{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"E:\\Anaconda\\lib\\site-packages\\statsmodels\\compat\\pandas.py:65: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n",
" from pandas import Int64Index as NumericIndex\n"
]
}
],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import scipy as sp\n",
"import scipy.stats\n",
"import statsmodels.api as sm\n",
"import pandas as pd\n",
"import plotly.express as px\n",
"\n",
"plt.style.use(\"ggplot\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In order to follow this notes with least pain, it is strongly advised to study in linear algebra, statistics, probability theory and basic econometrics.\n",
"\n",
"Click the hyperlink, you will find all course notes in my GitHub pages."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Advanced econometrics aims to provide thorough mathematical foundation to econometric theory, which will be extremely useful in handling complicated data science projects. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# The Geometry of Vector Space "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Our starting point of **Ordinary Least Square** is to understand that linear regression model usually takes the matrix form\n",
"\n",
"$$\n",
"\\boldsymbol{y} = \\boldsymbol{X\\beta}+\\boldsymbol{u}\\tag{1}\\label{1}\n",
"$$\n",
"\n",
"where $\\boldsymbol{y}$ and $\\boldsymbol{u}$ are $n\\times 1$ matrices, $\\boldsymbol{X}$ is a $n \\times k$ matrix and $\\boldsymbol{\\beta}$ is a $k \\times 1$ matrix.\n",
"$$\n",
"\\boldsymbol{y}=\\left[\\begin{array}{c}\n",
"y_{1} \\\\\n",
"y_{2} \\\\\n",
"\\vdots \\\\\n",
"y_{n}\n",
"\\end{array}\\right], \\quad \\boldsymbol{u}=\\left[\\begin{array}{c}\n",
"u_{1} \\\\\n",
"u_{2} \\\\\n",
"\\vdots \\\\\n",
"u_{n}\n",
"\\end{array}\\right], \\quad \\boldsymbol{X}_{n\\times k}=\\left[\\begin{array}{cccc}\n",
"1 & X_{11} & X_{12} & \\ldots & X_{1k} \\\\\n",
"1 & X_{21} & X_{22} & \\ldots & X_{1k}\\\\\n",
"\\vdots & \\vdots & \\vdots& \\ddots& \\vdots\\\\\n",
"1 & X_{n1} & X_{n2} & \\ldots& X_{nk}\n",
"\\end{array}\\right], \\quad \\text { and } \\quad \\boldsymbol{\\beta}=\\left[\\begin{array}{c}\n",
"\\beta_{1} \\\\\n",
"\\beta_{2} \\\\\n",
"\\vdots\\\\\n",
"\\beta_k\n",
"\\end{array}\\right]\n",
"$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Two Inequalities "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"There are two inequalities useful for further illustration in vector space. Define $\\boldsymbol{x}$ and $\\boldsymbol{y}$ as vectors in $\\mathbb{R}^n$."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### The Cauchy-Schwarz Inequality"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"$$\n",
"|\\boldsymbol{x}^T\\boldsymbol{y}| \\leq \\|\\boldsymbol{x}\\|\\|\\boldsymbol{y}\\| \\tag{2}\\label{2}\n",
"$$\n",
"$\\|\\|$ notation means the **modulus** or length of vector."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The Cauchy-Schwarz inequality holds because of another famous formula dervied from law of cosine, recall that $-1 \\leq \\cos{\\vartheta} \\leq 1$\n",
"\n",
"\\begin{equation}\n",
"\\boldsymbol{x}^T\\boldsymbol{y} = \\|\\boldsymbol{x}\\|\\|\\boldsymbol{y}\\| \\cos{\\vartheta} \\label{3}\\tag{3}\n",
"\\end{equation}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The most important implication is that when $\\vartheta = 90^{\\circ}$, i.e. $\\boldsymbol{x}\\perp\\boldsymbol{y}$, then $\\boldsymbol{x}^T\\boldsymbol{y} = 0$."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### The Triangle Inequality "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This is the vector version of a primary school concept: the length of the third edge is at least as long as the sum of other two edges."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"$$\n",
"\\|\\boldsymbol{x}+\\boldsymbol{y}\\| \\leq \\|\\boldsymbol{x}\\| + \\|\\boldsymbol{y}\\|\n",
"$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Basis of Subspace "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A set of vectors $\\boldsymbol{X}_{n\\times k} = (\\boldsymbol{x}_1, ..., \\boldsymbol{x}_k)$ which spans a subspace $W$ is denoted as \n",
"\n",
"$$\n",
"W = \\text{Span}\\left(\\boldsymbol{x}_{1}, \\ldots, \\boldsymbol{x}_{k}\\right) \\equiv\\left\\{\\boldsymbol{z} \\in \\mathbb{R}^{n} \\bigg| \\boldsymbol{z}=\\sum_{i=1}^{k} b_{i} \\boldsymbol{x}_{i}, \\quad b_{i} \\in \\mathbb{R}\\right\\}\n",
"$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The orthogonal complement of $W$, is denoted as\n",
"\n",
"$$\n",
"W^{\\perp} = \\text{Span}^\\perp(\\boldsymbol{x}_{1}, \\ldots, \\boldsymbol{x}_{k}) = \\left\\{\\boldsymbol{w} \\in \\mathbb{R}^{n} | \\boldsymbol{w}^{\\top} \\boldsymbol{z}=0 \\text { for all } \\boldsymbol{z} \\in \\text{Span}(\\boldsymbol{X})\\right\\}\n",
"$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The $\\text{dim}W = k$ and $\\text{dim}W^\\perp = n-k$. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# The Geometry of OLS Estimation"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Take a look at the graph below, which is the geometric concept of OLS. The vectors are arbitrarily chosen only serving purpose of visualization in the codes, though demonstration is 3D, you shall imagine them exist in higher dimension, i.e. in $\\mathbb{R}^n$ rather than $\\mathbb{R}^3$."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAJSCAYAAAD51HD+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9ebgcVbX+/9ZcPZ8xCSEhISGGMYEQZhQiAZIIqFyHq4CoIP4EFQdU9IooyngVeRT0gjJ4ERX9KhcVwhBmQaZAQiBAJiBkIjknOWOPVbV/f/TZdarn4VR3V3evz/PwPKS7T/WuoWu/tdba7xIYYwwEQRAEQRBETREbPQCCIAiCIIh2gEQXQRAEQRBEHSDRRRAEQRAEUQdIdBEEQRAEQdQBEl0EQRAEQRB1gEQXQRAEQRBEHSDRRRAEAODtt9+GIAi44447Gj0UV/nsZz8LWZYb+v0zZ85s2PdPhF/+8peYM2cOFEVBR0dHo4dDEE0PiS6ibejv78dll12Gww47DOFwGJqmYcaMGfjkJz+Jf/zjH40enqvccccd+MUvftHQMZx44okQBAFTp06FaZo57/f390NVVQiCgPPPP78BIySK8fjjj+OrX/0qDjvsMPz2t7/FLbfcUvJvtm/fjq997WuYM2cOdF1HV1cXTjrpJPz5z3/O+/mZM2di8eLFJbf7/PPP48Mf/jD22Wcf6LqOqVOn4sQTT8QPf/jDSneLIBpK4x7/CKKOvPzyy1i2bBl2796Nj3/84zjvvPPg9/uxefNm3H///TjjjDNwyy234Atf+EKjh+oKd9xxB7Zs2YKvfvWrZf/NjBkzEIvFoCiKa+PQNA3bt2/HI488glNOOSXjvT/96U+QJAmpVMq17/Miv/nNb2BZVqOHUTErVqwAANxyyy1lRbleeOEFLF26FLFYDJ/73Odw6KGHYnBwEH/+85/xyU9+Evfffz9uv/12CIJQ0TjuuecefOxjH8PcuXPxxS9+EZMnT8aWLVuwcuVKXH311SS8iKaCRBfR8gwODuKMM84AYwwrV67EwQcfnPH+D3/4Q6xYsQLRaLRBI2wsqVQKjDGoqgpd113d9rRp0xAKhfD73/8+R3TdeeedOP300/GXv/zF1e/0Gm6K2Hqyc+dOAChLcA0ODuLMM88EkI5KHXTQQfZ73/jGN/CVr3wFN910E+bNm4dvfOMbFY3jsssuw6xZs/Diiy/C7/dnvPfee+9VtC2CaDSUXiRanptvvhlbtmzB9ddfnyO4OIsXL8YZZ5yR8drw8DC+/e1vY99994Wqqthnn33wrW99C7FYLONzlmXhuuuuw9y5c6FpGqZOnYqLLroIAwMDGZ878cQTsd9+++HNN9/EKaecgmAwiGnTpuHGG28EAKxfvx5Lly5FKBTClClTcO211+aMM5VK4corr8T+++8PTdMwZcoUXHDBBdi9e7f9mZkzZ+KJJ57Axo0bIQgCBEGwa4oef/xxCIKA//3f/8WVV16JmTNnQtd1rF27tmBN13vvvYeLLroI++yzDzRNw7Rp0/DpT38aW7duLefw4+yzz8Y999yTIWrXr1+P5557DmeffXbevylnPzmPPfYYTjnlFHR0dCAQCOCQQw7B1VdfnfO59957D5/4xCcQDofR2dmJ888/P+dc/v3vf8cZZ5yBadOm2fv6pS99Kedc/vCHP4QgCHjjjTfwxS9+EV1dXQgGg/jYxz6G/v7+jM/mq+l67LHHsGjRInR3d8Pn82HGjBk4++yzMTo6an+Gp13/+c9/4tBDD4XP58O8efPw2GOPAQCWL1+OBQsWwOfzYe7cuXjggQfyHsts4vE4vve972HmzJlQVRUzZ87E9773PSQSiYzv/s1vfmP/vyAIRSNKt9xyC7Zs2YLrrrsuQ3Dxv7/++usxa9YsXHXVVYjH42WNk7NhwwYsXLgwR3ABwOTJkyvaFkE0HEYQLc5xxx3HfD4fSyQSZf9NLBZjCxcuZJFIhH3rW99iN998M7vooouYLMtsyZIlzLIs+7Nf/OIXGQB22mmnsRtvvJFdeOGFTBRFtmDBgozvPOGEE9ikSZPYjBkz2Fe/+lV20003saOPPpoBYLfddhubPn16zusPPvig/feWZbHTTz+d6brOLrroInbzzTez73znO8zv97P58+ezWCzGGGPsnnvuYfvvvz+bPHkyu/POO9mdd97J7rnnHsYYY4899hgDwA466CB2wAEHsOuuu45df/317J133mFvvfUWA8Buv/12+zt37NjBZsyYwRRFYV/60pfY//zP/7Af//jH7Oijj2aPP/540WN4wgknsNmzZ7Nt27YxSZLY73//e/u9H/zgB6y7u5slk0kGgJ133nkV7ydjjN11111MFEW23377sR/+8Ifs17/+Nbv44ovZUUcdZX/m3HPPZaIoskMPPZR9+tOfZr/61a/Y5z73OQaAXXrppRlj/vCHP8w+8pGPsKuvvprdcsst7MILL2SaprHjjjsu43OXX345A8AOP/xwtmzZMnbjjTeyr33ta0ySJPaf//mfGZ8999xz2YwZM+x/r127lum6zhYsWMCuv/569pvf/IZddtllbP78+Wz79u325wCwQw45hO21117sxz/+Mbv++uvZXnvtxfx+P/vTn/5kv/7zn/+c7bXXXiwQCLDdu3cXPSeWZbGlS5cyAOzss89mN910EzvrrLPs65dz5513shNPPJEBsK+h1atXF9zucccdxzRNyzg32Vx22WUMAFuxYoX92owZM9hJJ51UdMxz585lU6ZMYRs3biz6OYJoBkh0ES1PZ2cnmz9/fs7rw8PDbNeuXfZ/g4OD9ntXXXUV0zSNvfLKKxl/c/PNNzMA7KGHHmKMMbZmzRoGgH3qU5/K+NyNN97IALCbbrrJfu2EE05gANhvfvMb+7Xdu3czXdeZIAjs1ltvzXn9k5/8pP3aH/7wh4zv5jz44IMMALvlllsyvmv27Nk5+8xF19SpU9nQ0FDGe/lEFxcnjz76aM62nMIzH84xnHzyyWzJkiX2e7NmzWIXXnghY4zliK5y93NoaIhFIhF28MEHs+Hh4YJjO/fccxkA9p3vfCfjMx/+8IdZT09Pxmujo6M5+3HnnXcyAOxf//qX/RoXXc7zwxhjF198MZMkiQ0MDGR8v1N03XDDDQwA27lzZ853OQHAZFlmr7/+uv3a/fffzwAwVVXZG2+8kfP6r3/966Lb/Mc//pFXbF5yySUMALvvvvvs18477zxW7nN5Z2cnmzdvXtHP/PWvf2UA2C9+8Qv7tXJE1//+7//ax+K4445j3/nOd9gDDzxQ0UMUQXgFSi8SLc/Q0BBCoVDO61/72tfQ29tr/8drUgDg7rvvxjHHHIO99toLfX199n98pdWjjz4KAPjnP/8JALjkkksytv2FL3wBHR0d9vscVVXx2c9+1v53Z2cn5s6dC0VRcO655+a8vmnTpowxzZo1C4cddljGmBYsWIBIJGKPqRzOOeecvMfEiWVZ+Nvf/oaTTz4ZixYtynm/koLos88+GytWrMDOnTvx9NNPY9OmTQVTi+Xu50MPPYTBwUF897vfRTAYLDm2Cy+8MOPfJ5xwAvr6+jA8PGy/xlNYjDEMDQ2hr68Pxx13HABg5cqVZW3TNE1s3ry54LHgNVL33HNP3lWdTj7wgQ9g//33t/99zDHHAACOP/54zJ07N+d15/WSj0LX67e//e2M9ytlaGgI4XC46Gf4+0NDQxVt+5xzzsEDDzyAD37wg3jxxRdx7bXXYsmSJZgyZQruvPPOqsZLEI2CRBfR8oTD4YyJlfPNb34TDz/8MB5++OGc2pB169bh8ccfzxBlvb29mD17NoDxIuO3334bADImRiAtrvbbbz+89dZbGa9PnTo1xzOqo6MDU6dOhSRJOa/v2bMnY0ybNm3KGVNvby8GBwftMZUD349i7Nq1C4ODgzjkkEPK3m4hzjzzTKiqij/+8Y+48847sd9++9lCIZty93PDhg0AUNb4RFHEtGnTMl7r7OwEgIw6sTfeeAMf/vCHEQwGEYlE0Nvbi1mzZgFATl0XkF7xWWqb2Xzyk5/ECSecgC9+8Yvo6enBRz/6Udx6660Z9VycffbZJ+PfXLAVet15veTj7bffRm9vL7q7uzNe7+3tRU9PT871Wi7hcLikmOLvlxL7+Tj11FPx4IMPYmhoCCtXrsSPfvQjWJaFz3zmM3aNG0E0A7R6kWh5DjjgALz88stIJpNQVTXj9QMOOAAAclbtWZaFE044Ad///vfzbnPq1KlVjSVbWJV6nTGWMab9998fv/zlL/N+lk/45eDz+cr+rBsEg0F85CMfwe233453330XX/nKVwp+1s395AiCAFHM/4zJj/HQ0BBOOOEE6LqOK664AnPmzIHf74dpmliyZEle24dyzls2uq7jsccew9NPP43ly5fj4Ycfxvnnn4+f/OQn+Pe//40pU6aU3H4131tLDjjgAKxcuRLxeLzgCtjVq1cDQE6hfSWoqooFCxZgwYIFOP7443HSSSfhzjvvzBuJJQgvQqKLaHlOP/10PPPMM/jLX/6Cs846q6y/2W+//TA0NFTSuJGvSnvjjTewYMEC+/VUKoWNGzfi6KOPrnrc+cb03HPP4YMf/GBBAcGp1AspH729vQiHw1izZs2EtwWkU4zLli2z/78Q5e7nfvvtBwBYs2aNK9G4xx57DDt37sTjjz+OE044wX593bp1E952NoIg4Pjjj8fxxx+PK6+8EsuXL8eyZctw88034/LLL3f9+zgzZ87Egw8+iP7+/oxoF0/h7rvvvlVt94wzzsAzzzyDP/7xj/jc5z6X834qlcJdd92F7u5uHHvssVWP38mRRx4JANi2bZsr2yOIekDpRaLl+f/+v/8PU6dOxTe+8Q289tpreT+THSH4z//8T7z88su45557cj4bj8ftdOVpp50GALj++uszPvPb3/4We/bswemnn+7GLthj6uvrww033JDznmmaGSmtQCCQNx1WCaIo4j/+4z/w8MMP503hVBpVOeWUU3DFFVfghhtusAVTPsrdz1NOOQWRSARXX301RkZGJjQ2ALbAy45o/fd//3fF2ypGtqUEABx22GEA8qcw3YRfj9nXK9/Haq/XL37xi5g6dSq+853v4I033sh4jzGGSy65BBs3bsR3v/vdiqOsDz30UN7X77vvPgC5qX2C8DIU6SJano6ODtx777340Ic+hAULFuDjH/84jj76aPh8Pmzbtg1///vfsXnz5oyo1iWXXIJ//vOf+NjHPoazzz4bRx55JFKpFNatW4c///nP+H//7//hxBNPxMEHH4wvfvGLuPnmmzE0NIQlS5Zg7dq1+J//+R8sWLAA5513nmv7cdZZZ+Gvf/0rvvnNb+Kpp57CCSecAFmWsXHjRvz1r3/FFVdcYRfpH3744bjvvvtwySWX4PDDD0cwGKxqQr3qqqvw8MMP49RTT8X555+P+fPnY/fu3bj//vvxk5/8JCMiVApJknDZZZe5tp+hUAi//OUvce655+Kwww7DOeecgylTpmDdunV45pln8Mwzz1S0r8cddxx6enrwmc98Bl/5ylfg9/vxz3/+s6JauXL48Y9/jEcffRSnnXYaZs6ciZGREdx+++2QJAmf+MQnXP2ubJYtW4YlS5bgqquuwpYtW3DUUUfh2WefxZ133onTTjsNS5curWq7HR0d+Nvf/oalS5fi8MMPx+c///kMR/rnnnsO5557bl5j1Lfffhs/+clPcl7fZ5998JnPfAZnnnkmpk2bhtNPPx3ve9/7kEqlsHLlStx1113o6enB17/+9arGTBANoWHrJgmizuzatYv913/9F5s3bx4LBAJMVVU2ffp09vGPf5zde++9OZ8fHR1ll19+OZs7dy5TVZV1dXWxww8/nF1++eWsv7/f/pxpmuzaa69lc+bMYYqisClTprAvfelLOZ5JhWwcKnndMAz285//nM2fP5/pus7C4TA75JBD2CWXXMLeeecd+3MDAwPsE5/4BOvo6GAAbMsCbhlx55135nxfPssIxhjbtm0b+8IXvsD22msvpigKmzZtGjvrrLPY1q1bcw9yGfuVDbIsIyrZT8YYe+ihh9iiRYtYMBhkfr+fHXzwweyaa66x3z/33HOZJEk533v77bczAOytt96yX3vhhRfYBz7wARYMBllXVxc766yz2HvvvccAsMsvv9z+HLeMePfddzO2yY/vY489lvH9TsuIRx99lJ155pls2rRpTFVVNmnSJLZkyRL2xBNPlDwu1byeTTQaZZdeeinbZ599mKIobJ999mHf/e53czy2KrGM4GzdupV95StfYbNnz2aaprFIJMIWLVrE7r777ryfnzFjBgOQ9z/ujfanP/2JnX322ex973sfCwaDTFVVNmvWLHbBBRewt99+u6LxEUSjERhrUOUlQRAEQRBEG0E1XQRBEARBEHWgZE3Xr371K7z00kuIRCL42c9+lvM+Ywy33347Xn75ZWiahgsvvND2tSEIgiAIgiDSlIx0nXjiifje975X8P2XX34ZO3bswC9+8QtccMEF+O1vf+vqAAmCIAiCIFqBkqLrwAMPzGmx4eTFF1/EBz7wAQiCgPe9730YHR0t6YpMEARBEATRbkzYMmL37t3o6emx/93d3Y3du3fndY1esWIFVqxYAQC45pprCm6TzO4IgiAIgqg31XYbKZe6+nQtXrw4wwuJxBVBEARBEF6hmC5xQ5BNePViV1cX+vr67H/39/ejq6tropslCIIgCIJoKSYsuhYuXIgnn3wSjDGsW7cOfr+/qoa0BEEQBEEQrUxJc9QbbrgBa9euxfDwMCKRCD7xiU/AMAwA6d5njDHceuutWL16NVRVxYUXXojZs2eX9eWUXiQIgiAIohlwI73YUEd6El0EQRAEQTQDnqjpIgiCIAiCIEpDoosgCIIgCKIOkOgiCIIgCIKoAyS6CIIgCIIg6gCJLoIgCIIgiDpAoosgCIIgCKIOkOgiCIIgCIKoAyS6CIIgCIIg6gCJLoIgCIIgiDpAoosgCIIgCKIOkOgiCIIgCIKoAyS6CIIgCIIg6gCJLoIgCIIgiDpAoosgCIIgCKIOkOgiCIIgCIKoAyS6CIIgCIIg6gCJLoIgCIIgiDpAoosgCIIgCKIOkOgiCIIgCIKoAyS6CIIgCIIg6gCJLoIgCIIgiDpAoosgCIIgCKIOkOgiCIIgCIKoAyS6CIIgCIIg6gCJLoIgCIIgiDpAoosgCIIgCKIOkOgiCIIgCIKoAyS6CIIgCIIg6gCJLoIgCIIgiDpAoosgCIIgCKIOkOgiCIIgCIKoAyS6CIIgCIIg6gCJLoIgCIIgiDpAoosgCIIgCKIOkOgiCIIgCIKoAyS6CIIgCIIg6gCJLoJoQ0RRhCAIjR4GQRBEW0GiiyDaDEVRIMsyRDH35y+KIiRJasCoCIIgWh8SXQTRJkiSBE3Tika4VFWFz+er46gIgiDaBxJdBNEGSJKEUCgERVEaPRSCIIi2RW70AAiCqC2KokAQBDDG7NdEUYSu60gmk0gmk7Asq4EjJAiCaA9IdBFEiyKKImQ59yeuqir8fj9GR0ehKAoCgQAEQbDFFxXYEwRB1AYSXQTRghQqlNd1HYwxDA4OwjAMmKYJABAEAYqiwO/3Q1VVaJqGZDKJRCKBZDKZESUjCIIgqoNEF0G0EIIgQJblnGiVJEnQdR2pVAojIyM5f8cYQzKZhCAIME0TIyMjUFUVqqoiFAoBgC3ASIQRBEFUB4kugmgRCqUTNU2DrutIJBJ2ZKsUjDEkEgkkEgkMDw9DEAQ7AhYKhWyRxoUYQRAEURoSXQTRAvBieSeCICAQCAAABgcHoet6ye0wxvLWdDlFGN82F3PhcNh+n0fCCIIgiFxIdBFEE8NrsbKRZRnBYBDRaLQmIogxhng8jng8DiAdZeMeX04RlkgkkEqlXP9+giCIZoREF0E0KZIk5XWP9/l8UFUVQ0NDdbOCsCwrR4Rpmga/3w9FUWBZlp2OJBFGEES7QqKLIJqQQunEUCgEwzAwODiY8zeFUoeVfqYcLMtCLBZDLBYDMC7CAoEAFEWBaZp2JMwwjAl/H0EQRDNAoosgmohC6UTutzU6OurJSFK2CJMkCaqqIhgMQlEUGIZhR8JIhBEE0aqQ6CKIJqGQ95bf74csyxgcHGwaKwfTNHNEmKZpGSKMF+aTCCMIolUg0UUQTUC+dKIoigiFQkgmkxgaGqp4m15ynjdNE9FoFNFoFEBaYHKPMFmWkUql7EhYubYX+ZAkaUJ/TxAEMRFIdBGEhynVymdkZKTsSBBjLG+kLPszXhBjhmHAMIwMEaZpGsLhsC3CeCSsEhHV2dmJvr6+Wg2bIAiiKCS6CMKjFEonBgIBiKLYVOnEicJF2OjoKIB05E9VVUQiEUiSZIuwRCJBzbsJgvAsJLoIwmMUa+UTDAYRj8dtk9J2JZVKIZVKZYgwTdPQ0dEBURQzImEkwgiC8AokugjCQxTy3tJ1HZqmYWRkpKY1Sc0aOeMijMNFWCAQgCAItggjCIJoJCS6CMIjFPLeCgaDsCwrr/dWJZRbr+WFmq6JwkUYb+7N+0bKsoyenh67XVEikWhaoUkQRPNBoosgGkyjWvm0E1xkaZqG/v7+nEiYs3k3iTCCIGoFiS6CaCBeauXTLjDGMhpzC4IAVVVtiwoAGc27SYQRBOEWJLoIokFU08qn1rSjwHA25x4eHrZFmKZpCIVCtkjjQowgCKJaSHQRRJ0p5L1V61Y+2TVdhWq3WqGmayI4RRiQPh6apkHXdYTDYft9Z7SMIAiiHEh0EUQdkWUZkiTlRJSasZVPu8AYQzweRzweB5AWzaqqwufzZYiwRCLhyb6XBEF4BxJdBFEHnN5bTlE10VY+RP2xLCtHhGmaBr/fD0VRYFmWnY4kEUYQhBMSXQRRYxRFga7rOT5R1bTyqTVeaQPUTFiWldG8m4uwQCAARVFgmqYdCfPKeSYIojGQ6CKIGqIoCmRZhqIoGaIrGAwCQF3TiSSo6kO2CJMkCaqqIhgMQlEUGIZhR8JIhBFEe0GiiyBqQCHvLWrl036YppkjwjRNyxBhvDCfRBhBtDYkugjCZRrdyofwNqZpIhqNIhqNAkgvruAeYbIsI5VK2ZGwSq8TSZLg9/sxPDxci6ETBDFBSHQRhIvk897irzPGGuK9VQmUgqw/hmHAMIwMEaZpGsLhsC3CeCSslAgTBCGv4CcIwhuQ6CIIFyjkvcVb+ViWhdHR0QaMLBMSVN6HizB+vSiKAlVVEYlEIEmSLcISiUTebgVkOUIQ3oVEF0FMEFmWIYpizus+nw+KomBkZAR+v78BI8uEJuPmhDfvdoowTdPQ0dEBURQzImEkqgnC25DoIogqcXpvORFFEcFgEIZhYGhoiCZCwlW4COM4m3dz8a/rOpLJJPXtJAiPQaKLIKqgVCsfL3lvEa0NF2EjIyNQFMVeFRkIBCAIgt2uKJFIULSTIBoMiS6CqJBCxfI80pDtveWl4nSvjIOoDYIgwDRNe/Uity7hkTAuwng6kkQYQdQXEl0EUSaFvLd4K59EIuGJYvlC0ATbfjDGMhpzC4IAVVVtiwoAGc276RohiNpCoosgyqCQ95amadB1nby3iKbA2Zx7eHjYFmGapiEUCtkijQsxgiDchUQXQZQgXzpREAQEAgEA8Lz3FkEUwinCgPR1zR8kwuGw/b4zWkYQRPWQ6CKIAhRr5RMKhRCLxZqulQ/VdLU2giBMKEXIGEM8Hkc8HgeQTp2rqgqfz5chwhKJRMYKSoIgyoNEF0HkoZD3Fm/lMzQ01HTL8aleh6gUy7JyRJimafD7/VAUBZZl2elIEmEEURoSXQSRRaF0YigUgmmalE4k2hbLsjKad3MRFggEoCgKTNO0I2FkmUIQuZDoIogxSnlvjY6OVv00T2k9oh5MNL1YKdkiTJIkqKpqe4UZhmFHwkiEEQSJLoIAUDid6Pf7IctyU6YT80Hij6glpmnmiDBN0zJEGC/Mn4gIE0URjDFKmRNNB4kuoq0p1sonFAohmUxiaGhowt9DkwPRjpimiWg0img0CiD9cMM9wmRZRiqVsiNhlViu+Hw+O8pGEM0EiS6ibSnkvaWqKvx+P7XyIQiXMQwDhmFkiDBN0xAOh20RxiNhxURYvdOoBOEWJLqItqTSVj4TxYtpPU3ToKoq1du0EM0mRrgI450cFEWBqqqIRCKQJCmjb2R2er+Z9pMgOCS6iLaimPdWMBj0fCsftwgGg7bnUnaqhyAaBW/e7RRhmqaho6MDoijakbB89ZcE0QyQ6CLahka28vHSU3lHRwdisRji8XjeVI8sy+jt7c1oB9MKiwiI5oOLMA7vG6nrOnRdt+0p6BolmgUSXURbUMh7i0d82sF7S9M0SJKEgYGBvOKSp3p8Ph/6+vrsKEMgEIAgCBkizEsiksiklc8NTzeKomgbtmZfo/w6beXjQDQvJLqIlqaQ95YsywgGg4hGo22RUgsGgwDSq8m44CpVZ8ajDCMjI3ZjZL7yjBojexMv1g7WAl675kyJ89IBelAgvAyJLqJlUVU1b2Gxz+eDqqp1995qRJEzr1WLx+NIJBLo6OioajvOnnvDw8N2Y2Tek4/awRCNhj8IOEWY80EBQEbzbhJhRCMg0UW0HNx7KxKJZKQNeSsfwzDqnk5sxA2+lrVq+RojO9vBuGWCSRD5KOcBJt+Dgqqq0DSNorVEwyDRRbQUtWzl00zwdGK9xGW+djB8cnP6L+Vb+k+4hyAIbXN8K32QcYowAHa0Vtd1hMNh+31ntIwg3IZEF9EyZBfL8//nrXzc9t6qBMZYXdKL2enEUmOqFdlO5IWW/lPBM1ENbtSu5YvWqqpqp8ydIq0dHtSI+kCii2h6CnlvAUAkEnGtlY/X4TVWw8PDNbO+qJZ8S/+p4JmYCG5fJ5Zl5U2Z+/1+KIpCdYuEK5DoIpqaYq18JEnC4OBgW9QUBYNBCILgSjSvHlG5fAXPzlobSvMQxajHKs3slHl23aJpmnYkrB3uMYQ7kOgimpZCrXy4ADFN0zM3Qy5k3IY35k4kEvYTerl4xV4gu9bGmeaJRCI0uVVAs7UBqpZG7Ge+ukVVVREMBu3FIzwSRtcpUQgSXUTTUahY3i17hGaBN+b2YjpxImSnefJNblyEtdJ+E82FaZp5F49kX6cTXcEryzJM02wLMd0OkOgimgpZlvP2XdN1HZqm1bSVz0Rw+4ZZq8bcQP2K/ssle3Lj7YrC4TCtjGxTvHR9crIXj8iybHuEOXubVvqwEAgEEI1GqY6sRSDRRTQF3HurUCsfy7I838rHjXSeM51YTWNur01U1cDbFWU3Re7s7Gz7VjBeFCPtCr9Os3ubZj8sJJPJoiKMzmlrQaKL8DzUyicNTyeOjIxQzYgDZ7siYHxlJPcqczZFJohGke9hQVVVRCIRSJKU8bDgjNiS6GotSHQRnqZQsXw5rXy8dKOaaCF9LdOJrQafvJztirgBJhfqtOyfaDT8YSE7YpvtZUeiq7UoS3StWrUKt99+OyzLwkknnYSPfOQjGe/39fXhpptuwujoKCzLwqc//WksWLCgFuMl2oRC3luiKCIYDDaklU8jmGg6sRpqtdKyEWQbYPb09MA0zYx2RbTijPAC+bzs+H9dXV0Z6UiqXWxeSoouy7Jw66234vvf/z66u7vx3e9+FwsXLsS0adPsz/z1r3/FMcccg1NOOQVbtmzB1VdfTaKLqJpC3luVtvLxWkF4pdQqndjMx8QNymlXVKrOxqu0+7ltJXjEVtd19PX15TUUbtfaxWampOjasGEDpkyZgsmTJwMAjj32WLzwwgsZoksQBLtYMBqNorOzs0bDJVqdQunEQCBgm5024w2m0uhRrdKJzXjsakm+FWeapmXU2VB0gfAC2YbCPB1JXR2ai5Kia/fu3eju7rb/3d3djfXr12d85uMf/zh+8pOf4IEHHkAikcBll12Wd1srVqzAihUrAADXXHMNenp68n6ur6+v7B0gWoNi6cRq02vNGOni+5tMJuuWTsymmY6X22QXO/P0Dk1shJdgjOXt6sAtKgBkdHWga7V8CukSt3ClkP7pp5/GiSeeiNNPPx3r1q3DL3/5S/zsZz/L8VNavHgxFi9ebP+bxBUBFPbe8nIvwVrgpdWJrVLTNVH4pDUyMpK3XZFThHkFmmDbD2dXB76ApBmuVS9STJdMnTp1wtsvKbq6urrQ399v/7u/vx9dXV0Zn3n00Ufxve99DwDwvve9D6lUCsPDw4hEIhMeINHaFGvlA2BC6TUvFYSXGovf74csy3VJnzZb9M8rZLcr4isjfT4fwuEwLMuyJ7VGrYz0yvVONJZC1ypfxUv9TRtHbnghi9mzZ2P79u3YuXMnDMPAM888g4ULF2Z8pqenB6+++ioAYMuWLUilUgiHw7UZMdES8P562ZOEJEmIRCK271KriwNRFBGJRMAYw9DQUM33t9WPZz3hKyMHBwfR19eHgYEBWJaFQCCA3t5edHZ2wu/3510UQhD1hF+rQ0ND6Ovrw549e2AYBnw+H3p6etDd3W23LyJqS8lIlyRJ+PznP48rr7wSlmVh0aJFmD59Ou6++27Mnj0bCxcuxGc+8xncfPPNuO+++wAAF154IT1xEQUp1cpneHjYlaJlr0e6+GrMRqYT80W9SJhVR3ZDZN4GhtoVEV4ju7+pKIrQNA1+vx+KosCyLDsdSX527iKwBt5ht23b1qivJhpAOa183CweDwQCnvFf0jQNgiDYNzmeThweHq6ryAmFQrafHpAuHM8WAJFIpGV7vfX09DSslpSvNlNVNcP80s0l/x0dHZ6oCawlgiDklL20Mo24ZrkI0zQNiqLANE37Wm3la6sUdanpIgg3KOS9VctWPl6KdHG4uWsqlcLQ0FBDxuC1Y9Iu5DO/dC75p9VmRD4acS1kR20lSYKqqnYKkkyFq4dEF1FzChXL82hPsVY+rQJjDIqiQNf1hkYiaDL3DvmW/DtXm/HIQitGHCdCOy0E8coDkmmaeU2FnSKMPzRM9N7W6ueXRBdRM0q18ql1tMdLkS5N05rG3NVLx61dyF5txhea+P1+qKpaUXrH69cXUT5eFSD5TIW5RxivX+SRsErtfsLhcMuWNwAkuogaUSid6CUvqnogCAJCoZBdmOrFGyjhPbILnQtFFrIntXYQy14VIrWgWfaVmwpnd3bIXkRSTnutQvus6zp0XcfAwEAtdqFukOgiXKdYK59atLYpRKMjNs5ekfzfBFEN5bQraie/pWYQIm7QLKIrm+zODoqiQFXVnOs130reQvvcKg8UJLoI1xBFEbKce0lJkoRgMFhVK59mJdvs1CuCq9FClHCHfJMaXxnZ1dVlR8FaMbraTtdvs4qubPgikuzrtaOjI2MlbzKZLCq6WuFYkOgiXEFRFIRCIYyMjGS8zl2QR0ZG6t7KpxECg6cTDcPIqFdrJrHTTGMl0vBJTVVVDAwM2JGwVm0B0wqTbzm0itDIJt9KXt7jlM8l2Y3mRVFsiQVXJLqICcG9t0RRzDA8FQQBgUAAQLqVTzvgTCe2ahEo0Rzw9A3vw+dsAdPsxpft9kDQiqIrG2eP056eHsRiMbvF1tVXX41p06bhoIMOwqxZs6ra/h/+8AesXbsWwWAQl156KQBgdHQUv/vd77B79250dXXhs5/9LPx+v5u7lRcSXUTVONOJzuhILb23KoExltf5vhb4fD4oitIU9hftNmm1O7wFTLb7OI8qNJvnUqtGf/LRrr9VZ43ieeedh82bN2PTpk247777kEqlMGvWLMyZMwezZs2Cruslt3fUUUfh/e9/P+666y77tUceeQTve9/7sHjxYqxYsQIrVqzAGWecUbN94pDoIqoiX7G8IAh2K59mEB9uUCidmI1XUnblTFZeGStRG/IZX/JUZKUrzYja0k4CsxCKomD27NlYsGABUqkUdu/ejU2bNmHDhg146KGHcMIJJ+Cwww4ruo3Zs2fndDBYs2YNvvzlLwMAjjjiCNx4440kugjvUch7SxAEO8XolXRircUDj+hROpHwCtVM0uWsjMyur2kk7SRE2mlfS8GPha7rOPDAA3HggQdOaHvDw8OIRCIA0t5gw8PDbgyzJCS6iLIp5L3Fa5kYY/aNu9Xx+XxQVbVtInpE+5C9MjK7XZFThJEgqC0kusYRRbFmx0IQhLpF90l0EWVRqpXP4OCg/dTgFWoR6XKmEyuJ6FHKjmhWSrUrqvfKyHYSIoIg0EPdGG4fi1AoZM9bg4ODCAaDrm27GPWpMiaaFt6OJFswiKKISCQCxhiGhoba4iYoyzIikQhisVjTRvTKEX8kEJuXWgsS3q5oaGgIfX192LNnD1KpFHw+H3p7e9HV1YVAIJDXr8/tcbQD7SQwgeL76/axOPjgg/HCCy8AAF544QUccsghrm27GBTpIgrCrSCyaZZWPm6Kh4mmE70qZLw4JqJ5yNeuSFXVku2KJkK7XbPtJroK3V8nIrp+97vfYePGjRgZGcHll1+OpUuXYvHixbjjjjvw7LPPoqurC+eee+5Ehl42JLqIHLj3lhda+TSaatOJBNGOmKaZsTKyUA++fO1fyqWdoj/tJjCL1W1N5LwXElQXXXRRVdubCCS6iAxKtfKJx+NIJBJ5/9ZrN8KJRpe84jdWS2RZJlsAomYUalfU2dlpF+XzmjCv3T+8QDsJTKD4/taykL6ekOgibAoVy5fbyoeLnFb4Ybi9OtEr6UU+DkEQ7MLRcDgM0zTtCIRXxkq0Hrz9C28Xlr0y0tkzshDtVFzeKvfTcilV09UK551EF1HUeysYDMKyrKZMrVUjHpp9n8uBL4KIRqOIxWIwTTPDIFNVVZimaRdNt8KNjvAm+VZG8nZF/Ppr1nZFbkCiq/Ug0dXmFPLeqia11uyRrnZJJ/J2Rc6opdMg0+/329eFMw1E3kxELXGKLGC8XZHf77cfBBKJBCRJapuUeDPfT6uh0P620nEg0dXGFEonVpta81paqpLxtEP7okAgAEmSEI1GS6aJuQgbGRnJ683U7hEIovYUalfEyx10XbcfBlpZhLWK2CiHQilEEl1EU1MsndhuK/XaJZ0YCoXshsblCFHnZwpFIJwNk922BSCIbPiDAG9NZJqmp9sVuUEriY1yEEWRRBfRWpRq5TORPoJei3QBxZdcS5KEUCjU0ulEfl65p5qmaRPeZnYEolCvPlqRRtQCPgEXWhnZSu2KvHY/rTWFxFUhMdaMkOhqI8pp5TORm5MXRVch2iGd6PP5oChKzT3VSvXqK2dFGkFMFOfKSJ4SV1W1Ye2K3KCVIjzlQDVdREtQyHuLp52SySSGhoYaMLL60w7pRGeauJrzOlHxnL0iTdM0+Hw+hMNhWJZlizAvdzMgvEs5E7AzJT48PJz3OuQijOoSvQOJLqLpqWcrH69HutohnVhqHxljea+HWsEYy2kTwwvy3XIoJ4hSZF+HheoSk8kkPQw0EBJdRNNSrJVPMBiEIAg1STt5VXTxdOLw8HDLFnvzVV1eTpk6rSmA/A7lzV6HQ9QWNybgQisj6WGgsZDoIpqSQsXy5bTymQhe/VFw5/VWTScCzbuP2Q7l3BKArCmIYrh9r8n3MKCqKjo6OiCKYoYI8+p9rhUoVDBPhfSEZylULM8jPaVa+UwEr6UXufiMxWI1EZmVUotjw+vy3BTSjTyPZE1BlKIe1yZ/GCi0OIQisrWBIl1E0+CVVj5eEV081cZdrFuRauvynOfIK+crH4VSQOFwGLIskzVFG1Pv852vXVF2RNb5GaI6SHQRTYGbrXwmgld+FM5UWyQSafBoxnHz+FRr8+GVc1QN2SkgsqZoTxr9oJDPLFhVVfh8PkQikYzm8VSU7w6t0uwaINHV9BRr5cN77NXrYm10erHWNWtegNtBpFKptrH5KESxZslkTdG6eC3qYVlWzgpdVVURDAYnlBb32n42klY6FiS6mpRi3lvBYLBqj6ZmhacTs2vWmr0JtxMeuZxI14ByaLR4roZCrYr4xMcLoQmi1pimmbdjA0+Ll7syslXuW25AhfREQ/H5fPaKGidutPKZCI2arJtl5d5EBKCbDvrNJqiqoVCrIlmW0dPTQ4XQTUyziZFC7YqcNin8enTuV7PtZy1ppWNBoquJ4N5b3H/LKawCgQBEUax5y5di1Ft0lZNObIVIVzAYBGPMFVHZzMdhIvCJz+fzoa+vL28hNFlTEPUg2yaFX4v84dEZBWvX32s2zX4Pd0Kiq0lwphOdruLcMiCRSNhPUu1AoXRiK9GoGrVmTC9WCo8uDA8P24XQfr8fqqqSNQVRV5zXIm9XxCPbvFykHR4IigkrEl1EXckulueTIu8l5hWX9XpN1vyJcGhoqKwebF4REJVE3bgI8Mq5bWXyFULns6ZIJpMtU1dCeBNnuyJeLmKaZoZXHb8eW22BCIkuouEU8t4CYD+RNzKdmE2tBU47rE4E0nYQkiTV7Nx6RYR6lUKtisiagqgn3CahnHZFyWSy6R/OigkrURQ9M89NFBJdHqVYK59AIADLsuyagHag2qielyJdpXDaQQwPD9fkO7JvXM1ybBqJswYnnzVFMplEPB5veOShlaIBRP7zmf1AwBeIRCIRSJLU1FHZUpGuZtufQpDo8iClWvmMjo5C07QGjKw4tRI4E10k4BVhUez41MsOohyaSajWm3KsKfjE1+yRB6KxlCOis1dGqqoKVVWbsl1RMVuIVnqgINHlIQp5b2W38hFF0bOTopvjcmORQDP8UH0+H1RVrauRLeEOhawpIpEINUomJkQ1QoMX5Tujss5Vuk4R5jVaSVgVg0SXR5Bl2V6R6CSf91Y7RCLcLCT3yrHKPm/17otJ1J58kQceCfP6pEd4i4mKkOyorHPxlbNrQzKZbHh0nY+v1fsuAiS6Gg733sonDHh/vXaLgLjpOebVH6skSQiFQnXri8kpR7B79Zg1I/nsAGrVo6/VJifC3d+ic2UkMJ4ad66MbKRVCokuouaUauVTqL9eq0a6auU55rVjxX14vGwH4bVj1gpkT3qFVqKVag9DtAe1Fhv5UuOqqlbcrsgtCu1vK7UAAkh0NYxCxfI8rTYyMlL06bfVJsVy97tSvPSExBiDz+cDUJ7HGNHaFLKmcLaHaZYiaMJ96h3h4anx7Ouxo6OjLvWJhVYoUqSLmBDFvLe80MqnEdRyv70SFeSh/GQy2fDOAV44HkQu+awpKm1V1Or3jVabgIvR6H3l1yOHX49OvzqePndjnJReJFynmPcWb/XQ6Am5nrRLCyO+GILbCTSScm5erXSDa1YKWVMUq78hMd1aeE1scIEFoOqHgmIUSiN67ThMFBJddaJQOrHVegiW++OoVToxH42cjHw+HxRFweDgIHRdb5qJsVnG2S4Us6bgppheWIFWa1ptAi6Gl/c130OBs39pNYtEKNJFuEKhdCK3C2CMtZRdQDn9BeuZRm3Uj5WfX9M08y6GIIiJkM+aQtd1qKqKnp4ealXUAjST2CjUv5SbBpezMpIK6YkJUyidyN3HJ2IX0Cw/Ric8nVjvuqZ6R22K2UFQBImoBbztC3+YqaU1RSNpJiHiBs26r+W0K+ILRbigokgXMSEKpRPdch8vJ6LUCAqNi9c11SOdmD2eesLTxfnOrxfOVbk+XSQOm5dWt6bwwu+oHrTSbzA7MptvpW6+AAVAoosoQbFWPqFQCIZhuJZO9OLFmG/C5iavjVqVWa+bVzAYBICWShcTzU8rWVO0khAphRfv727hXKkLjKfHOzs77c4Na9euxZQpU1w7Do8//jieffZZAMBee+2FT3/60wWdBGoJiS4XqaSVz0Rphh+jM53YqLqmehwn5ypMHl0oNJZ2mjSI+lPO9e6GNUUjaYZ7nxu0sujKhqfH+/r67C4tq1atwsaNGxEMBjFnzhzMnDkT06dPzzvHlmJgYABPPvkkLr30UqiqijvuuAMvvfQSjjrqqBrsTXFIdLlAOa183I7yeHUC5+NqVDqx0HhqhVf2kyCquc6rsaZoJF6859WKdhJdThhjSKVSOP300+1/v/LKK3j66afx7rvvoru7G3PmzMGhhx6KSCRS9nYty0IqlbJryir5Wzch0TVBChXL1zrK42XRpet6W5i8NjptWi1U00UUohxrilq6kpeiXYVIO9PV1YWjjjoK8+fPB2MMfX19WLduHaLRaNnCqaOjA4sWLcKPfvQjKIqC/fffH/vvv3+NR54fEl0TYKKtfCaCFydG/pRcqGdkI6jFcXLW51Wyn4yxqkLjBNEo8llTZLuSkzUFUUucQlsQBPT29qK3t7eibUSjUbz66qv4wQ9+AJ/Ph9tvvx0vvvgiFi5cWIshF4VEVxV4pZWPl0QXT7O1ukkjt/twsz6PINygHlGgbFdybk0RDodhWVbNrSko0tV+uHHO161bh66uLnux07x58/DWW2+R6GoGSrXyicfjdn1ELfHSjceZZvOa67qbkS5d16Fp2oTsPrx0bAhiIrS6NQXhDdwQXR0dHXjnnXeQTCahKArWr1+P6dOnuzTCyiDRVQGF0ol8Mq5nKx8vpBd5ms2ZTvSSGHQTN+wgvHhsuIt5KxhnEo0lnyGmruvo6OiAKIquWFNQpKs1EQShoDAXRXHC53zmzJmYP38+fvrTn0IURUybNg3HHnvshLZZLSS6yqCY91YwGIRlWXX3Zmq06Cpkg9HocWUz0fHwBRH1imDWE96GKh6PZ0QnitleEES5GIZh+zABaeNgN6wpSHS1HsWEVTFBVglLly7F0qVLJ7ydiUKiqwSyLEOSpJwLwo1WPhOhkUXZzibOhdo2tAJ8QcTw8LArEUwvCdJIJGKnhlKplL1ajRtnyrJMPfyaDK9HgYo1SC7XmsIrvx/CXYpdu16/riuFRFcBBEGA3+9HKpXKOeFutfJpNspZtefFH0c1N+pmtYMohaIokCQJg4ODedOJ3DhT13X09/dn9PDzmmcT0bwUapAcDochy3JGKtJ5j221CbgQ7bKfHBJdbQ5PJ/r9/oy0YS1a+VRLvaMm5brqeymaUw356tRaBR6hNE2zrPqtQoXSTs+meDzeFO1jCG9TqFVRtjVFu9BqQqMU7bS/JLqyKFQsX4tWPhOhnuKGT9atHtmrtR1EIwVpKBSCZVkYGhpCR0dHxnvl3vCyJ8Zmax/T6rTSxJWvVZGu6/D5fLAsyxZirbz4o1XOZTkUunbdKKL3GiS6HBQSXF5MNdVjAq/GBLRZI11u2EF4kVouBOCeTcPDwzntY8gugHALp6A3TROMMTDGEAwGW/Zaa8Z76EQoJLrcKqL3EiS6HGQLBkEQEIlEkEgkPJdqqrW4qTbq02yiq54rUBuVEi62EMCt8RRqH9PZ2QlBEDLaxxBEtQiCANM0EY/Hc641N60pGk0rRS3LQRTFvOKqFY8Dia4CaJpWtOC4lWmXhQL1NrStJ6VWmNYaZ/sYnh7iqch6OJcTrUv29VyoVZEz7e100m8GWlFsFKNQRKsVjwOJrjxwI0z+Y/Yite4pWG3Up1kiXW7bQXgFHrkzTdMz0VlnegjIdS5vdBPlVqEVJ6hsyrm3ZKe9VVVtuhW47XAunRRLL7bacSDR5UCSJITDYTvyEQ6HPXvS3RY3bhWRN4Poqmd/TCe1PjY8cheLxTz9VF/uSjUv7wPRGCq9H5eypvBqPZhX551aQaKrTZFlOaOVD58kvXrS3ZrAWz2dyM8fLypPJpN2KqJVqDZy54VrO3ulGnmDEbWikOD3Wu2hl+edWlBs9WKrzUkkuhzE4/GMZtbNELWZCLUoIvfqMeNF5SMjI55NGVeLF1fXVks+bzBd18kbrExa/Zi4LUbyWVN4xQal1c+lE4p0tSnZJ9erAsINatnGyGvHjHcXaLQocft6qsbSg4/DuQ0vY5omRkdHixZJkzdYGq+fS6+TXXuYbYNSz6hru51LWr1IAGhd0dWqnlTZ8EieIAgNF1xuI0kSQqFQw3p/NgryBmtv6jkJF7JBcUZda7UApBXFRjEo0kUAaD3RVU9PqkbjFCVAa/14+WqsVlt5WSn5JkVd1zPqc3gqkmgdGvU7LmRNEQwGwRjL8AebKK1oCloMEl1tSqGT7lUquRhrmU70GpqmQdd1W5RomtboIdlM9Hry+/2QJAlDQ0MTuhm14s3MMAyMjIzktI4Jh8O2N1gr0w4TtZfux86oa/YCENM0J+RF14q/z2IUK6RvtdIBEl1FaIaLvpwfZ7ukEwHYtgPOSJ6XIpbVXlPORtzDw8MNGUMzUcgbTJZl9Pb2kjdYE+PF81WoOTz3oqs09d1uoqsQrXgcSHQVwUuTdT5KXYztlE7kdhCJRMK+8bUKPFXqlWbrzQi3CvD7/ejr6yNvsCbFy/djJ+VaUxRahduKYqMaWvE4kOhykG/1oiiKDRpNaYr5iDWy0LreP5JSdhBeEs+VjoOnStshSllPWtUbrNUmqGyadRKuxpqiGffTbZr1fBeDRFcRvDRZ56PQ+NopndjoHoO1xOmc7zateDOrllLeYM4omJePmZfvVcQ45VhTiKLYchH7amjF+xSJriI0m+jySjqxHk7+lXhUeek8lnNMnPVbtXDOL/e8tOINrxzIG8y7tOI1mW8VbkdHB0KhEERRbOv6Q3KkbzO8NFkXgo+vnXybWnlf3eqBOVHa7eZeDPIGI+qJYRh2w3rTNG3R36r1h8WEdCuKbBJdRfC66OIXY7ZFQqOpZaSrmhonL53HYuOg+i3v42VvsFacoNoV57nkop+/7qY1hRcg0dXmOCdoL03W+WCMwe/3wzRNT61OrNVxCwaDAOCpfXWLfFYXhPcpxxusmSdEojEUEhtuW1N4ARJdhI2XRRcv9k0mkzWp+/ES3A4iHo9XZXDppfOYfQMRBAHhcLiuVhflHI961OW1GoW8wfiE2M61OURllPvbm6g1hRcoZurbivcgEl0l8Mpk7YSnoeLxuCcvSDdFjqqq8Pv9Be0gmhmv1G8RtSHfhKjrOgKBAADYqUg694RbVGNN0WhEUWy6bjATgURXFl6KiuTDmWLTNM2TPmJuHUO/3w9ZlidsB+HFc+ql+q1WfJr0InxCBMZrc/x+P1RVdcUbjM4j4aQcawov+NEV67vY6HtjLSDR1SRIkoRgMJiRYmvVG6zTMqGUHUQz0sq1aUR5ZNfmyLIMTdMQiUQybAK8nBYimot8i0A0TUM4HG5o+rudml0DJLpK4oWTzqMiIyMjGU8kXozgABMbVy1Sbl7pLCCKIiRJQjKZtG98jaCSmi6iPhiGAcMwMrzBdF3PSAvF4/GWS7ETjSPfNdcIawoSXYSnKBYV8erEWO24WtlJn4tJ0zTJaZooidMmgKeFgsFgSW+wVpykiPqQbU1Rr5W4JLranHz9Fxtx8vOlE7PxquiqhmAwCMZYTVJujT5OTjHJRTRBlEt2Wih7hRqfDFvlXkA0nnwrcVVVLUv4V0qh2i0SXW1KI0QXN7/zitlppVQicsoRl81MdqSyWawYvD6+dibfCjVd16HrOmRZtmvFmvHeQXgT0zTz1oN1dHRMuAZRFMW80bNWbAEEkOgqSb2jJMFg0DbJLHXxNjqCU4xyxsXtIGotLhtxnCbqLVZLyj0eXr22iHGcEQlBEBCPxyFJUsOLo2tBMzysuEEz7GeherBqrCkovdjmFEov1ho+SVdikulV0VXOD8Xv90OSpAnbQXgRRVEQCATyeot59ZwRzY8gCHZbGO4NxidDnr73ok8T0fxk9yflD9Tl2KGQ6CJyqPUkWW3Ex6sTeLFxOe0ghoeHGz4et+H1W60oJonmwzkZ1sIbrJ606iScTbPvp2VZeVsVZUdfk8kkLMsi0UVkUuuTHggEIIpi1ZO0F0UXkH9cre7AXsvFAPXGq4KeqB7yBmsOWk1sFGpVxK0pBEGwzVqdtNpx4JDoyqJe6UVnOrHVeifm+6H4fD6oqtoQO4haC4hK6re8IGa8MAaiNlQySTWbN1irTsLZtPp+Zi8E6e7uhqqqCAQCME0TDz74IKZPn445c+a4chyi0SjuvvtubN++HQDwqU99Cvvuu++Et1stJLpKUIsJql4F5I3CecwEQUAwGIRlWS0RAcqmWP0WQdSTid6nqvUGqyetLEY4rS66nPD9dM4NiqLgySefxB/+8AdMmTIFs2fPxty5c9HZ2VnVd9xzzz3Yf//98bnPfQ6GYdTc7LUUJLpK4Lbommg6sZmQJAmhUAjRaLShF3qtIjs+nw+KorTFuSTai3K9wer5u26X6Gw7ia58HHbYYTjssMMQiUSwadMmvPLKK7j77rsxPDyMfffdFyeeeCJ6enrK2lYsFsPGjRvx6U9/GkA6pS7L1cse3k0kEAjY9izJZNLuE1wOJLqyyJdedKOFTCunE7NhjNn+W60azQuFQrAsq+LekM2S2muWcRL1IZ83mM/nQyQSsVdM1sMbrB3ESLuLLo4oith7773R3d2NRYsWIZVK4e2334aqqmVvo7+/H8FgEH/4wx+wbds2TJ8+HR/96EehaVpFY7EsC6IoYs2aNdiwYQM++tGPYnR0FHfffTcefPBBvP/978dnP/vZssyvG9+QzuO4MfmoqopwOIzR0VHXW8B48cfp9/shiiKGhoY8IbjcFBCiKCISiSCZTDa1eObHQxRFBINBaJpGIqvJqddkzeu9BgcHsWvXLjvSGw6H0dvbi0gkAl3XXb+e6PpsL7KvZ0VRMGfOHITD4bK3YVkWtmzZguOOOw7f+ta3oKoqHnnkkarH9MYbb6C/vx+qquKxxx5DX18frrjiCliWhRUrVpS1jbIiXatWrcLtt98Oy7Jw0kkn4SMf+UjOZ5555hn85S9/gSAImDFjBi6++OKKdsarTHTCbqd0Io/mJZNJiKLYcvvL67cmGr1r9OTBz4uzHk1VVbuAOh6Pe6JBONEcZK9Oq5U3WLtEgNplP0vhxhzS0dGBSCSCmTNnAgDmz58/IdEVjUZt0bdp0yZMnToVc+fOxRNPPFG2BVJJ0WVZFm699VZ8//vfR3d3N7773e9i4cKFmDZtmv2Z7du34//+7//w4x//GMFgsKUKpqsVXfVKJ3qlrUx2QXklIeB6MFGh41b9VqPPE0dRFPthwDAMmKZpGxtqmgZFUdDR0WFPmK3gaE7Uh3zeYIFAwLYF4KnIVmzx4gZeuJ97gUI9GSshHA6js7MT7733HiZPnox169Zh8uTJVW9vxowZ2LBhA+69915YloVDDjkEADA0NIRJkyaVtY2SomvDhg2YMmWKPdBjjz0WL7zwQoboeuSRR3Dqqafa+cxIJFLxzniVakQXX51YjxVtXhBd+QRJo6M5bsFXX5qmWXH9llfRNA2Msbz7wwuouYmhZVnQdT0jauElGwHC2xTyBqumZ1+j73P1ol32Eyi+r24dhzPPPBO///3vYRgGuru77aL6SuCR/xNPPBG7du3CihUrcOaZZ2L+/PnYsmULRFHEjBkzytpWSdG1e/dudHd32//u7u7G+vXrMz6zbds2AMBll10Gy7Lw8Y9/HIceemjOtlasWGHnPa+55pqCKxD6+vrKGnytcAqtSkUXX8VQr3RiIwueW1GQOOGLAWKxmGurtBp9vsLhMEzTLFs08QJqZxTMaSPAvcnaZZLwMs0wWWd7g2maltGzj19P7Szq3YjwNAv1EF3Tpk3DN7/5zbI/X2xlpKqqOOuss3DWWWdlbP8b3/hG2dt3ZfWiZVnYvn07Lr/8cuzevRuXX345fvrTnyIQCGR8bvHixVi8eLH970aLq3Iod5J01jPVU4A0ahL3ih1ErWg1LzVnNwBRFKu6ZgrZCPDfOfX1IyqFXzNAaW+wZhCVbtAu+wnUR3RVSrYuuf/++zF//nzsvffe2LhxI/bs2YNwOAy/3w9d1+Hz+SBJEqZNm1ZWWU1J0dXV1YX+/n773/39/ejq6sr5zJw5cyDLMiZNmoS99toL27dvx3777VfufjY17WaQqWkadF1viLt8Pah3tLLWZJ+vcpZLlyPms20EnLU7XjHTJJqHUt5gpmm2xANQKUh0lX6vnpimad8LX3nlFaxduxaiKCIejyOVStkR2p/85CeYM2dOye2VFF2zZ8/G9u3bsXPnTnR1deGZZ57BV7/61YzPHHnkkfjXv/6FRYsWYWhoCNu3b59QsVqjqSR61OgJut6RLl6310qLJTi8GbdhGDWLVtb7fPn9fkiSVPPzla92R9f1hpppthtemaTcIlvUh0IhKIqC3t5emKZppyLbQYi1Kl5vds0Yw+mnnw4gLb4uuuiiCW+zpOiSJAmf//znceWVV8KyLCxatAjTp0/H3XffjdmzZ2PhwoWYP38+Vq9eja9//esQRRFnn302QqHQhAfnFfJNko1KJ2ZTr0ncuRrTba8xL9Bq6VI+SfF6rHzv1xLDMDAyMpIRBeNmmoZh2BMmRcGIcmCM2fVg0WgUkiRB0zSEw2F70UerrLL1iuCoB14XXby+ThAESJKEJ598EvPmzUNHR4dtmAoA7777Lvbaa6+yXOkF1sA94wX4XkOW5Qyfoo6ODgwMDNj/9lI6Udd1e1VZrahmf7OPWaMpNh7urj0yMlLzp2ZN0yCKop1CqQWlBKSqqpAkyR5DvrRNMBi0xZHb8BVs3ECznlGwnp6epqglrYZW3jcgHbUFYPuBOeHeYHxlbjPXF0YiEUSj0aYce6VomgZVVXMeDCVJQnd3N3bu3NmgkWXCgxu//vWvMWPGDJxxxhmYNGkS4vE4/vWvf+HOO+/EL37xi7KcG6gNUB7ytQLiNDqdmI9aRi2q3V+vHBtOofHw9NvQ0FDdVpvWErcMXGsZQXWuYMtuKcN9nChtRGRTbFWf0xtMFEWoqprhDdZMkVWvRHnqgSiKec+J144Bvxd+4xvfwG9+8xvceuutOPXUU/Hggw9iYGAAP/rRj8q2yiLb6TLg/RfD4bDtb+SVC6JW4+D2AgCq2l+v9+7j+8cYw/DwsGfO50Tw+Xzw+XwYHBxsGsGS3VJmaGgIgiAgEomgp6cH4XDYc0a7hLexLAvxeBwDAwPYtWuXLcQ6Ojrsa8rLba+8JjhqSaF99WpHk87OTnzxi1/Etm3bcO2110KSJFxzzTW24305UKSrDPgEPTo66rmQr1sNuZ047QUmsr9eunk4TWR5+q0R57NWYpSbl5ZbX+jVCcc0TYyOjmZEwXRdRzgctidTioK1J9XeT4p5g1mWZUdWG10qwvHSfbPWFIpeetWr7JlnnsGKFSswZcoUfOhDH8Lf//53/OMf/8Bpp51W9jxMoqsEztVfXrzRuz2J67oOTdMmbAfh1ZtGq9ld8AUOXIyUQznnxgvnz1mbA8Auno5EIpAkKaMWzAvjJWqPG+c5nzdYKBSCLMuesDppN9Hl5UJ6J8lkEn/5y19w8sknY9myZQCAefPm4frrr8ebb76Jb33rW2Vth0RXHriQ4fYBXl7N5qboctMOwmvpRcYYAoEABEFoGbsLHpGs1YIOL50/IH9jZV3XMyIW8Xjckw9HxMSpxfVYyhuMrE5qSzOJLkmS8M1vfjOjBeLUqVNx1VVX4W9/+1vZ2yHRlQdFURCJROz0E5+svcpEx1ZNtKSZEAQBiqIgHo/nXflUT9wSo60WsasGXjwNIK+FQDwepyhYC1GPiTif4W+9F3l4UXDUimYTXVOnTkU0GkUikYAsy5AkCYqi4D//8z/L3g6JrjyYppmxWs9rURsnE70wa9XuxivHjEeD+A2zFQgEAhBFcUIROy+cGzfJFwXL19OPIMol2/C3lb3BGkWzrF7kbNy4EU8++SQGBgYwOjoKXdeRTCaxzz774Oyzzy5rG7R6MQ+maWaccK8IiHxMZGx+vx+aptWkXs0Lx4y3pWmVaBBf0GFZVl7D03LJvpnlO09evOFVArcP6Ovrw549e2BZll23E4lEbI8wonlo9ETMhf2ePXuwa9cuxGIxKIqC7u5udHd32z0jifIptnrRK/dsPr6+vj7ccccddivEd999F1OnTsW7776LSZMmlb09inSVgRcERCGqGVspt/JWILt+yyvnsNpxNGLFpReOlxs463Z6enoQi8Xsxsq8WD8ej3tm9RrRHGR7gzl7jzabN1ijKJZe9Mpx4/fsHTt2IJlM4pJLLsGqVauwYcMGfPrTn8bkyZOxefPmsrdHoqsMvDJh56PSsbllB+H2uNyCR4PytSvy6jksRa1SwO1KvsmSRylSqZQ9WTZ7tK/VaHSkqxjZBfm860JHRwdEUcxIRRLjNFNNVzweh67rAICBgYEMi4h33nmn7O2Q6MpDPkd6t72wGoFbdhDl0AjRVUxQeuUHXOlx8fl8UBTFUx0QWolCq9cCgQCAcXsBr/nztSvN8hvI13XBy95gjaIZRBe/X4dCIey9994wDANTpkyBrutYvnw51q1bh6lTp5a9PRJdZeDlSBdQOoIjCAKCwSAsy2oZu4RsylnN5+VzmA9+g3a7oXo517PXr/lakW/1Gk8ZecHDqZ1p1usx229OFEXb6oR7g/GVtnRdpfGi6JoxYwb22WcfDA4OYv/998cRRxyBu+66C4cddhjOPPPMsrdHoqsMmnkCkiQJwWCw7qu36nnMyvEX88oPuBxa3cKjWchevSbLMnRdJw+nBtJMv+NCWJaVsdLWGV0VBAGSJEFV1ba+rrzYBkjXdTuiFYvFsHjxYixevLji7ZDoKoNmFV2NrAWqR0qWi5N89Vv58MI5LHUt1drwlKgewzAwMjJS0MOJCqdrixd+v7XAGV0VRRHd3d1t3wDeS4X0TkzThCRJeOSRR+D3+/HBD34QlmVVNNeR6CqDZhRdTi8nrz0xuEGl4qQZjkE9a+6IiZEvCkZO5rXFSymnWsJ9IoHc1lft4g3mxXPtHM/rr7+Offfdt6rtkOgqgFNoNZPo4tGfZDJpN3htBLU8ZtWKEy+fw3q2KKKaLvfJVzjd7tEKonKyxUYh01+n3UkrLvTwkujavXu3bYjLx6QoCjo6OgCkzxFFulzG6xOQ80IIBAKeSU3V4phV2x/SK+cwexzcM423rWkEXjgurUS+Rt26riMSidj2AbxwmigfL03EtaLUPhbzBmu2hR7F9tUL55qnDZ966imMjo7iQx/6kF3TdeKJJ9qGqPfccw/mzZuH/fffv6ztkugqEy9PTIwxz1kLuD0GN4rLvXYOG2F4StQf0zQxOjqaEQXjIsw0TfuapigYUYnYKOQNxlPcXvcG87ro4mzatAk7duyAaZrw+XyYOXMmDj30UFvYrly5ErNmzSp7e81vPlUjvHLCS8FXu4iiiKGhIc+M283IkqIoCIfDGB0drfoG4pXjAsCeeIPBIIaGhjwpuLwSGWw1eBRsaGgIu3btsiO2kUgEvb29CIfD0DStwaMkGkm19yqe3u7v70d/fz8SiQQ0TUNPTw+6uroQCAQgy96JsxQrlveS6EomkzjrrLMgSRJ+85vfYO3atRnvp1Ip+Hy+srdHoquJkSQp42m5FdF1HX6/H4ODgxNOmXpFRHCfnkYVzJOg8g68Zmf37t3YtWsX4vF4zkQpSVKjh0nUCbd+l05x39fXZ2dAQqEQent70dHR0fD+o4VsIbwkuIC0PcSkSZPw6U9/GrNnz8Ytt9yC559/3n4/kUhUJLq8I3uJiuBmoMPDwxWd8HrhxsTOi0XdKC73wo+Ym9Qyxlw3PCVaA16zA4yvXONFvM5aMC9cz4T71EpwZBfkZ3uDNWK1bTO40QPpuYNHCD//+c/j/vvvx2233Ybdu3djyZIlMAyDRJcb5GsF5BW82szZyUTGVCtz0EY/1YVCIcRiMYpcEGVRaOVaKBSyLSuolUxrUS/Bka/zQr1X23pddPH5YmRkxE75m6aJZcuWYe+998aNN96IWCyGaDQKv99f9nZJdDURhcxAvSi6qqVWKzAb+SPm+8RNaiv5gTaKVrqmWoV8K9ecrWQEQfDMhEVURyPOX7bnnHO1LfcGq0WEtVlE13777Wc3upYkCZZlYf78+bjqqqtw7bXXIplM2u+XA4muMuGTUKMuhmJixIsTZDVjquUKzEYdI+4p5pVVpYA3rxeiMrJXrqmqio6ODnR3d9v1PPF4nKJgTYYXBIdztS2QG2F1yxus0L6Kougpy4tzzjkHiqLY/+a1aL29vbjmmmvwyCOPVLT4hURXAfKlFxv1gyhHjHhxEq1kTLVq7txICnmKNfqmSrQeqVQKpmmiv7/fjoIFg0Hbv4mnIuna8zZebH9TK28wr0e6OPw+7oTPbbIs49RTT61oeyS6yqQR0QFunGkYRlEx4qULtFLq1dy5nudPEASEw+GCPSG9KJCJ1iE7CuYsmgbQsi7mrYKX7+f5vMGcTeAr8QYTRTFvJNZrosttSHSVSb1FF+8tGI1GS64oadZ0UXatUyvAz1uzG5426zXVrhSbqPIVTTeri3mr02y/uewm8M5UpGVZ9rVVibhqddFFPl0FKJRerAf8pjg0NFTWEt5mnCB9Ph98Ph8GBwfrIrjqcYyc583rgqvZrhcizac+9SmcdtppOa+//vrrCIVC+Nvf/lb073nR9MDAAHbt2oWRkRFIkoTOzk709PQgFApl1K8Q9aWZBUcpb7BIJJLhDdauoosiXWVSL2FTTW/BZhJd3KvKNM2Wqt/y+/2QJKms89bKNxSithxxxBH45S9/abuNA+nr6dJLL8XRRx+NM888s6LtZUcqNE2D3++HqqowDMNO+zc6CtbqEzGnlfYznzeYruu25RGAvA+nXiukdxsSXWVSa2Ez0dqmZhBdkiQhGAwiFovVvdlvrc6fs+5ueHjY9e03ila58bcaCxcuRDKZxKuvvorDDz8cAPCXv/wFL730Ev79739PaNvZ1gHZvfwaYaDZbrSS6MqGp7mB9H52dXVB13UEg0EYhoGnn34ae+21l71K0g0sy8LPfvYzRCIRXHDBBa5sc6KQ6CqTWoouVVXh9/ur9qby6o/UOS6+j61Uv+U0PG3miUgUxbxPl80g5NuNww8/HJIk4aWXXsLhhx+OwcFBXHnllfj85z+Pgw46CHv27HHtuwzDsPv58XqdbAPNeDxel6hEK4sRJ+2yn4wxe7W6aZqQJAnDw8N47rnnMDg4iH333RezZ8/GnDlzJtSL9IknnsDkyZM91SaPRFcB8tV0iaL7JXB+vx+yLE/Ix8nr6UU39tEN3DxGrbIIgE+klmXZ0Yx6TaRE5QQCARx44IF46aWXAADXXnstRFHEt771rZp+r9OfCRiPgnV0dEAUxQwDTaJ62kV0AZlpRNM0cdRRR+Goo46C3+/HG2+8gdWrV+Ohhx6Cpml43/veh6OOOgrhcLjs7Q8MDGDt2rU4+eST8fjjj9doLyqHRFeZuC1seFoqlUpNuLbJq6KLMYZwOFzS8qLZmKiJa6ONdjnO/Ugmkzkr2wRBgK7r5O/kMY444gg89NBDWLNmDe68807ccMMNCIVCdR1DvigYdzE3TdMuk3DrgcQLv5d60S77WeicqqqKuXPnYp999gEADA0NYd26dRVfS/fccw/OOOMMT0W5AFq9WDZuChtZlhGJRDL8TiaCF0WXJEmQZRmJRMIupGwFgsEgRFHE0NBQU98ceUrRuR/OlW39/f0wTROyLKOrqwvd3d0IBoN241eitjDGsGrVKnzqnHNwzDHHZLx3xBFHYMuWLbj44otxxBFH4D/+4z8aKkqcq9Z27dplLyaJRCLo7e1FOByeUIrI+T2tjtfu442AO75zwuEwFi5ciM7OzrK38dprryEYDGL69Om1GOKEoDtombglbHhbmKGhIVdTOF76sfKUlWEYnrdOKBe3TVwbNUly41bGmN3moxCMMXtlW7bLudMEsR0mw3pgmiZeeOEF3H///bj33nvR19cHvPACcNBBOGbzTvy604dDDQNHHHEEAGDDhg144IEHGjzqXLJXrWmaluPdFI/HK4pceOn+VkvaKaJXCDdc+Tdt2oRXX30Va9eutVfh3nnnnTjnnHNcGmX1kOgqEzdEVzAYBGOsIjuIcvDSj5RbJwwNDWUsDW5muOGpW024G3W+JElCKBTC6Oio7U7OxyOKIlIjw0gO7oHWPQliVgPXfC7nfOURj5AVMkEkCpNMJvHMM8/g/vvvxwMPPID+/v7xN4NBYMECQBSxee4M/CAex99370YgEICqqjjnnHNw4IEHNm7wZeKsBZMkCZqmIRwOQ5blipope+k+VytIdLlzDE4//XScfvrpAID169fjscce84TgAkh0FcUptCYiurhVQi1b3TRa3Dhr1FrJOkHTNOi67npkst7w6GP2fjDGwBhDsn8XBl5ZCWakMAIBakcnxJmzkVI0KOFIzvb48m/ej03XdYRCoYyJtJZtnZqZWCyGxx9/HPfffz9WrFhRuN7xkksAx+Kdz49Fjn7+85+jo6MDl1xyScbHm2Gyzo6CZTdTLiTeG31/I+pHqwtPEl1lUq3oakWrhGycERRnOtGLtWaVEAgEIIpiTSKT9TwuvGA+Xx2aZVkYfWcTht98DUD6PVEQoCQT2LXmZRimAVHVoHT1Qu3phdrVCzHLsdyyrJyJlIswy7JcL6puRoaGhrBixQosX74cjz76aOniXkUBLr4446XACy/gV089hVtvvRU333xzxkquZv2d5Wum7BTvPErW6hMxMY7b53rOnDmYM2eOa9ubKCS6aohz0m7VG0axSFCzii5n1K5U3ZPX4em/7GhKNBpFKBjEnldXIfnW+rHl2yZkKW0FEIvFYLH0+bSSCSR2bEFixxZAEKF0dELt7oXaPQlyMHfVHJ9IgfF0UiQSaTtrgb6+Pjz00ENYvnw5nnrqqcrqG886C+josP8pR5P47JIlmDJlCq644gosXbrU/QE3mOwUNo+CBYNBu85HlmVKYbcAxYRVqwtsEl1FqFY0tNKkXYxaRYJqRTk/ZB61K6fRuJfhBfO8aNmJaZoYHRrC1tUvIrW7D5IsQ1VVyLIEAEjEixTHMwupPf1I7enH6IY3IOr+MQHWC7WrB4Ik5XwXj4I12mCzHmzduhUPPPAAli9fjueee67gfhVrdSLKMjp+9jPsdrw2faeAf23dWoMRexdnFEzXdfh8PnshRyqVsiOorTxBtyrFhBW1ASIqghddZ6faWolyRWWzRbrqlQqu9XEplu61LAtGdBQDLz8HY3QEAGAYKciSBMMwkUwmocgyfH6//Z6RMuyoVzZWPIr41ncQ3/oOBFGC3NEFtacXWs9kSD5/xmcLGWw628zE4/Gm+91s2rQJy5cvx/33349Vq1YV/NzUqVMxODiI0dHRgpNKR0cHzv/73/HTrq6M10+OxIEi7jKtHh1gjGW02lIUxfaUA8aL9Zvt2mlXWv16LQaJrgooNVH6fD6oqtqQout6XcCViEqvia5ipqQTNTz1CoWc8rngSuzuw+CqF2EZ6SieACFt72EaSCbSryWSJpBMQBBEyJIETdcgCiJM00ybYpr50zvMMpHavQup3bswum4tJH8Qas8kqN29UDq6IGR1dMg22HQ2W06lUvZE6vWn3quuugrLly/PeV0QBCxcuBDTp0/Hc889h61ZkSqfz5fh0zd37lzcettt+OrChTnbOpS1t5jI/t3yhRzORt3c1LeZrp12pdB9uB3EGImuIuRrBZQPQRAQDAZhWVbDUm31cDlvlZV82fCC73q65tdCjBYSjlxwRbe8g6HX1wBjUStREOHz+ZBIJmEYuZM6YxZShoXU2Htpw9t0hIExhtSYaGIFomBmdASxzSOIbd4EiDLU7p50GrJnEiQt05IiX7NlXddtQ0QvRzKWLl1qiy5ZlnHsscdi2bJl8Pl8+J//+R/87W9/y/h8T08PgHTNF+fUU0/FL37xC7za1YWXVDXnO4RXALyvdvvQDBS6txW7dpo5gtrKkOgiqsYrNUC1Fl3cc6sSUen1SJfbhqeVjMNtChXMW5YFy7Iwsm4tRt/ZaL8uSRJ0TUcsHodllZdKNU0TpmkigbRgk2QZPl2HIAgwTBOGkSqclrUMJHftQHLXDgCAHIqkI2DdvVAinTnXiWEYtjErb0fkjGR4qZ5n8eLFWLJkCZYsWYLFixdj/fr1uPrqq/H8889nfK6jowNLlizBP//5T4yMjNivX3zxxbjkkksgiiJuCgZztq+mGAZeENtadFVyH8m+dpwRVG6U6cUoWDsIDg6JLqIssidtHvlpZTuIYgXZpahVk3A3cNvwtFHw+jq+KtCJaZqwDAODr6xEou89+3VFVqCoKqKxWMEoVSksZsFKJZFKpR80ZEmGIivQNR0Ws2CkDBimWXD7xvAgjOFBYPPbEBVlbEXkJKg9vRCVzEgPY8zTxqyRSAS33nor1q5di4svvhiPPPJIxvs+nw9f+MIXIMsyfv7zn9v3D5/Ph5///Oe2ieNaWcajWaa0ADC134SU82omrT5ZVbt/+aJg2XWEiUTCE4tmWv0cOilULN/qRfQAia6i5Esv8h8GX7nnlR58tYgqtdqiAH6MGp0mdetcFSqYB8aiUrEo9rz8PIyR8eiXpukQRQHRqLurag1zvNZLFETIigyf6kuPxTCQMoyciJogq4BpwErEkHgvhsR72wAIUCIdULsnpaNgZRizZns7letw7hbvvPMOfvrTn+Kee+7J+E5FUXD22WfjggsuwLXXXov/+7//s9/be++9cdttt+Hggw+2X/udo0uAk713mvBQwLipydeo2yuradtJdFGkiygLHrkJhUJIJBKesoNwW3S5IUy8ll4E0tEFAE1jc1GIUgXzyYHdGFj1AqzkeNrU5/PBMi3EYpVFLCvFYpa93F+AYFtSSKII07JgGAYsURobW/YNliE1uAepwT3ApjchqpotwNTuXohZDbcLeTtNpM9fuezcuRM33HAD7rrrrowomyAIOPPMM3HJJZdAlmWcd955eOWVV+z3jzrqKNxyyy12bRfnh4ODiAoC/ja2cvTQZBKXDw3h2VeUthddbvTjy6bQatqOjo6Gecq1uuDgkOgiyoKncoaHhz2XknJT4ATH6krcECZeEV2CINiNmr0klqtB13WoqlqwYD62fQuGXlsNNhZZEsYK5lPJpF0UXy8YWNp2Yux7RVGCFghAME1A9pe2pEgmEN/+LuLb37WNWZWuXmi9kyEHcuufnN5O+YxZ3bgeBwcH8etf/xq//e1vM1YfAsDJJ5+M73znOzjggAPw4osv4vzzz8euXbvs98866yz85Cc/gZqnWN4HYI8jHX9GLIYjk0m83SfBKjHsdpisak2+KJiu64hEIjBNs+adFbxyr6wHhUR0O1zHJLqK4Dz5Pp8PsixjdHTUc4ILcEd0OaN4ldZvFRqTF+BpOJ4+aDQTOVd8QUO+gnnGGIbXv47Rt9bbr4uiBJ+uI56oTbSnEhgEQJIRG06PvVJLCqcxa3TjG5B8/rEI2CSond1FjVmBdPTW5/Oht7e3qlRSLBbD7bffjptuugkDAwMZ7x111FH47ne/iyOOOMJ+bXR01G5gLcsyrrjiCpx77rkFtz8gCHhK0+x/f2jsN/gf/xGDR35KDaPek3F2FMwp4CVJst9z837SDoKDQ5EuoiA8usVXvbQqtSgs90J60dnoWR9badeMFCuYtywLlpHC4KurEH9vm/26LCvQVDWjpU/DEERIkgwrNT5JlWNJYRqFo2BmLApzyzuIb3kHECUond1Qu7kxqy/n8zxK0dfXl169qet2KqlYQXUqlcLdd9+Nn//859ixY0fGewcddBAuvfRSLFq0KOfaOuGEE/D9738fv/zlL3HLLbfg2GOPLXqIHtR1GGPbOCyZxLQxkSyVqqJvExo5GecT8G6nsdtBcHAK7SsV0rc5kiQhEonYdhBenrQnInB0XYemaTUpLG/k8fL7/ZBl2TOLHaqlZMF8Io7BNS8hNThgv66pGiRJQjQaBcupm6ozogxBgG3IWginJYUgiLbfUnmWFCZS/TuR6t+J0XWvQQqE7PZE+YxZTdPE6OhowYLqeDyOWCyGe++9F//93/+Nt956K+PvZ86ciW9/+9s4/fTTi67QveCCC/Af//EfOfVb+bjPIRQ/5EhbvviiAlkGDj20+RezVIvX7rv5omDhcHhCiznaSXQVElftcAxIdBXBNM0MIeKFyE0hqh2bm/Vb2TTyxxMKhezz5xyPF85fJeMoVTCfGhrAnpdfgJUYm6QFCYFQCIwxREeGkVuoXl/4CkVWoZhnzEJqApYU5ugwYqPDiG3eBEGSoXSljVnNYO4KwXyppKeffho//vGPc9r6TJo0CV//+tfxqU99CoqilN5/QShLcA0JAp50pBaXOaKZ69YpUFVWVHS1+mTl5f3LjoI5F3NUYmni5X10G0ovEnnhE5vz3171nap0bPUwBm2EyGmU4WktKFUwH39vOwbXvDReMA8BPp+OZCw6JlYECIoKQEh/plCtVI0QFA0slYQbwi+vJYWiA4IAc6wOrFAUjJlpY1Zz9y5s3bwJCUlOr4js6YUS7si4RleuXImrr74a//73vzO20dHRgW9961u44IIL7HSkm5PDw7qO1Ng4DkkmMSNDYKPtVy82E87FHPksTbjAz75+2kFwcIqJLkovEjZeiZQUotLoSbMbg2ZTar+8cv7KEcilCuZHNq3DyIY37Nftlj6JhKMQnY2JnjSCJEOQJDCLwTJSEGoYBRNUHSxZmxpI25IC45YUiqJC18YtKUzDyEir8vo2bghrJRKIvr0egqxC7e7FlqERXP+bW7H8oYcyvkvXdZx//vn40pe+hI6ODjDG7PpHHiGLx+MT/h3d5zBF/VBWzR6JruYVJIUsTQpdP824j9VAkS6iLLwyaeej3AuV12/Vo7FzoeMVi8XwgQ98AIIg4Mknn4Sex4W7Uuq5X7WEF8ynUqkcO4J0wbyBwddWI75ji/26LKX9hUoVzDPTABsTZIIgQlQUgAmwDANg7qxsZBAgqSqsGgmu3O/LtaRQZBnqmNeVYaQgCCIkUUQ0GoUFQFI0e3z9O3fgod/fiZUrV4IxhoWdAfQlDAyYDGd88j/xta99DZMnT7a/z9louZIoRjFGBAGPO34Dy7LOe7miq5mv+3YhXxQsGAxCURRYYw8M7SA8qJCeKAuvi65SY+NPV/U0Bs03puuuu8524v7v//5vXHbZZRP6jnLr0rx8/oDx1GgsFstZRZcumE9gYNULSA3utl9XFBWKolReMM8sWI7vEGQFgiiCWRZYtV5efIVisnFpXcsykUiaQDIxlm71pYvoGYPq08EgIBWLYXh4BI8+8gj+/e9/22lJAUCnImPRkUfg1FNPxaSpe0Ptfw9xgUHt6inbmNXZnqicFW2PaBoSY9flAakUZmd9XhQBUSx+br18XbtBKwqR7OsnHA5DkiR0dXUB8HaT94lCkS6iIM6J2suTdrGxeanO6ZVXXsE//vEPrFixAkC6WfCZZ56Jgw46qOJtTaQvZCPJd65KFswPD2Hg5edgxsejILqWrmlyo6UPM1Ljkk2QxgQGG4uClfHkWeYKxXqi+/T0ashYFIIoQVIUpGJRPPb443jkkUeQzPot7H/A/li6ZCmm7j0VAGAl41nGrF3pFZE9k0oas4qiCF3X7RVtxXyd/ulYtXhaVpQLAM46KzrRQ9EStPpkbFmWvfKRtytzNnnn108rR4JIdBEZVCO6apFKq2RsXqvfmjdvHl588UX7387/r4RiNgqF8OpCiEKpUS64Ervew8ArK8dTg2MRHMM0kEzUQOQwE1aKC7/SxfjVrlCsFdkO/IKsIJVI4PHHHsOjjz6KaFZHglmzZ+G0007HvjNnljBm7UNqTx9GN7wOyecfK8afBLWjK8eY1bKsnBVtuq7bvk78AWjIsjKaXJ/WRA8P9cSrD7tu4hQc2Y26FUXJadQdj8dbLgpGoovIoBrR5XYqrRjZY/P5fFAUpenrnLJxGp42+1MfL5jPTo3ygvnRtzdieN1a8BWAdsF8MmnXMdWW4sX4oqK6tkLRDfjx4Q78TJLw3DPP4OGHHsJglov8lClTsHTZUhxwwIFQZNnuvWcxC4aRdscvaEkRiyK25W3EtrwNiBLUzm6oPZOgdk/Ka8zKo2AAbGPWSCSCRyUJ8bHf7dxUCvvleTB68kkV4XBpy4hm/y0Uox0m42L76Kwl5FEwv98PVVVtX7lWiIK1w3km0VWCiaQU3UyllSL7QuVP1Nmr35odv98PSZKqMjz1SnqYjyMcDhcumDdNDL2+BrGt79ivS5IEXdMRi8dhWY1p6eMsxhc1HQKzICiqq8X41WIfn1gMpmVhzdrX8cB9/8SunTszPtfZ1YlTT12Cww47DKKYvh7yWlJwY9YSlhSwTCT7dyLZn/4eKRAaE2C9UCKdRY1Z/9jZCYz5fX1cFNHZ2ZkzgW7YoGDSJLOtzVHbgXIFR3YUjD8sOKNghboreB0SXUQOlUzabqXSyoFP5PWu3/re976Hu+66C6tWrUJnZ6f9+rZt23DKKadg2rRpuOeee+Abe/rv6+vDddddhxUrVqCvrw9Tp07FRRddhHPOOafo9wiCgGAwCNM0MTw8XNN9qjV81dLIyEjegnkrlcTAqheR3NNnv67IChSH5UEjsVcoJuIZ8a10Mb6UIczqhfP4rFu3Dvf+8z68t3VLxmeCoRAWL16Mo446CrJcuLdOXkuKMWNW07LSvmBZlhRObGPWdzaOGbP2Qu3phdY9CaLDADUmCHjE8e9F/f0YBnImUFEUIAiNFbSNph0mY6C6urXsRt28xyjvrlBpj9FGQqsXiaZCFEWEw+GcYuxa8qUvfQm33347brvtNnzzm98EAESjUZxzzjkQRRF/+9vfbMGVSCTwqU99Cnv27MG3v/1t7L333rjrrrtwySWX4IMf/CD23nvvgvtVaFVfJXgh0iXLMvx+P1KpVMa+8PotY3QYe156HmZsvO5I03SIojsF8xNGECFKUt4Viuli/LFoTDXF+FWiqipkScabb76J++67D2vXrYPmiC5puo5FJ56I49//fmiaWtG2C1lS+MYsKUzDQMowCkYe08as25HctR0jAORwRzoK1tWLxydPQXRsnLNTKcw1DBhAzgQqywF0dOjo6NDtCTTf5NwOoqSVcePeVCgKxnuMOlsUNYpiArodxDWJrhbB5/NBEAQMDAzU9aKdPn06PvzhD+PWW2/FRRddBE3TcNFFF2HDhg34+9//jr322suuV/rHP/6B1atX46mnnsLcuXMBpAtE//rXv9oFx9kUWtXXjGiaBl3XMTIykrGgwi6Y79+FgdUv2pYNAgToPh2WaSEW80CBtSRDAMqzlMhTjC8IAizDBCz3omC6pmPHe+/h7/fei9WvvAKDMVtwyYqC4449Fos++EEEAn5Xvi/bkkKWZaiqCkkUYZomDNPMMWblMAZY8Riim9Yhumkd1kY6cNC0fdA3eSpO8wWQPeXyCTQWkzA8bGJkxICu6xmWAtxYs9EPE7WmHSbjWuxjdhSML+iIRCIwTdPOiNTz3trq9YelINFVgmp+BMlkEjNnzsT3v/99XHjhhfbr27Ztw/z583HrrbfijDPOcGV8PO22bNkyjIyM4L777st4f+3atTjppJPwy1/+Eh/72Mdc+c5svvzlL+Ovf/0r/vjHP2LHjh247777cOutt2L+/Pl2dIkxhvvuuw+HHnqoLbgA4J///Ce6u7sxa9asnO0WaoNTLY2MdPFatMHBQUiOlW5ccEXffRtDb7xqR4SyV+A1GkFRwIzCvQ6Lky7G52fQLsZnDFaqOmd8AQJisRj+3//7K55/7jmkLAuMAaooQhBFHHnkEVi8+GR0dESqGG95MDCkjJR9fiRJShvV+v1gjKXrxFLGmGGtAFFV7AhhCsA608TUzW9j6ua3cWo0ioFQxG7SLYfC9veoKoOiMBiGgZGRkQxjVm6s6ewf2eripFWptbDM12NU0zREIhE7ClbI1sRNRFFsW48ugERXxZRzUbz++utIpVI45JBDMl5fs2YNANirGbO3W87ThiAI9qQtSRKCwSBisRgWLlyIG264AYlEAtpYnQhjDN/+9rdxxBFH1ExwAen9WbRoEa666ioMDAzg0ksvxemnn54xZsYYVq5cidNOOw3JZBJbtmzBH//4R9xyyy342c9+liFEgHEj12ZfCOB0mOe1aNy6wrIsWJaF4TdfQ3TzJvtvRFGCT9ftFXiNRlA1sKR7KxTzOuNDhJVKlVWMHx2N4oknnsCTTz4JwzCQYgwiAFkUMG/+fCxZcip6e3tdGWslmKaZ9gVLJiAIYjq1o2sQJRkWBKRiUfAY3zpZsQ1Ruy0Le5kGUgP9SA30Y3TjGxA135gnWC8+c3ZvXksKp7FmJBKBLMvo7u6uqMky4R3qLTqyG3VrmmZ3WLAsy46kun0PamdjVIBEV8U4IzeFKCSu1qxZg2AwiH333Tfnb5555hl85CMfKfn9xx57LO69916oqgq/32+n3Y488kgkk0msWbMGCxcuBADcfffdWLlyJR599NEK9rA6Tj/9dDz22GNYsmSJXdsFjIvUnTt3Yvv27Tj00ENx4YUX4t577wUAfPjDH8ZZZ51lf57Xb9XC8LTeka5CtWi83UckGMSul19AavsWCBDAwHJ6BDYaUdVr29InrzO+BGaZOWnMRDyBp/71Lzz++ONIjF0bCcuCIgjYf//9sXTJEkybPq12Y60AxiykUkkYlgQgBQmANFZfwxjDq47rcJ5h5KQWrUQM8W2bEd+2GYIoQenogsKNWf2BnO9zen/la0/E63jaYVJrVhotOvJFwbi5r5vXUDu3AAJIdJUk++IoV3RNnz49YzUff/3AAw/MO/HPnz8fDz/8cMnxBINB+P1+yLKckXY7/PDDIUkSXnzxRSxcuBCDg4O44oorcN555+GAAw7Iu60nnniirAgYF3qF2Lx5M6666ioA6RSqE368Vq1aBQA47LDDcMghh+BjH/sYHnroIfz+97/H5MmTceWVV9qNhL1i5DoRCu0LTyfueW8HBl5+HlYsCllREIh0pAvUjSSiI6MeEFwCxDr2UOTkK8ZPGSk88+RTePSRFRgZGbE/m7As7DdzJpYtW4r99tuvruMsB0FS0oaxbKxA3jSQAGAJIl4LjjvaLxyLXheKKLz6iohIZDemTd+F0fVrIfkCUHsmpUVYZ3eOJUW+9kT5jFm9EEUlvEl2FIy3uAqFQhOOpFKki6iIcqIla9asyUkt8tdPPvnkvH8TCATyph2dcG+nfGm3YDCIefPmYeXKlQCAK6+8EoIg4Dvf+U7B7R1xxBF45plnin4nAHv1YT6Gh4dx1llnIRQK4Tvf+Q6+9a1v4YknnsAJJ5yQ8bnVq1cjGAxiv/32gyAIOOCAA7BkyRJEo1H83//9H376059C1/WaGp7WK9LFC+az94ULruSefgysegHWmOloMmFCHLvhWKYJXyAAUVFgJBJIxeOFXdJrhSBCKLBCsZ5YpoEXn38ODz70EPbs2YOUZaUbVgsCeidNxoc/tAwHHXRQWc2g642gqGAFVm2+KYrgzmydzMJUw4A8ZklhMQtGKtOSYucuAYI4vpNmbBSxd99C7N23AFGG2tUNcZ99IXZ0AkJux4VsY9bsOp5Gr2YjvE++Rt3VNnon0UVURKmJmzGG1157DV/+8pczXn/rrbfw7rvvFhRW5aYXjz/+eNxzzz153zvmmGPsFYK/+93vcOONNyIUChXclt/vx5w5c0p+ZyFM08T555+P7du344EHHsCsWbPwq1/9CjfeeKMtupyRrvnz5+ccO0EQMGXKFLtgvtlxFsw74YIrtvVdDK5dnVswn0ohNSbCUsPpSI8syVA0DT4tAss0kYxFYaRSlTW2rhBBSt8Sqm567QKMAa+99hqWL1+One+9lx4X0kXykY4OnLxsGY48/HBIYwXk1Rbj14pSNXCvjJmhAsC8lJFjSSHLUoYlhSAIEIQCDyKWAWN3H0aiI4jGYhD9AdsZX+nozPm95avj4avZms3TiWgMpRq9O1fV5qPQ6kUSXQSAwunFQoyMjCAajWLy5MkZr990000AkDcCBhRPL8qyDF3XEY1G4fcXXvp+7LHH4le/+hW+/OUv48gjj8THP/7xgp91g+9973t48skn8ac//clO73z5y1/GN7/5TTvax4/X6tWrceyxx2b8/a5du/Dwww/j4osvrovhaa0jXaFQKK95Ky+YH1n/Okbf3mC/Xqpg3jANGFEDiI6OuaQrCHR0QICAZCKOVCLhqjO9IKvpAvcGpjY3btiI+++/H5s3b8543R8I4KTFi3Hc+98PCWysFiwdiaumGL9WlKqBMwG8Jo/fdudl9c6zLBPJpIlkMmlbUkiiCp9Phq6nWxM5LSlkKV0nxmsAM4xZZQVqVw+UnklpY1Y116Msu45H1/WWcDYn6ke+KBhfVZtKpexUJJ9LC9Vukegi8lJq4g6FQpg8eTLuvfdenHLKKYjFYrjtttvw97//HbIsY//998/7d8FgEIceemjO6zxyMjIyUvKCPProowEA69evxyOPPFL+TlXBb3/7W9x222247rrrMlKJn/zkJ3HttdfixhtvxM033wwgXef13nvv4d5778U+++yDRYsW4b333sMvfvELTJ06FZ/73OdqOtZaU6wLgGmaYKaBgTUvI7Fzu/06nyxjsdiYpUBx0i7pCSQd/lCa3w9ZUWGkUkjGojAnkIYUVW2soL0xN70tW7bigeXL8eabb2a8ruk6TjjhA/jAiYug63p+p/sKivFrBWOApJVedLBBkhEbu390MAvTi4jmcUsKAYmEhVSKQZZkqH4/wBissVWw0Wg0vy+YkUJi53Ykdm7HCAQoXT1QOjrTUbBwrpWGsz1RtrN5KpWyRRhFwYhCZEfBeKPuQCC9+IMv9Mj3kEmF9ERe8okuac0aWOEwpF27YPX24qabbsKll16KhQsXYt9998W5556LZcuWYeXKlRmmmMXIZzVQikAgAFVV8dnPfrYm/R05jz76KL7//e/jvPPOyxFMmqbhggsuwDXXXIP/+q//wty5c+0i+k984hO466678Otf/xozZszA4sWLcfHFFyPoKCquNW5HuooV/5umCTMWxZ5VL8AYHk83cgf1QpNlKezJeMThD6Vq8OsRMGYhGY0hlUqWXYyfFlyNqd/atWsXHnjgQbyyenXG65Is4/jjj8eJJ56AUEcnmGmV3VoovzM+YBmpGkXxxtoilbHo4BVHlOuQVO6qxXxoGqDIzLakQDIBTdUgyzIsZsHv96eNWQ2jYP2fqKhI7e5DavcuRDetg6hqdnsitat3LFI4Tj5nc2cUjD9gpFKN95AjvEt2o25d1+Hz+aDrOnQ93WFheHgYsiy7Eunas2cP7rrrLgwPD0MQBBxzzDE59cWNRmANjOdlr3TzKqojLK9pmn3TAQCYJiLLlkHatAlMFBE/6yzEfvCDCX2fJEkIhUIYHR2t6KZ2xRVX4M9//jOeeeYZhMPh0n9QB3RdxxVXXIFbbrkF69evh9/vh6IoGB4ebkgouaOjAwMDA65si9fDDA8P5y+YH9iTLph3TMa6lhbd8URtVgWKgpi2JvD5IEgykvFYkTRk2imepeovuAYHB/Hwwyvw/PPPp1f48REJAo4+5hgsXrwY4XAIgqKBpdyKwAkQFCV9cx+LQE58k+lFB+VE1CwAPwqGEB0T/hdFRzGzihWEmqaP3YPGG6VLkgRZViCPmc6meH9IZpWOYgoilEgnlO5eaD2TIAcL14ECsKNguq4XTCG5TU9PD/r6+kp/sIlph30EgHA4bLey0jQNv/nNb7B7924cdNBBOOCAA9Db2wtRzF0QUg6Dg4MYGhrC9OnTEY/H8bOf/QznnXcepkyZ4srYp06dOuFtUKSrQrixJUdavx5MEADLAgQB8ttvA6kUkPXkWC6FVr4VIhqN4rXXXsOzzz6LX/3qV7jjjjs8I7g4L7/8MubNm4dwOAzLspre8BQoo2B++1YMvbYKbEzsCBDg8/lgmEZNa2QsZsFKJZFKjTdr1v1+yKqKVDKFVDyWrgkShLRYqLPgio5G8ehjj+Hpp5+GkfVAcci8efjIRz6CjkgEVjlioWIKO+OzVKri7xFECRDEslOYGyXZFlxhZmFGFYJL131jUahYxuu2MSvGhbdP1yHpOpLRKAwpf0oHAMAs25g1uvENiLrfdsZXu3pyjFmzo2CKokDX9bILqYlc2qWeCRjfVx4F+9SnPoVYLIYtW7bgqaeewsaNGzFlyhTsv//+OOCAAyqazyKRCCKRdOpc13VMnjwZg4ODrokuNyDRVSHZ6UV59WrA7wckKZ0HiMchvf46zHnzKt52IBCAKIoYGhoq+wf45JNP4pxzzsFee+2F6667DmeccYanCl8ZY1i1ahXOPfdce2lxs1OsYJ4xhpGNb2Jk43htkji2QjGRSNTV/sFu1uxMQ8oqfOF0GjIxOgpDEOviCZZIJPGvp57C4088jnhWH8n99tsPp59xBvbbbz/EotExwVVjU1ZkOuNzX7Jyi/EFSU7/Rs3yI9HVpBYB4KWXFEyZbGG//bSyRLvFLJjJJExBhLVnd3oVbLYlhVm4pZMVjyK+9R3Et74DQZQgd3RB7emF1jMZki93IQ+fPAvZCUzUVLMdBEk77CMn3776fD4cfvjhOPTQQzEyMoLt27fjjTfewJ133olly5blNRQvRX9/P7Zs2YIZM2a4NXRXINFVIRmiyzQhr1kDyDKYroNpGmCaUF5+uSLR5azfGh0drWg8S5Yswa5duwCklb3XfriiKGLHjh0YHh5uesFVumDexOBrqxDfsdV+XZIk6JqOWDzu6krDajBNE5ZgIrFnNwSk63T84TBEUUQqkUCqBm2HDMPEc889hxUrVmAkS6TuPW0aPrRsGQ4++GCIkohodBSAAFHR6m7KCrCCxfhWKpXhBVbNKk8LwKuKY9ViBQX+/f0ientVpFLl9uHMrDEzzPFar/QqWBk+Ne29ZxoGUoZR8NpklonU7l1I7d6F0XVrIfmDaUuKrh4oZRqz1qO1DNE8FLKMEEURqVQKgiBg6tSpmDp1Kj74wQ9W9R2JRAK33347PvrRj5ZdR10vSHRViFN0SevXA7EYmCjCCochWBYE04T02mtALAYUMRXl8ELsSuu3So3NC/BeXq3QA65kwXwijoFVLyA1uMd+XVFUKIrinZY+ijZmyJou30+lkkgNpoWGLCtQNR9kTYNpppCMxjKsCSqFWQwvr1qFBx94ALt37854r3fSJCxZsgSHHHIIfL50uiwWi42bsjagxiwbZzG+KIoQ5HS5AEN1qci3JAkjY8alQWaVXcslQIQsKzCN8gWXoCgFj2F6FWzStqSQZBmqqkISRZhj7amKnXczOoLY5hHENm+yjVnVnklQeyZB0nInt2w7AV3X7dYyfDVkqYexdogCtcM+cmrd8No0Tdx22204/PDDMX/+/Alvz21IdJWBU8w4/18eW5UHSYI1eTLEoaF0bddYBMw48sii2620fquccVZbgOg2gUAAgiBgdHQUSpX1bV5BVVX4fL6CDvOpoUHsefl5WInxOhte7JyO3jSeUisUbYPO6AhEUYKiqNCDQQgQkIjFYCQTZVlbMAa8/vpaLF/+AHZs357xXqSjA6eccjIWHr4QkiSlTWENI20KK8oQhMaashaCMQsslYCoamDJVFXF+K/I47+BQ1IGyvmVioII3eeDYZgwy4mSimI6Opcqr7zATj87jFkVecySAmPXRMoofN4tA8m+95DsSxvYysGw3Z5IieQas1qWVbDBsmmatgBrxyhYO4muWjrSM8bwxz/+EZMnT8aiRYsmtK1aQaKrCgRBAAwD8quvpl8QRbDubliqCmHshiK/9FJR0cVFSSu4sDtxpkpjsZi9FLhZ4QXz2XV2XHDFd27H4Csv5RTMm6ZZsxWKlSFAVNSKLCEsy0QiEUMiEYMgiJAlCb5gCJKipE1Z47G8E+OmTW9h+fLlePuttzJe9/v9+OBJH8SxxxwLRVUgCCL8Ph8SySQMIwVBVtKWEA1OvxbDKVorLcZnANZUmFrkaenRaAzMUkrWf6WL3YUJiVbLMpFIpi0p+HnXdA2iIJa0pAAAY2QIxsgQ8PYGCLIKtbsHavckqN29ZRuz8vZETmPWdhAk7bCPpXDjGLz11lt48cUX7RpnADjttNNw4IEHujFEVyDRVSH2RSGKiH/qU5BXrYL88suAZYFpWnr1IgBpwwYIg4NgkUwTQt4/kdc2uD22Rgqcaq0u6kklP+qSBfNvrcfI+tft17PFRMMZi3xMJF3HmIWUYSE15jOWbk2kw69paVuMaBSb33kH9y+/H2+8/kbG36qqivd/4AM48YQToPv0sSGlXfh5jVupljmNhpUQreUU478tSRgeSy0GGMOsEpEcWVagqSqisRgsy0IwyJBHs9gI8lhjbcu9FL593g3nIoy00WW2JUXevzeSSLy3DYn3tgFVGLPy6HIkEoFpmhAEoaXNM0l0uXMMZs2ahRtuuMGdAdUIEl1lkDe9KIowDzoI5kEHwTjsMOi33gqoKqzOTv5HkF99FanjjrO342b9Vqlx1ht+kxweHs6IgjRaCFZDsYJ5y7JgmSaG1q5GbNu79uteKpgHxlbXwf10HW9NFI+OYvfu3XjwwYfw7AsvgCHdiFoWBEiShGOOOQYfPOkkhELjxrfZLWvSKxQT8KrggiBClOUKbDXyF+OvUtLnQgBwcCpVNLWoyAoUVbWNc0UROPa4wulCQVHADLPmrZuclhSCIEIes6QQBAGGacIwUgXTgqKq2sX43JhV7U6nIdXuXtu8lsNtJ/hvj6cgne2J4vG4Zx/sqoFEFznSExXANM3+f2vqVBiHH47UggWwZs2yX3e7fivvOBokcHw+HxRFKWh14SXRxY9RoRscj9YVKpi3kgkMrH4RqZHhtGhIpaBIYnqi9EjBfK17KA4NDWPFww/jueefg2VaUHkdoSBg4ZFH4iNnnomOSASpWMxOR9mLCriYUBuxQrECBAmCKJZdH5UPZqRgIYXX1CAsUYKhKJhnGIAg5j03mqo5VnGWMcQGRQkZs9KLMMaOTSFLCosxSHmihFYygfj2dxHf/m7amLWjE0pXL7TeyZADud0pLMtCKpXC4OCgbcwaCATqZsxaD0h0tc8xINHlBk7R1duLRFajad7mptb1W40QXTwFV8jwtJl+RKUK5o2RYex5+TmYsXTdHkN6opQ0DfFkEhAlwGys6Kpl9CgWi+Hxxx7HU/96CqlkZpThoIMPwqmnLsFee6VNCJOxKBRVg08PAxBgJRNjgmtsFWWD2g6VgyDJAGNgFXhwFWKzJGFQECFZJkJxA7NjUfBOAM5ifN6pgFstcAwj7dM1fbqJvfYav7a8FCXMZ0mhKzokTUMqGkVKlApHf5mF1J5+pPakjVkln38sAjYJamd3Wcas2b39yJi1OSHRRdhkXwjZwoY5Ci4ERzqKp6lqUb/VaIql4Jx4Lb1YKNJVKFrHBVeibycGXlmZka7z+XywLIbo8LjgFEQpbS9gmbAMA/WcFGsVPUomk/jXv57G4489liMK9p01Cx9atgwzZmYaEPK+kwIYmJVuzuzviEAQJKRiUaTMIhNxA3E7SrjasWrxYMNAWkJkOuP7gyEwu7WYAOc1wxgwsEfE5MlOweXdKGHakiIFQQEQi1VuSRGLwtzyDuJb3gFECUpnNwJTpkKZnt/g0tnbjxuzBoNBKIpimzE3QxSsXQRHsf1sl2NAossNHJEuJLnvUWFfp1pRL4GjKAoCgUDZ++Yl0ZUP3r4kO1rHC+ZH39mE4TdfA58MhTGH+VQy1zuJWSZYkouJscJqJsAyU2k7kZpQ+QrFcjBNE88//wIefvhhDGcdm7333htLli7F3Llzke/0ChDg8/vHJsW0JURqaBgwzXRrIp8PkqbBTKaQiEdheiAyISpqugDeJaGcvWrxkKwaJL7SNZVI2Km67GJ8NlaMz49xI5uTlwXvRTm2PyUtKQyzsPi2TKT6dyIZHcG2N1+Dpel2eyKlo6ukMWt2eyIeIfOiJUW7CI522c9ikOiqguyLxlnTJSQS0HUdmqbVtH6r0LhqLXD4vg0ODpb14/HaD8x5jIqtJOUF88NvvIrolrft1/nqu3hZ7u35CqtF95otpwc04RWK2TCLYfUrq/HAAw+iP6sBb3dPD5YsORXz582HIOa/1rLbHgmyApim3djanohHRyBJaU8wfygCZllIxmJIpZJ1r42rRbpuiyhhYGzVoo8x7Oc451y4J3NWumZeM5AUmKIOJiUhKKa3BZcopSfVAos3MiwpIECWZWiaWtCSwhalqVT64cZIITY6jNjmTRAkGUpXT1qEFTBmzW5PVI0xa70o5NLeatTSo6tZINFVBTkpKkd6UUHaM6dR/lu1FF3V1qZ5MdJVzN7CNNOtXwZWv4jk7l3263wpfywWK8soNJu0y3kanoZkzEq3malisnd7hSJjwJtvvIHlDzyAbVu3ZrwXjoRx8smn4Igj0samhci2hCgVPUqvioshHo/Zq+L84TAkUUp7gtWgNVHOmGuUrnvFYQp8oGHYN1suSssR7swwIFoJ2xtQVNIPeJaRqvmKxYqQZAiMlf0wwcCQMlIFLSkM04AsK3lE6djfmwaSu3YguWsHAEAORdJ1YD29kMMdJY1ZVVWFrut2eyJeJtGoKFi7iI5C+9kuKxcBEl1lkRPZyhZdoghBUaAIAkzTxMju3ZkpxyaHG57y5rXNDGPMLr4tWDAfHcXAy8/BGB2x31NVFbIk26vvJjwORxpSEESIsgoIGPN3Kn3zERQVzHCv9ujtt9/B/fffj7c2bcp43ef3Y9GiRTjuuGOhFjOLQqa/VNoSQhuL2pR3vOxVcYOOFjW6D7KqwjRMJGPRCbUmyvk+u0eh+9EOhswG1/NS4yk2pygthSAKiHRJ0KSY7Yw/9k5OMX6jsM1tSzQJL4bTkkIUJfj96XpJTVUhSRLMUsasw4MwhgcRfXv9mDFrL9SeMUsKJfe65e2JgLTg0zTNNmZ1NumuF+0uutpl/wESXVWRncZTFAVqKITUnj2wGIOQTGakHJuZZjA8rQRZliHLcuGC+d19GFz1Iixj/Iar6z6AMUTHVi26DrMc6UFhvNlyhvHmOG5aBWzfvgMPPPAA1r72Wsbriqrg/e//AE488QT4yughqigqFDktSi3GIGkTqz3KaFEzCkdrohAAhmQsBiOZrCrimEaAqCg1S9dtEyXsHqs50hjD+0zD9ikrN1IqiBI0XcDRR+SzkGAVO+PXArcXHgiCmBalsfGuB7Ikj6UitbQlhWGWYcy6FYn3tgIQ7BowpbsHSii/MSuPgmUbsxqGYUfBahmJaRfRUSii1S77D5Doqgqn6OI1TnEAAr9oEgkgFGrcAF2ikIVCs8LTo9Fo1P6BC2PRScYYolvewdDra+wJJKcYvC6wjGbL9mRqpVM36YL5iUcb+/t346GHHsJLL72UziuOIUoijjrqaCxevBjhcHnXsN1ncswOQdLcjx7ltCaS5XRrIlmuPA1ZYY/CanBGuQ40DOiyArUCL7dx24oy03VlOOO7jSir6TSnSwKPp12zo4D5LClsY9axCFhhY1YNyf6dSPbvBDama/fU7l4oPZOgdvWUNGblYq+VjVnrCUW6SHSVRaH0Il8VMzg4CJ+q2v3RhGSyTs+ZtaNQz8FmxFkwny0eTdOEZVkYfvM1RDePp9ayi8EbxfhkyldCsnSkq8w0ZDbDwyN45JFH8Oy//505UQkCDjvsMJx6yino7ukue3s+nw+WaaX7TI6tXLNqnJbJZ86pajpkXYdpGGlT1lQqfxpSSt/yatlYmyGznmsBY1AVBbEyU9PO6FE8LuCllQr228/ApMnlnu/8zvjMStcqulFiWWnquOT2eNq1RBQwbUmRRBLjKWhFUaFraUsKk7cnAhtbHJG1QCYZzzJm7bKL8fMZsxpj2+PtiTRNg9/vh6qqSKVStkCb6ENpu4gOEl0kuqomGAwiGo2Or35xphMbuCJmohcuF5P5eg42I9npUZ/PZ0cpTTPtpTX4ykok+t6z/6bSNFDNESQIkpgVPSqdhnQSj8Xx+BNP4Kknn8ypVdn/gAOwdOlSTJ26V/lD4lFAbpshyWmHqQb0nOStiRAdhShKkBUFgY4OAEAqHkMqkU5D2qsoa3xOd4gS+nhqEcDBolB2alpQtLEIXPp3bJnAyIgAw6xeKTkjp6Iopo8Dqi/GF1wWXLyFVqUdHTJS0Bi3pPD5/ZA0DYnRERgljVn7kNrTh9ENr0Py+dPtiXomQe3oKmnMKssydF1H51jrNy7AqomCtYvooEJ6El0Vw4uws01BMwxS61iAmY9qf8Dc8DQWi7laRNqomwn3E8vuBymKom3euefl52GMDDn+JrNdTaOx00w5YqZwGtIyxldDppIpPPPvZ/DoI4/aK7c4M/fdF8uWLcW+++5b0ZhyLSFUwCxcY1NPLMtEMmEimYjbtgS+YBCipsFIJJCKRmHUuGvAakfK6iDLgpFlKFuIfNEju2bLpbFNtBg/X/RoImT345wI3JJCBMCiUchOY1bThGGaJY1ZY1veRmzL24AoQe3shtLdC61nMqQ8dY2GYWBkZAQjIyMQBAG6rtvtiSo1Zm0n0UU1XURJ+MXAXcuzXbkBNH2kq5BAaVb4ucr2E4vH4/D5fAjAwo5XXgTiMQhp3/R0KxZBKLv3Xa2pZIWiM9olCCKYKOO5557Fw8uXYyjL4mOvvfbCkqVLccABB1Scaspu7C0qGqxU/fv/lQO3JTATEqzhYciSBFlV4dPDsEwLyVi0aEF2taxxpBYPKvNeUND01G3VlbXxSorxXRdcvM7NrRXBDBAdCzjyWlKoqm1JYaSMwpFsy7RrwUbXvQYpELLTkEqkM8eYlTFW0pg1kUgUNJNuF9FB6UUSXWXBLRMsy8LQ0FD66Sk79OyRSFephs750HUdqqqWbXhajzFNhEIO84wxmKaJnW++jqG1qyEAUGQZmt8PURRhmAbicW+YJVZbM8MYsGb1Kjzw4IPYtXMnGICUZcECMLm7Bx9augSHHnpoQWPTYshZxeCed0dHpgeXYRowYgbisehYQbaCQDgCQRSQjMeRSiQm3JroPVHCzrEJWQGwfxnp1mJiJjfmVTuyi/EFRQUggJkpiLLiquBSZCX9AOuW4BqreWQFrkenJQVfiKHpGkRBtCNgxWo3zdHhLGPWtCWF1j0JYp6V6tnGrJqmIRQKQZblDEsK54KedhAdtHqRRFfZJBIJO+WW1/k9y5W+UVTqSl9IoLhNPX5UxfzEeEuf4fWvY/St9QDS01gyxSDLMuJj58ynp6NdpmEgZRh17w/IGCBplUcUGAPWr1+P+++/H1u3bLFfFwB0RSI4efFiHHnUUVA0LW2qalmwUsmyI13cpyxmW0K4G/Vwm1IeXOmC7ASSTnd0vx+yosJIJpGMx2BWuIBCEES87h9PQ+1vpFDM2Wx8jIWPoyQB3T0W9Lo70PAomABJUcFMC6KijZv5TiDyZnveuWbBkrb/YGV2ZRhfiJH+tyzJkCqxpDANJHdtR3LXdowAkEMdtieYEunM+Xx2eyJVVW0RZlkWEolE24gOinSR6CoLxlhOjVOxpteNTi+WI7qKtcCpxZhqTSmHeWYaGFizComd2zL+xpkqA4BUymHM6awHKfEk7A4CJK3yiMLmzZux/P7l2LBhQ8bruk/HiScuwvHHHw9NS1+fzmiGOGbqC1a8qFofa7HCLSHEEkKh8aSFQrlRONsdfcSRilI1+PUIGLOQjJZuTcTr3F5isFOB81LFrpfyxujzMRx+eKPsCca8zMbEDHeeGL9uWLqpewXpWU3VIEqiq4JLUJQJ2X9wS4oE8lhSmCYMI1W05MIYHoAxPIDoW+shKNpYf8geqN2TIDpSzRxuzDo8PGwbs8qyjJ6enoYYs9aTYoX07WLDQaKrCvKKCGekq8EXTynRVe9m3LXuCVmoHo0bnprxGAZefgGp4cGxwmERkgAokpS3gDd7VZSzRYnFLBip8WXprmGvUCz/ZvveezvxwAMP4NU1azJelxUFxx9/HBaduAj+gL/g3zNmOdIxgn1smJkCGzuOfp8fhmmkJ4E6+FtNGG5bMYFelHyRRWIsDSnJMgLhMARRRCqeQDKR6SPFxfs7iQS2jzVzlgEcUOi35cIYa05W42on2ddNupuCkO6yUOTBRNN0CED+mliXx1gteS0pZAW6ppf122epBBI7tiCxY0vakiLSCaWrB1rPJMihcM7nuTGr3+9HX18fNE2Druu2MSt/KG6VlX0U6SLRVTZO4ZBPRGREuhrYKqfUhct/1PU2PK2V6CpUj8YFV2pwAHteft6OzLBUEqqmQxQFxBLJdN2KaYKZhYVyRosS/iQ8NrkaRqp4QW4ZFF6hmJ89ewbw0EMPYeWLL2bssyCKOOqoo7B48UmIRHKdt4uTWVQtKioCwRAS8RgSiSRE2d0+jzVBlCEI7o7RYuk0rLM1kebzQdG09AScTNjifbUjqrG/kYKWZ2IWRCktUMoc4/CwiFUvyzjwIAPd3XX6vQpSujF7WWNkGd0bIMkQx9LXzGGcquu+dEF5wqV7IxdcNfVby7WkkGXJ/u2XU4JgjAwhNdCP6KY3IWq+8fZEXb05lhQAMoxZJUmCruvo6OiAKIr2e80cBSPRVaboWrVqFW6//XZYloWTTjoJH/nIR/J+7tlnn8X111+Pq6++GrNnz3ZznJ4ir+hyRro8UEifD254Wu9m3LX6MQUCAQiCkLdg3rIsxHdsw+CrL4M5boo+X7qnG3/a5mKLN6CGZRV12bafhJPJdEGuJGUU5JZKRWQjyiqsMtuojIyM4NFHH8Uzz/wbZlYUZf6hh2LJqaeip7en7O8uOCZBhE9REB0agGmakDQtXajMLFimAC+uVBQkJT3R17AGzzkJx0ZHoKkaNE0DJBkBVcVqy7QPTb7UoiDJQIVjtCwgFhNQr+ejtBAQij6EFMU00tdzemsQFBUBfwBGIoFEwq0IVyWi0D0sy0QyaaZ/+2N1gHYJgmXBMIxxS4o8otBKxBDfthnxbZshiBLkSCfUnklQeyYByP3dmqaJ0dFR25i1Ee2J3IZEVxmiy7Is3Hrrrfj+97+P7u5ufPe738XChQsxbdq0jM/FYjEsX74cc+bMqdlgvUJeYePhmi5eYM5X03hhTBOhnIL5kY3rMLLxDcffpGtubDPP7DE6GlCjzAbUjFlIGZa9PVkaT0Xk3ITzUO4KxUQ8gSeefBJPPPEEklnX1ty5c7Fk6VJMm7Z30W2Ui13nNmYM6xzj2Dqr8TSkkaqpyCmXSoSrW/AVzMPDacHfL0rYFgwgpaoQBRGHmSYkZtkCPN0U2qx4jHweql1yfhxBktMTn+VWyQGDT5aRiI6mayUlBYIkji3iqK4Y344UVisKXcKuA3SWIEjpxRhMEGAyhlQsVvCXzSzTNmaNbXgD1sZJSGo+KN29UDu781pSZLcn4sasgiDYAszrdVEkusoQXRs2bMCUKVMwefJkAMCxxx6LF154IUd03X333fjwhz+Mv//977UZaYOpJL3opUgXLzCPRqMNDUu7JbpKF8ybGHxtNeI7xlfw8RYj8XL78+VrQC2I6TRCkZqVjB5xY+7Ymt8PxhhSvD0Js8ZWKJa2W0ilDDz7739jxSOPIDqa6R22z4wZWLZ0KWbv515EWZEVKCUtIbK9ncYn0kakHt1uR1MOtp+boxh8tSxBYICaTOJAw4CcTELRfJA1FZbFkIiOwmRVVAHW1KdrnGpFYcHtQUg/5KTGhUm6VjD9vl2Mj+IPNhlU2I+yntglCCkDoixBAuwIeLGFOHwBxnDfLliWidi7bwGiDLWr2/YFk/TSxqyaptnGrKlUyhZhzSJkyJHewe7du9HdPd6Lrbu7G+vXr8/4zKZNm9DX14cFCxYUFV0rVqzAihUrAADXXHMNenryp0L6+vrKGnwjyRERuj7+/x7JuXvF8NStH36x/TFNE2YigYFVzyM1uMd+nRsiVt/Shzu/pxEkCYKYjggUs1zg7tiJZGK8QbOuQxBFWIKIRBEDVsu08OLKlXj4oYcwMDCQ8d7kKVOwdMkSHHjQQa700ONoqgZJkiq2hHBOpBCl8dqvOgihRviE8V6TiazapDXyeD3XIanUWGuiEQiGBsEw0v0BOwIQICARi8FIJsq6Hu3rroaiy9nr0ZXtjbWISiaTdj1UNnmL8cXMRRwZ25TkdNP3GjXvdgVBgiAKsFJJWEBeSwrnA5iA9PWUc2+yDCT73kOy7z3gTaSNWXsmpVsUdXTmPvBntSfiXVO4HRAvxq/Hoqlq8VKkq5AucYsJF9JbloX//d//xYUXXljys4sXL8bixYvtfzeDuCqXjEhXg9OLoigWdGRv1JgmGunSdR2aphUumB8ewsDLz8GMj9eN2H5ALrb0YWPRNGC8jx1Dfgfv8TGO+QIZJkRJhDg2tmw7CsaAV199FQ8sX46dO3dmbKOjsxOnnnoqFixYALEKY9NiZFtCSA5D0YqwTFg8RQsBoqKlU7SGkW4i6BLVeplNBDtyYxh2o23ObkHElrGiaAnAQWOTGxeFDEAiEUMiEbPrAPVgELKiIpVIIBWPFbQjURSGSZOtjOoFV/dL1VwVyIIgwl9xo/j8xfi8vlKQZVejcLVgPO2Zu8/ZlhSSLMPn80Eas0kQRAEo8vOwjVnf2QhBVqB29UDpmZQ2Zs1zYXBj1pGRkbzGrJW0J6oXXhJdxXTJ1KlTJ7z9kqKrq6sL/f399r/7+/vR1dVl/zsej+Pdd9/Fj370IwDAwMAArrvuOnz7299uqWL6kheE05W4welFTdOQSqVqbnhaL3jBfPYCAC64Ervew8ArKzNueLruAxhz0Q8ol+w+dqKsgokAS5njpkb8XUeRvgXk2FG8/c47+L977sE777yT8XeBYACLFy/G0UcdDVlxd7ExFxK2JQS3rXDFyoBlbCfdnFsEM60J1uNU52U2EUpFbl5xnJc5hgEfWEGXebsOcHi8DlDWNPi0CCzTQDIWg5FK2Q8JwSDDoYfWJm3rdmqWp8rKTuMXwlGMLyoqGJD24nJZvLuGKAMoL+1pMQswTaiKgtHRUYiiWJklhZFCYud2JHZuxwgEyOHIeBQsnLtiuZAxazAYtI1Z4/EJni8X8JLoqjUl7+KzZ8/G9u3bsXPnTnR1deGZZ57BV7/6Vft9v9+PW2+91f73D3/4Q5xzzjktJbjKwQuRLlEUEQgEYFkWRke90T8QqD7S5VwAkO3twwvmR9/eiOF1a4HxMm/4/P6xp716it/Mp3VBUtJ24paZbvJawETynbffwf3Ll2P9unUZr2u6jg9+8IN4//HHQ1FzDRYnCl9YwIVEpbYVleJM0fI0JBhL1/OUO+lzf6s6PtRkN/fOR0Zq0TDS/SjLFIXpNKSBeHQ0bUeiKgh2dAAQkIjHYCSTNemK4HZqlh8np9HwRBEUNef6GK8hLJ7erxuSDIGxsheU8PpSnlK0TCujDrQySwoGY2gAxtAAopvWQVQ1uz2R2tVb0phVFEXouo5wOAxZlu0IWKIB8xeJLgeSJOHzn/88rrzySliWhUWLFmH69Om4++67MXv2bCxcuLAe4/QcORdIg9sAccPTaDQKtVa5iCrhKc9KEEURoVAIsVgsZwGAZVmwTBNDr69BbOt4ZKicCbJeMDMFmCmIqg5mGukndt5CBQw7d+7Cgw8+gFdWv5Lxd7Is45hjj8VJJ52EjkgEsiJXbUdRiOyFBW7X9JQkKw3JV0OmC6rz71+l/lZuYE+QRYTEHkHEZu63JACHCELVYsZiFpKJBJKJ8dZEo/EgXlip4MiFSQT0aMWtifLhduPqbCHhBoXSnhMuxncRvtqzUsGVz5AZyLWkkIpZUuTBSmYZs3Z0QunqTRuzBkN5vs9CNBpFNJrOBqiqCl3X7fZEvBjfrShYOwmrYpSVr1iwYAEWLFiQ8donP/nJvJ/94Q9/OOFBeZHsiyW7iXMj2wA5DU9r6fxeL0oVzFvJBAZWv4jknvG0tyylC1XdvPFPhPEVimOmrGOT5eDgEB54eAX+/e9/QwKDNHa+BEHAEUccgZNPPhkdnR0AkLEkvVI7ikJkHydB0cYcvRt1M8xaDSkrgJiOEHKBJchpD65iK0cngmGY+P5//ReWLluKE044AUD6YTMWi+Gb3/gGzjnnHMybPy/v3746llo0RRHvA+BzKXrELQlGh4YRH1KQillQwir8egSWZSIViyGVShVtTZQPtwUXtxgpJCSqQVDKqzMrXIxv1HyFIy/sL/SQkE2lxymfMasiy1DLNWVmFlIDe2AMDyG68Q2Iun+sPVEv1K6evMasPApmj3fMGV8URVfaExVaodhOKxcBcqSvmmzRBUVJLzFiDDDNtKthhdGdasiudxJF0XPCq5L0IheQhQrmjdFh7HnpeZix8fSpoqhQFMXVgvmJIUBUlYyIx+hoFI89+iiefvppGIYBVQAYBCQtC/MPPQynLVuKST3dBbdYrh1FMWxLiLHj1IjVf6VICy2HYa2ijhmK1m4S3bFjB0zTxN57p73OZFmBqqpYs+ZVAMDUvQt7oL0iKzAkGUwUcFgtPPDGLmfTMhGPpRAfa00kKwr84TAEUUIqHkMqkSia1iunuXalcAHvpuBKi8IEKn8IKF6M7+ZDhSAp6dqyMvfZDWHKV0ODr4Z2mDLntaTIMme14lHEt76D+NZ30lGwzm6oPb3QeiZD8uW2CquFMSt5dKUh0VUlOUJCENIGqTzKlUgAvlx/FbcoVO9U6z6H1VDumEoWzPftTBfMO1JMtmdSEQuGuiKOuWWP1ZMlEkk89dRTePzxx5HIMnJ93/vmYOmSpZi+z3QAKNs8sqAdhSDAKFAHYjcajo6OTcDeE1w5SDKsRBwYc/gWFQVgAiwzBTct2rdt2woAmLrX1LSAl2XEolFs3boFmqZlWOY4GRREbNB0CMyCkjJwUA2MKfNZRqS7IiSQTCbsNJTu90NSVZjJJBLxWFbHgsoagJcDF6ZuPuiI1a6azUceZ/x0enpixfiV+pnVIhKYbcrs7A3LGINhWjAYK7wghllI7d6F1O5dGF23FpI/mC7G7+qBUqYxq6ZptjErL8YvZcxKoisNia4yKZRezHhN0+x6LiGZBKuR6CpmEOpF0VWKcgrmo5vfwtCbr9k3u4yVdwlv+KLxFYrMSMEwTDz77LN4ZMUKjIyMZHxu2vTpWLZsGebM2S/jdWe9Srot0diqqHLsKFJ56kDGnoBlRQFjvPWR+xNwLciJwjHLUUAvOFZDFm+yXA5bt25FR2cnOjs708J0bMXr1q3bsNfUqQXF7yu6DsGyIFkmZhsGgjWIstqO9AXGYKehRsYnYEVR4Q9FwJiFRCwKiwGmi+dbkRUoioKYi4JLqOlDAMtoil1tMX6ltY+1iATmI6M3rChB0XToYBCUQFm1oGZ0BLHNI4ht3jRuzDrWnkjS9JzPG2ORdR4F0zQNfr8fqqoilUrZIix7ziTRlYZEV5U0qhWQqqrw+/1FDU+9JrqKCcGSBfOWheE3XkX03bfG/4YXzBcxX6w3oqLCMgxYpomXX34JDz74IPbs3pPxmUmTJmHJ0iU4+OBDSt/omZm2ngCQUWxuJAtGebLrQGRJhqbrEIT0jVnRNJim5ZIlRO0onfbMNKy1myw7FipUwtYtW7HPPtMhCEKG6N+6dSsOPPCAvH8jKCpeEQRIY1GTeTUyntR1YOreFhSlvH1KT8AxxOMxCKIMRdOgqwrEQABGMoHkBO0BbO87F61Y3K4zK0U1xfiCrGY08C6FLMlQNa2uJQ9r176Ofz/3PLa+uxnR0VH4fD7sO2sWTvjAB3DggQeOW1KYZmERaBl497U1+Ol//zfO/8IXcNDhC6H2TILS3QslkmnM+oMf/AB//OMf8fzzz6OzsxNAOgrW39+Pk046CVOnTsV9991nR+BJdKUh0VUlhVoB8VeERML1n5qXDE8roZDo4isuCxbMp1IYWLMSyb5xo1C7N6CLS9MniqjqMBNxrF27Fg8sX44dO3ZkvN/R0YGTTzkZCw9fCFGqps4vt9hcEMYKhgscA0FImyImEgkYRgqSokKWJCiqDKhq6ULchpAWlxVHPBypJKHMvpkcxoDtO3bggAMPRNzhMt/f14+BPXswdWpuPZegaBg0Unjb0YXi4BqJrnDYwsEHV36O0qs9gWRsFMkYxqOgug+yqsE0UkjGYhUtxrBT1E0suLIppxhfUNSi0eZsuOByMxJYDMu08Ke7/4wXVr6IBYceijPOOAOhUAj9/f148YUXcNNNN+HHP/kJfLoOWZHhU9MZmEKWFFu2pFuoTZs2DcbIEIyRIeDtDRBkFWp3D9TuSVC7e3HBBRfgd7/7He644w58/etfBwAMDw/jk5/8JBhjuPXWW21fMEVR0vd0y8oRWVRIT5RFXiFRQ4PUUCgE0zRbxvDUueLS+YOzC+ajoxh4+TkY0ShERQMDIAuAIss1D9eXC1+huOH1tbj//vtzjE39gQBOOukkHHPMMVBcNDbNbEskpwtmLZZ27wbLsToQZBWmYcAcS7FwOwJeiOumHUXVCGLaeXyiUbh8fTNFKe+KNgECRFFAMpFAIBDIeO/xJ54AkOtAzUXCq8p4VHuWaSLkgevRJk+Pwowo6OhIOg2lqNCDQQBIm7ImkwVFuKbpEICc9H+1MIbqOx/UjNxifEFWIJhm2dKJ17rVS3ABwF//dg9efHklPvuZz2C+Y5Xt7NmzcOSRR+Dll16GpqljtYDJkpYUW7duQUfH/8/en0fJVd53/vj7eZ671t7d2je0ICG0IiEhJAyIXSJeYpyJY2cc48SJBydxkpOZM05mJpN8M+cXzySOM07ODOPEBsf7EpzYBolFrAIDEggQiEVsEkJr7137XZ7fH3fpW/ut6lq6ped1Dgd1dy23q6vqvuuzvN8pRKOlA/bcLKJw5iQKZ04CIIglU/j0rhvxo3/+Ju644w6oqoovfOELePPNN/GTn/wEs2fPLjFmjcfjkGUZAwMD4JzjueeeQywWw6JFi9pSRHj11Vdxzz33gHOOK6+8siT9ZjohRFdIQs10dSD02mu/edsiM5HyxyoSiYAxVnNgvjg8hNEXD8B2RYJtFKCqGiilyBmGMxRrGqH9cToDwamzZ3Hfz36K1197reQniqri2muuwTXXXgtNU2tcvz2UfCInFLIWgaapyIyPO4Krit+RZ0fQbjuKlqHMqdy13czWa0O625ABgQrLdOJqikXEEwm8+OKLWHPppTAMA08+9RReevFFUEYxb968ycMMiITD0uRb5/oODNB7nD5NcfiwjB3bi4jGGv89vM26Rh9KbNsqjSaSJOixOJgkoVjIwwi4ymua7uT7FdojkPxNymne5iaMgRfy7uug8TB+LwTX0TffxJNP/wK33HhjieAKsmnzJv/f3OZ48qkn8cwzz2JwcBCJeByXX345brr5ZmiqCiUSwalTp7HkoiWghNaphHMYYyP42Ae24/izv8Dev/0SzubyeO7hB/G//+6rWL9+fcU1gu74lFJks1ns378f586dw4oVK3DxxRfj4osvbsln0rZt/PjHP8Ydd9yBVCqFv/3bv8W6detKXr/TBSG6pkC9Slc7DFK99ls6nZ7WYaVhIISAEIJYLAbTNDFRtl7vD8y/fxzjR14qGZjXdA22ZSPntjUmqzwyiMQct/cumqEODg/jvj17cPjQCyXfZ5KE7du34/rrr0c8Huva8XjIkgSZAOmREXAAVHWikEBpXYHaDjuKVvGd8KcUDRQOT6BSQqFHoyhaFixC8YlPfAI/+clP8Fd/9VcYmDULV155JdatW4djx49DlqWA55rzmk6D4K2A6OrUPBcAcE6cl0KIMc1WTW6DyxiA1x7TIGlOdcvI5So2b1vHXeSY5oLLSRUIflipP4yvyI4dSzcFFwjFg/seRkRVcN3OnQ0vbtsc3/7Wt/Dmm2/ihhtvxMKFC/D+++9j7569MC0Lt966G7xQwHvHj+OGG2+sb0nhsmDBfFxyySW4/96fI5fN4j/96m24Iipj9PmnHWPW2XMhRZ33wmBb0bZtrFmzBmvWrIGqqnj77bdx8OBB3HfffYjH41izZg0uu+wyxOOVpq7VOHbsGGbNmuWHVW/atAmHDx8Wout8olo5lAfbi1MUXV7Ac3n7rdVj6yXe8SQSiboD8+k3jiBz7C3/+15UjVEs+lWZktu1DP9k7W37Bdts7WZ8bBz379uHZ55+GiTwNyGEYPPll+Pmm28qySXtJk4lkPiWEFRRYBcmW0FOlUcCD5iOVqMVO4pW6boTPgIzgZmM/yl+5cqV+OKf/heAkirbkF7W4+Tr+RVZ9p9dSy0LiU4ev7e92OBitEpkTqt40UQRzmFZFjgBoqkUALieYLXbkPUhILI87QUXkVW3yl77sQwO4yuqCjUSQTabA/e8Gjt+kBS5QgHvvvkmLtu0CZpeuWVYzhNPPI4jR47g937v97Bo8SIAwMUXX4xz5wbxzDPP4NZbd+PcuXMoFAqYP2+e3xYst6Qw3Eq49xxYv2EDXn/9daxZuxY33niDY0kxMgRjZAgwilAuWVvpaxlAlmWsXr3a98kbGhrCq6++iomJidCia2xszB/mB5w52vJxj+mCEF0t0sn2Yi2/qpmKJEmQJAljY2MVFTvLsmCbJsYOP4/CuckB9PKomkZw2wJ3o2UIoaCyAnA0fPMMQzabwyOPPIJHnngC3DBAA3/3tevWYdeuW3r6iUrXddj2pCUEleXAcLBDyUxTyOzDMHYUrcYttVMkhKX2Cn95bqYjUG1ug3BUZD2+WFLl6myFzn906qiuMCKhGfz80sCHnWA0kR6LgcoyzGIRRi4X7jngmXV2NQ+1eWiTj6UsyZAZQ3rU21TugjM+oSCU4eR774FzHuq9h3PgiSf2Y8PGDb7g8pg1MIBsJgPDMPH++45n3cJFk5cJWlJ4H8Q094PY2bNnsXfPHgCoOF9FFi1FYvU6AJMO9/l8vuEg/cDAAD7wgQ8095jMIIToapFOWEZ4flVe5MJUj206VLy8gXnvJO3hzW9ZuSxGXjgAc2LyBStJMlRFaX1gntuByoRnt+CGTjdRpSkWi9i//0k8+sgjGE1noDDqC67lK1bg1ltvxUUXLWn++NqE51VmmKbTGgo7G1WWfUgVV6DWCOUGKu0ogp9+/VX0kHNgrbuOt065G389nK1Q7viA2Rao4lSwbcNAhnO8WTLP1eG2dgOfrnanCniCq1jFjsWfBZyYnAWUFAW6loBt2SjmstVb0ZSCENbV3MxWaNYrzDPSLd3m7LAzviu4uGX454gw1aBz585hbHQUq1dXWqCMjo0hEolAliWcOHECyVSq5nhE8INYPl/AnXfeCV3X8cEPfQjf/9738Pbb72DFihXQFixGYo0zY0YpRSqVwsTEBGzbLsnh5ZxDkqSGxqqNSCaTGBmZtOgZHR1FMpmc0m12CiG6miAotGqZo3o0W+mqZ3ja6nH2WnQFB+ZTbnsCCAzMj45g9IVnS97oVEUFY6yN/jY1sv3qfAq1LAvPPPMsHnrwQYxPTKBo21Bdq4eFixZh9+7dWLVqVWhTxU5ACHUGwd1w79Zno3hLpqMlhoyEOqvoIXLhSA821nxvqbCpBVQCCPzHMijgX45EkNM0SIaJ5cUCUh1ujUaiHIuXWJBYFX8juc2Cq+w51QjTMmHmzJJoomgiCUIJivm8E00Ed5anCzN7U6FZ64rqgqsK7XTGDwguAL4wCtMRyWTS7nVKBRrnwJtvvokVFztGzSdOnPDbfPXw5sPGxsbwe7//+5g9axYefPBBPLxvH7btuhWzNl3hb0rG43FMTExUPa95dhJe6HarLFmyBIODgxgaGkIymcShQ4fwqU99akq32SmE6GqRhpYRTVS6vFyrVua3Qh9bl/EsLsoH5j3BlTt1AuOvvFgy4O1tSbXTB6ickmy/oN2CUQQ4xwsvvoj79+7F0NAQbM5hcg6VUsyaPQu33LILGzdsAKG9fWyrWUK0ZzaKV7GjcObA6sYSla2iV7OjMC3bzf7rdhi80wYJ+5wizA3XrnpC5DjMOTS3wrCOOydrJ7YpvLN5M6RSNlKpKiHBbfa38gyHw7bzyymPJpIkCVosBibJTjRRLguri8suzdDsY6koivPBsOn3qSk445cJLgBYuHAh4vE4Dh48iJ3XXgupzJamWCzi9OnTWLJkCfpSzrzT4OBgSRLGgQPP4szp07jtttvAuROJdc011zT8Tf7t3/4VR988is/+1mcxZ85sAMDOnTvxD9/+Lj4ykceG0VGoqupXm3RdB2MMExMTkF0zWkVRkEgkMDw8POVCA2MMH/vYx3DnnXfCtm1s27YN8+fPn9JtdgohulqkXTNdXjVofHy855WpdlDP4oIxhmKxiIk3X0Pm7Tf87/sD84bhb1B1A2/mgnPgtddfx0/vuw/vnzgBmRDYcBoBs/pSuPmmm7Fl6xYwxrp2bLUob7067aX2zfMECc6kUEqdKiEazIFVs6OQFUTiGox8HqYkd82Owrc6yIfzlmokXrMgJa3FjfmcX83znc05nDZSu3L2bOeRJsT5j3OAqu2tFnqCq12GwxzOhxUjnQZsy2lFKyoiWhLctlHM5WAYxWnhtUdaFFzt8CsL7YxfRXABzvvpbR/7GP75n/8ZX/3qV/GBq6/GwMAA8vk83n33HRw8cBAf/NAHsWTJEqT6Ulh1ySV48MEHoSgykskkXn/9DTzx+OPYtWsXli9fhsHBIeRzeSxcWDrzVc7+/U/iqSefwkdvuw0rV630v3/VrR/Cn/34Z/g//+f/+G3H8fFxFItFP6/xm9/8JvL5PNavX48tW7bAMIy2beZ725DTHSG6mqBRe7EZc1TPPqFaNaidx9lN6llcjI2NQVVk5F57HdbJ9yC5J19CaVMD8+3m3XfexX179uCdt98GAKiUomhzaLqOm2+5GVfv2AFF6r3YAgItDbf1SlXNDYTuPJzbAePS8HNyps1hmSbyoyO+HYUSiQAdtKMoyeUM+eEnzAD1EUmC95susiz0B4673Nnci21yTqytP69PnGB49VUJ1+4sQFVJ26uFftU0l2tbOoHnFeYJB8uyYOWyKLhtSCZJiCYSoJShmM+jWOhNukSzFS7Pkb9dBrFBKp4/rqmvbVsgHDXbs+vWrcXv/u7v4uGHH8a9996LQj6PWDyO2bNn47rrr8faNWv9y37yk5/Ez372M/z85/eiWChg/oIF+PV//+u+p9aJE+8BcJzoa/H666/jpz/9KXZcdRV27Njuf1+buwDJDZfjt3/7t/E//+f/xJe+9CUoiuK//ry8xs9+9rMoFAp4++238aMf/QgnT57E0qVLsWbNGqxatQqq2llfw+kA4T0sr5w8ebJXd90SkiSVDAGmUimMjo76X7NXXoH2jW8AAKzVq5H/7d+uejv18gbbQSQScatG3Zuj8AbmvWFJD39gvpDH6KFnYYyP+idfSZZBCUGhWIBhdM4LqhqnTp7Cnr178eqRIyXf55KEG3Zei53XXgvdDSyv52reLbw2WT6fc8wlp5HXEZFkp01rWqUnB+Z+pqvymHlbULIktdWOotrmXSPCVgvv0iM44la6dhfyuD7ka7fVgGUAOH6c4bVXJey8vgg1Ird1+8+zz2hnwoNXLTQKBXz5y18GCMEf//EfV01k8DZiZVWFpCiwTAvFXLYrldBWBBehNHTVtC14Cwjg7R3GbzPqnPlIbbgchFIQQpBKpZDNZquaecuy7A+9F4tFWJaFd999F0eOHMEbb7yB22+/HQMDAz34LcJRnlDRCqLSNQUq9GqIQXpZlhGNRusGVrfjuLpZ6WrkMG+Mj2Lk0AHfN8q2LXAwcNtGJp93hrBdgdPpTMChoWE88MADeP7550v8dBhjuHz7dtxy/fVIJMqGTStczaWOzvGUo+s6bMt2HMEJBZWkaSO4APfxMYN+aW6bpF44dwfsKJodBAfCb//lQfB6sLXYxNZiRRspRJvWvy4HOKHOc66Ngqu2fUbrBNuz9z/wgH+CevDBB3HrrbsrLl8aTQQ/mkiPx8E5RyGXg1UnmqhVaJPLHMEPPF3DE1zeMkdwGF9SHE+5Vobx24w6a64vuADUFVySJCGZTGJ0dNQvNjDGsGLFCqxYsaKrx91LhOhqgkZFweBMV7X2oqZpUBSl44HV3RRdjQbm82dPYeyl50sH5lXHyM8bRG00hN0OcToxkcZDDz2EZ55+uvT2CMHmTZtwywc/hP5EYxf58jknuHMY5VE77aCiatOxuJz2wW0L4K5AIARUVsAB5wQxFTsKq360TflyQcPj5ABTw1c7gq3FhZaFgRaFQPU2LXWEa5Xj5mDghAKWAbSSlV4FL66mfRvCpb5r77//Pg6/9BL+4A//EADwv//u77Dpssswf0H9weaq0UTxOKgkwSgUYORzU34vaLrC5WZO9lJwlcLBKzzlWEtV1KmiDsxBauOWEsGVy+VqCi6vMzRT4+zahRBdU6DuIH3ZEysWi4Fzft4EVtcbmPcifdLvHEX66Kv+9xvN2lQMYUuyE8qrtl79yOfyePSxR/H444/DKJa+iV26Zg127d6NRUsuaqlyxLkNlM/xgLRlkNobbvYtISQZsO1pv3pfkvXIuZ+fOWkaSWCbFmA3aUeh1K6E+i7zoeeSvNmo8CfflwLtsfVt85sqszNhbpvWSw2gzn1S26zwRjWKRsP2XTVkSYYsy22Nqymfh1u4cCH+5E//xP958N9hqR5NpEPWVJiG4SxlGEbo32EyyqkFwdWluUkAruCioV/nVZddSJVh/DajDMxB6rKtIO5yUSqVQj6fr+ov6QmusbGxC15wAUJ0TYmKapUWiGJwRQUhBIlEAoVCYUqGp80eVycrXfUG5i3LArdtjB95EbmT7/nfLxcRYZiKGadRNPDkk0/ikUceqfCAWbZsGW699VYsW7ECILRNrbrgCXTS78q2rKZzIX0R4VlCyErdStF0oX4VodL1HYwBljOn0qodBTgHk6Qm2mTNR9EUQPC62zIFgA0dMkQtibVyK2DJPmDZMgu0rMoVpn1Xju9X1kZLlk5uzwZxoonSyGXToJQ5nmCpFAghKOaydaOJyrMzw6CpGji6LLgIcz3NWnt+VVRROzSLqvTNQt9lW0oEV63zG2PMF1zdOv9Nd4ToaoJykVVuQlpe6fLESTsMT5s9Tlr+Lt0m6nmKWZYFu1jAyAsHYYwO+d8vFxGtUFL9cAfx9SpbcLZl48CBA3jwwQcrZszmz5+P3bfeitWrVztRObbttG3aTjW/K2eGrZErd4UlRJsjXjqBn/XYRBWBW5Mh5ZRSwP2EXq9NW14JVVUNsiKDc2eRw3Qz4WpWP6i7et9ke/ZVSYJ3yppnWZjdYfFLJEdkc26jLwH0JQiorDoVDNPE++8db7p9523etVdwtdcrLCy2baFYsFAs5J02JGO+J5hZLMLIT0YTTT43mxdchW4LLtq64KqEl8yitssZX+kbQN/mK5wPTXCc4AuFQtWNTsYY+vr6MD4+LgRXALG92ASUOnMGHp6DvC8+TBPR//yfAQBMlkH+z//BRDrdFsPTZpBluS0uv+Xoug5ZljExMVEiQL35LTM9gZEXD4IbRb/CI8uK085o48BuEG/2gzGGFw4dwk9/+lOcO3eu5DL9AwPYtWsXLtu4EYSS0hZYt6mTe+hVInK5nLOx1KOTWnMQd56nXW0Ddw6MANww4U+gl1G+vu8JceY+tuV2FM6n8tZOav+s6zjsVrpuLhRwUwcNXomsgAeeF5bl/CfLk1FANbdFazDVNtm//eu/4dlnn8V/+S//BZGokzpAFQ3DZ8/gq1/9KpKJBD7/+c9DVpzHKJ1O44H7H8Crr72GTCaNVDKFa3fuxLZtV7R0/80gMXcbUtVg2SYsy0IxnQndhtQ0Hdy2UeimiW/bBVfDO3STOZobxpdTA+jbvM15/4IjuIrFYkPB1QmLjV4hthd7TEUbT3JaJhIhoABGhob8QeueHlcb8Abmy2fSPMFVGDyL0ZeeK6nkaJEomKwg6wrTTnQ8bdvGyy+/jD179uD9EydKjzmRwM0334wtW7ZAcr22utUOqUl57qFbwVAYA1w3fscSovtxOU3jhhi3d5OSl9yeM6NCAXsylshbxAi+mdu2hULRAoqFySFsN5TXAmAUi7BamMUqAHitpLXYuYp1tarmsXcZ3nxTwk03FfzQ6+C2aKPwct8gdgpVm2uuuQZP/eIpPPnUU7jpphtBFRX59DjuvvtuUELwmd/8TV9wmYaJr//T15HNZnHLzTcj1ZfCs88+i3/58Y9xyapVSPWlWj6OMDhtSBPIZsFUFYxzRJNOG7KQz8EsFmtW2y8MwQW0MowvJ/sqBJdhGFUFFaUUfX19mJiYOK8EV7sQoqsJarUXPQghUGIx2Ok0iqbpzHX1QHS1E28mrd7AfObY25h4/RVgcqIJuq7DMk1k3Lw7b8iTN2ghNcPx48dx33178Nabb5Z8X9M1XHfd9bj22msQjUTBGINl27ApQzGbnvL9tg9HYOi67iwK2E51i4N3PS6naajkOKR3OMS45PaZhFg8DtM0kUunK4bL/esE7ShkBQyALEnQFKXphYzXJdlr0GCObWNuh1qLtULA/a9q/bJlIt6bBbMNA7qmwLamLiL6+vuwceNGPPXkk7j+5lvACwV8/3vfx9mzZ/D5z/9uicXKS4cP48T77+M//vEfY+68uQCcqseh5w91xJOwOs7cnlXIwwJKo4kiEUiyAsMoopjL+dFEni3L+S+4Kmk0jC8nUujbfKUvuBKJBAzDqNpJ8QRXOp1ue6flfEGIrikQFF1eYLXJmNNagzPXxaPRnh7XVPB+p7oD868dRu7EMf/7vldSsegPwTvHVDrkSRUFAGlpy+b06dPYu/d+vPLyyyXfl2QZH/jAB3Ddzp1+G8TztpJUFcwyEY1EQw3idwM//si1hCDUqXZxywgYajaeA+s2RJLBLbuqxUHH7hMEuqqikMk4YopQx68IrjCrEa7Ni0WY4PAewmbtKIJbi52qctXzjQp+zvva1/4RhXwev/+F3y+5zKlTp/F3f/cVfPzjv4bNmzeBA4joEVggKII7f68pPoeuvXYnnj7wPJ55cj/Gx8dx+OWX8alPfQqLFpWGI798+DAWLVrkCy4AOHz4MCLRKGbNnj2lYwiHI7jK5/b8ecD05GKO7EYTEQIYuRyKXZy7nS6Cq5zy92m5bwB9l20FdYsHiUQClmXVFVyZTAaZTMhw+QsQIbqmgCdugoanqiz7H0pJsdiTU3o7RFfDgXmjiNEXn0NxeHJ+KvzAPHdbfEBw08/5xFX7eiPDI7j/gQfw/HPPlVQdCaXYtm0bbrrxRiSSiZLrEMoAQmHmczCBUhuCiCPMOm3IWo3ygGHCZOfE787oBA01fcNR24ZlGiA9FIpUUrruil1VyNeIJfKeQ7UqR83YURgAXmUB0dWmjLggocxZ3dzFpUuX4uGHH4ZpmH64MefAT+65BxddtBSbN28q8XYrGoazLAI4Hm+SBMCGXTRKC2eEgNYJcecgWLR0GTasWY29e/cil83ill27sGHD+orLHj9+HOvXr4dpWhgdHcWBAwfwxBP78Ssf+1jd+2gPBEQKZyLrRRMRcNiWDQ4gmkgAhMIo5GEUCp2LJqJT21LsFlIs7gou58ONN2JSTVARQtDX14dsNisEVwOE6GqCajsHqqqCEOIbnnJFmXxD65EnyVRFlzcwXx7C7Q/MZ9IYOfQsrECrTpZkyIGtuyaOtmzTTwaRGLhl+Z/OJybSePjhh/GLX/wCVtmJ77LLLsMtt9yCWbNnVdyyV5GBXfoJtsSGwJ3/0dz5n3bF0dSj3FeKSorjOF1r5d22wN0WEiEUVPIMRzvrxVNOL+bhysVpdcr8rlQN4Nw5Adep8DSyozjCbRTd19Fs28a8Nj4nwpqzck78GZtlS5fCMk28f/IkLrpoCQDguYMHcez4MfzhH/6RL7iKrjh9+623cOedd1b+3uAwbOfRkgjByotX4I477qhxBMTZ9DUKWL9hA15//XWsWbsWN954Q8UlJybSGBsbw6LFi/C9730PL734IgBgw8aNuOKKDg/Ru/OFzVT0InoEhmn6XmBeG5K5bUgmK7BMw2lDtqsqPlMEVzSO/i3bSwQX57yu4Mrlckinp9P4xvREiK4poChKpeFp0DaiazMMpUxFdNUycfUH5ocHMfbCwRLPJX+TrA2Gi0GvokLRwMOPPoZHHnnEGfAMXO6S1auxe/cuLFy4sOrtBB2y695fB+Jo6uG7gXuWEDUqMrUP2A4Mmjd2NG8XYeNy2nqfTbrMA+5xFvKTj6Y7aM5t7p6Qw9lRSEzC4YDv3kbbAgVpy4m3GYuNgQEbkuTc55KLLgKhFMePHcNFFy1BLpfDvffei6uuugoLFiyoiEBatGgRvvAHf9DwPrRoFFRRnQ86Jc/1yVbd8PAw9uy5DwAqrFg83nvP8eVbvGgxFixYiM2bN+PVV4/gmWeexU8TCXzkIx9ueCwt0QbB5eGnIwTbkLICPZ4A5zYK2axjytrKh50ZI7hi6NuyA1RxYu28c0I1QeUJrnw+X5FKMhW++93v4siRI4jFYvjiF78IAMhkMvjmN7+J4eFh9Pf34/bbb0fE7VbMJIToagHPjd07KQfhwZT0GeS+W8/E1RuYz544hvFXD5dUV3Rdh23ztm6pGIaJX/ziF9i3bx+y7icrm3OYnGP58uX40O7dWLFiec3rt2q1UB5HIzHJqX6oKizbbuwD1QDfEsIVp81mwFU94nJHcym8lUCoe2gyLqddNJsNyH2X+bLXXLVBcxDYllEzFxIA8paJw4EPLptsXtUXrnmaCyvv77fR3+/8W1UVLFiwAMeOH8fVAPbs2QtCCHbt2oVIlWqgoqpYGGbFnZDJx831c+LcdkIFjCLy+QK+8Y27oGk6brnlFtzzL/fg6BtHsXLVypKbOXHiBFRVxew5c0AIMH/+PKxduwbFYhEvvvBCZ0QXcb3XmhVchhEqEN1pR+eQz09GE0XcaCKzkEcxX68CGzxMBswAwcUijuBi6qTgIoRUFVSe4CoUCm0VXACwbds2XH311fjOd77jf2/fvn1YtWoVbrzxRjz00EN46KGH8OEPd0jIdxAhupok6MZOKQVzXXk9+DSodAGVEUX18Abmq5m42rYN27Yx8foryB5/O3D7pUPg7cC2bBx87iAefOBBjI6Olvxs4fz52H3rblx66RoQQkAVGeWD+JMn3vYIBNOarHJ5PlBqJALewok3mDfpHGf7K0cljubuHBh3zRBbmwMjYKrcdcHlt6pDV06dFljjx7NaakB1x+43mISC+xrqt23MLuSRxaQvnN5KO7oFiw2jCFgWgaY7R7106VK88sorOHHifTz9i1/gE5/4BPpSfVWrgbXai+UsX7F8sr1omY69C3Na/JBk3P2tr2N0dBRf+MIXMHvWLDz22ON45NFHq4quhYsWVbEcIIgnEuXfnDqEubOg4d5/vK3qsIKrnKpVcVWHpKp125AzRnDpUfRv2Q7mvldFo9G6giuVSqFYLHYk2m7FihUYGhoq+d7hw4fxe7/3ewCArVu34h/+4R+E6DrfIYQgEon4w+WyLFeKmxlW6Wo4MG+aGHvpORQGz/jf99o+9edswsM58PLLh7F3z16cPXu25Gd9/X245ZZbsGnT5sAgbrVBfOasOXfIRdrzgSoUC5MD2HrtPECPirxJQkElqeOtuoo5MHc2I/S2qCcQuvzBwY+qyYYcxvVaS02HgJc6dpd4FZkGXgpYvWwwJ7MPG7ajsxlYuRzAGDhjTtQRZQBzQ4ybPNm//Y6E99+nuP565/dbunQpnty/H9///vexdNkyfOADH6iZORm2vagG37M8IeMe509+9C9458038Nnf+izmLlgAQhmuve463POjH+Hk+yexYOFkJe3EiRNYsby0Aj0xkcarrx7Bzmt3NvV7N8Rv1TUhuILh8VOkpCruRhPJsgI9FgMHUMw5nmCckBkiuCKO4NKc97Ro1LHaqSWoUqkUTNOs2WruBBMTE0gmkwCcLcp2V9e6hRBdTcA5x9jYmC+0qs1OTZdKVxgaDsznshg99CzM9OQLz4upCR8uXJ+jR9/EfffdhxPvvVfy/VgshhtuvBFXbtvmb2pVhzubbBZcqwUv0698PqV9NBrANk3D2Uh0q4HeYLO3Sdm8QJgi3A6IvMlNP7uGG7X/ybzLVhWq6lSPwkbVtPM4g9Uum1C8EImgQClko1jTKqK8Hc0Yg/L2O9BeecW5HbdKDDiO+DajznPTFWJcKv3/5M+o80mkUID0tg7M3uzf57JlSwEAZ8+exZ/8yZ/Ubb+qmorFixeFfgwmKzLO77N//5N46smn8NHbbsPKVSt9kbp182bs3bMHDz76GG7/9KdhmwbGx0YxMT6OF198Ef39/Vi1ahXGxsfx8MMPI5lM4QNXXx36OMIfZ7jXd/mCQSewbQuFQg6FwmQbUk8kQSUJRj4HI59rywfUTsA03Wkp6s58VFjBVd6N6CaEkI7mC3cSIbqmQNWB9RlS6Wo0MF8cHcbooWddh2yHySrE1Afm3zv+Hvbs3YOjbxwt+b6qadi5cyeuvvpqqKpS49qT+BuK3LNamMz0c+ZTmJPJWKwdqjwVKgawJRmyrEDTGCghKBQLjuAqs4ToHWVzYJLsnPBd0eG1JJsN6Z4qvnN6PtxsIGGS80GhA8d5lFJYhgEVQIpzLGHM97qqt6xgWRaMfN6JVnFtGGTXUNLiNohhAkXv789BLAswTBDDADFNwDCcD2q5nPN/0wSz1oBecSkA531FVVQwScI111yD/v7+9kVrMcn1iHMez9dffx0//elPseOqq7Bjx/aSi0qyhGuvuQb3378XQ2dvQf/ALLx38jQKNsf2K7bimWefwWOPP46+vhQuvXQNbrj++lCv5VBQCQCfVoKrHM5tmJYFIz0BWCYkJkFRNUiaBtuyUPSG8adBnipVHcEluYIrEolAkqSaFaxUKgXbtnsiuOLxOMbGxpBMJjE2NoZYLNb1Y2gHQnRNgYaVrmkousIMzOdOnsD4kRdLTjCapvsxNVPh7Jmz2Lt3Lw4fPlzyfUmScNVVV+G6669HNBpuI6VhGLRlOlYMCIQqg5dk27Ub03Q2mxjVkCsUnHm5VD/MYh5m0YBp29PizdbDqRK5LTZVA+EAQJy5ni4cZ0X7Ncx1JMU56XbILqOktWgYlcsK7rxT1daWLDuGyK55sFEogBQKoJYFyTRADBO8WHRSGbx2PueA6YgvWBaCz8019FUsnbcSwOUAgH0P70M0GsH111/fNsHlCdjg6/2SSy7B//pf/7Pmda6//jpcf/117vHbOHHsXaSiEfzax38VTFYASmCbFmC3URQzCaTsOOvhC67ARmc3IJQ5bUX3PiejiTKglEGSJUSTKYASGLksjEKxqx6BHlTR0L9lO6SIY+AdiUQgy3JDwTUyMtLNw/RZt24dDhw4gBtvvBEHDhzA+vWVPnEzASG6miQotBpWurrpcFxGNU+xRgPznHNMvPEqMu9OVp/8WQjDqFivbobRkVE8+OCDOHDgQKmxKSHYesUVuOmmm5BKJUPfXrMbipzbQJsc8etR7ldmU4rC6Aioa6Lbng249kNkFbxQ8AWhPwdWI9OvLffZwpwNkVW3PdsZQWgBeEUKGqKWHlfFsgJjQDYHPjoCmskApgm7rw9SJgs+Mea0wTQVls0B7viHUQDENEGyWSCTAfJ5Jx5LkQEuOyKMEIAxEE2DrVC89+4xHDt+HI899jh+4zd+A5qmoh04lWJryq+BE++9h4ULF4IQlNjJOLNyEji3YBtmy0K+mjCse3k487eFbgsuxsBBalZgbdtCsWChWJiMJtJjMVBZhlkowMjnu3K8VFHRv3U7pKhTLfJGTWoJrmQyCc551wTXN7/5Tbz11ltIp9P47//9v2P37t248cYbcffdd+Ppp59Gf38/Pv3pT3flWNqNEF1ToGGlK9+7wGLv2DyBE3TNL58tsNz5p7HDh5A/e8r/vmdMOZU3rkw6g30PP4xfPPVUhb3Gho0bcMstuzBnTvh4kPZsKJYN4rfJ68rzK/OGwElgQ9Hm3Ml1KwtkBiGwumDIWo+qArZsDozKqiMMDBO+Vf4U8F3mm3hudcOc9S0mIeu+ppPcxhLLArjzWibpdMl/NJ0GcYUW4PxOBHCEaskxEoASoFicFFqFAjilTjZrKgWiKE6VTJJgDQzAXLIE1sKF4Ik4Xn3lCO7+h39AKpXCRz7yEaxbt7Ytv2s7K4Yn3j+BrVu3Vnw/OCvX0kIHHMEF2w5/+RaeW+2AMOY8NUNW9/zRhImARY2iQNeSThsyl+3IBzMqK+jfsgNS1MnM1HUdqqrWbBl6w+vDw8NtPY561BJUv/u7v9u1Y+gUQnRNkQrRFah09XKQPii6NE2Doii+a37wMrZtw8rnMHroAIyJUf9nnk9SqwPzhUIRjz/+OB579NGKoOyVq1Zh9+7dTQ35AujQ5l/9GaeweO1Xx6/MEXK8xnGWb8A5XmBKxSB+p3E8uMJ4hfESm4N6VgthaNn0tJMbnxwg+RwOu9tbAHDZ8fegPfdcibCqexPcBiEUFrfBKHW+aZiwbRM0lwdsG1yWYA8MOGKLUXgZP/bAAOxFC0GXXAQpmYRKiP9c2LxpE7ZsubytXnhEVtraZv/zP//zxhequdBRuw1JmOx8EGpScLVrszosnuCayoc20zJh5kzkc1l3Q1pGNJEECGlbNBGVFWeGK+YILk3T6gquRCIBQkiFfYOgdYToajfTZJDeE13esGHNgfmxEYy+cKDEakGWFciy3NLAvGmYePqZp/HQQw8hky5d+1+8ZAluvXU3Lr744qZ/H8IYANLxzb+SGSffRsCGbVQfxK9mCeFYGIT721dzQpclGZqq+YasnRkArmEmGoJKqwXJfYyKDZcVyiOQwtCq2W0FrrCqrFhlQNJpWLaNl3/t1/yLb375ZZAwK/GSBDseB00kUdRUwLZhj4+DjgyDcBsEKqDqAJzXHHFtBKy5c2AvWAh7wQLwQLuwmMtOxtGoGiilMEwTkiS35bngBYF3M86pknJj38rnUbOtz14JLlB3CaGNlWpnQ7pQPZrIMFDIZWE1+YGHSgr6Lr8SctzxTNM0DZqm1RVclNKuVrguBIToapJqs1IlP59GlhGxWKxiYJ4Q4rQTOUf+9EmMvXzImTNRVIBzKK7Za2ifJBfb5nj++edx//33Y7Ss7z9nzhzs2r0b69ata2mDcHJDsbsbdcFKDvVaQa5LN8Argph9YTiFE2OFIavsWHTY3IZpuHNgUz1ZEgrKpKZMOmtR/hgRSXbakFVO6p7dSPMu800ILg6QXA4kkwaZSDv/91qB6TRg1b7fN+fPR9qN/klks1h2bjLMncsyeCxW+V80Cq6qIKozE6c+8ABIiX+QM8XEue14dy1cCGvJEtgLFsCz9K3+a3BIkgTTslDIZsAY8x+/Vsx5/aORp4PgqqTitaZqILbtiK4Q9FJwEbRXcJVTLZpIUlREtAS4zVHM5WAYxbrPBSLJ6NtyJeRECoDjzVZPcMXjcTDGMDQ01PCcJ2gOIbraTbDS1SPRxRhz8v2y2YoNRU9wpd96A+m3Xpv8QbHoVGxsG6btRtSEmLvgHDjyyivYs3cvzpw+XfKzVCqFm2+5BZdffnnA2LQ5Gm4odgnObSDQGpFUHbquI5uegGUaHRGGjvePhQIwacjqZo3VM2StC2UghJYMO7cLzu1AhW9yVs42i5CZBFlqxm7EjcupVonzhFWwYpVJg7oiq56wqscLAWPPDePjMLdsmRRXigLUeAr7rU8C2AMDYAHRxRUZ9rz5sBYtgj13juPD5f0S7qwcCCo803Rdh2VZ/kanE0dT9lxwzXnDzgQ2nfPZK5gEns+5z5PAzKVlVBVhnuBqpl3dFroguKphWRasXBYFtw3JJAnRRAKUMhTzORjFQonwJJKMvs2lgisSidQUXLFYDJIkCcHVIYTomiLlT8peW0Z4A/OFQqHGwLyFsVdeRP70Cf/75RWbSbyTAnFO0mWO9W+99Tbuu+8+HD92rOT7kWgUN95wA67cvh1yXWPT+jiCa/rZbkiMQWUUmbFR2JxPWi3YNjr1HlViyOoO4mtNRtEQ34upG1u1k+0jRVEhq46FhmNc20CYenl6Y6OgExMgmUzZ8HrrwoorpRUrOxYDojGYsRheGOj3L7cuEYfVwLqEc1TEOVkLF4KeOgV74UJYCxfCnj3bGaKvfguls3JMBhhDRFWdk2eNVnpVc153JrBWSPvUcz67Q+WsWZV8UUad5ACjCEadZZ8LRXCVY3OnHWuMBRISNB2Sojpi3CgisXEL5GQfgFLBVU1QxWIxKIqCwcFBIbg6hBBdTVIhssq2BHtZ6QoOzHsnZO8YbduGVShg9IVnYYxNtv/8GZuqb1rBk4IXt0Nx/N13sffee/H666+XXFpRVVx77bW45pprprTSzl1Lh05H5bRCeS4gVTTYQauFFgfxm6FhFE2Vky6RZXBz6tYAzeJlTmYmJmejJud3LPCxMb/1RzIZ0HQGNJMG0hNTEFaKK6qivrDiUUdkoYZJ57uMIU2c4fcYt7GsYYvKy6UsfY7ac+ei8MEP1qyK1cUyoauKs7Vm26CK5tiOGLWzM6vNBHoh7V5L2mKsY/FY7YTKSkN7Eqfa5fybSTKiiQRyuWxFhFlHmSaCq5yShIRMGkxWMG/HtUjOX+i8/1sWJEmqKbii0agQXF1AiK4pUi66elXp8sJJgwPz3nHZtg1jYhyjh56BFXD8LveUqg/HuVOnsPf++/HiCy/A4By26zmkKQp27NiO66+/fuouwe6GYq3Nv15SbglRbcC7chA//JB5K5RH0QRPut4gPqcMVg/aSrquO6vvI6OTwqrcbsHmoO7ztJlZtarCyhVXtYRVPV6SJg1R1xkmaN1LExBZrp5L2WIbvZpzekl2pqQ4s2Fm/ZZ/+UygGo1BtkxAjzg/a6Ul3QVIk3YglFDoquJUm20LwVYtN83OCaJpKrjKIZQhsXELLFXH8PAwVFVFLBaDZVno6+tDsVjEG2+8gblz54Ixhmg0ClVVRUuxCwjRNUUqvLoCogvF4qTRYYcghCAej8MwjJKVctu2oSgKTNPE+InjGDv8fEnlpVxA1GN8bBwPPvQQnnnmGSciBoBMCAiluHzLFtx8yy0YmDMX3LbBpzIrRCUQgu5nE4bAi6nxLCGo3HjAu2I4WHKMLx1h1iFH/IqTbhTEtgCmd86Q1eYlM1Y0nYZSLIKPjYGMj0NtUIWwOQeBl6VGQOC0TSaFlSOu7EBbsOR1NkU4gMNy0BC1ToWy5YDtOjfZyFeK26UV5xBWCwAASUbOrTBWtKS7aE3SCCq3ILh0vWwDtrJV62weW+3LEGXt31LsBIQypDZdAbV/FgAnvi0ajWJ4eNgXVJIk4emnn8Zbb72FRYsWYfPmzVi0aBE0d5FE0DmE6GqSWu1FH0oBSZr09SkWS1uObaSew3wul3Nc5E8eh3H0VaiyDJMQmKbhVCBs3tD3J5vJ4pFHH8H+/U/CLLv9devXY9ctt2DuvLkAMClAKHMqVa6TeVgHaiIpTkuum22CEHiWEIY7H+GddJudNatwxPfNRtvriF+CJCM34VQ+CaGQA8PXTQ/ilwmryorV5O1IkgTbsmCH+MTMFQUkkYAZiZRWrGIx0Ei0M3EyZRxjDONuazHCOVbUagtT5lSP22jh4QmI8Ft3tWacJm1NJmfNJj8UBFvSQCAjVKUdtiapT9MVLs/jrYHlSDA5wH9PQvWt2lC4gqtaQPx0glCG1GVboQ44htOyLCMWi2FkZKTk3GWaJm677Tbouo6zZ89i//79uPfee8EYw5o1a7B27VrMmTNnxoZKT2eE6GoDFQapmuasp8OxjeAdEF0NHeZtG4OHDyF38jgA581KkWXomgbbtmFazjxQtZZOoVDE/v378eijjyCfK63mrLj4Ytx6624sWbKk+oHZFuxgW0RWAI66G4jdcBpvhYoFA68SN+WTU5VZOUKdylgb3tSrWS3wasPXmlpqyGo40TSlW4EZf5i94ZYAIZAY8zdk/ftW1Ul7hXgcdjTqV69ILF7zRFgaJzMpLtopeoDS1uJ6w6jeWvTaSm2c0/MrNlMYAg/OOBHKQGQJlNCGM1zBlnS77CiapekKV0jBVUHgPankA0/ZxmhNZojgAqFIbdwCddYcAM45Ih6P15zh0nUdkUgE8XgcN998M26++WaMj4/j1Vdfxb333osPf/jDmDVrVrd/i/MeIbqmSNX+d7D1USgA8Xhb79NzEa7lMG8XCxh98SCKI6UuwowxZHNZcJtP2g8E3mQNw8CzzzyDBx96COkSryFg4aJFuPXWW7Fy5crw3dJqDtQgsANzKR13Gm+Rctd0Isl+iHF74a7ZqMPUB/EJqFw54O1jcyCbgZVOw3aFlZTLQstkQbJZJ8jZtkNVqUrQNEh9fTA0FVbEbQW64gqKXPUqzfztg+LCq1zA5s5zaQpinQN4KdBaXF+ltejZgfA2xB95tCwg6sFtEA7YRTcVQVJAKHWtX2ofe1U7ig5HVDX7uvcer7Aeb7Wpkq7AGLhZPcDcy3ycGYLrcqiznc5DUHBVWzLQdR3RaBSDg4MlH9oTiQS2bduGbdu2de3QLzSE6GqShu1FOJ/sve+QYrGt9RtvYL48mNQTXGZmAiPPPwsrNzmr5X2KDb7BB+0HGGN4+fBh/OznP8fQ4GDJ7c6ePRu7du3C+g0bpjiaFmyLEEBWnDe7HhvIVsOLQPLe4Lvp4D2lQXzCQCgFLxRAsplAxSoDkp5wnNdrVKz8OgAhoJRAIsxpx9i2/6btV6wCdgs8FgNLJqHGYsg0cUKckst8sHLhDZm32Kp9jzKMua1FnXNcXL712cZ8Qg9vY3jqAiKIO9zvCwoObpbGWxFKHVFdR8z7dhQIb0fRLM3+7TvzeDlw0/Arp4QyEMmpatmGY3Y8YwTXhsuhzZkPwGnv1xNcmqZVFVyC7iBE1xSpJroqKl1toNbAvHcMtm2jMHgWoy89V9J+URQFEqtuSsk5cOTIK9i7Zw9OnTpV8rNUKoVdu3fh8ssvb8vxl/0yIAC4u0kZ9oTQDWRZKTHx7KWhZElYMGWg8uQJAbbt+Fd5juvZrOPAHrYVWANbUWB5w+qJOFiqDzSZBGIxGK4nWPDEV26h0fB38k1P22RhUHXIvLaRZjkvyZNVuLWmCRb4GZWUKVfSyikX9G0hxHB/sJoKJoEy5nhdmVOzo2g2IWE6Ca5yuG1NbowyyXmcANgG6lYKewtBct0maHMnBVcikagpuLwtxqGhISG4eoQQXVOkaqWrzbYRlFLE43HkcjnfodrDtm1wzpE9/g7GX3+l5BO5F8KczWUrbvOdd97Bnvv24J133in5fiQSwfU3XI8dO66CruuQ3RmRtm07VdlQLGmveXmHPRBgqupsdmVz2SbCoDuIzSeNQTOTc1ZyOgOWzQIcsLgNWmM2rxZc00pibEq2AsvMbD35TlyPn2DbCYSAUYpcsy7zHTO8rTZk7j2XKltH5a3FDYFlkU4kIUiS7CdFTDnKyYNSEMKam3OzTNiemPfmLoGGCRQVEVVScwkJZBoLriB+S7GYr2z7t3MbcsoQJNdvgj5/IYBJwTU2NlZTcMXjcQwNDcEMEeAu6AxCdE0RzrljBxCkjQapDQfmOcfEay8j+96kePI8fwzDqHC1PnXyFO7bswevvfpq6f0oMq655lrsvPZaaLqzNlzu/+RvO7XYZgizoVhe3SGS7LS46nwibwfeRmc+78zDtBoG3TQ1hJWzFZitWbHyHkHqNrIpoeCYdMQvEVYlPlbRCmEVhnJDVk3XQCkDOIeiqo0FeYtbn1MhuMHmP5cCZqMnKMOI21rUOMdK73nXgcUOr4IaXqCGwNumnErCQLW5yxCVQtu2UChaQLEQyo6i2QpXRyqCIXDa+byislXS9nefS3Dfl3q1AJRcexn0+YsAOALVE1zVXodCcE0fhOiaIg0rXVMQXV4oafnAPOAILtswMPrScygOnfW/721ElXv+DA0N4/7778ehQ4dKTuSMMVy5fTtuuOEGxOO1jU2Dn3IZY5AlucSAs9G6OZFVPyg6LCXl/uDsThtPiBUCtRPiwLL9rUCaTgOZcMKqETQS8a0WeDwGOxoDkknwRNIxiezQLIqqaa7liLOhKzEJsiRDU7Xqzwc377GXFYLy5xKRFLygabApQG2OtaYJCVOcNauB3+KvUnFuGSo5f+O2VoOrVAopdR67OvfTyI7CZgzFTDr0UfiCq50CNQS1BFc5wecSCAWVZYAT2JZREZXWKRJrNkJfuBiA836cTCZrCi5FURCPxzE8PCwE1zRAiK4WCAqtqjNdgUpXq+3FhgPz2QxGDz0DM/Bm5r1ZBQfmx8cn8NBDD+GZZ56GHYxVIQSbN2/GzTffjIFA5lwYvG0nwG0zyM6gfq05D6Jo4FM9kZXN7rTD56pCoDLJmTVrRRyUCSuSTgPev7OtCyuuV6lYRWMg/f21N8q4BfDOOOJHXGfzYJu7ou0UeD5YHDAMY2rVmHbjPpdeUWQQwlBQVKy3rabbX2FQFRWE0rYKrskMzc7O5FRsjLph3Y2ieoIVclmPgJomopFoKDsKiUlQprHgqoDbgWQC0pX51MSlGxBZdBGAcIIrkUhgeHi4wstR0BuE6JoitbYXfZoUXWEG5ovDQxh98YA7c+IgywpkWfbfrHK5HB595FE8sf8JGMXSF9uatWuxa9cuzJ8/r6ljq4ZtWygUJtfNZVkusaKwKYXV9tw3Xt2h2zBDv2lWWkK4rc96As6y/VagZwrqDa5PTVjpbpxNvNR5PRoDJFZ62SZyKesO4jd5QvMrgsWiP1hdjeDzgSkqGCXQVRWA2rwhawc5RRmGKAXhHPFCHqsNE7xYaOvsjpc7mc/XNyFuBt+6pNuPoW0FRL7zHGxU3aGKBsMVm977A5Nq21F4M29tbcGGoGXBVQGvvrDQpFF0PeKXrENk8VIAzqxvMpnE+Ph4VcElyzISiQRGRkaE4JpGCNE1RRqJrmbai6EG5k++h/FXXiwdmFedN7FsNoNisYgnn3wKjzzyCHLZ0k/Xy5Yvx6233oqlSy9q5lcMjc1tFIoFZ86DMiiaDhkciEQ7eMIta4lIMghlsE2zpou5Z6HhzYuUDE2XC6vgf7ncFIVVjRmrMmFVG2/zr4XqKS+3WZDBQRpm+QEhYmqqXUdWYBkGLG6jiCoxNB3yfwrLS5Lz1mcTYDVhYO5jGpzdCbvlVw0vNqrQxg8cnbCvaA1epbrD/DkwzgFaZQnF5k7F1ZsLDNpReO+jvahwwbY785iWLyxICkAaLyzUIn7JWkQvWg7AOVekUimMj49XbRnKsoxUKoXh4eGKc4mgtwjR1QIN24stWEZIkoRYLFZ1YN52vZLSbxxB5thbAGGgigrYHKoiwzIN5LI5HDhwEA8++ADGx8ZLrr9g4ULs3r0bl1xySSdjICdx500KWdeV332D7cYJ1/mk6flcVW6vybICmRDkTp92jEELBWBkBNJUhRUhpcKqZCswCrCwwqrW7bdx1sw9+bk37A9P26ZR4UnUimt6tYSB8kF8JklQFAWMts//KSzO1qIMmxIYkoLLxkarX7Dall+DdAXAWcqwLKutJ7vpI7jK4SWvOTAJTFLAbaNu7GzQjkJ2K1yWZSESibRsR9EsnuDqStWw3NrEF6rhTJDjK9cgetEKAI0FlyRJSCaTGBkZEYJrGiJE1xRpxyC9NzA/Pj5eseprWRZs08TY4edROHfavQMLMLiT2VYs4uChQ7j35z/HyOAgaOBYBgYGsGv3LmzcsBGEdidDq9qGYvAN1jvhep9wOxa8a1nA+ASQToOl06CZDJRiERgfhzE2BplzMMqaq7yVC6uSilVk6sKqFm2LH6pG5fA0KAUsE5Q4VdRmXNPDDKJz8IoYmvLFDKuDJ9zThOKMxGBKstNaDPO4lm35Tc4Ulra0I3pkMqezTVBZaakl3G04iPOaKjgVdkK9IfPaQlWW5JKxCCDgit+EHUWzdFVwVcDLPhy6Njk1Kqqxi1cjuuxiAJOCa2JioqbgSqVSGB0dRaFNHpGC9iJEVxuoN0jfqNIViUTAGKs5MG/lshh54QDMicmfM8agqhoOvfAC7rv3Xrz//vv+z4o2RyKRwO6bb8a2bVvBOiUEqhBmQ7H8hDslKwrLctzWA/mAtVqBTJLAuQ3LskEAMMqqn9R7Jaxq0Ln4oepwywAspwWrRSLIF4vgTAIPMYhPldZ8zSoWMyQJaiTSsRzAF1UVFpOgFIu41DJRPaSoHtWjZHRFRTGXrTvz1iyd8AvrBE7eZ1n8VI0YMC9j1BdcZUsGviu+m5jRyI6iWXoruCopmb10N2sB50NWbPlKxJavAlAquKrNaHmCa2xsrGOC69FHH8XTTz8NAJg/fz4++clPQpabfwVdyAjR1QJV8xaDPw9R6SKEIBaLwbIsTJTlHPoD86MjGH3h2ZI3MlmSceLECdzzk5/g7bfeKrleNBLBzuuuwwc+cBUURXXaIYQ4b9qdDq9VtYYhu9VoaEVRyLsxNoEZK2+APZ8P1QqUJMlv0QLOG5vpbQXGYyDJFOx4HJamgkeiAKsaedx1elXh8JYyMuPjvjCtN4g/aSQ79Td6z/+pEPB/8gav21HxIIzhRUWF7J60NhhtaGmaJjRFQSGXhcWdFAPOLdhFY0rt/OkaBF9JmFnD0oqqokegqCoyE/WtJCrsKKrYkzRTFZ1ugqsCboO7gj66bCViKy4B4Jwv6gkuxpgvuPL5zhg6j46O4vHHH8cXv/hFKIqCu+++G88//7zIaWwSIbraQIUIa2COGmZgPnfqBMZfebHEa2loaBj33nsvDr/0Usl1ZEXG1R+4Gtfu3IlIRPeOqtRiQVIA6ngltdO/iXtGolMZGDYtkEwGPD0BM+2EMdNMBkouBy2Xq8gADAUhQDQCKdUHQ9dh6Tp4Iun4WWlaDWFFJoWqWeya5041elXhUBUVlFFks5nSH1QM4ivO38U0wRTWESPZ8jkwSZKgamrLbWnCJJwmBIPuCVcGcMkUq1LVlgy4b59BHUPWFrzlOuEX1hnKMx8bI8sKJADp0RHnFpowQa7mih+2Ktqzzc8WiC69GPGVlwKYFFzpdLqm4Orr68P4+HjHBJeHbdswDAOMMRSLRSSTyY7e3/mIEF1toO5MV9mLwBuYT6fTFT15T3BNvPkaMm+/4X9/ZHgED+3bh2effbakskMZxbYrtuHGm25CIhGvc4TcERHeMXkbfpYJTGV4mVBQFvKEa1qTOYEVW4HV3yhs9z8nbsY56QKTiwUgBDwSgR2LAV4rMBoFj8dB43FokQiyAUuIxoPIvMqwK3XL/93bsuuEX1QYPIuDcquSCryhYEJBJGfdnsqq83zq0DZitRzAZtrSRJLBLaska3G1aUCteY3GeEsG+UK+qvjjgaqFNwcWRtDPNMFVL/OxHEVRwBgraSlWmiDLvqCv93oNVkUb2VF4f//pt4hQSWTJcsRXrQEwKbgymUzVofig4Gr4up0iqVQK1113Hf7iL/4Csixj9erVWL16dUfv83xEiK42UFHp0jT/n8H2YqOBeW6ZGHv5BeTPnAQATEyk8fDDD+MXTz1V8aa+afMm3HLzLRiYNdD88VYMcUrOG18zn/qrGYkaph/CHFZYNcQVVsV4DIg67UCWTIH19QHRKExuwyprOfkZd9UsIULDyzIhZWeeK+S2USv0Mu9R13XYlmv5EQbCHEHqnnBLLTs6H15e3paW3LZ0tc23oOA+LAWzFls/vua3OqsJ+srtNSr3OO8zNMQR3C0IrrrioHyz1n0+2ZZV9wNiuR1FcDvWphRGoQBzJgiuxcuQWL0OQGPBRSlFX18fJiYmOi64ACCbzeLll1/Gn/3Zn0HXddx11104ePAgtmzZ0vH7Pp8QoqsFykWWt8HofZ8HBwvdF0vDgflCHqOHnoUxPop8Lo9HH3sMTzzxBIplA5GrL12N3bt2Y8HCBe35XYJDnAEHc27WeDM1TNBCAWRszJmr8uespiisopGS4GUedf8fiVS0Ar23XlIoQJLlEiuK8hDmdlUNnAHzgFCljulhzcepaQho+SByFyAg0HW9uY07P4KmSoh0eXg5ZZNtow4t0HqD+J4Bp7/5xjksSlHMZgFu4xyhOOUuQkgALm0xEsU31m1iq7OUattrEjgBrHy+O7YuU8G1L2nmQ5rXtm5OHJR/8HEfJ8uq+3wKLusQJoMSQGIMaiTaNTuKVogsWorEpesBTAqubDZbV3Cl02lks22Ml6rDG2+8gf7+fsRiTlzchg0b8M477wjR1SRCdLWJoOgqjwGKx+N1B+aN8VGMHDqAQnoCTz31JB5++BFkM6UzNUuXLcPu3buxfPmyjv0OvgAzTNBsFjSXBxkfAx8f9ytXrFBs7URDiOtdFa0UVtEo0IKlBQcvmfnRdR2EUoBzyKoCTiUYuUzjG2r2foPVCcqcdkggSLlpvJNYG20GQt2tW60pFosNszP96zBn9iZMG7GdjvhhCW6+MVUHNYt+y+lI4MPSJaYBtYVjYIxBU7W2BjHbpgnGGHjBMRUmsgRwNJ1V2hVaFFyENiu4Kgk+nyilgCQ74r/GvJzzXLVgcRuWaVSKcnTGjqIV9IUXIbFmg/+1J7iqbSF6giuTySCTaf/7Wy1SqRSOHTuGYrEIWZZx9OhRLF68uGv3f74gRFcbqKh8uaKLEAIZQLZYrHjxePNb+bOnMPzCQRx89hk88MCDGBsdLbncvPnzsXv3Llx66Zr2fgI2TL9KVbEVWO2FTgjACWzUeXOqJqw8cdWisAqLrutOJmCuCIBA0XUwbkOJRDtrvmlPDphPGmiGFxaEMcBzhu8ijeaRqjElg86ag/itZ2fWgyoqrEIOFuCL8kPRqP/zy+EIqGYG8f0g5jYKropYJx4IUw7G7XTocWoKQp3KZQuCq51RSIAzL4eqWayOb5onuMofswo7CsamtJzRDvQFiysEVy6Xqyq4CCHo6+tDNpvtquACgKVLl2Ljxo34m7/5G1BKsWjRIuzYsaOrx3A+IERXC9RqL/pIEiilkCUJRi6HQjZb4u/kCa7022/gqXt+hL179+Lc2bMlt9nf349bdu3CZZddBtqqWKkmrLz/mvZxcQUXAUg8ATsWgxWJuJmBXiuws8Kq6lG54sHPBKTOiaEYGNStakXRCZFTzZeIkJqxH97GVq24ok5RnjsZ6jrt3KYsd+f2HiezPYP4zlxU6fN7kBC8T502NQOwumhUWA/Ue074c4JtjakhoLIcGLYvp1rcDoVtWl1/zvgzfE0El6uqBoL2Zk9Wp9Q3japOBBMBB7dqC1XObRimXbqcMQU7ilbQ5i1CYu1l/vkjlUohn89X3UL0BFcul0M6Xd9qo1Ps3r0bu3fv7sl9ny8I0dUGykWXoqqQYjEUJyYcgVYoAG4523KNLp/43rew5zv/jBMnTpTcVjwexw033oht27ZBCpPJ11Zh5eJXrGLg8TiQSMLWVSeQORIJCCtne4kQAt5inthUKK/WECZNVk8CVJhvyk72YmfnO4K+RJVRO72KdWmlWtNZv6hKR3xCKbjd2sZorRm+l+TJt7pVpgnZMpGvsB6IOtYDhlHynJBlBbIktTmIudnNv8rFDsKoO3/Z4SopZc5rvBXB1faw+/oQyZ2L9J7bTeRnTsWOohW0eQuRXL+pRHAVCoW6giufz1eMqQhmFkJ0tYGg6PIG5guEgLgVMWIYsN35recPPIsffOl/4OTR10tuQ9M1XH/9DdixYwdUVSm9A8N02n6ZTPuFVTwOHi1rB7rCijDn6VF7C62asCCwy6JROoE3W+MNMxNZBjcbr4TbtoVCYXLoWpZlf+i6E2+sDqXCgmq6s6rIad1P4u2mlWqNI7i6N9zvhCY7/w4udtgNHPF9v7gaSxMvSZPLLRvKvI7KrQeCMz+c2yAgFa7pU6INM3zBx8mZK+zMvByhzHmvaKI1r6kaOHojuCpsIcryM4Nu72HtKMpNesvtKFpBmzMfyXWTgiuZTKJQKFSde/MEV6FQEILrPECIrhao1V4MDsxHAhuMPJ/HaydP4it/9f/DuWefhB7YxpNkGTt37sQ127cjYpogZ86UzlhNRVhRWha8HPhP1+u2ApuvxJRVLDrocSVLMuSAJUSY+KFq2Ny1SHDfWGVZgq475rKdGrCligo70G6ZzF3rbMWi2WqNY1/RW7+o0s1aBsqYIyxME6V/6/qO6COE4oTX3rcsLJsYB3Td//no6Bi++tWvIplI4POf/7w/92MUDezZuwevvPwKJtITSKX6sHPnTlxxxdbWf6kWBtEbYleZlyOYevWZSgB4S4KrMB0EVzllvmneh8RG71HtDmtX58xHcsPlztIPHMFVLBZrCq5UKoVisYjx8fHQ9yGYvgjR1Sai0WjJtglXFBAAmXQaf/Enf4IfPHg/1sU1X3ARQrB9xQp8cMUKxPN54IEHWrvjKQirmjfZhnZS+ao3mNQWjytVUR1zRdcxvW2WEMEBW5AKK4qpfrKtFZVTvuEX1pm7GVTV+T3CV2vqV416gm1NPv6BQXxYpmP0W8cRPdhaxGuv4fnXX8dNN90IACgWi7j77rtBCcFnfvM3ISvOhyWJSfj7O/8e6XQaN910E1J9KRw4cBA//tGPsHHjRiQTieaXM7y5qE62A2vMyzX94YdJIJw3lV6hac4s1bQUXBWUt7XDffipFtZezyOuHHXWXKTKBJdhGDU3O1OpFEzTrLAaEsxchOiaIl4Ya6FQKN020TS89PRBnHtjFEZkDj6aWAsLFmxYWBKLYuvcAfSrCoz3shijHJRKYJSDUg5KOCgFGOVOS6UDwqoWnWgn8YDz/VQqO55jejaX7aiRaLkVhSRJUFVlChtOnoip/7hWOnMrLUXIBPFOhOGHmZuPdek6QUd8xsCJ+7yt0dY+HGgtLhkcxFNPPomdO3dCkiR8/3vfx9mzZ/D5z/+un+qgaToOHHgWx997D//xj/8Yc+fNBeCcYJ9/7jmMjY4iEtH95Qyb2zCM+kPXk226bm6pVpmXY6yhETJhkuNB16zgspsw120T7XKar7SBcZIWnMep9muvpkccKqvlysAcpDZu8QVXIpGAYRg1fbY8wTVattEumNkI0TUFFEWBruvIZrOOb0wAS5JALYJEfD6u0BchjUBMTxp4Kw28hcZQRkAkCipTMImCyAUwyQCVx0Dc71GZgkoMVCagEgWVGahESr8vM+dnkvtvOfBv9zakiAaSzYBKFESmHTFprKzseDM7tc0OPQ8u0zJdo8BwIqYtxzvF+BknKklqXsSUVSwmV+LDt4wieiTwmIXA3fzstl9YK/gixv27VA7iO474o4TimNtaJABuXbAAd6bTOHDgAMbHx3H45ZfxqU99CosWLQTgWI9YloVDzx/CokWLfMEFAIcPH0YkGsWs2bMrlzPqDV0zZ96qkw79YXDmwFxDVq+qWuYv5wVCNyNimk4zaBMdi/YJtmu9aiEIbMuoG99Uz45C6utHfP3lMN3rJxIJWJZVV3DZti0E13mIEF0tous6ZFnG+Pg4JEkCc9/YPcPT3O23gy3dgcdvfwAKz0BR06Cs+U+5tsUBy4JVsNCpz8icEwAEhJS+oVBf0NX4v/tvJtMSYUjdr1nFZQNi0BeGruhTGSRNBZHgbPe5AqzCwJMwEEZ7Vokpj5+pZ0XhCANaknvZGry6xUKNyg4BgR6JTNpohKBXfmGtQOqImPJB/Bc1HYYkQzYNXGyaWDFvLi655BLs3bsXuWwWt+zahQ0bHBfwiB7xnfmPHz+O9evXwzQtjI6O4sCBA3jiif34lY99rMLCpe7QNQCjWPSHuacL5VVVIgXakE0KLsuywgv7NtG97d+yZaEa8U0V1wrYUSh9s9C34XLokShkd9u7UYXLtm2MjIx05DcS9BYhulrEtm1/sDEYA+RnKkoSkpcuxspds6EnLoEtaQDhKIydgpUZBDeysE0LtmHDNrj/b8u0wQ0btmnDMuyOG1Jz7s2YVb552aZzHN2GEAJQCVSmkDUCIhFQyXnDozIBkxGo7FVW7ViZ6CNymQAsE43Br0kTrdq6VhQcMA2jA+2kagsLzPW4MkEIRUTXUSgUQs8b9covrBUIkwHbCiUMuGXiFW5DNg1YjGEd56CSgvUbNuD111/HmrVrceONN1SI1ImJNMbGxrBo8SJ873vfw0svvggA2LBxI6644or69xkcupYVSIRAlSVQRemZ+WZDuFPZsk0L4Ny3N+GmUbfFeP4LrnKqxTfVt6OQUwPo23wFTMvGxMQE4vE4CCGwLAt9fX0wDAP79u3DJZdcgmQyiWQyCc65EFznMUJ0tUg+n/fXfW3bdqwHvJOdm+kWWxjHzn/6dei6Dk3TMDY25osyMzOB/JlTKJw5DWNitOp9cA5wi8M2LEcAGYF/m+6/XYFW/n/LsMHdr63ynxsWbJPDMhzjTm56P7Pc2+2N2Jr8vTlgGbAswMoBNmfgNkBpFoQ2vv5UqGznBqp3Ddu5ruhTFcgqg6w6X3PKwSlAGEqFoXd7U2jnBk8CTFYRiceQy2TCC66QVhvdJnMqi9MHTiG2MI74ohj02RFQtbljHScU73hZi5aF9ek0BoeHcN9996FgcwyNjoEQBl3XSqKQ3nvvPQDA4kWLsWDBQmzevBmvvnoEzzzzLH6aSOAjH/lww/smkgJumjC47VeoS1rTtg3TMDqTktAk5SKmQtQz5gSYB6qgwapgL4+1l5SMSvhpFPDTA+RkP/o2b/Otd+LxODjnvu1DJpPxP7h9//vfRz6fx7p167BixQosWrSo1HBbcN4gRFcbME0Tw8PDUBQF0WgUjDEUi0Xk83lomgbGWMUnFykaR2x5HLHlq2DmsiicOYX8mZMwxiYvRwjcKk/7/0yNHMa5DXBXvNmmPflvw3arcrxMqFlVxV+5CPRuo+S2jdL7sa3AMREAnINJ7gnBpuCcgFAbhLS/DDjVdq5tM1DaWiWjvBLnib6gSKvVzmWKBFVXYMECYU54NlNlUAaA2mDlwlCmYBENsIoglEy7kOWxt0Zx4vH3/a+prCC+OIL4ohjii2OILYpDH9DrivDDgdfNcsuCnM/j/33jLui6jl27bsE9/3IPjh1/FytWXQKbuqqYWzhx4gRUVcXsOXNACDB//jysXbsGxWIRL77wQkPRRWTFmb0re22Vt6ab2XrrFI44rD0szk3DF1veDKau6Sjmshe04KqgLI1C6ZuF1GVb/fduLyS63EmeMYbt27fjlltuQT6fx1NPPYVHH30UJ0+exLJly7Bu3TqsWrUKUgfOAYLeIP6SLeK1FIOtguAGo6qqSKVSAJyqmCzLMIzqp3FJj0BaugLRpStg5XNOBezsKRRHhtGJ/mKYDUVCAaJQUKXDpaUyVEUFAUFmIuOIMyLBzOarCzabOoKvUHRFXzUxGPh3h9u53GKgrPXWUcfauZw4YpVwUOrcvh04VkJIgyUM2ridW1a1m2o7d/zEpAmkbVPAKGLs7SLG3h71vy9pEmKLYogvjCG22KmIaQO6LyBfCnjlrSsW8e1vfQvjY2P4vd//fcydMwdPPLEf9++9H78dCO0lkox3T5zAvEWLqghRgngiUfehJooaatu05tZbR016y461hjisBbct6ExFMZuBYVmgiupUdroQzD2tBVcZcjzpCC73+ReLxUAIqWlsmkgkQClFPp/Hpk2bsGnTJliWhbfffhuvvPIK5s2bh/7+/m7+CoIOIkRXCzDGkEwmkc/n/RzFIMViEf39/ZiYmEChUPC3HOPxOAzDQD6frynAmKYjetFyRC9aDqtQQOHsKeTPnkZxeLANbzgEtI6JZK/x7Q0KeVBVghx3jlWJ6g2v663D2wF7imapbOfWrtxVVPIsBl4s1G3nVlYJSyt+HYNwEGbB0xCWyRxBwQEQ5wOEVeSwijaALudA1mjn2haH1qfCyBNQo1B13MzMmxh9cxSjb47632MKhT5Lhzxbhzo3AfahS2ApDO//7Gc4+uZRfPa3Pot58+ZB1zRce+21+PGPfoST75/EgoULADiVndMnTmDF8uUl9ibjIyN49dUj2Hntzpq/C5HDCa5yKrbe3EH8dnnEVYPKSlPu9d4GsWFMbvIGKztUVgGCjqRRzCTBJcWT6NtypS+4otEoKKU1jU3j8TgYYxgaGio5jzDGsHLlSqxcubIrxy3oHkJ0tYBt28hms9A0zRdSXmbW8ePH8cMf/hC///u/D0VxIie8N1TAsZkov16tQVSmqogsXorI4qWwjSLyZ0+jcOYUCkPnmn8Dcj2NpqP/kv+G7s+I1HcYr0bJOrwXH9OkGWsr7VzeJvsKRhkoYYAFmHkDxXwRxbxRt51LOQW3OAq5QonIq9YS9v5tFSlgFd3vw5nrM90KWAfatY2o187lNgNpslVrFW2kT2aAkxmswCDeuuVipNJjOLhvHz562224ZPVqJ+w7l8Plmzfj/r178cijj+LXf/2TAICxsTFMjI/jxRdfRP/PfoZVq1ZhbHwcD+17GJF4Ctdcdz04SMXQtGPSW8BUKz7V3M+n5hFXCWnS/LjxNmxp4PRkGoU1ZZuMGSW4Ygn0X36lM9sF+KMmtQRXLBaDJEkVgktwfiNEVwtwzpHL5ZDL5UAIgaqq0HUdL774Ivbs2YPPf/7z0DRtcpMxQFCAya7reSwWg2mayOfzNQUYlRVEFi5BZOES2IaBwuAZR4ANnm1oYlgrCHo64G/bBS0h6NQsIUrjYyRnxZt3IGaHUFBJakvl0LItWHD+jizKEE86n4CrWVEArlEsIaFNT7lb5eRVHlducdgmB+cUtglYhSLsolF1/q521a697dxWBFc11o+exXN792DHVVfh6qs/AE3V/PgoSZbwgauvxv3378Xu3bvQ39+PE+85AfSXb7kczzz7DB57/HH09aVw6aVrcMP110NmBCDEtVgAbMMAleWOmfQG3c8lJkGWZGiqVvN50Yhm0yY8wRVcNGh43GVpFIQ5rz+7WNuLr+p9y3JT7c9eIkXj6N+y3Wm5wsnglSSpppN8LBaDoigYHBwUgusCg/Ae/sVPnjzZq7tuK5xz7N27F++//z4++9nPIpVKQdM0mKbpV8CqCbAgsuwM1SqK4l+vECJzkVsmCufOIn/2FArnzlR8spzOnxQpZU7VIZ+HbVuT/kttbqVM3iEDZdKkIeRUhse9SJcOO4x7VhQSY/7AtSRLTZpREvcEFn7wmTAZYKwt0U214BzgnjgLVOkACe89/A7OvnAW3Gr97Ykygu1/sQOSxiAxCaqq+oKrFnv33o+nnnwSf/H//X+hnh9U1Ry7DQJww2p7a63m/bqGrJLkuMcbhtFwED/svJl/+RYEV93bIxREkuFUxuqLKef5Wp6xOT2RojH0bbkKTJ0UXLIs1xRc0WgUqqoKwTUDWbBgwZRvQ1S6pkixWMT3vvc9pFIp/OZv/iYA+C7CXgVsYGAAlmUhn8+jUChUbQ8YhuHPeXnRQtFo1L9esVis+gIlTII2bwG0eQvALQuFoXP+HBihrC0tj07gnQRzuRxsbndHHAby+yilgCyD8MYngHImzTk7Xzm0bQuFgjtwTZkfyE1AIMtK44FrLyqnyU0zbhlAebvWtsGnbPQaODQCEJmA+tmI7syhUUBkjt5QcDGFQh/Qoc3Sofdrzv8HBL9K6gAARn9JREFUNOgDOtSUCsIc1eQHpIcI+z7x3ntYuHBhOMGlaLDLcgbDmmdOlaAha6P4GcDdVu6h4AKc1ik3yufAHNuaoFglUnMD/r2ERWLo27LDF1yeaXYjwSVaihcuQnRNkaNHj2LVqlXYvn17xc/Ktxk1TUNfXx9s264rwEzT9FeLGWO+AAter7oAY9DmzIM2Zx4Sto3i8KC/CWlPo2gXWVYgy7J/EmxHwHazcG4DxYJzj54jNxpvYvWqckgI9TM+TdMAIRSyLPkizDQNGEapACuPymmVqrl0rlhtVyh3eeajNuD8XkpMhjagQ5+lQevXobvCShvQIMeUhuJIlhXIkoRcCMEFACfeP4GtW7c2vFytoPXq5pkdaG0HKBnEd7NCg2HtNmUw8mHDzgOCqwmD3eapNgfGnDGIafpBsRymR9G/ZTuYmwmr6zpUVa0Z3ROJRKBpGgYHBxt2PgTnL6K92AO8bUZv7strQTYakGWMQVVVqKoKzrl/vUZ/Qs45iiNDrhfYqY7Mn4RFVTVQSpDLObNIRNHAe3g8lTgnf+J/Ag+IGEV1TwjdhbpRSPlC9eeIt/EmS5J/ojU5dy7bqVYt4My0yTLQQrWw/HYIYyXCxC7asG0OSWMtH56iKGCM+c+1dsA5wBS1+ZlDykCrZB12GjUSA7EtMBouK7SVRIN24XmGEcb8yqptFKedhxwAMD2C/i07wHSnuqhpGjRNqyu4dF0XgmuG0472ohBdPcZzstd11y7BrWR5rva1qCbACoVCqBd0cXTYN2O1Qg5itwNd12HbHIVC3hnsVpSeiJjwEBBJcma3ONwWXXdfLuVzb40gIJAjOhgIKNDF6JnaYrX+1TozG6cqKgiloRcNwsC9rdqpbgAT6jyvgKmJ1QaUV+M8Q1ZvPtAwTFiBOTBPcNUS952klkkrIc4YAICW7Dg6AdN09G29ClJIwaXrOiKRCIaGhqZfBJSgKYToOs/wthm9lpFXyWokwCilfvsyeL0wAswYG0X+zCnkz56ClU03vHwrVFhCuCedZueMeoXX/iSS5LjG2iZ4F948GWPQVM2fewsDkdUScShJshPIHrLS0R48AdYgv49KTuJAm49Hc9s9+UI7K6iT82btxd0qJXAGx9s0iN+oguwN4jPJmU80LROyJE8rwVXlks7zCsSP2uk2VNXRv3UHpEgUQDjBFY1GMTg4KATXeYAQXecxkiT5FTBCiF8Bq2Wq6uEJMFVVQQjxK2BhXvDGxDjyZ06icOYUzEx19+RmqWhXUOacjLswhD5V6lU2iCR3VIBJkgxFUZBrsG0XpNFsHGMMsiTXtaLoBNV8mwhz5sLa3f70DHYLbRZczW5/tnxP7mNlW1bLYjRM4kTJ5SlDJKKD207Nq9ogfqcIL7gqrulXoafyWDUDVTRHcEWdSB9VVRGJRDA6Olp1xMOzAxKC6/xBiK4LBG8wVtd1UEr9SlYjAeZ5iGmaVnK9MG8AYQK5G9F1S4i2Er6y4Q9MW3ZbxKQ//J3Lhc7ia+VEW25F0Y3sP8Ikp11kmm0fLtd1HZZl1fS6a4kq82bdopVB/FoD/jXvw/1Q5L9G3UF8SZbaasha9b6bjCGqe1sdXlqgiuoKrjiA8IJraGioYadCMHMQousChDHmV8AYY34FrNGJxhNgqqqCMeZXwMK8IdQK5K6HJMlQFcX3RSKyAm5OT7+wCih1NqlaePP2QoG5zVsaAlYVFZTRpoa/mz3RVlyfUMiy7LeaOpn9FzzROo+V7AxMm1MbLo/okUCiQZugFISw6VGVDTGI37Twdhc06s0LSszxAvOro4bRlvZ0OwVXBe6G7ZQXPLybkxX0b70KUswRXIqiIBqN1hRcqqoiHo93XHBls1n84Ac/wKlTpwAAn/jEJ7Bs2bKO3Z9AiK4LHs9OQtd1SJLkV7LCCDAvjogxhmKxGGp2DECoQO7ySg2V1a6E4rYFKoEQtMdjiTBQOby9gqbpgJs9GYZ2RRAF8awoJMkZXq5mRdEqdZ8HhDqigjQ3MN04oqbVg2UghHTUa6tlqgzid0JwlVM+iN9qdbSjgqvy3pxYHjc9oNkPfVRW0LdlB+S4E3Q+XQQXAHznO9/B8uXLsX37dpimiWKxiIjr1SboDEJ0CXwopX4FzBNgYV3tvQqYJEkoFouhZscAVA3kVlXNnUFzKjVTrcJ0EyLJgGV1pMLj2Ss4PkSVoqL51linBrsD91DFisIwjJZmfZrLJgwOl9c+UXbCwNM52M4M+HcCDgKqaYBthx7Eb0VwVbsNyRPnTVRHW5/hagcEVJIBSmCbFqqmqAegkoK+LVdCTqQAOIIrFothZGSkquBSFAWJRALDw8Oh3j+nQi6Xw1//9V/jv/23/wYyHT01zlOE6BJUhVLqV8BkWfYrWWEEmFcBkyQJhmGEmh0DHFNROZtB+v3jGHv/PXDO27Ne3yUcAdPNT98yOAhgmtB1rblKTQ/mjKYy69NsFabinn0riklR0Sk/qZk0d8g5wNTSx7bRIL4vuJrYiG1EVXFumhWCjkqKs3U4TSrehMkgjFadAyOSjP7Lt0NOpgA4m+XxeHxaCC4AOHHiBH74wx9i7ty5OHnyJBYvXoyPfvSjUF1nfEFnEDFAgqrYto1sNotsNusLME3TkEgk/EpWLVf7YCC3J8Di8TgMw6g5O0YIwcCcucjlctCTfVBXrkFh8CwKZ06GCuTuNc1VYdqBN+9FEYlEULQsWJQBxGrc/vC2P7s82M3BYZiGLwwlSYYsK9DU+lYUUxNc7j0bxckAZcmZPdMUBblMuq0D3h2tdLaZWq3lqmHTrqjwF1vaKLgAJ93BMIowDMcRn0mSY0zr2pQYpgFO2LQSXIATdeUVBr35Qtg2ODj6Nl9ZIbhqtRRlWUYikcDIyEhXBBfgvMefOHECt912G5YuXYp77rkH+/btw6233tqV+xe0jhBd5zlBAUYI8StgnpCqFysUFGCeh1gsFoNpmv7sGGMMyWQS6XTavyyVZejzF0Kfv7BhIHevIYrak/an7zKfzwWEA/HjUGzTqLBT6GbmYyNM0/Bbet6wtaqqvhWFYRhgavtby8S2oVKKbDoNTiioIrtWFFN7TKZzMHw5juCSG4rZYHwTk2REEgnkMhlYnKNTDSkOXvHcUCNRENuGJTGYZqkh63SB2xZ40dmwTm2+EkqqD0Cp4KrmeyjLMpLJJEZGRtq7NduAVCqFZDKJpUuXAgA2btyIffv2de3+Ba0jRNcFBOccuVwOuVyuqgCrFysUDOSWZdkfGKWUlgiucuoFcvdiDd+jWmumW9Q2PeWl2X1eq8i0QCiZtlUY05qscnlWFHo8ATOfhSnJbbOiqKzUBMQWk0AZc7b7ikZTW6MzSXDB845r0h5EUxSkR0acTWJCneFy3jhrdKrYlCI7MQGA+4asaiQC3uEt2VYglKFv0zYoff0AHKueeoJLkiQkk0mMjo52VXABQCKRQF9fH86cOYO5c+fijTfewNy5c7t6DILWEDNdAt9Owgts9QRYvVghVVURjUaRTqehKAoURYFlWX4FrGEeZE8DubtndlmOxJyKULYZ01NJAQevMBidnkwO+LfTisITqmEeN0IoSMhMyO7O8k2V5p+3jR834m6NEkfAtjEXsN5jWzKIj+4aslaDUIbU5m1Q+2cBcARVIpGoK7hSqRRGR0dDzcp2ghMnTuAHP/gBTNPEwMAAPvnJT4rtxQ4jBum7zKuvvop77rkHnHNceeWVuPHGG3t9SB3Bq4Cpquq3Ej0BxjnH/v37sXLlSsyfP79EXHktJlVVYVlW3dmxIF0N5O6h2aUsyZAVBblsNnTlxwnZLq1GOLM6ktMS6WG1sII6j+1UrCgkJkFR1abc+UuOyR3wLnfrn1FWJh0RXFXuQ5Kc9rZlTml7szyOqsG9VixpGIbR8mZlsxDKkLpsK9RZcwBMCq6xsbGqM4Oe4BobG0M+PzM2swXtQQzSdxHbtvHjH/8Yd9xxB1KpFP72b/8W69atw7x583p9aG0nn8/7byZeBSwWi6FYLOJb3/oWcrkcduzYUSGmTLeSkclkfA+xvr4+2LZdd3aMEAK1fxbU/llIXLoexdFh5E+fROHsqbYGchPGAJCeCBVFUSAxCdlsJvR1ag2hB2d1SgxGWzBjbRuekWiNx5Zz258R9LbddE1raEXRilAtvWM7MIhPQGUV3oPU3eWJKeCJ2Y4KLqCive0nLTRXXW1GcLn3WrGkERzE72ReaLngYozVFVyMMSG4BFNCiK6QHDt2DLNmzcKsWU75edOmTTh8+PB5KbqCBP2+vvvd72L58uX4zGc+A865L6SqvTlZloVMJuMLMFVVkUql3Fy8+q1LJdUPJdUPrF7XtkBuwhw370bePJ3A8y7L5rKhrxPW38wbAAYcqxDIMkibnLjDQigDvPZUCMq33SRJgqqpFVUO32S3VcFVec9O29PdVvWy+xwRO003bFuozLbSwq5GVXFfxxEfqF6ZbZbgIL5nyKqqKmxuwzDaOIhPKFIbt5QIrmQyWVdw9fX1YXx8XAguQcsI0RWSsbEx9PX1+V+nUikcO3ash0fUPSYmJvCNb3wDO3bswNatW3H27FkoigJd1/1KVr1cR8uyKiwskskkAJS0LqshJ1OQkynEV13aciB3LyOIvADmfMiKHecAVVvbqOTcBooF53REKIikuK7lnWuhTW5UtiZma1U5JImBc6CQz7d10y0oZkvtFWSAMSAgNHrOVARX24SqQ1Dc1xrEb4fgKseyLGdUAfAH8ZVIZOpxVYQitfFyqLOd4fNmBFczEV0CQTmhRNcLL7yAu+66C7Zt44YbbsAv//Ivl/z85z//Ofbt2+eXZu+44w7Mnj27E8cr6DK5XA7/7//9P3z4wx/GqlWr/O97raKxsTHfz6uvr6+kAlYtBqPcQ0xVVSQSCRBCfOFWU4DFE5DjCcQvXh06kLsTJ4IwEBDout5kHiBxLBDasVHJbXCj4LfViKy4BqPNR6HUohO+VqZpgFEK0wRMw6iwopiK8zytYw/CLQOwAm01ysA5Bze7v2zhHETz+Z/e7Fu7BVcF3A60vYmz6MGY+1h1cBPStlAoWkCxUNKiBiGwmklLIBSp9ZuhzZkPYFJwjY+PVxVclFL09fVhYmJCCC7BlGkoumzbxte//nX81//6XzEwMIA/+ZM/wZYtW7Bo0SL/MkuXLsWXvvQlqKqKBx54AN/+9rfxR3/0Rx098G7jebF4jI6O+tWa8xld1/G5z30O8Xi85mU8ATY+Pu7YBei6/9h4QqqWACu3sAgKsFqtSwCQonHElscRW76qZiB3ryKIWoqnaWFuJzy8ZK7Jt6IIGRtTjU7ZLGiqBgB+ZbDcikJVlJZy/5oxaQ221cIETbcdwty2ZxOCy60Qtq8VGxYOEIC7eaFEkkGI64jfwVZ+oxZ17bQEguS6TdDmOQPRlFJfcFV7j/IEVzqdRjYbfjxAIKhFQ9H15ptvYt68eb4HyI4dO3DgwIES0bVu3Tr/3ytXrsQTTzzRgUPtLUuWLMHg4CCGhoaQTCZx6NAhfOpTn+r1YXWFeoKrHM/Pa3x83Pkk6gowJ48xXzPXsdxDLOgDVq91CQCSHoG0dAWiS1dMBnIPnUNx8GzLv3OrtBRP451kuzLgzwNtNUeAgVDADj/X1OygdFi8VmyhSuC3bVsoFNw2k2tFoYdoM03Zj822YFe01To4M+cHbc8EwVVpC1Hesq0Vs9NOKlrUTIIsydBUzamQGob7WnQElz5/oXPslCKVSjUUXN5sqkDQDhqKruHhYQwMDPhfDwwM4OjRozUv//DDD+Oyyy6r+rOHHnoIDz30EADgS1/6kj+UXs7g4GCjw+o6jDF87GMfw5133gnbtrFt2zbMnz+/14c1rTFNExMTE5iYmIAkSX6kUFBI1RJg3galJ8BisRgYY34FrNqbJAAwTUf0ouWIXrR8MpD7zCkUR4Y6PtPlm3c2EyTMJJCeuczzkpNhGAHWqXZtM4HfNrdRKBb8NpMsO+IeKLWi4CCgVaJyWqasrdbulu3kQkL4CtF0ElzlVMTsMAmcc9hmZyuGQbPe4CB+av1myHPno1AogBCCVCqFiYmJuoIrm80KwXWBUUuXtIu2DtI//vjjePvtt/Hnf/7nVX9+4403lnhbTUdxVY81a9ZgzZo1vT6MGYlpmkin00in02CM+U74ngCrlesYFGDApCkrY8wP8q4pwFQVkcVLEVm8FLZRRP7saRTcKli7BVhtl/naTLesvxIB5tsF2L4g7FS7NqJHmpx9m6SWFQUIAacMhUy6Q6f3spatrDhttSrxTaGgknObTQguWZIhy3KPBFdzHmfctvwM1m464nuD+OqajUD/LF9MMcaQy+WqVs89QZbL5ZBOt74xLZiZ1NMlXfHp6u/vx9DQkP/10NAQ+vv7Ky730ksv4Sc/+Qn+/M//HLIsT/nABOcvlmWVCDBN0xCNRpFMJv0KWK2KhyfQAEeARSIRSJLkB3nXCpylsoLIwiWILFwC2zBQGDzjVMDaEMjtVRuaWdHv5UZlGCrsAlQV3DDBOdrmBebNvhnFot8amgqTcz4GqKyA8WJVK4r2UxnKTSgrnQ2rh1ftbOLYPMHVjA1Ju5iyqWz5IL7rnWabxbY64nskLt2AyKKLYFkWcrkcNE3D2NiYv/g1Pj6O+++/H+vWrcP8+fPR19eHfD6PiYnwG9LTBdu2HesYOO+zjLEeH5GgnIaia8WKFTh16hTOnj2L/v5+PPXUU/jCF75Qcpl33nkH//iP/4g//dM/vSCGywXto9zPq1yABUVWOcGfeRuUwSDv2gJMhj5/EfT5i6YcyN2Kl5Qz1D1TnNABIkmw3ZM7oQxUdttEUxgsb2nZINQNOwsJtlGADdQ03DRqDlpPnaoGozXmmryWW1OCy33OzUjBVYHjneZASvJG2zGIH79kHSKLlzq3Tog/FO99qMvlcjAMA/PmzcPDDz+MkydPYuXKlbjkkkuwYsWKGSVaOOe+4Hr66acxPj6OnTt3QlGUHh+ZIEioGKDnn38e3/zmN2HbNq677jrcdttt+MEPfoAVK1Zgy5Yt+Mu//EscP34cqVQKgNMT/c//+T83vPOZFgMk6B6en5eu65Bl2W8lhsk5k2UZmqZBlmU/xijMrFCzgdyqooIy2tQaea82KluBe+HKRo3HnFBQWQYHmprzamnZINQNh/O1kpgESZLAGGuLFUX4wwukB5gGKGOAbTfVXu6p4OryhwXfusO2W5p5jK9ai+jSFc5tuS3DTCZT9b3A+3k2m8WhQ4dw+PBhvPXWW1i4cCHWrVuHNWvWzBjx8sgjj2Dfvn341Kc+hWXLlvnHzTkH6VlkxfmByF4UXBBUE2Bhcx1l2RmiVRQFpmnWrZwFaRTI7VsbVNm0q/l7NGFb0HsczzA7hFj1Ly/L4F7MUg0hQQmFruvIF2pvo7Z2uM3bLACTg9YSYy1ZUbQKkRUABE5rMtwmpCw7prG98IrqdXW2XLA2qrDGVl6K2LKVznUbCC4A6Ovrg2EYGBsb87/HOcd7772Hw4cP4+qrr0YikWjfL9Qm3nrrLSxevNgXVseOHcPdd9+Nz33uc5g3bx6GhoYwNjYGXdcxf/78kvajoHmE6BJccHh+XrquQ1EUv5UYRoB5G5SKosCyrNCVs/JAbpUR2Ja7QReCKdsWdJ3mw5XLr08lGaDUEauuAGtpuzPMvbWw9VcNz4pCkpyWn2GaMA2j7QKMSLKzHeoLUwIqK07FsIZgVRTFH/7uNp2yCGkZQp3nF6pbd8RWrEZshWPkHKxg1Xqtp1IpWJaF0dHRzh53G+Gc49ixY/jZz36Gz3/+834b9L333sNjjz2GW265BSdPnsS//uu/YsGCBThy5Ai+8IUvYNmyZT0+8pmNEF2CC5pqAswbxA8jwFRVddzOLStU5cx7Ax879T5G3307ZCB3sxWjHtNC9EyDGwRxhYwiScil06G3O0PRwhB6GDwrCklyloKCVhRTut2GprLO4+VYUTjmtUJw1cMRrN4gfnTpxYhfvNr/qWf7UE9w2bZdYnw9k/CG5c+cOYNUKgXDMPB//+//9f3Ftm/fjiuuuALf//73sXjxYlx11VW9PuQZjRBdAoGL5+el6zpUVfUFWL1cRw9vgF9VVdi2XbVy5hkpZjKZkjfwuoHchIIyydnKmgn4xpztdRL37DSyuRzAWNsGpb0h9JYsGpq5H9eKQpak5iNngrcjKa6YDf+Wq0VjYJKMzMRE18Pap7/gKiWydCUSqy71v06lUiV2M+XMZMHltQkty8LExAS+/OUv46qrrsKuXbuQzWaRy+XAGPOtL/72b/8Wu3fvxubNm3t96DMaIboEgiqUCzBvmD6sAPMqYI47umNDkUgkMDExUXMjEkBpIHc229KMUc+gEgjaXzHyzTur2GkQJoNIDNxsPmSaMBmwu+9x5kXOSLLUlBUFkZXQs1seqqKCUOpHIjkO7wzcsjr+vOpVZmmrRC9agfgla/2vGwkub8t+eHi4K8fXbryh+Gw2i0gkgkOHDuHee+/FFVdcgWuuuQaapiGTyeDdd9/Fv/3bv+Hiiy/Gr/7qr/b6sGc8QnQJBCHwBJimaf4wfb1gbQ9KKSKRCHRdb0q4AYCZTiN/9mTDQO7pgDNjZLecw1gLWZIhh3RLd6wVJMdEs0Frs1O5j60gSU7rtJ4VRSPn9mqoqgaCOosaTAJ1rShsw2ibdxow8wRXZMlyJFZPRtGlUikUCoWa7diZLrg8Tp06ha9//ev4oz/6I0SjUbzyyiv48Y9/jO3bt+Pqq6+GLMu47777IEkSbr311l4f7nlBV8xRBYKZTrmhqq7r6O/vL2kl1nKmVhTFNwdWVbUiyLuWAJNiMcRiq+oGck8HOiVgmvUvKzdjBZPcjMNiiaBopWLUSUzT8O0mqmX+WYw1vfXXUHABgGXCDjxeVPYer6k9Nr3eUmyWyOJlTQmuRCIBQkiJ4fdMw2stxuNx6Lru20CsXbsWjDH8+Mc/hmmauOmmm/DBD35QbCtOM4ToEgAARkZG8J3vfAcTExMghGD79u249tpre31YbafcUFXXdfT19cG27ZJg7UOHDuHo0aP4+Mc/7s92eYHclFKoquq/gXu32VQg99lTKI4Mo5cnNyopTmxNm4/BG/xu1UuK25Y/p0UpBSTZaX0SMq0rMOWZf0okBtW2YDMa2oqiFSsS8MlQbhAKIikgBE2Lp5kmuPRFFyFx6Xr/a89QuZ7gopTO+ApXsViEpmmIxWIwTRPHjh3DpZc6s2yrV6/Gv/t3/w5f//rXsWjRImzYsKHHRysoR7QXBQCAsbExjI+PY/Hixcjn8/jyl7+M3/qt38K8efN6fWhdwRNgmqbh5z//OY4cOYJPf/rTDR2pvfkxTdNKgrzDeFB1O5A7SKdOsKqqgRDizyG1C2+om8gyCEjHM/umSrBFRymDLEkNrSg0VQMHUGhGcNU/ipLNvnoROzNOcC28CMm1G/2vk8kkDMNANltd6MfjcUiShKGhoYabzdOZkZERfOUrX8H8+fOh6zqOHTuGD3zgA1i+fDkWL17s5EyqKoaGhjAwMNDrwz3vEDNdgo7xT//0T7j66qtxySWX9PpQuoZt2/jZz36GbDaL3/qt30IsFgMw2UqsFazt4QkwVVXBGPMrYI2uB6Djgdwlx9mhmZ2WqjQhcFz8Cyg9XseKg3NMuwzLelE5lFBIVawoJhc3OpVWQEAkyV3uMB2fsBDHOx3RFyxGYu1lflstkUjANM3zWnB5g/OFQgHvvvsuCCF466238O6772JkZASEEEQiEQwPD+PXf/3XsWrVql4f8nmJmOkSdIShoSGcOHECF110Ua8PpWtYloXvfe97SCaT+LVf+zVks1lks1k/UiiZTLoVnHzNYG3Oub8x5c2DRaNRMMb8GKNaAqyTgdwl99OhGCJN08Ht8IaxYXEqMNWOlwe8z4jj8E5cAdaB0OSwNEodsLmNYrGIYrHoW1FEoxEAgFE0QAltr4+ZD3czIR0IkwHGAALYhXJBO33R5i2qEFyWZdUUXLFYbEYLrqA1hCRJkGXZ/yC8atUq7N+/H8888wz+4A/+AKOjozhz5owQXNMcIboEJRQKBdx111346Ec/Ck3Ten04XeOBBx7AokWLsHPnzpLvG4YBwzAwMTEBSZKg6zri8XhJK7GWACsf4I9EIpAkyY8x6kYgd8ntdkhw6boOy7JC5Vs2Awl9vDzgnu+EJoNQwC6t6HSaZmOeOLfBGINRNFAsFh3DXk1tyoqiVbjlZD/ahXxgc9QGn8aectrcBUiu31QhuDKZTNXLR6NRKIqCwcHBGS24Tp8+jQcffBCccyxYsADbtm1DPB4HAFx88cV44YUXIEkSBgYGMGvWrB4ftaARor0o8LEsC1/72tewevVqXHfddb0+nK7SbCaZFymk67ovwAqFQijhoSgKNE2DJEl+jFE9/y+PZgO5/et1MIYookdgmCaMliODqtMugUgk2W2pWW03fQ3SyvHWE6thrCimQs3jpQxUksG5a0UxTSpg2pz5SG64HMR9jcbjcXDOkU6nq14+Go36s01hLF6mK2fPnsX//t//G1deeSUYYxgaGoJpmvjoRz+KVCqF0dFR/PVf/zXuuOMOLFq0qNeHe94jZroEbYNzju985zuIRCK47bbben04MwrGmD+EL0mSXwELK8BUVYUsy76LfpjrNQrk9i8HAiYrsI32Ci4CAj0SgVEswmhbZJBDpypyTkWHgVt2W81FiaKBt1FwlSMxZwifMeZbUZjdqHgSCirLbbGimArq7HlIbdwSWnB53nqDg4NdEVy2bePLX/4ykskkfud3fqdtt1ssFvHP//zPmD9/Pn7pl34Jtm3jr/7qr8AYQ39/Pz72sY9hYGAAjzzyyAX3IblXCNElaBtvv/02vvrVr2L+/Pl++f6DH/wg1qxZ0+Mjm1l4kUK6rvsCLNhmrIc3PybLsm/GGkqAeYHcp08if/Z04IQ61eDq6hBCoes6ioXClE7+5XAOMEVtu0CsBqEMRJLA7UovsGZotqUIwDXbtVqqDjLGnCoYY7C5HdqKwsNZomjl8Q1mQlYP5e4E6qy5SF221RdcsVgMhBBMTExUvXy3BRcAPPLII3jvvfeQz+dbEl3ekHw5xWIRr732Gi6++GLouo6vfOUrmDNnDrZt24a7774bAwMD+J3f+R1/4UfQecQgvaBtLF++HH/3d3/X68OY8XgzJplMBpRSX4AlEgl/mL6WAPPmxwBHgKmq6nvx1BNuhBCo/bOg9s9CYs0GFEeGnCH84UGY6fG2/n6EUER0HflCOFuMsHAQMKX9Fbma92db4K63FWEM1LVzaKal1kpFbqrtWMuynIB2wLeiiEQida0oPFoXXIA3N+fcsrO4QAh1fN46NHemDMwpqXA1Ely6rkPX9a62FEdHR3HkyBHcdNNNePTRR1u6DU9wfe1rX8OOHTuwbp1j9qooClasWIFIJIJ9+/YhEong3//7fw/TNLFixQosX75cCK4ZiBBdAkGHsG3b34KsJcCKxWLVId+gAPPmx6LRKCzLqns9AFD6BqD0OR49fiD3mZOwctUHjsNC3QpXLp9v84B3Z1qgobEnzUUJoaCSAk5Q11aj9lZlbdo9/2bbFgpFC4Viwbei0CPOJqRnReFlU7ZSkatNUIB5c3OsJFVgqij9s9F32VYQ1ycvGo2CUorx8eofInRdRzQaxeDgYFs/DDTiJz/5CT784Q/XzHhsBkmS/GM3TdPdbI0CcIRZf38/MpkMfv7zn4MxVrH0I5gZCNElEHSBoAAjhFQIMK+SVU1Imabpz69IkgRVVX0BVu96ACAnU5CTKcRXXVoayJ2pXi2oBaUMuqZ1RHARWe6d4CqH24FjccxFOYiztDAFARPRI46QbvP8m0c1Kwpd0wBCwJmEQrq5v3czOFYUzu/lz83ZduhFj3KUvlno21QquBhjNQWX94Gk24LrlVdeQSwWw+LFi3H06NGmrhtsKXr/TiQSOHToEDZu3AhJck7NP/3pT3HDDTcgkUjgySefxJkzZ5BOp/Gf/tN/avvvI+gOQnQJBF2Gc+5HCgUFWDwe97cZ6wkw0zSRyWT8+bFUKuV7hNUVYPEE5HgC8YtXw8xMOEP4IQK5GWPQVA25XK69HlKEOifoNs+ctQ8eWFBwW2qSBLuJqkYnFw5qwbkNwyjCMIqgigZWLHbRiqI0Q5NIshPKbYZr28qpAfRtvgKEOaemSCTSUHDFYjEMDQ11VXABzhzsyy+/jCNHjvgzmN/61rfwqU99quF1PcFVKBSgqioAYP369di/f79/ma985SuIRqOIRqPYsmUL5s2bB8455s+f74sywcxDDNILBNMEz9Fe13WoqupvMxYKhYYzKowx3w0/6BEWZrbFzGacQO6zpyoCuSXmVNayuZzfqmoLhLotqe4IkalSartBJuOILLPmTJMnuIrFoh+K3U2qzZx12oqiFoRQR4ABrsiuPO3IyX70XX4lqDQpuGRZxtjYWNXbVFUV8Xjct1HoJUePHsUjjzzS1CD93r17ceTIEaxevRrxeBzxeBw//OEP8Yd/+Ic4fvw4Dh48iP/wH/4DgOYtbQSdQQzSCwTnEeWO9p4A84bpvUpWNSHluXJ782OqqiKZTAJA3esBgBSJQlp2MaLLLi4J5LbT41BkBdlsNvR2XCgoAyFk5ggub8jfbylWn2myTROw3SrPNBRcgDPr5R2PxCTIkgxN1dpiRVEPzm3wkrat6ggwt20rJ/vQt3mbL7h0XZ8xgqtV1q5dizlz5uD06dN4/vnnEY1GYRgGXn/9daxevRpbtmwB4Ly2G2XACmYOotIlEMwAPAGmaZq/zZjP5xtWsjwBpqqqn90W5nqapkGhBGfeeA250yfbFshNGAMHATpoVNpOHMElByKH6kOYDCpJ0BQFhVx2WgmuepRbURiGCasJK4rWIZD7+tF32RWOJxjgV3pHR0erXkNRFCQSCQwPD4cyFZ4p2LaNZ599Fg899BCuvvpqXHnllX7rUTA9ED5dAsEFSFCAeduMhUKhYZvImx8LCrBq16t20rOLBeTPnZlSIDdhEsB5W7MkO4szSN/MkL9f4SoUYAFuvI7V8lB5s7TDWNazopBcG41GVhRTQYon0b9lO6isAHDEvqZpF5Tg8gbpvf8/99xz2LNnD6644gpcc801F1Qc23RHiC6B4AJHURRfgNm27VeywggwrwLGGPOv57nj12rrAGgpkJtIMmBZ7Z0L6yjNG8sSEEQiERSqmMYSygBXdE7FjLUe7bWFcG/TtaKQJKcKVW5FMRWkWMIRXIpTzWkkuGRZRiqVwvDwcNtzPqcDwY3GgwcP4vHHH8fv/u7vimrXNEKILoFA4BMUYMFtxkYzL4QQKIqCWCwGSimy2Wyo6wEIFchNJNkJnj6fBVcTprGEUECSQcBhtSnfsBOCqxzPikKWJIAQWKbpbEK28HeVonH0b93RlOBKJpMYGRk5LwWXR1B4FYtFKIrS4yMSBBGiSyAQVEWWZV+AAfArWdWEFOcciUQCADAxMeFXwCRJ8j3Emgnkzp856Qgw0wCRFEeIzRTB5dlYNNEOnJJLfxvyDbshuMohIJAkCZIsNW1FIUVj6NuyA0x1npuqqiISiWB0dLSq3YkkSX64c5g4rZlOrVggQe8RoksgaJFOhdROR7xMR13XQQjxK2CG4dgF/PCHP8R1112HefPmVVxXURQ/yNvzEAslwGwbhaFzKJw9XTeQe1rRbcFVeWugigzOAW6GE6q9EFzVCGtFwfQo+q+4SgguwYxEWEYIBC3y2GOPYe7cuW2J75jueJFCExMTjlO5a8Rqmib+/u//HsuXL68quAD4LufApADzTFwLhULNVg+hFNrsudBmzwV38yArA7mnET0XXADAA1uSjhkriOuGX2XbdLoILiCcFQXTo+jfOlnhUhQllOAaGxsTgktw3iBEl+CCox0htTMV0zQxMTGBwcFB3HXXXdi6dSt27doFSqm/zVhLSAUFmFc9C3qI1RRggUDu+KXrYYwO+15gVj7Xsd81NJSCkOYEV+dyKD14YKaMuF5gFNw0wW2rLVuKncK0TH+RwLOiiPb1Y9aVV8MkFMViEbIsIxqN1hRcjDFfcF0IH4wEFw5CdAkuONoZUjsTyWaz+Kd/+idcddVVuPzyy3Hu3DkwxvzQ4GQy6bcgawmpYCC3LMtQVdUXYJ54qwYhZDKQe/W6tgZytwRp3qi184KrHO7mG7r3r+mAbTt2FNPc78yyLEBWIF+6AQWbQ1Ulf2HDyxMthzGGvr4+jI+PX7CvUcH5ixBdgguKqYTUng9YloV//Md/xA033IB169aVfD+dTiOdTvuZjp4A84bwwwgwSZL86wY9xGrRrkDulvCd8cMLl+4LrrL7VzTYgeogYZITp2Tb09Lhn6o6+rbsgKRHYJqmb1UyMjICRVGQSqXwxhtv4I033sDatWsxMDDgC65cbhpUQQWCNiMG6QUXFD/72c9w8OBBUEr9ttiGDRtChdSeL0xMTCAej4e6LKXUH8KXZdmvYoWZsZEkyd+EtCzLv16Yt5xmArlbgVDmzEu1IrjaHfwd9v4btRSZBMoYuM3Bzd4vLlBFQ//WHZCiMQBORTQej2N0dLQkESGTyeDll1/Giy++iHw+j7Vr12L16tU15wwFgl4hthcFginQSkjthUy5ACsWi34FrNHbiFc9U1UVtm37FbBQAqxOIHdrv4gEguac8Sll0DWth4KryaF5ykAlGdy2YZvt8QJrBqqoruByxH0tweVfnlL09fXhzJkzOHjwIA4fPozh4WGsXr0aGzZswOLFi4WNgqDniO1FgUDQNWzb9kO1vUghXdeRSCR8P69aQsqyLGQyGWQyGTDGoKoqUqkUOOd++7KWAKsVyF0cGUazvlatRBHNOMEFALYFu+j8joRQUEkBBwdv0QusGaisoH/LpOCSJCmU4MpkMiCEYOvWrdi6dSsKhQJee+017N+/H7/yK78ijEIF5wWi0iUQCKZEUIApiuL7eYWpZHnVM1VVfQFWKBQaBnIDgFUooHD2lBNHFCKQ28lB5ACfOYKLKBp4O7cUCQWVZIDAtado79s/lRT0bdkOOZEE4AiuRCLRUHBls9mag/UCwXRBtBcFAsG0whuU9kKzPT+vMEKKUgpVVStc9MMIsEaB3K1kPzLGoKkasrlcTzIj2y64Ku/BD5q2TWPKqQGO4LoSciIFYFJwjY2NVfUxI4Sgr68PuVxOCC7BjECILoFAMG0pF2De4kIYAeZVz1RVBSHEF25hTEjLA7lBqNNOFIKr3j2CyDIIoU4cURPVQMARtf2Xb4ecTAFwHr9kMtlQcOXzeUxMdGFTVSBoA0J0CQSCGYMnwDRN8/28wlSyPPGmaZpv4prPh3OB55aJ/LmzKNQJ5C6n14KLqhrsQm/9qYjkCjDLAuwGgelMQt/l26Gk+gCEF1yFQgHj4+MdOX6BoBMI0SUQCGYkQQEW9PNqJKQ8AaaqKhhjfgWsWpB3OV4gd+HsKeTPnq7qQC8xx+biQhZc5RAmAYw57dky0UqYhL7N2xyzW4QTXKlUCsViUQguwYxDiC6BQDDjURTFF2C2bTdVyfIqYIwx38IilACzbRSHB/1NSNsoTgqubBa8yxYLwPQUXOUQJjkZlZYFcI6+zVdC6S8VXOPj4zX/Bn19fTAMA2NjY908bIGgLQjRJRAIziuCAoxz7lfAwggprwImSZJvYeE55deDcw6kx4HRYQy+/SasQved0KdzlmI1CGVIbb4Cav9sAM4SRCqVqiu4UqkULMvC6OhoF49UIGgfQnQJBILzFlmWoes6dF0v8fMKI8AURYGmaZAkybewqCXAVFVFJBLxbQ26Hcg9IwXXZVuhzpoDILzgsm0bIyNtMLcVCHqEEF0CQYewbRuU0l4fhsBFlmXfC4wQ4lfAwlSyFEWBqqqQZdm3sPByJIOCq9pbYacDuVsyPu0lhKJv0xUVgmtiYqLm30IILsH5ghBdAkEHKBQKUFW15HuccxFDMk2QJMmvgDUrwDzxJsuy/zcdGRkJFUdkjI8hf/ZU2wK5Z6Tgumwr1NlzAYQTXMmkY5I6PDzctcMUCDqFEF0CQZs5ffo07rzzTtxxxx2YO3durw9H0ABJkvwKWNBOopEA865jGAYURfEtLMIEeQNuIPdpJw/SnGh+KHwmCq7UxsuhzZnvfOnaPgjBJbiQEKJLIGgjXuXjrrvuwrx587B7924AwJkzZ3Ds2DFcfvnlYIz1+CibI5vN4gc/+AFOnToFAPjEJz6BZcuW9fioOgNjzB/ClyTJr4B5rUSPd955B+vXry9xQZckyR/E9ywswgR5A80Hcs84wQWC1IbLoc1zTjie4Eqn0xWPrUcikQClFENDQ908UIGgo4jAa4GgjXjtw1mzZvnzJ8899xz279+PRCKB1atXI5FI9PIQm+YnP/kJVq9ejc985jMwTbPmSfJ8wLIspNNppNNpx+BU0xCNRpFMJv0K2JNPPolDhw5h4cKFJQHKpmnCNE0/kNu7rmVZdYO8gbJA7lwW+bOnkT9zCsZoZSD3TBRcyfWbSgRXKpUKJbg6XeEaGRnBd77zHUxMTIAQgu3bt+Paa6/t6H0KBFNFiC6BwMWrdF1xxRX42te+hv3792PPnj34yEc+gq1bt1ad6ZrOA/e5XA5vvfUWPvnJTwJwqjmSdGG85C3LQiaTQSaTAaUUuq7jqaeewuHDh/GFL3zB34ZsdF3GGFRVRSqVKrGwqCXAmB5B9KLliF60HFYhj4IrwIojQ6CyMqO2FAGC5LpN0Ocvcr5yBVcmk6kpuOLxOBhjGBoaClUlnAqUUnzkIx/B4sWLkc/n8eUvfxmXXHIJ5s2b19H7FQimwoXxDiwQhMATVYVCAcPDw3j66afx8Y9/HBs2bIBlWVVbi57gsm0bhJBpNWw/NDSEWCyG7373uzh58iQWL16Mj370oxVLAuc7tm3jvvvuw9GjR/GZz3wGnHPouo5EIuEbqtZqJVqWhWw2i2w2C0opNE3zBVijIG+maogsXorI4qWwikUUzp1G4fRJFIYHpxwu3Q0SazdCX1AquLLZbF3BJUlSVwQX4MyMeXNjmqZh7ty5GBsbE6JLMK0RoksgwGTF6rXXXsNjjz0GSim2bNmCDRs2AHDmhTjnsG0bjDFkMhkcOnQIqqpi48aNJa0qYHpsO9q2jRMnTuC2227D0qVLcc8992Dfvn249dZbe3pc3ebhhx/Gu+++i9tvvx2MsQoRpWmaL8DqtRJt2y65rqqq/km/UZA3UxREFi5BZOESJ5D73BnkzzqB3NxuLly6GyQu3YDIwiUASgVXrepgLBbrquAqZ2hoCCdOnMBFF13U9fsWCJpBiC6BAE7F6oUXXsCPfvQj7Nq1C2vWrMHrr7+OnTt34sUXX8TcuXMxb948v9p17tw5jI+P4+jRo/iXf/kX3HDDDbjhhhv8ylc9wVUsFitEWidIpVJIJpNYunQpAGDjxo3Yt29fx+93OpHJZDA4OIhPf/rTFZXKoIgihPgbjfF43DdUrSfAcrkccrmcL8ASiQQIIb5wqxVjRGUZ+oJF0BcsArdMFM6dRf7MSRQGz4YK5O40iUs3ILJ4qf91MplELperKbii0SgURcHg4GBPBFehUMBdd92Fj370o9A0rev3LxA0gxBdggueYrGIH/zgBxgcHMSHPvQhXHnllTh+/Dj27duHXC6H48eP4wc/+AFUVcVv/MZvYNmyZViyZIkvZo4dO4bvf//7WL16NRYvXoyjR4+iUCjg0ksvBSGkYubr6NGj2LNnD/7jf/yPHf29EokE+vr6cObMGcydOxdvvPHGBWeDEY1G8au/+qsNL8c590WUJ8A0TfMFmDeI30iAeYHc8XgchBC/fVlLgBEmQZu3ANq8BW4g91nHDf/cmaqB3J0mfsm6EsGVSqWQz+eRz1efRYtGo1BVtWcVLsuy8I1vfAOXX345Nm7c2PX7FwiaRYguwQUPYwwXX3wxrrvuOixa5MywzJs3D7Nnz8abb76JD33oQ/jQhz6EEydOIBaLIZfL4ciRIzh58iQ2btyIiy66CLlczj/pxONxfP/738fAwADmz5+PiYkJMMYQiUQAAGvXrvUFW6cH8W+77TZ8+9vfhmmaGBgY8IfqBbUpF2CqqkLXdcRiMZimWbeV6A3b5/N5/7qxWAyMMb8CVisqhzAGbc58aHPmVw3k7jTxVWsRvWi5/3UjwRWJRKBpGgYHB2u2VTsJ5xzf+973MHfuXFx33XVdv3+BoBWET5dAUINvfOMbSCaT+OVf/uWSitXXvvY1WJaFZDKJt956C+l0GgMDA/i1X/s1LFmyBJxz3Hnnndi2bRtWrFiBb3/72zAMA7/9278NWZaRz+eRSCT84XxvVoxS2vM5MEF9PAGmaZpvqJrP5xuKDkKInwfJGPMrYGFyJDnnKI4MoXD6JPJnT3dkAzK28lLElq30v06lUigUCsjlqmdPRiIR6LreM8EFAG+//Ta++tWvYv78+f7r5oMf/CDWrFnTk+MRnP8Ic1SBoIMUCgWcPn3aH871Ntb+x//4H/j0pz+NlSudk9S3vvUt2LaNj3zkI0ilUgCAJ598Ev/yL/+CdevWgVKK22+/HQDw7LPP4mc/+xn+8i//EoDjD3Wh2DicbwQFmGeoWm+Wq/y6qqpCkiR/gD9MjBHnvO2B3LEVqxFbscr/OplMolgs1hRcuq4jEon0VHAJBL1AmKMKBB1EVdWSbShCCGRZxvr16/Fv//Zv2LZtGwDgyJEjuOWWWxCLxQA4m2wnT54E5xwbNmzA5s2bATgi7p133sEll1wCwHFG/8UvfoF3330X69atw1VXXYWBgYEu/5aCVgnGBimKAl3X0dfXB9u2/QpYLQFW7brBAf5aAowQAqVvAErfALB6nRvIfRL5M6daCuSOLl9VIbgMw6gruKLRqBBcAkGLCNElEDQBYwy/8iu/gqeffhrvv/8+KKWIxWJYsGABJEnCuXPn8P3vfx8AMGfOHMyaNctvS6bTabz99tv48Ic/DAD46U9/iuXLl+MTn/gE9u3bhz179uBDH/qQb0MgmDkUi0UUi0WMjY2VCLDgjFctAeZdF4DfggwO8NdLEZCTKcjJFOKr1gQCuU/CzKRrXscjunQl4hev9r9OJBIwDAPZbLbq5T2X/sHBwVDVPIFAUIkQXQJBkzDGcNVVVwFwBuFPnz6N2bNn45lnnsEjjzyClStX4mMf+xgeeOABPProo7j99tvBOcf777+PYrGItWvXwrIsyLKM2bNnY9myZfjsZz+LoaEhsfJ+HhAUYLIsVwiwesP0QQEmyzI0TSsZ4K8rwBJJyIkk4hevbhjIHb1oBeKrLvW/9mYM6wmuWCyGoaEhIbgEgikgRJdAMAUopX6ff9u2bVi6dCn6+/sBOJWuV155BYVCAYQQvPHGG37YNGMMO3fuxM9//nO88MIL+NCHPoSFCxf27PcQdAbDMGAYBsbHx30R5VUyvRZkLQHmXRdwBJi3CekN8NfyzQIAKRpHbEUcsRWrKgK5I0uWI37JWv+ynuDKZKq3J737HRoaCjX4LxAIaiMG6QWCDpHP5/Hzn/8c11xzDTRNw//6X/8LH//4x7F+/XqMjY0hmUwin8/jX//1X6GqKj7ykY9MuyghQWeQJAm6rkPXdRBC/ApYmGF6SZKgaRoURfEH+GvFGJVjFfJg6mQ1NR6Pg3OOdLp6O9LzHBOCSyBozyD99EzqFQjOAzRNw6/8yq9gzpw5YIzhiiuuwNq1a3Hu3Dk8+OCDeOedd6BpGpYuXYq33noL77//vhBcFwimaWJiYgJnz571W3bxeByzZs1CPB6HLMt1r5tOpzE8PIxMJgNJktDX14dkMglN0+o+h5oRXIqiIB6PY3h4WAgugaBNiEqXQNBlMpkMHnjgARw8eBC6rmPWrFmYP38+fumXfknYR1zgMMZ8GwpJkvwKWL1ZruB1vQpYcH6s2lt8LBYDIQQTExNVb0tRFCQSCQwPD4eqvgkEFwLCp0sgmOG8++67MAzD9/wSCDw8EaXrOiRJ8mfAwgowzwvM85fzXPQbCS5ZlpFKpTA8PBzqvgSCCwUhugQCgeACgFLqV8BkWfZFVL1h+uB1NU2DqqqglMK2bYyNjVX12RKCSyCojTBHFQgEggsA27aRyWSQyWR8EaXrOhKJhB8pVGuY3rZtZLNZEELAGINhGEgkEiCE4LnnnkNfXx/6+vogSRKSySRGRkaE4BIIOoQQXQKB4Lzg0UcfxdNPPw0AmD9/Pj75yU/WHUifqXgiKpvN+gJM0zRfgHkVsKAAO3z4MLZs2eLbQnhh3ul0Gg899BByuRy2bNmCSy+9VJjzCgQdRLQXBQLBjGd0dBRf/epX8cUvfhGKouDuu+/GpZde6kc1XQgQQvwKmKIofqTQgw8+iHfffRef/OQnwRiruJ4kSZAkCfv378fBgwcxMTGBNWvWYOPGjZg3b57YqBUIXER7USAQCFxs24ZhGGCMoVgsXnAVG845crmcX8XSNA1PPPEE3n33Xdxxxx2+p1fwczZjDKlUCmNjY9i0aRM2bdqEfD6PV155BXv37oWqqvjkJz/Zw99KIDi/EJUugUBwXvDYY4/h3nvvhSzLWL16NT71qU/1+pB6ypNPPolXX30Vn/nMZxCNRqHrOlRV9SOFTNNEMpnE+Ph4zYBrzrmodAkELqLSJRAIBACy2Sxefvll/Nmf/Rl0Xcddd92FgwcPYsuWLb0+tJ7w9NNP45VXXsFv/uZvgjHmh24D8GfA4vE4JiYmagouAEJwCQRtRjjSCwSCGc8bb7yB/v5+xGIxMMawYcMGvPPOO70+rJ5gGAaOHTuG22+/varZbj6fx+joKE6fPl3TjV4gEHQGIboEAsGMJ5VK4dixY75twtGjRzF37txeH1ZPkGUZH//4x6EoSt3L9XCyRCC4YBHtRYFAMONZunQpNm7ciL/5m78BpRSLFi3Cjh07en1YAoFAUIIYpBcIBAKBQCBoQDsG6UV7USAQCAQCgaALCNElEAgEAoFA0AWE6BIIBAKBQCDoAkJ0CQQCgUAgEHQBIboEAoFAIBAIuoAQXQKBQCAQCARdQPh0CQQCgaBpXn31Vdxzzz3gnOPKK6/EjTfe2OtDEgimPaLSJRAIBIKmsG0bP/7xj/G5z30OX/ziF/H888/j9OnTvT4sgWDaI0SXQCAQCJri2LFjmDVrFmbNmgVJkrBp0yYcPny414clEEx7hOgSCAQCQVOMjY2hr6/P/zqVSmFsbKyHRyQQzAyE6BIIBAKBQCDoAmKQXiAQCGYQ3/3ud3HkyBHEYjF88YtfBABkMhl885vfxPDwMPr7+3H77bcjEol07BiSySRGRkb8r0dHR5FMJjt2fwLB+YKodAkEAsEMYtu2bfjc5z5X8r19+/Zh1apV+K//9b9i1apVeOihhzp6DEuWLMHg4CCGhoZgmiYOHTqEdevWdfQ+BYLzASG6BAKBYAaxYsWKiirW4cOHsXXrVgDA1q1bOz7UzhjDxz72Mdx55534q7/6K1x22WWYP39+R+9TIDgfEO1FgUAgmOFMTEz47b1EIoGJiYmO3+eaNWuwZs2ajt+PQHA+ISpdAoFAcB5BCAEhpNeHIRAIqiBEl0AgEMxw4vG4b9kwNjaGWCzW4yMSCATVEKJLIBAIZjjr1q3DgQMHAAAHDhzA+vXre3xEAoGgGoRzznt15ydPnuzVXQsEAsGM5Jvf/CbeeustpNNpxONx7N69G+vXr8fdd9+NkZER9Pf349Of/jSi0WivD1UgOK9YsGDBlG9DiC6BQCAQCASCBrRDdIn2okAgEAgEAkEXEKJLIBAIBAKBoAsI0SUQCAQCgUDQBYToEggEAoFAIOgCQnQJBAKBQCAQdAEhugQCgUAgEAi6gBBdAoFAIBAIBF0gVOD1Cy+8gLvuugu2beOGG27AL//yL5f83DAM/MM//APefvttxONx/OEf/iHmzJnTieMVCAQCgUAgmJE0rHTZto2vf/3r+NM//VN85StfwZNPPokTJ06UXObhhx9GNBrF3//93+OXfumX8J3vfKdjBywQCAQCgUAwE2kout58803MmzcPc+fOhSRJ2LFjh5/x5XHw4EHs3LkTAHDllVfi5ZdfRg+N7gUCgUAgEAimHQ3bi8PDwxgYGPC/HhgYwNGjR2tehjGGSCSCiYkJJBKJkss99NBDeOihhwAAX/rSl9piqS8QCAQCgUAwE+jqIP2NN96I/3979xMSRR+HAfyZLAUxNxcrOkTQoocKCl2CCKIk7FYg5EGqg6faCkNq1SItQpQgCXTFJSTyJh68dMiDElbiocz+GPRHhVaciPUPyS5Lq/N9Dy/vkrYyP8ud2Xl5Prdhh50HHnbmCzM7v+bmZjQ3N6O2ttbKQ9M6Y3/Oxe6cjf05F7tztvXoz3TocrvdmJmZSWzPzMzA7Xavus/S0hKi0Sg2b9781+GIiIiI/i9Mhy6PxwNd1/H9+3csLi5iaGgIXq932T7FxcV4+vQpAGB4eBh79+6FpmkpCUxERETkRKbPdGVkZKCyshKNjY0wDAPHjh3Dzp070d3dDY/HA6/Xi5KSErS1teHy5cvIycnBlStXTA98/Pjx9chPNmF/zsXunI39ORe7c7b16E8T/s2QiIiIKOX4RnoiIiIiC3DoIiIiIrKA0jJAf4NLCDmXWXePHz9Gf38/MjIykJubiwsXLmDr1q32hKXfmPX3n+HhYbS0tKCpqQkej8fakLQqlf6GhobQ09MDTdOwa9cuVFVVWR+UfmPWXTgcRiAQQCQSgWEYqKioQFFRkT1haZn29naMjIzA5XLh3r17v30uInj48CFev36NrKws+Hw+7N69W/0AkkJLS0ty6dIl+fbtm8Tjcbl69aqEQqFl+zx58kSCwaCIiDx//lxaWlpSGYkUqXT37t07icViIiLS19fH7tKISn8iItFoVOrr6+X69evy5csXG5JSMir9TU9Py7Vr12RhYUFERObn5+2ISiuodNfR0SF9fX0iIhIKhcTn89kRlZIYGxuT8fFxqa6uTvr5q1evpLGxUQzDkI8fP0pdXd2avj+ltxe5hJBzqXS3b98+ZGVlAQAKCgowOztrR1RKQqU/AOju7sapU6ewadMmG1LSalT66+/vx4kTJ5CTkwMAcLlcdkSlFVS60zQN0WgUABCNRpGXl2dHVEpiz549id9UMi9fvsSRI0egaRoKCwsRiUQwNzen/P0pHbqSLSG08sK82hJCZC+V7n41MDCAAwcOWJCMVKj0NzExgXA4zNsaaUilv+npaei6jps3b+LGjRsYHR21OCUlo9Ld6dOn8ezZM5w/fx5NTU2orKy0Oib9odnZWeTn5ye2za6NK/FBevprg4ODmJiYwMmTJ+2OQooMw0BXVxfOnTtndxT6Q4ZhQNd1NDQ0oKqqCsFgEJFIxO5YpODFixc4evQoOjo6UFdXh9bWVhiGYXcsskBKhy4uIeRcKt0BwNu3b9Hb2wu/389bVGnErL9YLIZQKITbt2/j4sWL+Pz5M+7evYvx8XE74tIKqudOr9eLjRs3Ytu2bdixYwd0Xbc6Kq2g0t3AwAAOHToEACgsLEQ8HucdHodwu90Ih8OJ7dWujatJ6dDFJYScS6W7yclJPHjwAH6/n8+TpBmz/rKzs9HZ2YlAIIBAIICCggL4/X7+ezFNqPz+Dh48iLGxMQDAjx8/oOs6tm/fbkdc+oVKd/n5+Xj//j0AYGpqCvF4HLm5uXbEpTXyer0YHByEiODTp0/Izs5e0zN5KX8j/cjICB49epRYQqisrGzZEkI/f/5EW1sbJicnE0sI8cSRHsy6u3PnDr5+/YotW7YA+PdEUlNTY29oSjDr71e3bt3C2bNnOXSlEbP+RARdXV0YHR3Fhg0bUFZWhsOHD9sdm2De3dTUFILBIGKxGADgzJkz2L9/v82pCQDu37+PDx8+YGFhAS6XC+Xl5VhcXAQAlJaWQkTQ2dmJN2/eIDMzEz6fb03nTS4DRERERGQBPkhPREREZAEOXUREREQW4NBFREREZAEOXUREREQW4NBFREREZAEOXUREREQW4NBFREREZIF/AIYhca2b/IESAAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"s = np.linspace(0, 10, 10)\n",
"t = np.linspace(0, 10, 10)\n",
"S, T = np.meshgrid(s, t)\n",
"X = S\n",
"Y = T\n",
"Z = np.zeros((10, 10))\n",
"\n",
"fig, ax = plt.subplots(figsize=(10, 10))\n",
"ax = fig.add_subplot(projection=\"3d\")\n",
"ax.plot_surface(X, Y, Z, alpha=0.4)\n",
"\n",
"y = np.array([6, 6, 5])\n",
"y_vec = np.array([[0, 0, 0, y[0], y[1], y[2]]])\n",
"X, Y, Z, U, V, W = zip(*y_vec)\n",
"ax.quiver(\n",
" X,\n",
" Y,\n",
" Z,\n",
" U,\n",
" V,\n",
" W,\n",
" length=1,\n",
" normalize=False,\n",
" color=\"black\",\n",
" alpha=1,\n",
" arrow_length_ratio=0.08,\n",
" pivot=\"tail\",\n",
" linestyles=\"solid\",\n",
" linewidths=3,\n",
")\n",
"\n",
"\n",
"yhat = np.array([y[0], y[1], 0])\n",
"yhat_vec = np.array([[0, 0, 0, yhat[0], yhat[1], yhat[2]]])\n",
"X, Y, Z, U, V, W = zip(*yhat_vec)\n",
"ax.quiver(\n",
" X,\n",
" Y,\n",
" Z,\n",
" U,\n",
" V,\n",
" W,\n",
" length=1,\n",
" normalize=False,\n",
" color=\"red\",\n",
" alpha=0.6,\n",
" arrow_length_ratio=0.08,\n",
" pivot=\"tail\",\n",
" linestyles=\"solid\",\n",
" linewidths=3,\n",
")\n",
"\n",
"yhat_vec = np.array([[0, 0, 0, 0, 0, y[2]]])\n",
"X, Y, Z, U, V, W = zip(*yhat_vec)\n",
"ax.quiver(\n",
" X,\n",
" Y,\n",
" Z,\n",
" U,\n",
" V,\n",
" W,\n",
" length=1,\n",
" normalize=False,\n",
" color=\"red\",\n",
" alpha=0.6,\n",
" arrow_length_ratio=0.08,\n",
" pivot=\"tail\",\n",
" linestyles=\"solid\",\n",
" linewidths=3,\n",
")\n",
"\n",
"Xbeta = np.array([6, 3, 0])\n",
"y_vec = np.array([[0, 0, 0, Xbeta[0], Xbeta[1], Xbeta[2]]])\n",
"X, Y, Z, U, V, W = zip(*y_vec)\n",
"ax.quiver(\n",
" X,\n",
" Y,\n",
" Z,\n",
" U,\n",
" V,\n",
" W,\n",
" length=1,\n",
" normalize=False,\n",
" color=\"purple\",\n",
" alpha=1,\n",
" arrow_length_ratio=0.08,\n",
" pivot=\"tail\",\n",
" linestyles=\"solid\",\n",
" linewidths=3,\n",
")\n",
"\n",
"u = y - Xbeta\n",
"u_vec = np.array([[Xbeta[0], Xbeta[1], Xbeta[2], u[0], u[1], u[2]]])\n",
"X, Y, Z, U, V, W = zip(*u_vec)\n",
"ax.quiver(\n",
" X,\n",
" Y,\n",
" Z,\n",
" U,\n",
" V,\n",
" W,\n",
" length=1,\n",
" normalize=False,\n",
" color=\"Aqua\",\n",
" alpha=1,\n",
" arrow_length_ratio=0.08,\n",
" pivot=\"tail\",\n",
" linestyles=\"solid\",\n",
" linewidths=3,\n",
")\n",
"\n",
"point1 = [y[0], y[1], y[2]]\n",
"point2 = [yhat[0], yhat[1], yhat[2]]\n",
"line1 = np.array([point1, point2])\n",
"ax.plot(line1[:, 0], line1[:, 1], line1[:, 2], c=\"b\", lw=1.5, alpha=0.5, ls=\"--\")\n",
"\n",
"\n",
"ax.text(x=y[0], y=y[1], z=y[2], s=\"$y$\", size=16)\n",
"ax.text(9, 9, 0, \"$Col\\ X$\", size=16)\n",
"ax.text(x=y[0], y=y[1], z=0, s=r\"$\\hat{y}=X\\hat{\\beta}$\", size=16)\n",
"ax.text(x=0, y=0, z=y[2], s=r\"$\\hat{u} = y-X\\hat{\\beta}$\", size=16)\n",
"ax.text(x=Xbeta[0], y=Xbeta[1], z=Xbeta[2], s=r\"$X\\beta$\", size=16)\n",
"ax.text(x=5.6, y=4.1, z=2.4, s=r\"$u$\", size=16)\n",
"\n",
"for i in [\"x\", \"y\", \"z\"]:\n",
" exec(\"ax.set_\" + i + \"lim3d(0, 10)\")\n",
"\n",
"ax.set_title(\"Geometric Mechanism of OLS\", fontsize=17)\n",
"ax.set_xlabel(\"X-axis\"), ax.set_ylabel(\"Y-axis\"), ax.set_zlabel(\"Z-axis\")\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In words, OLS algorithm is to find a special linear combination with basis of $\\text{Col}\\boldsymbol{X}$ or $\\text{Span}\\boldsymbol{X}$.\n",
"\n",
"And this linear combination is the orthogonal projection $\\boldsymbol{\\hat{y}}$ of $\\boldsymbol{y}$ onto $\\text{Span}\\boldsymbol{X}$, which means the distance $\\|\\boldsymbol{y}-\\boldsymbol{\\hat{y}}\\|$ is the shortest among all other possible $\\|\\boldsymbol{y}-\\text{proj}_{\\text{Col}X}\\boldsymbol{y}\\|$, where $\\text{proj}_{\\text{Col}X}\\boldsymbol{y}$ means a projection of $\\boldsymbol{y}$ onto column space of $\\boldsymbol{X}$ i.e. $\\text{Col}\\boldsymbol{X}$, which is depicted as a transparent plane. \n",
"\n",
"And also note that orthogonal complement $\\boldsymbol{\\hat{u}}$ most possibly will smaller than $\\boldsymbol{u}$ itself, which is decided by the nature of OLS algorithm. In the graph, we give $\\boldsymbol{\\hat{u}}$ red color and aqua color to $\\boldsymbol{u}$."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To formulate mathematically the verbal description above, \n",
"\n",
"$$\n",
"\\boldsymbol{X}^T(\\boldsymbol{y-X\\hat{\\beta}})=\\boldsymbol{X}^T\\boldsymbol{\\hat{u}}= \\boldsymbol{0}\\label{4}\\tag{4}\n",
"$$\n",
"\n",
"which is called **orthogonality condition of OLS**."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"With orthogonality condition, we achieve the most famous OLS algorithm of $\\hat{\\boldsymbol{\\beta}}$\n",
"\n",
"$$\n",
"\\boldsymbol{\\hat{\\beta}} = (\\boldsymbol{X}^T\\boldsymbol{X})^{-1}\\boldsymbol{X}^T\\boldsymbol{y}\\label{5}\\tag{5}\n",
"$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test Trials of OLS Algorithm "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Construct $\\boldsymbol{X}$ matrix"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"const = np.ones(100)\n",
"const = const[np.newaxis, :]\n",
"\n",
"X_inde = np.random.randn(3, 100)\n",
"\n",
"X = np.concatenate((const.T, X_inde.T), axis=1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Set true $\\boldsymbol{\\beta} = [2, 3, 4, 5]^T$"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"beta_array = np.array([2, 3, 4, 5])\n",
"beta_array = beta_array[np.newaxis, :].T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Generate disturbance term $\\boldsymbol{u}$ with a standard normal distribution"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"u = np.random.randn(100)\n",
"u = u[np.newaxis, :].T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Generate $\\boldsymbol{y}$"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"y = X @ beta_array + u"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Estimate parameters with OLS algorithm"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"beta0:[2.04505556]\n",
"beta1:[2.94315138]\n",
"beta2:[4.15756857]\n",
"beta3:[4.8987082]\n"
]
}
],
"source": [
"beta_hat = np.linalg.inv(X.T @ X) @ X.T @ y\n",
"for i in range(len(beta_array)):\n",
" print(\"beta\" + str(i) + \":\" + str(beta_hat[i]))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Verify the results with ```statsmodels```"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"ols_obj = sm.OLS(y, X)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"beta0:2.045055557724158\n",
"beta1:2.9431513755492107\n",
"beta2:4.157568574882897\n",
"beta3:4.898708197151764\n"
]
}
],
"source": [
"ols_obj_fit = ols_obj.fit()\n",
"beta_array_sm = ols_obj.fit().params\n",
"for i in range(len(beta_array_sm)):\n",
" print(\"beta\" + str(i) + \":\" + str(beta_array_sm[i]))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Monte Carlo Simulation of OLS Algorithm "
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"beta_hat = []\n",
"for i in range(3000):\n",
" u = np.random.randn(100)\n",
" u = u[np.newaxis, :].T\n",
" y = X @ beta_array + u\n",
" beta_hat.append(np.linalg.inv(X.T @ X) @ X.T @ y)\n",
"beta_hat = np.array(beta_hat).T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Compare with true parameters\n",
"$$\n",
"\\boldsymbol{\\beta} = [2, 3, 4, 5]^T\n",
"$$"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAAFCCAYAAACHNRpoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABLOUlEQVR4nO3de3xU9Z3/8fdkQoCAhCTDLYBKFCoEKmooKShBHG0ritEqWwFb1patRKF4q6j9sbRqydqSBGgQtS3s1oe1aktULqJjuGxlWQMJNYKLomjxBoSEEEggJDm/P2imEAI5SebMOXPm9Xw8fMjMnJnvZ87MfHLO53wvHsMwDAEAAAAAAMB1YuwOAAAAAAAAANag8AMAAAAAAOBSFH4AAAAAAABcisIPAAAAAACAS1H4AQAAAAAAcCkKPwAAAAAAAC5F4QcAAAAAAMClKPwAAAAAAAC4FIUfdMiqVas0atQode/eXQMHDtQvfvELu0MCEIXIRQCcgFwEwAnIRWjOYxiGYXcQiEybNm2S3+/Xr371K91www3avHmzvv/976usrEzDhw+3OzwAUYJcBMAJyEUAnIBchJZQ+EG7TZo0SUlJSVqxYoUk6cSJE4qLi9P//M//KCMjw97gAEQNchEAJyAXAXACchFawlAvtEt9fb0CgYBuvPHG4H2rV69WXFyc0tLSbIwMQDQhFwFwAnIRACcgF+FsYu0OAJHp/fffV21trdLT01VXV6eioiLNnDlT99xzj8477zy7wwMQJchFAJyAXATACchFOBsKP2iXkpISJScnKy4uTl27dlVjY6MGDx6sRx99NLjND37wA61du1a9e/fWe++9Z2O0ANyqtVy0d+9eff/739e+ffsUExOjGTNm6Cc/+YnNUQNwGzPHRePGjdPhw4d14sQJXXXVVSooKJDX67UxagBuYyYXSVJDQ4PS09PVv39/rVq1yqZoEU4M9UK7lJaW6vLLL1diYqLeeecdrVixQvX19brhhhuC29x55516/fXXbYwSgNu1lotiY2O1cOFC7dy5U1u2bNHSpUu1c+dOm6MG4DZmjotWrVql7du367333tOBAwf00ksv2RgxADcyk4skadGiRRo6dKhNUcIO9PhBu5SUlGjMmDHq0qWLrrjiCl1xxRWSThZ7DMOQx+NRZmamPvnkE3sDBeBqreWifv36qV+/fpKk7t2765JLLtHnn3+uYcOG2Rk2AJcxc1zUo0cPSSfn4Kirq5PH47EzZAAuZCYXffbZZ1q9erUeffRR5ebm2hwxwoUeP2gzwzC0ffv2M06cSktLdeWVV3IgAyAs2pqLPvnkE5WUlGj06NHhDBOAy7UlF1199dXq1auXzjvvPN16663hDhWAi5nNRXPmzNGTTz6pmBhKAdGEHj9os927d6u6ulpPPvmkLr74YvXt21dr1qzR008/rddee83u8ABEibbkoiNHjui73/2ucnNzg1fdASAU2pKL1q9fr9raWk2ZMkVFRUW69tprbYoagNuYyUWrVq1S7969dcUVV2jDhg32BoywovCDNispKVHPnj110UUX6Tvf+Y68Xq++/vWv67XXXpPf77c7PABRwmwuOnHihL773e/qe9/7nm677TYbIwbgRm09LuratauysrL0yiuvUPgBEDJmctHbb7+tV199VWvWrNGxY8d0+PBh3Xbbbcw5FgUo/KDNSktLddlll+mVV16xOxQAUcxMLjIMQz/84Q81dOhQPfjgg2GMDkC0MJOLqqqqVFdXp169eqm+vl6rVq3S+PHjwxckANczk4sWLFigBQsWSJI2bNigX//61xR9ogQD+9BmJSUlGjlyZKvb3XbbbfrmN7+pXbt2acCAAVq6dKn1wQGIGmZy0dtvv60//OEPKioq0siRIzVy5Ei9+uqr4QkQQFQwk4sOHTqk73znO/r617+uSy+9VP3799ePf/zj8AQIICqYPUdDdKLHD9qstLRUU6dObXU7qscArGQmF1155ZUyDCNMEQGIRmZy0QUXXKCtW7eGKSIA0cjsOVqT8ePH0/MwingMjogBAAAAAABciaFeAAAAAAAALkXhBwAAAAAAwKWY4wcAAAAAHGjp0qUqKSlRQkKCFi5cKEn6wx/+oG3btik2NlZ9+vRRdna2unXrJklauXKlioqKFBMTo3/9139lsl8AkmyY4+eLL74IZ3OSJJ/Pp/Ly8rC3S/v/bN/4x8RhB19+2Zb27X7/bmo/JSUlZK9lp1DlIrs/X6fE4IQ4km+9VZLk2bCB/eGgGKyMww35yGwucspn2RxxmZd8663q1KmTvvrjH+0O5QxO3F+SM+NqKSYrc9HOnTvVpUsXFRQUBAs/f/vb3zR8+HB5vV4999xzkqRp06bps88+06JFi/TLX/5SlZWVeuyxx7Ro0SLFxLQ+yKOlXGT3/o/W9p2QK6J139vddkfbP1cuYqgXAAAAADjQsGHD1L1799Puu/TSS+X1eiVJQ4YMUUVFhSSpuLhYY8aMUadOndS7d2/17dtXu3fvDnvMAJyHwg8AAAAARKCioqLgcK6KigolJycHH0tKSgoWhQBEN+b4AeAoLY1lP3LkiPLy8nTgwAH16tVL9957r7p37y7DMLR8+XKVlpaqc+fOys7OVmpqqs3vAAAAwHp/+ctf5PV6ddVVV7X5uYFAQIFAQJKUk5Mjn893xjaxsbEt3h8u0dp+bKdO8ng8UfnendC+W987hR84nmEYOnbsmBobG+XxeNr8/H379un48eMWRObe9g3DUExMjLp06dKufd4R48eP17e//W0VFBQE7yssLNSIESOUlZWlwsJCFRYWatq0aSotLdVXX32lxYsX68MPP9Rvf/tb/fKXvwxrvIgO7clDdv/2nRJDR+OwMx8BTtTR46KWOCVXNOekuJpyUZinRz2rDRs2aNu2bZo3b17we5CUlKSDBw8Gt6moqFBSUlKLz/f7/fL7/cHbLc0pEslznURy+8knTqhTp06Of+9W5KImnTt3tu23b2fbZto/13HRueb4ofADxzt27Jg6deqk2Nj2fV1jY2OD46DtEKnt19fX69ixY+ratasFUZ3dsGHDtH///tPuKy4u1vz58yVJmZmZmj9/vqZNm6atW7dq3Lhx8ng8GjJkiI4eParKykolJiaGNWa4X3vykN2/fafEEIo47MpHgBN19LioJU7JFc05La76+npHDJ3avn27XnnlFf385z9X586dg/enp6dr8eLFuuGGG1RZWakvv/xSF198sY2Rws2syEVN7Pzt2513zLTfnuMiCj9wvMbGRksSCs4tNjbWMVfZqqqqgsWcnj17qqqqStLJK1mndoVMTk5WRUUFhR+EHHnIXk7KR4DdyEf2iY2NVX19fVhPCvPz87Vz505VV1frrrvu0uTJk7Vy5UrV19frsccekyQNHjxY//Zv/6aBAwfqm9/8pu677z7FxMTohz/8oakVvYD2IBfZpz3HRXxScDy69tvHifve4/G0Ky4zY9nbw+5xwE6JwQlxxHbq1BRIyONoaGho18GNEw6InBCD1PE4unTp4ojvOWA3J/5thnXmzJlzxn0TJkw46/a33HKLbrnlFgsjAk4iF9mrrfvfGUeDAM7qscce05tvvqm4uDhdcMEFys3NVUJCwhnbrV+/XvPmzVNjY6Nuv/123XPPPZKkTz/9VD/+8Y9VWVmpESNGaPHixYqLi9N//dd/6T//8z8VExOjbt266cknn9SQIUPC/fZMSUhICA7hqqysVI8ePSSdHMt+6vjjgwcPdmgse3vYPf7cKTE4IY7kEyckSZ76+pDHcfz48TZf4W26MmynUMVgNg/99re/1fPPPy/DMDRlyhTNmDFDkrRr1y498MADqqmp0YABA/Sb3/xG5513nv7yl7/oqaeeCj7//fff1+uvv67hw4ef8drHjx8/43M911h2AO705JNP6o033ghOfpuXl6e+ffuesd0TTzyht956S5L0k5/8RDfddJMk6a9//asee+wxnThxQiNGjNDChQsVGxurQ4cO6f7779enn36qzp07a+HChbrkkkvC+t4ARJ5ly5bpscceU1lZWYvnIW3NRYcPH9bMmTP1+eefq6GhQXfddZf+5V/+pcNx0vcPcLhx48apqKhIgUBAqamp+s1vfnPGNg0NDXr00Uf13HPPaf369SosLNQHH3wgSXr88cc1Y8YMvf3220pISNAf//hHSdLNN9+st956S2+++aays7P185//PKzvqy3S09O1ceNGSdLGjRs1atSo4P2bNm2SYRj64IMPFB8fzzAvwAJm8tD//d//6fnnn9fq1av15ptvKhAIaM+ePZKk++67T4888ojeeustfec73wkWe2655Ra9+eabevPNN7V48WKdf/75LRZ9AKDJzJkzFQgE9Oabb8rv9ysvL++MbQKBgMrKyvTGG29o1apVevrpp1VdXa3GxkbNmTNHS5cuVVFRkQYMGKCXXnpJkrRkyRKlpaUpEAho0aJFmjdvXrjfGoAI8/nnn2vTpk3q379/i4+3Jxf9/ve/15AhQxQIBPTyyy/rF7/4herq6jocK4UfoBV79+7VuHHjNGfOHF155ZW65557tGnTJt10000aO3asSktLJUk1NTW67777NHHiRF133XVat26dJOnvf/+7br75Zn3rW9/St771LRUXF0uSNm/erFtvvVUzZszQuHHjdM8997S4UkRmZmZwiMTll1+uL7/88oxtSktLdeGFF+qCCy5QXFycbrrpJq1bt06GYeivf/2rJk6cKEm67bbbgnGdd955wefX1NQ4prtmfn6+fvazn+mLL77QXXfdpaKiImVlZendd9/V7NmzVVZWpqysLEnSZZddpt69e2v27Nl6+umn9aMf/cje4AGLtDcPrV27Nvh8q/PQhx9+qMsuu0xdu3ZVbGysMjIygu1/9NFHysjIkCRdddVVWrNmzRnPLyws1KRJk0KwtwBYqaPHRR3NR2aOXz788EONHj1asbGxio+P19ChQ7V+/XpVVlYqLi5OF110kaSTRe2mfPTBBx9o7NixkqSLL75Yn332mQ4cOBDCPQcglKzKRW+//bapXCRJ8+fP16OPPnrW86j25CKPx6MjR47IMAwdPXpUPXv2DMmwfYZ6ASZ88sknevrpp5Wbm6vrr78+uKT4G2+8oSVLluj3v/+9Fi1apLFjxyo3N1dVVVWaOHGirrrqKvl8Pv3xj39Uly5d9PHHH+vuu+8Ongy99957KioqUt++fXXTTTepuLhY3/jGN84axwsvvNDiidFXX3112pCHfv36qbS0NDgsqilZ9OvXT1999VVwuxUrVuiZZ55RXV2dXnzxxVDtrg5paSy7pBavvHk8Hoo9iBrtyUM33HCDxo4dG5Y8dMkll+g//uM/VFFRoa5du6qoqEiXXnqpJOlrX/ua1q1bp29/+9tatWqVvvjiizOe/9prr+n3v/99iPYWACuF67jonXfe0RVXXHFG+zk5OXr55ZfVo0eP4FXyUw0bNky5ubm66667VFtbq82bN2vw4MFKSkpSfX29/va3v+nSSy/V6tWrg/lo2LBhWrNmjUaPHq3S0lJ99tln+vLLL9WrVy9rdyaAdrPzHG3dunXq16+f0tLSzhpfe3LRD3/4Q02bNk2XX365jhw5oqeeeiokk7RT+EFINMw4eRLgffZVS5/TY948ddq5s02xeTyes1ZpJenEsGE6/ItfnPM1Bg4cqKFDh0qShgwZoiuvvFIej0eXXHKJ9u7dK0natGmT3nzzTS1btkzSyfkoPv/8c/Xv318PPfSQdu7cqZiYGH388cfB1x05cmSwYJOWlqa9e/ee9YRr0aJFio2NDemEfdOnT9f06dO1cuVKLVq0SIsWLQrZawNO1Z7ccyqzeai13HMqq/NQnz599Oijj1qahwYPHqy7775bU6ZMUXx8vNLS0oIHKvn5+XrkkUeUn5+v6667Tp2aJuL+h5KSEnXt2pX5NIBmWstX7Tkuasmp+cpp+ailws/cuXM1d+5cLVmyRMuXL9cDDzxw2uOZmZnavn27Jk2apOTkZF1xxRXyer3yeDxaunSp5s+fr7q6Oo0bNy6Yp+655x7NmzdP1157rS655BINHz6cFbEQNh09NrFbqHJRE4/Ho7qhQx2Vi049NqqtrdWSJUv0/PPPnzO+9uSi9evXKy0tTS+99JI++eQT3X777Ro9evRpvR3bg8IPYELnzp2D/46JiVFcXFzw3w0NDZIkwzD0zDPP6OKLLz7tuXl5eerVq5fefPNNNTY2KjU1NfhY0+tIktfrPeskrH/6058UCAT04osvttiVsG/fvqddQf/yyy/Vt29fJSYm6vDhw6qvr1dsbGzw/uZuuukmPfzww2Z2BQCbtCcPNU3uvHDhQsvzkCTdfvvtuv322yVJCxYsUL9+/SSdLAo1zS/20UcfBSc5bPLKK68EJzsE4HwdOS4KRT5qcsstt+iOO+44o/AjnZxE9Sc/+Ykk6e677w62k56erpUrV0o6OW9g08neeeedF5wvyDAMZWRk6IILLjCxNwDYxa5c9Mknn+jvf/+7rr32Wkknz72+9a1vafXq1erdu/dp27Y1F73wwgvKzs6Wx+PRoEGDNHDgQO3evVuXXXZZO/fSSRR+EFFaq/q2JFwr62RmZmr58uV6/PHH5fF49N5772n48OE6fPiw+vTpo5iYGL300kvBJGTW+vXr9dRTT+nPf/6zunbt2uI2I0eO1J49e/T3v/9dffv21SuvvKKCggJ5PB6NHTtWq1ev1k033aSXXnpJ1113nSTp448/DiaeQCCgQYMGdWwHAFHCbB6yY1Wv5nmorKxMQ4cO1eHDh9WvXz9L85B0crU8n8+nzz//XGvXrtVrr70mSTpw4IASExPV2NioRYsW6Y477gg+p7GxUatWrdJf/vKX9r1pIIq157ioJVbkq3MdF3UkH516/LJu3brgHBmnamhoUFVVlZKSkrRz5069//77yszMlPTPPHX8+HEVFBRo9uzZkqSqqip17dpVcXFxev7550NyhR2IFqHKRU1CmZOsyEVDhw7Vu+++G7w9evRorV279oxVvdqTi/r376+//vWvGj16tA4cOKCPP/44JEVo+i8CITJnzhydOHFCfr9fV199tZ588klJ0r/+67/q5Zdflt/v1+7duxUfH9+m1/3Zz36mI0eO6Hvf+56uvfZaPfTQQ5JOzuvTdPIUGxurxx9/XFOmTNH48eN144036mtf+1rw+c8884zGjh2rysrK4NX4FStW6Oqrr9a1116rZ555Rvn5+SHaEwDs0jwP5eTkSJJ+8IMfWJ6HJGnGjBkaP368fvCDH+iJJ54ILvm+cuVKXXnllRo3bpz69u172rKkW7ZsUb9+/biyDsdomDEpOOwC7Xe246KO5qMFCxZowoQJ8vv92rhxo37xjxPOv/3tb8GePydOnNAtt9yi8ePH66c//akWL14cnO/wqaeeUmZmpvx+v6699lpdeeWVkk5OwjphwgRdddVVWr9+ffB1AUQ2q3LR2XQ0F913333aunWrrrnmGv3Lv/yLHnnkkRaXiW8rj2F2AoIQaWlCR6v5fD6Vl5eHvd1oav9c41J9Pp+M8eMlSQdfftnUc05VU1PToR+iHVfd3dJ+S/v+1EmkI1mocpHdv2+nxOCEOJJvvVWS5Nmw4ZxxtGccfXvykN2/fafEEKo43JqPzOYiu39fZ+PGuKyaayP51lvVqVMnffWPYY/tjaWjx0UtcUquaM6JcTU0NMjr9Z52n1tzkd2/72hq/9TfentyRaiZee9W5KImdv727c47Zttv63ERPX4AAAAAAABcisIPAAAAAACAS1H4AQAAAAAAcCkKP3C8ME9DhVOw74GT+C3Yj88AOInfAgAnIBfZq637n8IPHC8mJsZxE/tFg/r6esXEkCIAiTxkN/IR8E/kI/vU19cHV+QBoh25yD7tOS4ic8HxunTpomPHjun48ePyeDxtfn7nzp11/PhxCyJzb/uGYSgmJkZdunSxKCogsrQnD9n923dKDB2Ng3wEnK6jx0UtcUquaM5JcTXloj59+ujgwYN2hwPYzopc1MTO377deae19tt7XEThB2Fj7CpTw4xJbV4e1ePxqGvXru1uN5qWgnRi+4AbtCcPOeG354QYnBQH4AYdPS5qiVN/o06MK9QnuECksiIXNbHzt2933rGqffpNAwAAAAAAuBSFHwAAAAAAAJei8AMAAAAAAOBSzPEDAAAAOEjDjEl2hwAAcBF6/AAAAAAAALgUhR8AAAAAAACXovADAAAAAADgUhR+AAAAAAAAXIrJnWG7Uycw9D77qo2RAADQulWrVqmoqEgej0cDBw5Udna2Dh06pPz8fFVXVys1NVWzZs1SbCyHWQAAwH4ckQAAAJhUUVGhtWvXKi8vT3FxccrNzdXmzZtVUlKiiRMnauzYsXrmmWdUVFSk6667zu5wYbPTV+eKsy0OAEB0Y6gXAABAGzQ2Nqqurk4NDQ2qq6tTz549tWPHDmVkZEiSxo8fr+LiYpujBAC4ScOMSc2KyYB59PiBIzUlNYZ+AQCcJCkpSTfeeKNmzpypuLg4XXrppUpNTVV8fLy8Xm9wm4qKihafHwgEFAgEJEk5OTny+Xym2o2NjTW9bTi5Ma59//h/R97XvpvHnHFfp06d5PF4TL3uvma3rd7HbvwcreLEmACgNRR+AACORiEYTnLkyBEVFxeroKBA8fHxys3N1fbt200/3+/3y+/3B2+Xl5ebep7P5zO9bTi5Oa5Qv68TJ06oU6dO7Xpdq/exmz/HUGspppSUFJuiAQBzKPwAAACYVFZWpt69e6tHjx6SpNGjR2vXrl2qqalRQ0ODvF6vKioqlJSUZHOkAAAAJzHHDwAAgEk+n08ffvihjh8/LsMwVFZWpgEDBigtLU1btmyRJG3YsEHp6ek2RwoAAHCSqR4/LFsKAAAgDR48WBkZGXrooYfk9Xp14YUXyu/36/LLL1d+fr5eeOEFDRo0SBMmTLA7VACAwzB8HXZptVLDsqUAAAD/NHnyZE2ePPm0+/r06aMFCxbYFBEAAMDZmRrqxbKlAIBwY9lSAADgZhzrIFxa7fHT0WVLAQAAAAAAYI9WCz8dXbY0EAgoEAhIknJycuTz+dodbHvFxsba0m40tb/vH/9vqlj3Wbn5tPbVqZPq/nG7KZZ9OlPzx0IRdzTsfye3DwAAAKB1DTMmydi1K3jeBIRKq4Wfji5b6vf75ff7g7fLy8tDFLp5Pp/Plnajuf1T2/P5fDJOnGjxsXM9r7VtzYrG/W9l+ykpKSF7LQAAok3zyV2Z7BXnsnTpUpWUlCghIUELFy6UdPLCfF5eng4cOKBevXrp3nvvVffu3WUYhpYvX67S0lJ17txZ2dnZSk1NtfkdAHCCVuf4YdlSAAAAAAi/8ePH65FHHjntvsLCQo0YMUKLFy/WiBEjVFhYKEkqLS3VV199pcWLF+vf/u3f9Nvf/taGiAE4UauFn1OXLX3ggQdkGIb8fr+mTp2qVatWadasWTpy5AjLluKs9t08RsauMrvDAAAAACLKsGHD1L1799PuKy4uVmZmpiQpMzMzuMjO1q1bNW7cOHk8Hg0ZMkRHjx5VZWVl2GMG4DytDvWSWLYUAAAAaA2r8yAcqqqqlJiYKEnq2bOnqqqqJEkVFRWnzeuYnJysioqK4LYAopepwg8AAAAAwFk8Ho88Hk+bn2dmAR67FwhxY/vNF7BpabEbNdvmbM+1khv3fSS0bWX7FH7QIVzZAgAAAMInISFBlZWVSkxMVGVlZXARnqSkpNMW9Dh48GCHFuBx2wIlTmrfzOuebZtw7BM373snt93R9s+1CE+rc/wAAAAAAJwhPT1dGzdulCRt3LhRo0aNCt6/adMmGYahDz74QPHx8QzzcoGGGZO42I4Oo8cPAAAAADhQfn6+du7cqerqat11112aPHmysrKylJeXp6KiouBy7pJ02WWXqaSkRLNnz1ZcXJyys7Ntjh6AU1D4AQC4hrGrTPtvHiPvs6/aHQoAAB02Z86cFu+fN2/eGfd5PB796Ec/sjgiAJGIoV4AAAAAAAAuReEHAAAAAADApSj8AAAAAAAAuBRz/ACIGKtWrVJRUZE8Ho8GDhyo7OxsHTp0SPn5+aqurlZqaqpmzZql2FhSGwDAvU5d4Yc5zQAAreHsCGdovlxgpBxQNMUdKfGibSoqKrR27Vrl5eUpLi5Oubm52rx5s0pKSjRx4kSNHTtWzzzzjIqKinTdddfZHS4AAAAAOAJDvQBEjMbGRtXV1amhoUF1dXXq2bOnduzYoYyMDEnS+PHjVVxcbHOUAAAAAOAc9PgBEBGSkpJ04403aubMmYqLi9Oll16q1NRUxcfHy+v1BrepqKho8fmBQECBQECSlJOTI5/PF5K4YmNjQ/ZakRyDFXHsa3a7tdeO7dRJdf/4d1MPwD4rN5/1da3eZ074XJwQg5PiAOxk7Co7maMyvmZ3KACAKEPhBxGh+fAziSFd0ebIkSMqLi5WQUGB4uPjlZubq+3bt5t+vt/vl9/vD94uLy8PSVw+ny9krxXJMYQjjtZeO/nEiTY9x+p95oTPxQkxWBlHSkpKyF8TAADAbSj8AIgIZWVl6t27t3r06CFJGj16tHbt2qWamho1NDTI6/WqoqJCSUlJNkcKAAAAAM7BHD8AIoLP59OHH36o48ePyzAMlZWVacCAAUpLS9OWLVskSRs2bFB6errNkcIqDTMmtdj7DwCsRO4BAEQ6evwAiAiDBw9WRkaGHnroIXm9Xl144YXy+/26/PLLlZ+frxdeeEGDBg3ShAkT7A4VAAAAAByDwg+AiDF58mRNnjz5tPv69OmjBQsW2BQRAAAAADgbhR8AQFRqGrrBRPEA2uLUYV/kDwDhxvEL2oM5fgAAAAAAAFyKwg8AAAAAAIBLMdQLAAAACLPmK4WxchgAwCoUfmAJDl4AAAAAALAfQ70AAFGtYcYkitUAAABwLXr8AAAAAM20ZSgWxWMAgJNR+EHE42ALAAAAgJu0do5z6uMs7Y7WMNQLAAAAAADApejxAwAAADgYvZsBAB1B4Qem0Z0QQKQhbwEAACDaMdQLAAAAAADApSj8AAAAAAAAuBSFHwAAAAAAAJei8AMAAAAAAOBSTO6MsDvXyhSsWgEAAAAAQOjQ4wcAELEaZkyiYAwAAACcA4UfAAAAAAAAl2KoV5RpujLuffbVNj8HAKxyap5pS34CgGjXnmM7AEB0occPAAAAAACAS1H4AQAAAAAAcCmGesHRGGYGuANDEQAAQDTh2AdOQo8fAAAAAAAAl6LHDwAAAABEmFWrVqmoqEgej0cDBw5Udna2Dh06pPz8fFVXVys1NVWzZs1SbCynfHZqaQQDoxoQbvT4AQAAAIAIUlFRobVr1yonJ0cLFy5UY2OjNm/erOeee04TJ07UkiVL1K1bNxUVFdkdKgAHoPADAAAAABGmsbFRdXV1amhoUF1dnXr27KkdO3YoIyNDkjR+/HgVFxfbHGX0aJgxiZ48cCz6/QEAIl7DjEkydu3q8Gs0YSJGnMvRo0e1bNky7d27Vx6PRzNnzlRKSory8vJ04MAB9erVS/fee6+6d+9ud6iwmJNP8phY1t2SkpJ04403aubMmYqLi9Oll16q1NRUxcfHy+v1BrepqKiwOVIATkDhBwAAoA2WL1+ukSNH6v7771d9fb2OHz+ulStXasSIEcrKylJhYaEKCws1bdo0u0MF4FJHjhxRcXGxCgoKFB8fr9zcXG3fvt308wOBgAKBgCQpJydHPp/vjG1iY2NbvD9cIq39ff/4f9Nz9p1905AL9X6KtH3vlratbJ/CDwAAgEk1NTV6//33dffdd0s6eYAWGxur4uJizZ8/X5KUmZmp+fPnU/gBYJmysjL17t1bPXr0kCSNHj1au3btUk1NjRoaGuT1elVRUaGkpKQWn+/3++X3+4O3y8vLz9jG5/O1eH+4RGr7dsQc6jYjdd9HetsdbT8lJeWsj1H4AQCEjZ1DD5w8JAORY//+/erRo4eWLl2qTz/9VKmpqZo+fbqqqqqUmJgoSerZs6eqqqpafL6Zq+wtsfsK5Nm4Ma5wXqUPpaYc12flZkln9j44Fzd+jlZxSkw+n08ffvihjh8/rri4OJWVlemiiy5SWlqatmzZorFjx2rDhg1KT0+3O1QADkDhBwAAwKSGhgbt2bNHd955pwYPHqzly5ersLDwtG08Ho88Hk+Lzzdzlb0ldl+BPBvicp7m79vMfnDq/nJiXC3FdK6r7FYZPHiwMjIy9NBDD8nr9erCCy+U3+/X5Zdfrvz8fL3wwgsaNGiQJkyYEPbYADiPqcIPkxgCAJzCjp47TJKKJsnJyUpOTtbgwYMlSRkZGSosLFRCQoIqKyuVmJioysrK4PALALDK5MmTNXny5NPu69OnjxYsWGBTRACcylThh0kMAQAATg7jSk5O1hdffKGUlBSVlZVpwIABGjBggDZu3KisrCxt3LhRo0aNsjtURCmGtQLh5YTfHBeo0JqY1jZomsSwqZtgbGysunXrpuLiYmVmZko6OYlhcXGxtZECAAA4wJ133qnFixfrgQce0CeffKKbb75ZWVlZevfddzV79myVlZUpKyvL7jABAAAkmejx09FJDAEAiFRmruJxlS36XHjhhcrJyTnj/nnz5tkQDQAAwLm1Wvjp6CSG7V29IpTsnn3fSe2bWeHBzGoWTujS2Pw9Nb+/iZP2fzS2DwAAAACwT6uFn45OYtje1StCye4VAZzYvtNWSGiPs72H5vc7cf9Hcvt2rFwBAAAAAGifVgs/TGIIAAgnJ/QodEIMAAAAQCiYWtWraRLD+vp69e7dW9nZ2TIMQ3l5eSoqKgou5w4AAAAAAADnMFX4YRJDAAAAAACAyNPqcu4AAAAAAACITKZ6/MC9InkZYubgAAAAAOAknKPAiSj8AABsw8ERAAAAYC2GegEAAAAAEOEaZkziohpaRI8fABHj6NGjWrZsmfbu3SuPx6OZM2cqJSVFeXl5OnDgQHCFwe7du9sdKgAggnCiBABwMwo/ACLG8uXLNXLkSN1///2qr6/X8ePHtXLlSo0YMUJZWVkqLCxUYWGhpk2bZneoiAKcKAIAACASMNQLQESoqanR+++/rwkTJkiSYmNj1a1bNxUXFyszM1OSlJmZqeLiYjvDBAAAAABHoccPXKvpavw+/XPVskhexSza7d+/Xz169NDSpUv16aefKjU1VdOnT1dVVZUSExMlST179lRVVVWLzw8EAgoEApKknJwc+Xy+kMQVGxsbsteK5Bhai2Nfs9tN2zW/3+lOfX9ne09NnPC5OCEGJ8UBAEA0ObV3Muc/0Y3CD4CI0NDQoD179ujOO+/U4MGDtXz5chUWFp62jcfjkcfjafH5fr9ffr8/eLu8vDwkcfl8vpC9ViTH0NY4nBBve5wr7uaPOeFzcUIMVsaRkpIS8tcEAABwGwo/kMRcFXC+5ORkJScna/DgwZKkjIwMFRYWKiEhQZWVlUpMTFRlZaV69Ohhc6QAAAAA4BzM8QMgIvTs2VPJycn64osvJEllZWUaMGCA0tPTtXHjRknSxo0bNWrUKDvDBAAAAByHpd6jGz1+AESMO++8U4sXL1Z9fb169+6t7OxsGYahvLw8FRUVBZdzBwAAAACcROEHQMS48MILlZOTc8b98+bNsyEaAAAAAHA+Cj8AAACICtG4uier+gAAmOMHAAAAAIAowpw/0YUePwCADgkeNKzc3PbnAAAAALAUhR8AAABEJYrQANyI3IbmGOoFAAAAAADgUvT4getQ4QbgBPtuHhP8NxOqAgAAwC70+AEAAAAAAHApCj8AAAAAAAAuxVAvAAAAAACi2GnTZbRhpVZEBnr8AAAAAAAAuBSFHwAAAAAAAJei8AMAAAAAAOBSzPEDAAAAAEAUOG0uH0QNevwAAAAAAAC4FIUfAAAAAAAAl2KoFwDAEnQlBgDAOkePHtWyZcu0d+9eeTwezZw5UykpKcrLy9OBAwfUq1cv3XvvverevbvdoQKwGYUfRAVOQAEAAOAmy5cv18iRI3X//fervr5ex48f18qVKzVixAhlZWWpsLBQhYWFmjZtmt2hArAZQ70AAAAAIILU1NTo/fff14QJEyRJsbGx6tatm4qLi5WZmSlJyszMVHFxsZ1hAnAIevwAAGCxpl6H3mdftTkSAIAb7N+/Xz169NDSpUv16aefKjU1VdOnT1dVVZUSExMlST179lRVVZXNkQJwAgo/LsQJBgAAAOBeDQ0N2rNnj+68804NHjxYy5cvV2Fh4WnbeDweeTyeFp8fCAQUCAQkSTk5OfL5fGdsExsb2+L94eLE9vfdPEaS1Gfl5n/eF9aoQq/pPZ76Ppy476OhbSvbp/ADAAAA12iYMUn7dPoFMOb6g9skJycrOTlZgwcPliRlZGSosLBQCQkJqqysVGJioiorK9WjR48Wn+/3++X3+4O3y8vLz9jG5/O1eH+4OLl9O+MKtZbeS319vWP3vZvb7mj7KSkpZ32Mwg8AACHECSYAwGo9e/ZUcnKyvvjiC6WkpKisrEwDBgzQgAEDtHHjRmVlZWnjxo0aNWqU3aG6An/bEeko/AAAAABAhLnzzju1ePFi1dfXq3fv3srOzpZhGMrLy1NRUVFwOXcAoPADAAAA1+EK/dkxH6Q7XHjhhcrJyTnj/nnz5tkQTXQhvyDSsJw7AAAAAACAS9HjJ0pQlQYAAAAAIPrQ4wcAAACApJMXC7lgiGjXMGNScOl2wA0o/AAAAAAAALgUQ71crOlqzT6b4wAAAAAAAPag8AMAAABEAYZwAUB0YqgXAAAAAACAS9HjBwDQLme7cuzmK8pufm9om8bGRs2dO1dJSUmaO3eu9u/fr/z8fFVXVys1NVWzZs1SbCyHWQAAwH70+AEAAGijNWvWqH///sHbzz33nCZOnKglS5aoW7duKioqsjE692jLClOsRgUAQMso/AAAALTBwYMHVVJSomuuuUaSZBiGduzYoYyMDEnS+PHjVVxcbGeIAAAAQRR+AAAA2mDFihWaNm2aPB6PJKm6ulrx8fHyer2SpKSkJFVUVNgZIgAAQJDpweeMZQcAANFu27ZtSkhIUGpqqnbs2NHm5wcCAQUCAUlSTk6OfD6fqefFxsaa3jacrI5r3z/+b6aNfa1u8U9Nr9eW57hR03449XNsyz63mhO/906MCegIhshGB9OVmqax7LW1tZL+OZZ97NixeuaZZ1RUVKTrrrvOskBx0qk/TO+zr4bkdaJZ037oyL4EAESPXbt2aevWrSotLVVdXZ1qa2u1YsUK1dTUqKGhQV6vVxUVFUpKSmrx+X6/X36/P3i7vLzcVLs+n8/0tuEUrrhC3YYT96UdmvZDS5+jE/aRE7/3LcWUkpJiUzQAYI6poV6MZQeA6MRkqeaxr6LDlClTtGzZMhUUFGjOnDkaPny4Zs+erbS0NG3ZskWStGHDBqWnp9scKQAAwEmmevw0jWVv6u3DWHYAAIB/mjp1qvLz8/XCCy9o0KBBmjBhgt0h4Rwo0gIAokmrhR+7xrKHkt1jcUPZ/qlj0YNjsW8eI0nqs3LzGdugZeEcx+6m7x8A4J/S0tKUlpYmSerTp48WLFhgc0QAAABnarXwY9dY9lCye3ywVe07cSx2pAjnvnPb949x7AAAAAAQOVot/EyZMkVTpkyRJO3YsUOvvfaaZs+erdzcXG3ZskVjx45lLDsAAAAAAIADtXv9dcayOw/j1dsvVKulAQAAAADgJG0q/DCWHYDdGhsbNXfuXCUlJWnu3Lnav3+/8vPzVV1drdTUVM2aNUuxse2uaQMAAACSuLAO9zC1nDsAOMWaNWvUv3//4O3nnntOEydO1JIlS9StWzcVFRXZGB0AwAoNMyZxAmaBc+1X9jkAuAeFHwAR4+DBgyopKdE111wjSTIMQzt27FBGRoYkafz48SouLrYzxKi27+YxnCS0ghMpAAAAhBuFHwARY8WKFZo2bZo8Ho8kqbq6WvHx8fJ6vZKkpKQkVVRU2BkiAAAAADgKE2EAiAjbtm1TQkKCUlNTtWPHjjY/PxAIKBAISJJycnLk8/lCEldsbGzIXsuJMez7x/9bev19Z9wDs8L1nXHC99NJcQAAAEQjCj8AIsKuXbu0detWlZaWqq6uTrW1tVqxYoVqamrU0NAgr9eriooKJSUltfh8v98vv98fvF1eXh6SuHw+X8hey8kx2P0e3SZc+9MJ308r40hJSQn5awIAALgNhR8AEWHKlCmaMmWKJGnHjh167bXXNHv2bOXm5mrLli0aO3asNmzYoPT0dJsjBQAAAADnoPADIKJNnTpV+fn5euGFFzRo0CBNmDDB7pBcjYmJQ6NpP3qffdXmSADAHPIW3I5jHLgZhR8AESctLU1paWmSpD59+mjBggU2RwQAAAAAzkThBwAAm516lZGr6QAAAAglCj+ISnTlBAAgclEsBQDAvBi7AwAAAAAAAIA1KPwAAAAAAAC4FEO9AAAAgCi27+YxdocAALAQPX4AAAAAAABcih4/AIBWMSE6AAAAEJko/AAAAMBRzlZspggNIFSa8gkrA56pafgn+8Y9KPwAAAAAQARqbGzU3LlzlZSUpLlz52r//v3Kz89XdXW1UlNTNWvWLMXGcsoHRDvm+AEAAACACLRmzRr1798/ePu5557TxIkTtWTJEnXr1k1FRUU2RhcZGmZMojchXI/CD9AK/hgAAADAaQ4ePKiSkhJdc801kiTDMLRjxw5lZGRIksaPH6/i4mI7QwTgEPT7A4Aod2phk7HcAABEhhUrVmjatGmqra2VJFVXVys+Pl5er1eSlJSUpIqKCjtDBOAQFH4AAAAAIIJs27ZNCQkJSk1N1Y4dO9r8/EAgoEAgIEnKycmRz+c7Y5vY2NgW7w8Xq9vfZ9kru4ddn7+d3z23fu8p/EQwhh9Zi/0LAAAAJ9q1a5e2bt2q0tJS1dXVqba2VitWrFBNTY0aGhrk9XpVUVGhpKSkFp/v9/vl9/uDt8vLy8/YxufztXh/uNjdPlr+XoSDnZ+93d+7jrSfkpJy1sco/AAAAABABJkyZYqmTJkiSdqxY4dee+01zZ49W7m5udqyZYvGjh2rDRs2KD093eZIATgBhR8AAAAALaIHdGSZOnWq8vPz9cILL2jQoEGaMGGC3SEBcAAKPwAAAAAQodLS0pSWliZJ6tOnjxYsWGBzRHCL5oVfFgGJXCznDgAAAAAA4FIUfhyuYcYkutgCAAAAAIB2ofADAAAAAADgUhR+AAAAAAAAXIrJnQGTmobcMakZAADOwZD48Dp1f3NMBACRgR4/AAAAAAAALkXhBwAAAAAAwKUY6gW0EV2c4RYtDY9gSCMAAADgLvT4AQAAAAAAcCkKPwAAAAAAAC7FUC+HYZgFACdglRwAAADAHejxAwAAAAAA4FL0+AEAwCb0rAIAAIDVKPwAzXAiBgAAAABwC4Z6AQAAAAAAuBQ9fgAAAAAAUYHe/e3X0r5jUaLIQOHHRudawYuEBAAAAAAAOoqhXgAAAAAAAC5F4QcAAAAAAMClKPwAAAAAaLeGGZOYpgCIUvz+IwOFHwAAAAAAAJdicucIQRUVAAD7lZeXq6CgQIcOHZLH45Hf79f111+vI0eOKC8vTwcOHFCvXr107733qnv37naHCwBR6VyL6ADRiMIPAACASV6vV3fccYdSU1NVW1uruXPn6utf/7o2bNigESNGKCsrS4WFhSosLNS0adPsDhewFBcmASAytFr44coWAADASYmJiUpMTJQkde3aVf3791dFRYWKi4s1f/58SVJmZqbmz59P4QcAADhCq4UfrmwBAACcaf/+/dqzZ48uvvhiVVVVBQtCPXv2VFVVlc3RAQAAnNRq4YcrWwAAAKc7duyYFi5cqOnTpys+Pv60xzwejzweT4vPCwQCCgQCkqScnBz5fD5T7cXGxpreNpysimtfyF8R4dA09KvPys0heT0nfu+dGBMAtKZNc/xwZQsAAES7+vp6LVy4UFdddZVGjx4tSUpISFBlZaUSExNVWVmpHj16tPhcv98vv98fvF1eXm6qTZ/PZ3rbcHJqXLBXqL4TTvx+tRRTSkqKTdEAzsGE2s5muvAT7itboWR3Zb55+/tuHnPa46c9FraoEArNv1dNn+2pV7qc9v2LVMw3BsAJDMPQsmXL1L9/f91www3B+9PT07Vx40ZlZWVp48aNGjVqlI1RAgAA/JOpwo8dV7ZCye6rBa2177QrGTDvbJ/dqfc7/fvXVnZd1WK+sY7jSgzQcbt27dKmTZt0/vnn68EHH5Qk3X777crKylJeXp6KioqCRWicGzkJQKiQT4Bza7Xww5UtAE7AfGMAnOCSSy7Riy++2OJj8+bNC3M0AAAArWu18MOVLQBOw3xjAAAAAGBOq4UfrmwBcBKnzTfmhDmUzMbQNIdYU3doONPZPsuW5hBrjRO+n06KAwAAIBq1aVUvALCTE+cbs3sOJ6fEgNBp7bNsy2ftlO+GVXGwkg4AAEDrYuwOAHCDhhmT6EVhsdbmG5PEfGMAAAAA0Aw9fgBEBOYbA046tcjM6iUAAABoDYUfABGB+cYAAABOKi8vV0FBgQ4dOiSPxyO/36/rr79eR44cUV5eng4cOBC8INa9e3e7w3UEeucjmlH4AQAAAIAI4vV6dccddyg1NVW1tbWaO3euvv71r2vDhg0aMWKEsrKyVFhYqMLCQk2bNs3ucAHYjDl+AAAAYLum+fK4Kg+0LjExUampqZKkrl27qn///qqoqFBxcbEyMzMlSZmZmSouLrYzTEQx8rmzUPgBAAAAgAi1f/9+7dmzRxdffLGqqqqUmJgoSerZs6eqqqpsjg6AEzDUCwBcjqstkaXp82LiZgBAa44dO6aFCxdq+vTpio+PP+0xj8cjj8fT4vMCgYACgYAkKScnRz6f74xtYmNjW7w/XNrS/r5//L/5Mc+pz98nhEPTPt/X7HZb2Pndi6TvfZteN+SvCAAAACDqmVmFkGJ3+9XX12vhwoW66qqrNHr0aElSQkKCKisrlZiYqMrKSvXo0aPF5/r9fvn9/uDt8vLyM7bx+Xwt3h8uoWjfzvijVfN93p7PwM7vXiR/71NSUs76GIUfAAAAAIgghmFo2bJl6t+/v2644Ybg/enp6dq4caOysrK0ceNGjRo1ysYorWGmoAj70NPcmSj8AAAAAEAE2bVrlzZt2qTzzz9fDz74oCTp9ttvV1ZWlvLy8lRUVBRczh0AKPwAAAAAQAS55JJL9OKLL7b42Lx588IcDQCno/ADdABdGQHYibkxAADRjGNxwByWcwcAAAAAAHApCj8AAAAAAAAuReEnxBpmTKLLIYCwaZgxSftuHmN3GLBZ8789/C0CAABAEwo/AAAAAAAALsXkzgDgQvT2iHxM3IxoQb6KDuQ0ALAPhZ8waBqGwR+66HHaQezKzfYFAgAAAACIahR+AAAAYDl69gAAYA/m+AEAAAAAAHApevw4AFfAAAAAAABuc+q5LlOf2IfCDwAAACzBxS00xyTPABB+FH4swoEOmmt+oMOBD9qL/BJd2vJ5890AALgNx8zuw2cafszxAwAAAAAA4FL0+AEAAEBI0fsMreE7grbiO+M+9PwJHwo/7dSeLynJCgAAAAAAhBOFHwAAAACAbVj5CbAWhR8AiBBmeg3SsxBAOO27eYwkTtRwOv4WAYCzUPgBLNZ0UNzkXAdDjHMFAAAAQoMiZGTgHMh6rOoFAAAAAADgUvT4AQAAAOAYwV4aKzfbGwgAuASFnw6iWxo6ii6oAAAAAKJd03nRPnF+HWoUfgDA4ZjUGQAAAEB7MccPAAAAAMdrmDGJCx0A0A70+AkR/gghlBhCCAAAAAAIBQo/AOAApxaPKfjBCmcrKFNoBgAA4dCezhIcp4QGhR8AAAAEne3A/FwH3fR8Rke19B3ad/MYSR074ePCCgBQ+AFco3k1nFnxAQAAEKmaCn+ITlxQCC0KPwDgUPzBQ0ed66C5+feLq+IAAADuROGnDTgJAwAATmfVfAgcB8EufPcAoGMo/AAAAAAAHIFCHxB6MXYHAAAAAAAAAGvQ48cEqs5wCubgAAC0x9mGf7FMLiLRuY6HOvKd5jjLes3Pq9jPQHhQ+AEAIIqYuZhBMQAAAMA9GOoFAAAAAAiJhhmTGDEBOEzU9PhpfvWypauZXOGE05j5TvKHFQAgta03F+AWofhO87sA4HZRU/gBgPawY1lkDkDhVC19N7lYAgDRrbVjJY55EArh7KThxg4hHSr8bN++XcuXL1djY6OuueYaZWVlhSgsADCPXATACchFAJyCfATgVO0u/DQ2Nup3v/udfvaznyk5OVkPP/yw0tPTNWDAgJAE1pYqW2srVewz8dzW7gPs1NHv6dlWUHBDNdvqXNRc8315an5pvl9l8jHAqdozEXSLz1m52XQ7kZqPrM5F+24eI6ltQ9Q78ncCiHRmeplEar5pTbiPjQA4X7sLP7t371bfvn3Vp08fSdKYMWNUXFxMQgEQVuQiAE5ALgLgFFbmo/ZcnAes0NJFo9Y6hLT0mFOFukDd7lW9KioqlJycHLydnJysioqKkAQFAGaRiwA4AbkIgFOQjwA0Z/nkzoFAQIFAQJKUk5OjlJQUc09cvdV8I2fb9lyv0ZbXR8gMtDuAaGLmOx5Fv4OQ5aKO7tco2ud2Ic/Y7Czf8XP+5qLodxHS46L25CfYjhzlAB387Zj+3TqY2Vx0xv3korAhV7TCzHextfvPYqDN3+GUlJSQ/47a3eMnKSlJBw8eDN4+ePCgkpKSztjO7/crJydHOTk57W2qw+bOnWtb27RP+9HevtXszkVO2L9OiEEijuacEIcTYpCcE4eVrM5FTt2HxNU2xNU2TozLiTE1ZyYfmclFdr/XaG4/mt+73e279b23u/Bz0UUX6csvv9T+/ftVX1+vzZs3Kz09PZSxAUCryEUAnIBcBMApyEcAmmv3UC+v16s777xTTzzxhBobG3X11Vdr4EA6pAEIL3IRACcgFwFwCvIRgOY6NMfP5ZdfrssvvzxUsVjG7/fTPu3TvovZmYucsH+dEINEHM05IQ4nxCA5Jw6rWZmLnLoPiattiKttnBiXE2NqSSjykd3vNZrbj+b3bnf7bn3vHsMwDEteGQAAAAAAALZq9xw/AAAAAAAAcDbLl3MPp6VLl6qkpEQJCQlauHDhGY+/+uqr+u///m9JUmNjoz777DP97ne/U/fu3cPSfk1NjRYvXqyDBw+qoaFBN954o66++uqQtG2m/SNHjuipp57Svn371KlTJ82cOVPnn39+SNouLy9XQUGBDh06JI/HI7/fr+uvv/60bQzD0PLly1VaWqrOnTsrOztbqampYWv/888/19KlS7Vnzx5973vf06RJk0LSttn2//u//1uvvPKKDMNQ165d9aMf/UgXXnhh2NovLi7Wn/70J3k8Hnm9Xk2fPl2XXHJJSNp3MzP71urcYjYOq3OM2TiszDVN6urq9O///u+qr69XQ0ODMjIyNHny5NO2OXHihH7zm9/o448/1nnnnac5c+aod+/eYY1h586d+s///E99+umnmjNnjjIyMkLWflviWLVqld566y15vV716NFDM2fOVK9evcIexxtvvKF169YpJiZGXbp00Y9//GMNGDAgpHFEMjP7cMWKFdqxY0dw+6qqKq1YscL2uJpyw9GjR9XY2KgpU6ZYPgTXTFwHDhzQU089pcOHD6t79+6aNWuWkpOTLY1LOvm3YO7cuUpKSjpjhRarc1N74wpHvmpPXOHIX+2Jy2357FzvNRx551ztW51fztW21Tnk7rvvVpcuXRQTEyOv13vGKmtWnj+Zad/K86fW2rby3MlM+1afO7XWfpPdu3frZz/7WcfzsuEiO3bsMD766CPjvvvua3Xb4uJiY/78+WFt/89//rPxhz/8wTAMw6iqqjKmT59unDhxImzt/9d//Zfx4osvGoZhGJ999pnx85//PGRtV1RUGB999JFhGIZRU1NjzJ4929i7d+9p22zbts144oknjMbGRmPXrl3Gww8/HNb2Dx06ZHz44YfG888/b7zyyisha9ts+//3f/9nVFdXG4ZhGCUlJWF//7W1tUZjY6NhGIbxySefGD/5yU9C1r6bmdm3p7Iit5iNw+ocYzYOK3NNk8bGRqO2ttYwDMM4ceKE8fDDDxu7du06bZvXX3/dePrppw3DMIy//vWvRm5ubthj2Ldvn/HJJ58YS5YsMf7nf/4npO23JY6ysjLj2LFjhmEYxrp160K+L8zGcfTo0eC/i4uLjccffzzkcUQyM/vwVGvWrDEKCgocEdeyZcuMdevWGYZhGHv37jWys7MdEdfChQuN9evXG4Zx8newePFiy+MyDMN47bXXjPz8fGPBggVnPGZ1bmpvXOHIV+2JKxz5qz1xuS2fneu9nsqqvHOu9q3OL+dq2+ockp2dbVRVVZ31cSvPn8y0b+X5U2ttW3nuZKZ9q8+dWmvfMAyjoaHBmD9/vvHLX/6yw3nZVUO9hg0bZvoK+9tvv62xY8eGtX2Px6Njx47JMAwdO3ZM3bt3V0xM6D6C1tr/7LPPNHz4cElS//79deDAAR06dCgkbScmJgarz127dlX//v1VUVFx2jZbt27VuHHj5PF4NGTIEB09elSVlZVhaz8hIUEXX3yxvF5vSNpsa/tf+9rXgp/P4MGDdfDgwbC236VLF3k8HknS8ePHg//GuZnZt6eyIreYjcPqHGM2DitzTROPx6MuXbpIkhoaGtTQ0HDGd3rr1q0aP368JCkjI0PvvfeejBBOa2cmht69e+uCCy6w9PdmJo7hw4erc+fOkk7mn3N9h62MIz4+PvjvY8eOkYeaMbMPT/X222/ryiuvdERcHo9HNTU1kk72PkxMTHREXKfmo7S0NG3dutXyuA4ePKiSkhJdc801LT5udW5qb1zhyFftiSsc+as9cbkpn7X2Xk9lRd5prX0r80trbduRQ05l5fmTGVaeP7XGynMnM5xw7rR27VqNHj1aPXr06PBruWqol1nHjx/X9u3b9cMf/jCs7X7729/Wk08+qR//+Meqra3VvffeG/KTsnO54IIL9L//+78aOnSodu/erQMHDqiiokI9e/YMaTv79+/Xnj17dPHFF592f0VFhXw+X/B2cnKyKioqQn5weLb2w8VM+0VFRbrsssvC3v4777yj559/XlVVVXr44Yctad/NWvtsw5VbzhZHuHPM2eIIV65pbGzUQw89pK+++krf+ta3NHjw4NMer6ioCHbH9nq9io+PV3V1dUj+eJqNIVzaEkdRUZFGjhxpWxyvv/66Vq9erfr6es2bN8+SOCKZ2c/ywIED2r9/f/CExO64brvtNj3++ON6/fXXdfz4cf2///f/HBHXBRdcoHfeeUfXX3+93nnnHdXW1qq6ulrnnXeeZTGtWLFC06ZNU21tbYuPhyM3tScuu7QlLivzV3Nm4nJLPjP7GViVd1pr38r80lrb4cghTzzxhCTp2muvPWNFp3CcP52rfauZbduqc6fW2rf63Km1z/6dd97Rv//7v+upp57qcFuu6vFj1rZt206rIIbL3/72N11wwQV6+umn9atf/Uq/+93vgtXrcMjKylJNTY0efPBBrV27VoMGDQr5SeGxY8e0cOFCTZ8+/bQrIeESCe2/9957Wr9+vaZOnRr29r/xjW8oPz9fDz74oP70pz+FvH03M/PZhiO3nCuOcOaYc8URjlwjSTExMfrVr36lZcuW6aOPPtLf//73kLcRCTG0JY5Nmzbp448/DukY/bbG8e1vf1tLlizR1KlT9ec//9mSOCKZ2c/y7bffVkZGRtguILUW19tvv63x48dr2bJlevjhh7VkyRI1NjbaHtcdd9yhnTt36qc//al27typpKQkS/fZtm3blJCQENI5OELBDXFZnb/aE5cb8llbPgMr8o6Z9q3KL2batjqHPPbYY/qP//gPPfLII1q3bp127twZstd2evtm27bq3MlM+1aeO7XW/ooVKzR16tSQfd+issdPuLpGN7d+/XplZWXJ4/Gob9++6t27t7744ouw9UyJj49Xdna2pJMThd1zzz0hnUywvr5eCxcu1FVXXaXRo0ef8XhSUpLKy8uDtw8ePKikpKSwtW81M+1/+umnevrpp/Xwww+H/GpjW97/sGHDtHTpUh0+fNjyK4xuYHbfWp1bWosjXDmmtTiszjXNdevWTWlpadq+fftpk0gnJSXp4MGDSk5OVkNDg2pqaiy7yn+2GMLtXHG8++67WrlypebPn69OnTrZFkeTMWPG6Nlnn7U0jkjW2j7cvHlz2HsunyuuoqIiPfLII5KkIUOG6MSJE6qurlZCQoKtcSUlJemBBx6QdLJg/b//+7/q1q2bZXHs2rVLW7duVWlpqerq6lRbW6vFixdr9uzZp8UUrtzUlrjsYDaucOavtsTVJJLzWVveqxV5x0z7VuUXs79XK3NI07lQQkKCRo0apd27d2vYsGGnPW7l+VNr7VvJTNtWnju15b1bce7UWvsfffSRFi1aJEk6fPiwSktLFRMTo2984xvtai/qevzU1NRo586dSk9PD3vbPp9PZWVlkqRDhw7piy++CNsqDpJ09OhR1dfXS5LeeustDR06NGS9YgzD0LJly9S/f3/dcMMNLW6Tnp6uTZs2yTAMffDBB4qPjw9ZN0Uz7VvJTPvl5eX69a9/rXvuuUcpKSlhb/+rr74KziHw8ccf68SJE5YfaLqB2e+W1bnFTBzhyDFm4rAy1zQ5fPiwjh49KunkCiPvvvuu+vfvf9o2V1xxhTZs2CBJ2rJli9LS0kI6PttMDOFgJo49e/bo2Wef1U9/+lPLTsTNxPHll18G/11SUqJ+/fpZEkukMvud+vzzz3X06FENGTLEMXH5fD699957kk7OiXHixAnLLyyYievw4cPBngErV64M+UqHzU2ZMkXLli1TQUGB5syZo+HDh59xAm11bmpvXHYwE1c48ld74nJLPjP73bAq75hp36r8YqZtK3PIsWPHgkPMjh07pnffffeMQr+V509m2reKmbatPHcy076V505m2i8oKAj+l5GRoR/96EftLvpILuvxk5+fr507d6q6ulp33XWXJk+eHDz5uO666ySdHKd36aWXBicDDGf73/3ud7V06VLdf//9kqSpU6eG9KCotfY///xzFRQUSJIGDhyou+66K2Rt79q1S5s2bdL555+vBx98UJJ0++23ByvU1113nS677DKVlJRo9uzZiouLC/YICFf7hw4d0ty5c1VbWyuPx6M1a9YoNzc3JCekZtp/+eWXdeTIEf32t7+VpHMu22dF+1u2bNGmTZvk9XoVFxene++9N6InIgwXM/tWsja3mI3D6hxjNg4rc02TyspKFRQUqLGxUYZh6Jvf/KauuOIK/elPf9JFF12k9PR0TZgwQb/5zW80a9Ysde/eXXPmzAl7DLt379avf/1rHT16VNu2bdOLL76o3NzcsMfx3HPP6dixY8G2fT6fHnroobDH8frrr6usrExer1fdu3fX3XffHdIYIp2ZfSid7F04ZsyYsOVwM3F9//vf19NPP63Vq1dLkrKzsy2Pz0xcO3fu1PPPPy+Px6OhQ4fa0ktKUlhzU3vjCke+ak9c4chf7YnL7fnM7rxjZ34JVw6pqqrSr3/9a0knJ6i/8sorNXLkSL3xxhuSrD9/MtO+VedPZtq28tzJTPtWnjuZaT/UPEY4lhEAAAAAAABA2EXdUC8AAAAAAIBoQeEHAAAAAADApSj8AAAAAAAAuBSFHwAAAAAAAJei8AMAAAAAAOBSFH4AAAAAAABcisIPAAAAAACAS1H4AQAAAAAAcKn/D1PIomXaOSw4AAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, ax = plt.subplots(figsize=(20, 5), nrows=1, ncols=4)\n",
"for i in range(len(beta_hat[0])):\n",
" ax[i].hist(beta_hat[0][i], bins=100)\n",
" ax[i].axvline(\n",
" x=np.mean(beta_hat[0][i]),\n",
" color=\"red\",\n",
" label=\"mean {}\".format(np.round(np.mean(beta_hat[0][i]), 3)),\n",
" )\n",
" ax[i].set_title(r\"$\\beta_{}$\".format(i + 1))\n",
" ax[i].legend()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Goodness of Fit in Pythagorean Theorem"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"One important implication from orthogonality condition is that $\\sum_{t=1}^n\\hat{u}_t=0$. \n",
"\n",
"To see why this holds, we denote the first column of $\\boldsymbol{X}$ as $\\iota$ (iota), which contains all $1$'s, this vector is surly in the $\\text{Col}\\boldsymbol X$, thus\n",
"\n",
"$$\n",
"\\iota^T \\boldsymbol{\\hat{u}} = \\sum_{t=1}^n\\hat{u}_t=0\n",
"$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Using the residual of last round generated data, numerical value essentially equals $0$"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1.2683187833317788e-12"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.sum(ols_obj_fit.resid)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The fitted value $\\boldsymbol{y}=\\boldsymbol{X\\hat{\\beta}}$ is the linear combination that we are seeking for, and it is orthogonal to OLS residuals $ \\boldsymbol{\\hat{u}}$ \n",
"\n",
"$$(\\boldsymbol{X} \\boldsymbol{\\hat{\\beta}})^{T} \\boldsymbol{\\hat{u}}= \\boldsymbol{\\hat{\\beta}}^{T} \\boldsymbol{X}^{T} \\boldsymbol{\\hat{u}}=\\mathbf{0}$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"$ \\boldsymbol{\\hat{u}}$ can be seen as a function of $ \\boldsymbol{\\beta}$, denoted $\\boldsymbol{\\hat{u}(\\beta)}$, and $\\boldsymbol{\\hat{\\beta}}$ minimizes $\\|\\boldsymbol{\\hat{u}(\\beta)}\\|$. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Since we have known that $\\boldsymbol{\\hat{u}}\\perp \\text{Col}X$, then the length of three vectors can be represented by Pythagoras' Theorem.\n",
"\n",
"$$\n",
"\\|\\boldsymbol{y}\\|^2= \\|\\boldsymbol{X\\hat{\\beta}}\\|^2+\\|\\boldsymbol{\\hat{u}}\\|^2\\tag{5}\n",
"$$\n",
"\n",
"This is geometric version of the classical property of OLS\n",
"\n",
"$$\n",
"TSS = ESS + RSS\n",
"$$\n",
"\n",
"Numerical version is\n",
"\\begin{equation}\n",
"\\underbrace{\\sum_{i=1}^n(y_i-\\bar{y})^2}_{TSS}=\\underbrace{\\sum_{i=1}^n(\\hat{y}_i-\\bar{y})^2}_{ESS}+\\underbrace{\\sum_{i=1}^n\\hat{u}^2_i}_{RSS}\n",
"\\end{equation}"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"const = np.ones(100)\n",
"const = const[np.newaxis, :]\n",
"X_inde = np.random.randn(3, 100)\n",
"X = np.concatenate((const.T, X_inde.T), axis=1)\n",
"\n",
"beta_array = np.array([2, 3, 4, 5])\n",
"beta_array = beta_array[np.newaxis, :].T\n",
"\n",
"beta_hat = np.linalg.inv(X.T @ X) @ X.T @ y"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"TSS : 6032.8146\n",
"ESS : 1140.2611\n",
"RSS : 4892.5535\n",
"ESS + RSS : 6032.8146\n"
]
}
],
"source": [
"TSS = np.linalg.norm(y)\n",
"ESS = np.linalg.norm(X @ beta_hat)\n",
"RSS = np.linalg.norm(y - X @ beta_hat)\n",
"print(\"TSS : {:.4f}\".format(TSS**2))\n",
"print(\"ESS : {:.4f}\".format(ESS**2))\n",
"print(\"RSS : {:.4f}\".format(RSS**2))\n",
"print(\"ESS + RSS : {:.4f}\".format(ESS**2 + RSS**2))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Compare with ```statsmodel``` results, we can notice the $\\text{ESS}$ is different, because it is computed by subtracting $\\text{RSS}$ from centered $\\text{TSS}$. The difference between centered or uncentered values actually have little practical significance, i.e. in practice we report one of them and stick to it with further explanation. But we will explain later in this chapter."
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Uncentered TSS from Statsmodels : 6032.8146\n",
"ESS from Statsmodels : 169.8498\n",
"RSS from Statsmodels : 4892.5535\n",
"ESS + RSS, from Statsmodels : 5062.4033\n"
]
}
],
"source": [
"ols_obj_fit = sm.OLS(y, X).fit()\n",
"\n",
"print(\"Uncentered TSS from Statsmodels : {:.4f}\".format(ols_obj_fit.uncentered_tss))\n",
"print(\"ESS from Statsmodels : {:.4f}\".format(ols_obj_fit.ess))\n",
"print(\"RSS from Statsmodels : {:.4f}\".format(ols_obj_fit.ssr))\n",
"print(\"ESS + RSS, from Statsmodels : {:.4f}\".format(ols_obj_fit.ess + ols_obj_fit.ssr))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Projection Matrix "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We have known that $\\boldsymbol{X\\hat{\\beta}}$ is the orthogonal projection of $\\boldsymbol{y}$ , here we substitute OLS solution back into it\n",
"\n",
"$$\n",
"\\boldsymbol{X\\hat{\\beta}}=\\boldsymbol{X}(\\boldsymbol{X}^T\\boldsymbol{X})^{-1}\\boldsymbol{X}^T\\boldsymbol{y}= \\boldsymbol{P}_{\\boldsymbol{X}}\\boldsymbol{y}\n",
"$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"where $ \\boldsymbol{P}_{\\boldsymbol{X}}=\\boldsymbol{X}(\\boldsymbol{X}^T\\boldsymbol{X})^{-1}\\boldsymbol{X}^T$ is a projection matrix which projects $\\boldsymbol{y}$ onto $\\text{Col}\\boldsymbol{X}$."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If you are familiar with linear algebra, you would have seen formula of orthogonal projection, below is a vector presentation of $\\boldsymbol{X}(\\boldsymbol{X}^T\\boldsymbol{X})^{-1}\\boldsymbol{X}^T\\boldsymbol{y}$\n",
"\n",
"\n",
"$$\\hat{\\mathbf{y}}=\\frac{\\mathbf{y} \\cdot \\mathbf{x}_{1}}{\\mathbf{x}_{1} \\cdot \\mathbf{x}_{1}} \\mathbf{x}_{1}+\\cdots+\\frac{\\mathbf{y} \\cdot \\mathbf{x}_{k}}{\\mathbf{x}_{k} \\cdot \\mathbf{x}_{x}} \\mathbf{x}_k\n",
"=\\frac{\\mathbf{x}_1^T \\mathbf{y}}{\\mathbf{x}_{1}^T \\mathbf{x}_{1}} \\mathbf{x}_{1}+\\cdots+\\frac{\\mathbf{x}_k^T \\mathbf{y}}{\\mathbf{x}_{k}^T \\mathbf{x}_{k}} \\mathbf{x}_{k}\n",
"$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Another projection matrix $\\boldsymbol{M}_{\\boldsymbol{X}}=\\left(\\mathbf{I}-\\boldsymbol{X}\\left(\\boldsymbol{X}^{T} \\boldsymbol{X}\\right)^{-1} \\boldsymbol{X}^{T}\\right)= \\mathbf{I} - \\boldsymbol{P}_{\\boldsymbol{X}}$ is constructed from\n",
"\n",
"$$\n",
"\\boldsymbol{\\hat{u}}=\\boldsymbol{y}-\\boldsymbol{X} \\boldsymbol{\\hat{\\beta}} =\\boldsymbol{y}-\\boldsymbol{P}_{\\boldsymbol{X}} \\boldsymbol{y}=\\left(\\mathbf{I}-\\boldsymbol{X}\\left(\\boldsymbol{X}^{T} \\boldsymbol{X}\\right)^{-1} \\boldsymbol{X}^{T}\\right) \\boldsymbol{y}=\\boldsymbol{M}_{\\boldsymbol{X}} \\boldsymbol{y}\n",
"$$\n",
"\n",
"$\\boldsymbol{M}_X$ can project any vector into the subspace of $\\perp \\boldsymbol{X}$."
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"def proj_mat_P(X):\n",
" ##computing projection matrix P. Input X represents regressors.##\n",
" proj_matP = X @ np.linalg.inv(X.T @ X) @ X.T\n",
" return proj_matP\n",
"\n",
"\n",
"def proj_mat_M(X):\n",
" ##computing projection matrix M. Input X represents regressors.##\n",
" proj_matM = np.eye(X.shape[0]) - X @ np.linalg.inv(X.T @ X) @ X.T\n",
" return proj_matM"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's verify if our projection matrix $\\boldsymbol{P}_{\\boldsymbol{X}}\\boldsymbol{y}$ yields the same result as $\\boldsymbol{\\hat{y}}$ from ```statsmodels```, calculate the difference then print the first $10$ entries."
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[ 4.44089210e-16],\n",
" [-4.44089210e-16],\n",
" [-2.22044605e-15],\n",
" [ 4.44089210e-16],\n",
" [-1.33226763e-15],\n",
" [-2.22044605e-15],\n",
" [ 0.00000000e+00],\n",
" [ 0.00000000e+00],\n",
" [-8.88178420e-16],\n",
" [ 4.44089210e-15]])"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fitted_discrp = proj_mat_P(X) @ y - ols_obj_fit.fittedvalues[np.newaxis, :].T\n",
"fitted_discrp[:10]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Similarly, verify if $\\boldsymbol{M}_{\\boldsymbol{X}}\\boldsymbol{y} = \\boldsymbol{\\hat{u}}$, also print the first $10$ entries"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[-1.11022302e-16],\n",
" [-3.55271368e-15],\n",
" [-3.55271368e-15],\n",
" [-8.88178420e-16],\n",
" [ 0.00000000e+00],\n",
" [ 0.00000000e+00],\n",
" [ 6.66133815e-16],\n",
" [-1.77635684e-15],\n",
" [ 1.33226763e-15],\n",
" [-7.10542736e-15]])"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"resid_discrp = proj_mat_M(X) @ y - ols_obj_fit.resid[np.newaxis, :].T\n",
"resid_discrp[:10]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Properties of Projection Matrix "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Geometrically, it is easy to visualize properties of projection matrices in your mind\n",
"$$\n",
"\\boldsymbol{P}_{\\boldsymbol{X}}\\boldsymbol{P}_{\\boldsymbol{X}}=\\boldsymbol{P}_{\\boldsymbol{X}}\\quad \\text{and}\\quad \\boldsymbol{M}_{\\boldsymbol{X}}\\boldsymbol{M}_{\\boldsymbol{X}}=\\boldsymbol{M}_{\\boldsymbol{X}}\n",
"$$\n",
"which are called **idempotent**."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can verify numerically, if multiplication equal zero matrix\n",
"$$\n",
"\\boldsymbol{P}_{\\boldsymbol{X}}\\boldsymbol{P}_{\\boldsymbol{X}}-\\boldsymbol{P}_{\\boldsymbol{X}} = \\boldsymbol{O}\\\\\n",
"\\boldsymbol{M}_{\\boldsymbol{X}}\\boldsymbol{M}_{\\boldsymbol{X}}-\\boldsymbol{M}_{\\boldsymbol{X}} = \\boldsymbol{O}\n",
"$$"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[ 6.93889390e-18, 8.67361738e-19, -3.46944695e-18, ...,\n",
" -1.21430643e-17, 0.00000000e+00, -1.38777878e-17],\n",
" [-8.67361738e-19, 3.46944695e-18, -1.73472348e-18, ...,\n",
" -8.67361738e-19, -6.93889390e-18, -1.76182853e-18],\n",
" [-3.46944695e-18, -1.73472348e-18, 0.00000000e+00, ...,\n",
" 3.46944695e-18, -1.73472348e-18, 9.48676901e-19],\n",
" ...,\n",
" [-1.04083409e-17, 8.67361738e-19, 1.04083409e-17, ...,\n",
" 1.38777878e-17, -1.73472348e-18, -6.93889390e-18],\n",
" [-1.73472348e-18, -5.20417043e-18, -1.73472348e-18, ...,\n",
" 0.00000000e+00, 0.00000000e+00, -6.93889390e-18],\n",
" [ 0.00000000e+00, -1.92445886e-18, 3.36102673e-18, ...,\n",
" 6.93889390e-18, -1.04083409e-17, 0.00000000e+00]])"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Proj_P_X = proj_mat_P(X)\n",
"Proj_P_X @ Proj_P_X - Proj_P_X"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[ 6.66133815e-16, -6.07153217e-18, 0.00000000e+00, ...,\n",
" -1.38777878e-17, -1.04083409e-17, -1.38777878e-17],\n",
" [-8.67361738e-18, 3.33066907e-16, -1.38777878e-17, ...,\n",
" -3.46944695e-18, -1.73472348e-18, -1.70761842e-18],\n",
" [ 3.46944695e-18, -8.67361738e-18, 0.00000000e+00, ...,\n",
" 6.93889390e-18, 0.00000000e+00, 9.55453165e-19],\n",
" ...,\n",
" [-1.04083409e-17, -2.60208521e-18, 1.04083409e-17, ...,\n",
" 1.11022302e-16, -3.46944695e-18, -1.38777878e-17],\n",
" [-1.04083409e-17, -1.73472348e-18, 1.73472348e-18, ...,\n",
" -1.73472348e-18, 0.00000000e+00, -6.93889390e-18],\n",
" [-6.93889390e-18, -2.08708918e-18, 3.15096256e-18, ...,\n",
" -6.93889390e-18, -1.04083409e-17, 0.00000000e+00]])"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Proj_M_X = proj_mat_M(X)\n",
"Proj_M_X @ Proj_M_X - Proj_M_X"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"$\\boldsymbol{P}_{\\boldsymbol{X}}$ and $\\boldsymbol{M}_{\\boldsymbol{X}}$ are _symmetric matrices_, can be easily shown with rules of transpose.\n",
"\n",
"$$\n",
"\\boldsymbol{P}_{\\boldsymbol{X}}^T = \\boldsymbol{X}\\left[(\\boldsymbol{X}^T\\boldsymbol{X})^{-1}\\right]^{T}\\boldsymbol{X}^T = \\boldsymbol{X}\\left[(\\boldsymbol{X}^T\\boldsymbol{X})^{T}\\right]^{-1}\\boldsymbol{X}^T =\\boldsymbol{X}(\\boldsymbol{X}^T\\boldsymbol{X})^{-1}\\boldsymbol{X}^T=\\boldsymbol{P}_{\\boldsymbol{X}}\n",
"$$\n",
"\n",
"$$\n",
"\\boldsymbol{M}_{\\boldsymbol{X}}^T = (\\mathbf{I} - \\boldsymbol{P}_{\\boldsymbol{X}})^T = \\mathbf{I} - \\boldsymbol{P}_{\\boldsymbol{X}}^T = \\mathbf{I} - \\boldsymbol{P}_{\\boldsymbol{X}} = \\boldsymbol{M}_{\\boldsymbol{X}}\n",
"$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"$\\boldsymbol{P}_{\\boldsymbol{X}}$ and $\\boldsymbol{M}_{\\boldsymbol{X}}$ are called **complementary projections**, because\n",
"\n",
"$$\n",
"\\boldsymbol{P}_{\\boldsymbol{X}}+\\boldsymbol{M}_{\\boldsymbol{X}} = \\mathbf{I}\n",
"$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"$\\boldsymbol{P}_{\\boldsymbol{X}}$ and $\\boldsymbol{M}_{\\boldsymbol{X}}$ **annihilate each other**,\n",
"\n",
"$$\n",
"\\boldsymbol{P}_{\\boldsymbol{X}}\\boldsymbol{M}_{\\boldsymbol{X}} = \\mathbf{O}\n",
"$$"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[1., 0., 0., ..., 0., 0., 0.],\n",
" [0., 1., 0., ..., 0., 0., 0.],\n",
" [0., 0., 1., ..., 0., 0., 0.],\n",
" ...,\n",
" [0., 0., 0., ..., 1., 0., 0.],\n",
" [0., 0., 0., ..., 0., 1., 0.],\n",
" [0., 0., 0., ..., 0., 0., 1.]])"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Proj_P_X + Proj_M_X"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[-9.54097912e-18, 6.53909435e-19, 1.45626139e-18, ...,\n",
" 1.34441069e-17, 1.51788304e-18, 1.38777878e-17],\n",
" [-1.22057448e-18, 8.81294768e-19, -3.81230422e-18, ...,\n",
" 8.95313825e-19, 7.51529982e-18, 1.76182853e-18],\n",
" [ 3.80063683e-18, -5.26241470e-18, 1.08850785e-17, ...,\n",
" -4.91999087e-18, 3.48575234e-18, -9.55453165e-19],\n",
" ...,\n",
" [ 1.01915004e-17, 2.75624521e-18, -1.26182498e-17, ...,\n",
" -1.73472348e-18, 3.68628739e-18, 6.93889390e-18],\n",
" [ 9.43255890e-18, 1.64324392e-18, -2.40980873e-18, ...,\n",
" 2.81892565e-18, -7.04731412e-19, 6.93889390e-18],\n",
" [ 8.67361738e-18, 2.08031292e-18, -3.14757443e-18, ...,\n",
" 1.73472348e-18, 1.08420217e-17, 0.00000000e+00]])"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Proj_P_X @ Proj_M_X"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"An _orthogonal decomposition_ of $\\boldsymbol{y}$ by Pythagoras' Theorem\n",
"\n",
"$$\n",
"\\|\\boldsymbol{y}\\|^2 = \\|\\boldsymbol{P}_{\\boldsymbol{X}}\\boldsymbol{y}\\|^2+\\| \\boldsymbol{M}_{\\boldsymbol{X}}\\boldsymbol{y}\\|^2\n",
"$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"However, the projection matrix is not an efficient algorithm. In computation-wise, you shall either use OLS formula or QR decomposition."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The residuals and fitted values are invariant to linear transformation of regressors (explanatory variables), which is exact reason that OLS algorithm holds even we have performed data handling, such as changing unit, in terms of projection matrix, $\\boldsymbol{XA}$ is the linear combination of $\\boldsymbol{X}$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"$$\n",
"\\boldsymbol{P}_{\\boldsymbol{XA}} = \\boldsymbol{XA}(\\boldsymbol{A}^T\\boldsymbol{X}\\boldsymbol{XA})^{-1}\\boldsymbol{A}^T\\boldsymbol{X}^T= \\boldsymbol{X}\\boldsymbol{A}\\boldsymbol{A}^{-1}(\\boldsymbol{X}^T\\boldsymbol{X})^{-1}(\\boldsymbol{A}^T)^{-1}\\boldsymbol{A}^T\\boldsymbol{X}^T = \\boldsymbol{P}_{\\boldsymbol{X}}\n",
"$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Because $\\boldsymbol{XA}$ is still in $\\text{Col}\\boldsymbol{X}$."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# The Frisch-Waugh-Lovell Theorem "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now consider a single linear model\n",
"\n",
"$$\n",
"\\boldsymbol{y}= \\beta_1\\boldsymbol{\\iota}+\\beta_2\\boldsymbol{x}+\\boldsymbol{u}\\label{6}\\tag{6}\n",
"$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And mostly, that $\\boldsymbol{x}$ and $\\boldsymbol{\\iota}$ are not completely independent. Geometrically speaking, they might not be orthogonal to each other.\n",
"\n",
"However, we can use one-step Gram-Schmidt process to orthogonalize them. If we choose to find the orthogonal complement of $\\text{proj}_{\\iota}\\boldsymbol{x}$, we can formulate a vector subtraction (if you don't know what's happening here, check my notebook of linear algebra.)\n",
"\n",
"$$\n",
"\\boldsymbol{z} = \\boldsymbol{x}- \\frac{\\boldsymbol{x}\\cdot\\boldsymbol{\\iota}}{\\boldsymbol{\\iota}\\cdot\\boldsymbol{\\iota}}\\boldsymbol{\\iota} = \\boldsymbol{x}-\\frac{n\\bar{x}}{n}\\boldsymbol{\\iota}=\\boldsymbol{x}- \\bar{x}\\boldsymbol{\\iota}\n",
"$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we get $\\boldsymbol{z}\\perp \\boldsymbol{\\iota}$, in econometric term it is called **centering** the variable by subtracting the mean of itself. Substituting $\\boldsymbol{x}= \\boldsymbol{z}+\\bar{x}\\boldsymbol{\\iota}$ back in "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"$$\n",
"\\boldsymbol{y}=\\beta_1\\boldsymbol{\\iota}+\\beta_2(\\boldsymbol{z}+\\bar{x}\\boldsymbol{\\iota})+u = (\\beta_1+\\bar{x}\\beta_2)\\boldsymbol{\\iota}+\\beta_2\\boldsymbol{z}+u = \\alpha_1\\boldsymbol{\\iota}+\\alpha_2\\boldsymbol{z}+\\boldsymbol{u}\n",
"$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now the we are sure that $\\boldsymbol{\\iota}^T \\boldsymbol{z} =0$, because of orthogonality, however note that coeffcients are no longer $\\beta$'s any more.\n",
"\n",
"It might not be clear at this moment why we want this property, read on."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Multivariate Regression Model Visualization "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For multivariate regression model, we can partition $\\boldsymbol{X}$ in to $[\\boldsymbol{X}_1, \\boldsymbol{X}_2]$, where $\\boldsymbol{X}_1$ is $n \\times k_1$ and $\\boldsymbol{X}_2$ is $n \\times k_2$, $k_1+k_2 =k$.\n",
"\n",
"It is impossible to visualize any multivariate regression model which is in higher dimension, but we can visualize by imagining the subspace spanned by $\\boldsymbol{X}_1$ or $\\boldsymbol{X}_2$ each represented by a line. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The regression model becomes\n",
"\n",
"$$\n",
"\\boldsymbol{y}= \\boldsymbol{X}_1\\beta_1 + \\boldsymbol{X}_2\\beta_2 +\\boldsymbol{u}\\label{7}\\tag{7}\n",
"$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We denote $\\boldsymbol{M}_1 = \\boldsymbol{M}_{\\boldsymbol{X}_1}=\\mathbf{I}-\\boldsymbol{P}_1$ where $\\boldsymbol{P}_1 = \\boldsymbol{P}_{\\boldsymbol{X}_1} = \\boldsymbol{X}_1(\\boldsymbol{X}_1^T\\boldsymbol{X}_1)^{-1}\\boldsymbol{X}_1^T$."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"$\\boldsymbol{X}_1$ and $\\boldsymbol{X}_2$ are not orthogonal, we can project $\\boldsymbol{X}_2$ off $\\boldsymbol{X}_1$ to obtain $\\boldsymbol{Z} = \\boldsymbol{M}_1\\boldsymbol{X}_1$, where $\\boldsymbol{Z}\\perp \\boldsymbol{X}_1$.\n",
"\n",
"Once we orthogonalize $\\boldsymbol{X}_2$, the model becomes\n",
"\n",
"$$\n",
"\\boldsymbol{y} = \\boldsymbol{X}_1\\alpha_1+\\boldsymbol{M}_1\\boldsymbol{X}_1\\alpha_2+\\boldsymbol{u}\\label{8}\\tag{8}\n",
"$$\n",
"\n",
"From the graph below, we can see that actually $\\hat{\\alpha}_2=\\hat{\\beta}_2$, because $\\boldsymbol{Z}$ and $\\boldsymbol{X}_2$ form two similar triangles that \n",
"\n",
"$$\n",
"\\frac{\\|\\boldsymbol{Z}\\hat{\\alpha}_2\\|}{\\|\\boldsymbol{Z}\\|}=\\frac{\\|\\boldsymbol{X}_2\\hat{\\beta}_2\\|}{\\|\\boldsymbol{X}_2\\|}\\Longrightarrow \\frac{\\|\\boldsymbol{Z}\\|\\|\\hat{\\alpha}_2\\|}{\\|\\boldsymbol{Z}\\|}=\\frac{\\|\\boldsymbol{X}_2\\|\\|\\hat{\\beta}_2\\|}{\\|\\boldsymbol{X}_2\\|}\\Longrightarrow \\hat{\\alpha}_2 =\\hat{\\beta}_2 \n",
"$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And also because $\\boldsymbol{Z}=\\boldsymbol{M}_1\\boldsymbol{X}_2$ and $\\boldsymbol{X}_1$ are mutally orthogonal, consequently two models\n",
"\n",
"\\begin{align}\n",
"\\boldsymbol{y} &= \\boldsymbol{X}_1\\alpha_1+\\boldsymbol{M}_1\\boldsymbol{X}_2\\beta_2 + \\boldsymbol{u}\\\\\n",
"\\boldsymbol{y} &= \\boldsymbol{M}_1\\boldsymbol{X}_2\\beta_2 +\\boldsymbol{v} \n",
"\\end{align}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"must yield the same estimates of $\\hat{\\beta}_2$. However the error terms are different, that's why we use $\\boldsymbol{v}$ in the second regression model. This is shown in the graph below with two different residual vectors $\\boldsymbol{\\hat{u}}$ and $\\boldsymbol{\\hat{v}}$."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"However, if we want to have the same residual, we can project $\\boldsymbol{y}$ off $\\boldsymbol{X}_1$, i.e. to orthogonalize $\\boldsymbol{y}$ to $\\boldsymbol{X}_1$.\n",
"\n",
"$$\n",
"\\boldsymbol{M}_1\\boldsymbol{y}=\\boldsymbol{M}_1\\boldsymbol{X}_2\\beta_2+\\boldsymbol{u}\\label{9}\\tag{9}\n",
"$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This model is called $\\text{FWL}$ regression."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And here is the visualization of $\\text{FWL}$ theorem, please walk through the plot with description above together."
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAJSCAYAAAD51HD+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd7gTVfrHv1MyM+m3Ui8dpPdLUamKFVEEQQUU27rquva2uoq7dl2Vn2VdVERlLSwithV1wQKCCigiRTqoSL29pc6c3x9hhiQ3/aZMkvN5Hp/HOwmTMyVzvnnf93xfhhBCQKFQKBQKhUJJKWymB0ChUCgUCoWSD1DRRaFQKBQKhZIGqOiiUCgUCoVCSQNUdFEoFAqFQqGkASq6KBQKhUKhUNIAFV0UCoVCoVAoaYCKLgolBXz++ecoLy+HyWQCwzD48ccf497HZZddBp7nkz+4JHPZZZehc+fOKdn3uHHj0L1795TsW+/s27cPDMPgwQcfzPRQUsaXX34JhmHw5Zdfatvuv/9+MAyT1M9hGAZXXXVVUvdJoSQCFV05RGVlJe69914MHjwYNpsNoiiiU6dOuPDCC/Hhhx9menhJ5dVXX8UzzzyT6WGEpKamBlOnToWiKHjmmWewcOFCdOrUKex777//fqxcuTLNowyEYZiw/9XU1GR0bImydOlSMAyDV155pdlrM2bMAMMwePzxx5u9dsMNN4BhGOzduzcdw0w5uSg4It2v/v/df//9mR4qhRKA/n9GU2Jiw4YNOPvss1FVVYVp06bhyiuvhMlkwq+//oqPP/4Y5557Ll588UX84Q9/yPRQk8Krr76K/fv344Ybbsj0UJqxfv161NTU4L777sPkyZMjvrempgZ/+9vfwPM8xowZk54BhmHcuHG48sorm203m80R/91LL70ERVFSNayEGTVqFADg66+/xhVXXBHw2qpVq8DzPL7++mvccccdzV4rKytDly5d0jZWSnwsXLgw4O8XX3wRq1evxmuvvRawfcCAAekcFoUSFSq6coDa2lqce+65IITg+++/R79+/QJev//++7F8+XI0NTVlaISZxePxgBACQRDS8nlHjhwBABQUFKTl85JFt27dMGvWrJjf39jYCLPZDIPBkMJRJU5paSl69eqFr7/+OmD7vn37sH//fsyaNQsff/wxCCFaOquurg4//fQTLrzwwkwMmRIjwffp8uXLsWbNmrju30yifnco+QdNL+YA8+bNw/79+/HUU081E1wqEyZMwLnnnhuwrb6+HnfccQe6dOkCQRDQsWNH3H777XA4HAHvUxQFjz/+OHr27AlRFNGuXTv86U9/apZ2Uutvtm/fjtNPPx0WiwVlZWV47rnnAAA7d+7EWWedBavVijZt2uCxxx5rNk6Px4OHHnoIvXr1giiKaNOmDa6++mpUVVVp7+ncuTO++uor7N69W0sjqDVFao3I66+/joceegidO3eGJEnYunUrjEYjrrvuumaf6XK5UFhYGNMD+5VXXsHAgQMhSRJKS0txySWXYP/+/QHnYObMmQCA8ePHg2EYjBs3LuS+vvzySy2acu+994ZNiRw+fBjTp0+HzWZDYWEhrrrqqmbXCABWrFiBU045BVarFWazGWPHjsWqVauiHlMsqNd28+bNOO2002C1WrXjDFXT9cUXX2D8+PEoLi6G0WhEp06dMGvWLDQ2Nga8b8mSJRg1ahSsVitsNhvKy8sxf/78Zp+/a9cunHHGGTCbzWjVqhXuuuuumKJro0ePxs6dO3H48GFt26pVqyAIAm666SZUVVVhy5Yt2mtr1qyBoigYPXo0AOCDDz7Aueeei7KyMoiiiLKyMlx77bXN7v1wdUihapYAX2Sme/fukCQJAwYMwPvvvx+xNu7111/XvhP9+/fH//73v6jHHg+xfMf//Oc/QxAEVFdXN/v3Dz74IBiGwe7du7VtP/zwA84991wUFhbCaDSivLwc7733XlLHHS/Lli3D4MGDIUkSunfvjjfffLPZe2J5BqlEex4Ax2szf/vtN0yZMgUFBQVaFBYAFi9ejJEjR8JkMsFms2HixInYtGlTyH0cOnQI06ZNg81mQ6tWrXDvvfeCEILDhw/jwgsvREFBAQoLC3HrrbfqMvpMAUAoWc/JJ59MjEYjcblcMf8bh8NBysvLid1uJ7fffjuZN28e+dOf/kR4nidnnnkmURRFe+8f//hHAoCcc8455LnnniPXXXcdYVmWDBkyJOAzx44dS1q1akU6depEbrjhBvL888+TkSNHEgDklVdeIR06dGi2/dNPP9X+vaIoZNKkSUSSJPKnP/2JzJs3j9x5553EZDKRgQMHEofDQQghZOnSpaRXr16kdevWZOHChWThwoVk6dKlhBBCvvjiCwKA9O3bl/Tu3Zs8/vjj5KmnniK//PILufDCC0lRUVGz87R48eJmYwnFI488QgCQUaNGkf/7v/8jd9xxB5EkiXTs2JFUVlYSQgj57LPPyLXXXksAkLvvvpssXLiQfPbZZyH3d+jQIfL0008TAOSCCy7QjmXjxo2EEEJmz55NWJYlgwYNIjNmzCD//Oc/yeWXX04AkLvuuitgX4sWLSIsy5Lx48eTp59+mjz11FNkwIABxGAwkK+++iricRFCCAAya9YscvTo0YD/GhsbtWtbWlpK2rRpQ66++moyb9488vrrr2vj7NSpk7avrVu3EkmSyJAhQ8hTTz1FXnrpJXLvvfeSgQMHkoMHDzY7n4MHDyYPP/wwef7558nVV19NzjvvPO09/vfUNddcQ1544QUyefJkAoD861//inpcr7/+OgFA3nnnHW3bH/7wB3LSSScRRVFIYWEh+ec//6m9ds899xAAZNOmTYQQQs477zwyefJk8sgjj5AXX3yRXHfddUQURXLyyScHfM6cOXNIqMepej9+8cUX2rZ58+YRAGT48OFk7ty55O677yZ2u53069cv4Dzu3buXACBDhgwhHTt2JA8//DB5+umnSadOnYjZbNbuuWgAIFdeeWXE98TyHV+9ejUBQF566aVm/75Pnz5k+PDh2t8rV67U7oEnnniCPPvss2T06NEEAHnzzTcjnp9w5zISs2fPJhzHhX0dABkwYABp1aoVue+++8izzz5LBg4cSFiWJVu3btXeF+sziJDYngfq2FiWJb179yYXXngheeGFF8jzzz9PCCHkiSeeIADI+eefT5577jny6KOPkk6dOhGr1Uq2b9/ebB8DBw4kl19+OfnnP/9JzjrrLAKAPP7446R///7Nts+bNy+uc0hJD1R05QCFhYVk4MCBzbbX19cHTKC1tbXaaw8//DARRZH89NNPAf9GnRBUobBp0yYCgFx88cUB73vuuecIAO3hQYhvggx+KFdVVRFJkgjDMGT+/PnNtl944YXatjfffDPgs1U+/fRTAoC8+OKLAZ/VrVu3ZsesPsTbtWtH6urqAl5btmwZAUDefffdgO2TJk0i7dq1I7IsN9ufytGjR4koimT06NHE4/Fo2z/66CMCgNx+++3atoULFzabSMKhTqwPPPBAs9dmz55NAJA777wzYPt5551HSkpKtL8bGhpIUVERmTFjRsD7mpqaSLdu3chJJ50UdRwAQv6nfrZ6bZ988smQ4/QXC3PnziUAyJEjR8J+3p49ewjHceS0004jbrc74DV/wa9+7gsvvBDwnoEDB5Ly8vKox7Vv3z4CgNx4443atl69epE77riDEELIxIkTA+7tMWPGkKKiIm0Mquj0R72+X3/9tbYtVtHldrtJSUkJ6devH3E6ndr7li9fTgCEFF02m40cOnRI275hwwYCgDz33HNRj5+Q6KIrnu94586dySmnnBLwvo0bNxIAZO7cuYQQ3/Xr1asXGT16NPF6vdr7FEUhJ598MikrK9PObzpFF8dxmpgmxPejRxAEctttt2nbYn0GxfM8UL/Hf/7znwP2+euvvxKe58ndd98dsP3QoUOksLAw4Pus7uOee+7Rtnk8HtK+fXvCMAy59957m20fMWJE2PNByRw0vZgD1NXVwWq1Ntt+0003obS0VPtvypQp2muLFi3CiSeeiLZt26KiokL7b8KECQB8lgcA8NFHHwEAbrvttoB9/+EPf0BBQYH2uoogCLjsssu0vwsLC9GzZ08YDAbMnj272fY9e/YEjKlr164YPHhwwJiGDBkCu92ujSkWLrnkkmbn5LTTTkO7du0CinArKirwySefYObMmWDZ8F+H5cuXw+Vy4aabbgqwcZg4cSL69OnT7Dwkk+CU6NixY1FRUYH6+noAwP/+9z9UVVVh1qxZAeetsbEREyZMwLfffhtTPd9ZZ52F//3vfwH/+a96Y1kW11xzTdT9qLVsS5cuhSzLId/z7rvvQpZl3H///c1qwoLTdAaDodnqu7FjxwbcO+Ho1KkTOnTooNV1VVRUYPv27Vp65+STT9Zec7vdWLt2LUaNGqWNwWQyAQAIIairq0NFRQVOPvlkAMD3338f9fODWbduHSoqKvCHP/wBoihq20899dSwpQFTp05F69attb8HDRoEm80W0/HHQjzf8YsuughffvklDh06pG176623wLKsVge3ceNGbNu2DTNnzkR1dbV2P1ZWVuLss8/G/v37sWPHjqSMPR7GjBkTcI5bt26NXr16JfQMSuR5EPw9XrJkCbxeLy6++OKAz+I4DieeeGLI590f//hH7f95nkd5eTkIIQELpNTtybo/KMmFFtLnADabTZuA/bn11ltx0UUXAWheeLpjxw44HA6UlpaG3KdaDL5v3z4AQK9evQJeFwQB3bt3b7asvl27ds28pQoKCtCuXTtwHNds+++//x4wpj179kQdUyx069at2TaO43DppZfiqaeeQlVVFYqKivD222/D4/EECMJQhDsPAFIquliWRVlZWcC2wsJCAEBVVRWsVqs2gZ199tlh91NZWakJiHC0a9dOE92haNOmTdR9AMCFF16IBQsW4I9//CPuvPNOjBs3Dueccw4uuugirXh4165dAID+/ftH3V/79u2b3VOFhYUBNTa1tbUBdW4cx2n30ejRo7Fo0SI0NDRoAksVTieffDLuvvtu/PLLL/j999/hdDq1ei4A2LZtG+68886QC1ESsdL45ZdfAAA9evRo9lqPHj3www8/NNseym4k+Pj9RRAAWCwWWCyWmMYUz3d8xowZePTRR/Gf//xHWzm8aNEijB8/Hm3atAEA7X685pprwor0I0eOoGfPnjGNL1nEch5jfQYl8jzo2rVrwN/qeQr3HQj+ERjqWVBQUBB2e6jaO0rmoaIrB+jduzc2bNgAt9sdsEKvd+/e6N27NwBAkqSAf6MoCsaOHYu//vWvIffZrl27hMYSLKyibSeEBIypV69eePbZZ0O+VxUbsWA0GkNuv+yyy/Doo49i0aJFuPbaa/H6669jyJAh6Nu3b8z7TicMw4SNwKnnTi2YnT9/Pjp27BjyveEmkXgId06DkSQJX3zxBVavXo1ly5ZpEbMHH3wQ33zzjTY5x0q4e8efG2+8McAuoFOnTtrEOHr0aLz55pv45ptvsGrVKvTu3RtFRUUAgGHDhkEQBKxatQoHDhzQ3g/4Ishjx46FJEn4+9//jh49esBkMkGWZZx55pkBhcrhzDzDRfriIZbvTtu2bQNemzNnTko8qvr3749+/frhrbfewg033IBvv/0We/fuxT333KO9Rz0vDz/8MIYNGxZyP+Gieqkk3c+g4M8OXj2tnqePPvooIOoZDnWhTazb/Y+Loh+o6MoBJk2ahDVr1mDx4sXairJodO/eHXV1dREjGwC01VTbtm3DkCFDtO0ejwe7d+/GyJEjEx53qDF99913OOWUUyKm+oDwk1w0evbsiZEjR2LhwoU45ZRTsG7dOsydOzfqv/M/D3369Al47eeff07Y0ykZztuqY3tJSUnU65kuGIbBqFGjMGrUKDz00ENYtmwZzj77bMybNw9z5szRxrxp0yacdNJJLf68O+64IyCa6y8QVf+zVatWYdWqVQErx4xGI4YMGaKJLrPZjKFDhwLwrcA8cuQIvvzyS4wdO1b7N6FSY+pkXFNTE2AVogo/FTXaoq7k9aclKbfg1YzBUZVIxPsdv/jii3HPPfdg3759eOuttyCKIqZOnaq9rl5bs9msm/sxVmJ9BiXjeaCepw4dOlA/sTyC1nTlANdccw3atWuHW265JWD5uz/Bv3ouuugibNiwAUuXLm32XqfTqaUrzznnHADAU089FfCel19+GdXV1Zg0aVIyDkEbU0VFRUgRJMtyQBrAbDYn7JR+2WWX4ZtvvsGcOXPA8zxmzJgR9d+cdtppEEUR//d//wev16ttX7ZsGbZs2ZLweVDTbS1xfT/jjDNQUFCABx98EC6Xq9nrR48eTXjfiVBZWdls2+DBgwEcP84pU6aA4zjMmTMHHo8n4L2J/ELv06cPJkyYoP2npg8BX8S3uLgYn376KTZs2BAgugBfinHlypVYs2YNRo4cqaUy1Uk3eOn9E0880ezz1Qn0iy++0LZ5vV7861//CnhfeXk5SkpK8NJLLwVcqxUrVoT97saC/7FPmDAhLtEV73f84osvBgC88cYbWLx4Mc4666wAoTlkyBD06NEDTz75ZMj7Ot33YzzE+gxKxvNg6tSp4Hkec+bMCWnvoOfzREkcGunKAQoKCvD+++9j4sSJGDJkCKZNm4aRI0fCaDTiwIED+OCDD/Drr78G/Oq87bbb8NFHH+GCCy7ArFmzMHz4cHg8HuzYsQP/+c9/8M4772DcuHHo168f/vjHP2LevHmoq6vDmWeeia1bt+Jf//oXhgwZEtLBPFFmzpyJJUuW4NZbb8WqVaswduxY8DyP3bt3Y8mSJfj73/+uFekPHToU//3vf3Hbbbdh6NChsFgsMQufiy66CDfffDMWLVqESZMmxZR6Ky4uxv3334+//OUvOPXUU3HBBRfg999/xzPPPIOOHTvizjvvTOiYS0pK0LFjR7z55pvo1q0bCgsL0a9fv7jSL1arFS+++CIuvvhi9O/fHzNnzkS7du3w+++/46uvvgIQKAZSzQMPPIDPP/8c55xzDjp37oyGhgYsWLAAHMdh+vTpAIAuXbrgb3/7G/76179ixIgRmD59Oux2OzZv3owDBw6E/DGQKGrU7f333weAkKLrySefBICAeq6TTz4ZJSUluPTSS/HnP/8ZJpMJH330UcjawtNPPx2dO3fGVVddhW3btsFoNIb0gBIEAQ888ACuvfZajBkzBjNmzMDRo0fx/PPPo3///iFrM5PBjz/+GLKHY//+/XHeeefF9R3v0qULRo4cicceewz19fWaCFNhWRYLFizA6aefjj59+uCKK65Ap06dcPjwYXz33XfYunVrgJ+Xnoj1GZSM50GXLl3w+OOP45ZbbsHw4cMxZcoUlJSU4Ndff8Unn3yCfv364dVXX039QVPSS8bWTVKSztGjR8k999xDBgwYQMxmMxEEgXTo0IFMmzaNvP/++83e39jYSObMmUN69uxJBEEgRUVFZOjQoWTOnDkBPjOyLJPHHnuM9OjRgxgMBtKmTRty7bXXkqqqqoD9hbNxiGe71+slTz/9NBk4cCCRJInYbDbSv39/ctttt5FffvlFe19NTQ2ZPn06KSgoCFhqry5BX7hwYcRzdfHFFxMAZPHixRHfF8zLL79M+vfvTwRBIMXFxWTmzJnkt99+C3hPPJYR6pgHDx5MBEEgAMicOXMIIeGXwS9YsIAAIHv37g3Yvnr1ajJx4kRSWFhIRFEknTp1ItOmTSPLli2LOgZEsRUIdw3VcfpbHXz++edkypQppKysjAiCQFq1akXOPPPMkH5hb731FhkxYgQxGo3EarWS8vJy8sorr0T93HhtBf7xj39oViLBHD58WLPIWLFiRcBr69atI2PGjCEWi4UUFRWRmTNnau9Xr5PKjz/+SE4++WQiCAJp27Ytue+++zQriOB74YUXXiBdu3YloiiSgQMHkg8//JBMnTqV9OrVS3tPJDuRTp06kdmzZ8d07Oqxhfpv5syZhJDYv+MqzzzzDAFALBYLaWpqCvmezZs3kwsvvJCUlpYSg8FAysrKyMSJE8lbb72lvSedlhGh7u+xY8eSsWPHBmyL9RlESGzPg2hj++ijj8j48eOJ1WolRqORdOvWjcyePZt88803UfcR73ZK5mEIodV2lPxj9uzZ+PDDD3Hw4MGYilgplFQzcOBAtGrVKulu8xQKRT/Qmi5K3lFdXY3FixfjoosuooKLknZcLlezurXly5fjp59+wimnnJKhUVEolHQQNdL1z3/+Ez/88APsdrtW9+APIQQLFizAhg0bIIoirrvuuriKOCmUdLF3716sXr0ar7/+Or744gts3rw57V5BFMrXX3+N6667DtOnT0erVq2wZcsWzJs3DyUlJdi0aVPCtgQUCkX/RC2kHzduHM4880w8//zzIV/fsGEDDh06hGeeeQY7d+7Eyy+/jIcffjjpA6VQWspXX32Fyy+/HO3bt8dLL71EBRclI3Ts2BFdu3bF888/j8rKStjtdkyePBmPPPIIFVwUSo4TVXT16dMnohP4+vXrMWbMGDAMgxNOOAGNjY2orq6mDw+K7rjssssCWhRRKJmgY8eOeO+99zI9DAqFkgFabBlRVVWFkpIS7e/i4mJUVVWFFF3Lly/H8uXLAQCPPvpo2H2qztAUCoVCoVAo6SLRbiyxklafLtW4T4WKKwqFQqFQKHohki5JhiBr8erFoqIiVFRUaH9XVlZqfc0oFAqFQqFQKD5aLLrKy8uxcuVKEEKwY8cOmEwmWs9FoVAoFAqFEkRUy4i5c+di69atqK+vh91ux/Tp07VeU6effjoIIZg/fz42btwIQRBw3XXXoVu3bjF9OE0vUigUCoVCyQaSkV7MqCM9FV0UCoVCoVCyAV3UdFEoFAqFQqFQokNFF4VCoVAoFEoaoKKLQqFQKBQKJQ1Q0UWhUCgUCoWSBqjoolAoFAqFQkkDVHRRKBQKhUKhpAEquigUCoVCoVDSABVdFAqFQqFQKGmAii4KhUKhUCiUNEBFF4VCoVAoFEoaoKKLQqFQKBQKJQ1Q0UWhUCgUCoWSBqjoolAoFAqFQkkDVHRRKBQKhUKhpAEquigUCoVCoVDSABVdFAqFQqFQKGmAii4KhUKhUCiUNEBFF4VCoVAoFEoaoKKLQqFQKBQKJQ1Q0UWhUCgUCoWSBqjoolAoFAqFQkkDVHRRKBQKhUKhpAEquigUCoVCoVDSABVdFAqFQqFQKGmAii4KhUKhUCiUNEBFF4VCoVAoFEoaoKKLQqFQKBQKJQ1Q0UWhUCgUCoWSBqjoolAoFAqFQkkDVHRRKBQKhUKhpAEquigUCoVCoVDSABVdFAqFQqFQKGmAii4KhUKhUCiUNEBFF4VCoVAoFEoaoKKLQqFQKBQKJQ1Q0UWhUCgUCoWSBqjoolDyEJZlwTBMpodBoVAoeQUVXRRKnmEwGMDzPFi2+defZVlwHJeBUVEoFEruQ0UXhZIncBwHURQjRrgEQYDRaEzjqCgUCiV/oKKLQskDOI6D1WqFwWDI9FAoFAolb+EzPQAKhZJaDAYDGIYBIUTbxrIsJEmC2+2G2+2GoigZHCGFQqHkB1R0USg5Csuy4PnmX3FBEGAymdDY2AiDwQCz2QyGYTTxRQvsKRQKJTVQ0UWh5CDhCuUlSQIhBLW1tfB6vZBlGQDAMAwMBgNMJhMEQYAoinC73XC5XHC73QFRMgqFQqEkBhVdFEoOwTAMeJ5vFq3iOA6SJMHj8aChoaHZvyOEwO12g2EYyLKMhoYGCIIAQRBgtVoBQBNgVIRRKBRKYlDRRaHkCOHSiaIoQpIkuFwuLbIVDUIIXC4XXC4X6uvrwTCMFgGzWq2aSFOFGIVCoVCiQ0UXhZIDqMXy/jAMA7PZDACora2FJElR90MICVnT5S/C1H2rYs5ms2mvq5EwCoVCoTSHii4KJYtRa7GC4XkeFosFTU1NKRFBhBA4nU44nU4Aviib6vHlL8JcLhc8Hk/SP59CoVCyESq6KJQsheO4kO7xRqMRgiCgrq4ubVYQiqI0E2GiKMJkMsFgMEBRFC0dSUUYhULJV6joolCykHDpRKvVCq/Xi9ra2mb/JlzqMN73xIKiKHA4HHA4HACOizCz2QyDwQBZlrVImNfrbfHnUSgUSjZARReFkkWESyeqfluNjY26jCQFizCO4yAIAiwWCwwGA7xerxYJoyKMQqHkKlR0UShZQjjvLZPJBJ7nUVtbmzVWDrIsNxNhoigGiDC1MJ+KMAqFkitQ0UWhZAGh0oksy8JqtcLtdqOuri7uferJeV6WZTQ1NaGpqQmAT2CqHmE8z8Pj8WiRsFhtL0LBcVyL/j2FQqG0BCq6KBQdE62VT0NDQ8yRIEJIyEhZ8Hv0IMa8Xi+8Xm+ACBNFETabTRNhaiQsHhFVWFiIioqKVA2bQqFQIkJFF4WiU8KlE81mM1iWzap0YktRRVhjYyMAX+RPEATY7XZwHKeJMJfLRZt3UygU3UJFF4WiMyK18rFYLHA6nZpJab7i8Xjg8XgCRJgoiigoKADLsgGRMCrCKBSKXqCii0LREeG8tyRJgiiKaGhoSGlNUrZGzlQRpqKKMLPZDIZhNBFGoVAomYSKLgpFJ4Tz3rJYLFAUJaT3VjzEWq+lh5qulqKKMLW5t9o3kud5lJSUaO2KXC5X1gpNCoWSfVDRRaFkmEy18sknVJEliiIqKyubRcL8m3dTEUahUFIFFV0USgbRUyuffIEQEtCYm2EYCIKgWVQACGjeTUUYhUJJFlR0USgZIpFWPqkmHwWGf3Pu+vp6TYSJogir1aqJNFWIUSgUSqJQ0UWhpJlw3lupbuUTXNMVrnYrF2q6WoK/CAN850MURUiSBJvNpr3uHy2jUCiUWKCii0JJIzzPg+O4ZhGlbGzlky8QQuB0OuF0OgH4RLMgCDAajQEizOVy6bLvJYVC0Q9UdFEoacDfe8tfVLW0lQ8l/SiK0kyEiaIIk8kEg8EARVG0dCQVYRQKxR8quiiUFGMwGCBJUjOfqERa+aQavbQByiYURQlo3q2KMLPZDIPBAFmWtUiYXq4zhULJDFR0USgpxGAwgOd5GAyGANFlsVgAIK3pRCqo0kOwCOM4DoIgwGKxwGAwwOv1apEwKsIolPyCii4KJQWE896irXzyD1mWm4kwURQDRJhamE9FGIWS21DRRaEkmUy38qHoG1mW0dTUhKamJgC+xRWqRxjP8/B4PFokLN77hOM4mEwm1NfXp2LoFAqlhVDRRaEkkVDeW+p2QkhGvLfigaYg04/X64XX6w0QYaIowmazaSJMjYRFE2EMw4QU/BQKRR9Q0UWhJIFw3ltqKx9FUdDY2JiBkQVCBZX+UUWYer8YDAYIggC73Q6O4zQR5nK5QnYroJYjFIp+oaKLQmkhPM+DZdlm241GIwwGAxoaGmAymTIwskDoZJydqM27/UWYKIooKCgAy7IBkTAqqikUfUNFF4WSIP7eW/6wLAuLxQKv14u6ujo6EVKSiirCVPybd6viX5IkuN1u2reTQtEZVHRRKAkQrZWPnry3KLmNKsIaGhpgMBi0VZFmsxkMw2jtilwuF412UigZhoouCiVOwhXLq5GGYO8tPRWn62UclNTAMAxkWdZWL6rWJWokTBVhajqSijAKJb1Q0UWhxEg47y21lY/L5dJFsXw46ASbfxBCAhpzMwwDQRA0iwoAAc276T1CoaQWKroolBgI570liiIkSaLeW5SswL85d319vSbCRFGE1WrVRJoqxCgUSnKhootCiUKodCLDMDCbzQCge+8tCiUc/iIM8N3X6g8Jm82mve4fLaNQKIlDRReFEoZIrXysViscDkfWtfKhNV25DcMwLUoREkLgdDrhdDoB+FLngiDAaDQGiDCXyxWwgpJCocQGFV0USgjCeW+prXzq6uqybjk+rdehxIuiKM1EmCiKMJlMMBgMUBRFS0dSEUahRIeKLgoliHDpRKvVClmWaTqRkrcoihLQvFsVYWazGQaDAbIsa5EwaplCoTSHii4K5RjRvLcaGxsT/jVP03qUdNDS9GK8BIswjuMgCILmFeb1erVIGBVhFAoVXRQKgPDpRJPJBJ7nszKdGAoq/iipRJblZiJMFMUAEaYW5rdEhLEsC0IITZlTsg4quih5TaRWPlarFW63G3V1dS3+HDo5UPIRWZbR1NSEpqYmAL4fN6pHGM/z8Hg8WiQsHssVo9GoRdkolGyCii5K3hLOe0sQBJhMJtrKh0JJMl6vF16vN0CEiaIIm82miTA1EhZJhKU7jUqhJAsquih5SbytfFqKHtN6oihCEARab5NDZJsYUUWY2snBYDBAEATY7XZwHBfQNzI4vZ9Nx0mhqFDRRckrInlvWSwW3bfySRYWi0XzXApO9VAomUJt3u0vwkRRREFBAViW1SJhoeovKZRsgIouSt6QyVY+evpVXlBQAIfDAafTGTLVw/M8SktLA9rB5MIiAkr2oYowFbVvpCRJkCRJs6eg9yglW6Cii5IXhPPeUiM++eC9JYoiOI5DTU1NSHGppnqMRiMqKiq0KIPZbAbDMAEiTE8ikhJILl8bNd3Isqxm2Bp8j6r3aS6fB0r2QkUXJacJ573F8zwsFguampryIqVmsVgA+FaTqYIrWp2ZGmVoaGjQGiOrK89oY2R9osfawVSg1q75p8TV0gH6Q4GiZ6joouQsgiCELCw2Go0QBCHt3luZKHJWa9WcTidcLhcKCgoS2o9/z736+nqtMbLak4+2g6FkGvWHgL8I8/+hACCgeTcVYZRMQEUXJedQvbfsdntA2lBt5eP1etOeTszEAz6VtWqhGiP7t4NJlgkmhRKKWH7AhPqhIAgCRFGk0VpKxqCii5JTpLKVTzahphPTJS5DtYNRJzd//6VQS/8pyYNhmLw5v/H+kPEXYQC0aK0kSbDZbNrr/tEyCiXZUNFFyRmCi+XV/1db+STbeyseCCFpSS8GpxOjjSlVBDuRh1v6TwueKYmQjNq1UNFaQRC0lLm/SMuHH2qU9EBFFyXrCee9BQB2uz1prXz0jlpjVV9fnzLri0QJtfSfFjxTWkKy7xNFUUKmzE0mEwwGA61bpCQFKrooWU2kVj4cx6G2tjYvaoosFgsYhklKNC8dUblQBc/+tTY0zUOJRDpWaQanzIPrFmVZ1iJh+fCMoSQHKrooWUu4Vj6qAJFlWTcPQ1XIJBu1MbfL5dJ+oceKXuwFgmtt/NM8drudTm5xkG1tgBIlE8cZqm5REARYLBZt8YgaCaP3KSUcVHRRso5wxfLJskfIFtTG3HpMJ7aE4DRPqMlNFWG5dNyU7EKW5ZCLR4Lv05au4OV5HrIs54WYzgeo6KJkFTzPh+y7JkkSRFFMaSuflpDsB2aqGnMD6Sv6j5XgyU1tV2Sz2ejKyDxFT/enSvDiEZ7nNY8w/96m8f5YMJvNaGpqonVkOQIVXZSsQPXeCtfKR1EU3bfySUY6zz+dmEhjbr1NVImgtisKbopcWFiY961g9ChG8hX1Pg3ubRr8Y8HtdkcUYfSa5hZUdFF0D23l40NNJzY0NNCaET/82xUBx1dGql5l/k2RKZRMEerHgiAIsNvt4Dgu4MeCf8SWiq7cgoouiq4JVywfSysfPT2oWlpIn8p0Yq6hTl7+7YpUA0xVqNNl/5RMo/5YCI7YBnvZUdGVW8Qkun788UcsWLAAiqLg1FNPxeTJkwNer6iowPPPP4/GxkYoioIZM2ZgyJAhqRgvJU8I573FsiwsFktGWvlkgpamExMhVSstM0GwAWZJSQlkWQ5oV0RXnFH0QCgvO/W/oqKigHQkrV3MXqKKLkVRMH/+fPz1r39FcXEx/vKXv6C8vBxlZWXae5YsWYITTzwRp59+Ovbv349HHnmEii5KwoTz3oq3lY/eCsLjJVXpxGw+J8kglnZF0eps9Eq+X9tcQo3YSpKEioqKkIbC+Vq7mM1EFV27du1CmzZt0Lp1awDASSedhHXr1gWILoZhtGLBpqYmFBYWpmi4lFwnXDrRbDZrZqfZ+ICJN3qUqnRiNp67VBJqxZkoigF1NjS6QNEDwYbCajqSdnXILqKKrqqqKhQXF2t/FxcXY+fOnQHvmTZtGh588EF88skncLlcuPfee0Pua/ny5Vi+fDkA4NFHH0VJSUnI91VUVMR8AJTcIFI6MdH0WjZGutTjdbvdaUsnBpNN5yvZBBc7q+kdOrFR9AQhJGRXB9WiAkBAVwd6r8ZOOF2SLJJSSL969WqMGzcOkyZNwo4dO/Dss8/iySefbOanNGHCBEyYMEH7m4orChDee0vPvQRTgZ5WJ+ZKTVdLUSethoaGkO2K/EWYXqATbP7h39VBXUCSDfeqHomkS9q1a9fi/UcVXUVFRaisrNT+rqysRFFRUcB7Pv/8c9x9990AgBNOOAEejwf19fWw2+0tHiAlt4nUygdAi9JreioIjzYWk8kEnufTkj7NtuifXghuV6SujDQajbDZbFAURZvUMrUyUi/3OyWzhLtX1VW8tL9p5mgeXgiiW7duOHjwII4cOQKv14s1a9agvLw84D0lJSXYvHkzAGD//v3weDyw2WypGTElJ1D76wVPEhzHwW63a75LuS4OWJaF3W4HIQR1dXUpP95cP5/pRF0ZWVtbi4qKCtTU1EBRFJjNZpSWlqKwsBAmkynkohAKJZ2o92pdXR0qKipQXV0Nr9cLo9GIkpISFBcXa+2LKKklaqSL4zhcccUVeOihh6AoCsaPH48OHTpg0aJF6NatG8rLy3HppZdi3rx5+O9//wsAuO666+gvLkpYorXyqa+vT0rRst4jXepqzEymE0NFvagwS4zghshqGxjaroiiN4L7m7IsC1EUYTKZYDAYoCiKlo6kfnbJhSEZfMIeOHAgUx9NyQCxtPJJZvG42WzWjf+SKIpgGEZ7yKnpxPr6+rSKHKvVqvnpAb7C8WABYLfbc7bXW0lJScZqSdXVZoIgBJhfJnPJf0FBgS5qAlMJwzDNyl5ymUzcs6oIE0URBoMBsixr92ou31vRSEtNF4WSDMJ5b6WylY+eIl0qqrmrx+NBXV1dRsagt3OSL4Qyv/Rf8k9Xm1FCkYl7IThqy3EcBEHQUpDUVDhxqOiipJxwxfJqtCdSK59cgRACg8EASZIyGomgk7l+CLXk33+1mRpZyMWIY0vIp4UgevmBJMtySFNhfxGm/mho6bMt168vFV2UlBGtlU+qoz16inSJopg15q56Om/5QvBqM3WhiclkgiAIcaV39H5/UWJHrwIklKmw6hGm1i+qkbB47X5sNlvOljcAVHRRUkS4dKKevKjSAcMwsFqtWmGqHh+gFP0RXOgcLrIQPKnlg1jWqxBJBdlyrKqpcHBnh+BFJLG01wp3zJIkQZIk1NTUpOIQ0gYVXZSkE6mVTypa24Qj0xEb/16R6t8USiLE0q4on/yWskGIJINsEV3BBHd2MBgMEASh2f0aaiVvuGPOlR8UVHRRkgbLsuD55rcUx3GwWCwJtfLJVoLNTvUiuDItRCnJIdSkpq6MLCoq0qJguRhdzaf7N1tFVzDqIpLg+7WgoCBgJa/b7Y4ounLhXFDRRUkKBoMBVqsVDQ0NAdtVF+SGhoa0t/LJhMBQ04lerzegXi2bxE42jZXiQ53UBEFATU2NFgnL1RYwuTD5xkKuCI1gQq3kVXucqnNJcKN5lmVzYsEVFV2UFqF6b7EsG2B4yjAMzGYzAF8rn3zAP52Yq0WglOxATd+offj8W8Bku/Flvv0gyEXRFYx/j9OSkhI4HA6txdYjjzyCsrIy9O3bF127dk1o/2+++Sa2bt0Ki8WCu+66CwDQ2NiI1157DVVVVSgqKsJll10Gk8mUzMMKCRVdlITxTyf6R0dS6b0VD4SQkM73qcBoNMJgMGSF/UW+TVr5jtoCJth9XI0qZJvnUq5Gf0KRr99V/xrFK6+8Er/++iv27NmD//73v/B4POjatSt69OiBrl27QpKkqPsbMWIERo8ejTfeeEPbtmLFCpxwwgmYMGECli9fjuXLl+Pcc89N2TGpUNFFSYhQxfIMw2itfLJBfCSDcOnEYPSSsotlstLLWCmpIZTxpZqKjHelGSW15JPADIfBYEC3bt0wZMgQeDweVFVVYc+ePdi1axc+++wzjB07FoMHD464j27dujXrYLBp0yZcf/31AIBhw4bhueeeo6KLoj/CeW8xDKOlGPWSTky1eFAjejSdSNELiUzSsayMDK6vyST5JETy6VijoZ4LSZLQp08f9OnTp0X7q6+vh91uB+DzBquvr0/GMKNCRRclZsJ5b6m1TIQQ7cGd6xiNRgiCkDcRPUr+ELwyMrhdkb8Io4IgtVDRdRyWZVN2LhiGSVt0n4ouSkxEa+VTW1ur/WrQC6mIdPmnE+OJ6NGUHSVbidauKN0rI/NJiDAMQ3/UHSPZ58JqtWrzVm1tLSwWS9L2HYn0VBlTsha1HUmwYGBZFna7HYQQ1NXV5cVDkOd52O12OByOrI3oxSL+qEDMXlItSNR2RXV1daioqEB1dTU8Hg+MRiNKS0tRVFQEs9kc0q8v2ePIB/JJYAKRjzfZ56Jfv35Yt24dAGDdunXo379/0vYdCRrpooRFtYIIJlta+SRTPLQ0nahXIaPHMVGyh1DtigRBiNquqCXk2z2bb6Ir3PO1JaLrtddew+7du9HQ0IA5c+bgrLPOwoQJE/Dqq6/i22+/RVFREWbPnt2SoccMFV2UZqjeW3po5ZNpEk0nUij5iCzLASsjw/XgC9X+JVbyKfqTbwIzUt1WS657OEH1pz/9KaH9tQQquigBRGvl43Q64XK5Qv5bvT0IWxpd0ovfWCrheZ7aAlBSRrh2RYWFhVpRvloTprfnhx7IJ4EJRD7eVBbSpxMquiga4YrlY23lo4qcXPhiJHt1ol7Si+o4GIbRCkdtNhtkWdYiEHoZKyX3UNu/qO3CgldG+veMDEc+FZfnyvM0VqLVdOXCdaeiixLRe8tisUBRlKxMrSUiHrL9mGNBXQTR1NQEh8MBWZYDDDIFQYAsy1rRdC486Cj6JNTKSLVdkXr/ZWu7omRARVfuQUVXnhPOeyuR1Fq2R7ryJZ2otivyj1r6G2SaTCbtvvBPA1FvJkoq8RdZwPF2RSaTSfsh4HK5wHFc3qTEs/l5mgjhjjeXzgMVXXlMuHRioqk1vaWl4hlPPrQvMpvN4DgOTU1NUdPEqghraGgI6c2U7xEISuoJ165ILXeQJEn7MZDLIixXxEYshEshUtFFyWoipRPzbaVevqQTrVar1tA4FiHq/55wEQj/hsnJtgWgUIJRfwiorYlkWdZ1u6JkkEtiIxZYlqWii5JbRGvl05I+gnqLdAGRl1xzHAer1ZrT6UT1uqqeaqIotnifwRGIcL366Io0SipQJ+BwKyNzqV2R3p6nqSacuAonxrIRKrryiFha+bTk4aRH0RWOfEgnGo1GGAyGlHuqRevVF8uKNAqlpfivjFRT4oIgZKxdUTLIpQhPLNCaLkpOEM57S007ud1u1NXVZWBk6Scf0on+aeJErmtLxXPwijRRFGE0GmGz2aAoiibC9NzNgKJfYpmA/VPi9fX1Ie9DVYTRukT9QEUXJetJZysfvUe68iGdGO0YCSEh74dUQQhp1iZGLchPlkM5hRKN4PswXF2i2+2mPwYyCBVdlKwlUisfi8UChmFSknbSq+hS04n19fU5W+ytrurSc8rU35oCCO1Qnu11OJTUkowJONzKSPpjILNQ0UXJSsIVy8fSyqcl6PVLoTqv52o6EcjeYwx2KFctAag1BSUSyX7WhPoxIAgCCgoKwLJsgAjT63MuFwhXME8L6Sm6JVyxvBrpidbKpyXoLb2oik+Hw5ESkRkvqTg3al1eMoV0Jq8jtaagRCMd96b6YyDc4hAakU0NNNJFyRr00spHL6JLTbWpLta5SKJ1ef7XSC/XKxThUkA2mw08z1Nrijwm3dc7VLui4Iis/3soiUFFFyUrSGYrn5agly+Ff6rNbrdneDTHSeb5SdTmQy/XKBGCU0DUmiI/yfQPhVBmwYIgwGg0wm63BzSPp0X5ySFXml0DVHRlPZFa+ag99tJ1s2Y6vZjqmjU9oNpBeDyevLH5CEekZsnUmiJ30VvUQ1GUZit0BUGAxWJpUVpcb8eZSXLpXFDRlaVE8t6yWCwJezRlK2o6MbhmLdubcPujRi5b0jUgFjItnhMhXKsideJTC6EplFQjy3LIjg1qWjzWlZG58txKBrSQnpJRjEajtqLGn2S08mkJmZqss2XlXksEYDId9LNNUCVCuFZFPM+jpKSEFkJnMdkmRsK1K/K3SVHvR//jyrbjTCW5dC6o6MoiVO8t1X/LX1iZzWawLJvyli+RSLfoiiWdmAuRLovFAkJIUkRlNp+HlqBOfEajERUVFSELoak1BSUdBNukqPei+uPRPwqWr9/XYLL9Ge4PFV1Zgn860d9VXLUMcLlc2i+pfCBcOjGXyFSNWjamF+NFjS7U19drhdAmkwmCIFBrCkpa8b8X1XZFamRbLRfJhx8EkYQVFV2UtBJcLK9OimovMb24rKdrslZ/EdbV1cXUg00vAiKeqJsqAvRybXOZUIXQoawp3G53ztSVUPSJf7sitVxEluUArzr1fsy1BSJUdFEyTjjvLQDaL/JMphODSbXAyYfViYDPDoLjuJRdW72IUL0SrlURtaagpBPVJiGWdkVutzvrf5xFElYsy+pmnmspVHTplEitfMxmMxRF0WoC8oFEo3p6inRFw98Oor6+PiWfEfzgypZzk0n8a3BCWVO43W44nc6MRx5yKRpACX09g38QqAtE7HY7OI7L6qhstEhXth1POKjo0iHRWvk0NjZCFMUMjCwyqRI4LV0koBdhEen8pMsOIhaySaimm1isKdSJL9sjD5TMEouIDl4ZKQgCBEHIynZFkWwhcukHBRVdOiKc91ZwKx+WZXU7KSZzXMlYJJANX1Sj0QhBENJqZEtJDuGsKex2O22UTGkRiQgNtSjfPyrrv0rXX4TpjVwSVpGgoksn8DyvrUj0J5T3Vj5EIpJZSK6XcxV83dLdF5OSekJFHtRImN4nPYq+aKkICY7K+i++8u/a4Ha7Mx5dV8eX630XASq6Mo7qvRVKGKj99fItApJMzzG9flk5joPVak1bX0yVWAS7Xs9ZNhLKDiBVPfpybXKiJPe76L8yEjieGvdfGZlJqxQquigpJ1orn3D99XI10pUqzzG9nSvVh0fPdhB6O2e5QPCkF24lWrT2MJT8INViI1RqXBCEuNsVJYtwx5tLLYAAKroyRrhieTWt1tDQEPHXb65NirEed7zo6RcSIQRGoxFAbB5jlNwmnDWFf3uYbCmCpiSfdEd41NR48P1YUFCQlvrEcCsUaaSL0iIieW/poZVPJkjlceslKqiG8t1ud8Y7B+jhfFCaE8qaIt5WRbn+3Mi1CTgSmT5W9X5UUe9Hf786NX2ejHHS9CIl6UTy3lJbPWR6Qk4n+dLCSF0ModoJZJJYHl659IDLVsJZU0Sqv6FiOrfQm9hQBRaAhH8URCJcGlFv56GlUNGVJsKlE3Oth2CsX45UpRNDkcnJyGg0wmAwoLa2FpIkZc3EmC3jzBciWVOopph6WIGWanJtAo6Eno811I8C//6liSwSoZEuSlIIl05U7QIIITllFxBLf8F0plEz9WVVr68syyEXQ1AoLSGUNYUkSRAEASUlJbRVUQ6QTWIjXP9S1TQ4lpWRtJCe0mLCpRNV9/GW2AVky5fRHzWdmO66pnRHbSLZQdAIEiUVqG1f1B8zqbSmyCTZJESSQbYeayztitSFIqqgopEuSosIl05Mlvt4LBGlTBBuXGpdUzrSicHjSSdqujjU9dXDtYrVp4uKw+wl160p9PA9Sge59B0MjsyGWqkbKkABUNFFiUKkVj5WqxVerzdp6UQ93oyhJmzV5DVTqzLT9fCyWCwAkFPpYkr2k0vWFLkkRKKhx+d7svBfqQscT48XFhZqnRu2bt2KNm3aJO08fPnll/j2228BAG3btsWMGTPCOgmkEiq6kkg8rXxaSjZ8Gf3TiZmqa0rHefJfhalGF8KNJZ8mDUr6ieV+T4Y1RSbJhmdfMshl0RWMmh6vqKjQurT8+OOP2L17NywWC3r06IHOnTujQ4cOIefYaNTU1GDlypW46667IAgCXn31Vfzwww8YMWJECo4mMlR0JYFYWvkkO8qj1wlcHVem0onhxpMq9HKcFEoi93ki1hSZRI/PvFSRT6LLH0IIPB4PJk2apP39008/YfXq1fjtt99QXFyMHj16YNCgQbDb7THvV1EUeDweraYsnn+bTKjoaiHhiuVTHeXRs+iSJCkvTF4znTZNFFrTRQlHLNYUqXQlj0a+CpF8pqioCCNGjMDAgQNBCEFFRQV27NiBpqammIVTQUEBxo8fj7/97W8wGAzo1asXevXqleKRh4aKrhbQ0lY+LUGPE6P6Kzlcz8hMkIrz5F+fF89xEkISCo1TKJkilDVFsCs5taagpBJ/oc0wDEpLS1FaWhrXPpqamrB582bcd999MBqNWLBgAdavX4/y8vJUDDkiVHQlgF5a+ehJdKlptlw3aVTtPpJZn0ehJIN0RIGCXclVawqbzQZFUVJuTUEjXflHMq75jh07UFRUpC12GjBgAPbu3UtFVzYQrZWP0+nU6iNSiZ4ePP5pNr25ricz0iVJEkRRbJHdh57ODYXSEnLdmoKiD5IhugoKCvDLL7/A7XbDYDBg586d6NChQ5JGGB9UdMVBuHSiOhmns5WPHtKLaprNP52oJzGYTJJhB6HHc6O6mOeCcSYls4QyxJQkCQUFBWBZNinWFDTSlZswDBNWmLMs2+Jr3rlzZwwcOBD/+Mc/wLIsysrKcNJJJ7Von4lCRVcMRPLeslgsUBQl7d5MmRZd4WwwMj2uYFo6HnVBRLoimOlEbUPldDoDohORbC8olFjxer2aDxPgMw5OhjUFFV25RyRhFUmQxcNZZ52Fs846q8X7aSlUdEWB53lwHNfshkhGK5+WkMmibP8mzuHaNuQC6oKI+vr6pEQw9SRI7Xa7lhryeDzaajXVOJPnedrDL8vQexQoUoPkWK0p9PL9oSSXSPeu3u/reKGiKwwMw8BkMsHj8TS74Mlq5ZNtxLJqT49fjkQe1NlqBxENg8EAjuNQW1sbMp2oGmdKkoTKysqAHn5682yiZC/hGiTbbDbwPB+QivR/xubaBByOfDlOFSq68hw1nWgymQLShqlo5ZMo6Y6axOqqr6doTiKEqlPLFdQIpSzLMdVvhSuU9vdscjqdWdE+hqJvwrUqCramyBdyTWhEI5+Ol4quIMIVy6eilU9LSKe4USfrXI/spdoOIpOC1Gq1QlEU1NXVoaCgIOC1WB94wRNjtrWPyXVyaeIK1apIkiQYjUYoiqIJsVxe/JEr1zIWwt27ySii1xtUdPkRTnDpMdWUjgk8ERPQbI10JcMOQo+kciGA6tlUX1/frH0MtQugJAt/QS/LMgghIITAYrHk7L2Wjc/QlhBOdCWriF5PUNHlR7BgYBgGdrsdLpdLd6mmVIubRKM+2Sa60rkCNVMp4UgLAZI1nnDtYwoLC8EwTED7GAolURiGgSzLcDqdze61ZFpTZJpcilrGAsuyIcVVLp4HKrrCIIpixILjXCZfFgqk29A2nURbYZpq/NvHqOkhNRWZDudySu4SfD+Ha1Xkn/b2d9LPBnJRbEQiXEQrF88DFV0hUI0w1S+zHkl1T8FEoz7ZEulKth2EXlAjd7Is6yY6658eApo7l2e6iXKukIsTVDCxPFuC096CIGTdCtx8uJb+REov5tp5oKLLD47jYLPZtMiHzWbT7UVPtrhJVhF5NoiudPbH9CfV50aN3DkcDl3/qo91pZqej4GSGeJ9HkezptBrPZhe551UQUVXnsLzfEArH3WS1OtFT9YEnuvpRPX6qUXlbrdbS0XkColG7vRwbwevVKPeYJRUEU7w6632UM/zTiqItHox1+YkKrr8cDqdAc2ssyFq0xJSUUSu13OmFpU3NDToNmWcKHpcXZsoobzBJEmi3mAxkuvnJNliJJQ1hV5sUHL9WvpDI115SvDF1auASAapbGOkt3OmdhfItChJ9v2UiKWHOg7/fegZWZbR2NgYsUiaeoP50Pu11DvBtYfBNijpjLrm27WkqxcpAHJXdOWqJ1UwaiSPYZiMC65kw3EcrFZrxnp/ZgrqDZbfpHMSDmeD4h91TdUCkFwUG5GgkS4KgNwTXen0pMo0/qIEyK0vr7oaK9dWXsZLqElRkqSA+hw1FUnJHTL1PQ5nTWGxWEAICfAHaym5aAoaCSq68pRwF12vxHMzpjKdqDdEUYQkSZooEUUx00PSaOn9ZDKZwHEc6urqWvQwysWHmdfrRUNDQ7PWMTabTfMGy2XyYaLW0/PYP+oavABEluUWedHl4vczEpEK6XOtdICKrghkw00fy5czX9KJADTbAf9Inp4iloneU/6NuOvr6zMyhmwinDcYz/MoLS2l3mBZjB6vV7jm8KoXXbyp73wTXeHIxfNARVcE9DRZhyLazZhP6UTVDsLlcmkPvlxBTZXqpdl6NqJaBZhMJlRUVFBvsCxFz89jf2K1pgi3CjcXxUYi5OJ5oKLLj1CrF1mWzdBoohPJRyyThdbp/pJEs4PQk3iOdxxqqjQfopTpJFe9wXJtggomWyfhRKwpsvE4k022Xu9IUNEVAT1N1qEIN758SidmusdgKvF3zk82ufgwS5Ro3mD+UTA9nzM9P6sox4nFmoJl2ZyL2CdCLj6nqOiKQLaJLr2kE9Ph5B+PR5WermMs58S/fisVzvmxXpdcfODFAvUG0y+5eE+GWoVbUFAAq9UKlmXzuv6QOtLnGXqarMOhji+ffJty+ViT1QOzpeTbwz0S1BuMkk68Xq/WsF6WZU3052r9YSQhnYsim4quCOhddKk3Y7BFQqZJZaQrkRonPV3HSOOg9Vv6R8/eYLk4QeUr/tdSFf3q9mRaU+gBKrryHP8JWk+TdSgIITCZTJBlWVerE1N13iwWCwDo6liTRSirC4r+icUbLJsnREpmCCc2km1NoQeo6KJo6Fl0qcW+brc7JXU/ekK1g3A6nQkZXOrpOgY/QBiGgc1mS6vVRSznIx11eblGOG8wdULM59ocSnzE+t1rqTWFHohk6puLzyD9+iHoBL1M1v6orSecTqcu0onBJFPkCIIAm82GxsbGlDuKL1y4EKWlpSgtLcWOHTuavf7BBx9or3/++ect/jye52G329HU1ERXKuUg6oRYXV2No0ePoqmpCQaDAUVFRSguLobVaoXBYMj0MCk5hGpLUVlZicrKSrhcLoiiiOLiYhQXF8NisejunmNZNuu6wbQEGukKQk9RkVD4p9hEUdSlj1iyzqHJZALP8y22g4h1PJs2bYLZbEZTUxO2bduGE044QXvN7XbjgQcegNlsRmNjI/r165fweAB91W/l4q9JPaJ6NQHHa3NMJhMEQUiKNxi9jhR/YrGm0IMfXaS+i5l+NqYCKrqyBI7jtOiW+iXK1Qesv2VCNDuIZLJ582YMGDAABw8exPbt2wNemz9/PmprazFq1Chs2LABrVq1Svhzcrk2jRIbwbU5PM9DFEXY7fYAmwA9p4Uo2UWoRSCiKMJms2U0/Z1Pza4Bml6Mih4uuppObGhoCEix6TUq15JxqSk3/4dDOsZDCMHWrVvRr18/9O3bF9u2bdNeq66uxlNPPYVbb70Vv/32G/r37x/T506bNg1nnnmm9jfLsuA4Dhs3boTVasU777yT2AG1kHhquijpwev1orGxEVVVVaioqIDT6WyWFuJ5+huZkjzUe05NfzscDi39XVJSAqvVCkEQUj4OKrooukLNwdfW1jYLAet1Ykx0XJIkwWw2o66uLu0eVXv27NHShn369AmIdP3jH/9AUVERZs6ciZ07d8acWhw+fDg2bdoEl8sFnudhs9ng9Xpx0003YdiwYbjgggtSdTiULMftdqOurg4VFRWorq6GLMuwWCwoLS1FQUEBjEZjyNKCXJykKOlB9aJT68HcbjckSUJJSQmKiopgNptTIvzzTXTRn05BhOq/mImLHyqdGIxeRVciWCwWEEJSknKL5Txt2rQJANC/f3/YbDbMnTsXHo8Hv/76KxYsWICXXnoJu3fvhsfjiUt0ud1ubN++HaNHj0ZdXR2WLl2K9evXJ6UQn5IfBKeFgleoqSmhXHkWUDJPqJW4giBoQYBkWlOEq93KVdFFI11RyISwUZeZB6cTs4V4zhnHcbDb7SlreRMrmzdvhsFgQM+ePdGnTx94PB7s3r0bDzzwAIYOHYqJEycGCDMAePLJJzFixAi0atUKH3/8cbN9Dh06FBzH4fvvv0dtbS2qq6tx991346qrrkLv3r3TenzxkosPu1wheIWaGpFQ/cHMZjM4jsv0MCk5hCzLcDgcqKmpwdGjR9HQ0ACWZVFQUICSkhLYbDaIopjQXBmu1U8utgACaKQrKukWXRaLRTPJjDbx6TnSFcu4BEGAyWRKuZN+rJGuE044AYIgoEuXLjCbzViwYAE+/vhjfPrppwB8wsxsNqNr164AgLFjx2Lq1Km48cYbm+2PZVm0b98e/fv3x5o1a3D55ZfjoYceAsuyuPPOO5N/kHEQ632j13uLchz/iATDMHA6neA4LuPF0akgVyMfwWTDcXq9Xq0mDGhZf1KaXsxzwqUXU41qABqPSaZeRVcsXxSTyQSO41psB5EsNm/ejPHjxwPwfdl79+6NV155BVOnTsXgwYO19/Tp00c75+Xl5SH3ZTAYYDab0dDQgPLycnz66afYuHEjXnvtNbz88sta+w4KJZkwDKO1hVHNMtXJUE3f02bdlFQQ3J9U/UEdix0KFV2UZqRa2CQa8dGz6Ao3Ln87iPr6+oyNRzUNBIAjR47gyJEjAbVa559/Plq1aoV77rlH28eWLVswffr0iJ8lSRJEUdTE5IgRI/Dyyy/j+uuvx/Dhw3HxxRcnbVUmhRIN/8kwFd5g6SRXJ+Fgsv04FUUJ2aooOPrqdruhKAoVXZRAUn3RzWYzWJZNOOKjR9EFhB4Xz/OwWCxobGzM6C/tTZs24c4778RFF12E3377TXNo9reCuPrqq3H11Vdrf+/duxcNDQ0Ri+hDLQYYMWIEAGDnzp1YsWJFsg8lZehV0FMSh3qDZQe5JjbCtSpS+80yDKOZtfqTa+dBhYquINKVXvRPJ+Za78RQXxSj0QhBEDLiwO5/DZ1OJx5//HEcPHgQ99xzDxRFgc1mAwD069cP3377LYxGI/r27RuwPHrz5s0AENKji2EYmEwmbUWPP2azGYIg4LLLLkPfvn11IWb0MAZKaohnkgpVlyNJUkBdjtPp1E2z7lydhIPJ9eNUOzOoTeKLi4shCALMZjNkWcann36KDh06oEePHkk5D01NTVi0aBEOHjwIALj44ovRpUuXFu83UajoikIqJqh0FZBnCv9zxjAMLBYLFEXJuAM7IQRLlizBzp07AQCFhYUAgKlTp2LOnDkAgJdffhn79u2D2WzGkCFDMHz4cAwbNgznnnsujh492myfBoMBHMcFLK/25x//+AcKCgoyXjxPyX1a+pxSU5HA8ZYxqbAIaAm5LEZUcl10+aMep//cYDAYsHLlSrz55pto06YNunXrhp49e2rP63hZunQpevXqhcsvvxxer1e7xzMFFV1RSLboamk6MZvgOA5WqxVNTU0ZvdHVa7h582Z8/PHHAd4zxcXF+POf/6y9d+7cudiwYQPWrl2LtWvXYtWqVRg/frxW27Vlyxb07NkTPM/jqaeewuuvv46jR49i8+bNEEURn3zyCQoKCrBlyxZ8++23ePHFFzF//nwtmkahZAOxeoOl83udL9HZfBJdoRg8eDAGDx4Mu92OPXv24KeffsKiRYtQX1+PLl26YNy4cSgpKYlpXw6HA7t378aMGTMA+FLqLTF4dbvdcDgcmlGs0+mE2+3W+gTHAhVdQYRKLyajqXQupxODIYRo5q56ieZVVlbi3Xffxf79+7VtsiyjR48eKCoq0rZZLBaMHj0ao0ePBiEEe/bs0a7//v37ceONN8JsNmPkyJEYMWIELr300mYPgE8++QSXXHIJ2rZti4ceeggTJ07UXsuW1F62jJOSHoJTQoIgwGg0aitx1VRkqr/r+SBG8l10qai2O8XFxRg/fjw8Hg/27dsXV2uiyspKWCwWvPnmmzhw4AA6dOiA888/X1tEFSuKooBlWWzatAm7du3C+eefj8bGRixatAiffvopRo8ejcsuu0zrqxsJKrqikIzJR00nNjQ0JL0+Qo9fTpPJBJZlUVNTo4vxeTwevPvuu9ixY4cmeFUhVVVVFfbfMQyDbt26aX8XFxfj/vvvx8aNG7F69WqtMP6BBx7AiSeeqPUuO/PMM0OmIvWEek+zLAuLxUILqHOAdE3WodzK09E4mf4IyC+C72eDwYAePXrEtQ9FUbB//35MmTIFnTt3xrvvvosVK1bg7LPPTmhM27ZtQ21tLQRBwGeffYaKigr8/e9/x6efforly5dj8uTJUfcRk+j68ccfsWDBAiiKglNPPTXkjtesWYPFixeDYRh06tQppGFkNtJS0ZVP6UQ1mud2u8GyrG6O9/fff8fWrVtx9OhR7Zd4QUEBOI6DyWSKeT82mw3nnHMOxo4di+uuuw579+7FunXr0LdvXwDARx99hIULF2Lo0KEYNmwYhg0bhtLS0mb7yfTkoV4Xfz8xQRC0Amqn05mU6C4lPwhenZYqb7B8iQDly3FGIxlzSEFBAex2Ozp37gwAGDhwYItWkTc1NWmlInv27EG7du3Qs2dPfPXVVzFbIEUVXYqiYP78+fjrX/+K4uJi/OUvf0F5eTnKysq09xw8eBDvvfceHnjgAVgslowXTCeTREVXutKJmeoNGYz/BO71etPSnT5WOnTogNatW2sPfZPJhLKyMnAcF3NRsNFo1BqPq+e8a9eumjs9APTq1Qtjx47FunXrsGrVKgBAjx498Nxzz2ltWTJ9nVQMBoP2Y8Dr9UKWZc3YUBRFGAwGFBQUaBNmLjiaU9JDKG8ws9ms2QKoqchcbPGSDPTwPNcD4XoyxoPNZkNhYSEOHz6M1q1bY8eOHWjdunXC++vUqRN27dqF999/H4qiaKvZ6+rq0KpVq5j2EVV07dq1C23atNEGetJJJ2HdunUBomvFihU444wztHym3W6P+2D0SiKiK5XpxGD0ILqCBQmQ+WiOP1u2bIHX60V5eTm2bt0KlmXRuXNnyLKMPXv2RPy36upLWZZRV1cX8b39+/dH//79QQjRomCVlZWa4Lr33nshSRKGDRuGwYMHh4yCpQNRFEEICXk8agG1miZSFAWSJAVELfRkI0DRN+G8wQoKCuL2Bsv0cy5d5MtxApGPNVnnYcqUKfj3v/8Nr9eL4uJirag+HtTI/7hx43D06FEsX74cU6ZMwcCBA7F//36wLItOnTrFtK+ooquqqgrFxcXa38XFxdqSe5UDBw4A8E0qiqJg2rRpGDRoULN9LV++HMuXLwcAPProo2FXIFRUVMQ0+FThL7TiFV3qKoZ0pRMzWfAcjyDJFF6vF6tXrwYAlJaWYuzYsejevTu6deuGFStWYPv27WH/rboYwOFwxLVKK1QUjBCC0tJSfPfdd/jqq6+gKAq6dOmCKVOm4Kyzzkr8AOOAYRjYbDbIshyzaFILqP2jYP42Ak6nk0bBdEI2TNbB3mCiKAb07FPvp3wW9cmI8GQL6RBdZWVluPXWW2N+f6SVkYIgYObMmZg5c2bA/m+55ZaY95+UQnpFUXDw4EHMmTMHVVVVmDNnDv7xj3/AbDYHvG/ChAmYMGGC9nemxVUsxCpq/OuZ0ilAMiW69GIHEY0ffvgBdXV1kCQJgG/cp556Kux2O7p164Yrrrgi5L9LtpcawzC44YYbIIoi9uzZg6+//hrr1q3TIgD19fV46qmnItaCtQT/bgAsyyZ0z4SzEVC/57SvHyVe/Avyo3mDZYOoTAb5cpxAekRXvATrko8//hgDBw5E+/btsXv3blRXV8Nms8FkMkGSJBiNRnAch7KyspjKaqKKrqKiIlRWVmp/V1ZWBiyxV9/To0cP8DyPVq1aoW3btjh48CC6d+8e63FmNcH1TLmOKIqQJCkj7vLx4HQ68e233wZsU/1fAIRd3pvKaKUaBWvfvj0uvPBCbfuBAwfw888/a7VgXbp0wbBhw3Deeee1qAYBaH69YlkuHYuYD7YR8K/d0YuZJiV7iOYNJsuyLuxnUg0VXdFfSyeyLGvPwp9++kkrUXE6nfB4PFqE9sEHH4xpdWVU0dWtWzccPHgQR44cQVFREdasWYMbbrgh4D3Dhw/H119/jfHjx6Ourg4HDx5s8USRSeKJHqU7nRhMuiNdqlDJhsUSa9eu1SJJgC96NXLkSO3vDRs2YOPGjbjssssAHG/G7fV6UxatDHe9evbsibfeegv79u3D2rVrsW7dOixZskRb2rxx40bs378fw4cPjysKZjKZwHFcyq9XqNodSZIyaqaZb+hlkkoWwaLearXCYDCgtLQUsixrqch8EGK5it6bXRNCMGnSJAA+8fWnP/2pxfuMKro4jsMVV1yBhx56CIqiYPz48ejQoQMWLVqEbt26oby8HAMHDsTGjRtx8803g2VZzJo1C1artcWD0wuhJslMpRODSZfo8l+N6S9k9EpDQwPWr18fsG348OEBFhE//fQT/v3vf2P27NngeT7j6VKGYdClSxd06dIFF154IZqammA0GgEAK1euxPvvvw8A6Ny5M4YPH47hw4dj4MCBIa+/Okmp9VihXk8lXq8XDQ0NAVEw1UzT6/VqEyaNglFigRCi1YM1NTWlzRssE+hFcKQDvYsutb6OYRhwHIeVK1diwIABKCgo0AxTAeC3335D27ZtY3Klj6mma8iQIRgyZEjANv/UCMMwmD17NmbPnh3P8WQtekonpkN06el4Y2XNmjUBY7VYLCgvLw94j/oFUQ1C0+WeH08UVeX666/HpEmTtCjYu+++izVr1uDVV18F4Ktd69ChA0pLS6PW26X7YRZuBRuNglESJV3eYJlAL4IjHehddAGBfmH/+9//sGPHDpx77rlo1aoVnE4nvv76ayxcuBDPPPNMTM4N1JE+BKFaAalkOp0YilSKrkSPN5PnprKyEj/99FPAttGjRzcrclS9qliWRV1dXdpWmyYCwzDo3LkzOnfujOnTp6OpqQmHDx8G4JuA/v73v6OhoQFdu3bF6NGjMXDgQPTu3RsGgyHhcabqvvJfwRbcUkb1caJpI0owkVb1+XuDsSwLQRACvMGyKbKqJ8GRaliWDXlN9HYO1GfhLbfcgpdeegnz58/HGWecgU8//RQ1NTX429/+FrNVFrWdjgG1/6LNZtP8jfRyQ6RqHKq9AICEjjeTVharVq0K+CIXFBRg8ODBAe/xPz69tCuKB5PJhC5dugDwPbjmzp2L66+/HiUlJXjjjTdwyy23aFEwr9eLI0eOZHC04VGjErW1tTh69Cjq6urAMAzsdjtKSkpgs9l0ZbRL0T+KosDpdKKmpgZHjx7VhFhBQYF2T4miqCsvQX/0JjhSSbhj1VNHE38KCwvxxz/+EQcOHMBjjz0GjuPw6KOPao73sUAjXTGgTtCNjY26C1cnqyG3P/72Ai053kw8PA4ePIgdO3YEbBszZoxmk6A247ZarVAUBYqipPWapkKMMgyDfv36oW/fvpg8eTKampqwYcMGtG/fHoDPHPbWW29Fp06dMHz4cJx00knNygX0gizLaGxsDIiCSZIEm82mTaY0CpafJPo8ieQNpiiKFlnVS+lEvomucJEuPUYl16xZg+XLl6NNmzaYOHEiPvjgA3z44Yc455xzYp6HqeiKgv/qLz0+6JM9iUuSBFEUW2wHkamVnF999VXAtjZt2qBnz57a3/72CaeddhpOOeWUuDvO6wl1gYMqRgDfPXvyySdr72nXrh2uvvpqrF+/HkuXLsU777wDs9mMuXPnonPnziGvsx4e+uEaK9vtdnAcF1ALpofxUlJPMq5zKG8wq9UKnud1YXWSb6JL7zVdKm63G4sXL8Zpp52mrSofMGAAnnrqKWzfvh233357TPuhoisEqpBR7QP0XOCbTNGVTDuITKQX9+7di19//TVg25gxY7QvsNlsBsMw2vEZDIaEa570gBqRjLbAobS0FNOnT9dqwTZv3owNGzZorbxeeuklrFu3DsOGDUN5ebnWwFtv6ZdQxdOSJAVELJxOpy5/HFFaTirux2jeYHSRR2rJJtHFcRxuvfXWgBaI7dq1w8MPP4x333035v1Q0RUCg8EAu92updfUyVqvtHRsoaIl2QYhBCtXrgzYphaeMwwDg8EAp9OpTdgAsHv3bnz22WeYNm1axNYPyR5nMu6lRA1q1SjYuHHjtHPRrVs37N69G++99x6WLFkCo9GIU045BXfccUeLx5lK1OJpACEtBJxOJ42C5RDpmIhDGf6me5GHHgVHqsg20dWuXTs0NTXB5XKB53lwHAeDwYCLLroo5v1Q0RUCWZYDVutlsig8Gi29MZPd7kYl3efs559/blYsPmbMGC0apD4w/Tl06BCWLFmC0047LW2iKxmYzWawLNuiiKT/tZkwYQLGjx8Ph8OBjRs3Yt26dQFu/ffddx86dOigRcH0WNgezkIguKcfhRIrwVYnuewNlimyZfWiyu7du7Fy5UrU1NSgsbERkiTB7XajY8eOmDVrVkz7oKIrBLIsBxTF6V10JTo2/3q1ZN/g6Txnsixr7XNUevXqhU6dOmnRIH/PKxU1tai3xRHh8Dc8VYuCEyH4WqvXyWg0YuTIkRg5cqRmyupwOODxePD+++/j3XffhSRJGDhwICZPnhyyqb1eCLYQ8K/bsdvtdLLMQjI9EeeyN1imiLR6US+F9OpcVlFRgcWLF8Nut6O0tBTbtm3D2LFjsWrVqmYekJGgoisGck10RXMrzzZ+/PHHgKgPy7I444wzYDAYtO2hzpNqjpoNqxfVFZfpXEHLMAyMRiMeeeSRgCjY+vXrUVNTAwD4/fff8fHHH+s6CuZft1NSUgKHw9FssnQ6nbpZvUbJDkIJ+2z1BssUkdKLejlv6jP70KFDcLvduO222/Djjz9i165dmDFjBlq3bt2sljgSVHTFQC6JrmTZQSR7XInicrnwzTffBGw76aSTYLfb0dDQELA9nOjS+2SbqhRwPPhHwQgh2oNy9+7d+OCDDwKiYMOGDcMpp5yiRcv0RqjJ0mKxaI261cmSRsH0RaYjXZEILshXuy4UFBSAZdmAVCTlONlU0+V0OiFJEgCft6N/NuyXX36JeT9UdIUglCN9sr2wMkGy7CBiIV2ia/369Vq4X23nM3To0Gb9IUN9gQ0GAxiGSavoive8GI1GLWKnl4cQwzDaMYwZMwbDhg3Dxo0bsX79eqxfvx7r1q3D2LFjAfgadSuKkhVRMOD46jWz2QwANGWkM/TyHYhGqK4LevYGyxTZILrUZ53VakX79u3h9XrRpk0bSJKEZcuWYceOHWjXrl3M+6OiKwb0HOkCoq9eZBgGFosFiqIkxQ5CLzQ0NGDt2rUAfOk3nufRv3//sL5bweepV69e+N///pfycSaK+oBOdkP1WO7neO754CjYkSNHtEL8t99+Gz/++KMWBSsvL0d5eTnatGnT4uNIBaFWr6kpIz14OOUzen4GRyLYb45lWc3qRPUGU1fa0vvKhx5FV6dOndCxY0fU1taiV69eGDZsGN544w0MHjwYU6ZMiXl/VHTFgN5FVyQ4joPFYkn76q10nLNvvvkGHo9Hi6CwLBu2oDHcryk9ks0WHgzDoHXr1trf9913X0AU7LvvvsOAAQPw2GOPAQC2b9+OLl266DIKFqpRtyRJ1MMpg+hlIm4JiqIEFOT7R1cZhgHHcRAEIa/vKz22AZIkSYtoORwOTJgwARMmTIh7P1R0xUC2iq5M1gKlOiVbU1ODTZs2QRRFyLIMr9eLU089NaK7fPA1rKmp0RqX9uvXL2Vj9SfavRSr4Wm2EBwF279/v5bKq6+vxy233AJBELIiCub1etHQ0BDWw4kWTqeWbHwGx4J/dJVlWRQXF+d9A3g9FdL7I8syOI7DihUrYDKZcMopp0BRlLjmOiq6YiAbRZe/l5PefjEkgzVr1mheOYqiwGazYeDAgWHfH+ocuFwuLFu2DH369Emb6IpEOmvuMgHDMOjQoYP2tyiKmDNnjlYH9t133wEAbr75Zpx++unaL/1siYJRJ/PUoqeUUypRfSKB5q2v8sUbTI/X2n88P//8M7p06ZLQfqjoCoO/0Mom0aWmptxud4u8nFpKKs9ZTU0Ndu7cGeA2Pnr0aG01YjiCx6NO5nookg5uUZRKkl3TlSiCIGD48OEYPnw4CCE4cOAA1q5diwEDBgAAvv76azzzzDMYNGhQVkTBggun8z1aQYmfYLGRr95gehJdVVVVmiGuOiaDwYCCggIAzX09o0FFVwzoXXT53whms1k3qalUnDOLxYIPP/wwoNapVatW6NOnT8R/F8mnK5OrF1XPNLVtTSbQw73NMAzat2+P888/X9vWsWNHnH766QFRsLKyMsydO1dbXahHQjXqliQJdrtdsw9QC6cpsaOniThVRDvGSN5g2bbQI9Kx6uFaq2nDVatWobGxERMnTtRqusaNG4dWrVoBAJYuXYoBAwagV69eMe2Xiq4Y0cPEFA5CiO6sBZI9BjWCt23bNvz8888Br40ePTqm66MHc1R/MmF4mk10794d3bt3D4iC7du3TxNcTz/9NKqrq1FeXo5hw4ahbdu2GR5xaGRZRmNjY0AUTBVhsixrtWA0CkaJR2yE8wZTU9x69wbTu+hS2bNnDw4dOgRZlmE0GtG5c2cMGjRIE7bff/89unbtGvP+qOgKg96jWyrqahdZlpNuLdASknn+1AhefX09li9fHvBahw4dYrrhw/l0mUymtHuw+aef9Fq/paf7P1QUDACKioqwadMmrFu3Di+88ALKyspw5plnYurUqRkaaXRCRcH8a3bU1/Q6UVJST6JiI9u8wSIVy+tJdLndbsycORObN2/GSy+9hJkzZwZkVjweT1xG0FR0ZTFqpET9tZyLqMXltbW12LZtGw4ePBjw+tixY2MWB6EiXR988EHSxhorqk9PXV1dRh4sehJULWH27NmYPXs2fv/9d82SQm1r5fV68eijj2LAgAG6j4IF1+yoHk7qROl0OmkULE9I1vcynLgP9gbLZEF+OFsIPQkuwGcP0apVK8yYMQOffPIJXnzxRcyYMUOzJ3K5XFR05QOiKEKSJNTX1+uy3UoyJna1WLS2thayLGPlypUBr/fo0SNmJ2A9fIlVk1pCiK6iktlO+/bt0b59e5x33nnatiNHjmDPnj1YvXq1FgUrLy/HrFmzdF0PptbsAMcnSrWI178WTA/3MyX5pEpwBIv7YG+wTKy2zQY3esA3d6ilKFdccQU+/vhjvPLKK6iqqsKZZ54Jr9dLRVcyCNUKSC8Er3TTY+SiJWMKZQ66adMmVFdXB7xnzJgxce031Hj+8Y9/oF+/fjjzzDMTGmusqMfkcDjAcVxKP4sCtGvXDq+88kpAFOy///0vzj77bJjNZuzatQtbt25FeXl5XC080km4lWtWq1WzrNBTuojSctIlOEJ1Xkj3alu9iy51vmhoaND8H2VZxtlnn4327dvjueeeg8PhQFNTE0wmU8z7paIri1AnbjXloKJH0ZUooVZgut1urF69OuB9/fv3R3Fxccz7DfclXrNmDURRTKno8q9Jk2U5ri9opsiVe8o/CuZ0OtG2bVtUV1dj7dq1WLhwofYe1ZJiyJAhuu2zGmrlmn+6SO2JqYcJi5IYmbh+wZ5z/qttVW+wVERYs0V0de/eXWt0zXEcFEXBwIED8fDDD+Oxxx6D2+3WXo8FKrpiRJ2EMnUzRLKD0OMEmciYwq3A/P777wM8x3iex0knnZSU8ahLrVOFf02aHh4kgD7vl3QgSZIWZZwxYwbGjh2rRcE+/vhjrFixAosWLQIAbN68GUVFRbqNggWvXBMEAQUFBSguLtbqeZxOJ42CZRl6EBz+q22B5hHWZHmDhTtWlmV1tbjokksugcFg0P5Wa9FKS0vx6KOPYsWKFRE7oQRDRVcYQqUXM/WFiMUOQo+TaDxjCtfcuampSfNoUhk6dCisVmtSxphK0aU2fQ42PM30QzUWXC4X2rdvH/XcfPnll+jRo0dSP/vNN9/E7bffHnb/H330Ef74xz8CAN544w2MGzcupv3ed999ePvtt/Hdd9+hsLBQi4INGzYMEydORFFRkVYUO3fuXPz+++8BUbABAwbo0h0f8KWLZFlGZWWlFgWzWCza/Z3pomlKbOix/U2qvMH0HulSUZ/j/qhzG8/zOOOMM+LaHxVdMZKJ6IBqnOn1eiMWXuvpBo2XaM2dv/3224DiTkmSMGLEiLg/J9z1U1MzyYRhGNhstmZpYP/Xs4FPP/0UDQ0Nzba///77mD9/PkaOHBmXP02sbN68GWazGU1NTdi+fXuA6HK73XjkkUdgNpvR2NiIvn37xrzfq6++Gq+99hpeffVV3HzzzQB8K5OuuOIKsCyLN998UyuI/dvf/hYQBXv//fcxYcIE3HrrrSCE4PDhw7p1xw+OgvkXTQPIWRfzXEHPz/NQ3mD+TeDj8QZjWTZkJFZvoivZUNEVI+kWXWrj46ampqgrSrI1XRRc6xRMbW0tNmzYELBt5MiRceXPo1FaWprU1Wzqdct2w1NBEDBixAjU1NQEbP/000/x2muvYdCgQXjttddSsihgy5Yt6N+/Pw4dOoQdO3YEvLZgwQLU1NTgpJNOwsaNG1FaWhrzfsvKynDBBRfg1VdfxbXXXgtRFHHDDTdg165dWLp0KVq3bq29178WzOVy4aeffoLdbgcA7N+/H1dffbUWBRs6dCgGDBgQV4oh2USaqEIVTWeri3muk23P8eAm8PF4g2VLpCvZUNEVhnDpxXSg2kHEapxJCNFt8W84YkmZrl69OkCMWa1WDBkyJKHPC3f9nnjiiYT2F4p4r1smSeReXrlyJa699lr06NED//73v0OG3VsKIQQ///wzLrroIhQWFmL79u3aa9XV1XjmmWdw88034+23306oSfmtt96Kt99+G4sWLcLhw4exbNkyzJs3D/379w/7b0RRxLBhw7S/bTYbrrnmmoAomMFgwEMPPYT+/ftr7UNSwcUXX4z6+np89NFHAdt//vlnnH766Xj66acxZcqUsP8+VKNu/0iFGp3N5h8M2Uw2C45o3mDBzbqp6KJEJF2iK1wdUCSyKdKlelVFc9A/evQotmzZErDt5JNPjtrUOlOYTCZwHBfTdcvGB8ratWtxxRVXoF27dnjrrbdQWFgY8n2EkJiWmaudFILZs2ePlja02+0B4uLpp59GYWEhLr74Yjz44IM49dRT4z6OAQMGYNy4cXj88cdRU1OD22+/HRMnToxrH3a7Heedd15AFOz7779Hly5dAABLlizBJ598ElALlqwo2LBhw/Dss8/C5XJp+ySE4K677sLIkSMjCq5QBEcqRFGEyWSCIAjwer1a2j/TPyJyfSJWyaXjDOUNJkmSZnkEhG7BprdC+mSjzxlMh6Ra2ESrbYpGNogujuNgsVjgcDiipkxXrVoV8PApLi5OKLKhEu76vfzyy/B6vbjmmmsS2q9/3Z3qhp4L+J/7n376CZdeeimKioqwaNGiiCm9b775BtOmTYu6/xNPPBHvvPNOs+2q0O7bty+sViueffZZeDwe/Pbbb3j99dfxwgsvYM+ePfB4PHHVc/kzceJEfPnllzj99NNx0003JbQPFTUK5h8JKysrQ/v27fHJJ5/ggw8+gMFgwJAhQzBnzpwWf0/Ly8vhdruxefNmDB06FACwePFi/PDDD/jmm29atO9QUTD/Xn6ZMNDMN3JJdAWjprkB33EWFRVBkiRYLBZ4vV6sXr0abdu21VZJJgNFUfDkk0/Cbrfj6quvTso+WwoVXTGSStElCAJMJlNIO4hY0OuX1H9c6jGGq9/yZ//+/di1a1fAtjFjxqQkZbNjx46EWyj5G55m80TEsmzIX5cMw2D79u2YMWMGjEYjFi1ahPbt20fc14ABA/Dxxx9H/cxwdXRbtmyBwWDACSecALPZDI/Hgz179uCJJ57AkCFDcNZZZ+Gtt94CgAAR/vTTT2PJkiXYt28fXn755bC+a/v27cOjjz4KAM1aSgFATU0NbrjhBuzZsweSJKG0tBQPP/ywFsWKhRNPPBEnnngiXC4XNm3ahPXr18PhcGjPjyeeeAIWiyWhKNjQoUPBcRx++OEHDB06FLW1tXjooYdwxRVXoG/fvgEGwi0lVC+/YANNp9OZlqhELosRf/LlOAkh2mp1WZbBcRzq6+vx3Xffoba2Fl26dEG3bt3Qo0ePFkWJv/rqK7Ru3VpXbfKo6ApDqJquVEz6JpMJPM+3yMdJ7+nFeI6REIIvv/wyYFu7du3QvXv3Fo8jnE9XqBV60Yi2CCBbUCdSRVECanoURcGePXtw8cUXAwDefvvtmISH2WyOKQIV7n7dsmULevToAUEQ0LlzZ5jNZrz++uv45JNPtFTjli1bYDabA8YzZswYTJkyBbfeemvYz6yvr8eUKVNgtVpx22234S9/+QtWrlwZ0NmAYRhcddVV2rb58+fj9ttvDxmVi4YoilqKUUVRFDQ2NuLrr7/WomADBw7E2WefjRNPPDHqPs1mM/r06YMffvgBAPDYY4+BZVnNYiNVBNfrqFGwgoICsCwbYKBJSZx8EV1AYBpRlmWMGDECI0aMgMlkwrZt27Bx40Z89tlnEEURJ5xwAkaMGAGbzRbz/mtqarB161acdtppzeaUTEJFV4wkW9ioaSmPx9PiPnx6FV2EENhstqiWF/7s3r0bBw4cCNg2bty4lB1fIj5dsSwCiESmjXZV/I/D7XYHrGw7dOgQJk6ciKamJvznP/9Bz549Y9pnMtKLY8eOBeD7jvTs2ROvvvoqzj//fAwaNEh7T+/evQPuCTXVFg5ZlnHttdfiwIEDeP/999G1a1fMmzcPL7zwQoDostvtAX+Xl5fjxRdfjHo8scKyLO6///6AKNj69etx6NAhAL5azjfeeANDhgxBXV0dnnzySZx77rn405/+pO1j2LBh+Oyzz7Bp0yYsXLgQc+fOTZpvXayEioKpLuayLGtlEsn6QaKH70u6yJfjDHdNBUFAz5490bFjRwBAXV0dduzYEfe9tHTpUpx77rm6inIBVHTFTDKFTbJtBfQoujiOA8/zaGxsjLlGTVEUfPXVVwHbunfvjrKyslQMEUD8Pl250rBaTSnW1dVpDz61pmf//v2YMmUKjh49iiVLlmD8+PEAEJPLeUvSi0ePHsWRI0cCImWTJ09Gq1atcNddd2lj3Lp1Ky644IK4jve+++7DqlWr8MEHH2hR02uvvRZ33nknNm/eHLZe8OWXX47b/DAWgqNg6vL6//znP/jXv/6F6upqLQqwa9cuzJo1S7OsGDZsGF555RXceOONGDZsGKZOnZpRURJu1ZraRkZ9LZFa1eDPyXX09hzPBKrju4rNZguIFsfCli1bYLFY0KFDB+zcuTPZQ2wRVHTFSLKEjdoWJtm2Anr6sqopK6/XG5eg2bx5MyorK7W/GYbB6NGjUzFEjVatWsWUXmzpQodgMjVJqsathJDjrZU8jShYfSMUsQhbWl+Dyy+/HLt378a9994Lj8eDzz77DCzLwmAwQBAE8DyP9u3bw263N3M5t1gsGDhwYEJj27x5MwAEiK4rr7wSV155pfb3vn370NDQEFcR/YIFC/Dqq6/i4YcfxqmnnoqKigoAwLRp0/Dkk0/ihRdewPPPP9/s3z311FP45Zdf8Pjjjyd0PLHQ2NiIL774QmtDFOpedDqdePDBpXjiicsAQCva37VrFz755JOUjS1RgletiaLYzLvJ6XTGFbnQ0/MtleRTRC8cyXDl37NnDzZv3oytW7dqq3AXLlyISy65JEmjTBwqumIkGaJLjZLEYwcRC3r6kqrWCXV1dQFLg6Ph8XiaNbXu27dvXOaXiRDLihY1MpnoQodgMnW9OI6D1WpFY2OjL9LkaYRxx2sw/vg4WG8jPF4GC578FDu3+QrMH3jggbD7WrRoEc466yztnlbFaEvOj//KxZa8x58vv/wSc+bMweWXX47Zs2cHvCaKIq688ko88cQTuOuuu9ChQwfttblz5+Lzzz8PcKlPFjU1Nfjf//6HZcuW4auvvoop/bFo0d9wzz2TUVBQALPZDEEQcMkll6BPnz5JHVsqCBUFs9lsmndTrM2U9fScSxVUdCXnHEyaNAmTJk0CAOzcuRNffPGFLgQXQEVXRPyFVktEl2qVkKwoSSgy/UvQv0YtEeuEDRs2BPw7juMwatSoZA4xIbLJ8DQSavSxrq4OiqsezLZ5KFr3OFiXL7LocnGorpZwb3kDStqchy17f0GDAjg5A/508y0YM2ZMs+9AfX291o9NkqQAE8RE7vXrr78e119/fcT3nHPOOfj9999j3ue4cePw66+/xvWZTz31lCa44incjZU//OEPWLNmTVz/RpbdePHFF3HHHXfg6aefRkFBAW677baA92TDZB0cBQtuphxOvGf6+UZJH7kuPKnoipFERVc8VgnZin8ExT+dGOs5czqd+PbbbwO2DR48OCUTXjDvvfce1qxZEzKFZDabwbJsSiKT6ZxE1IJ5tX7LuuYmcPve015vbDSgrk4AIYCj11W45NQxMBgM2Lp1K37++We0dTWgad9ubNi+E28sfQ/lw4dj+PDh6N27NziOg6IozSZSVYQpipL0oupQPPnkk3jzzTdRVVWFbdu24Z577sGHH36Idu3axbWf7du348knn0Tnzp0xdepUAL5I57Jly5I21nHjzoxbdJWXX4bx48fjn//8J+bPn4958+YFfD+yVZSEaqYcysE81ydiynGSfa179OgR0L8101DRlUL8J+1cfWBEigTFKi6+++67gBSLIAgYOXJk0scaiiNHjmi1RCr+UTut7ilLCVX47+p8HsR974EQoK5OQFOjAQDg6D4LpMM4mCQjmpoa0a1bN3Tr1g0A4Kk6CrGmAj0MwNqli7H8nf+AmMwYMLQcN910U0AKTp1IgcCi6lRaC9x6660R7SJipWfPnnFF0mKlvp7BN98I+Pjjo/jf/zbF/O/MZjOuuGIBqqo8mDx5Mtq0aYO///3vOOuss5I+xkwT3ExZjYJZLBatzofn+aSk+CmZJZKwynWBTUVXBBKNSOTSpB2JZESC6uvr8f333wdsU71akk2oL7JqGaFeazVqF0ujcT2jFsyrRcsq/JF1MH97OxQFqKmW4HL5WvHIXSZC6utbEehwOKEozc9Vjx7d0aNHdzidLuzZsxvbt+/AwV93gxw5CLe9AO8u+wReWcHw4cPRvXt3sCwbkE7KtMFmpvjHP6xYvrwBBw8+iKqqF6AosaVdu3XrhldeeQVbt/ZDVRWbEjGoZ/yjYJIkwWg0wmKxaN9ZNYKayxN0rhJJWNE2QJS4SLYdhB6JVVTGIlrXrFkT8MvVbDZH9VxKJjzPa+7IRqMxLangVKcXw6V7hd2LYV1zM2S3G1VVRni9PrNfT/EgKD0vBTxeuNwuGHgDLBafpYPausP/IShJIvr06aMVcXsqj8BTeQRV33+HDdu2479v/hu8rQCDhg3DmDFjtNV24Qw2c6nZshrR+vFHAbfdVg+HoxFbtz6PHTueg8sVu83IKaecgueeew52ux0dOjgRbQ7K9egAISSg1ZbBYNA85YDjxfrZfO/kE7l+v0aCiq44iDZRGo1GCIKQkaLrdN3A8YjKaOKisrISmzYFplpOPvlkCIKQlLGGG4//uTIYfKk1nuchSVLWp4JDOuUTBcYNj8G86Sm4XCyqq40giu+6yJYOwLDboABwOXw1WS5ZhssFMAx77LwYj0WtfBYg4dI7M2dcjMmNjdi5cxd27tyJn79dhU2yG4N6ngDWZMYHH36IIUOGoGPHjmAYppnBpn+zZY/Ho02kev/V29DAYM0aAatWidiwQYAsA6WlDjz33ALMnz9Xs6gIR/A9ed111+Guu+7SGoInqVd2VhN8jtQfA/6Nus1msxYFy5Z7J18JJ7ryQYxR0RWBUK2AQsEwDCwWCxRFSXrRdaykw+U82Sv5Vq1aFbCfwsJC9O/fv8X7jYfS0lIMGDAAANJqeJqKSFdIp3xvE6xfXw/xlw/R1MSjtlaEYrCDcdeDCFaQkffCrXDweJqnvAhR4PG44fGo9Vk8DAYDJMl47DXvsdTs8WtoNpsxaNBADBo0EIqiwO32oGnXzzh4+Ag+fPlfeJswMBWXYsjw4Rg2bBgGDRoESZJCNluWJAmFhYUA9BfJqK9noCiA3U6wZYsBTz9tRevWCs47rwFO55v4978fw4oV+yPuw2634/rrr0fXrl1x1VVXQRAEPPHEE1oBv8qWLTzcbgaDB+vj2DNFuGdbpHsnVyKouUY+iy6GZPAIg9u96A2O47Rfm4DvIRksqvRSA6Smk1L1y0713IqnT6EoimAYJqQP0YEDB/Dvf/87YNu5556LXr16tXis4Qg+R8k2PI0Vk8mk/VJPFmrBvH+6l206BOvnl4Cv+BH19QIaGwzwFA1AY98/QWzYA8FShEaxDEoCqVSWZcHzBhgMPBiG1YxwZTl8kXNtbR127tyJHTt2YOvuPah2uXHT3X/F0JNHobKyEm63O+RqQ4ZhNFPhltbzlJSURI08hUNNHaoRrenTm3DppU1wu4G9ezns27cMjz32KLZv3x5xP5Ik4aqrrsK1116LgoICAMDChQvRv39/rdWRP0uXGtHYyGDWrKaw+1RXjGZ7p4RwGI2+aGu8NbJqFEwURQiCoBll6jEKxjAMioqKAgyic5Vw9yvHcSguLsaRI0cyNLLIxLsaOhQ00hUHwdEkNfKTy3YQ4QqyYyFck3BCSLN2P23bto25v18ySLbhaaZQ6+vUVYEqXOVG2FbMAtN4CNU1ElxODq6y0+HodjEMohGGghFoaGwCSfC+9UWxXHC7j9dnCYIBHOdrnq2mIf2jYHa7DeXlQ1FePhRerxe//PILOoks6jf9gOVffIV3P/0MBe3KMHTYMAwfPhx9+/aFIAgghASsavNF26SkGrNGghDgoYds+PZbX+qwdWsF55/vwKhRvmP//vtv8MgjjzRbEBIMz/OYOXMmbrzxRrRu3TrgtUjGjYQA0QKjuR4hSPT4QkXBgusIXS6XLhbN5Po19CdcsXyuF9EDVHRFJFR6Uf1iqCv3/HvXZZJUFGenalHAnj178NtvvwVsGzNmTMq9htRz5J8mXbNmDV5++WU89NBDzSbCVI+jpYQtmP/lI1hXXQfF7URllREeLw/HCZfC3f4UrT4rnohlLKj1WQC0lkFms28FqsfjhcfrCYio8TyPbj1OABQFxOvByH59UGhgsWPHTmxc9gFWvv8uhIIizP/3G2BZFi6XC+Kx4iY1ShjO2ylWh/NwqBGtPXt4XHNNIxgGKCmRcf75Dowe7UKPHl4wjK9t0axZj+KLL76Ius/zzz8ft912Gzp37hz3eBQluuiixEaoRt16WU2bT6Irn9OLVHTFgRq5sVqtcLlcurKDSLboSkb9VqgxEUKwatWqgG1dunRBp06dEh5rPKh+Umqa2OFwYN++fbrrRB+N0AXzBMZNc2He8DDcbl/BvJe1oGnA9fAW9YXJZD5m4ZDa+1btr+dL2TIwGHiIggiO4yDLMrxeD7yEQPF6od4dhYUFGDlyJEaOHAmXy429e/egvr4eDZt/BG+3468PPQo3b0D5sVqw3r17a7+KQ3k7xdvnTxVaX38t4ocfjke0Lr20CSYTwTXXHD9ne/bswRNPPIEPPvgg6rk49dRTceedd8bVKzKYWCJduU4y+vEFE241bUFBQUo95aKNKR+goosSE2oqp76+XncpqWSKLovFAgBJWRQQPKatW7c2y9enuqm1Og6DwQC32x0gltXVi3q7npGQJAmCIAQWzMsuWNbcDGnPYjgcPGpqRMjG1mjsdwuIpT0sZhNcruNF8emDBNSvsRwHUTJBZHzjDmVJIYqCVttHvG64jh7Bqf16YvuOnViz5G189p+3AZMF02fNwuTJkwM+zd/bKZQxa2AbIwY8DxiNBKtXi/i//7OgVSsFkyc7MGbM8YiWyqFDh/D000/jrbfeiirihg0bhr/85S8YMWJES06e7xwQgGEiT0T5MFmlmlBRMEmSYLfbIctyyjsrZGtXgUQIJ6Lz4T6moisC/hffaDSC53k0NjbqcoJOhujyj+IlI/IT/OXxer3Noly9e/dGmzZtWvxZkVDTcGr6wB+e57WxpYuWXCt1QYN/ASrjOArrF7MhHF2H+joBDQ0GeAt7o6Hvn8FKdpiNJjgcjohF7inD5Yb1nnsABqh76CEQowmORp/XUqyWFCzLYNSoURg1ahQcDid2796NHTt2oLSpFo7f9qHK6cKT//wXhh2LgnXt2rWZMSvgi956PEZ8910rLF8OrF0LXH11PSZO9NVndenixQkneJtFlWpqarT2O9G+F71798Zdd92FU089FXPmzMGsWbOwdu1abRUm4FtEcs4556BNmzZYsmRJ1IbaU6c6kOPzUFTSPRkHR8H8BTzHcdpryVyAkw+CQ4VGuihhUaNb6qqXXCUVheXB4mLjxo0BYoHjuJRHufwbPUuS1EzsqJEuvS8nD1swX70VthWzwDb8huoaEU4HD1e7cXD0uBQG0QhRlNDUlLpVrdGQlr4LuWNHgBCY3n8fjmnTtNdisaTwegOjYEajhH79+qJfP1+6zn30EGr2/47WTbVY8cZreH/hazDYCzFk+HDMmDFDq9PzeoE5c0T89BMDp1NG69YEU6cqGDXKhJISM6xWF4qKXPDPJDU1NWH+/Pn45z//GXVVYMeOHXH77bdj8uTJ2uKRq6++Gq+99hpeffVV3HzzzQB86ewrrrgCDMNgwYIFUQWX77zEcKLzgExOxqEEfCJp7Ejkg+BQCXestJA+z+E4Dna7XbODCDVp64WWRE/U5fipMHVVx+RyuZo1+R0wYIC2ZD4VmEwm8DwfcbFDQUEBhgwZEtPklynCFcwb9n8G61dXg7iaUFUjwe3h4Og+A66yMyFKEnieO1Ywn5kHObvvFxjWrUPD3x8EGMBy71/BjhgJpWOHkO+XZa8WjWMYXzG+0WiMaklRVtYe1/zxajQ0NGDXrl3YsWMHNq/6FmsLz0UjKULHE9biwMGDcLunYPp0CUOG1AREtCorAwuqm5qa8NJLL+GJJ56IunS9tLQUN910E2bMmNHM1LesrAyTJk3Cq6++imuvvRaiKOKGG27Arl27sHTp0pgXbqxfbwDPA4MG6fuHQSrR23M3VBTMZrO1aDFHPomucOIqH84BFV0RkGU5QIikun1LS0h0bMms3wrG/8uzbt06rdgZ8EWYTjrppKR/porVatWun/94gs9Rt27d8Pjjj6dsHKGI51qFK5iXtv4L5u/vh9cNX0sfGNHU9zp4SwfDZLEChKCxoT6FRxEdpXMn1D8917f8DgT1Tz4Z878lJH5LCo6zgpByuN0ngpM5LH/HieLibXD98im+WvcdGsnLqK7ogKqqQairG96sPZHD4cD777+PJ554Ar/88kvE8VmtVlx33XW46qqrIvYJvfbaa7F06VIsWrQIhw8fxrJlyzBv3ry4TIB37DBAEEhE0ZXrk5Wejy84Cua/mCMeSxM9H2OyoelFSkjUnnz+f4fyndID8Y4tHcagqrhoaGjAunXrAl4bPny41jctmWTK8DQVhC6Yd8P83V0w7lwIh4NDbY0EWSxBQ/9boFg6wGI2w+3yiRUCgOE4MGBAFAUg6Q3bMxwPRT6+QrElhLKkMJmMcDgZMPAC8GLtWhYrVoiw2xWMGOFBv34etG+vgGHOxvixo7Br1y7s2bMHG/+3DEe2bcGg3r3Amy1Ys2YNDhw4gHnz5uHnn3+OOA5JkvCHP/wB11xzTUxR2r59+2LcuHF4/PHHUVNTg9tvvx0TJ06M69jp6sXswn8xRyhLEzVKFiwu8kFwqEQSXTS9SNHQc6QLiD0Er0ZP0mUM+s033wSkxUwmE8rLy5P+OdGOK9T1279/P+666y5cf/31GDlyZNLHFIpYBHLIgnlXNaxfXAbh8Bo01BtQXy/Aa+uBhv43gpUKYDGZ4XQ6tGNnAECWjycXGRYMywKEQFHkpIihsHA8SJIEVzCNjQTbt8vYvJnF7t08LroIGDRIwOjRHPr0UdC2rfvYOTj+UC8pKUb79u1RXl6O8z1u1Dc2oWnHFmze+jPuf+JJHKqrR60n/HeB4zhcdNFFuOOOO9C5c2etdZFayxPpezRx4kR8+eWXOP3003HTTTfFfbxUdGWvIAlnaaIa+wbfP9l4jIlAI12UmNCz6Ir1RlXrt9LR2JkQgurqamzcuDFg+4knnqgZXSaLlhzXoUOHdOO5phbMezyegHQsV7sL1hUzwNXtPV4w3/okOHpdCV4wQpKM0QvmiQIi+15nAOBYFExRFDBJioIRACzHw/z3vwEAGu65J+B19uAhWP/yFzhmz4Z7/Li49u10MliyRMKuXRxkmTkW0XKjqMgDh0MBywKt23DgOAMk6biRKsOw4DifISwBgUGUUH/gIBbMfxk//vgjTAC6mkUQIqJBVlDn8aLGI8Nx7FydeeaZuPvuu9GtWzffMTU0oKGhIaYoxm+//YZHH30UAHDw4MFmx1RTU4MbbrgBe/bsgSRJKC0txcMPP4wuXbocP6cxiq5cn6xygVBRMIvFAoPBAEVR4PV680J40EJ6SkzoXXRFG5v66yqdTbm//PLLgC+R3W4P2V+uJcRalxbqHKmWEXpYvaimRh0OR4Aho+HAV7B+dSWIow6V1UZ43CwcXafB1XESBFGEIBgSK5g/FgVjAIDljj0IlWM1WInAgGFZENkLuawDDN991+wd0n8WQWnbFu6xY6LuzeFgsH07B5eLwYgRHogigdsNjBjhQd++HpSVKc3EiCLLcMkyfJllBmazCSzLgRACo9GIA4cOYtFbb2HNmm8QfL4YBrDyLKy8gPZGoHf/ARh88mgs/ngZ5j71lGbM2qtXr4jGrOr37MiRI5g9ezasVituu+02/OUvf8HKlSsxZswYv89kcNVVV2nb5s+fj9tvvx3vvPOO9h6WBVg2uk9XLpOLQiT4/rHZbOA4DkVFRQD01+Q9mdBIFyUs/hN1toquTNU5HTp0CFu2bAnYNnr06IAm4i2hJX0hVfTi0xWyYB6AuG0BLGv/Aq+boLrKCC8kNPW7Gp7SYcdWXMbXhDwsin8akgHDcr6/Y/X2YlhtPwAgd+gAccVyoLYOsNsAANyOnRC+/x4Nt97qUxIhUIXWli0GLaLVtq2M4cM9YBjg8ssdIf9dKEwmE7xeGS5XI2rr6vDee+/ji88/h6JEXtbfrVt3TJ8+Db1790Z1dQ1MXjd27tqJ1YvfxieL3gJjtuLZf/0LxcXFUBRFSxX7RzEIIbj88stx+PBhrFq1Ch07dsSLL76IF154IUB02e32gL/Ly8vx4osvBoxn5szwja7ziVyfjH39TH0rH9V2ZWazWWvyroqwXI4EUdFFCSAbRVe667f8WblyZcDfrVq1Qu/evZOy73A2CpEIVUulLvPP5K/JkKlRxQvTuvtg2vYSnE4ONTVGyIZCNPS7CYqtK8xmU0iz16RACMgxsRVTMT7LaSsUVeQOPlsI7vf9kO19AADGt9+Gp28/eAcODPjnTicDQSBgWWDFCgFr1wqw2ZSIEa1IMAwL8zEH/pqaGvz342X45JNl8EZx42/fvgwXXHABhgwZon1eYWEBxowZjTFjRsPhcGDXrt347bdfYTj4KxxN9Xj5rbex9/fDGNqzHB08HTDiihEQrSL++te/4quvvsLChQtRVFQEt9uNm266CTfeeCN+++039OzZM6S7+csvv4wzzjgj9oPNE/T63E0m/oIjuFG3wWBo1qjb6XTmXBSMii5KAHoWXUDzB5PRaITBYEhL/VYw+/btw759+yBJkrYtWU2t/Q1PW/qrTxAEjBo1Km3NroNRC+b9U6OMuw6Wr/4A8cDnaGwwoK5egNfSGY39bwZjLIbFZIbLlZ4HbrRifDbMCkW5rAwEDLjff4fcpw8M69aB270b9Q/8HYBPaG3bdjyidfnlDnTsKGPkSA8GDvSirExOqHicZVmYTGbU1tbgk08+xXsffABHUxPYCPsqLi7BtGkXYPz48TAYBK22xuPxBFhSGI1G9O/fD31790Hj/ho4Nh5Ax18ZiFtZ1H2+BZtdv2DPvu0gA3i8+uqrePjhh7UoltvtxqRJk/DQQw/hsccew4IFCwLaEzmdTjz66KP45ZdfmlmYrFwpwGaLbhlBIyDZTaRjVNtlNTQ0aFEwk8kEQRA04+5ciILlw3WmoisKehdaKsE3quqUHM1JO1VjCY5ydezYMaA4OFFMJhM4jotoeBppXMHXUpIk3H///S0eVyLjsNlszQrm2fp9sK2YBa5mO2pqRTiaeLhLh6Gp99XgBDOMRiOaHE1QUtT/LfrgjxfjsxwPAuITXsHF+EYJpKQE3P7fAVmGtPgduE8+CTUFnfDRmxJ27vSlDm02BcOHe2A2+65lSUnikwbH+by8PvroI7z77rs4WlUFnmHCCi6r1Ybzzjv3mNgyaOkbf0sKhmF9E57Xg8MbD8NZ4YSz2gkiEzhrnDAeltAGreAtkOH1elG5eTPe/+wT/HnGhZgxZXLAPSeKIq688ko88cQT2LZtGzp06KD1+HvmmWewcuVKfPTRRxBFMWAC3bXLgFat5Lw2R80HYhUcwVEwtVG3fxTM5XKltVF3sqCii9IMvQow9eGuB5+q7du349ChQwHbxo4d26JzxzAMLBYLZFlGfX1mTT9birpqqaGhIeDByB/+BrYvLgMcVaiqluB2cXB0OheuLlNhEESIooDGxsaA6EsmUFcoBqQggWbF+N4OHYD9v+PowpWwVlTBedddMJkIampYDB/uQb9+XrRvL4cr74oLnuexfv33eOONN3D48CF4FQJDGLUlSUacffbZOOOMM2A0Ss1eV9u6+L4/DAwGHqIgQK6S4anxwFXlRNNRB9wNbngafUKIN3AQzQLKepZh+t+ngxc5NO38GWA58DY7eFsBDPYCXH/99bj++uuPn0tC8Mgjj+Dzzz/Hm2++CZZlwbJswATKsgwYJkMiWyfkw2QMJFa3FtyoWxRFrbuCWoLgdDqzIgpGVy9SsgqWZWGz2ZoVY6cTWZYDolyEEJxwwglo27ZtwvsMt6ovXsJFLadPn45JkybhkksuSXjfscLzPEwmEzweT8CxCLvegvWbWyG7vaiqMsGrGNDU+yp42pykNYROSsF8S2EYMAyrCa4AjhXjO50Mtm0XYKnpir77Pkbr3e9ifdk56FlUCB7Addclz56DEGDbtm14++23sXfvHigEUAgBH0JwGQwGnHrqqTjnnEmw2ayxfoIvGlnvREN1A6q2VYEoBLJDBkMYSHYJrMjC3MaEsjEdYO9qD0yLKjK8NVXw1lTBCYAzWcDbC8DbCsCbLdi+fTuefPJJdO7cGVOnTgXgu0eWLVumTaA8b0ZBgYSCAkmbQENNzvkgSnKZZPygDxcFKygoCEhlZzIKFklA54O4pqIrR/D1qGNQU1OT0Zt206ZNqKmp0f5mWTZgdVa8hFvVl0yamprS4tMliiIkSUJDQ8PxWjeiwPT9gzBteRYuF4fqaiNk3o7GATdBtveAyWQ61mZEBz5iQSsU/XG5ANV67YMPJGzezOMkpSPKSRN4kx09/3rWMYd6BQyS80t2167dWLJkCbZs2ewbFiFQgGaCi2FYjB49CpMnn4+SkuK4PsPr8KJ6ZzVq99bB0+iGYBPgqnWCM7JgeRamUjOKuheh46iO4E3csVqwQGNWFUIAxeWE6+B+uA7uB8Mb0MFWgL2bNoK3FYDl+aD3+yZQh4NDfb2MhgYvJEkKsBRQjTX1GoFPFvkwGafiGIOjYIIgQJIk2O12yLKsZUTS+SM91+sPo0FFVxT0/kX3T7spipLR8brdbqxevTpg28CBA1FcXJzQuEK2wWkBkVZ4prooXa1Fq62tPW6Z4WmAddV1EH9bhsZGHnV1IrzmMjT2uwUwtYLl2Ao8T5RVd2mB5UAUBYyfmHA6gW3beGzd6iuGv/76JhQVKRg92oWRI90oKxuEGvZ17f2aQ30LnfH379+Pd95Zgh9++F7bphCfqAkWXOXlwzB16lS0b98urs9wN3hQvaMa9b/WgygKCAFctW64apxgBQ7GYgmiXUThCUUo6lMED+OG4ubB8zwsFgmEHC/GVxQFBAwYPjBCSLweeKqOwlN1FAADzmLV0pCc8Xg/R0EgMBgIvF5vM2NW1VhTdTcP1V6Gkh2kWlj63yPA8Ubd/gs6/F9PFSzL5q1HF0BFV9zo6abgOA4Wi0VLu6n2B5li/fr1AREjnue1Wq54z5tqMJmOhQA8z6fMTsPfYV6tRSOEgG38HfZlk8FXbUZtnYCmRgM8xYPQ2Oc6sKIZJqMJDocDcqw+WamE40Dk4+KoqorFJ5+I2LWLg9frK4YfNsyj1Wa1bRvlV2wYZ3yiyD7lFIajR49i6dKl+Prr1Qiwp1B8YprzE1x9+/bDBRdcgG7dusZ1qK5at09s7a8PGIu73g1vkxfm9haIFgG8kUfr8jYwtTIeH4fshSx74XI5wTC+YnxJMoLlOJ8Hk8uJ8FeTQG6og9xQB9eBX8EYBF8K0l6AS2fJYIK87YKNNe12O3ie137gxNpkmaIf0i06ght1i6KodVhQ6xqdTmfSo2D5bIwKUNEVN2q0JNM3hyAIMJlMGa3f8qepqQlr164N2FZeXg6LxRJX6k6t32qJ4Wk4wkW6UiW6wtWisYfXw/DlpSANh1FTI8Lh5OHueDYcXabDIIoQRUkXBfOAr2m1o9GL7dt5GI3ACSd4YTQSHD7MYtgwD/r29dk7tKgY3t+SIoQzfm1tHT788AOsWPF5MxHqVQg4htHqqLp06YJp06ajX7++cQ3BUeVEzY5qNBxoXjcnFRvR9sS2qPulDo0HGmFpZ0Hp4FbgxfAmv4QocLtdcB+LoPIcC573iTBCFHg8zS0pAv69xw1P5RF4Ko/AwbDgLVZwahRMMjZ7v6IomtAK1Z5IrePJ9HOLEp5MzyuhomA2my3p91A+twACqOiKSvDNoQfRZTKZwPN8s7RbJsf07bffBggLSZIwfPjwuCw3fKkZS9qNXMeOHYsOx8w8k0W4YxH2LIV1zQ2QXS5UVxvh8Rrg6X8VuG4TYedYKF4ZjY0NGRdcDiewfaeErZsY7Nolwetl0KePVxNdN93UmJomzH7O+E0OF/677GN8/N//wuN2N7N+8Bdcbdu2xQUXXIDy8mExj4sQwFHhQPX2ajQdaf7DwNTKjMKehTCWGMEwgLHIiMY2jbB2ssX2GSznM5MlBF6vot0HLOsTYKolhZqGDBfV/H49h6KiBnTpUgvX77+AFSVfFMxWAN5q86Vq/QjVnkiSJC2CkYk6Hkp2ERwFU1tcWa3WFkdSaaSLEheZ9O1SU1Verzdk2i1TgrC2thYbNmwI2DZy5MgAY9RoqEXmyTA8DUe4a3fNNdck9XNCHgshMG58AuaNT8DtZn0tfTgrGgf+GXJhbxjdbngJgSzLMBpN4HjO5w+VxhSR1wvwPACGwVtvm7Fvz/HUoRrRUknlV8Dt9mDFihX48MMP0dDgS8kyALwKABAwABQABpZBUVERzj//fIwaNSrm9lKEAE2HG1G1vRrOyuZthSztLCg4oRDGosD7lxM52DrbYvoMhuV86dIQ+Nq9uOB2H7ekEAQDOM4IRVE0I0w1hXrwIAuOO/6dVlxOuI8egvvoIZ8lhdUGvl0ZGJM55Oep7YmA0HU8mV7NRtE/oRp1R2r0HgkquihxkSnRpba9aWpq0t0D8uuvvw741Wyz2TBkyBAAsZ0vs9kMlmXT2og7VfgXzGt4HbCsvhHSvqVoauJRWytCNrZF44BbQExtYTGb4HZ7jk3C0ArneZ6HQRBhtFihyDLcWtuP5D2YnE5g+3YeW7YYsHcvh1tudcBoJDhlnAPsKWh56jAOZFnG119/jaVLl6KqqirgNYYBeAZQCAOFENitVkw6bzJOO20CDBwbUzE+UYCGAw2o3l4FV21QsTDDwFpmReEJBRDtYssOhOOgyLEuECB+IgtgOQ4GnofF4hNQHo8XLMsACBOVUmQoDXVw/bbPt0JNkmCwFYK32cFZrM2+e6HqeNTVbNnm6UTJDNEavfuvqg1FuNWLVHRRAIRPL6aTWOu3MhHpOnLkCLZu3Rqw7eSTT9YaSUc6X/5F5umwbAg3lptvvhmSJOGRRx5p0f6tVmsz81am6RBsn18KvmID6uoFNDYY4Cnsh8a+fwIr2WCOUDCvLvdGU6Pmkm612wCGgeeY43SizvSHD7NYsSKwGH7QEAVeDwEkBZ07J3oW4ocQYP36dXjnnXdw8ODBsO9TCIEgSph41lk4++yzjjX8PkaEYnxFIWj4rR7VO2rgrg8UWwzLwtrRisITCiFYDC0/GJYDYhZczVFkGS5Z9jNmNYBlRZjNBhiNXni9ngBLCp7nIUlGrQaQOJrgcjTBdfh3XxTsmCeYwVYA1tD8+ILreCRJyglnc0r6CBUFU1fVejweLRWpzkvhareo6KKEJN2iyz9yEu2GzIQgXLVqVcC4SkpK0Ldv9CJmPUXuCCEtsowI1wWAq9oE24pZYBsPoLpagsvJwdX+VDi6zwIviJAkI5qaGmOKKjR3STdAMhrBGQyQXW643C7IEdKQLpcvolVQQNCxowyOAw4cYFFe7nOG79CZAZTmPRRTzZYtW/Gf//wHe/fuifg+huNwxqkTcO6kSbDbQ6T4QhTjK14ZtXtqULOzGp6mwOvLcCzsXWwo7FEI3tjyxyAhAGvgQZKaCibweNzweBg4HDLcbrVWUAQhBIpCwHGqaW6IZ4Miw1tdCW91JZyqJYXVphmzBiPLMhobG0M6m3s8Hu3+o1EwSjiCo2Bqo26z2Re5VRd6hAoe0EJ6SkjSJWxCWQ1EI92i67fffsPu3bsDto0ZMwasXz4q1JjSYXgajnA+XYkKv7AF878ug2XVNSAuByqqjPB4eTh6zIS77LRjLuN8+MkyKupkrNbp8DAIAkwWX6G051ga0ulUsH07j82bDVpEa+hQDzp2lFFSouCWWxrBsgDDGUDk9Pb12717DxYvXoytW7dEeSeDk0adjKlTpqC0pCSmfStuD2r31qF6ZzW8TtnnoM9wAJHBGVjYuxagoFsBeCm2GrBoEAAsn2zBdRxJAgTB35ICEEUJBoMBiqIc8+nzFeOHTelwHLyqJcUxY1bVksJgK2hmSRHK2dw/Cqb+wEhH03VK9hLcqFuSJBiNRkiSBEnydVior68Hz/NJiXRVV1fjjTfeQH19PRiGwYknnoixY8cm6WiSAxVdUchEelGNAjU2Nsb1UEun6CKE4KuvvgrY1r59e3Tr1i3imIxGIwwGQ9IMT5MBz/NajUs8hCuYlzY/C/MPD8LjZlBdbYSXMaFpwPXwFvXXUmLJTKfKsheywwunowmEsBBFA8xWK57/F49DB2XYLF4tohVQDM8C4Pi0Cq4DBw7gnXeWYP36dVHfO2TIUEydNg0dYjQ2lV0yavfUonp3DRS37zgZwCe2BA4F3YtR0L0YvOjzzUJSVogyYNgwbZGSxGmnBaZEJcnXfUJdZAAcE96GMJYUHA9FDoxi+huzOhgWnNkC3maHwV4YYMyq4m/MqkbBzGZz2BQShRIMIQQOhwMGg0FrZSWKIhYvXoyqqir07dsXvXv3RmlpacAP93hgWRbnnXceOnToAKfTiSeffBI9e/ZEmzZtknw0iUNFV5wQQhK+IWIhHav4ksGuXbtw4MCBgG3RmlqrS9bTYXgaDwaDIe4VgiEL5mUXLN/cBmn323A4ONTUSJClVmjsfzMUcxnMZpNWrJxM1NTh5s0G/P47i5tvboTb7cKp43hYLBy69TBAEMzwyh64HccKXBlfexykyXy1oqIS7723FKtWfR3VDqNXr96YPn06uvfsGZOY8TplVO+qRt2eWijewH3zEo+CHoWwd7GB5VkAJMgZ32frkIgzPhjWV+EfZpViKjAaTccmrybA5Yb1nnsABqh/6GGtLtDfkoIzCL4FGEB4o12i+Bmz/gZGEI9ZUthhsNqjRsF8Yk+KuZCa0px8qWcCjh+rGgW7+OKL4XA4sH//fqxatQq7d+9GmzZt0KtXL/Tu3Rs2W2wrhgGfSbDdbgfgsy1q3bo1amtrqejKZlIZTVJX8dXV1SX0BUxXpEtRlICm1gDQvXt3lJWVhRwTy7Kw2+3Nap70wsiRIwP6RUYjZMG8sxLWLy6DcORb1Ncb0FAvwFvQEw19bwAr2WExmeF0OpI6Ee3fz2LlyuPF8Fargr59vfB4GPA8Qc+eXgBeOJtccDb5oiG8wQDjMa8dt8MBj5uk1BOsrq4eH330IVasWBE1atulS1dccMEF6NevHxieB+TINWaeJg+qd9Sg7pc6zeFexWA2oPCEIlg7WsFyYfaSoDO+7x9wAI4buKaSNWsEtG8vo08fKUC0S0vfhdyxo+//31sK5/TpAI7X/7llGWhsBM83t6Twer3hjVndLngqDsNTcdgXBVPbExUUghOb28Cok2c4O4GWmmrmgyDJh2NUCXWsRqMRQ4cOxaBBg9DQ0ICDBw9i27ZtWLhwIc4++2x06dIl7s+prKzE/v370alTp2QNPSlQ0RUnqRA2yVrFly7RtWnTJlRWVmp/MwyD0aNHh3wvy7KQJAn19fW6/eV79tlnx/S+sAXzNdthXTEDXP2vqK4R4XTwcLUZDUfPy8AZjDAajWhyNCW80lBFjWi1bq2gdWsFXi+D33/3FcP37etFhw6R7R1k2Qv5WJSCZXzF+GarFQzLwet2we1yJa3tkMPhxCeffIJly5bB6WzuheVPmzZtMWPGxRgwYCAYlgHD8REjcO56D6p3VKHu1/pm4kiwiijsWQhrmVXrzx0zIYrxQYjP/sH/a8VyaY1uHT7Mok0bEW63S6vjY/f9AsO6daj/+98BANb77oN75IlQOnY4XmN27Bxqq2ABbRWs2exLIXo8Xni8nvD3JlEg19dCrleNWY3gbXbw9kLwFmtMxqzpaC1DyR7CWUawLAuPxwOGYdCuXTu0a9cOp5xySkKf4XK5sGDBApx//vlx+UWmAyq64iTZwkYtxI63fisU6RBdHo8Ha9asCdjWr18/lJaWNnuv2stL7z3gZFmG1+uFKIb3ZwpXMG/4fQWsX/0BxNmAymojXG4WTZ2nwdt5EgRRhCAYWtTSRxVaW7YYsHOnL6I1apQbp5/uQseOMm69tTF2Hy2O11JrhBA/g05fikgQRRhEK7weL9xaeii+X98ejwdffPEF3n//A9TXR04jFxQU4sILL8S4cWOP3fsMwIZPebpqXKjafqxVT5DYEgslFJ1QCHM7S3KMW/2c8RmG0VJsCkiLLCHih4XBIMDrPS64AEDp3An1Tz6p/e3//wzHhU3LNl8Fy0MURHAcd+x7EGhJ0ezfuxxwH3UEGrPaCmCwF4IN0fs12E5AkiSttYw6jmjR73yIAuXDMaqkuuG1LMt45ZVXMHToUAwcOLDF+0s2VHTFgL+YSaawSXb9VqrrzQDghx9+CEircRyHk08+udn7zGYzGIZBY2MjDCH8gfTEs88+i9WrV2Px4sUhXxcEAUajsVnBvPjzy7Cs/yu8bqCqygiHh8PS37qi7qgDl/ZWi52b9/KLhqL4tIeiAM88Y0Z9PQurVcHQob6IVseOvihBXJeai5yuU1NEjqZGn0GnwQDJbAIDBm6XEx63O+I9qigKVq9eg3fffReVlRURh2I2mzFp0iScd955YBjWJ/zUsFSICJKjyonqbVVoPNQ8CmwsMaKwZxFMrUwpdMk/VgfG8YCsgFEtKRQFTApTsyzLwmQyw+v1xhQZIgzrezbFHEUKZcxqgMXi+/Ghvhb2uisyvLXV8NZWw/nbXrBGU0RjVkVRwjZYlo95k+Vre6J8El2pdKQnhOCtt95C69atMX78+BbtK1VQ0ZUAyRBdqijJJhd2h8OBb7/9NmDbkCFDAgod/VOlDodDWwqsZ9QVWKFQC+YD6uwUD8zf3Q3jjlfhdHKoqZZQ0cTCW34XRo/siDlz5mDs2LFo3bp1zGPwj2hVVbG47jpfBOuMM1yw2XzeWonoaQJETdcFoxl0Op1gGBY8z8NoMoPlOHjcbnjcbi0NSQjwww/fY/Hid3DgwO8R9ysIIs444wycc85ElJa2gsvl9AkulvXtKKCPKOA46kDV9io4jjZfWWpqbUbRsb6I6YDxixKqUbCkFOOHgeN4GI1GNDQ0QlGE6IKSYbWxJcpxY1Zo112SjMd8lSJbUgCA4m/MyvG+QvxjPSJjNWZV2xP5G7PmgyDJh2OMRjLOwd69e7F+/Xq0bdsWjz/+OADgnHPOQZ8+fZIxxKRARVecJKPDus1m02obkkmq04tr164NSAWIoogRI0ZofydqdZFOQl0/nue18bpcLnTp0iXs+AuMwH8uAU47AWhoMKC+ToDX1hX8iTeDlwphNpvxf/83N+bj//VXDqtXC1rq0GpV0Lu3F14vYDAAAwYknpYlDAuWYVpkZ+CzHzjuCcbzPARRBC9Y8dOPG7Hw9Vf/n733jpPiPrO9v5W6OnfPDEMcYGCAAYQCAhSQECCUs4Qka53ksPYGh7X97vXdaHu98e7etfe917uvffd6ZTlbCCFZVkIJEEgIkEDknEQeJvZMx+qq94/qqukcZrpnRtKcz8cfi57u6urq6vqdep7znMPhw4eLbkMUJZYvX869995LfUM9bpe7X+MmSRmVGcOA8LlULmJHlhZMEPBO9FDXWo8zOMionjJhkdaCx3AwYvwCMA0lnfT1mca5fr+Bqqa2pWkEvvBFog89ROyO283HBAmh/SKBr/0JfV/+ComrFg3ofTM+Vtb3XtSSIh+Smm3MCgKS159qRQbKMma1qsuBQIBkMokgCB9q88xR0lWdYzB9+nT+7d/+rTo7VCOMkq4yUK32YjX1W/lQS9IVCoXYtm1bxmNXXXUVbrcpyLUuktmGp8MZEF4usi0jnn32WTweT47548ZnH+OT3idobYSuLpVIWCY+9hrCs38fyeEuSzAfi8HBgzKTJ+sEgzqhkMCpUyJXXmn6aA20opUNI1X5KBS6PFBomsbhw4dZtepJdu3aiWFAEgMM0z1ByviuBRYvXswDDzzA2LGNOZE1GRozHXpP99J5MH8uon+yj+CsOlR/rm6odhAQpAptNbLF+OanyxXjF4CiOFBVh22cK4pw0039x0M8dQohqaE1T7Xfw9B15BPHzbefOqX8fa0AljErmFUwRTEtKQRBRNNMAlZoCEOQZJK93SR7u4mdfR9BdiAHAnY8UT5LivQqmNWCTI8nito5pB8OjJKuUUf6UVQZQ+G/VUuCs2nTpgwy5fV6WbhwIdBveFrI6mIkka58+ZSKopBMJtF1HbfbzYoVK3IE8+8+8z2+Mf4Jgk7o6HCSSIjEWh4gMuX+VGXCUVAwbxGtPXsUDh40K1q33hrjuuvizJmjMWeOVt1QaVFKWRlU9yJ+9uw5Vq9ezZYtb9uPCQLICFh9Nd0wMxIXLVrIxx56iIkTTWNTh8McKrDIhFU9MnSDnpMhOg92kujNTAUQRBH/VD91s4IoniHWBQqCqTMbjL6ogBjfSCbJ992oqhNJkorqAKUTJwBMqwhJwkiJ+qXjJ9CdLvSx5be0BwrD0DOGMApZUui6npqizCRHhhYn0d5Got00ZpW9PiSfHyVQj+TKbRdb2+zu7v7QGrOOkq6PzjEYJV1DAK/XLKfXWr9VK9LV3t7Orl27Mh677rrrzADmlAi2kOHpB+FHdOmll/Lxj38cRVHwer05xPj4s3/F8vYfgSJw8aILzVAJz/59EuOuQZYlnv7tb1n78sv0dHXRPHUqX/ziFwiHo/zjP/4D//iP/8L/+T9NxGICXq+eUdGCCsXwZUDI4z4+WHR0dPLMM0+zfv36kjcMs1tbefjhh5kzZw4OhwMlNRGqawn6+sIYGIiSTDIWp+dEKqonnFkhEWUR/7QAdTOCVclFrBiiaHKiqlYJDbtFaUCOGN9KKgiHM4cFNA02bXIwfbrG5Mk68vET6A1jEALBjO9ZOnkCffJkhnCsMm0fcy0pXC4XoqKYkVSpSl9eGDpaqBst1J1hzKoEgsi+QI4lRT5j1uxsv1Fj1g8mRknXKGxknwjlEhvL16kW+q2hxIYNGzKOQV1dHZdffnlZhqcjrb2Yr9J1xRVXcO211+ZW6/Qk3b/7AxZ2PkM0kXKYl4P0Xvon6P4WVFXlb//27zhx4gQPP/wQLpefxx7/Kf/yvadJanFuvPFGGhuD3HRTjHHj9Kq1DgsiXexdBfT29vK73/2Ol19+JcOuIB8mT57CQw89xOWXX445QKcRiWipY62bVUSfD12HC7vP0L63jUQ0swIiOiSC0wMEWoLIanVyEStGql0nVLlKmI5sMb7H6yVpQCwS6Rfop6Dr0N4uMmmSCOhIJ06gN0/N+Z7l4ydIXHFFzfa5XFiWFEgahMMVW1KkG7MiiEg+P+6GRhzjJ+R9fnq2n2XM6vV67TxVq0050hfzjwrhKPY5PyrHYJR01QiFfJ1qiVoQnDNnznDo0KGMx2688UaCwWDZn20kka58cDgcdHV1oSiKbbkhJHrRn32EltDb9PUp9PQ40DxT6bv0a+BqxOtx8/TTz7B7924+//lvcfbsPA4dkpDF03S0PYckGdx51+dBkrhmsYGuGwg1up4YCIhFvJkqRTQaY+3atTz33HNm3EwRNDaOZeXKlVxzzTWIYqaey+v1EI8niMdjJOMGXTvO0XWkE5KmuN6huszjIuv4p/sJTg8gKrW1PCmKKpPW0hDweNwkUsfIfIQMMb61CAmCqZuTT54gcuedGVsRz19AbL9IciQ4bwsCpNlWlLSk0LTixqw9XejJBG2nTpCUpFQ8UbAsY9bseCKrQjYSLSk+KoTjo/I5i2GUdA0ApU4ap9OJqqpDnp9YbdJlGAbr1q3LeGzy5MnMnz+/7MDqkfYDSz9G1iTpE088wb/8y7/w61//mjFjxiD2vo/j+QfxhI/S3aMS7pOJNy4gPPsPEVU3suRmy5Y4L730MpdeeilO52xOnhSZPz9BT4+DF1/s49577yfg90IySW9fHz/84Y84c+4ciqIQDAT57Gc+XZGlRMHPU4UJRQuapvH66+t45pln6Okp3goPBILcd9+9LF26FFnOvIxY/lLRaIRoKErnkR66j3ZhaP2LnZ5MIrtlGuaOYcysRlSPC0M3bE+wWkYT5cUQEy5BEPF43DnDGkCmGF+Q0AUJXdAhFoZ4HCMYzHi6+vzzAGhTaiOiLxuCAAgFo5HSLSlMY1YFp+osYklhktJ4PGFWWhMQj0aIXzibMmYNIAfMVqSo5A5YZMcTDcSYdahQyKX9w4ZaenR9UDBKugaAfC0qC0Ol3yqEapKuo0ePcurUKfvfDoeDm2++ueLA6pFY6Uq3t7CgaRryhS14XvkkUqyTzk4nsZhEdMpddDc9xNFDLvbtc7Bnj0Ek0sf582e4+eYbWbAgwaJFCUQRfve7OF6vl9tuuz3t3QRuvfVW5s27BIC1a9fynz/+MX/9rW+Bbgzc30kUEYzBTyjqusHmzW+xevVq2traij7X5XJz1113cvPNt+B05to2iJKE2+Wmu62L9v0d9JzszdGYKV4H9bPq8E7xIYoC8USUeFfUnorz+HyIokg8FsvwBKsZShjHVhsWKY1EIiU/m6HrCEYSSQCcTgx/AMfbW0hcMR8hHsfx6isoW7dgiBJ6nuzTIYNlbls2WTaKWlJomoaiKPlJKaSMWTvQujuIAqLLY+rA/EEkj7ekMavD4cDpdNrxRJZMYriqYB8V0lHoc35UJhdhlHSVheyTJB/pKpTL90FFdqi1qqpMnTqVMWPGDONeDR6GYdjiW6sSaTnme04+jX//d9ETGu0dLuJJhcjsz9PlX8K//U8fmibgciWZPz+Bz3ecH/8YGhsbsQo9uq6zceMmGhvH4nL15315PG6bcAHMmDGTF154ESN1Vy+Q8oICU7xdxsVXECVThD0I7ZFhwI4d21m16klOnXq/6HMVxcGKFSvYtm0bGzZs4NZbb8vzHAVicGTLEXpO9mAggtFPKNWASt2seryTvHlzETOn4lIRNU4nkqKQTCSI23FS1VmcDEAs5sFVA1iktNwsTkGEhgYB1WF+7r4//ENcP/sp/v/n/8EYO47YTSvQrlyIdOQwOIYp+cEK/x4EaUi3pBAlCa/Hg67rqYlOGU0rZczaRyzSR+ycacxqmrKaGZGinLvMWfFEYN6AqapqG7Omh3QPFT7qpOuj8vlhlHQNCNltPDNA1jOk+q1aY+/evbS1tdkj2vF4nGuvvXa4d2vQkGUZWZYzBPOKLPGlK84ybd9fE4tJdHa66E14eb3vm1w/YRpjXC6WL08ycWLUFsMfOmS+tre3v1L26quvcubMaZqbm4vuw9q1L7FgwZUZj+WbbDMMPW+rphoTigcOHOCJJ1Zx6NDBos8TRZGlS5dx7733snbtS/Zne/rpNTz88MP28/Q+nfOHLtB+rB1DN8zPYJikwlnvor61Dvd4TwVRPXkiahQFl8djkrNYHC1RPJqoFERxaAmX5VMWDveVt9+CiKrCsqX9JrHavEsI/Y//kfe5tXDGL4kqDx4Igojb5aavL2yTMFnur4Lpum77ghUzZk10XiTReREQkHwBZK8PORBEdntyn55M2lWwbGNWTdPsG+laVmI+KqSjUEXro/L5YZR0DQjppMvSb5WrcfogQNM0Nm7ciCRJtv5hzpw5VdEgDSes1m84HLa/q01Ckq+vuIodp6OEu2S6u1VOdwf4r31fpH6yxLTTZ9A0jbFjE2gahEKNBAJ+Jk+egsvl5umnn8btdtHR0cFvfvMECxcuYseO7bz33nvMmTMXR1b1Yc2aNVy40MZnP/vZvPuYPtlmPpC1mA5Se3Ty5EmeeGIVO3e+V/K511xzDQ88sJLx48dx/PgJtm7dyne/+10AvvWtb3HNNdfS6B5D77Fe+s6Zhr8GpCwXkrga3dS31uNqdA06FzE7mkhRFNwpMbUWjxOPxcpuQ1oZhYY+dITLqq6WHX6eJxqpKGrgjF8KQppPWDVgtV2zq4D5LCksY1ZLB1bwu5ckkqEukqGuLGPWOhR/oKQxqyzLqKr6oTZmHUqMVrpAMIbxk545c2a43roiCIKQEdrsdrtJJBKoqophGBm6oOFGMBikq6trUNvYtm0bb7zxBoIgEI/HkSSJz3/+8wSzBLxDuU+DQXr0kiiaF+p3dJ3vOmXWu3xgGFy1az1PPX43208b/PPrEClwTf1v/+2bXHrpPAB2797NL37xS86dO4fP5+ORRz7GvHmX8q//+q8cP36cH/3oRxm6p2eeeYbt27fzzW/+d9zuyjIDDQRzWkswHc5JVmZ+ev78BZ566ineeuutkq+79NLLeOihh2i2XM+z98WA8IUwnQc60HqSGKnqg4E5ueYd56Judj2uemfe11cbsiyjOFQUh4OkniQeiRS2JahYezR4OBwqiiLT1xfOv0/ZSKseRSICmzY5mDs3wcSJA9xnUUIQRJO4l+mMXwrV9oOz267lVgHNvUBRZGRZSbOk0FKEyCge3wRgGbP6AyiBOiRn8d+kVfVXVRWHw0EikbAJ2mCrYIFAgHA4/KEncy6XmeWZvWZaXmsdHR3DtGflwTJ7HgxGSVcZyEe6VFUlHA6POP1WIBAYlIg/Ho/zk5/8JCOq6Morr+Smm24a8DaHk3Rl50G6XC56k0lmetyEJBlR05h+cC/Bjovcf3orp378PBfbOxFFgQkTJjBz5izmzZtHY+PgtGxr1qzhvffeGxjhEkRzoUy7sOcz2MyHrq4unn76GdatW4deQnA/Y8ZMHnroIebMmZ1/PwzoO9NLx8FOYl0xHIoDLZka+RdEvJO81M8Kog5RLmI+WLYEiqqaNw3RGImEuSgKKTJTbaf+YrACo7NNTwtClCGtAtfbK7B2rcrChQnbUHdwKO2MX3ILVSZcVrh32VXAArC/e0UGWSYRiRS3pMh+verst6Tw+XMsKbJhtovNTgf0B3gPhDhVYsHzQYYVG2cNNFhwuVyoqjqsN+floBqka7S9WCGsNsFIFswPtFQriiJ79uzJyE9UFGXQWq7h4vWW1i47D/K1ju2EPYtxxKLM2LsTd18v42O93OuZifr//Dc6Ozt4993t7N+/n3XrXkdVVRobxxCJRDl9+jTNzVNzbBKK4dSpU6xZs4axY8fxD//w94B5rK1WXVGkJhSztV3ZBptmG1LEMAyMlEbl+eef46WX1toeUIUwaVITDz30EPPnz89bBTF0CJ0yo3riPTEEQTQJl5ZANwx80+qonxnA4R0mIXca+m0Joli2BC63B0FRSMbjJGJD51bucrkxDKN8wpWndVz9n05xZ/xSGGx7Oxs5eZyDgPXdxzUFI9lnXqttY1YtVQUrPIihx6LE284RbztnG7MqgSCKvw5Rzb2R0DSN3t5eent7EQQBp9NpxxNVasz6UWmvFbLG+Kh8fhglXWXBOhmsjEHLfG8kYqAnrqIoGIbB+vXrMwjKVVddZUdsfJBgfVfpWjvDMPiXc2/yNy034+3pomXfbpREnLGJKH8TSeJxuTBNPb3ccMMSbrhhCb29vUipysCBAwd46qnVqKpKS8sMZs9uZebMWXg87qL70tTUxE9/+tOKP4NZmSmzupHS9MRiMdaufZlVT60mkdCQBBAL9JMaGsawcuVKFi++1jaFTYeeNAidDNF5sIOujm7W71/H4XNHCMf68Lv93Hjtjdz20F3ITmE40mfKgGlLoOk6em8IRZZRFAcurw89mSSeiouphSeY2+0hmdTKvjErRGasn3MtXFfyE/ciYvwqT3paN7BWHudgYRhkZD3ms6RQVadtSZFIJAq3BVPGrMmeLqIcR3S6kAN15kSk159jSWEYRklj1pg9fZuLjwrpGNV0jZKusiAIgu3n0tPTg8PhsBfikYZiHmKF4HQ6cTgcrF69OmNM2u1226HWQ71Pg4F1oUv3E4smo3wzdoRftdxM/YVzNB/aj2jo+PUkfycojPWraJqWQ6gt8T3AJZfMxeVyceDAAQ4cOMDevXsQBJFvfOMbBAJ+EolERht6MKi0haNpSTZs2MDTT6+xS/SKKGAYoBmmm7mAgCSaE2IPPHA/d9xxR9791TWd7mM9dB3qRItqaMkkv3rrl0TiUW66fAVjm8ex/ei7/PrlJ1l8x2IanA1V+cy1QDqZsQXZkbAtyPb4fCBgivHj8bJbUUXeEa/XQyzWv+CXu4/FMQS/nXxifAN0Q0cUq5d4AKYFiRmA3ke1CJcgFz6O6ZYU1iCG1fo1z4sSlhTRiGnMev6MaczqD9gZkeUYs6qqis/nQ5blDEuK/sSBjwbpGJ1eHCVdZSMWi9mEZKTlCaaj0n2zCMqJEyd4773MibbFixfbeoXBYih+VBY5ti5qFi7G2vmcEuWtKUuZdPwoE04dp7XrOLp7Ap+KJxjjdNnPN6eiBBIJjYSWyFiEFUWhtXUWra2z0PW7OHPmDCdPniQQ8APw9NNPc+bMWWbPnk1r6yymTJmSt4JUDIZRWQtH1w22bHmb1atXc/78+TzHBGQEEMzoHd0w+Iu//mtaZ81KaXr6kYwn6T7aTefhLvR4/9/2ndnH2a5zfPvL32LaFdMQFJH6w2PYvGXziG2x91c98i+kVkaguf8pd3SXC0k2PcFisSjJCtuQpsu86cRfTguzHJ8wSYKxY3WcQzOTkIlkEp3U+WgYCJJSFTG+qqrIsly1ASQDEGQJyp1ezfCDs2xkKrCk0JNoXR1oXaYxq+T22p5gsseb+/SseCKHw2GTMOs8/KiQjtFK1yjpKguGYeQY5X3QSVf6RF80GuWNN97IuAMJBAJcfvnlVdunWiNbMG/hQN9xPlE/jvfdM5i+bzf17RdYcX4Xn1Am4oglcLtcGSPqGcacaXqQ7IgSURRoappEU9Mk+7EZM2YQiUTZvPktNm3aiMvlYtGiq7jpphVlfQYDAUEWy1o8DAN27drJE0+s4uTJE0WfK4oS06ZN48iRw3zlK1+hdUYL6EkEwRRVa1GNzoPtdB/tQk9kLjSSU+ZE5AQtLdNpuarF3EdJZNuWt/F6fYwfP76szzaUsI5j+ZWZPO7oDgdurw9D121n/GJtyEpc5u19LKN65PEYXH/90Jl0psNAyKhwGZi/Eeu8gcrF+KbZqVRFwiUMugpXzJLCImDFvtNkuJdkuJfYudMIsmLHE8n+YFFj1lAoZBuzyrLMmDFjhsWYdShRzJH+wz65aWGUdA0AI52RlyJd2WHc586dY//+/RnPWbJkSdVaqLWuDBYUzHfv4vOTFxIzHMze+S7u3h4+dWEnN7mmoyoyDkUpIODNNOZMjyjRdT3tb5nnwfz585k/fz7RaIwjR46wf/8+c5IKs/33xBO/oaWlhdbW2QSDgcy3FATzGJXR3jp06BBPPPEEBw4cKPo8QRAJBoNEo1GOHDnMypUrWbRokf13LZKg89AFuo/1oCf1lLO4CBg43DLBmXVMuGQC/2vt/8vChQtJaEk6OjvYsG49L720ls9+9rMVV/JqjgqOYyEkkxrJiEY01YaU5f5oolgsRiIey6iAWtN35dsdCIiiOKQ+YZWj2D4OTIzvdJp+bWUPFpSxj0KVj2NuBVTG4VCQpOK/fQuGlsg0ZrUsKfzFjVndbjcXL15EVVWcTqdtzGrdFH9YInJGK12jpKtspBOHkd5eLAbrR50exr1+/fqM54wbN445c+ZUdb9qdbwsPVq2YP7H3e/yl9NvwtnXx5x92wiEu/jyhcNc6p6K0+FAFEV6wxFzLFynqG9TRkRJ6k7Y6zUvoNZFOP2i6HSqXHLJXC65ZK79WE9PNxcvtrN//36ee+45xo+fQGvrLK68cgF19Q2AUTAo2ML775/iySefZPv2d0sel0WLFrFy5UoOHjzEf/3Xj5k//0ruvfdeAOK9CToPdhI6GUpZKKQ0PEYSh0+lblYQf3MdPr+f8+fP0d7ewdRp0/nhD3/I1i1vA3DVVVezdOnSkvsxpLA8uKq4QOl6bjSR0+kyo4m0BMmEmRFY9vRdah/LHZDo7hZ56y2FK69MMHbs0Cy8/eaxZcQUQVlifGuSs2pDSIJgHstB5o4WR55UBFlO++3nShCyoYf7SPb2ED/zPoLisC0p8hmzAhnGrJIk4XQ6CQaDNuFPl7l8EDFKusokXTt27OCxxx5D13VWrFjBfffdl/d5mzdv5nvf+x7/+I//SEtLSzX3c0RhpJOuQvvmdruRJCnDx+v48eOcOJHZnrrhhhuq+vlq9WPyeDwIgpAhmI8n4/xV5ACPzbiV4MULTD+4j3F95/lGTyeT3JNxuz2p8Fvzbrvf+V0wTSQxTM1KgfdMvxMWBNEeebcEuYVaEfX19Xz1q1+hre2iLcTfsOENWmbOoq4uyIULbXR2djB9+vQccXtbWxtPPbWGTZs2UaqVM2/ePB588CGmT59GW1sbq1atAqCzs4NYd9wkW6dCYBhE4lGefudpOvraURQHdQ11fO4LnyM4KYjb7SbcG+Lg/n1ohk7LjBaam6dx3eLF7Nixg3Xr1hEMBvnkJz9BX18fP/zhjzh37hwOh4NAwM+jjz46tAkGqYW+Vu7rJjIXYVV1ojpVEEQ8fh/xSNS00ShA+gzBdJmvJDInmYRwWBhM4a4yCKJNpAaEPGJ8j8dLMh4nGv0gEa5c9NuR9OsA+yUISTQtkWZJIYAoZhBXIxEn0X6BRPsFIoKI5PUhp4xZ8yGZTNLX10dfX9+wxRNVG6OkqwzSpes6P/7xj/mrv/orGhoa+PM//3MWLlxIU1aifSQS4YUXXmDmzJk129mRgg8a6bIE5tY0Tfpz00OtAaZMmVIyO7Aa+zQYFBLMd8W6+H2ph/XNy5nw/nEmnThKa9dxvqLJBJzj8HjchafKDAOSmn3HbomHiy3khqFnaIFkub8VkXsRNtHYOIbGxjFcf/11RGJx1BTBevfdd3nzzU0oimK3ICdMGM+rr77Ka6+9XlInNG3adB5++GG7uhaJRPje976P2+3i7tvu5perfsG6X61j+thpGa9bMn8JV924CPc4Dy+/vJbHfvJf/P3f/4PdKjty/Dg+t5sJY8chCNA0aQILFi4iEovx1ubNfPKTnwAEbr31VjvUe+3atfzfH/+Yv/yLvyi6z9WCFUczlDB1OBI9qRuYzGgiCS0ey4gmEgaZUTgkl5tKo4fKgMfpJBGNmpXCajjj29XMof2+c5GrAzRlG04Mw0DTkyRiMQrSIUMnGeomGeomcfYU7W1niSAWNGbNF0/kdDrteCKLgI10XdQo6SqDdB0+fJjx48fbd62LFy9m69atOaTrN7/5Dffeey+//e1va7Onw4wPUnsxfd8sgXk4HM4pS+/fv59z585lPLZ06dKafLZqbbOQYP5o+H0+EajjiO8Kph3YQ0PbeW5o28OnpbE4VSdul7tskTMUCKDW9aJtyAxBbsod27wI62YrIjURZU3WudIGQ2+6aQUzZsxg//797N27l7fe2pwK5S5+Fztx4kQefPAhFixYYC9iuq7zgx/8Ox0dHfzR3X+EK+aizlPPm4fetEmXe6yHSa1NXDrmUvt1c+bM5aWX1tqtMkGSOXH0KM3N0+znCIChm/5fdcEgiBJef4B5l11qt/VmzJjJCy+8WNZxHjSq7I5eDlwpP7d0MXi+iTiHqqKoPrSkTjwctlu5laCWPl0ZEEUzqLxq1hQCHo+beDzRf5OjJwcnxh+GCKdyYUkQovG4KUGQJLsCnm8Qx4I1gNHT0W56x7WdMy0pfP5UFawe0ZFrSZFtzGrF6CiKQiKRsEnYB4XIFLKS+DCiJOnq6OigoaHfh6ehoYFDhw5lPOfo0aNcvHiRK6+8sijpeuWVV3jllVcA+Kd/+ifGjMkfrXLx4sWydn44MVJJVzoKCczBLF2/8cYbGY+1trYyYcKEqu9HtX74hT7Ppp59PDrpUvoEN627tuMNdfPI2e3c7pyGw2EaIlaW6daP3ABqIdXKMp3fC50G6c7odhXE7TIDmnWdeDSasczIsszkyZM5ePAgx48fSxlGFkZ9fT0PPPAA1113XcbAg2HAY//nMfbs3s3vXftxPHE3CHDtzGt5fsdz9Dh6mLv4kpxcRFV18uKLLzJ//hWmIDplt3D8+HFmz86MBeru7mH79h3ccccdGQspgjmR98Lal7jyyitLHttBQ5JhiAmXaXqaJBYr3iqzCHgkFkUkZZbp8SAA8ViURDxe1vk4JKRLlMxp1qpt0PIqK1Z5KSTGTyLku14IElDr9vEgIZgmwUZSI57U8lpSpN+ACYJ5PuVcm/QkWncnWncn0fePI7rcKR1YEMnry2vMGo1G7aq/ZTpr2QFZYvyRHDE0kipdhXhJtTBoIb2u6/z0pz/lj//4j0s+96abbsrI8PsgkKsPGgzDQBTFvI7s6di5c2dGzpUoiixZsqRm+zRYkmplnGV/np91vct/m34jjkiUuXu34e3r5o/bDnCla5o9il0tx2vAbkNC/926YRhFW0d2FSQRN3VgkphhRxGNxnj99dd5+uk1JQNfRVEiEAjQ0DAGVVVtwqXpZi7iS888z/q313P7ZXf0txIFgeuvvY6NRzfy9sktLLhrQcY2XS4Xq1at4uzZs3zzv3/T9jzq6Oikq6uLt9/eQmNjI/PmzaOzs5Nnn/0d9fX13HrrrTnH5qknV9F+oY3P//fPgigjCCnReBUvqIYBoiJjDOkiYlZuEgmtZKyS/YqUB5cOJgGPRm0doMvjQZJMo0wtXtip3OEwmDgxSZXs8nKRas1Wi3BV6lUGRcT4pNqQojio1uyQoEgVLtuSQpYVPB43oiiRSF0TKNyIRI+EiUfC/casgaBNwsQ85saW7rC3tzevMWsl8URDhZFEuorxkiHJXqyvr6e9vd3+d3t7O/X19fa/o9Eo77//Pn/zN38DmAG7//zP/8w3v/nND5WYfqScEKVgGAaqqpJIJDIE5umIx+O8+eabGY9ddtllGd/rSIIlmE8fANB0je/27eH/m3ELgY6LTD+wl8beNr7RfYEprim4XG7AqJofUH4Ymf5AxUhG6k7d0JMk9GSq1QjvvvsOq1atKhn+rqpObr/9dm688UbOnj3LvoMHiE2YwDpZYX1c55jHybytb7Lr7edZNG0RC6cvQBBFfFN91M2sw+FVuK39Vp58cjUPPfQgjY2NWETiN795gm3btvHNb/53nC63bbdw7NgxAK677jrWrVvPCy+8QEPDGObPv4K77robpzOTCTzzzDN2qLdTVUHX+pdJq0VrGIPS41hGmENNuEpXbrIg5feOyqcDVBxqRjRRuiWB329wzTU10ulUOUexUq+ygkgX44syYCBKYtXJe9VQQdtT13W0pIYDB729plt9JZYU6Em0zna0znaiCEgeT39IdwXGrF6v1x4KikajOZ2QocZIIl21RknS1dLSwtmzZ7lw4QL19fW8+eabfPWrX7X/7na7+fGPf2z/+zvf+Q6f+tSnPlSE64MCUTTvMnVdL0o2tm3blvF3WZZZvHhxzfZroJWu9AGA9FHzUCLEH9DGy9NWMO7USZpOHGFG9wn+JAZB53i8Xg/xeKLsikQ1YN6tp5MMMTVhZSCIQs4CvHv3HlatesImNoUgyzIrVqzg7rvvxu83ne93NzayZ+FCOnSDHkki4TaP7aFbrua61/bgjrs50n2Ua+++lsAYv72tu+66i7vuusvcX0HE43Hzi1/8ku3b3+Wbf/ZnuF3uDEJ0/Pgx3G4PX/jCF0q2t9asWWMTLrfblfuEvC1ak6CWX8EwfZmGbpSvn0iU7TJfwgk/G3YVJNyXsiNx4PP7QRDMNmSiuCXBQFHt4GrrOKUbDQ8W5vBBfwvSfKMqiPGrCcH0tSuXDIqShNvltluKlgO+9bfKLCkMkn29JPt6iZ09ZRqz+oPIAbMKls+SIt2YVRRFnE4nfr8fWZbtCthwpEyMkq40SJLE5z73Of7+7/8eXddZvnw5kydP5je/MY0eq5HN90HESDtBLMPTcDiMI4/w0kJfXx9btmzJeGzhwoUZGYPVhtXyrASiKOLz+YhEIhkDACcjZ/ik183+wEKmHtpP4/kzXHNxH58XG3CpzooWyJpC1wHdFHrrOqIkg2Fw6NBBnly1ir179xZ9uSCI3HDDEh555BHGjRtv21H0xhIciGicaHCiKQJ62rIZG1/HxDuvpP30brae2sIy7zLANFNNJBK0tLSgqqp94T906BCrVz/JmMax/P3f/p3JhUSR7373uwAcPXqM5uapJRe2U6dOsWbNGsaOHcc//MPfA5nbyUF6ixbMjD+E4pWMYZhasxfIMolE5U74mTArD1FisSiWJUEo5GHjJoUlS+L4vJGKo4nyQRCrG1ydTSSqAknKb90yWDF+FWEIonnDUCHhKuTplmtJIRexpMizP1qCREcbiY4205LC47UtKSSXO/f9dJ1wOEw4HAbMKpjT6bTjiSwxfrWqYB8lYlUMgjGMR6FUS2UkwezF93NUv99PKBQaESeRZXgaCoUQBAGXy1VQiP3qq6/yzjvv2P92Op188YtfxFnDcDcrILxcY8RCgvktoQN8evxsumUfLft34+vu4oGz27nH2Ywj5Rhf1Qv/IGBWPBSMpNkaOn36DKtXr2bL1q3ohoEBSAKIeRjNggULWblyZUbEUFQXWRdKstnpoNMl0+U1ibUAiLrBmJjGF2IRZorm+RiPJ3A4TL3Hz372Mw4dOoQsK7S0TOeyyy6nubkZn89bNFj7S1/6MkuWLOGRRz5W1WNTFGkVQgxLoD/0IuqBuMwjVt876vx5kU2bHNx4Y5IJExQUVSWpJ0lEY8XzAQvtpdR/TlYD1nEq2xy2DFQa9g5ZU8aGXlWD3Lyo8Jwc7HGypqGthIt8psx5djKlh0siONRUGzKA4stvzJq5v5KtoxVFsSrxRJIk4ff76ezszPxsokhjY2Pe7NiRhiHRdI0iP6yW2XCTrmy9kyiKBVt53d3d7NixI+Oxa6+9tqaECyprL1oEMlswv6prO38ybSlSLMHs997F19fNF8/v5Wr3NBwOFYdDqa5gfhDor3gkuHixnTVr1rBx40YMQ0dMI1qGAUkjVQlE4JJL5vDwww9ntOa7Ykle69N51+Mi4ZEwgD5VRtINJAO8usENRpK7tCiK2P/ZLcIF8PGPf5wTJ05y+PAhDhw4wJNPrqK5eRqf/f3fx0hqXGy7yJgxY3IqWv/+7z+o6XHKC6tCCCb5EiUEQUfXjCGbUrSmv8p3ma+dWaf1E9D1JJFIgkgqmkhRzGgiAC1httKLVeMMg9REavUIl2UMPNyEC/JNGWeJ8auydymIUuo8HRrCBelVMHJMmfNbUggg9qcKGPEYiYvnSVw8TxghZUkRRAnWIam51/9aGLOOenSZGCVdA8Rwe3UV0jsV26+NGzdmVI78fj/z58+v+b6We6zyCeZ1Q+efQu/x/Rk34+/sYPqBPTT0XeTrHWeY7p5qeyaVslgYMggCgiDS09nJ7373O1555ZWCrU5BAAlonjaNhx9+mHmXXgaiiGAYXAjHeS2s857XRdLff+wEYEJXhL6gSoMID2hxLhdElFRAbyKRyNGBSJLEnDlzmDdvHn19fVxou0AiqUNSIxyO8IMf/ACfz8vs2bNpbW1l2rRpGVXd4YIgiugpkmC1IcH0SyuW8TcYOBwqiiLT29tHOYuqMVgH91Lbz7ML+fIBnS4XsuwwRfqxGJrWT66s4YNygtTLhUVMq3mjU1WdWbYzvu21N0gxfoWTlLWoBGYPY6RnwxqGTkJLomkaeoHvW8CwjVljp08gqi5kfwA5UIfs9ZVlzKqqqm3MaonxSw2ZjJIuE8N/Zf2AIPukGE7SVcggtNh+XbhwIUdHdN11142MxbUAgezV+viqdppnp99M49lTTDl6iKk9p/h6JEGDayIej9sOhR0RECQikTAvvvA8L7zwYsnYk/HjJ9gh1KIogKFzNpTg1ajBLr+bZJ0pNhdTYvP6SIKlWoJFAYWdCZiuJQlgEIeMbMB0O4pEIoGiODAMg3C4D0GAceMnQkqgLEki9913L/v3H2DHjvfYsmULDofKgw+uzPHnGkrkXYDTiKQgShiCkNmGHCRU1YkkSeVPvIoigm4wFNXVwpLIPOHsDgWX14uhG8SjUbRk0iav1YCiOFKV5fKIaVmQqqszy0F6FWygYvwK/cxqUQnMh/RsWEGUUBwOXE4VQXAVjSazoMcixNsiWcasQZRAXUFjVk3T7CqYqqq43W4cDgeJRMImYdlr5ijpMjH8K+4HFMNFuhwOB263O6/hqYV8+7Vhw4aME3vMmDFccsklNdvPdBQ7VoUE82cj5/mkW2LnuGuZcuQAY8+eZkH7Af6AIG6nD7fbQyxW+u5qqJDQdV57eS3PPPMMvb2hos+tq6vn/vvvZ8mS622frRN9Gq/GBA76nRgOAAMpdaEcG06wDJ35QQXBEBEMnfl5q2eZC7Asy7hcbgQBNC2J4lDRNM2eCAOznTt//nzmz5+PpmkcO3aMAwcOMHasmUCxc+cutmx5m9ZWswrW2NhY84kxocQCbLrip537BUKWK4FZMcXO5Cy5j6JUdmj1YOBywdSpSRSlvEUpmdRIRjSiETPMXXGouJ3ulC4nRiIWH5Sdg+V9V1UrlpTJ7ZBhIGL8FOEqF1ZMz1BKHrZv38Hr69dx/OhRQqFePB43ra2t3Hbb7cyfP9+2pNA0rTAJ1JOc2LuHP//zP+O//bdvcvlVV6H465D9gRxj1m9961v86le/YsuWLdTVmfmRsizT3t7OihUrmDhxIs899xyCIKBp2ijpSmGUdA0Qw0G6ShmeFsLJkyc5evRoxmNLly6teKJwoCh0rKyJy2wC+V7oMJ8cO40LagMz97xHoKuDu8+9x0rHZBTF1BZUczR9MNB1nY2b3uSp1avp6Ggv+lyv18tdd93FihU3oarmHeThkMarmsBRnwuyDDCbemMsF5PM9SmIaZohu8pTRDAsCCJOp4toNEIikUCUZRRZwZOyc8gnxJVlmZkzZ2bkp0qSRCKh8fLLa3n55bU0NDTQ2trKzTffnOGEXw0YlCZc+V+Y2UoSJBkDwzw2ZfxOTJf58iumA9UdDQTBoM6CBQOokggihgHxaIR4NIJdBXU6kRSZpGZ6gpmt7/KuJRVXAsvZTXmoTW6zkd8ZP12MXynB7idcVawEFkEymeQ///P/snHTJq65+mo+8YlP4PcHaGu7wIYNb/B3f/d3/OhHP8LtdqWGlMxJxkKWFMePHwegubkZPRImFgkTO38aJNkU4qd8wb74xS/y+OOP85Of/ISvf/3rAIRCIT72sY9hGAY//vGPbV8wRVFIJpNm2kUWyfooRQDBKOkaMIaadPl8PpLJZEHD00IwDIP169dnPDZp0iSmT59ezd2rGJZgvqenJ+MH99uu9/hS82KMhMHc97bh6gvx+bY9LPW0oEgSDodS83J9OTAMeGfbNn7z5GrOnz1d9LkOh8rtt9/G7bffgdvtQjdgT0+C13WJ9725nlbTeqMsF3VagwqQS4xzqzyi6YqfapXkWB2IEkktia5pmLRCsDUgoigWbUFccslcLrlkLt3dPRw4cIADB/Zz9Ogxm3C9/fbbuN0eZs6cmWOWWhksD67BL8ClFtH09zRNTwuEoOdDlf2taoK8Zp2ZVVBRklAUBZfHg4FBPBpDSxSOJnI6XQhC+ZXAUrD9zIbb2iUNecX4shlUbrvll0C/1m1oCBfATx7/KZveeouvfPnLXH31Vfbjc+bM5oYbbuDNN9/C6VTzagHzWVIcP36MhoYGfL4sG6GkZhuzgkDQ4+Hjt9/Cr3/6OH/0R3+Eqqp89atf5fDhw6xZs4bGxsYMY1afz4eiKDQ0NGAYBu+88w5er5empqaqVLr27dvHU089hWEYXHPNNRnpNyMJo6SrTAyXpstqv1nTIpXi0KFDnD17NuOxZcuWDSlhzD5WbrcbSZIyBPOGYfD9nu3844xb8HZ3MmPfboJ9nfxJx0laXVNQFQVRFOmNRFKj+Qxb8O3evXv5zRNPcOjIEeQix1GSZJYvX869995LIOBHN2BHV4LXRYVz7kzfHAGYGYqywmHQHJQxJfZlIK3KgyCgpMhsXyiEricLxLwYOa7olit2IT+gQMDPVVct4qqrFqHr5uOGAW+9tZmOjnZEUaS5eRqzZ7cye/YcgsFAefuf2u9aTP/ln2gzCaqAjsftrahFXW27hXJw6pTItm0Obrwxht9fxsJU5mSdPQ0X7c8GdXm8iJKEFo8Tj8VsEu5yuTEMo2zLl1IwqMxAdtggCuiJhFk9hZJi/OEgXHv27OW111/jvnvuzSBc6Vi8+Fr7v3Xd4JVXXmbduvWcP3+eYDDAddddz/3334/T6cTrVXn//VNMn95SogJlGrN+/Lab2btxPc/9+79xPtTHW6+s5f/9Xz/g0ksvzXlFuju+KIqEw2E2btxIW1sbLS0tzJgxgxkzZhT1mSwEXdd58skn+aM/+iOCwSDf+973mDdvHuPHj694W7XGKOkaBGpNXKz2W29v74DMPnVdZ8OGDRmPzZw5k0mTJhV4Re0gCAKCIOD1etE0jVCoX/cU0aJ8I3GMJ1tuoeH8WaYePsCU0Bm+Fg4z1jUJt9tNMpnMvcu2L4L6kBCwY8eOsWrVk7y3aycgFCFcAosXL+aBBx5g7NhGdB22dCZYJyu0e7PIlgFzQ1FWqDCpbnDtOtXhwKHIhLq7MTAQJQUDwxYNF0JGNlzKD8jrdWaE86ZXFkXR/NyCAF/96lc5dep99u/fz4EDB3j++efp6enhlltuIZlMcubMWSZNmmS/JgeiaK5PQ2F6miKooiji9niJxuIkdauGUXiR7HeZH3r9oGEI6Drl6egq1B31v0cqGzQtoNmhqsiK19TjxGNEItGKt5v3vTBD0Uc64crbQi4ixjfbaI4hJVwg8Myzz+JSndx5550ln63rOj/4wb+zd+9e7r33XqZOncLx4ydYvfpJNC3Bww8/TDQKR48e5Z577ilhSWFiypQpXHrpZax+4jf09fXxzU9/nOubxtF3aB+Sz48SqEdK6SXT24q6rjN37lzmzp2LqqocPXqUbdu28fzzz+Pz+Zg7dy5XXHEFvpQtSimcOHGCMWPG2GHV8+fPZ9euXaOk68OEWgv/LGO67PZbObD2bdeuXRkByoIg1CzUupz98fv9OYL589GLfFZNsHXc9TQdO8z40ye5rOMQf6x78ahj8Hjchds/eXx5DEO322zVwtmzZ3nyydVs3bqFpG5W7QpxiPnz5/Pggw8xeXITCd3gjY4EG1UHXb5MsiXpBpf2RrnJJdBYP3htlHWB7O3tzU8SxJTrO8WNI/v9gPorIO4idhSiKDBlyhSmTJnCLbfcQnt7O7JseoQdP36cxx9/HK/Xy6xZrcye3cr06S39HmKiNORBxrbpaV+/6Wl6G1LPsqOwsx6HiSRYl5lS57OQqmhWAxYJ93g8aJq5TV/ArFzGozESicr8mTL2UxTtydmRirI0e2lifIeqorpc9A2lbY0g0NcX5sC+fVx77TX5o7ey8OKLL7F9+3a+9a2/Ztq0aQDMnTuX8+fPsW7deh5++GHOnTtLNBph8uQm+yY3x5IioaFp/XrQRYsWsWvXTubPv5J7770XDB0t1I0W6gZNQ5kyraivpaIozJ492y4GtLe3s2/fPkKhUNmkq7u72xbzAwSDQU6cOFHWa4cao6RrgKhlezGfX1WlSCQSOaHW8+bNs+8EhhKyLCPLMt3d3Rl3S3t7j/KJMU2ccY6lZd9u6jrauPX8Th5RJqGoDtwud/nhuVltNjNahkEtlh0dHTz99DNs2LDezEgzDCRByLsAtra28vDDDzNz5kxims6rHQnedKr0+jNL5UrSYH5fhOUekfr66vz83G5PKtLDvEiK+cToebMPjVT2YX5kVkDy21Fk3/02NDTY/z1x4iRWrlzJgQMH2LNnN++++w6yrPCHf/iHjJ0wAT2RKFwBqwEKjfCntyEF6G9DWiWmETCwUexSU31hf67WLT2ayOX2IMkyCS1Bwhbjl96m5Y4+olHhsVQUs7rc290FDJEzfqodf/LECQxDp6mpqeRLDAPWrn2Jq666yiZcFsaOHUdvb4h4PMHx4yZRaW7uf06GJYXVinaZN2JnzpzhySdXAdDZ2ZGxXXXseDxTTe2w5XAfjUZLCukbGhq4/vrrKzkiHyiMkq4Bohaky/KrsiIXBgrDMHj33XczWniSJHHddddVYzcrgiWYN7VC/RfntV07+eKUq0gYMrN3vYs31MOj595juXtaShvhHLBgXsDM9rMclERRxhAwWy9lVChDod6UsenLtt5H0/MTrilTpvLQQw9y2WWXE00avNiR4G2XStifKSpXNZ2FfVGWeUX89QrVgYDH4yaR0ExilLoYG6UqCXmyD0EocXzy+EGl7n6tUXTzb/2vd7mcXH755Vx++eVoWpITJ45z+PARGseNw0hqvPTSS5w4cYI5c2bT2jqbcePG1cyOQlGs9k8ZI/yGnmrpCeaiKckpAj8M+X6l3q7qwn6LcMXyaN1ytYCK4sDl9aEn+6chs3+zhiD2a6FGMCo1Z7WMdNOnOfPqCCURDKM6zvhp+kdLY+f3l9ZPnjt3lo6ODi6//LKcv3V0tOP1enE4FI4dO0Z9fT2BgD/vdtJvxCKRCP/0T/+I2+3h937v4/zoRz/kwIEDzJ49B0dDI56pZrKGKIoEg0FCoZCZQ5s2NW8YBrIsD9r6JxAIZMQLdXV1EQhUoCsdQoySrgqQTrSqTbqKGZ5WinA4zNtvv53x2IIFC/D78/+QaoV0wXwwGATM4/bDnnf5dsvNuEMh5uzbgT/cxZ9cPMpc9zRU1YksS1XztzE9ndJISL5svxSi0RgvvfQSzz//nH1BMwzQDAMlqyIzduw4HnxwJVdddTW9ms6zHQm2eZzEsipb7kSSqyMxlvplXA3VIlvmHafHkxbubWXBDWRhS1VyirXZcl/Sf/drxdJ4vR6gkB2FREtLCy2zWm3CN2bMGN5//ySvvvoqr776KsFgkMsvv4IVK26s/DMUgeUtVXZqQZrLvAAZBF6ww7mHRkfo8xlMn64hy3l+C1X2t8o5p0rA1gKmRxP5fYBgivHjZhuylo79VUOFViX5CFdeGDqGluaMX064eyFkDZxYxCi7wpQPPT2h1GuCmbtnwN69+5gzZw5gSgKmTm0uuT1LH9bR0cm3v/0txo0bz9NPr+G3v32WxbfdQXDmHOLxOPF4HJ/PRygUyruuWXYSVuj2QDFlyhQuXrxIe3s7gUCA7du386lPfWpQ26wVRknXAFFN0mXlWg1Ev5UPmzZtyph0VFWVq6++etDbrQSWxUV6tS2WjPHn0UP8rOVW6tvO03xwHxN6z/ON3m4muJrsKamqGi9mIyvbTxBNrdJrr7zCb3/7W3p60iOIQM8iXIFAkPvuu4+lS5fSk4Q1nUm2e50kApnngjeeZHE0xnV+CaeremQLci0hqmXUma/NZgrdzdZtodM9dxQ9145CS2o5bc9FixayaNFCenpCHDp0kAMHDtjfvWHAc889R1NTE62ts2zz0kphWh0IFbjMmyar+RZEk4BlVjHM42NUXUdoob5ep74+95owID+zIhBFEbfbU347Pwt5zwG3B0mWSMYTxGJRkiPIHiIdlR5LVVWRpAEaxCZzxfhl6VDzTPhOndpMIBBk48aN3HHHHShK5nUmFotx6tQpWlpaGDPGbPufP3+eSy6Zaz9nw4b1nD59is985lEMwxSk33bbbSU/xs9+9nP27NnDn/7pnzJhwgQA7rjjDv7nD/+TnWfbuKxxAqqq2tUml8uFJEmEQiF7Px0OB36/n46OjkEXGiRJYuXKlfzwhz9E13Wuvvpqe79GGkZJ1wBRLdJlVYN6enqqIs4PhUJs3bo147Grr756wItWpShkcdEWaedjQhubpi5j4omjTHz/OHO7jvIlTcXvHIvH4yYeT9gTVEMBPanx1sbNPPXUai5cuIBmmAurJAhYzjxyinC53R7uuutObr75Znp0mVU9Bru8TpJZZCsY1VgSj3N1UEZxV5dsAbmt11oadRo6WKajKeduA0pUV/LZUThwq160WBxNE3LsKPx+HwsWLGDBggX2Y319vezdu5ctW95GEESmTp1Ka2sr8+bNK9j6yEa/1UGZd9GVTv/lOT4wOB1hNqx7MEEw/9c/JFF9wlU9w2GDuKaR6A2BYaSiiRy4vT4MXScei5GIx4fdaw+ouMJlEa6q+JWV64xfwFJFliU+85lH+d//+3/zne/8DbfeeguNjWOJRCIcPHiQjRvf4JFHfo+WlhYaGhqYN+9Snn56DQ6Hg/r6Onbt2s2LL77IypUP0trayvnz54lEwkyb1lx0t19++WVeffUVHn30UebN6081WX7PffzNz5/gP/7jP/jhD39oFxLi8bid1/j4448TjUa59NJLWbhwYcGpyIHAmoYc6RCMYfTfP3PmzHC99YAgy3JGPzoQCAxY7G7ZJ5hWCIMrrabjxRdfZN++fbb7r9fr5Qtf+ELOXVAtUMji4mDfST5ZN4YTnkk0H9pH/cULLG/bzaekCTiUCgXzVYBhwI4d21m1ahWnTp3K+XtCN8wnCQIuVeW2W2/hzjvvpAsnr8Rgn89pasTS0BBJsExLsDCgFMnJGxz6WxphwBj6+JQUrDYkQikdWL+eBz1p21EoioxhGHntKNKh6wZnzpxm//4DHDx4gHPnzpnB4PPm0dPTQ2dnF5MnT84jxhcqzuWsphg9U0c4uDbkkSMS772ncMcdUVRngSGJQcCumob7qlJlT220oFeYKIrIsoLDqSKKoinWj8eGJV1CEOXS+sc0WI781TKILQQDs9VresqVHuY4fPgIzz77LIcOHSISiRAI+Bk/fgJXXHE5N9yw1J5sDIV6+dWvfsnOnbuIxaJMmTKF2267nUWLFgKwefNm/uM//oP/9b/+ly0HycbOnbv43vf+lRtvXMGnP93fvlPqGvC2tPKDH/yA//E//gd79uxh7NixeX9/sViMo0eP8vbbb3PmzBmam5uZO3cus2bNQlUHY7Bce0ycOHHQ2xglXRUgm3QFg0G6uroq3k6hvMHB4uLFizz22GPIsmyTrltvvZXLL7+8au9RCJZg3hJLWljXvYfPN11BBCcz9u3CE+rmk+d2cHdwNg6HmkqpjxKPF158q4n9+/ezatUqDh06lPfvCd1AFgQkSWLZsmXcd9+9dKkB1iYEDnlUxKx9HB9OsFxPcFlAKWgjUQ1YbbJIJGwu6rUOCK4EFgEzjMy78bzO6Kk/paagFEUuaEeRja6uLlwuN6rqYOPGjaxduxa3283MmbOYM2c2LS0tqKpz5LnM2wRVNy0yKngjm3TdGcXplqo6SWnZZ1Qz4UEQJfRUNesv//IvEQT4+7//h36bkMxnoygyikNFUhSSmlZxNNGAUeENi6o6EUWx/KppFWDfsBhGdcX4VYYSrMc7Y7btxRgMBgmHw3kJl6Iotug9Ho+TTCY5fvw4e/fu5eDBg3zmM5/JmIAeaagG6RptLw4CA+GrZvaVp2hg9UDxxhtvmHEwqdZnfX19XmfgaqOQw/xPurfzZ9NX4AyHmbN3G75wN1++cJDL3eY4sp6awMnMA8sVYVcDJ06cZNWqJ9i5c2fB52gpwnXttdeycuUDdLnq+bUuckxxgAKioaMLIrooMrUnygrizPEriEJtq4hmNmCSaNQU94viCCJckEO0BMnM/TP0JEKB38hA7CjS774XLlxEMBjkwAGzCvbeeztQVZXvfvdviUajRKNRZLn05a3SibUBIe34lN+mNWEYAgaCebNXxetFIfuMQSGlLRSANWueYsqUKQA8/fQaHn744TwvyBdN5MDt9aIbOvFINMMPqlqoVMOVfsMzVEivEAPVE+NXGUqgHm9Lqy21KUa4ZFkmEAjQ1dVlFxskKTVg09IypPs9nBglXRVgsEVBp9OJw+GoOLC6HJw+fTqnenPDDTfUPNQ6n2A+oSf4Vngf/3fGLQTb25h+YC9j+y7wjZ4OmtxTbH2ZJUQtJcIeTNvx/PnzrF79FJs3v1XwOYYBScPgyiuu4MEHHyRUN5HfGDKn3blxFDN6wqyQDWYEZMCRWkANU2he9bvzLL+kci0hhhOGjqGbBpjlh0+XtqPItiJwOlXmzZvHvHnz0HWdU6dO0dXVbVfLHn/8p8RiMWbPnk1raysTJ07MqDAZBmbY8pCT18yA5VJtSANLzFU94tEfV1OdCWEAUq06ATh+/ARbt27lu9/9LgDf+ta3uOaaa5kyZXLRTZjGvBFi0Ui/Ma/XhyCIaInMaKKBotKAbStzcjgJVw4GKsavMpRAHd4ZrabhLSbhikQiBQmX1RkaSJzdhwmj7cUKIEmSHfQLlbUXvV5vzSbzDMPgV7/6la1PkmWZiRMn8rGPfaxmBq6FBPPd8R6+IHTw+oSFjD91gqbjR5jZfYKvJiQCsq8irY2iKMiyUrT6UQidnV08/fTTrF+/3swgLADdgBkzZ/Kxhx4iPKGFdaLChSwBvAC09kS5UTWY6ilyn1LFO1BL3JxjCTHMd7alUEgblWEaWYHOybIisDSJ+Sqhtst8mi7pzTffZN++fZw8+T6GoeP3+7n++uu55pprRl571oK9gCZNEiaIHDwks3unyN13R0mXZcZi8TLad7lQFEcqND6lC6wCqm/OmgtZNtuQikNB05IkYtGcgYxiGMgAQj/hqk7mZDkwLLuSAZFsAcSUJ1qNPeUUfxDvzDkZhMuqMGfDIlzd3d2D8p8cCRhtLw4zyuGrgiDg9/uJxWI1O+GOHj2aIQg3DIPly5fXjHAVEswfC5/ik34/h/xX0nxwH2MunOX6tj08Ko3F5VAzSUQZqNSME8zq2XPPPcfatS+XnIScOKmJBx9+mMTUS/itotCRZe0gGAbzQlFWOAUmlBPVk7oDHSjBsGCTiCpbQtQagli4VZfPNLIcu4VSdhSGYdh+SemVsMWLF7N48WL6+vo4eNC0o5Ak83IXicZ4Zs2vaW1tZdasmXi93uodhMEgbZoNUcIQBOrqDWa1JnOGM8pr32XC8iur6o3fEBAu6PcEi4TT8kEDHgQgHouSiMcLtiEHQrhcLheG8UEiXACG/RvLEeNXsUUr+wKmhiuNcBVa3yRJ+tAQrmphlHRVgGySVSxPCvrJSTUMTwshX6h1S0sLzc3NNblgFPIUe6tnP49OvISQ5GHW7h34erp4+Ox27nROQ5YzScRAkGHGaYcye+wpuN7eXtaufYnf/e65ktNFY8Y0cu/9K9HnLuQlp0qPmvkzkHSDy3sj3OgWaRxAVE8hgiGkYneKIdsSYiiqCIPFgGwM8tpRlGrTZtpROJ0uVNWBYZite01L5FQ/PB4P8+fPZ/78+RiCCIJAx8U2Tp8+xb59exEEgaamybS2tnLllfNHBAGzxOgCBo31MKbeJLRmlzHJ8WPHK27fWZN31SZcDMO5mZ0PKssyLo8HSZKJx+No8Zh9YzeQNrJFuCwN5VBg8IQrE9a2+qPRquOML/sC+GbOse0tAoEAsVgs71ojSRJ1dXX09PSMEq40jLYXK4A57ty/CFsO8vnusApN81Ubu3fv5vnnn7f/LQgCn//852lqaqqqFQWYFyNFUQiFQhlE81dd2/nGtGXI0Rgt+3fjjvbx5bO7WOScgsOh2u2MWkwn6rrOG2+8wVNPrSnpzOz3B7jj7nsQFt7AFpebsCOzfKAkDRakchGD6uBDqPNCEFLB3NgaGAv9lQiz9VPpSPtwwMD8PNUKMc6sEhZu02aP75e0o8iapDQMMxpl//4DHDhwgDNnTvO1r32N+vp6Tp06TTweZ+rUKRlygqFAdlVT00z9vMORlr9oZ/sZhXU/aRhsm+znP/8569ev5/vf/75NSgVJpr3tAt/5zneoq6vjL/7iL1FVUwPZ09PDU0+t4b333iMUClFfX88dd9zBsmVLB/T+lcBqQ8oOB8mkhqbpxCPlt1JdLnequjqEJEEQgOrq9kpiAFII2evHN2sOQqpiHAgEiMfjJQnXUFYLa43R9uIwo5BBar5pvlpA0zQ2btyY8dicOXMYO3Zs1VuLlmC+p6fHfiypJ/m7vl38YMbN+DvaaTmwh4a+i3yj6zzNzik43W4kUaY33FfxqHwp6LrB22+/zerVq7lw4XzR57pcLm6+7Q6Uq2/kzcYG4hgZ++LUdBaFoyzzSnirlotYAEa/kDpdaO50qAiY7dERqznKRmpEvFqEC/JUCfPENlmDGOkVzf7qR78dhdtthvJqepJEPJ7hiC4IMGHCBCZMmMDy5csIhXrx+UxC8dZbb7Fr106cThczZ85k9uzZzJgxA5fLWbXPmRd5qpqHD8vs3Stz333R/nM2b3h5alo0i1z0G8QOfOG79dbbeOWVV3nllVe57757ESSFaLiXf/u3f0MQRL7+9a/bhCuRSPCv//qv9Pb28sADD9DQUM/69Rt47LHHuPTSeTW3A7DakEa4D1l2IEsCvoAfBIF4NGrqAQtU2z8yhAsqFuPLHl8O4UokEnnPK1EUqaurIxQKfagIV7UwSroqQKH2ogUrsDqRSGRM89UK27dvzyBBkiRVPZ3d0qRlC+Z7E738sX6OF6bdxLjT79N0/DDTe97naxGdOuf4lGA+SV+4x95ONSb9DAN27nyPVatWcfLkyaLPVRQHy2++Bc/SO3i3oY6IQ0HSEvai5k4kWRyJcb1fxlVrslUARlLrt4RIJBDscOWRTrhSlaMaVnH7t99frfL4fCS1BJFwuGCLJN2OQpAkJFHCoTiQnK6CAxkW4QK45567ueSSuRw4cJCDBw+ya9dOxo0bx5e+9CUAwuGIbThZLRQcQEj9TAresOQJLxcwszM9LhfJVBtuMGhsHMPVV1/NK6+8zJ1334NsJPjRj/4PZ86c5a/+6i8zrDy2bt3KsWPH+Yd/+AeamiZh7pLMW2+9OWRTa6bFhkRSi5PUyNQDutxIipwTTWT9Bj8ShCsbWc742WJ8yePFO2uuTbj8fj+JRCJvJ8UiXL29vVXvtHxYMEq6BoF00mUFVofD4aoanhZCNBpl8+bNGY9dccUVBIPBqkUUWZ8pWzB/KnqOT7od7Km7mqmHD9B47jRXXdzP74t1uFQXHo+HWCyapWPLrPAgSeZ/VVDePnjwEKtWPcGBAweKPk8URa66bgneG+9mb9NENElAl2RkTQNBxB/XuD4e51qfhFLlXMRKYAYMu9MsIUSTiurJ3Em2kYSUAH5oJykFvB438WjU9vYqOaklSejJJEYyiZawfIFK21GoqmpHiui6walTp+zFWNOSfP/fvo/f57ftKJqamvK44lfwyYp4haUf4n/+538mEonw7W9/O+M5779/ir/+67/mi1/8AosXL8YAvB4PiaRO3Jp8NQY3iHHHHXfwxqZNbFj3Gl1dXWzbto2vfOXLNDc3Zzxv27Z3mDZtmk24zMe24vX6GD9+/KD2oRwYCKZPXM5NS6YeUJLMeCrF6wNBQIvFhuS6bWOkEK4cZIrxZa8f38w5iHI/4SqUomIRrr6+vtrm537AMUq6BgGL3NTS8LQQtm7dmlG6dTgcXHPNNRn7NRgUEsy/EzrIp8bNpMMRZNbuHfi7O7n/7A7udU5FkZXyBfOpv5cz6ff++6d48slVbN++veR+X7ZgEf5b7+dYSzO6IKAjYAgCUlIzcxETca6tc+AKuovaENQaOQHDVtCytQ/pk2ypFpLA8DtSC5KUIjlD+J6CmEPkhexJLVujYp5DhSpHGQMZKTuKYsa8oihkCNR1XWf5suUcOHCAjRs38sYbG/B6vdxxxx3Mmzev8s8mKRjJ4kM2Vu7izJkzefbZZ0kkEva5axjw+OOPM3PmDBYvXky6t1s8Hu+3S0lNsgE5x0UQhKJ+foYBU6dPZ/7ll/Pkk0/S19fHypUrWbRoUc5zjxw5wqJFC9E0jfb2djZseIOXXlrLZz/72Zp7BgLmZyzj/EwmNSIRDUEQUtdsA7fXiyiKxOM1jiYasYQrE7LLk0G4LIlJPkIlCAJ1dXWEw+FRwlUCo6SrAuSbOVBVM8qmFoanhdDb25sTar1o0SI8Ho+9n4MhXZZgPjuEe03Xdr7cfANCIsmcHe/g7evmC+f3cK27GUVxoKqOih2uczU8VmSKwYXz53jqqad48803KSWEnTl3HsHbV3J67mzaUh89KUgI6Izvi7FUT7DAryCKCmDYNgSW/sflcpUdRzNYZPtKlSQyqRaSGcEN2C3I2nrx5GAYJilzyGkeCJCpUZFkSLWYik2LlrKjyGfM63AoLF58LYsXX0skEuHQocMcOLCfQCAIwPHjx9m4cROtra20ts7C788fzt0/VVeccKVfUmbOnIWmaZw4cZIZM0wH740bN3L48GH+9m//ln7CFSORSLB//z7+8R//MfdzG6CnNiwKpg70L//iL/K/PyDIEiQ1Fi1axK5dO5k//0ruvffenOd2d/fQ2dlBc/M0fvjDH7Fly9sAXHXV1SxdWmsRvWDaI1RgreLxeEgkNNtapv88kHG6XMiyAy2ZSDnjVyma6ANCuCSXG1/rJRmEq5DPpEW4IpFIynB3FMUwSroGAYfDgWEYGbqqocCbb76Z0e5zu90Zd52DIV2WiWv6Z9INnf/Zs4N/mXELvq5OWvbvpr6vna91nGKGu9meJOvt7WPQFyY9SXd3D8888wyvvv5aygIAJEHIq2uZ1DydursepP3K+aT/3DVRZnIozI1ozCsS1TOQOJrBwHIDH5QlRIqAWRUes007uGDlkhgGewA7jLkCqxGrcpQuNO+fFs0Vmvcjs/0kyzIOh4IkmbqofHYULpeLyy67lMsu64/aCofDtLVd4ODBAzz7LEycOInZs2dz7bXX2mJzk8iUl/03dqyOLJvPmzFjBqIocvjwYWbMaKGvL8xvfvNrbr75JqZMmYLHk+mD19w8je98529KvofL7Ta/37RhBXM/U8Q1qdHW1saqVasACk4JHzt2FIDp06cxdepUFi9ezI4dO1i3bh3BYJBPfvITJfdlYDBbzYMhXP3Ik47gUHB5vRi6YXuCDWgS+wNCuESnyyRcqWqqtSbkI1QW4YpGo1XVMf/yl79k7969eL1e/uzP/gwwh4wef/xxOjo6qK+v5zOf+Qxut7tq7zlUGCVdA4Dlxm5ejIdW8NzR0ZGTH7h48WIcjtzImkpQyMS1TwvzNe19nm65hTHnzjDlyEGae07xJ5EYja6JuN0edF0v6Y1VDsLhCM8//xwvvfSSLbqVU1oZwzBIpK5VsiAwZvwE6u9+iNC119CexcaaIkluNsLMqjgXMfOCK8v9+p9CC28lsCwhLHJqEYSBEhmrwmOjQiuBcmAYICqVRadUA5VmA5oENE/lyMjVElpCc6HIdq0pOEj3hVPz21GkYe7cucyZM5e2tjb279/HgQMH2bx5MzfcsASAvXv3oqhOpk2dUlY2ZGOjTmOj+T5Op8qUKVM4cuQwcCtPPrkKQRB58MEH8Xhyq4FOp5OpU6eUfA9BEPoJoCCaPmGWtYauEYlE+N73vo/b7eKBBx7g8cd/wu7de5g375KM7Rw7dgyn08WECWbk0uTJTVx55XxisRhvv/12bUhXKhqrkvPd4/EQjyfKCkRPJjWSEY1opD+ayOP1IkgSiXiMRCxeXjRRkfD3kQRRdeFvvQRRMdcTr9eLIAh5CZVFuGKxWNUHx66++mqWLFnCL37xC/uxV199lVmzZnHTTTfxyiuv8Morr3DPPfdU9X2HAqOkq0Kku7GLojjkPj5vvPFGhuYkGAxy+eWX5zyvkkqXJZjPNnE9F23j006D7eMWM/noIcadeZ/5HQf5Q92PW23IFIEPArFYnFdffYXf/e53BcvTgiCgCOCvayB4x/1EVtxMlyQipbXYZoSi3KiKtPgEYPAC+fwLrxPD0IsuvPmQnjdZkCAMFlmGrEJKJ6brA9OBGQgIsjjkhMtqVVeSDVh2CHhaG1IQU8HTVjZkARSzo8jXjhYEGDu2kbFjG7nhhhuIxeIpPZPAq6+vo+38OVRVpaVlBrNnz2bWrFkFpyFjMUgmBdxuc09nzpzJu+9u5/jx47z22uv8wR/8AQ0NY/JWAwu1F7PROnt2f3vR0DF0AyFFZHRB5P/9wb/T3tHB33zn24wbN54XX3yB559/Li/pam5uzqlIC4JpMVBtlMwozIGAx+Mum3DlvF+eqrhDdSI7ZJJakni0QBvyg0S4Zl+C6FABk5wWI1zBYJB4PF6TTk9LSwvt7e0Zj+3atYsvf/nLgCmn+cEPfjBKuj7sEAQBt9tti8sVRalZ1E4+nDt3Lmdyb8mSJYMifoUE87t6j/CJxqmcV8cwc+9OAp3t3HHuPR5yNKGoDtwud1GdTTlIJpNs2PAGTz/9dEljU6fXR/2t96DfcisJRUEm5WhuQGtfnJudIlPGqDWzWkh3wS5HgN0PIStvUkiJfWtMZNLdqBFSFZ5KrCiEskXJ1UR/NbBMbUhKZV6piawAme0oOzKleCxRqXa0pQXL/EwOmyD84Re/wNGjxzhwwDRl3bt3D5dffjkrV67EMKCjoz3Dy+rAAZkTJyTuvtus/M6aNYuXX36ZH/3o/zBr1kxuueWWjMzJdJTdXkz3H8uqHP3sJz9h/549/Omf/ikTJjUhCAK333EnP3nsvzhx4mRGJe348ePMnj07Y9vd3T1s376DO+64o+R+VARBsPWgZb4gMzx+0EirilvRRIqCy+PBwCAejaEl4ugW/xrxhMtpthTTCJckSQUJVTAYRNO0mntRpiMUCtnk3e/3D4ktUy0wSroqgGEYdHd320SrWtYM5WL9+vUZ/x43blzORa4SFBLMP9+9kz+ccg3JpMCcne/g6e3hc+d2coN7mh1TU+hCXw503WDr1q2sXr2ac+fOFn2uoroI3nQH4h13YrhcdsVGNAwuDUW50SUwvk4xF96kaQmBKOboU6qJcgXY/ZYQprCZVAxNtVp/5ULAyNCBiaKMIVDYrsP24Bra/TSd04Xyp5+q6RWWEZmSbkdRjMzl0f+kfh8Z1VD6B0YURaG1dRatTU0ohsGZcBjJMHC88ioXImH+1+vrGOPzMmfCBObU1yNemIww4Tr7HWfOnAXA2bNn+J//81+Ltl9dLifTp08r/xhkfe8vv/wyr776Co8++qhZ1UpVUpdcfx2rV6/m2eee48tf/jKGnqSzo5Ouri7efnsLjY2NzJs3j87OTp599nfU19dz6623lr8f5e5n2UQmc8CgFrBvyqLR/mqo14cgSaYdRSw2qBvUWkJ0qPhaL0FSKyNcXV1dQ7iXmRAsY+YPIEZJ1yAwlKTr2LFjnDhxIuOxG264oaqCecMw+N892/nbllvw9nTRuncXgXAXf9J+nNnuaVlViMp1TYZhxhatWvUEx48fL/pcUZLxL7sJ9e77EdMmwKSkwfy+CCs8IvX1ckoknWa1kJbpV271YnDIFGArioLD4UCW3QiC0G9zkG0JMUwwKzxpF/+0aVGMpOnphD7EHlzpzullGirW0Css247CJKlG6hgV/v7y2lH4vKBDIhHLqIYK8Tjy+fNM0RIIsTjC0WPURaM8IMDec+d468RJNhoGHYaDRVfXAebNldPpRJZlbrvtNhobG6sXrZVFZHbu3MUvfvELbrrpZlasWJHxVEVRuP22W3nyydW0nT/HmMaxHDtxgoRusPyG61i3bj0vvPACDQ1jmD//Cu66626cTrUm+1nGC2pOuLJhGDrxRIJ4IgGGbg5lqCqyw4eeTBKPRgalDa0mRMWBb/Y8JNWsdrrdbmRZLljBCgaD6Lo+LITL5/PR3d1NIBCgu7t7ROSkDgSjpGsQGCrSZRhGTqj11KlTmTatgrvYFAoJ5qPJKH8aO8pvWm6h/sI5mg/tp6n3LF/v7WWcaxIulxvIPzJcDo4cOcITTzzBvn37SuygiO/aJTjvfxC5YYz9sJI0WNQbYZlXJGC5x5eKykmrXlTLEb8UzIXVQJIkotEIkiTjC9aRjMfTqiLDf7G1kV7NklNWFLo5CTY09xPZ7dcyIEpmrNQQHMd8JLWYp5wFXdeJxRPEursRu3tQwn24+/oQekIYXZ3oZ88iHj2SerKBkEjgS8RZoiW5BtggSTyRSNBDFEf4eSzS9dvf/hav18fdd99dPcKVh8Bedtml/OQnPyn4krvuuou77ror9S+D40ePEPB6+cIXvmB6pgkCelJHoIo3GYKImXdU7vduEq6orbUaImQRQ1sbGu6ztaG+gAewooliQ+oRaCEf4VIUpSTh6uzsHMrdtDFv3jy2bt3KTTfdxNatW7n00ktLv2gEYpR0VYh0ojVUpGv//v2cP5+ZL1jK9yafZ1ghwXxbrJ3PKjHennIDk44fZcKp48zrPMKXki486hi8XnPaJ3e8ujROnTrN6tVP8s4775R8rnv+IjwrP4Y8sd/N2plIcnUkxlKfhKehXxwvVJxNmMcR3yBVeare4p3tV6bpBpFoBEkUURQHXq+n5ATccECQZPT0hckmqdRQfzYAnY0ogz601hUZyM49FESESBg6uxBDPYg9PQg9PYg9IejpQdD6f2cWvRUFEVE3EOvrIdQL4TCGIJBUHGzSY7wei3MqmSQmCFzvdnPftVdx6NBhjhw5zIsvvsBXvvIVezBj0BBFUzg/yN/A0aPHaG6eahL11DESoL/dP9hqc8WVTQGv15thoTEkKFGJS9eGWtIEl9uDJMsktASJISKIguIwW4pO8zyypCaFCFcgEMAwjCEjXI8//jhHjhyht7eXb3/729x+++3cdNNN/OQnP2Hz5s3U19fz6KOPDsm+VBujpGsQGArSlUwmeeONNzIea21tLRmpYe2bRb4Kuebv7z3OJxrGc8o9g5Z9u6hrb+Om8zv5uDIJh0PB7fYM6MLV1naRNWvWsGnTppLEQp19Cd4Hfw/H9Bb7MU88yeJojOv8Eq60qJ6qhUFnOOKbk2UpM6cBb7LfrywlAk+Ld7GCdHMn4ASTgNXYkLUY8sXQCGkk1TxGstmFLGG1UPZ7plzmKzq3isTl1BQGEImkESrz/4WeHsRQD2iaaXaaEncbumEyjgI7qhs6Qnc3dHWB4oCGekTViagobDl2jD5FQRFg8cJF3Pd7j/Deezv5t7/9Lg0NDXziE59kwYIF1flcogQDnGzNxvHjx1myZEnuHzLa/ekDHRUY+wpSRTdHAzq3qoGKW5+53nCK4sDltdqQ0ZyIqqrspqyYhMtlDgK5XC5UVS3YMrTE6x0dxYedqolChMrKP/0gQzCGykY9D86cOTNcbz1gyLKcEWcRDAZr2t9+9913eeWVV+x/i6LI5z73Oerr64u+zqpo6bqO0+nE4XAQCoUyKmCvdO/iC5MXEjMczNy7E0+om0+df48VzmmmK7PTVbFgvqenh2effZZXX3215AVPmTod34OPoF7SXyb2xzSWxOJcE5BxSNnLgQBSjSfqsjVOZcJqv0YiEdsSorwKkXm3qyhKUSf0WsAwQJQrJ7CCKGEIwoA1agMzPa0C0S4GAwiHTUIVCuUlVmXtJ4JJqgTRJBeygu73Yfj9GH4/eur/DUFA/u0zbG3v4K0LF/jiDUtwzpzJaZeL//zlL1m4cBH33HM3mpZElmUkSaqKF569nyXc+muNfNFNeVFhK9kiXIOdrK4YVbaFsDSBitMJCGjxOPEqRBNZhEt2m+klTqcTp9NZcA3z+/2Iophj3/BRxcSJEwe9jdFK1whGPB5PReD047LLLitJuKC/0mWJDbMF8//ZvZ2/arkJZ28fc/ZtIxDu4itth5nnmobDoeJwKBUJ5iORCC+88CIvvPCCHQ5cCNL4ifge+BjOBYvsSmF9JMHSZIJFfgXJk8djy7qo1boalNdGwNSG5S9qDtYSohwn9OoLgC1X9IEQmWyrhUraR9kRSOWgaoQrnVilV6xSJGvAbVRFQfcHIBhE93jQAwEMnw/d7wen08zaESX7GCWTSbZv387G4yfoisdpmjmDjsXX0dg4hrHAF77wRcaObUTXdVwucyrWylusyrmQCgIf1gxPyIxuynMeCaJkVlY/YoQL8k1IW9FECloiQSwWJVlhFU+QZHyz5lZMuIaywvVRwCjpqhBDWRjcunVrRpq7LMupUNvy4PV6cwTzCT3Bn0f28/iMWwhevMD0g/sY13eeb/T1MMkzDafD9B4r1ycpHk/w2muv8dvf/pbe3uK+KWJdPb57H8R13Q2p+BoYF06wTE9wRaCwe7w9oTjURdl8QnzDSMXJ9F/k7QnFKlgtZBuyOhQHqupE1/UqCvGr6BWW1j4qNaxg2SmU7TI/kEqcgSlY7gkh9HSn/r+fZA30uzEUh12tSq9YL2w9GAAAi7lJREFU6T6fSayKxfqksjMBYvEYP/j3/6Cjs5OpU6Zw9403MmXKFJ58chWtra0sWLCAsWMbAcwFVtPsgYy8dhQVLvQDip0aCmSdR8gyGOVrzT5MhCsX+aKJHLg9qWiieKxkNJEgyWaFy2PehKuqWpRw+Xw+JEmivb19SNe8jwJGSdcIRV9fH1u2bMl4bNGiRWWNyUqShMPhIBwOZxCuzngXvy/1sGHqciacPMakk8eY3XWcL2syfrkBj0sloSWJJxIlqwvJZJJNmzaxZs2akqVnwePFe+d9uG+8GTEVV9TUG2O5mGSur3hUz8hZJDKF+JLiwOP20NfXS1JL1MTCQE8miSYjQH+7wes171KLG7IWwQBiU8pH4cgdVVFQlPLtRgxSBC7fOWgTq/SKVT/JGjCxcqSIlc+PHjD/3yJYqGpBjVap34qu67z//immTp2CU1W5bN4lTJs2jRkzZhLXkvzs5z/j+LGjzJgx036N2+0hmeyf6MxrR2Gb85anCRw5v6USEEXQEnl85fK3IS3CVUm7uioYJqf5/miiMKIoIsumNYkoisSiMbQseYIgSvha52YQLrfbXZBweb1eZFkeJVw1wijpGiRqdVJu3rw5o5Xgcrm46qqrSr7OEszHYrEMwfyR8Pt8IlDHUd8VTDuwh4a28yxt282npXE4FDWzYgP9gcpZAmrDgG3btrF69ZOlNXmqE+8td+C59U7EVDDptN4oy0Wd1qACiMVfP1zC6RKQZRmnqtIb6iap6yAp5h25Ud1JyHSktxssIb7LVTiKJi8sYjhUWp5U+8ipOpFTNwGGICCU/M0IiIKAEepG7O7O1VhVgVjpaRUrfKWJVd5tlajE6brOzp27WL9+HR0dnXzta1+jri7ILbfcAphZoz/96U85e/YsD65cyeXz54Mg4nG7ScRiBaeF85rzqk5EUSwY0p5vWGIkIltrlt+yQwRDR08mkSQRt3u4CFdtfOIqga7nSUhwOpEUhaSmkYjHcbW0Int8QCbhyrd2eb1eHA4HFy9eHCVcNcIo6aoQ2Sdi9pRgNdDV1cWOHTsyHrvmmmtQ1eIGg5Zgvru7G6fTaeul3ujew2ebLqdPcNO6azveUDePnN3O7c5pyHJKY5PnomW6aGs2jdi7bz+//PWvOX7kKGIxviTJuJfdhPeu+5ACAQRgZk+UFapBc1AGiscWVW1CsQbIzgXMyVAcoBC/EpSKosm36A6lt1U67MzJkKkpzLAR0HVICdVNwXoIoTv1/4NpBaqq3fqzCVaqakWVTDpNTVz+SpyuG+zatZN169bT3n6R8eMn8MgjjxAMBu3nJBIJfvzjH9PZ2cnv/d4jZrKEbuD1OolFoyQ0zRzGMIwS2Zn5JuDMhASrJa0ZBoY2NMagg4Ioo5eyA9GTGCnzDUmW8Pr8pj7wI0i4cpHVhlQUxsybj2/sOHRdJ5k0hzIKES6PxzNKuIYAo6RrkKgF6dq4cWNGlcrv9zN//vyir7HCSdMF84Ig8NOud/nm9BtxRKLM3bsNX183f9x2gPmuaTmeUoVw9OgxnnxyFbt37wbM9TJpgG4YiAJItnpawLV4Cd57H0RubEQwYG5PlBUqTKovNx9SQJDEEUm48llCkF09yBaZpy7QtXXE77/Qpi+6lhBfMwx0beirHHaL7GJ7P7FK11iFekDXzQk26F/EytjRvMQqRa6qRayKQZCkgkMdoVCIp59+msbGRh555BFmz56DKGZ+KEVRmD9/PhMnTkxF9eQ6p9t6QjDPNcMoaZ2QrQlUnW5UwcAwHPZk7HAYcZZEqpVc7jkqiiJul5veUA96qqIqiDIUaUNWBSOWcGVBlHBPn0VCVujo6EBVVbxeL8lkkrq6OuLxOAcPHmTcuHFIkoTH40FV1dGW4hBglHQNEtX26jp//nyOa/v111+PLOf/qgRBwOfzkUgkiEQi9uNxLc5fd7/Hv8+4hUDHRaYf2MvY3gt8vfsiU1xTcglEHpw9e5Ynn3ySrVu35vxNSiNbScNAvfIqfCs/hnPiJCTd4LKeCCtcAo1lky2GbkJxALBiasLhvvItIYz+i3+/EN9sl9SKAOUI8Z0uVEEYlPi6JHQD+tI0VqEQajSK0dmJ2NWJq8Qib5gKLvO4ps4p3TDAqaZVqnz9xMpqBQ4HUgHb6eeorhvs3buH48ePc9dddxEI+PniF7/IuHHjc8jWhQttxGIxJk9u4vrrr0ttsgxfqQzPtPJc8Q1BINIXst8jvSU9lNYkpVCp1kwUUy3FtAlYqyrf/ySzDWkYyepFb31QCJcg4psxG8UfBMDhcODxeOjo6LAJlSzLbN68mSNHjtDU1MSVV15JU1MTTqezyIZHUQ2Mkq4KUai9WC288cYbGe/R2NjI3Llz8z63kMN8KBHiDxJtvDxlGeNOnaTpxBFmdp/gG5qC1zkWt9uDrusFfX86OjpYs+Zp3nhjQ8m7YmXWHBoefATHjFkoSYMreiKs8DuoH6OiV9IeEiszQBw6mJYQiYRmtvMEwdSUVLxYZYrMBUnGwEhNbNVIBwZE+0xSLQgiDke6+LpCIX42sUrXWPWGMhY2RZZJJnX0ciYUVRX8ATSfDyPgR7fF6z4El7sscjFkEFKOp6nPqusG+/fv47XXXufChfOMGdNIJBLB5XIxYcKEnJefOnWan//8Z3g8Xr70pS8hioJNIMqdurOCs+0zJtXOFgzDtIEQ0rRmaQQusyXdnxFaa2uSkpCkygiX5fFWynIkrQ2JIJhascFEgH2ACJd3xmyUQBAgNXzjpbOzM2Nd0TSNBx54AJfLxYULF9i4cSPPPfcckiQxd+5cLrnkEsaOHfuBDZUeyRg1R60QgmAKVy14PB7iqVy9weLkyZP8+te/znhs5cqVtLS05Dy3kMP8ifAZPuVzsz8wnSlHDtJ4/gyLL+7l9+Vx+FxeFMVhC3Gz7QdCod6UsekrJT+PMqUZ78pHUOddhjNpsKgvylKviF/tr2xZE2hgOlAXutiN1KmqgpYQVSQAlkmkvZhXYdulK3EFDFkTCejtTRmEZk0FhnrL2DdTX6ZpyYxqmqE6bSJl+AN2S9Dw+8DtTp0bJVCLykUlyPru29raWLXqSc6dO8uYMY0sW7aUefMuzalsWTh+/Di/+MUvcLvdPProo9TX1/dXbKolAhdSfmACGFrh31s2LDsKWZZrWxHNeePKxP1lE64iyDRlTZZHoj5QhKsVR9D0cVQUBZ/PR1dXV97j5XK5cLvdtLe322tIT08P+/btY8+ePdxzzz2MGTMm53UfZYyao44AVIuzGobB+vXrMx5rampi+vTpOc91Op2oqkp3d3fG+7/ds59HJ8yhW/Yxa88OfN1drDy7nbudzciSjCTJtn7Lsh8wDINQKMSzz/6O559/LqNFmQ/S2PH47n8Y56Jr8CR1rg5FWOqXcTXk2j4IGJkLv00u0i52I3SqKts1XUgJ0atdlbJMItPeOKVLGXgkkSgWGULQDegNkezpQU8RK7m3D1dvL2JfL7qWxNDLq1JlwOVCaRhDzOUi6fXaLUGzFejI+5KKJuqyKheIEgLG0Jh8ChKgY+gGvb29+Hxe/H4/iqLwwAMrueyyywqSLYCDBw/x61//mrq6IJ/+9KMEAv6qEIhsGAYIBv06wzTLjmLRTfnsKGodUVXpNKV1vMr1eCv4vpBpymq1agtM9RqCmJpM/gAQrpZZFREuj8fDxYsXc/TDV199NVdfffWQ7fpHDaOkq0LUqr146NAhzp49m/HY0qVLc7ZtCeazg0mf6NrO16YtRYolmP3eu/j6uvnD83tZ5J5mmyqmX+BjsRi9vb2sW7eeZ555hp6e/EGnFsRgPd57HsB9/TJ8OlzXG+E6v4TqKuyxlY50cmHnHYpify7bCIIsmxFI9gVeklJZcUOAwQjxUx5chpaA3lCGxkqwrBcKVKySqf8JgogoCCiygmEY6LpunzOG02Vqq9Ic1w2/H6m+HqffT6iSBXEw06kps1GDIWjVpiwMDh08xGuvvUYiEedLX/oyqqryhS/8flmbeO+9HYwd28inPvUpPB6P7co/WAKRDUEUM3VNybTgaTF1LpWopg7EjqJiVPjd1+p4AbkB5qJkFrV0DT4ohAsB7/RZOOoaAPP6VYxwOZ3OvIRrFEODUdI1SFSDdOm6zoYNGzIemzlzJpMmTbL/XUgwn9ST/FPvTv5txs34OzuYfmAPY/ou8rWOs0x3T0VVVWQ505RS13XefPMtnnrqKS5ebCu6b4Lbg/eOe3GvuIV6Q2JJOMbVQRnFXR7ZyrtNKw3YuninFgSjSmHKg4HDoWaYeA5r6zNdiC+mdCmWEF83IBRKmwrsRQh19/tYDZB86KpK0vKvCgSQGxqQ6usx/H4SgpDTdsq20Cj5kQaY91h0m+ki83Ly/MqFKHHwwH7Wvf46p06doq6ujqVLl5X9ck3TkGWZ+++/H01L4nSquYS+KjATBopmKeo6psoP+uOtSpH50nYUlSYkVBrpVFPClY205ADrhqeaIe+1gYCnZRaO+n7C5ff7CxIua4oxvaU4iqHFKOkaJKpBunbt2pWRbyUIAkuWLLH/LYoiPp+PSCRCPB63H+/V+vhK8gy/m34zjWdPMeXoIZp7TvH1SIJ613g7hLmvry+1r7B9+3ZWrVrF6dOniu+UoprGprffxQRJZZmhs8AvYugDJ1vmh8sTlZNaEDI8nAYYpjwYOJ1mS8W8wPeTg2Frfeo6hLI1Vj39FSvdtLAVBMGs9JQJw+XKPxXo84Mj8/u1lH2CpuW0nQRBQJJEenv7KNtlXq6dHUilraOi25Jk9u7Zza9++UuCwSD33nsvV1xxBZJU3jTuxo2b2LFjB5///OdwuVw2YVFVtaJM01IwBDE1bFDB50uLt0IQUm1II/VY+XYUilxhQkKhhIGCTx9CwpUGu6Woa3kqhbXz36scAp7pM1HrTd2VRbi6u7sLEi6fz0d7e/vgq5WjGDBGSdcgYRgGYlGn0OJIJBJs2rQp47FLL73UFjAWEsyfiZznk26ZXeOuYcqRA4w9e5qF7Qf4IkGcDi9er4d4PGFPK+3bt59Vq1Zx+PCh4jskSriX3oj3rvuZpHpZrie4zKfjUGQUxVHcgLMUyplQTMtgM6eO5FTgdK18rkxYE52RSBgDAbGA8WXVUYhY9fSYxKrYsRIAQ0j5pWUSrwxileFj5QOlcuKcbcjqdruRUlmUTqezDPsBK+9xCBcsPTNQWZDMRbOQ2ahhwNGjRwlHY8y7ZA6ts2bxwAMPMG/epchyeWTLMODVV19lw4b1zJs3D0Ux9Wz9FdTyCGpZEAR7mnHAm6C/VWvZUaTKO8XbkMkksWSSWKw8OwpBUjJNhEugNhXB0iio4cquFEpmusNwBod7ps1AbTBzOiVJsglXvgrWKOEaORglXYPEYCtd77zzToZXliRJXHed6d9jhZJmC+a3hw7xqXEtXHTUMXPPewS6Orjn3A4ecExBlmXc7n7Pn+PHT7Bq1Sp27dpZYk8EnNdch+/eB5nmCXKjmGS2DzsXMf0uV5JkHI5MA85S044DatMZRv+FukSY8sAhZBJUQUAUqlyNSSYRevv6rRZCFRCrYnB7SPp8GH4fmj+A7vdBIIgeCIAs1axS6HK5MixHZNk8HwraD9Q077FMGDqGZh0Pq7pDSqtncPz4cV577XWOHDtG08SJzJs7B1EUueKKK8p+C103eP7559my5W0WLFjA3XffgygKdovfqjhXBTWYpM0hcGVOjJa0o8AgUWJAJx0W4apmRbAsiKIZUVVKw5V2LlkDC6Ra2kPVhvQ0z0AdMxbz7SUCgUBBwuVwOPD5fHR0dIwSrhGAUdI1AKQTrcGQrkgkwttvv53x2IIFC/D5fAUF87/t2sEfN18PCZ05772Dp6+Hz5/bxfXuafbFKhzu4+zZs6xevZrNmzeX3A/1svn4HvgYs+vGcaNsMMMnUiwXMZnUiETSDDgVB6rqLKzzqMKEolADnytrZN82pUwtZBW1aixkE6sMH6uBLx6Gy52nYuWDYD1GsQKrrqe1aqvniO/xeNC0/iBmyGPImn4+JDUScW14CVcW0qs7p8+c4aWXXubI0SN4vT7uuetOFixYMKBjtW7dOrZseZvFi6/j1ltvRRDMFANRFKtKuIZsoi57YlQQMclF8d9yRkKC6kQWBFSvryw7CvMa5hwWwjXgwPo0oiOIEkaNY8DcU6ejNo4DyiNcfr+fjo6O4fFhG0UORknXIDEY0rV58+aMxUtVVa655hr8fn+OYF43dL7fs4N/mnEL3u5OZuzbTbCvk691nGCWexoOh4rDoXDq1PusWfM069evL2lOqsxoxf/gI1w2vpkVqsEUTwXu8dZ+JZNEk+Z+muPmDtuKIhG3Imiq/2NPF0+LoowhkGlFUQIDsoRIJhFCvWkVqxBid7cpaB8MsXJ78k4FGn4fZCURVCRET2vV5gjxK95LK6amX1idD+nngyQryJKE12PmL1ZsyFpD6LqOKIrEojHaLpzjzjvvZNGCK1FUJwPNzly4cCFut4urr74GQejPnYxEwtXbcUFKVVOGeKLO6D8e/dUdMHSjcHVHktFiUawzVRRFZLmwHUW/5q2KLdhyMBjClQYznDtz+lgQJTD0EvmZ5cM9ZTrOsabxriiKBAIBenp68hIuRVHw+/10dnaOEq4RhFFz1AFAURSbaImiaGuuKkFPTw//+Z//mfFjWb58OTfddFOOYD6sRfhG4gSrJ19P/fmzNB/az5Tes3y9L0KjWmeLTVetepKXX37ZLvMXgtw0Bf8Dj7BgWis3uUQmuCsnW6UgiBKK6sCRujgP1YJraVKKTa9ZFhr9lhBplbhsYpXeEhzEYmC4PQU0Vt4cYlVwG5jEKcMWYIAQJDklMC+9gJcVU5P9mpTVQvo2TENWGUEQzfOhBv5PpfD++6d47bXXaGwcwx133IEBJHUDOZ/PliCa7bUilh2xWIzNmzezZMmSDG2nFRsVjZbfVisFQZTMSboRlNpgRjeZ05C6nkQwjDJvDDINeg1DRxDE4alw6Zairbawq/O6PiCC5548Ded405xTFEWCwSA9PT15f5OKohAMBuno6MhYS0YxOIyaow4TqtFe3LRpUwbhCgQCLFu2jN7e3ozHz0cv8hlVY9u462g6dpjxp09yWedh/ljw43GPQRRg9eqneOaZZ0reUYtjxhK47yGunTufFV6JRmf1yRZg2j8YBvFIBPPnLmQIbWu54Bo5mpTM6TWHQ0URBMKnTiH0dCP39kFXpxnEPChiJWB40lqBvizxeplC7MKbF8zzrAqEC7JsFmxD1tzFYCCu6fn0e9lCfEWRUR3q4AYzKsCpU6d5/fXXOHToEG63h9bWWebAhCghUOB9Db2/DWZnZ/afS5FIhJ/97OecPn2aqVObaW6eCqQFfceK3/xUhBSJHWkmwgLY05DmXIeYOk66adZahh2FaTuikkxqeL3eAdtRVL7zQxs9lv2bE4TSxrUWXE1TyyZcsiwTCATo7OwcJVwjEKOka5AYCOm6ePEiu3fvtv8tSRI333wzkUgkoxK0p/conxjTxFnnWFr27aauo43bzu/kY8okBEPkjY0b+PVvfkNHZycgIAn5L3KiP0jgrvu54cprWBFwEFRrRLagwIRiut+PueBahos1C97Vkgi9XQg9PUgp7yo1GoXubhKdnTgwTMF8RRfcLGKVXrHyVoFYFXxby2aj+lXCXPF0ajTe0JEEEZfLVZlreln6PSND95N/MEOjWovhpk1v8tJLL+J2u7n55lu46qpFqKoTRNE0wSwD6ZpCA+gLh3nssZ9w8WIbH/vYwzbh8ng8/Tmd1YIo1zQkvVowDMypvuzhlyKWHYriwOFQMipclit+RXYUlUKQUpXwoa8apudnWjY5xXzTXJOm4prQBPQTrlAoVJBwBYNBurq6qkv6R1E1jJKuKqBS0pUeaq0oCo2NjTQ3N2dcVF7s3skfTLkaTZeYvetdvKEeHj33HkudzWzduoXVq5/i3DnTwd5qjRgGaLoBgimDl9weArfexYprl7GiwY3XMXBri3JQ3oRi5oJrTr5Zk04VVjy0JELIrFCJ3VmWC31h0i+osixj6AbJVLXAbBuR525cwPB6UpWqVFag31d7YlUIQ9j+AOzReEVRcLrc9IUj6AglqhYmKrUFsJA9mGH6PzkHlQN49uw5FEVhzJgGZs2ahaYluOaaa1BVFUMQU7qtgVVau7u6ePzxx+npCfHpT36SlpkzEUQJj8tFLBotqnmrFCM1lzQbBiDIUkbsVzZR7ddemq1/i3BlDxmku+KXY0dRMYaRcOVFXt80c7LWObEJ18RcwpVPo2URru7u7poRrnXr1tnDWRMmTODjH/94RhbxKEpjlHQNAIORwZ06dYpDh0yvLIfDgWEYXHXVVbYexDAM/qNnO99puQVPTzdz9m0nEO7kK21HSRzs4VtPfouTJ0/k3bYggCwIoDgILL+Fm5ffxi0TgzjFIZh0GuCEYkkrikjUJFbpGqtQD0J3D0I4k1gVgiLLJNPibBAEdJtY+SEYRA/40T1eU2NVpgFmrSEMZfxQGqyhjFBPD9bx7RfiGzltrn4Nz+DFuv3+T1F7we0XXpeueJw7d57XX3+dffv2cvnll7Ny5UoaG8ewdOlSUh9k0N5Wvb29JBIJHn30UaZMmQy6gcetEotGSGhJWy836InRDxLhkqSiHmymyLyfKKlOF4rqoDfUW/A1kGtHkd+epIKq6EgjXFlIn6x1TmjCPWmK+bggFCVckiTZhCsajdZk37q6utiwYQN/9md/hsPh4Cc/+QnvvvvuaE5jhRglXVVAuSTMCrUWBAGHw4GmaYwdO5aZM2cCEEvG+O+xw/yi5Rbq287TfHAfE3vPcd/291jz9FoOHjxQ/A1EkcDiZdx+8x3cNKURhyQAKW2FKFk7UVVvHwMQB5OjB6BpCKFejO5uEqEQWk8PUiiE2teHKxLOyQAsDwL4vGYIs8dD0u3GCATQA34MjycvsTK1FvKIiP4YrgqHqjqRJCnDOw5I2U70W3b0hyknEaTauMzn6sBMQp6vLX3+/AVef/119u7dg6qqLF++nGuuuTZzg4OcUuvt7cXr9dLU1MTXvvY1ZFnOO2RgVS2EwXjLSXJ/cPUIhqWLq+T7dzhUZEmk17LDSR2nYsa1FvK74pdZFR3hhCsdzvGTcDeZLWuLcFlkPxuSJFFXV0dPT0/NCJcFS28nSRLxeJxAIFDT9/swYpR0VQHlthePHj3K2bNnUVWVeDyOrussW7YMQRBoj3fyOTnMm1OWMvHEUSa+f5yWnRtxrXqRH75XytgU/Auu5o7b7uWWmZNyJrHy6XaEVNbhoAiYIJjbKeeCq2kIPaHcqcCeHoQCAwBWCDMISKKIkpry03WdpK4DArrXm7JXSGmsfD6MQAAxEMDl9dJrCcBTlhDFFj7zOGm5MTLVyPGrBFXwNRsILIsDy/S0KJJJc5pSEhEMAUOSK7LsqBy5OYDpbendu3dz5Mhhli5dxuLF19qfxYYomvYGA1xwT548yc9+/nNuv+12rrxyPrIs20MGkUikQLvLyPxt2ES1OKGvNJ9wuGB9/5Xsq6qqSFKWUaxhYGh5PPhKTPmlV0VL2VEgmOL+kTT5WQjOcRNxT24G+glXX19fXlF8OuGKVGBAOxAEg0GWL1/O3/zN36AoCrNnz2b27Nk1fc8PI0ZJVxVQTqVL13U2bdqEoijEYjEMw2D69OlMnjyZg30n+UTdGE56pjN9/27qd+9i3I//nSNvv0epuzLvnEu56677uW3eDPJNvRfYGQwr0sImFhX6EuXLUEwkUq3AUNnEqow3Qvd6SQZS2YABP2J9A8qYBvD50HUdLavlZPn9WJYQA6kapYtdAXNAoMamh4YBgixn6GKGCubEnbmAlQMr8y8j6xAyhPi1zM48e/Yc69ev4/LLL2f27DnceOON3HzzTTidrtzJN1GCQUz+HT58hF/96lf4/X6mT59ubrLCqc7sXEjL2iSbgA1UFzccqDTWySJcpUh9xpSfJTIvFUukF5mONXTTMzAxcgx6C0EdOwH3lGlAacIliiJ1dXWEQqGaEy6AcDjM7t27+da3voXL5eKxxx5j27ZtLFy4sObv/WHCKOkaALJJljXBWIx8HTlyJMMzRRAEbrjhBtZ17+Fzk+cTNVRa17+K57/+L+JLL3G+xMXM0zyDO+++nzsWXlo+2cqHrHw6U7hd5AKXSCD2haGrC7GnO41YhQZHrHz9Fat0ywW8+VuBMYBIFIfDkWFFkR3CLFSrapRlemhFhgzIvT4PrDDooSdcAh6Pu7KJu2K6qKyMumo74l+82M769evYuXMXiqIwdWozyaRmt4Sj0Yg9+WYYBppuEI9GB1zf2Lt3L6tWraKxcSyf/vSn8Hq9/ca6lUx1piHdRLM/5N207dATiZpmjFYHQooIVUK4zLZ1WVVU+13IEpmXez6lDeuIkl0ld6q+obOjGADUxvF4ppqk3iJc4XC4KOHq7e0lHK6i+W4RHDx4kPr6erxeLwCXXXYZx44dGyVdFWKUdFUJxUiXy+Viw4YNGT+eOXPm8DvHKf582gqcZ88y5+++g+PpNRCLUewy7hrfxJ333M9d1y0aHNnKB8vBPJFADIUQe/sQurqgu9sUr/f0IEai5ues+L0FcwrQ58slVj6veTGtfIcz7m49HrepLzEMVKdK0gCtzMpNZW9rHicDzOqXKCEYpfUoBWHnPQ7tnbipR3ITi8XKd6xOOWyX1UbM64ifK8QvF2vXrmXTpjeRZZnrrlvMddddh8fjyXhO+uSbKDuQRaFwy6kEOjo6+M1vnqCpqYlPfvKTuFxOJEm2zYirFcRspNzxDU3rP05VzxitFoRUq7YywiWKYkWEKy/Sz6dy9HIpSUFST5JMpWIMiR3FAKCOGYenucX+t0W48k0hWoSrr6+vunmeJRAMBjlx4gTxeBxFUTh06BCTJ08esvf/sGDUkX4AMPUD/XzV5/PR15d71yuKIj6fj/Xr17N27dq0P8DZj1/Pz2feTPB//jPT/8//h9hXfIpHrRvD7Xffy303ZjpfDxjxhB28bFWq7KnAPC7aAgIGQso5utBG8xArvx/dNxhiVR7SMwENBByqiiyKQ2a+CZbGJRWPkkyWt2DWILi4HJTWI+V7kVS9DMWUvskKnC6Ezs4ufD4fsizxzjvv0NbWxvXXX2/fbRdCri7KbDkpiqMif7i9e/fS0jIDVXXY2aZVJVylWsqpMOXa6uXKxACCyy3CVdUopCykm40a1nEqR8MpmNdxyxW/Zp6BJeAYMxZP8wxbGxwMBolGo3lF8YIgUF9fTzgczh12GQK88MILbN++HVEUaWpq4pFHHslYCz/sqIYj/SjpGgAEQcjwJvF6vanFq/9iJMsyXq+Xixcv8h//8R/2DyiajLLu8mnsinqY8PffZVKoq+h7KV4/t91xN/fdemPlfigWsepO2Sykaa3yEatCMAwQBcG8q0SAlL5K9/lsDyuzFeij+uW34uiv1pgia1NrRIaeyLKikCQ5bcx8CHQzpRZMQQIGFgkyGGTnTpaDWk1TFsrO7OzsYsOG9Wzfvp0777yLRYvKb2GUo4uyFtvsc8IwYMOG9UydOpXm5mb7+bXIBSzHaiHjucM12EGahq8CwuV0uhAEhkRvlA5Bls3rVFKvSH+Z/5yonklvPjjqG/FMn1k24aqrqyMajVYcOzeK6mA0BmiEINuV3tIZ9fT08Oabb9o/oI54N0+8f4be377AtDPv06AWPvyS6mLFLbex8q7bcbmchd88njBJVFYIsxAKVUSsMiCItsZK9wcgEED3esz/9nptYtUfISOkFo4hJg9Z1RrD1hplLkjZ5psOxYGqOmuv70gtpvbimkbAsrMJhwoDqtbU0L4i27+pqyfE+vXrefeddxAFgYULFzFr1qzytyfLGGUErOe3HlB55pnfsmHDBq666iqbdDkcKooiV5lwVWa1kG+wQ0gNLNT8PBKEir3NhotwIYroWlqVORU6bejJ1PRiYQzKjmIAcNSPySFcsVhslHB9yDFKuqqAdNLldruRJInu7m56e3vZtm0bhmGw9eB7bNiyE+n8eWZ5XfgKEC5RVrhh+Y08eO89+P0+88F4AiFFpHKmAgeqWbKJVQDD78sSr5vEyiYxBS406RfiDAI2BK0QS1tji5nzxg/lQk8miSbNhcDUdzhs0XUtLqzQP7lmQ1YwdN08vkNYseiv1pQfKly1QYQy8cSvf83Zs2dYtHABS25YSqAuCLphtoqK7ITVpjMG0ELWk0kiCY1f//oZduzYzuLF13H//fcjigK6biAIVF07I1QQQZQXehIDyw4hpSvEQE9WOZ9xAO1vl8uFYQwP4cqxBUkX4qf0aIJQuq1d3KS3Mm1gPih1DXimz7LXjUAgQCwWy3vMLMIVi8VGCdeHAKPtxQHC4XDY/+1yme7IZmhr0p4mWbt2Lc8//zwvrHuFjtPncYoCM70uVCnPZVEQWbxwEY9cv5gxgpAiVqHBEStRRPf6MqcCrVagx1O8FViGJqIoyhz1HgjMgFwHfX3hAVtCZEMQRBwOxW7h1kpgm6M1su7EjWRNLRasak1fX3ku/kNlX9HT08OmTW+ybNlSXC4XZ8+exeVyEwxmmS6m9EQmp89yxE/5RVViX5AOTUuyevVq9uzZzbJly1m+fDmCYFZrZFlK3VRVKah9ALqoit/C8rlKDtIIdBCEKzrQKvtAUaEPm1V9Fqi0XWtqA2VZGbBeVAnW421pNS03MAlXPB4vSLiCwSCJRIJuy0x2FMOG0fbiCILH48mYNtm3bx/f/s63OXzoMAB+WaLF6yQf31o4fgKfnDKFSR437NhR2RuLIrrPnyteL4dYFUI1qhs5o96CuZIPklioqhNZ7ndMr1YlxjD6p95AyLGiGOxia0bl5NEaZeWuCaKMYehVs1gAq9UjlF2tMbBifWpHuHp6QmzcuJFt27aRTCaZOnUKc+fOZcKECQV2yvRHs0OCJdnOp6vULyob5mCMxG233cbixYuBfqPYfrFylvfTABbbgeiiBoIMn6uB6sAE0dxCBffkLpcbwzCGnHAJomT6nVVAMLN908pv1+aGtVtJCeXIFZRALuFKJBIFq4LBYBBN00YJ14cIo6RrkDA1Ms60BdvEO+++w9H33+dPPvUZhHMHef/YcU6295h3oCnMq2/gE9OameH3F38Ti1jZhMrXPxU4UGJVAJYIuaotCkO3rOXTvHYqN8+0FkJTj5RqJ9WEGBi58TOpKayBTDj1k5gSWiPD6H/OYCJk0mAthJVMj5mZj7UhXLpusHbtS2zZspVkMskVV1zB0qVLqa+vq2xDSQ1DEFJ6o4E54kej5m82EPDzwAMrbZKbnzzkLrZWTqi52MaLi66rkPlYKQrpwEpWVQcQl+RyuVN2HbWNocmGpdeqhg9fervWrD6T2nbh45BMava1oJQdheIP4p3RT7j8fj+JRKKgz5ZFuLq6ugb76UYxgjBKugYBqxoSDodzbByuvupqpt+2gtbwTERlMpddEQZHJ8fbDtDXfpHldWO5JD23ShRtXZURSMXZ2BUr7wB8sSqDWW6vTmhx8Tfq99qxW5Cpak8xKwqPx51hCTF0RqLF42dKVztSRpIV7qtAZtbhQFpG6TYa5SDdZb7aiMcTOBwKoijQ2dnFJZdcwrJlS2loaBjYBtNaXxkavJQjvlEiaqevr4+f/vRnaJrGl770x/bv13TmL33Msoczioquh8kWJAfZxCJf3qFQnjYyHZWmGVQLNRtGKZgzWvycSveIs+worKxQ0ePDOW0GWuq35ff7M6Qo2QgGg+i6Pkq4PoQY1XQNEIFAAEVRCIVC9qhxONwfzgzw3OvvkvjtXojFMeJxSFUs/AGNhjEaY8dKeOuCJBrGm3YLw+VEPQQ6k3L3wXR76F8Esg08h6pFUw5KWlEIYv9gQZVgWSwg0O9JlAMBr9dj22iUhRoRg76+MJs2bWTrtm384R/8AQ0NDei6gTiI6mypAQ8bBZIDurt7ePzxx+nu7uKRRx6xA+c9Hk9lzvz53jIlulYU2RRdazqJRGxwOrChgCQDRirmqvxzoFySWm0Mx/Sv+duTUnS0fKmE7AvQcMnlON1uFEVJifEThEKhvIbaFuHq7Oys5u6PogoY1XQNI3Rdp6enB8iMAUoXXreIUd5vEOnrdiN43KBpEI/T3Renu1vh6BHw1vUyZtxhGqf58DXWk3QHzEm8IYIxDG2P/DvSr9mxpowkScLlVImEUwaeoohgjIB9TaGYFYWmJ0nE41VfGLItFqyJUUuzY5JUD9FopHy9UQ38wiKRCJs2vcnbb28mHo8zb96liKnzejCEC1FCKLcSkyc54OLFNh7/r8eIRiN86lOfprl5KgMiqYXe0ujPABREyax2DKI1PVQQ7GuXkeabVlwH9lEiXGD99jLjwMxKfeFYItnrxzdzDolkkkQohM/nQxAEkskkdXV1JBIJXn31VVpbWwkEAgQCAQzDGCVcH2KMVroGCOuOBcxevt/vJxqNEovF+hc7PYnQeY7ec2c5u/88p4+G6WpLmmtbMgnxOEYsDpr5Q/b4DcaMN6hv9lE3ro6kJ1hbAjbYCcUawirNh8NhDMHcw7Jd3ocZoqygyDJKavKtVlYUOe8rKXh9XsLhPrQ8eW0FXlT1cyAeT/D973+fvr5e5s2bx7Jlyxk7tnHwG66CI/7Pf/5z3j91ik9/5rM0TZqEoSfxejyVRSGVgzz7albEHSkhfpJEIl7zlISyUOy4Fgh6r0ZVcECoZipCFWGlUZjDHeZ3Knt8+FrnIkhmbcPn82EYRoaTfDKZZMuWLezcuZNoNMq8efNoaWmhqakpw/txFCMDo470w4h00mVVtxwOB06nGewaj8eJRqP2v7s7O5FDF+k9e4r395zm3PEoHReS5o2kRcDicUiYFxSX12DMBIOGqR7qxtWhe+tSLYAqYYj9lyqBZQmRHlqtWxoLUUYo2lobXmTbVwyVFUWOb1kZd+FIUorIDh7RaIy9e/dy5ZXzAXj33e1MmjSRcePGVWHrgCjDYHytUujr6yMcDtPY2GhXBWOJBAlNq5q/XDmVGGvqTZbl4Q1hroTEpOxNPB43sWiERLnEvloYoYQrGwageAP4Zs22CZfX60UQhII+W9ZN+5tvvsnu3bs5c+YM06ZNY968ecyaNesjFbUzkjFKuoYRsiwjimJG9E86VFXF5zPNTa0KmH0nbejIvR2Ez57i5N7TnD8Wpv180rye6HpaBUwDA5yeVAVsipuGCUF0bz3IFUYCpaGcmJThgqqaJNUOx5Xye0UNtRlrOcjN+8v6e4bep0q+T5TjMp+ahDTM1qQlzK+Gy3w0GmPz5s2p5IUIX/7yV6pT1UrDYPf1yJEjvPPOOzzwwEpk2WpxFsieFEXAlAoMyLh2AETWmnpTFGVIK6MDadN5PB7i8QTxRCKnslNTfEAIF4Dk9uJrvQRRLp9wiaJIR0eHrfFKJpMcPXqUPXv2cMMNN1BfXz9k+z+KwhglXcMESZLsjKxYLJYjhozH44wfP56+vj5isZhdAZNlmUQiQTQaTSNgBlJfJ7Hzpzm59xTnj/XRdkbLJGDxOCRMAqa6DBrG6TRMdTNmYhDdVw+yI3cn88CaUByaqb/KkT6qb/paVWAJIYrmOPww5NIBBclhYQj2QjsYvU92VbAsyDKCMbjFMhaLs3nzW7z55ptEIhFmz57N8uXLC/tsDRSDPF/37dvPE088QUNDA5/97GfweDzlZ08WEOIXfHqVTHprQcxzIMo2AS9zz/B43MTjiRzdm3kDVMMK9AeJcLk8+GbPswmXx+NBkiRb/5sNM8xdpr29Pa+ofhQjC6Oka5ggCAJOpxOn04mqqiQSCTsz6+TJkzzxxBN85StfyXCtt+BwOFBVFUVR7NfFrTK9YSCFu0m0nebE3lNcOBriwukkSS01URRPmBWwRAIMcKgmAaub7GTc5DoMXz2Gohba6RQpGYkXL/OCnqERGUw7yTaEzNSh1ALVIrKZep/yjDdVVUWS5P6qYBlIr3KmL5alxuEtGIZZXIzFYnz/+/9GU1MTy5Yto6lpUtn7UDYGeVx37HiPNWvWMHHiRD796U/hcrn6CZfVhi0XVtSOkWWxYP25JvmUpiGrojiqK8SvuBpX4aBByrZjIF58udv6gBGu1ksQU1KCUoTL6/WiKMoo4foAYZR0jQAIgoCqqrhcLrZt28YLL7zAF7/4RTweT8mLuulk7ERRFDRNIxqNZhAwMdJDsu00J/ef5sKRHs6f1tDiKdNCqwIWNwmY4jBoGKtTN0VlbFMQwd+A4TCDsssesR8G2LqaWKr6V237igqrFRVDkqrua1XSigLLKFYo2/S0FDks5V4ei8XZunUrBw8e5DOf+QyiaDrcezyeAXzC0ijVqi2Fd955l2eeeZpp06bz8Y//nk1QXa4Kw74LQZTMyk4yOeh9LReWNU2x86IUKieHFuEa4KBBOdrCQvhAES43vtZ5NuFyp+whCjnJe71eHA4HFy9eHCVcHyCMkq4RAsMwePHFFzl9+jS///u/TzAYxOl02saU0Wi0LAKmqioOh8N+XfoothgNYVw8w8kDp7hwqJNzp5IkYikClkikvMASYBjIikH9WJ26SQ7GN9cj+OowHK7h8wErgJw2jyiaq3+tyKHl8q4PYAHIs62h8DazrCjSBdeKolRsRimk2kkVvDEIAvFYjG1b3mbjxo309vbS0jKDBx9cWTOyVXFbuQDOnDnDW2+9xb333ossy2Xo3gYIyWzVFvdNqz4sQ1ZTB6an2n4lhPgDrnBVa7LTSlkoYxL5A0S4RKcL/+x5iIrZ2ShFuDweD6qqjhKuDyBGSdcIQDwe51e/+hXBYJC77747w5neqoA5nU6SyaStASskvrdgRQs5HA77dfF43P6BitE+hI4znDx4igsHOzh3SiMWySJgqRakJOnUjdWpn6gwdmoQJVCPrnqGnYD1W0Kk2jxDbl+RKy4vF8NVORQlCY/bJDu6nixPcJ2KyhlIm6et7SKPPfYYPaEQ01tmcNOKG5kyuWmgu18SBiAOompkGKZofsaMlozHB6R7Kwd5KofWcEe57dpqIF2ID/knZIe8wlUC6YHTOcfqg0S4VBf+2ZcgOkxZh8vlwuFwlCRc7e3tVZ9gHkXtMUq6RgD27NlDT08P1157bdHnqapq68B0XS+bgEmSZGvH0l9nfW1CPILUeYb3D53iwv52zp5KEO0zgKwKmG4gSgZ1YwzqJ8qMa/ajBBvQnbWPGMqGw6HicCj9i2AVrQsGjFRrTS/jDnw4vM2ynfnzWVHE41kEbAAu85qm0dbWxoQJE9B1naeffoYrr5xPc3OztSNFtU2DQcXVuDTousHvfvc7tm3byqOPPkpLi0m8HA4VRZHp6wtTTcIlyDJGKY+tWre2878piqLgcCi2EF8zDJIV+WmZhCsajQ6Zj5ht8gsjdtAnG6LqNCtcaYRLVdWC0T1utxuXy8XFixdHCdcHFKOk6wMKK7PRImBWC7IcAqaqKqqqYhiG/TqbgCWiSJ1nOXPkFOf3t3H2fY1wKOXendDSCJiOKBoExhjUTxAZ3xzEUV+H7vTXnIBZWWSlLCGGC9YdOAa5GXSShKENsi05ABS0N0gh78RbUjNbtmX+vDVN4913t7Nhw3o0Lck3vvENHI7itiSWISQM1rg2lU85QGKSTCZ56qk17Nq1kyVLbuCmm25CEAY2aFAKA25/CoKdqFBtsloMitOFLAhlD2gMKNGgWrAqXCmyykB0YEMEUXXia52HpJqEy7qhHiVcH26Mkq4PARRFweVy4XK5UnYJWa72BZCPgMViMfsHLWgxpM5znDt+mvP7znPmZIK+7tSPPZFICfETZh6kaOCvN2iYKDKu2Y+zrh7d5YfBxLXkgdvtSVXrIoNuJQ0FrJxDQzD/UWkbshoo297AhoDD6USWRESh9MSbpiXZvn0769evp6enm8mTp3DjjcuZPr2losXOJqtU6Js2SG1cIpHgN795goMHD3DzzbewZMn1gOn3Jopi2YMG5aBa52w+9/JaIFvgn2vIGieR0LBuLCzCVYjc1xQFW4qWDszASI6M9AzRoeKbPQ9JNQeVShEul8uF2+2mvb295I31KEY2RknXhwzWNKM5mYZdySpFwERRtNuX6a+z76i0BEr3OS6cOMXZvec5ezJOqNP6m5YZyC0Y+OoMGsbD2GkB3GMsAiYWePdykGsJMZhW0lBDkBT0ZKLodF8tkOMyXw6yrDbMRVYpWOk4fvwE//VfP6apaTI33ngjLS2Vka18yCRgRY5VFUK2Dx06zM9//nPuuutOFi1aBGD/fiKRyIC3mw3LXqMarvj5tluJbUdZKFFB7hfiyxiGgaZpKIpjhBGuPEjpwIYrkUJUHCbhcprnWDmEy+PxcPHixVHC9SHAKOn6EEOWZbsCJghCrqt9AVgETFVVBEGwK2D2Dz6pofRcoP39U5zec5ZzJ+N0X0z9LRXIbcTjoJkXf1+dTsM4/v/2zjw+rrre+++zzL5maZa26V5aulJaKJtIBQVZZBWUKwp41VsU0fu4oAh69UHxIuBVvA+IWIGCVmUTEK0tpVAQsNBCaYHuS9p0yT6Zfc45zx9nzskkmSSTZLK1v/frda8kmTPnlznTnM98f9/v55MN5C5D8wb7lAfZZbtiiKb+ikGPW0l20LSGNAj/hKxp1mg0Vvi0XS/RToqioqoKGzdupLW1lTPOOIN0Os3evfuoqakZvG2crG+TkSsqBhiyreuGHZzd2NhoO3bnGuwWlSFq7u4cYN6v5+hj4oSsKPh9PnTd7AUdrKiqfPQ3vLo3i5PBoLPgcrlceL1empub804hut1u/H6/EFxHEUJ0HSNY04wej9kPZVWyehNgloeY2+3ucJz9B0DXUFuP0FJbS+3mAxzcmywokLtscoBwRe+B3F22xgZ4ox1yCq1sZDPpDEMvyo25P83fvXlF6brOO++8w4svrqWxsYGJEydxww1LcTicQ5v9J8nme2YAr1VrayuPPfYYH/3oR+2GeTC3rzUt08FqZeAMrN9sYKe2epv6YDLaxx5J60NR+/Z1cZISCjp3PwVXN082qEMLksNJcMZsFI8XKFxwNTQ0jIxQc0FREKLrGERRFLsCpiiKXQFL9RI+awkws7lYsStg9h8EXe8QyF23O0FTAYHc5RN9hPMEcpuVGrfti1TUP7CDjCHJZtWnP5/0B2IGSZ7syUJO2Yvg2rNnL0899RQNDfVUVVXzkY8sYcaMmfbaTMsBp73VNJjZfx3eB5JkbjMbesGvVWNjEw899DtisRif/vTVTJkyGTBH8TskGhQB830gjYyqbAGN+H2ucGUHNHrqF+xsyJpOp4oiIiRZGbyBAknKfggqTh+mpDoIzJyDmhVcTqcTn8/XreCycncHW3DFYjFWrFhBXV0dAJ/+9KeZPHnyoJ1PIETXMY9lJ+HxeFBV1a5kFSLArDxIRVFIpVIde8cGGMitllbh8HjbKzW9bHuNKIrQZ9T+XH2zV/B4vIBRcC9ST9ufum6QTCayE1MN/OlPf+LDHz6T44+f1aO4KciKor/08D4wkJB7aZg+fPgIDz30EJlMmmuuuYbx48fT54iaQpEkso6nxXvOIpG3Eb+PFa5CBFdnujbi9686OqiCK9/5FBUDI9tf2Me1qg4CM2ajZv3xRorgAnj00UeZMmUKp556KplMhlQqhdfrHdRzHusI0SWwkWXZroBZAqyzq313WBUwVVVJpVIde8cMAyXaSOLQAfZtqeXQzihH6noO5DYFmIfysWEIV6BLA2nCH0JkGbJ9LcWmN1HR160xA/PTfOftT1032LJlM2vWvEhZWRlXX/1p8/HZzMS+kNeKIp3qV69PX8057RulZtp2NDc3c99996EoKp/97GeprKxg0Aw8iym8BxnDAMnhyAr7whrx+yO48j2HtQ3Zl+roUAuuXPraByYpqim4fH7AFFx+v5+mpqa8gsvpdBIMBmlsbBwUQ9lc4vE4d955J7feeqtZjRUMCUJ0CfIiy7JdAXM4HHYlq5AbulUBU1WVdDrdsXesr4Hcbiir0OxAbj1QCt0Fcg83gzCZ1hNSdivW0DX8vr5Warr2Gem6wfvvv8cLL6zh8OFDjBkzhiVLljBnzpxirbjfvT4DySa0bTsw+MfKlSw8cQGlpaWD5idlpg0Yo6Lv0DBMk9bcCldvjfi24Opr4HcP5BXnmXQXQScpStZ8eIQgK0iSjGFoXVoJTME1C9UXAMx2iUAgMCIEF0BtbS1//OMfqays5MCBA9TU1HDppZfico3Qv69HCUJ0CXrFEmBWrJBVycp1te8Op9OJy+XC4XCQTqc79o51CuQ+srOVg7XtgdxmGHdhgdzDTd8jUop0XivsO50ik9EKG4PvZvrz1Vf/yd/+9jzl5WM466yzmDNnjj3dNxj0ZkVhL7ePfUad2bZtO2VlpfZ0oiQr2QEND7FotLgN3lK2wX8EeEH1Rj7B1YVOjfj2YEsRBVeek+JwqB3eG6lUGh1jZAmuzlitAGZ9leBxs1H9HQVXc3Nz3tfN4XAQCoVoamrqtbWjWOzdu5ef//znfPWrX2XSpEk88cQTuN1uzj///CE5/7FKMUSX2vtDBKMZXdeJxWLEYjEkSbIrYIFAwK5kdSfAUqmU/UfE8hDz+/1kMhmzd0wKoU4pZcGCM4geOUCqbk82kLuZg7Uy6aTLzoPMJFMc3J/mYG2GbY4jlFYcomSck8qJYeRg2fAFcg9Tv1k+l3lr+4Ns83YykeSWW25BkuD223+Mw+Uy16mbE6YffPA+breHSZMmcsIJJ+D1epk3b96gii2L9n6e9mZrt9uDpmlkMmYfmKSqAxJcmza9y+OP/5mZM2fyqU99CjBfGo/LRTTahm5kq2iGMeBmd3Pba2SYb/aGAUiq0nsPl6Fnt2dBUVW8Pr8pVHV9EN/vRpf3hsvjQQb7vZFryDpiMAzz9ZQVAsfNGtGCCyAcDhMKhex4rvnz57N69eohO7+g/wjRdQxhGGaTdjwezyvAOscK5ZL7h9TykAoEAsiyTFtbG0nFDeNnUDN+BhNP7xzILZOMO00/q3QaLZnicF2aw/s1tr9VT8mYw5SOc1A5MYw6RIHc/Y5zKQLdmZ5agsriiSefZNyECcgYPPnUU1x15ZUYhsHWrVtZs2YNBw7sZ9asWUyaNBGv18MJJ8wf8t8FzAghq8olKwpOh4NQiZ9MKkU6Lfer2Xr9+jd55pm/MHHiJC655FL7uTtXauxnHcjUaHaicsRWYXKwTVr70jSvKHjcHtpaW7M9V1LWZHRwHfHBtPtLt0WQaDdk9fvdGIY+qFOy/UJW8E8/HkcgCJiCsSfBpaoqoVCI5ubmIRVcAMFgkJKSEg4dOkRlZSVbt26lsrJySNcg6B9ie1Fg20lYga2WAMuNFeqMy+XC5/PR1taG0+nE6XSiaZo9PdlrILdhQCZPIPcYg9LqwQ3kNqe/ZNMKY4gxPdc8tpVGd+zevYdf/vIX/PCHPwRZ4bu33MJVV17J22+/Td3+WkpKSvjwh89i/vx5KErhZrWDTW6Df3+tKNate4WVK//Occcdx1VXXWVbFng8vb9uJtnomEIsA7LJCKNDcEnIstKnJIfeXjfbER8D3TCK54gPPb62uY340P6hbthyCWWFwPSZOIJhwPx3GgwGexRc4XCY5ubmIvvCFU5tbS0rVqwgk8lkh2auFtOLg4zo6Rpi3nvvPZ544gkMw+CUU07hnHPOGe4lDQpWBczlctlbiZYAMwyDdevWMX36dKqrqztUxVRVtSchNU3r0js2IgK5Jclsnh0G7yWHw4nL5aStLUqhlR9DVjAyGWRZ4vXX3+CVV9Zx5ofP4sSFi1BkaYR5n0nZCdCuayrUiiKT0fjtb39LSUmYSy+9DFVVbHPgPrnz56Koeas6w9XL1x+M7PBEX7ZR+yZUswLMqhgO1OW9T2K265BGKp3q92Rln5FkAtOPxxEKA+2Cq6WlJa+TvCW4WlpaSCQSQ7NGwYhAiK4hRNd1br/9dpYuXUo4HObuu+/ms5/9LFVVVcO9tEHFqoC53W5SqRSPPPII8XicK664oscKi+Uh5nK5siHXHXvHBhTIXVpqCrC+9i4NoxWAZckRjRZmemoYsHP3btasXsX8+fM56aSTyGSTAVQ153W3jSD7Z8ZaLPpiJJpv2s0a0nA6HSQSSZxOJ7Is9UuodrtG2nMODRg93nHQ5xiivgqufBiSbFbW8kz39XJy873Yr7MWPqRRFCQZ/7SZOMMlgPl3KxQKdSu4FEWhpKRECK5jFNFIP4Ts2bOH8vJyysvLAViwYAGbNm066kVXrt/XY489xpQpU7juuuuy+XaJjrmOOWiaRjQaJRqNoigKLpeLcDiMYRjZ55PJjJlI+ZiJlC9Ic0LLQQ7vrqXuvUPU7ZWJNDmQfNiB3C1NKVrqdXZtaiFQ0kxZtUTFpGDhgdxW9MwwfMZwu838zEIF165du1j94ovs3bWLYDBoj4F3EFsWhmFXcCSpD9tqxUSSu/Sj9YRh6KRSyax7vISiKPzlL38hEmnl2muvQ85aC1hxSMUQXGD1zGUwrOGJIc7u6x+S+eGiD4Kr0C3sXs9s6BialZVpvrfQezH6HaDggo79o5Yhq9vtyRqyporXiC/J+KfN6LPgam1tFYJL0G+E6CqQlpYWSkpK7K/D4TB79uwZxhUNHZFIhN/+9recdtppnHTSSRw+fBin04nH46GkpARd17vmOuagaZo9QWlZWIRCIYCscJNJl9VQUlZDyQkZ5rcepmFvLfu3WIHcKpLPawdyt7amaG3U2bU5QqCkpddA7qGIIFq+fDlr167lnnvuwe/329+PxeJ89as3UVIS5rvfvQWXy9nj8zz77LP88/U38Hs9+P1+9u8/wC9+8UtKS0s5//zzOeusD/dwdI4Ag6wPkZQd1R8csTlQX6tMJs1jjz3G+++/x9lnn41h6LiyYsswIB4vPH+yEKTcaVVda39me2rUAGOEbNn2IxzeElxtbW0UdULQMDDsalM3jfhFEFyd0bSMPd3b3ojvKkJclYR/6nE4w6XZpRcuuApNjBAI8lGQ6Nq4cSPLli1D13XOPvtsLrnkkg4/f/bZZ1m9ejWKohAMBlm6dCljxowZjPUKhph4PM7999/PJz7xCY477jj7+5adREtLi22oWlJS0qEClm9LINfCQpZlXC4XwWAQSZLag7xLxhIsGUtwrsbcLoHcKni9dh5kJJIi0qSx+/0ovlCE8koonxwgZAVyO5xD4g907rnnsWrValatWs0ll1wMSKiqwk9/egeSJPH1r3+9W8G1d+8+ysvL8Xi9HD97DuFwmJUrVxKNRrnssssoKytl7dqXWLZsGXPnzqGsrKywReWKCkUx78F6EX2oZBlpAA7+yWSS3//+D+zcuYPzzz+fU045hUwmg6Ko2RtqqosVxUCMJ3v0DMsVNoMcnlwQ/RZc7uILrs5Lw7RXsK68JKtIsoyeGdzqqq5pJDWNZLJ9i9rrNavI1vulsEZ8Cf/UGThLzH9HluBqbW3NK7hkWaakpIRIJCIEl2DA9Cq6dF3nwQcf5Hvf+x5lZWV85zvfYdGiRdncM5NJkyZxxx134HK5WLlyJcuXL+frX//6oC58qLG8WCyam5vtas3RjMfj4Utf+hKBQKDbx1gCrLW1FYfDgcfjsV8bS0h1J8A6W1jkCrBkMkkmXIUvXMWMWTqzrUDud/dTtydB02EFPB5bgEVjKaJbNfZsjeLxtzFm7D7KJnjzBnIXmzFjylm8eDGrVv2DCy44n3A4zE9/+t/s33+A733vFsLhcJdj9u2r5YUXXmDHju2cddYSPnLOOUydPIlDdQfYvXsPP/7xjxk/fhxgbrP885+v9mtSSgJ7UtN2eJfAKDA2Ji997DHKxxNPPMmuXbu47LLLOOGEEwDz/QZWhYtOVhROXC53v3L/zApXgYIt629lQJ/zM4tBf4K2LRuXYm3FFoqU/X96JmuZMERbtp23qC1x3ntagoRvynScpabgkmXZFlz5/kZZgqutrY1YLDZov4/g2KHXu9D27dupqqqyPUBOO+00/vWvf3UQXblRI9OnT+fll18ehKUOLxMmTKC+vp6GhgZCoRAbNmzgmmuuGe5lDQk9Ca7OWDfD1tZWVFW1BZgkSXYFLF+1orOHWK4PmC3cQhW4QxVMn3ECx3cJ5FbQNY+dBxlPpdi7LcPerXHcvhjlVbV2ILfuLwXVUcyXCIALLjiff/7zVV5//Q0OHz7MG2+8wY03fsU2MLSora1lzZo1bNu2Da/Xx0c/ei6LT1ls32TXr3+TyZMn24LL/N6/8PsDA+4hlKCj5UB/bpJF2kb6yEc+wgknzOf4448HzMBvs1LatZqgaxoJzfy+ZUXh9/t63WYasB+b0V7VsbbVgOzvPwjiRpL61B8Hwye4gK7mwp22bLuL2SkuRrbXyxR+qqridDpQFLNCmk6nsoJKwjd5Gq4ycxdGlmXC4XCvgsvqTRUIikGvoquxsbHDdkZZWRnbtm3r9vEvvPCC/am1M6tWrWLVqlUA3HHHHXZTemfq6+t7W9aQoygKl19+Offddx+6rrN48WKqq6uHe1kjmkwmQyQSIRKJ2FsfnYVUdwIskUiQSCRsAeb3+1EUpb0CFijHGShn2vT5zOgSyC2ju922AEukUtTuzFC7I4HLU0d55X5KJ3opHxs28yDVnvusCmXS5MksWLCARx9dTjQa5fLLL+ekk07q8riXXnqJ/fv389GPfoyTFy82G+VzBMOOHTs46aRFZDIZGhoaeOmll/n731dy3XXXIfc2MNAHuutrMnTNNLLNxwAFV3NzM5s2vcsZZ5xBZWVFNri6b4HfZg9hwt5mcjod+HymP1GuFYUVlVMsA1BrW838b7ICLFuRKsaARj+ma0eU4OqMrmGQFY+FNuIXgVyz3txGfP+U6cihEpLJJJIkEQ6HiUQiPQquWCwmBNcxRne6pFgUdb/lpZdeYufOnfzgBz/I+/Nzzjmng7fVSBRXPTFr1ixmzZo13MsYlWQyGdra2mhra0NRFNsJ3xJgHXIdc8gVYNBuyqooih3knfGX4fCXMWXKHKbHmkkfOcCeLbUc2hnhyH4FLeO2A7mTyRT796TZvzuJ032QsooDlEzwUDk+PKBAbmtE/8QTT2TDhg0sWHAiF198MQB1dXWsWfMiH/vYxygvL+OCCy7E7Xbh8niyjdvtN9mWllaamhqZNGky9913P2+88ToAJ5+8mA9/uKcm+iKQra6YW0Zy+wCCtT7FdELv7w3zyJEjPPTQQ6RSaebNm0coZDp/+3w+0ulMdquobxiGbr9/cvt8QELDIBWPM2g1lpwtW2mgAqxfgsuJ0+kYmYKrM3ka8SlCfFNvWI34vknT0Lx+1KyYUhQlG8GVz1POFGTxeDzbHyc4luhJlwyJZURpaSkNDQ321w0NDXb4bC7vvPMOTz75JD/4wQ9sA0SBIB+apnUQYG63G5/PRygUsitg3cVqWDdYMAWY1+tFVVU7yDstlSD7Spg8cRZTcwK5D+9o5dB+hYwrmweZSpFKpqjbl6Zub4ptzkOUVdT1K5Dbqjbs3r2bP/7xTwA0NTVy8OAh1qxZw3vvbcHt9nDkyBHWrVvHK6+8woGDB/nPr32NhQtP7PBcu3btBGDKlMlMnDiR0047jY0bN/Liiy8SDof5zGf+DYCnnnqaV155hUOHDnHTTV9l4cKF/boW3dLBLkC2LTcMg355gdXV1fHww48gSXDddddlBZeE3+8jmWzfGhrQkrN9PslUCllRUGW5Q5/PYBlu5vbMAaZ9iSQX3jMnydDHCVBLcA1HFWagprK5FUMrb1SSJDP7chD6wLwTp+AaU4mmacTjcdxuNy0tLfbgV2trK3//+9+ZM2cO1dXVlJSUkEgkiEQiRV/LYKPrul0N1zRtRKVVCEx6FV1Tp06lrq6Ow4cPU1payquvvspXv/rVDo/ZtWsXDzzwAN/97nePieZyQfHo7OfVWYDliqzO5P7MmqDMDfJOSyGkiSEmTpzF5HgEo+FA3wK5xzupnNBzILflJXXkSD133XUXXq+Hyy67lIceeoi77voZ4ZISlixZwimnnIrH48bhcHDaGR/igV/fR77qxK5du3C7PVRXj0WSoKZmPCeeuIBkMsnrr79ui645c+Zw2mmn8cBvHijategOSVbsJnRJ7ntj+d69e3lk+XJcThfXXnst5eVltAuu/D1+A1uvjKFlSGvYYs7hcOByumzDzVSqu0brIqDrgN6xYthdX5Msm+/BPggu6z03GgVXl+eDPH1gxWvE906YgrvCbAORJMluirc+1MXjcdLpNFVVVbzwwgscOHCA6dOnM2PGDKZOnTqqRIthGLbgeu2112htbeWss87C6SxO+4SgOPQquhRF4frrr+f2229H13WWLFlCTU0NK1asYOrUqSxatIjly5eTSCS4++67AXNP9Nvf/vagL15wdJErwCw/L4/HQzAYtLcSuxNg1gQlkO3hMAWYFWOUItC/QO43zUDu8HgHbx1XySRfiNmKC1kCl8uNoihEIhHuvfdeGhsb+MEPfkBlZRVPPPEkiqLwn1//uj2RBzBtxowew4p37drFpEmTulSTJIkOH2imTZs6gFe6MNqb0NMdv5nTWC4pCgYGhqZ321je1tZGMBDkmmuuIRwOIUkyPp+PRCJeXKfxHmwWcg03OzdaD9SKokc6G4zKqtlvpmnZjMq+WXgcTYKry/ND/kb83C3uPuAZPwl3ZbvgCofDHQSXhcPhYN68eZx55pnEYjE2bNhg79yMGzeOOXPmMGvWrBEvXqTsH401a9awevXqLoNehmHYjxEMHwX1dJ144omceGLHbZCrrrrK/u9bb721uKsSHPN09vPqLMA65zrmknuDtbb+/H4/mYzZqJ0EGDudcWOnM/60OHLTAWrtQG6ZRDQrwDJp9GSK+kNp6ut0Qm8dIFZxgPXjHYyfUsbU0jJiOHjggd/w7rvvUlFRQTKZRJYlrrjicpYtW8bhw0eYOHEC0ItPVJbdu3czc+bMDt9raWllw4aNnH/++UV5bQvBACRV6bEJXepkxiplLTms77W0tBIKBZk1axYzZsxAURRkWcbr9WX7aYonuPpis5Cv0bq/VhR9W6TRXjFUFDtPsdDBBKezb1FSxWRYcio7NOK3Z0Iaut7rFrdn/EQ81eb0ryW4otFot20L4XCYdDpNLBZjxowZzJgxA8Mw2LdvH5s2bWLKlCkjUnTt2LGDmpoae2179uzhpZde4itf+QpVVVU0NDTQ0tKCx+Ohurq6w/ajYHgQjvSCEU+uALP8vKxGfGsrsRABZk1Q+nw+NE0zjwO0yqlUV05l7OIEC5vq2L+jlsPvHaGuViEWcZoVnGwgd+JQGuoybH/zIPvL6/C07cDfeJATpk1k9uLTGTPGnMY744wzeOKJJ3nuuedYunRp14pRHhobm2hubub1199gzJgxzJkzh6amJp555llKS0s599xzi/7adoekKB37lArAyOnT2bDxbZ5++mk+99nPMmXyJFNwKQpej5dYPFbc3qo+xhDl0sHx3Lai8GMYera5P0WxBZgkK2b/UrsRRY5g1fKez+VyoSgqsdgxIrg606liaPbNSXmtOzzjJuKpHp99qCm4YrFYj4Irk8nQ0tLS4fuSJDFhwgQmTJhQ/N9ngBiGwZ49e/jrX//KDTfcYH9flmV7W/Ttt9/mqaeeYuzYsWzZsoWvfvWrTJ48eRhXLQAhugSjjM5+Xp0FmNWIn0+AWROUYAowaxJS0zSzAiZJZComU1kxmaqTkixoOsihXbUcfP8we/emSbY4zBtPNpA7fjBG7KCXqc5TOWtamBKXir/xIEhlONxBzj33Y/zpz4/zyauuYkxZ1+GTzuzatQuA008/nRdfXMvzzz9PWVk5CxacwIUXXoTb3b/Jyj4hSeb/DUAUvfbP13j++b8ydeo0xo0dC7KMqjrwuFxEo20FuoYXut7ihZi3W1EkbCsKv98HdLSiGBDZidDOAiZXsMqyChLZbTVDCK5OSHSaelQUJMxGfE/1ODxj2z0kLcHVXVtCOBxG13Wam5sHedXFRZIkJk2axA033ICiKBw6dIhwOExJSQl1dXU8/fTTRKNRPv7xj3PyySfzhz/8gQMHDgjRNQIQokswaslnqOrxmJmFlgBLJpN5b/LWFlNuA7+VI2lWziQyYyZSNmYiZSemOZJs5sie/VS9vY/07gTpRgflqorX78PQNGLNaaKNGmxqxl/aRKha5qK5x3Px2f+D5vLnWX1Xdu/ehdfr4wtf+EK/JgQHjCRh2h70T1gYBrz44hrWrFnDrFmzuOKKK1BVFUWScTudtLW1YUhZd/hiNEr3owm9ULqzouh75Ezuent38e9sXuv2+pAVhdgwWBeMRMHVGWty1ADcVePwjmuvSlm2D70JrtykkdFC7jZhc3Mz9957L6effjrnnXceX/7yl4nH4yiKYr8GO3bs6BDjJhg+JCNfSWCIOHDgwHCdWnAUkyvAXC6X3UzfnQDLRVEUXC4XLpcZqmtN1wWDQSKRCMlEnGjkCAf31lLxTi1NexJEGswbqZ7RyKRSaKm0uX0mSfhCOqFqicCUIPKYMp74x4u88OJaIpFW3G4PDoeD73//NkpLS7nzzp+haRluvvnmXn/HJ554krVr8z9P/160gVeMtm7dxvLlj7BgwQIuvvji7Had2VMXjca6VonsPp1+hEz3owm9OJiRMw6Ho09WFP0JXXe53MiybEci2ZN9Q+BvNRjh1YOJu2oc3ppJ9tfhcLiDv19nrKGUxsbGoVhe0bGa4mOxGF6vlw0bNvDcc89x8sknc+aZZ+J2u4lGo+zevZunn36aadOmceWVVw73skc9xfDpEqJLcNRjCTC322030ycSiV4FmNn07cXj8eQXbrqG2noEY99eWt49QOOeBK1HNAzDQNc0tFSaTDKNnt068gYNQlUQmBxAqSozA7nl9pH0L3/5K3zoQx/iU5+6Ks9qBhFJAfQBV4wMA957bwszZx6PLEs4HE5cLmdh5p2SDLKEZNC7OClC7mOxcDgcqKqjZysKWcXQ+1Yxcrs9SBLdByxbgjXb61TUyuhoE1yVY/FOaN82C4fDJJPJbl+70S64LOrq6njwwQf5+te/js/nY/Pmzfz5z3/m1FNP5UMf+hAOh4O//vWvqKo6pEM4RzNCdAkEfSS3Ata+lZjM60ytKAqhUMju93C5XLjdpmFqF+Gm66iReoz9+2h9t5bG3XFaDpkCzNB0MqkUmVQaPTs15wkYBCshMNmPo6oUbZADubtFVsxpsH5WjDKZDH/96/OceuopjBkzxv5+u7VBjFzBlUymuOWWW5AkuP32H+N05jFS7mytkHP370/FaKhQVXMSUlHU9sw/w+izgOlVcHVGkkz7CUyxPyCxNMoEl6uiCt/EdvuU3gRXMBhEluUOht+jDWtrsa2tjfvvv5+lS5fi9ZoxWO+//z5//vOfOfHEE/noRz9qTwwLisOQONILjg2ampp49NFHiUQiSJLEqaeeOvixM8NAZ0NVj8dj93JZQkrTNDZs2MC2bdu46qqr7KZ8q39MlmVcLhfBYBBJktrzIEMVEKrAd/wCQpEGOFhL5N1aGndGaT6o4PC4MXSdTDJNMp7i0PYMh7ZHcXnbCFXvJTDJh7O6BG2QArk7Iw3wBptMplixYgXbt29j7NixtuiyGr/zWRs8+eQT9jTYU089mX/LI9daIZvZZxgGhsSIFgSdrSicbg9uiT5ZUViebgULLsi+XrmZkKrZG9ZXS46+RvsMM64xHQWXZajcm+Aa7RWuVCqF2+22bXD27Nljh8bPnDmTT37ykzz44IOMHz+eefPmDfNqBZ0RlS4BAC0tLbS2tlJTU0MikeCuu+7i85//PFVVVcO9tCHBEmBut5tnn32WLVu28LnPfa5XR2qrf8ztdncI8rYrZ4aBEm1EPrifyOa9NO6I0lSXQdcMU4Cl0mipNFrW1sLpMQhXQmCCB2dNKVoRA7k7rHuATdKJRJLlyx9h375aLr74Yk48cQFgVWmk9j6kHHbv3sMvf/kLfvjDHwJw2223cdNNX2PChJrC15tjrdDf6tyQkCNoZUXBoZp9YD1ZUXg8HgwDEok+CK4eMCN2VKSs8OsxYme0Ca7ySnyTp9lfh0Ih22crH4FAAFVVaWhoyDvZPFpoamrinnvuobq6Go/Hw549ezjjjDOYMmUKNTU1aJqGy+WioaGBsrKy4V7uUYfYXhQMGr/5zW/40Ic+xIwZM4Z7KUOGrus888wzxGIxPv/5z+P3m1OHlpDqzT3dEmBmpUdpr4BZxxkGSqwZ+fB+2jbvpWl7hMYDGbSMgaEbaNktSC2dAQwcbghX6gQmeHDXlJIZQCB3h3UWKLiWL1/O2rVrueeee+zXAqC2dj/f//73kWWJL3/5K5xwwnygn1WagazXEsTacDTUd09Pr681XGDl01pWFG63OxvuXtzXziI347DL5OgoE1zOsjH4Jk+33dWDwSCZTOaoFlxW43wymWT37t1IksSOHTvYvXs3TU1NSJKE1+ulsbGRf/u3fxOTioOE2F4UDAoNDQ3U1tYyceLE4V7KkKFpGr///e8JhUJ86lOfss1YrUihUCiEJEl2D1i+2BjzpmlOTEmShNPpxOfzoSiKHWOU8ZWgTS7BNWk2Y+Ot1BzZT3TLXpq2t9BYK5NJu0wBlk6TSaU4sjfDkT1JVGcdoYr9BCe4cU8sQQ8UHsidi9SHG+y5557HqlWrWbVqNZdccjFgCtD77rsPWZZYuvSGHMHltX2uikmP681WE3O9rQYrNLlgenl9rW3sXCuKQMAS9ylkWS6uj1mWfBE7lkWIoaVHj+Aq7Sq4NE3rVnD5/f5RLbis/i1N0+yeQeuD8HHHHce6det4/fXXuemmm2hububQoUNCcI1whOgSdCCZTLJs2TIuvfRSu2n8WGDlypWMHz+es846q8P3rV6cSCSCqqq2EWvuVmJ3Aiy3f8zlcuH1elFV1Y4xSksh9IkhnBNnUR2PML7hAPH39tK0tYmGWpl00gmGYW9BNuxP01CbQvnXIUIVdQTHu/BMKkHvIZC7A1lBUChjxpSzePFiVq36B+effz6RSCuPPLKcgwcPcsst37WNFr1eH5qW6dYPqd8oPccQWXT2tip2aHKhSH18fQ1Dz1ZEzfeDKfA9fbKi6De6ll1vGkmSQZaRDGPEDikAOEvL8U3pKri6i0Xy+Xw4nU7q6+tHteA6ePAg//jHPzAMg7Fjx7J48WICgQAA06ZNY+PGjaiqSllZGeXl5cO8akFviO1FgY2mafz6179m5syZLFmyZLiXM6T0NZPMihTyeDy2AEsmk91GjeTidDpxu92oqmrHGOUKNzkRRW08QOz9vTR/0EDDvgyphA4GZNJpexsSw0BRIThGJ1jjxDuxBCNUiu7ydRBg7cHVfc863Lt3L9/73ve49NJLWbduHUeOHOHGG2/kpJNOAswbm9mj1LPgymQ0nnvuWV566SWam1uYMGECX/ziF4jHE/z4xz/mzjvvpKQk3H6AovYYDF4w2YqOMcgVsL4KLuhZrBZkRTEAul2vJJmi1TDQ8zjnDxeOkjL8U2fYgisQCGAYhp0w0Rmfz2f3Ng1G5XCoOHz4MP/zP//DKaecgqIoNDQ0kMlkuPTSSwmHwzQ3N3PnnXeydOlSxo8f3/sTCgaE6OkSFA3DMHj00Ufxer1cdtllw72cUYWiKHYTvqqqdgWsUAHmcrlwOBy2i37ucVIqjqPxAImte2l+r576fWmSMVOAWVuQWiqDYejICgTLDYLjVLyTwxAuQ3P7kFTHgATMj370I3bs2Imua5x33nlcffXVgITf7yOZTJFO9/x7ZjIaP/vZz9i3bx9XXvlJgsEgDz/8MFOmTCGdTlNdPZZPf/pT7b+zqmL00j/XLyTZtJww9OL6fPVDIPalOpjXimIAr0+hAtHAnByF4R1ccIRLTcGV/VDUm+CyvPXq6+uHRHDpus5dd91FKBTii1/8YtGeN5VK8fDDD1NdXc0FF1yAruv85Cc/QVEUSktLufzyyykrK2PNmjXH3Ifk4UL0dAmKxq5du1i/fj3V1dX893//NwAXXnghs2bNGuaVjXw0TaOtrY22tjY7Usjn89kj7LnbjJ1JpVK2yLL6x6xR8EQiQQpIVU1FrppK2akJKpvqSG7bR/N7h2jcJxOPOEwBlkmTSaVpOZKm+ZCGtLGBYHk9wXEqvkkhKC1Fdweze3GmmDNcnl5/tx07dtDa2oqua8yZM5err74aSZLx+bwFDRcArF69mi1btnDrrd9j+vTpAOzcuYuVK1cCBl/4gnmjsitygyG4oFNosmUuanTxAusLkuLoNci8M16vz9w+7KU6aNHZisLahuyLFUX7eguvyEnmGyv732QHFyRTsA7RZ3VHqKPgsgY6RorgAli7di2VlZXdut/3htUkn4+TTz6ZadOmYRgGP//5z5k4cSKLFy/md7/7HQ899BBf/OIXheAaZQjRJQBgypQp/PznPx/uZYx6rB6TaDSKLMv2FmQwGLSb6bsTYO03UOz4HEuAJZNJkkC6YjJyxWTKFiepbDpIesdemrccomGfQqzFAT7Q0hm0VIrWhgwthzWkjY34SxsIjZXxTwmheFScTQfJBMpIlY7rtiFf0zQef/xx20iyrS2SFVw+4vG4vd311FNP88orr3Do0CFuuumrLFy4sMPzrFnzAnPnzrUFF4DP5yUej3HppZcSCPgxgKf+8hdeXbeu2+cpKjkCTJL7uaWW7YnqC4Vux3aHpmXs192yovD7/T1aUVj0Zwu008kh++zSEAgwRzCMf1pHwSVJEpFIJO/jPR4PHo9nSLcUm5ub2bJlCx/96Ed58cUX+/UcluD69a9/zWmnncacOXMAswo+depUvF4vq1evxuv18pnPfIZMJsPUqVOZMmVKh6liwehAiC6BYJDQdd2eguxOgKVSqbxNvrkCzOof8/l8aJpmHidJpMdMhDETCS9KM6blIJld+2jZUkfDnhRtTSpOQM9kyKTStDWlzYzITU0E/XHCYzKEqmP4Wg6RCleSKh3fxY4ilUpRX99ASUkp559/Pg899Du2b9/O9OOmd2jwnjNnDqeddhoP/OaBLr9Hc3MLBw4c4CMf+UiH72cyGfx+P+ed93HbT2ru7NmcfuqpeZ9nUDHMio55FbJmrJhJAt1tqfWnwjVQwdUZXdNIahrJZMK2ovD7fUC7FYWVdzlgwZWDFTJtI8sgyUXtm1MDIfzTj7cFl8/nQ5ZlWltb8z7e4/Hg8/mor6/Pmy4xWDz55JN84hOf6HeVKxdVVe21ZzIZVFXF5zOvpyRJlJaWEo1GefbZZ1EUpcvQj2B0IESXQDAE5AowSZK6CDBrCzKfAMtkMvZ2iqqquFwuW4CZx0mky2qgrIbgggxlrYfJ7NlL67t1NOxJEGlQcXo96BkNLR4n2pwi0gD7PpDwh9KEK/YQqtqLXFlOomoar294h8OHD/P++x/Q2trK979/G2PHjmPlyr/z+OOP861vfbPD+qZNm9plzRaHDh0C6BARpOs669a9wpgxFXg87myWYqbH5xkqJDq6u7ebseYIln5WuFKpdK/9b/0lnxWF12sa1WYMSMVjg9eRpeuAbooxu29Oy36/76iBEIFOgktRlG4Fl/WBZKgF1+bNm/H7/dTU1LBt27Y+HZu7pWj9dzAYZMOGDcyfPx9VNd93f/nLXzj77LMJBoN2NbmtrY1vfvObPT29YAQjRJdAMMQYhmFHCuUKsEAgYE8z9iTAMpkM0WjU7h8Lh8O2R1gymSRdMhZKxhKYp1GSE8jdsDtB5LCErGYrYOk08YhEtFlh/1bwBhpQSg/xt7deIy0nqK3dzze+8Q3Gj6/B4/Hw8Y+fz29/+yB79uxl4sQJBf2usmzeWMzQa5PVq1dz4MB+JkyaNKKzFKFdbBkAsoIsSxh9urEXPnBQLAxDJ5VKkkolkRQHqiwNnRVFh7657jM0u0P1B03BlW3g93q9vQouv99PQ0PDkAougJ07d/Luu++yZcsWuwfzkUce4Zprrun1WEtwJZNJXC6zwjx37lzWrVtnP+aee+7B5/Ph8/lYtGgRVVVVGIZBdXW1LcoEow9x5QSCYaSzALMCuS0BZlUv8vWo5PaPKYqCy+WyBZjthh+ugnAV/tk64Wwgd+yfb9OwF1qOyDh1F7qmk0lnSMRk3t7aSnV8Nvvqd/Gpj3+MmZNm4Xa7iUajnH76aTz++OM899xz3HDD0oJ+v5qaCXg8Xp566im8Xg+NjY2sWPFHFi5cxFsbN7Bxw1scf/ys/MHXIwnDvFEamUx2O9TcUuu5p8kSXPnNdAedbEUurWELPofDgcvpGjQrig7ky9Ck+wBw1RcgcFxHweVwOGhpacn79FbPo2WjMNRcdNFFXHTRRQBs27aNNWvWFCS4LP72t7+xZcsWZs6cSSAQIBAIsGPHDg4fPszevXvxeDz2NKSu68IS4ihBiC6BYITQ2dHeEmC504w9CbDc/jGXy0UoFAKwj8uEKiA4horkQarmxMlE4jTujtFQC82HHeiGC63az/Z165g7Yz4T3bPY+bdmJFcjwQkugjUuPvaxj/H444/zyU9e0WHLsDvcbhc33vgVHn30Me6991cEAgGuu/565s2bS+OdP+Puu+/h/vvvL/prWUwMw7Sx6DDJl91SAzNehy5mrMMvuPLZWHTuFXQ6HSiKpyhWFD3T3batBhgoPj+BGbPs73s8nl4FVyAQGDbBVQxmz55NRUUFBw8e5K233sr2/KX54IMPmDlzJosWLQLMf9u9ZcAKRg/Cp0sgGAVYAsztdtvTjIlEotcpLUuAuVwuM7stkSDZ2oSUaENOxpCTUdTWI8gH91F/WGGvaxEtu1qQkVFkmVhzE1o8hpaN93H6FYLjXQQnuPGUqR1G3W//8Y8579xze546lLIGtD00XBf0PEOEPalX6NaVrCDJEj6vj2Q8NqIEV4+HZK0oVFXNWlGkSGczQAcTA3D4Q/inz0RW2wWXy+Wiubk57zFOp5NgMEhjY+PwvL6DhK7rvPHGG6xatYoPfehDnHLKKfbWo2BkIMxRBYJjkFwBZk0zJpPJXntarP4xW4BltyA7H+dUnET3Rdm7fi8tu1rQUhqGrqMn4lkBlgQMHF6Z4Hg3r25+kZfeXE2krRW326xQfP/7t1FaWtrheQ1JNqcBu/mT88QTT7J27VoikZ6fZ6iwpirR+yJgzApXIpEgo+nmZJ+h97upvM8UwcnfsqJwOBwFWVEMBMXjIzBzji243G43brf7mBJcViO99b9vvvkmzz//PCeffDJnnnnmMRXHNtIRoksgOMZxOp22ALMm2BKJREECzKqAmfl/5nGWO761raOlNVp3t9K0tYmWnS1kEhlTgCUT7RUww0B1y2YFrMaFt8KJrHTq2pGUbHVrdGTgGUjIstIx07FXJPx+P4lEvOuWVz+ayvtKMW0hLCwrCofD7LnrbEUxEBSPj8CM2cjZ5+5NcDkcDsLhMI2NjQWlPYw2cica169fz0svvcSXv/xlUe0aQQjRJRAIbHIFWO40Y289L5Ik4XQ68fv9yLJMLBbLe5yu6bTuaaV5WzNN25rIxDNgGGiJOFoijp6IYxgGilMmOM5JcIIbX5UTxWFuWQ1XjExfMZDMRvk+TFXmM43t4dFmU3k2YLoY+mswBFeXc0iWADO3ldPpDOl0ql9GpIrHS2DGnD4JrlAoRFNT01EpuCxyhVcqlcLpdA7zigS5CNElEAjy4nA4bAEG2JWsfALMMAyCwSAAkUjEroCpqmp7iHXeyjF0g8i+CE1bm2ja1kQ6agZwa9kKmJ5IYBg6ilMhUO0gOMGFv9qFrI6UCOUekJVBFFx5yGkq748wHQrBleesdgWsr1YUsttDcOYcZIcpKFwuF16vl+bm5rw2Kaqq2uHOhWRVjnZ6igUSDC9CdAkE/WSwQmpHIlamo8djmmXafl7pNJqm8cc//pElS5ZQVVXV5Vin02kHeVseYvkEWNuBNluApVpTWQGWzFbAYhi6jqxIBMaaFTD/WCeKQx6ql6BAJJClPvVfDVhwdcaaUtMK24odHsHVFbMJ39GrFYXs8hCcORvZaW6ZCcElGE2IwGuBoJ8MNKR2NGHZBEQiEVRVtX3AMpkMv/zlL5kyZUpewQUdA7ktAZbrIZZKpZBkicD4AIHxAWqW1BA9GKVpaxPN25pJNLmBErMHLBGndX+cln0tyIqEv8pJoMZFYJwL1TXMAkyS2n23Cj6kyIILOuQbyrJqxht2E68zUgQXFGZFIbvcHQSX0+ksSHC1tLQIwSU4ahCiS3DMUYyQ2tFKJpMhEolQX1/PsmXLOOmkkzjvvPOQZdmeZuyuZyZXgFnVs1wPsVQqhSRJ+Kv9+Kv9jD9zPPEjcbMCtrWJeIMbR6gEPZVEi8eJHIzRuj+JJJEVYG6C412o7qEVYIYkm9s5fRBcsizj9fqIxWOD4u4uQccmflkxJ9yyXmAjSXB1xkpNgHYrCl+4hNDxc0kb5vvI4XDg8/m6FVyKotiC61j4YCQ4dhCiS3DMUcyQ2tFILBbjN7/5DaeffjoLFy7kyJEjKIpihwaHQiF7C7I7AZZb2XA4HLY7uOUhZmYASngrvHgrvIw7Yxzx+jhN20wBFjvswhEKo6dTaPEYbYfjROpaqfsXeMc4TTPW8S4c3kE2hZSkrNnpyBFcnbHWZ0sT1WE24Uty0QKmBwtNy2AoCq6xE0hkNPt9IsuynSfaGUVRKCkpobW19Zj9Nyo4ehGiS3BMMZCQ2qMBTdN44IEHOPvss5kzZ06H77e1tdHW1mZnOloCzGrCL0SAqapqH5vrIQbgKffgKfcw9tSxJJoStgCL1jlxBMPo6TRaIka8MU70cIS69RG85Y6sAHPj9BdZgEkSIPVo1NqZoRZcnZEUFSOTjdbBrNLJsmJaOIzADEvZ4SQwYzaKyzT1taxKmpqacDqdhMNhtm7dytatW5k9ezZlZWW24IrH48O9fIGg6IhGesExxTPPPMP69evtiatEIsG8efP6lJk22olEIgQCgYIeK8uy3YTvcDjsKlYhPTaqqtqTkJqm2cd1/pOTbE2aNhQfNNF2oM2s4mTSaPGsFUU2N9BT6iBYY3qBuYID/LxYgDN+Z2zBFYv2yyZhoPS6pSjJSLJsvr4jQIDJDieBmXNQ3B7ArIgGAgGam5s7vH7RaJR3332Xt99+m0QiwezZs5k5c2a3fYYCwXAhphcFggFghdQe7dOLxaKzAEulUnYFrLc/I1b1zOVyoeu6XQHrfFyqLWX7gEX2RTB0M7NPi5tu+JYAc4fVrABz4wopfRux74/gUhS8Hu+wCa5+Oc0rCpIB+iCZsfaE5HASnDEbxeMFuhdcFrIsU1JSwqFDh1i/fj2bNm2isbGRmTNnMm/ePGpqaoSNgmDYEaJLIBgAQnT1HytSyOPx4HQ6bT+vfEKqM4qi2BUwwzDs7cvOx6VjaZq3ZwXYngi6Zrq5a9k4Ij1lVttcQYVgjZtgjQt3idrjzbm3KKJ8jErBlYOBhKwoGBhZL7DBRVIdBGbOQc0KLlVVCQaDvQquaDRKNBq1v59MJnn//ffZvHkzV1xxhTAKFQw7QnQJBIJhp7MAs/y8ChFgVvUsV4Alk8kuN+dMIkPzjmaatzXTsqsFPaNj6Bpa3HTCLySQ28xBPLYEV3fPKWUFWLGRFNUUXF4fULjgisVi3TbWCwQjBSG6BALBiMJqlPZ4PLhcLtvPK5+Q6owsy7hcri4u+p2P01IaLTtbzDzIAgK5zTxIN5Jk0JfsR0UxPc2i0WhRsgb7zGAIrhwMQLLMWHW9T2I0H5KiEpgxG9XnB9oFV0tLS94sUEmSKCkpIR6PC8ElGBUI0SUQCEYsnQWYNbhQiACzqmculwtJkmzh1vnmXVAgN6C6pJ4DuTtxtAuuzgxUgJmCaxaqzxzQUBSFUCjUq+BKJBJEIpGBLl8gGBKE6BIIBKMGS4C53W7bzytfJaszlnhzu922iWsikehyM7cCuZu2NtG8vbnnQO6sAPNVdRVgx5rgyockK5BjxtrbYwMzZqP6+ya4kskkra2tg7J+gWAwEKJLIBCMSnIFWK6fV76bdC6WAHO5XCiKYlfAOgd5FxzI7ZAIjHXZgdxOtwO3+9gWXF3ICjAMvUsupSQr+I+bhSNgBqYXIrjC4TCpVEoILsGoQ4gugUAw6nE6nbYA03W920pWPqwKmKIotoVFPgHWtr/NNGPtFMitJ2JoiTiGrqM6FEonBXBVgH+sY8gDuUdytI+NJGcHEnRAIjD9eBzBENAuuFpbW7tcA4uSkhLS6TQtLS1DuGiBoDgI0SUQCI4qcgWYYRh2Bay7m3guVgVMVVXbwsJyyrcwDMMO5G7a2kSyOWvymkkjZ9LEWpoxNM0O5A5OcOEfO/iB3KNCcOUiKwSmzcQRCptfyjLhcLhHwRUOh9E0jebm5qFbp0BQRIToEggERy0OhwOPx4PH4+ng51WIAHM6nbjdblRVtS0s8gmw+JE4bbvaaNvVRmNtI4Zh2IHcWiJm+loNciC3pDgwtHTvDxwpSLJZ4eqj4NJ1naampiFcqEBQXIToEggGCV3XkeWh3V4SdI/D4bC9wCRJsitgnYVUPpxOJy6XC4fDYVtYWDmSLpcLr9dLc3MzsSMxuwcsdjgGYAdya/E4hpZBksBX4SRQU5xA7tEouPzTZuIMlwDtgisSiXR7LYTgEhwtCNElEAwCyWQSl8vV4XuGYYgYkhGCqqp2BayvAswSbw6Hw76mTU1NXUxcOwZymy7pViC3Ho+jZ9JIEnjK+h/IPToF1wyc4VKgMMEVCpn9Xo2NjUO2TIFgsBCiSyAoMgcPHuS+++5j6dKlVFZWDvdyBL2gqqpdAcu1k+hNgFnHpNNpnE6nbWGRL8i7x0DueAw9Y56rL4Hco05wIZmCq6TM/Cpr+yAEl+BYQogugaCIWJWPZcuWUVVVxcc//nEADh06xJ49e1i4cCGKMrDtpKEmFouxYsUK6urqAPj0pz/N5MmTh3lVg4OiKHYTvqqqdgXM2kq02LVrF3Pnzu3ggq6qqt2Ib1lY5AvytgO5tzYRqc0Gcmcy7XmQhQRyj0RbiB6R8E09DldpuflVVnC1tbV1eW0tgsEgsizT0NAwlAsVCAaVYoiunj+OCQTHENaNsby83O4/efPNN1m3bh3BYJCZM2cSDAaHc4l95sknn2TmzJlcd911ZDKZbm+SRwOaptHW1kZbWxuKouB2u/H5fIRCIbsC9sorr7BhwwbGjRvXIUA5k8mQyWSIRqMdjtU0rUOQt9PvpGJBBRULKroGcvsDZiB3PEYqFufwpiiHN0U7BnKXu5FGm+CaMr2D4AqHwwUJrsGucDU1NfHoo48SiUSQJIlTTz2VD3/4w4N6ToFgoIhKl0CQxap0HTp0iF//+tcsWbKE559/nosvvpiTTjopb0/XSG64j8fj3Hnnndx6663HdD+aLMt4PB7WrVvHO++8ww033GBPQ/aGoih2BSzXwqLzn82eArm1eAw9lQRJxumTug/kHnFI+CZPw1VeYX6VFVzRaLRbwRUIBFBVlYaGhl7DzgdKS0sLra2t1NTUkEgkuOuuu/j85z9PVVXVoJ5XcOwiKl0CQRGxboDJZJLGxkZee+01rrrqKubNm4emaXm3Fi3Bpes6kiSNqJtoQ0MDfr+fxx57jAMHDlBTU8Oll17aZUjgaEfXdf7617+ybds2rrvuOgzDwOPxEAwGbUPVfFuJYFbPYrEYsVgMWZZxu92Ew2FbtFk5kqpbpXx2OeWzy7sGcvv8GLqGnjDd8Ovfj1P/fqw9kHuCC2+5A0ke+vfO8uXLWbt2Lffccw9+v9/+fmNjI//+nVtxjankqaeewuv1Eg6HicViI0JwgdkzZvWNud1uKisraWlpEaJLMKIRoksgoL1i9f7777N27VpkWWbRokXMmzcPMCsehmGg6zqKohCNRtmwYQMul4v58+d32KqCkTHtqOs6tbW1XHbZZUyaNIknnniC1atXc/755w/ruoaaF154gd27d3PttdeiKEoXEeV2u20BlruV2Bld1zsc63K57Jt+bpC34lQonVlK6czSDoHczTua0bw+M5A7mwfZsDVOw9YYqlvuUyB3sTj33PNYtWo1q1at5pJLLgbMDx3fufsXtBgSf3v44Q6Cq7vqoN/vH1LB1ZmGhgZqa2uZOHHikJ9bIOgLQnQJBJgVq40bN/KnP/2J8847j1mzZvHBBx9w1lln8fbbb1NZWUlVVZVd7Tpy5Aitra1s27aNxx9/nLPPPpuzzz7brnz1JLhSqVQXkTYYhMNhQqEQkyZNAmD+/PmsXr160M87kohGo9TX1/O5z32uS6UyV0RJkmRPNAYCAdtQtScBFo/HicfjtgALBoNIkmQLN03TUBwKJdNLKJlegp7Rad2bG8jt6xDI3bQjTuP2eK+B3MVkzJhyFi9ezKpV/+D888/H4XBwx29+x/qt23n66aeprKwkFAoRj8e7FVw+nw+n00l9ff2wCK5kMsmyZcu49NJLcbvdQ35+gaAvCNElOOZJpVKsWLGC+vp6LrroIk455RT27t3L6tWricfj7N27lxUrVuByufjsZz/L5MmTmTBhgi1m9uzZwx/+8AdmzpxJTU0N27ZtI5lMcvzxxyNJUpeer23btvH888/zjW98Y1B/r2AwSElJCYcOHaKyspKtW7ceczYYPp+PK6+8stfHGYZhiyhLgLndbluAWY34vQkwK5A7EAggSZK9falpGrIqE54SJjwlnCeQ29shkLt5V4KmnfEugdyy2lWAaSkd2dH/re0LLjiff/7zVV5++SX2JzX++Pd/8MADDzBv3jzC4TCJRIJEIpH3WJ/Ph8vlGrYKl6Zp/Pa3v2XhwoXMnz9/yM8vEPQVIboExzyKojBt2jSWLFnC+PHjAaiqqmLMmDFs376diy66iIsuuoja2lr8fj/xeJwtW7Zw4MAB5s+fz8SJE4nH4/ZNJxAI8Ic//IGysjKqq6uJRCIoioLX6wVg9uzZtmAb7Eb8yy67jOXLl5PJZCgrK+Pqq68etHMdLXQWYC6XC4/Hg9/vJ5PJdNhKzHesJVKsY/1+P4qi2BWwTCaDJEsEJwYJTgwy4ewJ7YHcW5tIRTwdArlb9sVp3pNAViQCY50EJ7jxj3Xagdz7/9lKOqZRMd+Pv9rZZ/E1YcIE5s6dxy8eXcG2Iw18+9vf5sILL+xVcHm9XtxuN/X19Xlfi8HGMAx+//vfU1lZyZIlS4b8/AJBfxDTiwJBN/z2t78lFApxySWXdKhY/frXv0bTNEKhEDt27KCtrY2ysjI+9alPMWHCBAzD4L777mPx4sVMnTqV5cuXk06n+cIXvoDD4SCRSBAMBu3mfKtXTJblYe8DE/SMJcDcbrdtqJpIJHoVHZIk2XmQiqLYFbDOWYXdBXLryUTWCyyOobcHcjsDCoffjdoVMG+5g4p5fvxVfdu+/sdbb3PT93/Iueeey0MPPUQ4HCaZTBKPx/M+3uv14vF4hk1wAezcuZNf/OIXVFdX2/9uLrzwQmbNmjUs6xEc/QhzVIFgEEkmkxw8eNBuzrUm1v7v//2/fO5zn2P69OkAPPLII+i6zsUXX0w4HAbglVde4fHHH2fOnDnIssy1114LwBtvvMEzzzzDj370I8D0h1JVUXAejeQKMMtQ1erlKuRYl8uFqqp2A393gdyWAIs3mAIoN5A7diRBtC6FwyvjDKm4giqyKuGvdFIxz4d3TO/iq0lS+cTnrqehoYF58+bx+uuvk0qlOgiuu+++mz//+c/s2rWL5cuXc+WVVw6r4BIIhgNhGSEQDCIul6vDNJQkSTgcDubOncvTTz/N4sWLAdiyZQvnnnuuPXKfSCQ4cOAAhmEwb948TjzxRMAUcbt27WLGjBmA6Yz+z3/+k927dzNnzhxOP/10ysrKhvi3FPSX3Nggp9OJx+OhpKQEXdftClh3AizfsbkN/Ol0GkmS8FZ48VZ4GXfGOOL18ZxAbheOUBhnaQpvVRuRvS20HUjStj+Jw6cQb0jTWpsgNNFNxVw/njJH3nVooVKu/8J/EAwG+da3vsW3v/1tVq5cab+3LT784Q9z+eWX83/+z//B7XbT0NAgBJdA0A+E6BII+oCiKFxxxRW89tpr7N+/H1mW8fv9jB07FlVVOXLkCH/4wx8AqKiooLy83N6WbGtrY+fOnXziE58A4C9/+QtTpkzh05/+NKtXr+b555/noosusm0IBKOHVCpFKpWipaWlgwDL7fHqToBZxwL2FmRuA7/1M0+5B0+5h7Gnje0QyL3nH60o3hC+Go1kQ5RES4JEi9kD1rI3yaF32ig/3sfYk4K4w+1/8p0V1Xzh5ls4ePAgzz33HCeccAL3338/d999NytWrOiwxoULF+J2u5FlmdbW1oKqeQKBoCtCdAkEfURRFE4//XTAbIQ/ePAgY8aM4fXXX2fNmjVMnz6dyy+/nJUrV/Liiy9y7bXXYhgG+/fvJ5VKMXv2bDRNw+FwMGbMGCZPnsy///u/09DQIEbejwJyBZjD4egiwKxm+p6OBXA4HLjd7g4N/NbP3CVuqk+upuKEClp3t5JoTBCvj4PsxOFXSbbESbakiTemkPYbNH4QZ9fKJsJT3cy8bAxl8ybzo/+9n5dffpnHHnuME088EU3TWLp0Kd/85jd59913mTNnjr2u3HWICpdA0H+E6BIIBoAsy/Y+/+LFi5k0aRKlpaWAWenavHkzyWQSSZLYunWrHTatKApnnXUWzz77LBs3buSiiy5i3Lhxw/Z7CAaHdDpNOp2mtbXVFlFWJdPaguxOgFnHginArElIq4E/mUySbEmiuBR81T581T60lEaiMUGiwUOsPkaqJUU6lkZLa2QaM8SbIsz6zEx+v3I1y5Yt44477uDCCy9E0zSi0ShXXnkld955J7/61a/4f//v/wHY5x0uWwiB4GhCiC6BoIjk+mDNnDmT7du309LSgtvtZuPGjVx11VWAmRs3a9YspkyZwlNPPcUbb7zBxRdfPOKihATFwxJRkUgEVVXxeDyEQiEkSbIrYJ2b6TsfC6Cqqh3IHfAFcFzvIHIkQrI5SaI5QbLZFGOm+EoQORChbV8bmXgGX5WHrTRw2223cf3113PjjTei6zrRaBQwBdYXvvAFfvrTn/Kd73yH6dOnEwgEaGho6FYcCgSCwhGiSyAYJNxuN1dccQVgOqOffPLJzJ49myNHjrB27VoWLlzI5MmTmTRpEuvWrWP//v3U1NQM86oFQ0EmkyESidgCzOrjkmXZroB1J8AymQxtbW2AKcDCE8JUTq9E07QOMUZ6RifZYgqw2OEYda/V4Qq7mLNkDvv37ycQCGAYhv1cFjfeeCM33ngjTqeTQCBAY2OjEFwCQZEQlhECwRATjUZZuXIl69evx+PxUF5eTnV1NRdccIGwjzjGURTFtqFQVdWugHUXMt35WLfbjdPp7NA/lu9PvN/vR5IkIpFI3udyOp0Eg0EaGxtJp9PcddddPPbYYzQ2Ntou9M8880xRRugFgtGC8OkSCEY5u3fvJp1O255fAoGFJaI8Hg+qqtoVsEIFmOUFZvnLWS76vQkuh8NBOBymsbGxoHMJBMcKQnQJBALBMYAsy3YFzOFwtDfSdxNC3flYt9uNy+VClmV0XaelpSXvFKIQXAJB9whzVIFAIDgGsJrdo9GoLaI8Hg/BYNCOFEqlUt0GcsdiMSRJQlEU0uk0wWAQSZJ48803KSkpoaSkBFVVCYVCNDU1CcElEAwSQnQJBIKjghdffJHXXnsNgOrqaq6++mocjvxO7KMZS0TFYjFbgLndbluA5TbTW2zatIlFixbZU4pWmHdbWxurVq0iHo+zaNEijj/+eGHOKxAMImJ7USAQjHqam5v5xS9+wc0334zT6eR3v/sdxx9/fJc4m6MZSZLsCpjT6bQjhf7xj3+we/durr76ahRF6XKcqqqoqsq6detYv349kUiEWbNmMX/+fKqqqoSFiUCQRWwvCgQCQRZd10mn0yiKQiqVOuYqNoZhEI/H7SqW2+3m5ZdfZvfu3SxdutQO5c79nK0oCuFwmJaWFhYsWMCCBQtIJBJs3ryZv/3tb7hcLq6++uph/K0EgqMLUekSCARHBWvXruW5557D4XAwc+ZMrrnmmuFe0rDyyiuv8N5773Hdddfh8/nweDy4XC47UiiTyRAKhWhtbSUej+d9DsMwRKVLIMgiKl0CgUAAxGIx3n33XW677TY8Hg/Lli1j/fr1LFq0aLiXNiy89tprbN68meuvvx5FUezQbcDuAQsEAkQikW4FFyAEl0BQZOThXoBAIBAMlK1bt1JaWorf70dRFObNm8euXbuGe1nDQjqdZs+ePVx77bV5zXYTiQTNzc0cPHiwixu9QCAYXIToEggEo55wOMyePXts24Rt27Z1yME8lnA4HFx11VU4nc4eHyfCqwWCoUdsLwoEglHPpEmTmD9/Pj/72c+QZZnx48dz2mmnDfeyBAKBoAOikV4gEAgEAoGgF4rRSC+2FwUCgUAgEAiGACG6BAKBQCAQCIYAIboEAoFAIBAIhgAhugQCgUAgEAiGACG6BAKBQCAQCIYAIboEAoFAIBAIhgDh0yUQCASCPvPee+/xxBNPYBgGp5xyCuecc85wL0kgGPGISpdAIBAI+oSu6/z5z3/mS1/6EjfffDNvvfUWBw8eHO5lCQQjHiG6BAKBQNAn9uzZQ3l5OeXl5aiqyoIFC9i0adNwL0sgGPEI0SUQCASCPtHS0kJJSYn9dTgcpqWlZRhXJBCMDoToEggEAoFAIBgCRCO9QCAQjCIee+wxtmzZgt/v5+abbwYgGo3y0EMP0djYSGlpKddeey1er3fQ1hAKhWhqarK/bm5uJhQKDdr5BIKjBVHpEggEglHE4sWL+dKXvtThe6tXr+a4447je9/7HscddxyrVq0a1DVMmDCB+vp6GhoayGQybNiwgTlz5gzqOQWCowEhugQCgWAUMXXq1C5VrE2bNnHSSScBcNJJJw16U7uiKFx++eXcd999/OQnP+GEE06gurp6UM8pEBwNiO1FgUAgGOVEIhF7ey8YDBKJRAb9nLNmzWLWrFmDfh6B4GhCVLoEAoHgKEKSJCRJGu5lCASCPAjRJRAIBKOcQCBgWza0tLTg9/uHeUUCgSAfQnQJBALBKGfOnDn861//AuBf//oXc+fOHeYVCQSCfEiGYRjDdfIDBw4M16kFAoFgVPLQQw+xY8cO2traCAQCfPzjH2fu3Ln87ne/o6mpidLSUj73uc/h8/mGe6kCwVHF2LFjB/wcQnQJBAKBQCAQ9EIxRJfYXhQIBAKBQCAYAoToEggEAoFAIBgChOgSCAQCgUAgGAKE6BIIBAKBQCAYAoToEggEAoFAIBgChOgSCAQCgUAgGAKE6BIIBAKBQCAYAgoKvN64cSPLli1D13XOPvtsLrnkkg4/T6fT3HvvvezcuZNAIMDXvvY1KioqBmO9AoFAIBAIBKOSXitduq7z4IMP8t3vfpd77rmHV155hdra2g6PeeGFF/D5fPzyl7/kggsu4NFHHx20BQsEAoFAIBCMRnoVXdu3b6eqqorKykpUVeW0006zM74s1q9fz1lnnQXAKaecwrvvvsswGt0LBAKBQCAQjDh63V5sbGykrKzM/rqsrIxt27Z1+xhFUfB6vUQiEYLBYIfHrVq1ilWrVgFwxx13FMVSXyAQCAQCgWA0MKSN9Oeccw533HEHd9xxBzfffPNQnlpQZMT1G72Iaze6Eddv9CKu3eimGNevV9FVWlpKQ0OD/XVDQwOlpaXdPkbTNGKxGIFAYMCLEwgEAoFAIDha6FV0TZ06lbq6Og4fPkwmk+HVV19l0aJFHR6zcOFCXnzxRQBee+01Zs+ejSRJg7JggUAgEAgEgtFIrz1diqJw/fXXc/vtt6PrOkuWLKGmpoYVK1YwdepUFi1axEc+8hHuvfdebrzxRvx+P1/72td6PfE555xTjPULhglx/UYv4tqNbsT1G72Iaze6Kcb1kwwxZigQCAQCgUAw6AhHeoFAIBAIBIIhQIgugUAgEAgEgiGgoBiggSAihEYvvV27Z599ltWrV6MoCsFgkKVLlzJmzJjhWaygC71dP4vXXnuNu+++m5/85CdMnTp1aBcp6JZCrt+rr77Kn/70JyRJYuLEidx0001Dv1BBF3q7dvX19fzqV78iGo2i6zpXX301J5544vAsVtCB//3f/+Wtt94iFApx1113dfm5YRgsW7aMDRs24HK5uOGGG5gyZUrhJzAGEU3TjK985SvGwYMHjXQ6bXzjG98w9u3b1+Exf/vb34z777/fMAzDWLdunXH33XcP5pIEBVLItdu0aZORSCQMwzCMv//97+LajSAKuX6GYRixWMy47bbbjO9+97vG9u3bh2GlgnwUcv0OHDhgfPOb3zQikYhhGIbR3Nw8HEsVdKKQa3ffffcZf//73w3DMIx9+/YZN9xww3AsVZCHzZs3Gzt27DD+8z//M+/P33zzTeP22283dF03PvjgA+M73/lOn55/ULcXRYTQ6KWQazdnzhxcLhcA06dPp7GxcTiWKshDIdcPYMWKFVx88cU4HI5hWKWgOwq5fqtXr+bcc8/F7/cDEAqFhmOpgk4Ucu0kSSIWiwEQi8UoKSkZjqUK8jBr1iz731Q+1q9fz5lnnokkSRx33HFEo1GampoKfv5BFV35IoQ635i7ixASDC+FXLtcXnjhBU444YQhWJmgEAq5fjt37qS+vl5sa4xACrl+Bw4coK6ujltvvZVbbrmFjRs3DvEqBfko5Np98pOf5OWXX+Y//uM/+MlPfsL1118/1MsU9JPGxkbKy8vtr3u7N3ZGNNILBsxLL73Ezp07+cQnPjHcSxEUiK7rPPzww3z2s58d7qUI+omu69TV1fH973+fm266ifvvv59oNDrcyxIUwCuvvMJZZ53Ffffdx3e+8x1++ctfouv6cC9LMAQMqugSEUKjl0KuHcA777zDk08+ybe+9S2xRTWC6O36JRIJ9u3bx3/913/x5S9/mW3btvHf//3f7NixYziWK+hEoX87Fy1ahKqqVFRUUF1dTV1d3VAvVdCJQq7dCy+8wKmnngrAcccdRzqdFjs8o4TS0lLq6+vtr7u7N3bHoIouESE0eink2u3atYsHHniAb33rW6KfZITR2/Xzer08+OCD/OpXv+JXv/oV06dP51vf+paYXhwhFPLv7+STT2bz5s0AtLa2UldXR2Vl5XAsV5BDIdeuvLycd999F4Da2lrS6TTBYHA4livoI4sWLeKll17CMAy2bt2K1+vtU0/eoDvSv/XWWzz00EN2hNBll13WIUIolUpx7733smvXLjtCSPzhGBn0du1+9KMfsXfvXsLhMGD+Ifn2t789vIsW2PR2/XL5wQ9+wDXXXCNE1wiit+tnGAYPP/wwGzduRJZlLrvsMk4//fThXraA3q9dbW0t999/P4lEAoDPfOYzzJ8/f5hXLQD4+c9/zpYtW4hEIoRCIa688koymQwAH/vYxzAMgwcffJC3334bp9PJDTfc0Ke/myIGSCAQCAQCgWAIEI30AoFAIBAIBEOAEF0CgUAgEAgEQ4AQXQKBQCAQCARDgBBdAoFAIBAIBEOAEF0CgUAgEAgEQ4AQXQKBQCAQCARDgBBdAoFAIBAIBEPA/wdlHH/PdWBXwgAAAABJRU5ErkJggg==\n",
"text/plain": [
"