheless, they are the basis of most optimization algorithms for SVMs.

Theorem 1 (The C-SVM Model is well defined). The C-SVM optimization problem
has feasible points and a solution always exists, if there is at least one sample for each
class. Additionally when using the hard margin the sets of the two classes need to be

strictly separable. Furthermore, Slater’s constraint qualification is fulfilled.?

The question of how to determine the solution is a main topic of Section 1.2. The
benefit of this theorem is twofold. We proofed that the model is well defined and that
we can apply Lagrange duality. The advantage of Lagrange duality for Method 3 is a
reformulation of the optimization problem, which is easier to solve and which allows
replacing the original norm by much more complex distance measures (called kernel
trick). This advantage does not hold for the variants based on other norms (p # 2).

For obtaining the dual optimization problem, first of all the respective Lagrange
function has to be determined. For this, dual variables are introduced for every in-
equality (o, 7;) and the inequalities are rewritten to have the form g(w,b,t) < 0. The
Lagrange function is the target function plus the sum of the reformulated inequality
functions weighted with the dual variables:

1
Li(w,b,t,a,y) = 3 ||w|]§ + chtﬂ ZO‘J yi((w, zj) +b) — 1 +t5) Z%t] (1.7)

4 This should not be mixed up with the previously mentioned duality of the norms. The dual opti-
mization problem can be seen as an alternative/additional view on the original optimization problem.

5 The proof is given in Appendix B.1. Other constraint qualifications do exist, but Slater’s was most
easy to check for the given convex optimization problem.
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For the L2—SVM this yields:
1
Lo(w,b,t,0) = Sl + Y G5t = Y aslys((wz) +8) — 1+1;). (18)

To consider the label or the time for the weighting of errors, C has been chosen sample
dependent (C}).

With a case study, it can be shown that the original optimization is equivalent to
optimizing:

min sup Li(w,b,t,a,). 1.9)
w,b,t 0>0,7>0

Infeasible points in the original optimization problem get a value of infinity due to
usage of the supremum and for the feasible points the original target function value
is obtained. According to Theorem 1, the optimization problem has a solution and
Slater’s constraint qualification is fulfilled. Consequently the duality theorem can be
applied [Burges, 1998]. It states that we can exchange minimization and “suprem-
ization” and that the solutions for both problems are the same:

funlle%a>S§£)>0L qw, bt o, y) = ag(l)a’uy);ogllle%L (w,b,t,a,7), g € {1,2}. (1.10)
The advantages of the new resulting optimization problem, called dual optimization
problem, are twofold. First, the inner part is an unconstrained optimization problem
which can be analytically solved. Second, the remaining constraints are much easier
to handle than the constraints in the original (primal) optimization problem.

For simplifying the dual optimization problem, the minimization problem is
solved by calculating the derivatives of the Lagrange function for the primal variables
and setting them to zero. This is the standard solution approach for unconstrained

optimization.
0Ly 0Lo
B YT Zozjijj, (% = Zajy], (% =Cj—j =, 7 o, = 2t;C; —a. (1.11)
The most important resulting equations are
w = Zajijj, (112)
J

which gives a direct relation between w and «, and

Zajyj = 0, (113)
J
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which is a linear restriction on the optimal «. For the L1 variant, the equation
Cj—aj =7 (1.14)

results in the side effect that v; can be omitted in the optimization problem and «;
gets the upper bound C; instead, due to the constraint v > 0. Finally, substituting
the equations for optimality into L, and multiplying the target function with —1 to

obtain a minimization problem results in the following theorem:

Theorem 2 (Dual L1- and L2-SVM Formulations). The term

0 3 2 oYY (i T5) = )0y (1.15)
Cj>aj>07zajyj—02; 1QjYiYj \Ti> L Z J

is the dual optimization problem for the LI-SVM and

(1.16)

Q\W

min 2 Z Q05 Y5Y xza l‘] Z aj + Z
J

ajZO,Z a;y;=0 i
for the L2-SVM.

The dual of the hard margin SVM is given in Theorem 18 and for the L2 variant
a more detailed calculation is provided in Appendix B.1.3.

In the dual formulation, only the pairwise scalar products of training samples are
required. This is exploited in the kernel trick (Section 1.1.1.2). Note that only in the
L1 case there is an upper bound on the dual variables. Furthermore, when looking
more detailed into the calculations we realize that the additional equation in the dual
feasibility constraints is a result of b being a free variable which is not minimized in
the target function. These observations will be again relevant in Section 1.2.

The a; are connected to the primal problem via Equation (1.12) but also via the
complementary slackness equations [Boyd and Vandenberghe, 2004]:

a; > 0= y;((w,z;) +b) <1 (1.17)

Consequently, only samples on the margin or on the wrong side of the margin con-
tribute to the classification function according to Equation (1.12). All the other sam-
ples are irrelevant and do not “support” the decision function. Hence the name.

For the L1 case, it additionally holds

ti>0=v=0=a; =Cj. (1.18)

This immediately tells us that every sample which is on the wrong side of the margin

gets the maximum weight assigned and that every z; with «; > 0 is a support vector.
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Sometimes a; > 0 is used instead to define the term support vector.

So a specialty of the SVM is that only a fraction of the data is needed to describe
the final solution. Interestingly, w could be split into the difference of two prototypes
where each corresponds to one class:

w = Z a;xj — Z QjTj = W1 — W1 . (1.19)
Jyj=1,a;>0 Jyj=—1a;>0

So especially for the L1 case, the prototypes are in its core only the average of the
samples of one class which are difficult to distinguish from samples of the other class.
In the L2 case, it is a weighted average. When looking at the implementation details
in Section 1.2, it turns out that weights are higher if it is more difficult to distinguish
the sample from the opposite class.

Additionally to implementation aspects in Section 1.2, the results of this section
will be also used in the following to introduce kernels. Here, the weighted average of
samples is not used anymore. It is replaced by a weighted sum of functions.

1.1.1.2 Loss Functions, Regularization Terms, and Kernels

This section introduces three important concepts in the context of SVMs which are
also used in other areas of machine learning like regression, dimensionality reduc-
tion, and classification (without SVM variants). They are already a first set of (known
but loose) connections in the form of parameter mappings between SVM variants.
They will be repeatedly referred to in the other sections.

Loss Functions First, we will have a closer look at the ¢; in the C-SVM models.
Instead of using ¢;, it is also possible to omit the side constraints by replacing ¢; in
the target function of the model with the function

max {0,1 — y;((w,z;) +0)}. (1.20)

The underlying function [(¢) = max {0, 1 — ys} is called hinge loss, where y € {—1,+1}
is the class label and s is the classification score. The respective squared function for
the L2—SVM is called squared hinge loss. In case of the hard margin SVM a ¢; or a
respective replacing function could be introduced by defining

tj:{ oo if1—y;((w,z;) +b) >0, (1.21)

0 else.

Definition 2 (Loss Function). The term summing up the model errors t;l- is called loss

term (sometimes also empirical error). The respective function defining the error of the



1.1. Support Vector Machine and Related Methods 23

algorithm model in relation to a single sample is called loss function.

There are several ways of choosing the loss function, each resulting in a new clas-
sifier. A (not complete) list of existing loss functions is given in Table 1.1. For some
of them, there is a corresponding underlying density model [Smola, 1998]. Three

choices have already been introduced and many more will be used in the following

sections.
name function
hinge loss max {0, {}
squared hinge loss max {0, £}
Laplacian loss 13
Gaussian loss 32
e insensitive loss max {0,& — e, —€ — €}
L ¢2 if |¢] <
Huber’s robust loss { o5 1 €< o,
§l—o5 if|¢[>0
polynomial loss % |€|P
L Poif g <
piecewise polynomial loss por~! ‘i’—l ) €< 0,
€] —ob= if €] >0
1— if &€ < &,
LUM loss [Liu et al., 2011] . ‘ . a ¢ e
T (7(1+C)g_c+a) if &> 15
if &> -1
0—1loss 0 1 ¢z -1,
1 ifeE<—1
logistic loss log(1 4+ exp(§ +1))

Table 1.1: Loss functions with £ := 1 — ys. y € {—1,+1} is the class label and s is
the classification score. For some functions additional hyperparameters are used (o,
P, €, @, €).

Regularization Terms If for a classification algorithm only the loss function were
minimized, chances are high that it will overfit to the given data. This means that it
might perfectly match the given training data but might not generalize well and that
it will perform worse on the testing data. To avoid such behavior, often a regulariza-
tion term is used — like 1% HwHZ in the C-SVM definition. Sometimes, this 