Oracle Database 10g: SQL
Fundamentals |

Volume | » Student Guide

D17108GC11
Edition 1.1
August 2004
D39766

ORACLE"

Contents

Preface

I Introduction
Lesson Objectives -2
Goals of the Course [-3
Oracle1l0g 1-4
Oracle Database 10g 1-6
Oracle Application Server 10g |-7
Oracle Enterprise Manager 10g Grid Control 1-8
Relational and Object Relational Database Management Systems 1-9
Oracle Internet Platform [1-10
System Development Life Cycle 1-11
Data Storage on Different Media 1-13
Relational Database Concept 1-14
Definition of a Relational Database 1-15
Data Models I-16
Entity Relationship Model 1-17
Entity Relationship Modeling Conventions 1-19
Relating Multiple Tables 1-21
Relational Database Terminology 1-23
Relational Database Properties 1-25
Communicating with an RDBMS Using SQL [-26
Oracle’s Relational Database Management System [-27
SQL Statements [-28
Tables Used in the Course 1-29
Summary 1-30

1 Retrieving Data Using the SQL SELECT Statement
Objectives 1-2
Capabilities of SQL SELECT Statements 1-3
Basic SELECT Statement 1-4
Selecting All Columns 1-5
Selecting Specific Columns 1-6
Writing SQL Statements 1-7
Column Heading Defaults 1-8
Arithmetic Expressions 1-9
Using Arithmetic Operators 1-10
Operator Precedence 1-11
Defining a Null Value 1-12
Null Values in Arithmetic Expressions 1-13
Defining a Column Alias 1-14
Using Column Aliases 1-15
Concatenation Operator 1-16
Literal Character Strings 1-17
Using Literal Character Strings 1-18
Alternative Quote (q) Operator 1-19
Duplicate Rows 1-20

SQL and iSQL*Plus Interaction 1-21

SQL Statements Versus iSQL*Plus Commands 1-22
Overview of iISQL*Plus 1-23

Logging In to iISQL*Plus 1-24

iSQL*Plus Environment 1-25

Displaying Table Structure 1-26

Interacting with Script Files 1-28

iSQL*Plus History Page 1-32

Setting iISQL*Plus Preferences 1-34

Setting the Output Location Preference 1-35
Summary 1-36

Practice 1: Overview 1-37

Restricting and Sorting Data

Objectives 2-2

Limiting Rows Using a Selection 2-3

Limiting the Rows That Are Selected 2-4
Using the WHERE Clause 2-5

Character Strings and Dates 2-6

Comparison Conditions 2-7

Using Comparison Conditions 2-8

Using the BETWEEN Condition 2-9

Using the IN Condition 2-10

Using the LIKE Condition 2-11

Using the NULL Conditions 2-13

Logical Conditions 2-14

Using the AND Operator 2-15

Using the OR Operator 2-16

Using the NOT Operator 2-17

Rules of Precedence 2-18

Using the ORDER BY Clause 2-20

Sorting 2-21

Substitution Variables 2-22

Using the & Substitution Variable 2-24
Character and Date Values with Substitution Variables 2-26
Specifying Column Names, Expressions, and Text 2-27
Using the && Substitution Variable 2-28
Using the iISQL*Plus DEFINE Command 2-29
Using the VERIFY Command 2-30

Summary 2-31

Practice 2: Overview 2-32

3 Using Single-Row Functions to Customize Output
Objectives 3-2
SQL Functions 3-3
Two Types of SQL Functions 3-4
Single-Row Functions 3-5
Character Functions 3-7
Case-Manipulation Functions 3-9
Using Case-Manipulation Functions 3-10
Character-Manipulation Functions 3-11
Using the Character-Manipulation Functions 3-12
Number Functions 3-13
Using the ROUND Function 3-14
Using the TRUNC Function 3-15
Using the MOD Function 3-16
Working with Dates 3-17
Arithmetic with Dates 3-20
Using Arithmetic Operators with Dates 3-21
Date Functions 3-22
Using Date Functions 3-23
Practice 3: Overview of Part 1 3-25
Conversion Functions 3-26
Implicit Data Type Conversion 3-27
Explicit Data Type Conversion 3-29
Using the TO_CHAR Function with Dates 3-32
Elements of the Date Format Model 3-33
Using the TO_CHAR Function with Dates 3-37
Using the TO_CHAR Function with Numbers 3-38
Using the TO_NUMBER and TO_DATE Functions 3-41
RR Date Format 3-43
Example of RR Date Format 3-44
Nesting Functions 3-45
General Functions 3-47
NVL Function 3-48
Using the NVL Function 3-49
Using the NVL2 Function 3-50
Using the NULLIF Function 3-51
Using the COALESCE Function 3-52
Conditional Expressions 3-54
CASE Expression 3-55
Using the CASE Expression 3-56
DECODE Function 3-57
Using the DECODE Function 3-58
Summary 3-60
Practice 3: Overview of Part 2 3-61

4 Reporting Aggregated Data Using the Group Functions
Objectives 4-2
What Are Group Functions? 4-3
Types of Group Functions 4-4
Group Functions: Syntax 4-5
Using the AVG and SUM Functions 4-6
Using the MIN and MAX Functions 4-7
Using the COUNT Function 4-8
Using the DISTINCT Keyword 4-9
Group Functions and Null Values 4-10
Creating Groups of Data 4-11
Creating Groups of Data: GROUP BY Clause Syntax 4-12
Using the GROUP BY Clause 4-13
Grouping by More Than One Column 4-15
Using the GROUP BY Clause on Multiple Columns 4-16
Illegal Queries Using Group Functions 4-17
Restricting Group Results 4-19
Restricting Group Results with the HAVING Clause 4-20
Using the HAVING Clause 4-21
Nesting Group Functions 4-23
Summary 4-24
Practice 4: Overview 4-25

5 Displaying Data from Multiple Tables
Objectives 5-2
Obtaining Data from Multiple Tables 5-3
Types of Joins 5-4
Joining Tables Using SQL:1999 Syntax 5-5
Creating Natural Joins 5-6
Retrieving Records with Natural Joins 5-7
Creating Joins with the USING Clause 5-8
Joining Column Names 5-9
Retrieving Records with the USING Clause 5-10
Qualifying Ambiguous Column Names 5-11
Using Table Aliases 5-12
Creating Joins with the ON Clause 5-13
Retrieving Records with the ON Clause 5-14
Self-Joins Using the ON Clause 5-15
Applying Additional Conditions to a Join 5-17
Creating Three-Way Joins with the ON Clause 5-18
Non-Equijoins 5-19
Retrieving Records with Non-Equijoins 5-20
Outer Joins 5-21
INNER Versus OUTER Joins 5-22
LEFT OUTER JOIN 5-23
RIGHT OUTER JOIN 5-24

Vi

FULL OUTER JOIN 5-25

Cartesian Products 5-26

Generating a Cartesian Product 5-27
Creating Cross Joins 5-28

Summary 5-29

Practice 5: Overview 5-30

Using Subqueries to Solve Queries

Objectives 6-2

Using a Subquery to Solve a Problem 6-3

Subquery Syntax 6-4

Using a Subquery 6-5

Guidelines for Using Subqueries 6-6

Types of Subqueries 6-7

Single-Row Subqueries 6-8

Executing Single-Row Subqueries 6-9

Using Group Functions in a Subquery 6-10

The HAVING Clause with Subqueries 6-11

What Is Wrong with This Statement? 6-12

Will This Statement Return Rows? 6-13

Multiple-Row Subqueries 6-14

Using the ANY Operator in Multiple-Row Subqueries 6-15
Using the ALL Operator in Multiple-Row Subqueries 6-16
Null Values in a Subquery 6-17

Summary 6-19

Practice 6: Overview 6-20

Using the Set Operators

Objectives 7-2

Set Operators 7-3

Tables Used in This Lesson 7-4

UNION Operator 7-8

Using the UNION Operator 7-9

UNION ALL Operator 7-11

Using the UNION ALL Operator 7-12
INTERSECT Operator 7-13

Using the INTERSECT Operator 7-14
MINUS Operator 7-15

Set Operator Guidelines 7-17

The Oracle Server and Set Operators 7-18
Matching the SELECT Statements 7-19
Matching the SELECT Statement: Example 7-20
Controlling the Order of Rows 7-21
Summary 7-23

Practice 7: Overview 7-24

Vii

8 Manipulating Data
Objectives 8-2
Data Manipulation Language 8-3
Adding a New Row to a Table 8-4
INSERT Statement Syntax 8-5
Inserting New Rows 8-6
Inserting Rows with Null Values 8-7
Inserting Special Values 8-8
Inserting Specific Date Values 8-9
Creating a Script 8-10
Copying Rows from Another Table 8-11
Changing Data in a Table 8-12
UPDATE Statement Syntax 8-13
Updating Rows in a Table 8-14
Updating Two Columns with a Subquery 8-15
Updating Rows Based on Another Table 8-16
Removing a Row from a Table 8-17
DELETE Statement 8-18
Deleting Rows from a Table 8-19
Deleting Rows Based on Another Table 8-20
TRUNCATE Statement 8-21
Using a Subquery in an INSERT Statement 8-22
Database Transactions 8-24
Advantages of COMMIT and ROLLBACK Statements 8-26
Controlling Transactions 8-27
Rolling Back Changes to a Marker 8-28
Implicit Transaction Processing 8-29
State of the Data Before COMMIT or ROLLBACK 8-31
State of the Data After COMMIT 8-32
Committing Data 8-33
State of the Data After ROLLBACK 8-34
Statement-Level Rollback 8-36
Read Consistency 8-37
Implementation of Read Consistency 8-38
Summary 8-39
Practice 8: Overview 8-40

9 Using DDL Statements to Create and Manage Tables
Objectives 9-2
Database Objects 9-3
Naming Rules 9-4
CREATE TABLE Statement 9-5
Referencing Another User’s Tables 9-6
DEFAULT Option 9-7
Creating Tables 9-8
Data Types 9-9
Datetime Data Types 9-11
VI

10

INTERVAL DAY TO SECOND Data Type 9-16
Including Constraints 9-17

Constraint Guidelines 9-18

Defining Constraints 9-19

NOT NULL Constraint 9-21

UNIQUE Constraint 9-22

PRIMARY KEY Constraint 9-24

FOREIGN KEY Constraint 9-25

FOREIGN KEY Constraint: Keywords 9-27
CHECK Constraint 9-28

CREATE TABLE: Example 9-29

Violating Constraints 9-30

Creating a Table by Using a Subquery 9-32
ALTER TABLE Statement 9-34

Dropping a Table 9-35

Summary 9-36

Practice 9: Overview 9-37

Creating Other Schema Objects

Objectives 10-2

Database Objects 10-3

What Is a View? 10-4

Advantages of Views 10-5

Simple Views and Complex Views 10-6
Creating a View 10-7

Retrieving Data from a View 10-10

Modifying a View 10-11

Creating a Complex View 10-12

Rules for Performing DML Operations on a View 10-13
Using the WITH CHECK OPTION Clause 10-16
Denying DML Operations 10-17

Removing a View 10-19

Practice 10: Overview of Part 1 10-20
Sequences 10-21

CREATE SEQUENCE Statement: Syntax 10-23
Creating a Sequence 10-24

NEXTVAL and CURRVAL Pseudocolumns 10-25
Using a Sequence 10-27

Caching Sequence Values 10-28

Modifying a Sequence 10-29

Guidelines for Modifying a Sequence 10-30
Indexes 10-31

How Are Indexes Created? 10-33

Creating an Index 10-34

Index Creation Guidelines 10-35

Removing an Index 10-36

11

Synonyms 10-37

Creating and Removing Synonyms 10-39
Summary 10-40

Practice 10: Overview of Part 2 10-41

Managing Objects with Data Dictionary Views
Objectives 11-2

The Data Dictionary 11-3

Data Dictionary Structure 11-4

How to Use the Dictionary Views 11-6
USER_OBJECTS View 11-7

Table Information 11-9

Column Information 11-10

Constraint Information 11-12

View Information 11-15

Sequence Information 11-16
Synonym Information 11-18

Adding Comments to a Table 11-19
Summary 11-20

Practice 11: Overview 11-21

Retrieving Data Using
the SQL SELECT Statement

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:

* List the capabilities of SQL SELECT statements
* Execute a basic SELECT statement

e Differentiate between SQL statements and
ISQL*Plus commands

1-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

To extract data from the database, you need to use the structured query language (SQL)
SELECT statement. You may need to restrict the columns that are displayed. This lesson

describes all the SQL statements that are needed to perform these actions. You may want to
create SELECT statements that can be used more than once.

This lesson also covers the iISQL*Plus environment in which you execute SQL statements.

Oracle Database 10g: SQL Fundamentals | 1-2

1-3

Capabilities of SQL SELECT Statements

Projection Selection

Table 1 Table 1
Join

Table 1 Table 2

Copyright © 2004, Oracle. All rights reserved.

Capabilities of SQL SELECT Statements

A SELECT statement retrieves information from the database. With a SELECT statement,
you can use the following capabilities:

Projection: Choose the columns in a table that are returned by a query. Choose as few
or as many of the columns as needed

Selection: Choose the rows in a table that are returned by a query. Various criteria can
be used to restrict the rows that are retrieved.

Joining: Bring together data that is stored in different tables by specifying the link
between them. SQL joins are covered in more detail in a later lesson.

Oracle Database 10g: SQL Fundamentals | 1-3

Basic SELECT Statement

SELECT *|{[DISTINCT] column]expression [alias],..--}
FROM table;

e SELECT identifies the columns to be displayed
 FROM identifies the table containing those columns

1-4 Copyright © 2004, Oracle. All rights reserved.

Basic SELECT Statement

In its simplest form, a SELECT statement must include the following:
e A SELECT clause, which specifies the columns to be displayed
* A FROM clause, which identifies the table containing the columns that are listed in the

SELECT clause

In the syntax:
SELECT is a list of one or more columns
* selects all columns
DISTINCT suppresses duplicates
column]expression selects the named column or the expression
alias gives selected columns different headings
FROM table specifies the table containing the columns

Note: Throughout this course, the words keyword, clause, and statement are used as follows:
* A keyword refers to an individual SQL element.
For example, SELECT and FROM are keywords.
* Aclause is a part of a SQL statement.
For example, SELECT employee_id, last name, ... isaclause.
» A statement is a combination of two or more clauses.
For example, SELECT * FROM employees is a SQL statement.

Oracle Database 10g: SQL Fundamentals | 1-4

Selecting All Columns

SELECT[*]

FROM departments;
[DEPARTMENT_ID | DEPARTMENT_NAME [MANAGER_ID [LocaTioN_ID
[10 [Administration | 200 || 1700
[20 [Marketing | 201 | 1800
[50 |[Shipping | 124 1500
[g0 [T | 103 | 1400
[80 |[Sales | 149 2600
[90 | [Executive | 100 | 1700
[110 [Accounting | 205 || 1700
[190 [Caortracting | | 1700
8 rows selected.

1-5 Copyright © 2004, Oracle. All rights reserved.

Selecting All Columns of All Rows

You can display all columns of data in a table by following the SELECT keyword with an
asterisk (*). In the example in the slide, the department table contains four columns:
DEPARTMENT _ 1D, DEPARTMENT _NAME, MANAGER_ID, and LOCATION_ID. The table
contains seven rows, one for each department.

You can also display all columns in the table by listing all the columns after the SELECT

keyword. For example, the following SQL statement (like the example in the slide) displays
all columns and all rows of the DEPARTMENTS table:

SELECT department_id, department_name, manager_id, location_id
FROM departments;

Oracle Database 10g: SQL Fundamentals | 1-5

Selecting Specific Columns

SELECT |department_id, location_id
FROM departments;

| DEPARTMENT_ID | LOCATION_ID

| 10 1700
| 20| 1800
| 50 || 1500
| Eilll 1400
| a0 || 2500
| o0 || 1700
| 10 | 1700
| 190 | 1700
g rows selected.

1-6 Copyright © 2004, Oracle. All rights reserved.

Selecting Specific Columns of All Rows

You can use the SELECT statement to display specific columns of the table by specifying
the column names, separated by commas. The example in the slide displays all the
department numbers and location numbers from the DEPARTMENTS table.

In the SELECT clause, specify the columns that you want, in the order in which you want
them to appear in the output. For example, to display location before department number
going from left to right, you use the following statement:

SELECT location_id, department_id
FROM departments;

| LOCATION_ID | DEPARTMENT _ID

| 1700 | 10
| 1800 | 20
| 1500 | 50

g rows selected.

Oracle Database 10g: SQL Fundamentals | 1-6

Writing SQL Statements

 SQL statements are not case-sensitive.
e SQL statements can be on one or more lines.

 Keywords cannot be abbreviated or split
across lines.

 Clauses are usually placed on separate lines.
* Indents are used to enhance readability.

* IniSQL*Plus, SQL statements can optionally be
terminated by a semicolon (;). Semicolons are
required if you execute multiple SQL statements.

* In SQL*plus, you are required to end each SQL
statement with a semicolon (;).

1-7 Copyright © 2004, Oracle. All rights reserved.

Writing SQL Statements

Using the following simple rules and guidelines, you can construct valid statements that are
both easy to read and easy to edit:

» SQL statements are not case-sensitive (unless indicated).

e SQL statements can be entered on one or many lines.

» Keywords cannot be split across lines or abbreviated.

» Clauses are usually placed on separate lines for readability and ease of editing.

* Indents should be used to make code more readable.

» Keywords typically are entered in uppercase; all other words, such as table names and

columns, are entered in lowercase.

Executing SQL Statements

Using iSQL*Plus, click the Execute button to run the command or commands in the editing
window.

Using SQL*Plus, terminate the SQL statement with a semicolon and then press the Enter
key to run the command.

Oracle Database 10g: SQL Fundamentals | 1-7

Column Heading Defaults

e ISQL*Plus:
— Default heading alignment: Center
— Default heading display: Uppercase
e SQL*Plus:
— Character and Date column headings are left-
aligned
— Number column headings are right-aligned
— Default heading display: Uppercase

1-8 Copyright © 2004, Oracle. All rights reserved.

Column Heading Defaults
In iISQL*Plus, column headings are displayed in uppercase and centered.

SELECT last_name, hire_date, salary
FROM employees;

| LAST_NAME | HIRE_DATE | SALARY

King 17-JUN-87 | 24000
\Knchhar 21-SEP-89 | 17000
D& Haan [13-JAN-93 | 17000
IHunold 03-JAN-90 | 5000
Etnst 21-MAY-31 | G000
Higgins 07-JUN-94 | 12000
Gietz 07-JUN-94 | A300

20 rowes selected.

You can override the column heading display with an alias. Column aliases are covered later
in this lesson.

Oracle Database 10g: SQL Fundamentals | 1-8

Arithmetic Expressions

Create expressions with number and date data by
using arithmetic operators.

Operator Description
+ Add
- Subtract
* Multiply
/ Divide
1-9 Copyright © 2004, Oracle. All rights reserved.

Arithmetic Expressions

You may need to modify the way in which data is displayed, or you may want to perform
calculations or look at what-if scenarios. These are all possible using arithmetic expressions.
An arithmetic expression can contain column names, constant numeric values, and the
arithmetic operators.

Arithmetic Operators

The slide lists the arithmetic operators that are available in SQL. You can use arithmetic
operators in any clause of a SQL statement (except the FROM clause).

Note: With DATE and TIMESTAMP data types, you can use the addition and subtraction
operators only.

Oracle Database 10g: SQL Fundamentals | 1-9

Using Arithmetic Operators

SELECT last_name, salary,| salary + 300
FROM employees;

| LAST_NAME | SALARY | SALARY+300

[King | 24000 || 24300
[Kochhar | 17000 | 17300
[De Haan | 17000 | 17300
[Hunald | 5000 | 9300
[Emst | G000 | £300
Z.D.r;ws selected.

1-10 Copyright © 2004, Oracle. All rights reserved.

Using Arithmetic Operators
The example in the slide uses the addition operator to calculate a salary increase of $300 for
all employees. The slide also displays a SALARY+300 column in the output.

Note that the resultant calculated column SALARY+300 is not a new column in the
EMPLOYEES table; it is for display only. By default, the name of a new column comes from
the calculation that generated it—in this case, salary+300.

Note: The Oracle server ignores blank spaces before and after the arithmetic operator.

Operator Precedence

If an arithmetic expression contains more than one operator, multiplication and division are
evaluated first. If operators in an expression are of the same priority, then evaluation is done
from left to right.

You can use parentheses to force the expression that is enclosed by parentheses to be
evaluated first.

Rules of Precedence:
» Multiplication and division occur before addition and subtraction.
» Operators of the same priority are evaluated from left to right.
» Parentheses are used to override the default precedence or to clarify the statement.

Oracle Database 10g: SQL Fundamentals | 1-10

Operator Precedence

SELECT last _name, salary, |12*salary+100
FROM employees;
LAST HAME SALARY 12*SALARY +100
King 24000 283100
Kachhar 17000 204100
De Haan 17000 204100
2.D.r;ws selected.
SELECT last _name, salary, |12*(salary+100)
FROM employees;
LAST_NAME SALARY 12*(SALARY+100)
King 24000 289200
Kaochhar 17000 205200
De Haan 17000 205200
2.D.r;\-\rs selected.
1-11 Copyright © 2004, Oracle. All rights reserved.

Operator Precedence (continued)

The first example in the slide displays the last name, salary, and annual compensation of
employees. It calculates the annual compensation by multiplying the monthly salary by 12,
plus a one-time bonus of $100. Notice that multiplication is performed before addition.

Note: Use parentheses to reinforce the standard order of precedence and to improve clarity.
For example, the expression in the slide can be written as (12*salary)+100 with no
change in the result.

Using Parentheses

You can override the rules of precedence by using parentheses to specify the desired order in
which operators are to be executed.

The second example in the slide displays the last name, salary, and annual compensation of
employees. It calculates the annual compensation as follows: adding a monthly bonus of
$100 to the monthly salary, and then multiplying that subtotal by 12. Because of the
parentheses, addition takes priority over multiplication.

Oracle Database 10g: SQL Fundamentals | 1-11

Defining a Null Value

* A nullis avalue that is unavailable, unassigned,
unknown, or inapplicable.

* Anullis not the same as a zero or a blank space.

SELECT last_name, job_id, salary, |commission_pct
FROM employees;

[LAST_NAME | JOB_ID [salary | COMMISSION_PCT

[King |sD_PRES | 24000 ||

[kochhar [sD_vP | 17000 |

[Tlotkey SA_MAN | 10500 | 2
[Abal [sA_REP | 11000 || 3
[Taylor [sA_REP | 8600 | 2
etz |ac_accounT | 8300 | |

20 rows selected.

1-12 Copyright © 2004, Oracle. All rights reserved.

Null Values
If a row lacks a data value for a particular column, that value is said to be null or to contain a
null.
A null is a value that is unavailable, unassigned, unknown, or inapplicable. A null is not the
same as a zero or a space. Zero is a number, and a space is a character.
Columns of any data type can contain nulls. However, some constraints (NOT NULL and
PRIMARY KEY) prevent nulls from being used in the column.
In the COMMISSION_PCT column in the EMPLOYEES table, notice that only a sales
manager or sales representative can earn a commission. Other employees are not entitled to
earn commissions. A null represents that fact.

Oracle Database 10g: SQL Fundamentals | 1-12

Null Values
in Arithmetic Expressions

Arithmetic expressions containing a null value
evaluate to null.

SELECT last_name,| 12*salary*commission_pct
FROM employees;

|Kocpp9L |
[rw@ |
| rval WYWE | 1529 ¥BA-CONMIZ2I0W bCL
[Z1atkey | 25200
[Abel | 39600
[Taylor | 20640
|Gietz |
20 rows selected.

1-13 Copyright © 2004, Oracle. All rights reserved.

Null Values in Arithmetic Expressions

If any column value in an arithmetic expression is null, the result is null. For example, if you
attempt to perform division by zero, you get an error. However, if you divide a number by
null, the result is a null or unknown.

In the example in the slide, employee King does not get any commission. Because the
COMMISSION_PCT column in the arithmetic expression is null, the result is null.

For more information, see “Basic Elements of SQL” in the SQL Reference.

Oracle Database 10g: SQL Fundamentals | 1-13

Defining a Column Alias

A column alias:
* Renames a column heading
 |s useful with calculations

* Immediately follows the column name (There can
also be the optional AS keyword between the
column name and alias.)

* Requires double quotation marks if it contains
spaces or special characters or if it is case-
sensitive

1-14 Copyright © 2004, Oracle. All rights reserved.

Column Aliases

When displaying the result of a query, iISQL*Plus normally uses the name of the selected
column as the column heading. This heading may not be descriptive and hence may be
difficult to understand. You can change a column heading by using a column alias.

Specify the alias after the column in the SELECT list using a space as a separator. By
default, alias headings appear in uppercase. If the alias contains spaces or special characters
(such as # or $), or if it is case-sensitive, enclose the alias in double quotation marks (* *).

Oracle Database 10g: SQL Fundamentals | 1-14

Using Column Aliases

SELECT last_name AS [name], commission_pct
FROM employees;

1 NAME |

1 COMM |
King |

|

|

|Kochhar
|De Haan

20 rowes selected.

SELECT last_name["Name™| , salary*12 [FAnnual Salary"|
FROM employees;

|King
|Kochhar
|De Haan

288000
204000
204000

| I Name I I Annual Salary l
|
|

20 rowes selected.

1-15 Copyright © 2004, Oracle. All rights reserved.

Column Aliases (continued)

The first example displays the names and the commission percentages of all the employees.
Notice that the optional AS keyword has been used before the column alias name. The result
of the query is the same whether the AS keyword is used or not. Also notice that the SQL
statement has the column aliases, name and comm, in lowercase, whereas the result of the
query displays the column headings in uppercase. As mentioned in a previous slide, column
headings appear in uppercase by default.

The second example displays the last names and annual salaries of all the employees.
Because Annual Salary contains a space, it has been enclosed in double quotation

marks. Notice that the column heading in the output is exactly the same as the column alias.

Oracle Database 10g: SQL Fundamentals | 1-15

Concatenation Operator

A concatenation operator:

e Links columns or character strings to other
columns

* Is represented by two vertical bars (||)
e Creates aresultant column that is a character

expression
SELECT last_namé] Jliob_id AS "Employees"
FROM employees;
Employees
KingaD_PRES
KochharAD WP
De HaanAD_ WP
20 rowes selected.
1-16 Copyright © 2004, Oracle. All rights reserved.

Concatenation Operator

You can link columns to other columns, arithmetic expressions, or constant values to create
a character expression by using the concatenation operator (||). Columns on either side of
the operator are combined to make a single output column.

In the example, LAST_NAME and JOB__1D are concatenated, and they are given the alias
Employees. Notice that the employee last name and job code are combined to make a
single output column.

The AS keyword before the alias name makes the SELECT clause easier to read.
Null Values with the Concatenation Operator

If you concatenate a null value with a character string, the result is a character string.
LAST_NAME || NULL results in LAST_NAME.

Oracle Database 10g: SQL Fundamentals | 1-16

Literal Character Strings

« Aliteral is a character, a number, or a date that is
included in the SELECT statement.

« Date and character literal values must be enclosed
by single quotation marks.

* Each character string is output once for each
row returned.

1-17 Copyright © 2004, Oracle. All rights reserved.

Literal Character Strings

A literal is a character, a number, or a date that is included in the SELECT list and that is not
a column name or a column alias. It is printed for each row returned. Literal strings of free-
format text can be included in the query result and are treated the same as a column in the
SELECT list.

Date and character literals must be enclosed by single quotation marks (* *); number literals
need not be so enclosed.

Oracle Database 10g: SQL Fundamentals | 1-17

Using Literal Character Strings

SELECT last_name |[* is a *||ljob_id
AS "Employee Details™
FROM employees;

| Employee Details
[ing is a AD_PRES

[Kochhar is 2 AD_vP

D& Haan is & AD_VP

[Hunald is a IT_PROG

[Ermst is a IT_PROG

[Lorentz iz & IT_PROG

|M0urgos is a ST_MAN

[Rajs is a ST_CLERK

20 rows selected.

1-18 Copyright © 2004, Oracle. All rights reserved.

Literal Character Strings (continued)

The example in the slide displays last names and job codes of all employees. The column
has the heading Employee Details. Notice the spaces between the single quotation marks in
the SELECT statement. The spaces improve the readability of the output.

In the following example, the last name and salary for each employee are concatenated with
a literal to give the returned rows more meaning:
SELECT last_name ||": 1 Month salary = *||salary Monthly
FROM employees;

| MONTHLY
[King: 1 Month salary = 24000

|K|:u:hhar: 1 Manth salary = 17000

|De Haan: 1 Manth salary = 17000

|Hunu:u|d: 1 Maonth salary = 5000

|Ernst: 1 Manth salary = BOOO

|L|:|rentz: 1 Month salary = 4200

|Mnurgns: 1 Month =alary = 5800

|Raj5: 1 Month salary = 3500

20 rows selected.

Oracle Database 10g: SQL Fundamentals | 1-18

Alternative Quote (q) Operator

» Specify your own quotation mark delimiter
 Choose any delimiter
* Increase readability and usability

SELECT department name ||
|g"[, it"s assigned Manager Id:]°
|l manager_id
AS "‘Department and Manager"
FROM departments;

Department and Manager
Administration, it's assigned manager |D; 200
Wlarketing, it's assigned manager [D: 201
Shipping, it's assigned manager 1D; 124

8 rows selected.

1-19 Copyright © 2004, Oracle. All rights reserved.

Alternative Quote (q) Operator

Many SQL statements use character literals in expressions or conditions. If the literal itself
contains a single quotation mark, you can use the quote (q) operator and choose your own
quotation mark delimiter.

You can choose any convenient delimiter, single-byte or multibyte, or any of the following
character pairs: [],{ }, (), or <>.

In the example shown, the string contains a single quotation mark, which is normally
interpreted as a delimiter of a character string. By using the g operator, however, the
brackets [] are used as the quotation mark delimiter. The string between the brackets
delimiters is interpreted as a literal character string.

Oracle Database 10g: SQL Fundamentals | 1-19

Duplicate Rows

The default display of queries is all rows, including
duplicate rows.

SELECT department_id @
FROM employees;

DEPARTMENT_ID
an
an
an

20 rows selected.

SELECT |DISTINCT department_id
FROM employees;

DEPARTMENT _ID
10
20
a0

8 rows selected.

1-20 Copyright © 2004, Oracle. All rights reserved.

Duplicate Rows

Unless you indicate otherwise, iSQL*Plus displays the results of a query without eliminating
duplicate rows. The first example in the slide displays all the department numbers from the
EMPLOYEES table. Notice that the department numbers are repeated.

To eliminate duplicate rows in the result, include the DISTINCT keyword in the SELECT
clause immediately after the SELECT keyword. In the second example in the slide, the
EMPLOYEES table actually contains 20 rows, but there are only seven unique department
numbers in the table.

You can specify multiple columns after the DISTINCT qualifier. The DISTINCT qualifier

affects all the selected columns, and the result is every distinct combination of the columns.
SELECT DISTINCT department_id, job_id
FROM employees;

Oracle Database 10g: SQL Fundamentals | 1-20

SQL and iSQL*Plus Interaction
SQL statements Oracle
server
Internet EEE
browser C 11
| % |
ISQL*Plus
co?nmands |||% Query results
Formatted report
' Client = 1= 1= I=
Z | Z |\Z | Z

Copyright © 2004, Oracle. All rights reserved.

SQL and iSQL*Plus

SQL is a command language for communication with the Oracle server from any tool or
application. Oracle SQL contains many extensions.

iISQL*Plus is an Oracle tool that recognizes and submits SQL statements to the Oracle server
for execution and contains its own command language.

Features of SQL
» Can be used by a range of users, including those with little or no programming
experience

* Isanonprocedural language
» Isan English-like language

Features of iISQL*Plus
* Isaccessed from a browser
* Accepts SQL statements
* Provides online editing for modifying SQL statements
» Controls environmental settings
e Formats query results into a basic report
» Accesses local and remote databases

Oracle Database 10g: SQL Fundamentals | 1-21

SQL Statements Versus
ISQL*Plus Commands

SQL
* A language
 ANSI standard

* Keyword cannot be
abbreviated

« Statements manipulate

data and table definitions

in the database

iISQL*Plus
¢ An environment
* Oracle-proprietary

« Keywords can be
abbreviated

e Commands do not allow
manipulation of values in
the database

* Runs on a browser

* Centrally loaded; does not
have to be implemented
on each machine

SQL iSQL*Plus
statements commands
1-22 Copyright © 2004, Oracle. All rights reserved.

SQL and iSQL*Plus (continued)

The following table compares SQL and iSQL*Plus:

SQL

iISQL*Plus

Is a language for communicating with the
Oracle server to access data

Recognizes SQL statements and sends them
to the server

Is based on American National Standards
Institute (ANSI)-standard SQL

Is the Oracle-proprietary interface for
executing SQL statements

Retrieves data; manipulates data and table
definitions in the database

Does not allow manipulation of values in the
database

Does not have a continuation character

Has a dash () as a continuation character if
the command is longer than one line

Cannot be abbreviated

Can be abbreviated

Uses functions to perform some formatting

Uses commands to format data

Oracle Database 10g: SQL Fundamentals | 1-22

Overview of ISQL*Plus

After you log in to iISQL*Plus, you can:
* Describe table structures
 Enter, execute, and edit SQL statements
e Save or append SQL statements to files

e Execute or edit statements that are stored in
saved script files

1-23 Copyright © 2004, Oracle. All rights reserved.

ISQL*Plus

ISQL*Plus is an environment in which you can do the following:
« Execute SQL statements to retrieve, modify, add, and remove data from the database
» Format, perform calculations on, store, and print query results in the form of reports
» Create script files to store SQL statements for repeated use in the future

iISQL*Plus commands can be divided into the following main categories:

Category Purpose

Environment Affects the general behavior of SQL statements for the session

Format Formats query results

File manipulation | Saves statements in text script files and runs statements from text
script files

Execution Sends SQL statements from the browser to the Oracle server

Edit Modifies SQL statements in the Edit window

Interaction Enables you to create and pass variables to SQL statements, print
variable values, and print messages to the screen

Miscellaneous Has various commands to connect to the database, manipulate the
iISQL*Plus environment, and display column definitions

Oracle Database 10g: SQL Fundamentals | 1-23

Logging In to iISQL*Plus

From your browser environment:

Address I@ http:) fesslin05: 5560 isglplus) j @GD
Links] Class Accounts! 4] Classroom Support Links 4] Global Education & Oracle Online Evaluations
. -
ORACLE
- * = - ? "
= /SQL*Plus— ?)
= = Hel

Login
= Indicates required field
* zername |ura1

* Password |

Connect [dentifier |T6

(Login)

1-24 Copyright © 2004, Oracle. All rights reserved.

Logging In to iISQL*Plus
To log in from a browser environment:
1. Start the browser.
2. Enter the URL address of the iSQL*Plus environment.

3. On the Login page, enter appropriate values in the Username, Password, and Connect
Identifier fields.

Oracle Database 10g: SQL Fundamentals | 1-24

ISQL*Plus Environment

ORACLE
- 1SQL*Plus

gle

Logowt Preferences Help

Histary :

Connected as ORA1ZTE

Workspace
Enter SQL, PL/SCL and S0LPlus statements. [Clear)

1-25

L o S

l E}{ecute) | Load Script) | Save Script) l Cancel)

Copyright © 2004, Oracle. All rights reserved.

ISQL*Plus Environment
In the browser, the iISQL*Plus Workspace page has several key areas:

1.
2.
3.

No ok

Text box: Area where you type the SQL statements and iISQL*Plus commands
Execute button: Click to execute the statements and commands in the text box

Load Script button: Brings up a form where you can identify a path and file name or
a URL that contains SQL, PL/SQL, or SQL*Plus commands and load them into the
text box

Save Script button: Saves the contents of the text box to a file

Cancel button: Stops the execution of the command in the text box

Clear Screen button: Click to clear text from the text box

Logout icon: Click to end the iSQL*Plus session and return to the iISQL*Plus Login
page

Preferences icon: Click to change your interface configuration, system configuration,
or password

Help icon: Provides access to iSQL*Plus help documentation

Oracle Database 10g: SQL Fundamentals | 1-25

Displaying Table Structure

Use the iISQL*Plus DESCRIBE command to display the
structure of a table:

DESC[RIBE] tablename

1-26 Copyright © 2004, Oracle. All rights reserved.

Displaying the Table Structure

In iISQL*Plus, you can display the structure of a table by using the DESCR I1BE command.

The command displays the column names and data types, and it shows you whether a
column must contain data (that is, whether the column has a NOT NULL constraint).

In the syntax, tablename is the name of any existing table, view, or synonym that is
accessible to the user.

Oracle Database 10g: SQL Fundamentals | 1-26

Displaying Table Structure

DESCRIBE employees

| Name | Null? | Type
[ErPLOYEE_ID [MOT MULL [NUMBER(E)
[FIRST_MAME | [vARCHARZ(20)
[LAST_MAME [MOT MULL [ARCHARZ(25)
[EmaiL [MOT MuLL [VARCHARZ(25)
[PHONE_NUMBER | [vARCHARZ(20)
[HIRE_DATE [MOT MULL [DaTE
lJoB_ID [MOT MuLL [VARCHARZ(ID)
[SALARY | [NUMBER(E 2)
[commISSION_PCT | [NUMBER(2 2)
[MANAGER_ID | [NUMBER(E)
[DEPARTMENT_ID | [NUMBER(4)
1-27 Copyright © 2004, Oracle. All rights reserved.

Displaying the Table Structure (continued)
The example in the slide displays the information about the structure of the EMPLOYEES
table.

In the resulting display, Null? indicates that the values for this column may be unknown.
NOT NULL indicates that a column must contain data. Type displays the data type for a

column.
The data types are described in the following table:

Data Type Description

NUMBER(p,s) Number value having a maximum number of digits p, with s
digits to the right of the decimal point

VARCHAR2(s) Variable-length character value of maximum size s

DATE Date and time value between January 1, 4712 B.C., and
December 31, 9999 A.D.

CHAR(S) Fixed-length character value of size s

Oracle Database 10g: SQL Fundamentals | 1-27

Interacting with Script Files

ORACLE . _

Logout Preferences Help

Workspace History :

Connected as ORA1ET6

Workspace
Enter S0L, PLYSEL and SELFlus statements. [Clear)
SELECT last_name, hire_date, salary ;' 1
FROM employees;
[~
(Execute) (Load Script) (Save Script) (Cancel)
1-28 Copyright © 2004, Oracle. All rights reserved.

Interacting with Script Files
Placing Statements and Commands into a Text Script File

You can save commands and statements from the text box in iISQL*Plus to a text script file
as follows:
1. Type the SQL statements in the text box in iSQL*Plus.
2. Click the Save Script button. This opens the Windows File Save dialog box. Identify
the name of the file. The extension defaults to .uix. You can change the file type to a
text file or save it as a .sql file.

Oracle Database 10g: SQL Fundamentals | 1-28

Interacting with Script Files

Save As ﬂ E
Savein |23 TEMP x| = ®E ek E
| ~rmisetup staturl.err
=] baseswes kxt staturl.bxt
T N=T tnsupd.bat
Fuar], bt tnsupd.log
rmodsys, ki updfiles.txk
ntldr
= | postinst bat
RealPlayver-log.kxt
&1RNE.hitm
rrlog. Exk
snapcons.txk
File name: Iemp_data.sql j Save I
Save as bype: I,-’.\II Filez j Cancel |
FA

1-29 Copyright © 2004, Oracle. All rights reserved.

Interacting with Script Files (continued)
In the example shown, the SQL SELECT statement typed in the text box is saved to a file

named emp_data.sqgl. You can choose the type of the file, name of the file, and location
of where you want to save the script file.

Oracle Database 10g: SQL Fundamentals | 1-29

Interacting with Script Files

ORACLE

Logowut Preferences Help

Histary B

Workspace

Connected as ORA1ZTE

Workspace
Enter SQL, PL/SCL and SCL*Plus statements. (Clear)
-
[
-Z'Execute) (Load Script) (Save Script) -I'Cancel)
1-30 Copyright © 2004, Oracle. All rights reserved.

Interacting with Script Files (continued)
Using Statements and Commands from a Script File in iSQL*Plus
You can use previously saved commands and statements from a script file in iISQL*Plus as

follows:
1. Click the Load Script button. This opens a form where you can type the name of the

file or a URL containing the SQL, PL/SQL, or SQL*Plus commands that you want to
enter in the text box.

Oracle Database 10g: SQL Fundamentals | 1-30

Interacting with Script Files

ORACLE

Logowt Preferences Help

Workspace History B

Caonnected as ORATgT6

Load Script
Enter a URL, or a path and file name of the script ta load. (cancel) (Load)
URL |
File |D:\TEMP\emp_data.sql Erowse.. |
(cancel) (Load
Workspace | History | Logout | Preferences | Help
Copyrgl rade. All ghks resened.
1-31 Copyright © 2004, Oracle. All rights reserved.

Interacting with Script Files (continued)
2. Enter the script name and path, or the URL location. Or you can click the Browse
button to find the script name and location.
3. Click the Load button to bring the contents of the file or URL location into the text
box.

Oracle Database 10g: SQL Fundamentals | 1-31

ISQL*Plus History Page

Waorkspare | —@

Connected as ORATgTE

History

The scripts listed are for the current session. Script history is not available for previous sessions.

Select scripts and ... | Delete) | Load

Select All | Select Mone
Select Script

SELECT DISTINCT department_id FROM employees;

SELECT departrment id FROM employees:

SELECT departrnent narne || ', ' |l g™ it's assigned manager ID: ' || manager
SELECT last name || 'is a '| job_id AS "Employee Details" FROM employees;
SELECT last name || job_id AS "Employees” FROM employees:

SELECT last name "Mame", 12 * salary "Annual Salary” FROM employees;

SELECT last_narne AS name, commission_pct AS comm FROM employees:;

-
-
-
-
-
=
-

SELECT last_narme 12 * salary * comrmission_pct FROM employees:

SELECT last_narne, job_id, salary, commission_pct FROM employess:
SELECT last_narme, salary, 12 * (salary + 1001 FROM employees;

1-32 Copyright © 2004, Oracle. All rights reserved.

Running Previous Statements

The History page in iISQL*Plus lets you execute previously run statements in your session.
The History page shows your most recently run SQL statements and iSQL*Plus commands.
To rerun the statements:

1. Select the statement that you want to execute.

2. Click the Load button.

Note
* You can control the number of statements that are shown on the History page with
Preferences settings.
* You can choose to delete selected statements by clicking the Delete button.

Oracle Database 10g: SQL Fundamentals | 1-32

ISQL*Plus History Page

ORACLE’ -
iISQL*Plus= — &) (#) (?)

Logowt Preferences Help

Histaory 7

Caonnected as ORA1ETE
Workspace

Enter SQL, PL/SGL and SGLPlus statements. { Clear)
SELECT last_name, 12 * salary * commission_pct =]
FROM employees;

SELECT last_name "Mame”, 12 * salary "Annual Salary”
FROM employees;

(Execute) (Load Script) (Save Script) (Cancel)

1-33 Copyright © 2004, Oracle. All rights reserved.

Running Previous Statements (continued)
3. Return to the Workspace page.

4. Click the Execute button to run the commands that have been loaded into the text box.

Oracle Database 10g: SQL Fundamentals | 1-33

Setting ISQL*Plus Preferences

Logowt Prefergnces Help

ORACLE —— |
- /SQL*Plus=— — 4 3’)

f .
Interface Configuration
* |nterface . .
. Configure settings that affect the iISOL*Flus user - -
Configuration LC PR I
g niotface (Cancel) (apmty)
e Systermn Configuration History Size
o Script . . . o
Emmeiti Set_the number of scripts displayed in the script history.
<2 o Script Scripts |1D
Execution
o % y Input Area Size
SETIMEHEEN Set the size of the script input area.
e Change Password Width |;'[|
Height |1D
Qutput Location
1-34 Copyright © 2004, Oracle. All rights reserved.

iISQL*Plus Preferences
e You can set preferences for your iSQL*Plus session by clicking the Preferences icon.
» The preferences are divided into categories. You can set preferences for script
formatting, script execution, and database administration, and you can change your
password.

« When you choose a preference category, a form is displayed that lets you set the
preferences for that category.

Oracle Database 10g: SQL Fundamentals | 1-34

Setting the Output Location Preference

@

F
— Interface Configuration l
+ |Interface ; p—
Configuration Configure settings that affect the ISQLPlus user ._@ &0

interface.
System Configuration History Size
o Script . . . o
Forrmattin Set the number of scripts displayed in the script histary.
o Script Scripts |10
Execution
o iztabaste . Input Area Size
Cblelall Set the size of the script input area.
s Change Password Width |70

Height |1EI

Output Location

Set where script output is displayed.

" Below Input Area

& Sawe to HTML File

" Printable output in new browser window
" Printable output in same browser window

1-35 Copyright © 2004, Oracle. All rights reserved.

Changing the Output Location

You can send the results that are generated by a SQL statement or iSQL*Plus command to
the screen (the default), a file, or another browser window.

On the Preferences page:
1. Select an Output Location option.
2. Click the Apply button.

Oracle Database 10g: SQL Fundamentals | 1-35

Summary

In this lesson, you should have learned how to:

* Write a SELECT statement that:
— Returns all rows and columns from a table
— Returns specified columns from a table
— Uses column aliases to display more descriptive

column headings

e Usethe iSQL*Plus environment to write, save, and
execute SQL statements and iSQL*Plus
commands

SELECT *|{[DISTINCT] column]expression [alias],..--}
FROM table;

1-36 Copyright © 2004, Oracle. All rights reserved.

SELECT Statement

In this lesson, you should have learned how to retrieve data from a database table with the
SELECT statement.

SELECT *|{[DISTINCT] column [alias],---}

FROM table;

In the syntax:

SELECT is a list of one or more columns

* selects all columns

DISTINCT suppresses duplicates

column]expression selects the named column or the expression

alias gives selected columns different headings

FROM table specifies the table containing the columns
iISQL*Plus

iISQL*Plus is an execution environment that you can use to send SQL statements to the
database server and to edit and save SQL statements. Statements can be executed from the
SQL prompt or from a script file.

Oracle Database 10g: SQL Fundamentals | 1-36

Practice 1: Overview

This practice covers the following topics:
« Selecting all data from different tables
» Describing the structure of tables

* Performing arithmetic calculations and specifying
column names

e Using iSQL*Plus

1-37 Copyright © 2004, Oracle. All rights reserved.

Practice 1: Overview

This is the first of many practices in this course. The solutions (if you require them) can be
found in Appendix A. Practices are intended to cover all topics that are presented in the
corresponding lesson.

Note the following location for the lab files:
E:\labs\SQL1\labs

If you are asked to save any lab files, save them at this location.

To start ISQL*Plus, start your browser. You need to enter a URL to access iISQL*Plus. The
URL requires the host name, which your instructor will provide. Enter the following
command, replacing the host name with the value that your instructor provides:
http://<HOSTNAME:5561>/isqlplus

In any practice, there may be exercises that are prefaced with the phrases “If you have time”
or “If you want an extra challenge.” Work on these exercises only if you have completed all
other exercises in the allocated time and would like a further challenge to your skills.

Perform the practices slowly and precisely. You can experiment with saving and running
command files. If you have any questions at any time, ask your instructor.

Oracle Database 10g: SQL Fundamentals | 1-37

Practice 1
Part 1
Test your knowledge:

1.

Initiate an ISQL*Plus session using the user ID and password that are provided by the
instructor.

ISQL*Plus commands access the database.

True/False

The following SELECT statement executes successfully:

SELECT last_name, job id, salary AS Sal
FROM employees;

True/False

The following SELECT statement executes successfully:
SELECT *
FROM job _grades;

True/False
There are four coding errors in the following statement. Can you identify them?

SELECT employee_id, last_name
sal x 12 ANNUAL SALARY
FROM employees;

Part 2
Note the following location for the lab files:
E:\labs\SQL1\labs

If you are asked to save any lab files, save them at this location.

To start ISQL*Plus, start your browser. You need to enter a URL to access iSQL*Plus. The
URL requires the host name, which your instructor will provide. Enter the following
command, replacing the host name with the value that your instructor provides:
http://<HOSTNAME:5561>/isqlplus

You have been hired as a SQL programmer for Acme Corporation. Your first task is to
create some reports based on data from the Human Resources tables.

6. Your first task is to determine the structure of the DEPARTMENTS table and its

contents.
| Name | Null? | Type
IDEPARTMENT_ID INOT MULL INUMBER(4)
IDEPARTMENT_MAME IMOT MULL WARCHARZ(30)
IMAMAGER_ID | INUMBER(E)
ILOCATION_ID | INUMBER(4)

Oracle Database 10g: SQL Fundamentals | 1-38

Practice 1 (continued)

| DEPARTMENT ID | DEPARTMENT NAME | MANAGER_ID | LOCATION_ID
| 10 ||Adrministration | 200 | 1700
| 20 |Marketing | 201 | 1800
| 50 |Shipping | 124 | 1500
| B0 (T | 103 | 1400
| A0 |Sales | 149 | 2500
| 90 |Executive | 100 | 1700
| 110 | Accounting | 205 | 1700
| 190 |Cantracting | | 1700

g rows selected.
7. You need to determine the structure of the EMPLOYEES table.

| Name | Null? | Type
[EMPLOYEE_ID INOIT MULL INUMBER(E)
FIRST_MAME | WARCHARZ(20)
ILAST_MAME INOT MULL WARCHARZ(25)
[EMAIL INGIT MULL WARCHARZ(25)
IPHOME_NUMBER | WARCHAR2(20)
IHIRE_DATE INOIT MULL IDATE

JOB_ID IMOT MULL WARCHARZ(10)
ISALARY | INUMBER(3,2)
(COMMISSION_PCT | INUMBER(2,2)
IMANAGER_ID | INUMBER(E)
IDEPARTMENT_ID | INUMBER(4)

The HR department wants a query to display the last name, job code, hire date, and
employee number for each employee, with employee number appearing first. Provide
an alias STARTDATE for the HIRE_DATE column. Save your SQL statement to a file
named lab_01 07 .sql so that you can disperse this file to the HR department.

Oracle Database 10g: SQL Fundamentals | 1-39

Practice 1 (continued)
8. Testyour query inthe lab_01 07.sql file to ensure that it runs correctly.

| EMPLOYEE_ID | LAST _NAME | JOB_ID | STARTDATE
| 100 ||King AD_PRES 17-JUN-87
| 101 |Kochhar AD WP [21-SEP-89
| 102 |De Haan AD WP 113-JAN-93
| 103 [Hunald IT_PROG 03-JAN-50
| 104 |[Ernst IT_PROG 21-hAY-91
| 107 |Lorentz IT_PROG 07-FEB-99
| 124 Mourgos ST_MAN 11B-NOY-39
| 141 |Rajs IST_CLERK 17-0CT-95
| 142 |Davies |ST_CLERK 29-JAN-97
| 143 |Matos |ST_CLERK 115-MAR-5E
| 144 [vargas |ST_CLERK 09-JUL-58
| 143 |Zlotkey 1SA_MAN (25 JAN-00
| 174 ||Abel 54 _REF 11-MAY-35
| 176 [Taylor 54 _REP 24-MAR-93
| 206 | Gietz AC_ACCOUNT 07-JUN-34

20 rows selected.

9. The HR department needs a query to display all unique job codes from the
EMPLOYEES table.

| JOB_ID

AC_ACCOUNT

AC_MGR

AD_ASST

AD_PRES

AD WP

IT_PROG

(WK MAN

IMK_REP

S8 MAN

'S4 REP

|ST_CLERK

ST _MAN

12 rows selected.

Oracle Database 10g: SQL Fundamentals | 1-40

Practice 1 (continued)
Part 3

If you have time, complete the following exercises:

10. The HR department wants more descriptive column headings for its report on
employees. Copy the statement from lab_01_07.sql to the iSQL*Plus text box.
Name the column headings Emp #, Employee, Job, and Hire Date, respectively.
Then run your query again.

| Emp # | Employee | Joh | Hire Date
| 100 ||King AD_PRES 17-Jun-a7
| 101 |Kochhar AD_WP 21-5EP-89
| 102 ||De Haan A0 _YE 13-JAN-23
| 103 |[Hunold IT_PROG 03-JAN-90
| 104 ||Ernst IT_PROG 21-MAY-91
| 107 ||Lorentz IT_PROG 07-FEB-99
| 124 |Maurgos ST _MAN 1B-NOY-99
| 141 |Rajs ST _CLERK 117-0CT-95
| 142 || Davies ST _CLERK 29-AN-97
| 143 |Matos |ST_CLERK 115-MAR-95
| 144 [Wargas |ST_CLERK 09-JUL-98
206 |Gietz AC_ACCOUNT 07-JUn-94 |

20 rowes selected.

11. The HR department has requested a report of all employees and their job IDs. Display
the last name concatenated with the job ID (separated by a comma and space) and
name the column Employee and Title.

| Employee and Title
\King, AD_PRES

[Kochhar, AD WP

D& Haan, AD %P

Hunald, IT_PROG

[Emst, IT_PROG

ILorentz, IT_PROG

|M|:|urg|:|s, o1 MWAN

\Rajs, 5T_CLERK

\Davies, ST_CLERK

Gigtz, AC_ACCOUNT

20 rows selected.

Oracle Database 10g: SQL Fundamentals | 1-41

Practice 1 (continued)
If you want an extra challenge, complete the following exercise:
12. To familiarize yourself with the data in the EMPLOYEES table, create a query to

display all the data from that table. Separate each column output by a comma. Name
the column title THE_OUTPUT.

| THE_OUTPUT

100, Steven King, SKING 515,123 4567 AD_PRES, 17-JUN-87 24000, 90

1101 Meena Kochhar NKOCHHAR 515.123 4568 AD_%P 100 21-SEP-89,17000, 90
1102 Lex De Haan LDEHAAN 515.123 4569 AD_%P,100,13-JAN-93,17000, 30

1103, Alexander Hunold AHUNOLD 590.423.4567 IT_PROG,102 03-JAN-80 9000, 50
104 Bruce,Ernst, BERNST 530 423 4568 [T_PROG 103 21-MAY-31,6000, 60

1107 Diana Lorentz DLORENTZ 590 423 5567 IT_PROG,103 07-FEB-33,4200, 50
124 Kevin Mourgos KMOURGOS B50.123.5234,5T_MAN,100,16-NOY-99 5800, 50
1141 Trenna,Rajs TRAJS B50.121.8009,5T_CLERK,124,17-0CT-85,3500, 50

142, Cuttis,Davies, CDAVIES £50.121.2994 ST_CLERK,124 29-JAN-97 3100, 50
143 Randall Matos RMATOS 550,121 2874 ST_CLERK 124 15-MAR-95 2600, 50
144 Peter vargas, PVARGAS 650,121 2004, 5T_CLERK,124 09-JUL-98,2500, 50

|2EIE Milliam, Gietz WGEIETZ 515.123.8181 AC_ACCOUNT 205 07-JUN-54 5300,,110

20 rows selected.

Oracle Database 10g: SQL Fundamentals | 1-42

Restricting and Sorting Data

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:

 Limit the rows that are retrieved by a query
e Sort the rows that are retrieved by a query

 Use ampersand substitution in iSQL*Plus to
restrict and sort output at run time

2-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

When retrieving data from the database, you may need to do the following:
* Restrict the rows of data that are displayed
» Specify the order in which the rows are displayed

This lesson explains the SQL statements that you use to perform these actions.

Oracle Database 10g: SQL Fundamentals | 2-2

Limiting Rows Using a Selection

EMPLOYEES

| EMPLOYEE_ID [LAST_NAME | JOB_ID | DEPARTMENT_ID
| 100 [King |D_PRES | 50
| 101 [Kochhar [aD_wP | 50
| 102 |[De Haan [ap_wP | a0
| 103 [Hunold [T_PROG | &0
| 104 |[Ermst [T_PROG | B0
| 107 |[Lorentz [T_PROG | &0
| 124 [Mourgos [ST_MAN | 50
20 rows selected.

“retrieve all

employees in

department 90” I
| EMPLOYEE_ID | LAST_NAME | JOB_ID [DEPARTMENT_ID
| 100 [[King [aD_PRES [a0
| 101 [Kochhar [AD_wP [a0
| 102 |De Haan [aD_wP [a0

2-3 Copyright © 2004, Oracle. All rights reserved.

Limiting Rows Using a Selection

In the example in the slide, suppose that you want to display all the employees in department
90. The rows with a value of 90 in the DEPARTMENT _ID column are the only ones that are
returned. This method of restriction is the basis of the WHERE clause in SQL.

Oracle Database 10g: SQL Fundamentals | 2-3

Limiting the Rows That Are Selected

* Restrict the rows that are returned by using the
WHERE clause:

SELECT *|{[DISTINCT] column]expression [alias],.--}
FROM table
|[WHERE condition(s)];

e The WHERE clause follows the FROM clause.

2-4 Copyright © 2004, Oracle. All rights reserved.

Limiting the Rows That Are Selected

You can restrict the rows that are returned from the query by using the WHERE clause. A
WHERE clause contains a condition that must be met, and it directly follows the FROM
clause. If the condition is true, the row meeting the condition is returned.

In the syntax:
WHERE restricts the query to rows that meet a condition
condition is composed of column names, expressions,
constants, and a comparison operator

The WHERE clause can compare values in columns, literal values, arithmetic expressions, or
functions. It consists of three elements:

e Column name

« Comparison condition

* Column name, constant, or list of values

Oracle Database 10g: SQL Fundamentals | 2-4

Using the WHERE Clause

SELECT employee_id, last name, job_id, department id
FROM employees

|WHERE department_id = 90 |;
|

| EMPLOYEE_ID | LAST_NAME | JOB_ID | DEPARTMENT_ID

| 100 [[King [sD_PRES | a0

| 101 [Kochhar [aD_wP | a0

| 102 [De Haan [sD_wP | 0
2-5 Copyright © 2004, Oracle. All rights reserved.

Using the WHERE Clause

In the example, the SELECT statement retrieves the employee ID, name, job ID, and
department number of all employees who are in department 90.

Oracle Database 10g: SQL Fundamentals | 2-5

Character Strings and Dates

* Character strings and date values are enclosed by
single quotation marks.

e Character values are case-sensitive, and date
values are format-sensitive.

e The default date format is DD-MON-RR.

SELECT last_name, job_id, department id
FROM employees

WHERE last_name = ;

2-6 Copyright © 2004, Oracle. All rights reserved.

Character Strings and Dates

Character strings and dates in the WHERE clause must be enclosed by single quotation marks
(™ "). Number constants, however, should not be enclosed by single quotation marks.

All character searches are case-sensitive. In the following example, no rows are returned
because the EMPLOYEES table stores all the last names in mixed case:

SELECT last _name, job_id, department_id

FROM employees

WHERE last name = "WHALEN®;

Oracle databases store dates in an internal numeric format, representing the century, year,
month, day, hours, minutes, and seconds. The default date display is DD-MON-RR.

Note: For details about the RR format and about changing the default date format, see the
next lesson.

Oracle Database 10g: SQL Fundamentals | 2-6

Comparison Conditions

Operator Meaning
= Equal to
> Greater than
>= Greater than or equal to
< Less than
<= Less than or equal to
<> Not equal to
BETWEEN Between two values
---AND... |(inclusive)
IN(set) Match any of a list of values
LIKE Match a character pattern
1S NULL Is a null value
2-7 Copyright © 2004, Oracle. All rights reserved.

Comparison Conditions

Comparison conditions are used in conditions that compare one expression to another value
or expression. They are used in the WHERE clause in the following format:

Syntax

... WHERE expr operator value

Example

-.. WHERE hire_date = "01-JAN-95*
--.- WHERE salary >= 6000
... WHERE last_name = "Smith*

An alias cannot be used in the WHERE clause.
Note: The symbols = and ~= can also represent the not equal to condition.

Oracle Database 10g: SQL Fundamentals | 2-7

Using Comparison Conditions

SELECT last _name, salary
FROM employees

WHERE salary|<= 3000 |;

| LAST_NAME | SALARY
| 2600

| 2600

|Matos
|Vargas

2-8 Copyright © 2004, Oracle. All rights reserved.

Using Comparison Conditions
In the example, the SELECT statement retrieves the last name and salary from the
EMPLOYEES table for any employee whose salary is less than or equal to $3,000. Note that
there is an explicit value supplied to the WHERE clause. The explicit value of 3000 is
compared to the salary value in the SALARY column of the EMPLOYEES table.

Oracle Database 10g: SQL Fundamentals | 2-8

Using the BETWEEN Condition

Use the BETWEEN condition to display rows based on a
range of values:

SELECT last_name, salary
FROM employees

WHERE Salaryi BETWEEN 2500 AND 3500|;

Lower limit Upper limit

| LAST_NAME
|Rajs

SALARY

I

[3500
[Davies [3100

I

I

[Matas 2600
IVarg as 2500

2-9 Copyright © 2004, Oracle. All rights reserved.

Using the BETWEEN Condition

You can display rows based on a range of values using the BETWEEN range condition. The
range that you specify contains a lower limit and an upper limit.

The SELECT statement in the slide returns rows from the EMPLOYEES table for any
employee whose salary is between $2,500 and $3,500.

Values that are specified with the BETWEEN condition are inclusive. You must specify the
lower limit first.

You can also use the BETWEEN condition on character values:
SELECT last_name
FROM employees
WHERE last_name BETWEEN "King® AND "Smith";

Oracle Database 10g: SQL Fundamentals | 2-9

Using the IN Condition

Use the IN membership condition to test for values in
a list:
SELECT employee id, last name, salary, manager_id

FROM employees
WHERE manager_id|IN (100, 101, 201) ;

| EMPLOYEE_ID | LAST_NAME [saLary | MANAGER_ID

| 202 |[Fay [6000 || 20
| 200 [whalen [4400 || 101
| 205 |[Higgins [12000 || 101
| 101 [Kochhar [17000 || 100
| 102 [De Haan [17000 || 100
| 124 [Mourgos [5800 || 100
| 143 [Ziotkey [10500 || 100
| 201 |[Hartstein [13000 || 100
3 rows selected.

2-10 Copyright © 2004, Oracle. All rights reserved.

Using the IN Condition

To test for values in a specified set of values, use the IN condition. The IN condition is also
known as the membership condition.

The slide example displays employee numbers, last names, salaries, and manager’s
employee numbers for all the employees whose manager’s employee number is 100, 101, or
201.
The IN condition can be used with any data type. The following example returns a row from
the EMPLOYEES table for any employee whose last name is included in the list of names in
the WHERE clause:

SELECT employee_id, manager_id, department_id

FROM employees

WHERE last _name IN (“Hartstein®, "Vargas®);

If characters or dates are used in the list, they must be enclosed by single quotation marks

7).

Oracle Database 10g: SQL Fundamentals | 2-10

Using the LIKE Condition

Use the LIKE condition to perform wildcard
searches of valid search string values.
Search conditions can contain either literal
characters or numbers:

— % denotes zero or many characters.

— __denotes one character.

SELECT first_name
FROM employees
WHERE first_name|LIKE "S%" |;

2-11

Copyright © 2004, Oracle. All rights reserved.

Using the LIKE Condition

You may not always know the exact value to search for. You can select rows that match a
character pattern by using the L 1KE condition. The character pattern—matching operation is
referred to as a wildcard search. Two symbols can be used to construct the search string.

Symbol

Description

%

Represents any sequence of zero or more characters

Represents any single character

The SELECT statement in the slide returns the employee first name from the EMPLOYEES
table for any employee whose first name begins with the letter S. Note the uppercase S.

Names beginning with an s are not returned.

The LIKE condition can be used as a shortcut for some BETWEEN comparisons. The
following example displays the last names and hire dates of all employees who joined

between January 1995 and December 1995:

SELECT last_name, hire_date
FROM employees
WHERE hire_date LIKE "%95";

Oracle Database 10g: SQL Fundamentals | 2-11

Using the LIKE Condition

* You can combine pattern-matching characters:

SELECT last _name
FROM employees
WHERE last_name| LIKE "_o%"| ;

| LAST_NAME
|Kochhar
|Lorentz

|M0urgos

e You can use the ESCAPE identifier to search for the
actual % and _ symbols.

2-12 Copyright © 2004, Oracle. All rights reserved.

Combining Wildcard Characters
The % and _ symbols can be used in any combination with literal characters. The example in
the slide displays the names of all employees whose last names have the letter o as the
second character.

ESCAPE Option

When you need to have an exact match for the actual % and _ characters, use the ESCAPE
option. This option specifies what the escape character is. If you want to search for strings

that contain ‘SA_’, you can use the following SQL statement:
SELECT employee_id, last name, job id
FROM employees WHERE job_id LIKE "%SA_ %" ESCAPE "\";

| EMPLOYEE_ID | LAST_NAME | JOB_ID
| 149 |Zlotkey |SA_MAN
| 174 |Abel |SA_REP
| 176 |Taylor |54 _REP
| 178 |Grant |54 _REP

The ESCAPE option identifies the backslash (\) as the escape character. In the pattern, the
escape character precedes the underscore (). This causes the Oracle Server to interpret the
underscore literally.

Oracle Database 10g: SQL Fundamentals | 2-12

2-13

Using the NULL Conditions

Test for nulls with the IS NULL operator.

SELECT last _name, manager_id
FROM employees

WHERE | manager_id 1S NULL |;

| LAST_NAME | MANAGER_ID

[King |

Copyright © 2004, Oracle. All rights reserved.

Using

The NULL conditions include the 1S NULL condition and the IS NOT NULL condition.

The 1S NULL condition tests for nulls. A null value means the value is unavailable,
unassigned, unknown, or inapplicable. Therefore, you cannot test with = because a null
cannot be equal or unequal to any value. The slide example retrieves the last names and

the NULL Conditions

managers of all employees who do not have a manager.

Here is another example: To display last name, job ID, and commission for all employees
who are not entitled to receive a commission, use the following SQL statement:

SELECT last_name, job_id, commission_pct
FROM employees
WHERE commission_pct IS NULL;

| LAST_NAME | JOB_ID | COMMISSION_PCT
King \AD_PRES |
[Kochhar \AD_WP |
|'Hi'géins AC_MGR |
Gietz IAC_ACCOUNT |
16 rows selected.

Oracle Database 10g: SQL Fundamentals | 2-13

Logical Conditions

Operator | Meaning
AND Returns TRUE if both component
conditions are true
OR Returns TRUE if either component
condition is true
NOT Returns TRUE if the following
condition is false

2-14 Copyright © 2004, Oracle. All rights reserved.

Logical Conditions

A logical condition combines the result of two component conditions to produce a single
result based on those conditions, or it inverts the result of a single condition. A row is
returned only if the overall result of the condition is true.

Three logical operators are available in SQL.:

- AND
- OR
- NOT

All the examples so far have specified only one condition in the WHERE clause. You can use
several conditions in one WHERE clause using the AND and OR operators.

Oracle Database 10g: SQL Fundamentals | 2-14

Using the AND Operator

AND requires both conditions to be true:

SELECT employee_id, last name, job id, salary

FROM employees

WHERE |salary >=10000

AND |job_id LIKE =%MAN%"| ;

| EMPLOYEE_ID | LAST_NAME | JOB_ID | SALARY

| 149 [Zlotkey [SA_MAN | 10500

| 201 |[Hartstein [tk _msd | 13000
2-15 Copyright © 2004, Oracle. All rights reserved.

Using the AND Operator

In the example, both conditions must be true for any record to be selected. Therefore, only
employees who have a job title that contains the string ‘“MAN’ and earn $10,000 or more are

selected.

All character searches are case-sensitive. No rows are returned if “MAN’ is not uppercase.

Character strings must be enclosed by quotation marks.
AND Truth Table
The following table shows the results of combining two expressions with AND:

AND TRUE FALSE NULL
TRUE TRUE FALSE NULL
FALSE FALSE FALSE FALSE
NULL NULL FALSE NULL
Oracle Database 10g: SQL Fundamentals | 2-15

Using the OR Operator

OR requires either condition to be true:

SELECT employee_id, last name, job id, salary
FROM employees
WHERE |[salary >= 10000

OR job_id LIKE “%MAN%" ;
| EMPLOYEE_ID | LAST_NAME | JOB_ID | SALARY
| 100 | [King [aD_PRES | 24000
| 101 |[Kachhar |sD_wP | 17000
| 102 [De Haan [s0_vP | 17000
| 124 [Mourgos [ST_maN | 800
| 149 [Zlotkey [SA_MAaN | 10500
| 174 [Abel [34_REFP | 11000
| 201 |[Hartstein [tk _ptam | 13000
| 205 |[Higgins [sC_MGR | 12000
8 rows selected.

2-16 Copyright © 2004, Oracle. All rights reserved.

Using the OR Operator

In the example, either condition can be true for any record to be selected. Therefore, any
employee who has a job ID that contains the string ‘MAN’ or earns $10,000 or more is
selected.

OR Truth Table

The following table shows the results of combining two expressions with OR:

OR TRUE FALSE NULL
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE NULL
NULL TRUE NULL NULL

Oracle Database 10g: SQL Fundamentals | 2-16

Using the NOT Operator

SELECT last _name, job id
FROM employees
WHERE [job_id

NOT IN ("IT_PROG", "ST_CLERK", "SA REP") ;

| LAST_NAME | JOB_ID
[King |D_PRES
[Kochhar [aD_wP
|De Haan [ap_wP
|M0urgos |ST_MAN
[F1atkay [SA_MAN
[whalen |ap_AssT
[Hartstein [k _maan
[Fay [mi_REP
|Higgins |ac_MGR
|Gietz [ac_accoOuNT
10 rows selected.
2-17 Copyright © 2004, Oracle. All rights reserved.

Using the NOT Operator

The slide example displays the last name and job ID of all employees whose job ID is not
IT_PROG, ST_CLERK, or SA_REP.

NOT Truth Table
The following table shows the result of applying the NOT operator to a condition:

NOT TRUE FALSE NULL

FALSE TRUE NULL

Note: The NOT operator can also be used with other SQL operators, such as BETWEEN,
LIKE, and NULL.

.. WHERE job_id NOT IN (TAC_ACCOUNT®, “AD_VP®)
.. WHERE salary NOT BETWEEN 10000 AND 15000
.- WHERE [last_name NOT LIKE "%A%"

. WHERE commission_pct IS NOT NULL

Oracle Database 10g: SQL Fundamentals | 2-17

Rules of Precedence

Operator | Meaning

Arithmetic operators

Concatenation operator

Comparison conditions

IS [NOT] NULL, LIKE, [NOT] IN
[NOT] BETWEEN

Not equal to

NOT logical condition

AND logical condition

© |0 | N~ |W|DN

OR logical condition

You can use parentheses to override rules of precedence.

2-18 Copyright © 2004, Oracle. All rights reserved.

Rules of Precedence

The rules of precedence determine the order in which expressions are evaluated and
calculated. The table lists the default order of precedence. You can override the default order
by using parentheses around the expressions that you want to calculate first.

Oracle Database 10g: SQL Fundamentals | 2-18

Rules of Precedence

SELECT last_name, job_id, salary

FROM employees
WHERE job_id "SA REP* @

OR job_id = "AD_PRES"

AND salary > 15000;

| LAST_NAME | JOB_ID | SALARY

[King [aD_PRES | 24000

[Abel |sa_REP | 11000

[Taylor |sa_REP | 8600

[Grant |54 _REP | 7000

SELECT last_name, job_id, salary

FROM employees

WHERE__.(job_id = "SA_REP"

OR job_id = "AD PRES")

AND salary > 15000;

[LAST_NAME | JOB_ID | SALARY

[King [aD_PRES | 24000
2-19 Copyright © 2004, Oracle. All rights reserved.

1. Example of the Precedence of the AND Operator

In this example, there are two conditions:
» The first condition is that the job ID is AD_PRES and the salary is greater than

$15,000.
» The second condition is that the job ID is SA_REP.

Therefore, the SELECT statement reads as follows:

“Select the row if an employee is a president and earns more than $15,000, or if the
employee is a sales representative.”

2. Example of Using Parentheses

In this example, there are two conditions:
» The first condition is that the job ID is AD_PRES or SA_REP.

» The second condition is that salary is greater than $15,000.
Therefore, the SELECT statement reads as follows:

“Select the row if an employee is a president or a sales representative, and if the employee
earns more than $15,000.”

Oracle Database 10g: SQL Fundamentals | 2-19

Using the ORDER BY Clause

e Sort retrieved rows with the ORDER BY clause:
— ASC: ascending order, default
— DESC: descending order

e The ORDER BY clause comes last in the SELECT

statement:

SELECT last name, job _i1d, department_id, hire_date
FROM employees
ORDER BY hire_date|;
| LAST_NAME [JOB_ID | DEPARTMENT_ID | HIRE_DATE
[King [+0_PRES | 90 [[17-Jun-B7
[whalan [aD_assT | 10 [17-SEP-A7
[Kachhar [sD_wP | 90 |[21-5EP-89
[Hunald [_PROG | B0 |[03-JAN-20
[Emst [m_PROG | B0 |[21-May-31
20 rows selected.

2-20 Copyright © 2004, Oracle. All rights reserved.

Using the ORDER BY Clause

The order of rows that are returned in a query result is undefined. The ORDER BY clause
can be used to sort the rows. If you use the ORDER BY clause, it must be the last clause of
the SQL statement. You can specify an expression, an alias, or a column position as the sort
condition.

Syntax
SELECT expr
FROM table
[WHERE condition(s)]

[ORDER BY {column, expr, numeric_position} [ASC|DESC]];
In the syntax:

ORDER BY specifies the order in which the retrieved rows are displayed
ASC orders the rows in ascending order (this is the default order)
DESC orders the rows in descending order

If the ORDER BY clause is not used, the sort order is undefined, and the Oracle server may
not fetch rows in the same order for the same query twice. Use the ORDER BY clause to
display the rows in a specific order.

Oracle Database 10g: SQL Fundamentals | 2-20

2-21

Sorting

Sorting in descending order:

SELECT
FROM

last name, job _i1d, department_id, hire_date
employees

ORDER BY hire_date|DESC]| ;

®

Sorting by column alias:

annsal

SELECT employee id,

last_name, salary*12

O,

FROM emplovyees
ORDER BY

Sorting by multiple columns:

SELECT last _name, department_id, salary
FROM employees

®

ORDER BY department_id, salary DESC;

Copyright © 2004, Oracle. All rights reserved.

Defaul

t Ordering of Data

The default sort order is ascending:

Numeric values are displayed with the lowest values first (for example, 1 to 999).
Date values are displayed with the earliest value first (for example, 01-JAN-92 before
01-JAN-95).

Character values are displayed in alphabetical order (for example, A first and Z last).
Null values are displayed last for ascending sequences and first for descending
sequences.

You can sort by a column that is not in the SELECT list.

Examples

1.

To reverse the order in which rows are displayed, specify the DESC keyword after the
column name in the ORDER BY clause. The slide example sorts the result by the most
recently hired employee.

You can use a column alias in the ORDER BY clause. The slide example sorts the data
by annual salary.

You can sort query results by more than one column. The sort limit is the number of
columns in the given table. In the ORDER BY clause, specify the columns and separate
the column names using commas. If you want to reverse the order of a column, specify
DESC after its name.

Oracle Database 10g: SQL Fundamentals | 2-21

Substitution Variables

..salary =7 ...
... department_id =72 ...
% ..last_name=7?..
1
| want
\'__,- to query
- . different -
i [values.

2-22 Copyright © 2004, Oracle. All rights reserved.

Substitution Variables

The examples so far have been hard-coded. In a finished application, the user would trigger
the report, and the report would run without further prompting. The range of data would be
predetermined by the fixed WHERE clause in the iSQL*Plus script file.

Using iISQL*Plus, you can create reports that prompt users to supply their own values to
restrict the range of data returned by using substitution variables. You can embed
substitution variables in a command file or in a single SQL statement. A variable can be
thought of as a container in which the values are temporarily stored. When the statement is
run, the value is substituted.

Oracle Database 10g: SQL Fundamentals | 2-22

Substitution Variables

¢ Use iSQL*Plus substitution variables to:
— Temporarily store values with single-ampersand (&)
and double-ampersand (&&) substitution
* Use substitution variables to supplement the
following:
— WHERE conditions
— ORDER BY clauses
— Column expressions
— Table names
— Entire SELECT statements

2-23 Copyright © 2004, Oracle. All rights reserved.

Substitution Variables (continued)
In iISQL*Plus, you can use single-ampersand (&) substitution variables to temporarily store
values.

You can predefine variables in iISQL*Plus by using the DEFINE command. DEFINE
creates and assigns a value to a variable.

Examples of Restricted Ranges of Data
* Reporting figures only for the current quarter or specified date range
* Reporting on data relevant only to the user requesting the report
» Displaying personnel only within a given department

Other Interactive Effects

Interactive effects are not restricted to direct user interaction with the WHERE clause. The
same principles can be used to achieve other goals, such as:

» Obtaining input values from a file rather than from a person

» Passing values from one SQL statement to another

iISQL*Plus does not support validation checks (except for data type) on user input.

Oracle Database 10g: SQL Fundamentals | 2-23

Using the & Substitution Variable

Use a variable prefixed with an ampersand (&) to
prompt the user for a value:

SELECT employee_i1d, last _name, salary, department_id
FROM employees
WHERE employee_i1d =|&employee num|;

Connected as ORA1ET6

@ Input Required

| Enter value for employee_num: I |

([Cancel J [Continue)

2-24 Copyright © 2004, Oracle. All rights reserved.

Single-Ampersand Substitution Variable
When running a report, users often want to restrict the data that is returned dynamically.
ISQL*Plus provides this flexibility with user variables. Use an ampersand (&) to identify
each variable in your SQL statement. You do not need to define the value of each variable.

Notation Description

&user_variable Indicates a variable in a SQL statement; if the variable
does not exist, iISQL*Plus prompts the user for a value
(iISQL*Plus discards a new variable once it is used.)

The example in the slide creates an iISQL*Plus substitution variable for an employee
number. When the statement is executed, iISQL*Plus prompts the user for an employee
number and then displays the employee number, last name, salary, and department number
for that employee.

With the single ampersand, the user is prompted every time the command is executed, if the
variable does not exist.

Oracle Database 10g: SQL Fundamentals | 2-24

Using the & Substitution Variable

Logout Preferences Help

ORACLE
:SQL*Plus.

History B

Workspace

Caonnected as ORAT@TE

@ Input Required
(Cancel) { Continue)

-@ 2

DEPARTMENT _ID

Enter value for employee_num: |

old 3 WHEEE emplovee_id = &emploves_num

new 3 WHERE employee_id = 101
a0

| LAST_NAME [saLary |
| 17000 ||

101 [Kochhar

| EMPLOYEE_ID

2-25 Copyright © 2004, Oracle. All rights reserved.

Single-Ampersand Substitution Variable (continued)
When iSQL*Plus detects that the SQL statement contains an ampersand, you are prompted

to enter a value for the substitution variable that is named in the SQL statement.
After you enter a value and click the Continue button, the results are displayed in the output

area of your iSQL*Plus session.

Oracle Database 10g: SQL Fundamentals | 2-25

Character and Date Values
with Substitution Variables

Use single quotation marks for date and character
values:

SELECT last_name, department_id, salary*12
FROM employees

WHERE job_id =|'&j0b_title'| ;

@ Input Required

\ Cancel) \ Cnntinue)

Enter value for job_title: |IT_F'ROG|

| LAST_NAME | DEPARTMENT_ID | SALARY12

[Hunald | g0 || 108000

[Ernst | g0 | 72000

[Lorentz | G0 | 50400
2-26 Copyright © 2004, Oracle. All rights reserved.

Specifying Character and Date Values with Substitution Variables
In a WHERE clause, date and character values must be enclosed by single quotation marks.
The same rule applies to the substitution variables.

Enclose the variable in single quotation marks within the SQL statement itself.

The slide shows a query to retrieve the employee names, department numbers, and annual
salaries of all employees based on the job title value of the iISQL*Plus substitution variable.

Oracle Database 10g: SQL Fundamentals | 2-26

Specifying Column Names,
Expressions, and Text

SELECT employee_id, last_name, job_idJ&colTumn_name
FROM employees

WHERE |[&condition |
ORDER BY|&order_cqumn| ;

@ Input Required

[Cancel) (Continue)

Enter value for column_name: | salary

[Cancel) [Continue)

Enter value far condition: |Salary > 15000

(Cancel) (Continue)

Enter value for arder_column: | last_name

2-27 Copyright © 2004, Oracle. All rights reserved.

Specifying Column Names, Expressions, and Text
Not only can you use the substitution variables in the WHERE clause of a SQL statement, but
these variables can also be used to substitute for column names, expressions, or text.
Example

The slide example displays the employee number, name, job title, and any other column that
is specified by the user at run time, from the EMPLOYEES table. For each substitution
variable in the SELECT statement, you are prompted to enter a value, and you then click the
Continue button to proceed.

If you do not enter a value for the substitution variable, you get an error when you execute
the preceding statement.

Note: A substitution variable can be used anywhere in the SELECT statement, except as the
first word entered at the command prompt.

Oracle Database 10g: SQL Fundamentals | 2-27

Using the && Substitution Variable

Use the double ampersand (&&) if you want to reuse
the variable value without prompting the user each

time:
SELECT employee_i1d, last name, job_ id, |&&column_name
FROM employees

ORDER BY |&column_name | ;

@ Input Required

l Cancel) ! Cuminue)

Enter value for column_name: Idepanment_ld|

| EMPLOYEE_ID | LAST_NAME | JOB_ID [DEPARTMENT_ID
| 200 |[Whalen [aD_AssT [10
| 201 |[Hartstein [k _man [20
20 rows selected.

2-28 Copyright © 2004, Oracle. All rights reserved.

Double-Ampersand Substitution Variable
You can use the double-ampersand (&&) substitution variable if you want to reuse the
variable value without prompting the user each time. The user sees the prompt for the value
only once. In the example in the slide, the user is asked to give the value for variable
column_name only once. The value that is supplied by the user (department_id) is
used for both display and ordering of data.
iISQL*Plus stores the value that is supplied by using the DEFINE command; it uses it again
whenever you reference the variable name. After a user variable is in place, you need to use

the UNDEF INE command to delete it as follows:
UNDEFINE column_name

Oracle Database 10g: SQL Fundamentals | 2-28

Using the iISQL*Plus DEFINE Command

e Usethe iSQL*Plus DEFINE command to create and
assign a value to a variable.
e Usethe iSQL*Plus UNDEFINE command to remove

avariable.

P
DEFINE |employee num|=(200

SELECT employee_id, last name, salary, department id
FROM employees
WHERE employee_id =|&employee_num |;

UNDEFINE employee_ num

2-29 Copyright © 2004, Oracle. All rights reserved.

Using the iISQL*Plus DEFINE Command
The example shown creates an iISQL*Plus substitution variable for an employee number by
using the DEFINE command. At run time, this displays the employee number, name, salary,
and department number for that employee.
Because the variable is created using the iSQL*Plus DEF INE command, the user is not
prompted to enter a value for the employee number. Instead, the defined variable value is
automatically substituted in the SELECT statement.
The EMPLOYEE_NUM substitution variable is present in the session until the user undefines
it or exits the iISQL*Plus session.

Oracle Database 10g: SQL Fundamentals | 2-29

Using the VERIFY Command

Use the VERIFY command to toggle the display of the
substitution variable, both before and after iSQL*Plus
replaces substitution variables with values:

|SET VERIFY ON|

SELECT employee_id, last _name, salary, department_id
FROM employees
WHERE employee_id = &employee_num;

“emplayee_nurn" [200]

old 3: WHERE employee_id
new 3: WHERE employee id

&employee_ num
200

2-30 Copyright © 2004, Oracle. All rights reserved.

Using the VERIFY Command

To confirm the changes in the SQL statement, use the iSQL*Plus VERIFY command.
Setting SET VERIFY ON forces iSQL*Plus to display the text of a command before and
after it replaces substitution variables with values.

The example in the slide displays the old as well as the new value of the EMPLOYEE_ID
column.

ISQL*Plus System Variables

ISQL*Plus uses various system variables that control the working environment. One of those
variables is VERIFY. To obtain a complete list of all system variables, you can issue the

SHOW ALL command.

Oracle Database 10g: SQL Fundamentals | 2-30

Summary

In this lesson, you should have learned how to:
* Use the WHERE clause to restrict rows of output:

— Use the comparison conditions
— Use the BETWEEN, IN, LIKE, and NULL conditions
— Apply the logical AND, OR, and NOT operators

¢ Usethe ORDER BY clause to sort rows of output:

SELECT *|{[DISTINCT] column]expression [alias],.-.}
FROM table

[WHERE condition(s)]
[ORDER BY {column, expr, alias} [ASC|DESC]]] ;

 Use ampersand substitution in iISQL*Plus to
restrict and sort output at run time

2-31 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned about restricting and sorting rows that are returned
by the SELECT statement. You should also have learned how to implement various
operators and conditions.

By using the iSQL*Plus substitution variables, you can add flexibility to your SQL
statements. You can query users at run time and enable them to specify criteria.

Oracle Database 10g: SQL Fundamentals | 2-31

Practice 2: Overview

This practice covers the following topics:

* Selecting data and changing the order of
the rows that are displayed

* Restricting rows by using the WHERE clause
e Sorting rows by using the ORDER BY clause

e Using substitution variables to add flexibility to
your SQL SELECT statements

2-32 Copyright © 2004, Oracle. All rights reserved.

Practice 2: Overview

In this practice, you build more reports, including statements that use the WHERE clause and
the ORDER BY clause. You make the SQL statements more reusable and generic by
including ampersand substitution.

Oracle Database 10g: SQL Fundamentals | 2-32

Practice 2

The HR department needs your assistance with creating some queries.
1. Due to budget issues, the HR department needs a report that displays the last name and

salary of employees who earn more than $12,000. Place your SQL statement in a text
file named lab_02_01.sql. Run your query.

LAST HAME SALARY
King 24000
Kochhar 17000
De Haan 17000
Hartstein 13000
2. Create a report that displays the last name and department number for employee number
176.
LAST NAME DEPARTMENT ID
Taylar 80

3. The HR departments needs to find high-salary and low-salary employees. Modify
lab 02 _01.sql to display the last name and salary for any employee whose salary is

not in the range of $5,000 to $12,000. Place your SQL statement in a text file named
lab 02 _03.sql.

LAST NAME SALARY
king 24000
Kaochhar 17000
Le Haan 17000
Lorentz 4200
Fajs 3500
Davies 3100
Matos 2600
Yargas 2500
YWhalen 4400
Hartstein 13000

10 rows selected.

Oracle Database 10g: SQL Fundamentals | 2-33

Practice 2 (continued)
4. Create a report to display the last name, job ID, and start date for the employees with the
last names of Matos and Taylor. Order the query in ascending order by start date.

LAST _NAME JOB_ID HIRE_DATE
Matos =1_CLERK 158-MAR-95
Taylar =48 _REP 24-MAR-95

5. Display the last name and department number of all employees in departments 20 or 50
in ascending alphabetical order by name.

LAST NAME DEPARTMENT ID
Dlavies a0
Fay 20
Hartstein 20
hatos a0
Mourgos a0
Fajs a0
Wargas a0

¥ rows selected.

6. Modify lab_02_03.sql to display the last name and salary of employees who earn
between $5,000 and $12,000 and are in department 20 or 50. Label the columns
Employee and Monthly Salary, respectively. Resave lab_02_03.sqgl as
lab_02_06.sql. Run the statement in lab_02_06.sql.

Employee Monthly Salary
Fay BO00
Maurgos Sa00

Oracle Database 10g: SQL Fundamentals | 2-34

Practice 2 (continued)

7.

8.

10.

The HR department needs a report that displays the last name and hire date for all
employees who were hired in 1994.
LAST NAME HIRE_DATE
Higgins 07 -JLIN-94
Sietz 07-JUIM-54

Create a report to display the last name and job title of all employees who do not have a
manager.

LAST _NAME JOB_ID
King AD_PRES

Create a report to display the last name, salary, and commission of all employees who
earn commissions. Sort data in descending order of salary and commissions.

LAST _NAME SALARY COMMISSION_PCT
Ahel 11000 3
Llotkey 10500 2
Taylor SE00 2
GGrant 7000 5

Members of the HR department want to have more flexibility with the queries that you
are writing. They would like a report that displays the last name and salary of employees
who earn more than an amount that the user specifies after a prompt. (You can use the
query that you created in practice exercise 1 and modify it.) Save this query to a file
named lab_02_10.sqgl. If you enter 12000 when prompted, the report displays the
following results:

LAST NAME SALARY
King 24000
Kaochhar 17000
De Haan 17000
Hartstein 13000

Oracle Database 10g: SQL Fundamentals | 2-35

Practice 2 (continued)

11. The HR department wants to run reports based on a manager. Create a query that
prompts the user for a manager ID and generates the employee ID, last name, salary,
and department for that manager’s employees. The HR department wants the ability to
sort the report on a selected column. You can test the data with the following values:

manager ID = 103, sorted by employee last name:
EMPLOYEE_ID LAST NAME SALARY DEPARTMENT _ID

104 Ernst 000 &0
107 Lorentz 4200 RO

manager ID = 201, sorted by salary:

EMPLOYEE_ID LAST MNAME SALARY DEPARTMENT _ID
202 Fay BOO0 20

manager ID =124, sorted by employee ID:

EMPLOYEE_ID LAST _NAME SALARY DEPARTMENT _ID

141 Rajs 3500 A0
142 Davies 3100 A0
143 Matos 2600 A0
144 “argas 2500 a0

Oracle Database 10g: SQL Fundamentals | 2-36

Practice 2 (continued)

If you have time, complete the following exercises:
12. Display all employee last names in which the third letter of the name is a.

LAST HAME
Grant

Whalen

13. Display the last name of all employees who have both an a and an e in their last name.

LAST HAME
Davies
De Haan
Hartstein
Whalen

If you want an extra challenge, complete the following exercises:
14. Display the last name, job, and salary for all employees whose job is sales representative
or stock clerk and whose salary is not equal to $2,500, $3,500, or $7,000.

LAST NAME JOB_ID SALARY

Abel SA REP 11000
Taylar SA REP 5500
Davies ST CLERK 3100
Matos ST CLERK 2600

15. Modify lab_02_06.sql to display the last name, salary, and commission for all
employees whose commission amount is 20%. Resave lab_02_06.sql as
lab_02_15.sql. Rerun the statement in lab_02_15_sqgl.

Employee Monthly Salary COMMISSION PCT
Flotkey 10500 2
Taylor ohl0 2

Oracle Database 10g: SQL Fundamentals | 2-37

Using Single-Row Functions to
Customize Output

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
* Describe various types of functions that are
available in SQL
* Use character, number, and date functions in
SELECT statements

e Describe the use of conversion functions

3-2 Copyright © 2004, Oracle. All rights reserved.

Objectives
Functions make the basic query block more powerful, and they are used to manipulate data
values. This is the first of two lessons that explore functions. It focuses on single-row
character, number, and date functions, as well as those functions that convert data from one
type to another (for example, conversion from character data to numeric data).

Oracle Database 10g: SQL Fundamentals | 3-2

SQL Functions

Input Output

arg 1 Function performs
action
arg 2
Result
Uu value
o
argn
3-3 Copyright © 2004, Oracle. All rights reserved.

SQL Functions

Functions are a very powerful feature of SQL. They can be used to do the following:
» Perform calculations on data
* Modify individual data items
* Manipulate output for groups of rows
» Format dates and numbers for display
» Convert column data types

SQL functions sometimes take arguments and always return a value.

Note: Most of the functions that are described in this lesson are specific to the Oracle
version of SQL.

Oracle Database 10g: SQL Fundamentals | 3-3

Two Types of SQL Functions

Functions
) Single-row . Multiple-row
functions . functions
Return one result Return one result
per row per set of rows
3-4 Copyright © 2004, Oracle. All rights reserved.

SQL Functions (continued)

There are two types of functions:
» Single-row functions
* Multiple-row functions

Single-Row Functions

These functions operate on single rows only and return one result per row. There are
different types of single-row functions. This lesson covers the following ones:
» Character

e Number

e Date

e Conversion
e General

Multiple-Row Functions

Functions can manipulate groups of rows to give one result per group of rows. These
functions are also known as group functions (covered in a later lesson).

Note: For more information and a complete list of available functions and their syntax, see
Oracle SQL Reference.

Oracle Database 10g: SQL Fundamentals | 3-4

Single-Row Functions

Single-row functions:

* Manipulate data items

* Accept arguments and return one value
* Act on each row that is returned

* Return one result per row

 May modify the data type

 Can be nested

 Accept arguments that can be a column or an
expression

function_name [(argl, arg2,...)]

3-5 Copyright © 2004, Oracle. All rights reserved.

Single-Row Functions

Single-row functions are used to manipulate data items. They accept one or more arguments
and return one value for each row that is returned by the query. An argument can be one of
the following:

e User-supplied constant

* Variable value

e Column name

* Expression

Features of single-row functions include:
» Acting on each row that is returned in the query
* Returning one result per row
» Possibly returning a data value of a different type than the one that is referenced
« Possibly expecting one or more arguments
e Can be used in SELECT, WHERE, and ORDER BY clauses; can be nested

In the syntax:
function_name is the name of the function
argl, arg2 is any argument to be used by the function. This can be
represented by a column name or expression.

Oracle Database 10g: SQL Fundamentals | 3-5

3-6

Single-Row Functions

Character

Single-row
functions

Conversion Date

Copyright © 2004, Oracle. All rights reserved.

Single-Row Functions (continued)
This lesson covers the following single-row functions:

Character functions: Accept character input and can return both character and
number values
Number functions: Accept numeric input and return numeric values
Date functions: Operate on values of the DATE data type (All date functions return a
value of DATE data type except the MONTHS_BETWEEN function, which returns a
number.)
Conversion functions: Convert a value from one data type to another
General functions:

- NVL

- NVL2

- NULLIF

- COALESCE

- CASE

- DECODE

Oracle Database 10g: SQL Fundamentals | 3-6

Character Functions

Character
functions
I I
Case-manipulation Character-manipulation
functions functions
LOWER CONCAT
UPPER SUBSTR
INITCAP LENGTH
INSTR
LPAD | RPAD
TRIM
REPLACE
3-7 Copyright © 2004, Oracle. All rights reserved.

Character Functions

Single-row character functions accept character data as input and can return both character
and numeric values. Character functions can be divided into the following:

e Case-manipulation functions

» Character-manipulation functions

Function

Purpose

LOWER(column]expression)

Converts alpha character values to lowercase

UPPER(column]expression)

Converts alpha character values to uppercase

INITCAP(column]expression)

Converts alpha character values to uppercase for the first
letter of each word; all other letters in lowercase

CONCAT(columnl]expressionl,
column2]expression?)

Concatenates the first character value to the second
character value; equivalent to concatenation operator (||)

SUBSTR(column]expression,m[

.n1)

Returns specified characters from character value starting at
character position m, n characters long (If m is negative, the
count starts from the end of the character value. If n is

omitted, all characters to the end of the string are returned.)

Note: The functions discussed in this lesson are only some of the available functions.

Oracle Database 10g: SQL Fundamentals |

3-7

Character Functions (continued)

Function

Purpose

LENGTH(column|expression)

Returns the number of characters in the expression

INSTR(column]expression,
’string’, [,m], [n])

Returns the numeric position of a named string. Optionally,
you can provide a position m to start searching, and the
occurrence n of the string. m and n default to 1, meaning
start the search at the beginning of the search and report the
first occurrence.

LPAD(column]expression, n,
"string")

RPAD(column]expression, n,
"string”)

Pads the character value right-justified to a total width of n
character positions

Pads the character value left-justified to a total width of n
character positions

TRIM(leading]trailing|both,
trim_character FROM
trim_source)

Enables you to trim heading or trailing characters (or both)
from a character string. If trim_character or
trim_source isa character literal, you must enclose it in
single quotation marks.

This is a feature that is available in Oracle8i and later
versions.

REPLACE(text,
search_string,
replacement_string)

Searches a text expression for a character string and, if
found, replaces it with a specified replacement string

Oracle Database 10g: SQL Fundamentals |

3-8

Case-Manipulation Functions

These functions convert case for character strings:

Function Result
LOWER("SQL Course*®) sqgl course
UPPER("SQL Course®) SQL COURSE
INITCAP("SQL Course™) Sql Course
3-9 Copyright © 2004, Oracle. All rights reserved.

Case-Manipulation Functions

LOWER, UPPER, and INITCAP are the three case-conversion functions.
- LOWER: Converts mixed-case or uppercase character strings to lowercase
- UPPER: Converts mixed-case or lowercase character strings to uppercase
- INITCAP: Converts the first letter of each word to uppercase and remaining letters to

lowercase
SELECT "The job id for "] |UPPER(last_name)]|]" is *
| ILOWER(Jjob_id) AS "EMPLOYEE DETAILS"
FROM employees;

| EMPLOYEE DETAILS
|Thejnh id for KING is ad_pres

|Thej|:||:| id for KOCHHAR is ad_wp

|Thej|:||:| id for DE HAAM is ad _wp

|Thej|:|h id for HIGGIMS is ac_mgr
|The job id for GIETZ is ac_account

20 rows selected.

Oracle Database 10g: SQL Fundamentals | 3-9

Using Case-Manipulation Functions

Display the employee number, name, and department
number for employee Higgins:

SELECT employee_i1d, last name, department id
FROM employees

WHERE last_name = “higgins®;

no rows selected

SELECT employee_i1d, last _name, department_id
FROM employees
WHERE |LOWER(last_name) = "higgins”

| EMPLOYEE_ID | LAST_NAME | DEPARTMENT_ID
| 205 |[Higgins | 110

3-10 Copyright © 2004, Oracle. All rights reserved.

Using Case-Manipulation Functions

The slide example displays the employee number, name, and department number of
employee Higgins.

The WHERE clause of the first SQL statement specifies the employee name as higgins.
Because all the data in the EMPLOYEES table is stored in proper case, the name higgins
does not find a match in the table, and no rows are selected.

The WHERE clause of the second SQL statement specifies that the employee name in the
EMPLOYEES table is compared to higgins, converting the LAST_NAME column to
lowercase for comparison purposes. Since both names are now lowercase, a match is found
and one row is selected. The WHERE clause can be rewritten in the following manner to
produce the same result:

.. -WHERE last_name = "Higgins-®

The name in the output appears as it was stored in the database. To display the name with
only the first letter in uppercase, use the UPPER function in the SELECT statement.
SELECT employee_id, UPPER(last_name), department_id
FROM employees
WHERE INITCAP(last _name) = "Higgins~;

Oracle Database 10g: SQL Fundamentals | 3-10

Character-Manipulation Functions

These functions manipulate character strings:

Function Result
CONCAT("Hello", “World®) HelloWworld
SUBSTR("HelloWorld®,1,5) Hello
LENGTH("HelloWorld*®) 10
INSTR("HelloWorld®, “W®) 6
LPAD(salary,10,"*") FxAAX24000
RPAD(salary, 10, **%) 24000*****
REPLACE BLACK and BLUE
("JACK and JUE*®,*"J","BL")

TRIM(*H® FROM “Helloworld®) elloworld

3-11

Copyright © 2004, Oracle. All rights reserved.

Character-Manipulation Functions
CONCAT, SUBSTR, LENGTH, INSTR, LPAD, RPAD, and TRIM are the character-
manipulation functions that are covered in this lesson.

CONCAT: Joins values together (You are limited to using two parameters with
CONCAT.)

SUBSTR: Extracts a string of determined length

LENGTH: Shows the length of a string as a numeric value

INSTR: Finds the numeric position of a named character

LPAD: Pads the character value right-justified

RPAD: Pads the character value left-justified

TRIM: Trims heading or trailing characters (or both) from a character string (If
trim_character or trim_source is a character literal, you must enclose it in
single quotation marks.)

Note: You can use functions such as UPPER and LOWER with ampersand substitution. For

exam
inas

ple, use UPPER("&job_title™) so that the user does not have to enter the job title
pecific case.

Oracle Database 10g: SQL Fundamentals | 3-11

Using the Character-Manipulation

Functions

SELECT employee_id, CONCAT(First_name, last_name) ,
job_id, |LENGTH (last_name);
INSTR(last_name, "a") '|[Contains "a"?"

FROM employees

WHERE SUBSTR(job_id, 4) = "REP";

EMPLOYEE_ID WAWE [JoB_ID | LENGTH({LAST_NAME) Contains 'a?
| 174 [Ellansbel [s&_REP | 1 i
| 176 [JanathonTaylor [sa_REP | B 2
| 178 |KimberslyGrant [54_REP | 5 3
| 202 |PatFay [_REP | 3 2
3-12 Copyright © 2004, Oracle. All rights reserved.

Using the Character-Manipulation Functions

The slide example displays employee first names and last names joined together, the length
of the employee last name, and the numeric position of the letter a in the employee last
name for all employees who have the string REP contained in the job ID starting at the
fourth position of the job ID.

Example

Modify the SQL statement in the slide to display the data for those employees whose last
names end with the letter n.
SELECT employee_id, CONCAT(First _name, last name) NAME,
LENGTH (last_name), INSTR(last_name, "a") "Contains "a"?"
FROM employees
WHERE SUBSTR(last_name, -1, 1) = "n~;
EMPLOYEE_ID	NAME	LENGTH({LAST_NAME)
102	LexDe Haan	7
200	Jenniferdhalen	B
201	MichaglHartstein	9

Contains 'a*?

Oracle Database 10g: SQL Fundamentals | 3-12

Number Functions

* ROUND: Rounds value to specified decimal
* TRUNC: Truncates value to specified decimal
* MOD: Returns remainder of division

Function Result
ROUND(45.926, 2) 45_93
TRUNC(45.926, 2) 45.92
MOD(1600, 300) 100
3-13 Copyright © 2004, Oracle. All rights reserved.

Number Functions
Number functions accept numeric input and return numeric values. This section describes
some of the number functions.

Function Purpose

ROUND(column]expression, n) | Rounds the column, expression, or value to n decimal
places or, if n is omitted, no decimal places (If n is
negative, numbers to left of the decimal point are rounded.)
TRUNC(column]expression, n) | Truncates the column, expression, or value to n decimal
places or, if n is omitted, n defaults to zero

MOD(m, n) Returns the remainder of m divided by n

Note: This list contains only some of the available number functions.
For more information, see “Number Functions” in Oracle SQL Reference.

Oracle Database 10g: SQL Fundamentals | 3-13

Using the ROUND Function

& @

SELECT| ROUND(45.923,2), ROUND(45.923,0), O
3

ROUND(45.923,-1) |
FROM DUAL;

| ROUND(#5.923,2) ROUND(45.923,0) ROUND (45.923,-1)
| 45.92 45 50

DUAL is a dummy table that you can use to view results
from functions and calculations.

3-14 Copyright © 2004, Oracle. All rights reserved.

ROUND Function

The ROUND function rounds the column, expression, or value to n decimal places. If the
second argument is O or is missing, the value is rounded to zero decimal places. If the second
argument is 2, the value is rounded to two decimal places. Conversely, if the second
argument is —2, the value is rounded to two decimal places to the left (rounded to the nearest
unit of 10).

The ROUND function can also be used with date functions. You will see examples later in
this lesson.

DUAL Table

The DUAL table is owned by the user SYS and can be accessed by all users. It contains one
column, DUMMY, and one row with the value X. The DUAL table is useful when you want to
return a value once only (for example, the value of a constant, pseudocolumn, or expression
that is not derived from a table with user data). The DUAL table is generally used for
SELECT clause syntax completeness, because both SELECT and FROM clauses are
mandatory, and several calculations do not need to select from actual tables.

Oracle Database 10g: SQL Fundamentals | 3-14

Using the TRUNC Function

& @

SELECT4|—)|ROUND(45 2923,2 ,|—|_)|ROUND(45 -923), O
3

ROUND(45.923,-1) |
FROM DUAL;

TRUNC{45.923.2) TRUNC{45.923) TRUNC{45.923,-1)
4552 45 40

3-15 Copyright © 2004, Oracle. All rights reserved.

TRUNC Function
The TRUNC function truncates the column, expression, or value to n decimal places.

The TRUNC function works with arguments similar to those of the ROUND function. If the
second argument is 0 or is missing, the value is truncated to zero decimal places. If the
second argument is 2, the value is truncated to two decimal places. Conversely, if the second
argument is —2, the value is truncated to two decimal places to the left. If the second
argument is —1, the value is truncated to one decimal place to the left.

Like the ROUND function, the TRUNC function can be used with date functions.

Oracle Database 10g: SQL Fundamentals | 3-15

Using the MOD Function

For all employees with job title of Sales Representative,
calculate the remainder of the salary after it is divided
by 5,000.

SELECT last_name, salary,|MOD(salary, 5000)
FROM employees
WHERE job_id = "SA _REP";

| LAST_NAME | SALARY MOD(SALARY,5000)

[abel | 11000 1000

[Taylor | 8600 3600

[Grant | 7000 2000
3-16 Copyright © 2004, Oracle. All rights reserved.

MOD Function

The MOD function finds the remainder of the first argument divided by the second argument.
The slide example calculates the remainder of the salary after dividing it by 5,000 for all
employees whose job ID is SA_REP.

Note: The MOD function is often used to determine if a value is odd or even.

Oracle Database 10g: SQL Fundamentals | 3-16

Working with Dates

e The Oracle database stores dates in an internal numeric
format: century, year, month, day, hours, minutes, and
seconds.

* The default date display format is DD-MON-RR.

— Enables you to store 21st-century dates in the
20th century by specifying only the last two digits
of the year

— Enables you to store 20th-century dates in the
21st century in the same way

SELECT last_name,| hire_date
FROM employees
WHERE hire_date < "01-FEB-88";

LAST HAME HIRE_DATE
King 17-JUN-87
Wwhalen 17-5EP-87
3-17 Copyright © 2004, Oracle. All rights reserved.

Oracle Date Format

The Oracle database stores dates in an internal numeric format, representing the century,
year, month, day, hours, minutes, and seconds.

The default display and input format for any date is DD-MON-RR. Valid Oracle dates are
between January 1, 4712 B.C., and December 31, 9999 A.D.

In the example in the slide, the HIRE_DATE column output is displayed in the default
format DD-MON-RR. However, dates are not stored in the database in this format. All the
components of the date and time are stored. So, although a HIRE_DATE such as 17-JUN-87
is displayed as day, month, and year, there is also time and century information associated
with the date. The complete data might be June 17, 1987, 5:10:43 p.m.

Oracle Database 10g: SQL Fundamentals | 3-17

Oracle Date Format (continued)
This data is stored internally as follows:

CENTURY YEAR MONTH DAY HOUR MINUTE
SECOND

19 87 06 17 17 10

43

Centuries and the Year 2000

When a record with a date column is inserted into a table, the century information is picked
up from the SYSDATE function. However, when the date column is displayed on the screen,

the century component is not displayed (by default).

The DATE data type always stores year information as a four-digit number internally: two
digits for the century and two digits for the year. For example, the Oracle database stores the

year as 1987 or 2004, and not just as 87 or 04.

Oracle Database 10g: SQL Fundamentals | 3-18

Working with Dates

SYSDATE is a function that returns:
« Date
 Time

3-19 Copyright © 2004, Oracle. All rights reserved.

SYSDATE Function

SYSDATE is a date function that returns the current database server date and time. You can
use SYSDATE just as you would use any other column name. For example, you can display
the current date by selecting SYSDATE from a table. It is customary to select SYSDATE
from a dummy table called DUAL.

Example

Display the current date using the DUAL table.
SELECT SYSDATE
FROM DUAL ;

| SYSDATE
28-SEP-01

Oracle Database 10g: SQL Fundamentals | 3-19

Arithmetic with Dates

e Add or subtract a number to or from a date for a
resultant date value.

e Subtract two dates to find the number of days
between those dates.

 Add hours to a date by dividing the number of
hours by 24.

3-20 Copyright © 2004, Oracle. All rights reserved.

Arithmetic with Dates

Because the database stores dates as numbers, you can perform calculations using arithmetic
operators such as addition and subtraction. You can add and subtract number constants as
well as dates.

You can perform the following operations:

Operation Result Description

date + number Date Adds a number of days to a date

date — number Date Subtracts a number of days from a date
date — date Number of days | Subtracts one date from another

date + number/24 Date Adds a number of hours to a date

Oracle Database 10g: SQL Fundamentals | 3-20

Using Arithmetic Operators
with Dates

SELECT last_name, |(SYSDATE-hire_date)/7 AS WEEKS
FROM employees
WHERE department_id = 90;

| LAST_NAME WEEKS

[King 744245395

[Kachhar £26.102538

[De Haan 453 245395
3-21 Copyright © 2004, Oracle. All rights reserved.

Arithmetic with Dates (continued)

The example in the slide displays the last name and the number of weeks employed for all
employees in department 90. It subtracts the date on which the employee was hired from the
current date (SYSDATE) and divides the result by 7 to calculate the number of weeks that a
worker has been employed.

Note: SYSDATE is a SQL function that returns the current date and time. Your results may
differ from the example.

If a more current date is subtracted from an older date, the difference is a negative number.

Oracle Database 10g: SQL Fundamentals | 3-21

Date Functions

Function Result

MONTHS_BETWEEN Number of months between two dates
ADD_MONTHS Add calendar months to date
NEXT_DAY Next day of the date specified
LAST_DAY Last day of the month

ROUND Round date

TRUNC Truncate date

3-22

Copyright © 2004, Oracle. All rights reserved.

Date Functions

Date functions operate on Oracle dates. All date functions return a value of DATE data type
except MONTHS _BETWEEN, which returns a numeric value.

MONTHS_BETWEEN(datel, date?2): Finds the number of months between
datel and date2. The result can be positive or negative. If datel is later than
date?2, the result is positive; if datel is earlier than date2, the result is negative.
The noninteger part of the result represents a portion of the month.
ADD_MONTHS(date, n): Adds n number of calendar months to date. The value
of n must be an integer and can be negative.

NEXT_DAY(date, "char™): Finds the date of the next specified day of the week
(" char™) following date. The value of char may be a number representing a day
or a character string.

LAST_DAY (date): Finds the date of the last day of the month that contains date
ROUND(date[, "fmt"]): Returns date rounded to the unit that is specified by the
format model fmt. If the format model fmt is omitted, date is rounded to the nearest
day.

TRUNC(date[, "“fmt"]): Returns date with the time portion of the day
truncated to the unit that is specified by the format model ¥mt. If the format model
fmt is omitted, date is truncated to the nearest day.

This list is a subset of the available date functions. The format models are covered later in this

lesson.

Examples of format models are month and year.

Oracle Database 10g: SQL Fundamentals | 3-22

Using Date Functions

Function Result
MONTHS_BETWEEN 19.6774194
("01-SEP-957,"11-JAN-94")
ADD_MONTHS ("11-JAN-94-,6) "11-JUL-94"
NEXT_DAY ("01-SEP-95", "FRIDAY") "08-SEP-95"
LAST_DAY ("01-FEB-95%) "28-FEB-95"
3-23 Copyright © 2004, Oracle. All rights reserved.

Date Functions (continued)

For example, display the employee number, hire date, number of months employed, six-
month review date, first Friday after hire date, and last day of the hire month for all
employees who have been employed for fewer than 70 months.
SELECT employee_id, hire_date,
MONTHS_BETWEEN (SYSDATE, hire_date) TENURE,
ADD_MONTHS (hire_date, 6) REVIEW,
NEXT_DAY (hire_date, "FRIDAY"), LAST DAY(hire_ date)
FROM employees
WHERE MONTHS_BETWEEN (SYSDATE, hire_date) < 70;

EMPLOYEE_ID | HIRE_DATE | TENURE | REVIEW | NEXT DAY(| LAST DAY(

107 |07-FEB-29 31 6982407 [07-AUG93 [12-FEB99 [28-FEB-99

143 |[29-JAN-00 19.9895633 [29-JUL00 |04-FEB-D0 [31-JAN-OO

| |
| |
| 124 [16-MOW-93 | 224079182 [16-MAY-00 [19-NOY-93 |30-NOW-99
| |
| |

178 [24-MAY-39 28 1498536 [24-MOV-03 [28-MAY-93 [31-MAY-99

Oracle Database 10g: SQL Fundamentals | 3-23

Using Date Functions

Assume SYSDATE = *"25-JUL-03":

Function Result

ROUND(SYSDATE, "MONTH®) 01-AUG-03

ROUND(SYSDATE , "YEAR™) 01-JAN-04

TRUNC(SYSDATE , "MONTH*®) 01-JUL-03

TRUNC(SYSDATE , "YEAR®) 01-JAN-03
3-24 Copyright © 2004, Oracle. All rights reserved.

Date Functions (continued)
The ROUND and TRUNC functions can be used for number and date values. When used with
dates, these functions round or truncate to the specified format model. Therefore, you can
round dates to the nearest year or month.

Example

Compare the hire dates for all employees who started in 1997. Display the employee
number, hire date, and start month using the ROUND and TRUNC functions.
SELECT employee_id, hire_date,
ROUND(hire_date, "MONTH®"), TRUNC(hire_date, “"MONTH®)
FROM employees
WHERE hire date LIKE "%97";

| EMPLOYEE_ID | HIRE_DATE | ROUND{HIR | TRUNC{HIR
| 142 |[29-JAN-97 01-FEB-27 01-JAN-57
| 202 [17-AUG-97 01-SEP-97 01-AUG-57

Oracle Database 10g: SQL Fundamentals | 3-24

Practice 3: Overview of Part 1

This practice covers the following topics:

* Writing a query that displays the current date

e Creating queries that require the use of numeric,
character, and date functions

Performing calculations of years and months of
service for an employee

3-25 Copyright © 2004, Oracle. All rights reserved.

Practice 3: Overview of Part 1

Part 1 of this lesson’s practice provides a variety of exercises using different functions that
are available for character, number, and date data types.

For Part 1, complete questions 1-6 at the end of this lesson.

Oracle Database 10g: SQL Fundamentals | 3-25

Conversion Functions

Data type
conversion

Implicit data type Explicit data type
conversion conversion

3-26 Copyright © 2004, Oracle. All rights reserved.

Conversion Functions

In addition to Oracle data types, columns of tables in an Oracle database can be defined
using ANSI, DB2, and SQL/DS data types. However, the Oracle server internally converts
such data types to Oracle data types.

In some cases, the Oracle server uses data of one data type where it expects data of a
different data type. When this happens, the Oracle server can automatically convert the data
to the expected data type. This data type conversion can be done implicitly by the Oracle
server or explicitly by the user.

Implicit data type conversions work according to the rules that are explained in the next two
slides.

Explicit data type conversions are done by using the conversion functions. Conversion
functions convert a value from one data type to another. Generally, the form of the function
names follows the convention data type TO data type. The first data type is the

input data type; the second data type is the output.

Note: Although implicit data type conversion is available, it is recommended that you do
explicit data type conversion to ensure the reliability of your SQL statements.

Oracle Database 10g: SQL Fundamentals | 3-26

Implicit Data Type Conversion

For assignments, the Oracle server can automatically
convert the following:

From To
VARCHAR2 or CHAR NUMBER
VARCHAR2 or CHAR DATE
NUMBER VARCHAR2
DATE VARCHAR2
3-27 Copyright © 2004, Oracle. All rights reserved.

Implicit Data Type Conversion

The assignment succeeds if the Oracle server can convert the data type of the value used in
the assignment to that of the assignment target.

For example, the expression hire_date > "01-JAN-90" results in the implicit
conversion from the string "01-JAN-90" to a date.

Oracle Database 10g: SQL Fundamentals | 3-27

Implicit Data Type Conversion

For expression evaluation, the Oracle Server can
automatically convert the following:

From To
VARCHAR2 or CHAR NUMBER
VARCHAR2 or CHAR DATE
3-28 Copyright © 2004, Oracle. All rights reserved.

Implicit Data Type Conversion (continued)

In general, the Oracle server uses the rule for expressions when a data type conversion is

needed in places that are not covered by a rule for assignment conversions.

For example, the expression salary = "20000" results in the implicit conversion of the

string 20000 to the number 20000.

Note: CHAR to NUMBER conversions succeed only if the character string represents a valid

number.

Oracle Database 10g: SQL Fundamentals | 3-28

Explicit Data Type Conversion

TO_NUMBER

TO_DATE

NUMBER CHARACTER DATE

S

TO CHAR

TO CHAR

3-29 Copyright © 2004, Oracle. All rights reserved.

Explicit Data Type Conversion

SQL provides three functions to convert a value from one data type to another:

Function

Purpose

TO_CHAR(number |date, [fmt],
[nIsparams])

Converts a number or date value to a VARCHAR2
character string with format model fmt

Number conversion: The nlsparams
parameter specifies the following characters,
which are returned by number format elements:

e Decimal character

e Group separator

e Local currency symbol

¢ International currency symbol

If nlsparams or any other parameter is omitted,
this function uses the default parameter values for
the session.

Oracle Database 10g: SQL Fundamentals | 3-29

Explicit Data Type Conversion

TO_NUMBER

TO_DATE

NUMBER CHARACTER DATE

S

TO CHAR

TO CHAR

3-30 Copyright © 2004, Oracle. All rights reserved.

Explicit Data Type Conversion (continued)

Function

Purpose

TO_CHAR(number |date,[fmt],
[nlIsparams])

Date conversion: The nlsparams parameter specifies
the language in which month and day names and
abbreviations are returned. If this parameter is omitted,
this function uses the default date languages for the
session.

TO_NUMBER(char, [Tmt],
[nIsparams])

Converts a character string containing digits to a number
in the format specified by the optional format model fmt.

The nlsparams parameter has the same purpose in this
function as in the TO_CHAR function for number
conversion.

TO_DATE(char, [fmt], [nlspara
ms])

Converts a character string representing a date to a date
value according to the fmt that is specified. If fmt is
omitted, the format is DD-MON-YY.

The nlsparams parameter has the same purpose in this
function as in the TO_CHAR function for date conversion.

Oracle Database 10g: SQL Fundamentals | 3-30

Explicit Data Type Conversion (continued)

Note: The list of functions mentioned in this lesson includes only some of the available
conversion functions.

For more information, see “Conversion Functions” in Oracle SQL Reference.

Oracle Database 10g: SQL Fundamentals | 3-31

Using the TO_CHAR Function with Dates

TO_CHAR(date, "format_model*)

The format model:
 Must be enclosed by single quotation marks
* Is case-sensitive

e« Caninclude any valid date format element
« Has an fm element to remove padded blanks or
suppress leading zeros

* |Is separated from the date value by acomma

3-32 Copyright © 2004, Oracle. All rights reserved.

Displaying a Date in a Specific Format

Previously, all Oracle date values were displayed in the DD-MON-Y'Y format. You can use
the TO_CHAR function to convert a date from this default format to one that you specify.

Guidelines
e The format model must be enclosed by single quotation marks and is case-sensitive.
» The format model can include any valid date format element. Be sure to separate the
date value from the format model by a comma.
» The names of days and months in the output are automatically padded with blanks.
» To remove padded blanks or to suppress leading zeros, use the fill mode fm element.
* You can format the resulting character field with the iISQL*Plus COLUMN command
(covered in a later lesson).
SELECT employee_id, TO_CHAR(hire_date, "MM/YY") Month_Hired
FROM employees
WHERE last _name = "Higgins”;

| EMPLOYEE_ID | MONTH
| 205 |06/94

Oracle Database 10g: SQL Fundamentals | 3-32

Elements of the Date Format Model

Element Result

YYYY Full year in numbers

YEAR Year spelled out (in English)

MM Two-digit value for month

MONTH Full name of the month

MON Three-letter abbreviation of the month

DY Three-letter abbreviation of the day of the
week

DAY Full name of the day of the week

DD Numeric day of the month

3-33

Copyright © 2004, Oracle. All rights reserved.

Oracle Database 10g: SQL Fundamentals | 3-33

Sample Format Elements of Valid Date Formats

Element Description

SCCor CC Century; server prefixes B.C. date with -

Years in dates YYYY or SYYYY [Year; server prefixes B.C. date with -

YYYorYYorY Last three, two, or one digits of year

YYYY Year with comma in this position

IYYY,IYY, 1Y, | Four-, three-, two-, or one-digit year based on the ISO
standard

SYEAR or YEAR Year spelled out; server prefixes B.C. date with -

BC or AD Indicates B.C. or A.D. year

B.C.or AD. Indicates B.C. or A.D. year using periods

Q Quarter of year

MM Month: two-digit value

MONTH Name of month padded with blanks to length of nine
characters

MON Name of month, three-letter abbreviation

RM Roman numeral month

WW or W Week of year or month

DDD or DD or D Day of year, month, or week

DAY Name of day padded with blanks to a length of nine
characters

DY Name of day; three-letter abbreviation

J Julian day; the number of days since December 31, 4713
B.C.

Oracle Database 10g: SQL Fundamentals | 3-34

Elements of the Date Format Model

 Time elements format the time portion of the date:

HH24:MI:SS AM 15:45:32 PM

* Add character strings by enclosing them in double
guotation marks:

DD "of"™ MONTH 12 of OCTOBER

* Number suffixes spell out numbers:

ddspth fourteenth

3-35 Copyright © 2004, Oracle. All rights reserved.

Date Format Elements: Time Formats

Use the formats that are listed in the following tables to display time information and literals
and to change numerals to spelled numbers.

Element Description

AM or PM Meridian indicator

AM. or P.M. Meridian indicator with periods

HH or HH12 or HH24 Hour of day, or hour (1—12), or hour (0—23)
Mi Minute (0-59)

SS Second (0-59)

SSSSS Seconds past midnight (0—86399)

Oracle Database 10g: SQL Fundamentals | 3-35

Other Formats

Element Description
/., Punctuation is reproduced in the result.
“of the” Quoted string is reproduced in the result.

Specifying Suffixes to Influence Number Display

Element Description

TH Ordinal number (for example, DDTH for 4TH)

SP Spelled-out number (for example, DDSP for FOUR)

SPTH or THSP Spelled-out ordinal numbers (for example, DDSPTH for
FOURTH)

Oracle Database 10g: SQL Fundamentals | 3-36

Using the TO_CHAR Function with Dates

SELECT last _name,

TO_CHAR(hire_date, “fmDD Month YYYY*")
AS HIREDATE
FROM employees;

| LAST_NAME HIREDATE
[King 17 June 1987
[Kochhar 21 September 1959
|De Haan 13 Januoary 1993
|Hun0|d 3 January 1990
[Ernst 21 May 1991
|L0rentz 7 Febroary 1959
|M0urgos 16 Novernber 1999
20 rows selected.
3-37 Copyright © 2004, Oracle. All rights reserved.

Using the TO_CHAR Function with Dates

The SQL statement in the slide displays the last names and hire dates for all the employees.
The hire date appears as 17 June 1987.

Example

Modify the slide example to display the dates in a format that appears as “Seventeenth of
June 1987 12:00:00 AM.”
SELECT last _name,
TO_CHAR(hire_date,
"fmDdspth "of"" Month YYYY fmHH:MI1:SS AM™)

HIREDATE

FROM employees;
| LAST NAME | HIREDATE
King Seventeenth of June 1987 12:00:00 AM
[Kochhar Twenty-First of September 1989 12:00:00 AM

Notice that the month follows the format model specified; in other words, the first letter is
capitalized and the rest are lowercase.

Oracle Database 10g: SQL Fundamentals | 3-37

Using the TO_CHAR Function with Numbers

TO_CHAR(number, “format_model*™)

These are some of the format elements that you can
use with the TO_CHAR function to display a number

value as a character:

Element Result

9 Represents a number

0 Forces a zero to be displayed

$ Places a floating dollar sign

L Uses the floating local currency symbol

- Prints a decimal point

. Prints a comma as thousands indicator
3-38 Copyright © 2004, Oracle. All rights reserved.

Using the TO_CHAR Function with Numbers

When working with number values such as character strings, you should convert those
numbers to the character data type using the TO_CHAR function, which translates a value of
NUMBER data type to VARCHARZ2 data type. This technique is especially useful with
concatenation.

Oracle Database 10g: SQL Fundamentals | 3-38

Using the TO_CHAR Function with Numbers (continued)
Number Format Elements

If you are converting a number to the character data type, you can use the following format

elements:
Element | Description Example Result
9 Numeric position (number of 9s determine display | 999999 1234
width)
0 Display leading zeros 099999 001234
$ Floating dollar sign $999999 $1234
L Floating local currency symbol L.999999 FF1234
D Returns in the specified position the decimal 99D99 99.99
character. The default is a period (.).
. Decimal point in position specified 999999.99 1234.00
G Returns the group separator in the specified 9,999 9G999
position. You can specify multiple group
separators in a number format model.
: Comma in position specified 999,999 1,234
MI Minus signs to right (negative values) 999999MI 1234-
PR Parenthesize negative numbers 999999PR <1234>
EEEE Scientific notation (format must specify four Es) 99.999EEEE | 1.234E+03
U Returns in the specified position the "Euro™ (or U9999 €1234
other) dual currency
V Multiply by 10 n times (n = number of 9s after V) | 9999V99 123400
S Returns the negative or positive value S9999 -1234 or
+1234
B Display zero values as blank, not 0 B9999.99 1234.00

Oracle Database 10g: SQL Fundamentals | 3-39

Using the TO_CHAR Function with Numbers

SELECT| TO_CHAR(salary, "$99,999.00") SALARY
FROM employees

WHERE last _name = “Ernst”;

| SALARY
[$5,000 00

3-40 Copyright © 2004, Oracle. All rights reserved.

Guidelines

» The Oracle server displays a string of number signs (#) in place of a whole number
whose digits exceed the number of digits that is provided in the format model.

The Oracle server rounds the stored decimal value to the number of decimal places that
is provided in the format model.

Oracle Database 10g: SQL Fundamentals | 3-40

Using the TO_NUMBER and TO_DATE
Functions

 Convert a character string to a number format
using the TO_NUMBER function:

TO_NUMBER(char[, "format_model~])

 Convert a character string to a date format using
the TO_DATE function:

TO_DATE(char[, "format_model™])

* These functions have an fx modifier. This
modifier specifies the exact matching for the
character argument and date format model of a
TO_DATE function.

3-41 Copyright © 2004, Oracle. All rights reserved.

Using the TO_NUMBER and TO_DATE Functions
You may want to convert a character string to either a number or a date. To accomplish this
task, use the TO_NUMBER or TO_DATE functions. The format model that you choose is
based on the previously demonstrated format elements.
The x modifier specifies exact matching for the character argument and date format model
of a TO_DATE function:
* Punctuation and quoted text in the character argument must exactly match (except for
case) the corresponding parts of the format model.
* The character argument cannot have extra blanks. Without X, Oracle ignores extra
blanks.

* Numeric data in the character argument must have the same number of digits as the
corresponding element in the format model. Without £x, numbers in the character

argument can omit leading zeros.

Oracle Database 10g: SQL Fundamentals | 3-41

Using the TO_NUMBER and TO_DATE Functions (continued)

Example

Display the name and hire date for all employees who started on May 24, 1999. Because the
Tx modifier is used, an exact match is required and the spaces after the word May are not
recognized:
SELECT last _name, hire_date
FROM employees
WHERE hire_date
*

TO_DATE("May 24, 1999", "fxMonth DD, YYYY");

WHERE hire_date

TO_DATE("May 24, 1999", "fxMonth DD, YYYY®)
*
ERROR at line 3:

ORA-01858: a non-numeric character was found where a numeric was
expected

Oracle Database 10g: SQL Fundamentals | 3-42

RR Date Format

Current Year Specified Date RR Format | YY Format
1995 27-OCT-95 1995 1995
1995 27-OCT-17 2017 1917
2001 27-OCT-17 2017 2017
2001 27-OCT-95 1995 2095
If the specified two-digit year is:
0-49 50-99
If two digits The return dateisin | The return dateis in
of the 0-49 | the current century | the century before
current the current one
year are: The return dateis in | The return date is in
50-99 | the century after the current century
the current one
3-43 Copyright © 2004, Oracle. All rights reserved.

RR Date Format Element

The RR date format is similar to the YY element, but you can use it to specify different
centuries. Use the RR date format element instead of YY so that the century of the return
value varies according to the specified two-digit year and the last two digits of the current

year. The table in the slide summarizes the behavior of the RR element.

Current Year Given Date Interpreted (RR) Interpreted (YY)
1994 27-OCT-95 1995 1995
1994 27-0CT-17 2017 1917
2001 27-OCT-17 2017 2017

Oracle Database 10g: SQL Fundamentals | 3-43

Example of RR Date Format

To find employees hired prior to 1990, use the RR date

format, which produces the same results whether the
command is run in 1999 or now:

SELECT last_name, TO_CHAR(hire_date, "DD-Mon-YYYY®)
FROM employees
WHERE hire_date < TO_DATE("01-Jan-90", "DD-Mon-RR");

| LAST_NAME | TO_CHAR(HIR
[King [17-Jun-1987
[Kochhar [21-Sep-1983
[whalen [17-Sep-1987
3-44 Copyright © 2004, Oracle. All rights reserved.

Example of RR Date Format

To find employees who were hired prior to 1990, the RR format can be used. Because the
current year is greater than 1999, the RR format interprets the year portion of the date from
1950 to 1999.

The following command, on the other hand, results in no rows being selected because the
YY format interprets the year portion of the date in the current century (2090).
SELECT last_name, TO _CHAR(hire_date, "DD-Mon-yyyy")
FROM employees
WHERE TO_DATE(hire_date, "DD-Mon-yy") < "01-Jan-1990";

no rows selected

Oracle Database 10g: SQL Fundamentals | 3-44

Nesting Functions

* Single-row functions can be nested to any level.

* Nested functions are evaluated from deepest level
to the least deep level.

F3(F2(,arg2),arg3)

Step 1 = Result

Step 2 = Result 2

Step 3=Result 3

3-45 Copyright © 2004, Oracle. All rights reserved.

Nesting Functions

Single-row functions can be nested to any depth. Nested functions are evaluated from the
innermost level to the outermost level. Some examples follow to show you the flexibility of
these functions.

Oracle Database 10g: SQL Fundamentals | 3-45

Nesting Functions

SELECT last name,

LUPPER(CONCAT(SUBSTR (LAST_NAME, 1, 8), "_US"))|
FROM employees — —
WHERE department_id = 60;

LAST HAME UPPER(CONCAT(SUBSTR{LAST_NAME,1,8
Hurnold HUMOLD US
Ernst ERMST_US
Laorentz LORENTZ_US

3-46 Copyright © 2004, Oracle. All rights reserved.

Nesting Functions (continued)

The slide example displays the last names of employees in department 60. The evaluation of
the SQL statement involves three steps:

1. The inner function retrieves the first eight characters of the last name.
Resultl = SUBSTR (LAST_NAME, 1, 8)

2. The outer function concatenates the result with _US.
Result2 = CONCAT(Resultl, " _US")

3. The outermost function converts the results to uppercase.

The entire expression becomes the column heading because no column alias was given.
Example

Display the date of the next Friday that is six months from the hire date. The resulting date
should appear as Friday, August 13th, 1999. Order the results by hire date.

SELECT TO_CHAR(NEXT_DAY(ADD_MONTHS
(hire_date, 6), "FRIDAY"),
"fmDay, Month DDth, YYYY®)
"Next 6 Month Review"

FROM employees

ORDER BY hire_date;

Oracle Database 10g: SQL Fundamentals | 3-46

General Functions

The following functions work with any data type and
pertain to using nulls:

* NVL (exprl, expr2)

* NVL2 (exprl, expr2, expr3)

* NULLIF (exprl, expr2)

« COALESCE (exprl, expr2, ..., exprn)

3-47 Copyright © 2004, Oracle. All rights reserved.

General Functions

These functions work with any data type and pertain to the use of null values in the
expression list.

Function Description

NVL Converts a null value to an actual value

NVL2 If exprl is not null, NVL2 returns expr2. If exprl is null, NVL2
returns expr3. The argument exprl can have any data type.

NULLIF Compares two expressions and returns null if they are equal; returns
the first expression if they are not equal

COALESCE | Returns the first non-null expression in the expression list

Note: For more information about the hundreds of functions available, see “Functions” in
Oracle SQL Reference.

Oracle Database 10g: SQL Fundamentals | 3-47

NVL Function

Converts a null value to an actual value:

 Datatypes that can be used are date, character,
and number.

 Datatypes must match:
— NVL(commission_pct,0)
— NVL(hire_date, "01-JAN-97%)
— NVL(Job _1d,"No Job Yet*®)

3-48 Copyright © 2004, Oracle. All rights reserved.

NVL Function
To convert a null value to an actual value, use the NVL function.
Syntax
NVL (exprl, expr2)

In the syntax:
- exprlisthe source value or expression that may contain a null
- expr2 isthe target value for converting the null

You can use the NVL function to convert any data type, but the return value is always the
same as the data type of exprl.

NVL Conversions for Various Data Types

Data Type Conversion Example

NUMBER NVL(number_column,9)

DATE NVL(date_column, *01-JAN-957)

CHAR or VARCHARZ2 NVL(character_column, “Unavailable®)

Oracle Database 10g: SQL Fundamentals | 3-48

Using the NVL Function

SELECT last name, salary,iNVL(commission pct, O)E:< 1)

[(salary*12) + (salary*12*NVL(commission_pct, 0)) AN_SAL|

FROM employees;

[LAST_NAME

SALARY | NVL({COMMISSION_PCT,0)

AN_SAL

|King

2

4000 | 288000

|Kochhar

1

7000 || 204000

|De Haan

1

7000 || 204000

|Huno|d

5000

|Ernst

5000 || 72000

|L0rentz

4200 || &0400

|M0urgos

5800 || B9R00

o g e e e e e o e |

|
|
|
|
| 105000
|
|
|
|

|Rajs

3500 || 42000

20 rowws selected.

3-49

Copyright © 2004, Oracle. All rights reserved.

Using the NVL Function

To calculate the annual compensation of all employees, you need to multiply the monthly
salary by 12 and then add the commission percentage to the result:
SELECT last_name, salary, commission_pct,

(salary*12) + (salary*12*commission_pct) AN_SAL
FROM employees;
| LAST_NAME | SALARY | COMMISSION_PCT | AN_SAL
|Vargas | 24800 | |
Zlatkey | 10500 | 2| 151200
bl | 11000 | 3| 171600
Taylor | 8600 | 2| 123840

Notice that the annual compensation is calculated for only those employees who earn a
commission. If any column value in an expression is null, the result is null. To calculate
values for all employees, you must convert the null value to a number before applying the
arithmetic operator. In the example in the slide, the NVL function is used to convert null

values to zero.

Oracle Database 10g: SQL Fundamentals | 3-49

Using the NVL2 Function

— 7\
SELECT last name, salary, [commission pctl——(1)

NVL2(commission_pct, 2
"SAL+COMM®, ®"SAL") iIncome
FROM employees WHERE department_id IN (50, 80);

| LAST_NAME [saLary COMMISSION_PCT INCOME
[Ziotkey | 10500 2 |3AL+COMM
[&bel | 11000 3 |SAL+COMM
[Taylor | f600 2 |SAL+COMM
[Mourgas | 5800 SAL
[Rajs | 3600 SAL
[Davies | 3100 SAL
[Matos | 2600 SAL
[wargas | 2500 SAL
8 rows selected.

3-50 Copyright © 2004, Oracle. All rights reserved.

Using the NVL2 Function

The NVL2 function examines the first expression. If the first expression is not null, then the
NVL2 function returns the second expression. If the first expression is null, then the third
expression is returned.

Syntax
NVL2(exprl, expr2, expr3)
In the syntax:
- exprl isthe source value or expression that may contain null
- expr2isthe value that is returned if exprl is not null
- expr3isthe value that is returned if expr2 is null

In the example shown in the slide, the COMMISSION_PCT column is examined. If a value
is detected, the second expression of SAL+COMM is returned. If the COMMISSION_PCT
column holds a null value, the third expression of SAL is returned.

The argument exprl can have any data type. The arguments expr2 and expr3 can have
any data types except LONG. If the data types of expr2 and expr3 are different, the
Oracle server converts expr3 to the data type of expr2 before comparing them unless
expr3isanull constant. In the latter case, a data type conversion is not necessary. The data
type of the return value is always the same as the data type of expr2, unless expr2 is
character data, in which case the return value’s data type is VARCHAR2.

Oracle Database 10g: SQL Fundamentals | 3-50

Using the NULLIF Function

©

SELECT Ffirst _name, |LENGTH(First name) "‘exprl’

last_name, |LENGTH(last_name) “expr2", —@ :

INULLIF(LENGTH(first_name), LENGTH(last _name)) result
FROM employees;

| FIRST_NAME expri Il LAST_NAME
B |[King

|Neena 5 IIKochhar

|Lex 3 I|De Haan

| exprZ RESULT
I
I
I
IAIexander | 9 ||Hun0|d
I
I
I
I
I

ISteven

W m o

|E|ruce 5 I|Ernst

5 I|Lorentz
a ||N10urgos
B |Rajs

3 ||Davies

(i)

|Diana

|Kevin

|Trenna
|Cur1is

[a I e B A & = A B A R =

20 rowes selected.

3-51 Copyright © 2004, Oracle. All rights reserved.

Using the NULLIF Function

The NULLIF function compares two expressions. If they are equal, the function returns null.
If they are not equal, the function returns the first expression. You cannot specify the literal
NULL for the first expression.

Syntax
NULLIF (exprl, expr2)
In the syntax:
- exprlisthe source value compared to expr2
- expr2 isthe source value compared with exprl (If it is not equal to exprl, exprl
is returned.)
In the example shown in the slide, the length of the first name in the EMPLOYEES table is
compared to the length of the last name in the EMPLOYEES table. When the lengths of the
names are equal, a null value is displayed. When the lengths of the names are not equal, the
length of the first name is displayed.
Note: The NULL IF function is logically equivalent to the following CASE expression. The

CASE expression is discussed on a subsequent page:
CASE WHEN exprl = expr 2 THEN NULL ELSE exprl END

Oracle Database 10g: SQL Fundamentals | 3-51

Using the COALESCE Function

 The advantage of the COALESCE function over the
NVL function is that the COALESCE function can
take multiple alternate values.

e If the first expression is not null, the COALESCE

function returns that expression; otherwise, it
does a COALESCE of the remaining expressions.

3-52 Copyright © 2004, Oracle. All rights reserved.

Using the COALESCE Function
The COALESCE function returns the first non-null expression in the list.
Syntax
COALESCE (exprl, expr2, ... exprn)

In the syntax:
- exprl returns this expression if it is not null
- expr2 returns this expression if the first expression is null and this expression is not
null
- exprn returns this expression if the preceding expressions are null

All expressions must be of the same data type.

Oracle Database 10g: SQL Fundamentals | 3-52

Using the COALESCE Function

SELECT last _name,

| COALESCE(manager_id,commission _pct, -1) comm |
FROM employees
ORDER BY commission_pct;

LAST HAME COMM
Grant 149
Llotkey 100
Taylor 149
Abel 149
King -1
Kochhar 100
De Haan 100
20 rows selected.
3-53 Copyright © 2004, Oracle. All rights reserved.

Using the COALESCE Function (continued)

In the example shown in the slide, if the MANAGER__ID value is not null, it is displayed. If
the MANAGER_ID value is null, then the COMMISSION_PCT is displayed. If the
MANAGER__ID and COMMISSION_PCT values are null, then the value -1 is displayed.

Oracle Database 10g: SQL Fundamentals | 3-53

Conditional Expressions

* Provide the use of IF-THEN-ELSE logic within a
SQL statement

« Use two methods:
— CASE expression
— DECODE function

3-54 Copyright © 2004, Oracle. All rights reserved.

Conditional Expressions

Two methods used to implement conditional processing (IF-THEN-ELSE logic) in a SQL
statement are the CASE expression and the DECODE function.

Note: The CASE expression complies with ANSI SQL. The DECODE function is specific to
Oracle syntax.

Oracle Database 10g: SQL Fundamentals | 3-54

CASE Expression

Facilitates conditional inquiries by doing the work of
an IF-THEN-ELSE statement:

CASE expr WHEN comparison_exprl THEN return_exprl
[WHEN comparison_expr2 THEN return_expr2
WHEN comparison_exprn THEN return_exprn
ELSE else_expr]

END

3-55 Copyright © 2004, Oracle. All rights reserved.

CASE Expression
CASE expressions let you use IF-THEN-ELSE logic in SQL statements without having to
invoke procedures.
In a simple CASE expression, the Oracle server searches for the first WHEN ... THEN
pair for which expr is equal to comparison_expr and returns return_expr. If none
of the WHEN . .. THEN pairs meet this condition, and if an ELSE clause exists, then the
Oracle server returns e lse_expr. Otherwise, the Oracle server returns null. You cannot
specify the literal NULL for all the return_exprs and the else_expr.

All of the expressions (expr, comparison_expr, and return_expr) must be of the
same data type, which can be CHAR, VARCHAR2, NCHAR, or NVARCHAR2.

Oracle Database 10g: SQL Fundamentals | 3-55

Using the CASE Expression

Facilitates conditional inquiries by doing the work of

an IF-THEN-ELSE statement:

SELECT last_name, job id, salary,

CASE job_id WHEN "IT_PROG"™ THEN 1.10*salary
WHEN ST _CLERK®" THEN 1.15*salary
WHEN "SA REP" THEN 1.20*salary

ELSE salary END "REVISED_SALARY"

FROM employees;

| LAST_NAME | JOB_ID [sALary REVISED_SALARY
[Lorentz [T_PrROG | 4200 4620
[Mourgas [ST_man | 5800 5800
[Rajs [ST_CLERK | 3500 4025
[Gietz [ac_accounT | 5300 5300
20 rows selected.

3-56 Copyright © 2004, Oracle. All rights reserved.

Using the CASE Expression

In the SQL statement in the slide, the value of JOB_ID is decoded. If JOB_ID is
IT_PROG, the salary increase is 10%; if JOB_ID is ST_CLERK, the salary increase is
15%; if JOB_ID is SA_REP, the salary increase is 20%. For all other job roles, there is no
increase in salary.

The same statement can be written with the DECODE function.

This is an example of a searched CASE expression. In a searched CASE expression, the

search occurs from left to right until an occurrence of the listed condition is found, and then
it returns the return expression. If no condition is found to be true, and if an ELSE clause
exists, the return expression in the ELSE clause is returned; otherwise, NULL is returned.
SELECT last_name,salary,
(CASE WHEN salary<5000 THEN “Low"
WHEN salary<10000 THEN *"Medium*®
WHEN salary<20000 THEN "Good*
ELSE “Excellent”
END) qualified_salary
FROM employees;

Oracle Database 10g: SQL Fundamentals | 3-56

DECODE Function

Facilitates conditional inquiries by doing the work of a
CASE expression or an IF-THEN-ELSE statement:

DECODE(col |expression, searchl, resultl

[, search2, result2,...,]
[, default])

3-57 Copyright © 2004, Oracle. All rights reserved.

DECODE Function

The DECODE function decodes an expression in a way similar to the IF-THEN-ELSE logic
that is used in various languages. The DECODE function decodes expression after

comparing it to each search value. If the expression is the same as search, result is
returned.

If the default value is omitted, a null value is returned where a search value does not match
any of the result values.

Oracle Database 10g: SQL Fundamentals | 3-57

Using the DECODE Function

SELECT last name, job i1d, salary,

DECODE(job_i1d, “IT_PROG®", 1.10*salary,
"ST_CLERK", 1.15*salary,
"SA REP", 1.20*salary,

salary)
REVISED_SALARY
FROM employees;

| LAST_NAME | JOB_ID [saLarry REVISED_SALARY
[Lorentz [T_PROG | 4200 4620
[Mourgas [ST_man | 5800 5800
[Rajs [ST_CLERK | 3500 4025
[Gistz [ac_accounT | &300 f300
20 rows selected.

3-58 Copyright © 2004, Oracle. All rights reserved.

Using the DECODE Function

In the SQL statement in the slide, the value of JOB_ID is tested. If JOB_ID is 1T_PROG,
the salary increase is 10%; if JOB_ID is ST_CLERK, the salary increase is 15%; if

JOB_ 1D is SA_REP, the salary increase is 20%. For all other job roles, there is no increase
in salary.

The same statement can be expressed in pseudocode as an IF-THEN-ELSE statement:

IF job _id = "IT_PROG" THEN salary = salary*1.10
IF job id = "ST _CLERK" THEN salary = salary*1.15
IF job_id = "SA_REP* THEN salary = salary*1.20
ELSE salary = salary

Oracle Database 10g: SQL Fundamentals | 3-58

Using the DECODE Function

Display the applicable tax rate for each employee in
department 80:

SELECT last name, salary,

DECODE (TRUNC(salary/2000, 0),

, 0.00,

, 0.09,

.20,

.30,

.40,

.42,

.44,

.45) TAX_RATE

U~ WNEO
ecNolNeoNoNoNe

FROM employees
WHERE department_id = 80;

3-59 Copyright © 2004, Oracle. All rights reserved.

Using the DECODE function (continued)

This slide shows another example using the DECODE function. In this example, we
determine the tax rate for each employee in department 80 based on the monthly salary. The
tax rates are as follows:

Monthly Salary Range Tax Rate

$0.00-1,999.99 00%

$2,000.00-3,999.99 09%

$4,000.00-5,999.99 20%

$6,000.00-7,999.99 30%

$8,000.00-9,999.99 40%

$10,000.00-11,999.99 42%

$12,200.00-13,999.99 44%

$14,000.00 or greater 45%

| LAST_NAME | SALARY | TAX_RATE

\Zlotkey | 10500 | 42
Abel | 11000 | 42
Taylor | 8600 | 4

Oracle Database 10g: SQL Fundamentals | 3-59

3-60

Summary

In this lesson, you should have learned how to:
* Perform calculations on data using functions
* Modify individual data items using functions

* Manipulate output for groups of rows using
functions

e Alter date formats for display using functions
 Convert column data types using functions
* Use NVL functions

 Use IF-THEN-ELSE logic

Copyright © 2004, Oracle. All rights reserved.

Summ

ary

Single-row functions can be nested to any level. Single-row functions can manipulate the
following:

Character data: LOWER, UPPER, INITCAP, CONCAT, SUBSTR, INSTR, LENGTH
Number data; ROUND, TRUNC, MOD

Date data: MONTHS BETWEEN, ADD_MONTHS, NEXT_DAY, LAST DAY, ROUND,
TRUNC

Remember the following:

Date values can also use arithmetic operators.

Conversion functions can convert character, date, and numeric values: TO_CHAR,
TO_DATE, TO_NUMBER

There are several functions that pertain to nulls, including NVL, NVL2, NULLIF, and
COALESCE.

IF-THEN-ELSE logic can be applied within a SQL statement by using the CASE
expression or the DECODE function.

SYSDATE and DUAL

SYSDATE is a date function that returns the current date and time. It is customary to select
SYSDATE from a dummy table called DUAL.

Oracle Database 10g: SQL Fundamentals | 3-60

Practice 3: Overview of Part 2

This practice covers the following topics:

e Creating queries that require the use of numeric,
character, and date functions

* Using concatenation with functions

* Writing case-insensitive queries to test the
usefulness of character functions

* Performing calculations of years and months of
service for an employee

 Determining the review date for an employee

3-61 Copyright © 2004, Oracle. All rights reserved.

Practice 3: Overview of Part 2

Part 2 of this lesson’s practice provides a variety of exercises using different functions that
are available for character, number, and date data types. For Part 2, complete exercises 7-14.

Remember that for nested functions, the results are evaluated from the innermost function to
the outermost function.

Oracle Database 10g: SQL Fundamentals | 3-61

Practice 3

Part 1
1. Write a query to display the current date. Label the column Date.

Date
31-DEC-03

2. The HR department needs a report to display the employee number, last name, salary, and
salary increased by 15.5% (expressed as a whole number) for each employee. Label the
column New Salary. Place your SQL statement in a text file named
lab 03 02.sqgl.

3. Runyour query in the file lab_03_02.sql .

EMPLOYEE_ID LAST_NAME SALARY New Salary
100 King 24000 27720
101 Kochhar 17000 19635
202 Fay BOO0 B350
205 Higgins 12000 13860
2068 Gietz 5300 H557

20 rows selected.

4. Modify your query lab_03_02.sql to add a column that subtracts the old salary from
the new salary. Label the column Increase. Save the contents of the file as
lab 03 04.sqgl. Run the revised query.

EMPLOYEE_ID LAST NAME SALARY Mew 5alary Increase

100 King 24000 27720 3720
101 Kochhar 17000 19635 2635
102 De Haan 17000 19635 2635
202 Fay BOO0 B950 530
205 Higgins 12000 13860 1860
206 Gietz 5300 = 1287

20 rows selected.

Oracle Database 10g: SQL Fundamentals | 3-62

Practice 3 (continued)

5. Write a query that displays the last name (with the first letter uppercase and all other
letters lowercase) and the length of the last name for all employees whose name starts
with the letters J, A, or M. Give each column an appropriate label. Sort the results by the
employees’ last names.

Name Length
Ahbel 4
hatos]
Maurgaos 7

Rewrite the query so that the user is prompted to enter a letter that starts the last name.
For example, if the user enters H when prompted for a letter, then the output should show
all employees whose last name starts with the letter H.

Name Length
Hartstein 4
Higgins 7
Hunold b

Oracle Database 10g: SQL Fundamentals | 3-63

Practice 3 (continued)

6. The HR department wants to find the length of employment for each employee. For each
employee, display the last name and calculate the number of months between today and
the date on which the employee was hired. Label the column MONTHS_WORKED. Order
your results by the number of months employed. Round the number of months up to the
closest whole number.

Note: Your results will differ.

LAST HAME MONTHS WORKED
Llotkey 47
Mourgos Tl
(srant 55
Larentz 59
Yargas bb
Taylor 2
Matos 70
Fay /B
Davies g3
Abel 9
Hartstein 94
Fajs 895
Higgins 115
Gietz 1145
De Haan 132
Ernst 151
Hunold 168
Kochhar 171
YWhalen 195
King 195

20 rows selected.

Oracle Database 10g: SQL Fundamentals | 3-64

Practice 3 (continued)
Part 2

7. Create a report that produces the following for each employee:
<employee last name> earns <salary> monthly but wants <3
times salary>. Label the column Dream Salaries.

Dream Salaries
King earns §.24 000.00 manthly but wants $72 000.00.
Kochhar earns $17 000,00 manthly but wants 51 ,000.00.
De Haan earns §17 ,000.00 monthly but wants $51 ,000.00.

Hartstein earns $13,000.00 monthly but wants $39 000,00,
Fay earns $6,000.00 monthly but wants $13,000.00.
Higging earns $12,000.00 monthly but wants $36 000.00.
Gletz earns $8 30000 monthly but wants $24 S00.00.

20 rows selected.

If you have time, complete the following exercises:

8. Create a query to display the last name and salary for all employees. Format the salary to
be 15 characters long, left-padded with the $ symbol. Label the column SALARY.

LAST NAME SALARY
King PREREREFHE24000
Kochhar PRRERRR R 7000
De Haan bhREREREER1 7000
Hunaold PRRRERRRRRRR000
Fay bhE bR 0000
Higgins FRPRRREREH1 2000
(Gietz BERRR R ERHEEI00

20 rows selected.

Oracle Database 10g: SQL Fundamentals | 3-65

Practice 3 (continued)
9. Display each employee’s last name, hire date, and salary review date, which is the first

Monday after six months of service. Label the column REV IEW. Format the dates to
appear in the format similar to “Monday, the Thirty-First of July, 2000.”

LAST _NAME HIRE_DATE

King
Kochhar
De Haan
Hunold
Ernst
Lorentz

Higgins
Gietz

17-JUIN-57
21-5EP-859
13-JAN-23
03-JAN-80
21-MAY-51
07-FEB-24

07 -JLIn-24
07-JLIN-594

20 rows selected.

REVIEW

Monday, the Twenty-First of December, 1987
Manday, the Twenty-Sixth of March, 1930
Manday, the MNineteenth of July, 19593
Manday, the Minth of July, 1950
Maonday, the Twenty-Fifth of Movember, 1991
Manday, the Minth of August, 1993

Manday, the Twelfth of December, 1994
Manday, the Twelfth of December, 1994

10. Display the last name, hire date, and day of the week on which the employee started.

Label the column DAY. Order the results by the day of the week, starting with Monday.

LAST NAME

Grant
Ernst
Moaurgos
Taylor

Lorentz
Fay
fatos

20 rows selected.

HIRE_DATE

24-MAY-55
21-MAY-51
16-MOM-99
24-MAR-55

07-FEB-24
17-AG-27
15-MAR-85

MACMDAY

TLUESDAY
TUESDAY
TUEZDAY

SUMDAY
SUMDAY
SUMDAY

DAY

Oracle Database 10g: SQL Fundamentals | 3-66

Practice 3 (continued)

If you want an extra challenge, complete the following exercises:
11. Create a query that displays the employees’ last names and commission amounts. If an
employee does not earn commission, show “No Commission.” Label the column COMM.

LAST NAME COMM

King Mo Commissian
Kaochhar Mo Commissian
Llotkey 2

Abel i

Taylar 2

Srant 158

YWhalen Mo Commission
Hartstein Mo Commission
Fay Mo Commission
Higgins Mo Commission
etz Mo Commission

20 rows selected.

12.Create a query that displays the first eight characters of the employees’ last names and
indicates the amounts of their salaries with asterisks. Each asterisk signifies a thousand
dollars. Sort the data in descending order of salary. Label the column
EMPLOYEES_AND_THEIR_SALARIES.

EMPLOYEES_AND THEIR_SALARIES

King
kochhar
De Haan

Harste) ="

F

Higgins

Matos ™

“argas ™

20 rows selected.

Oracle Database 10g: SQL Fundamentals | 3-67

Practice 3 (continued)

13. Using the DECODE function, write a query that displays the grade of all employees
based on the value of the column JOB__ID, using the following data:

Job Grade
AD_PRES A
ST_MAN B
IT_PROG C
SA_REP D
ST_CLERK E
None of the above 0

JOB_ID GRA
AC_ACCOUNT
AC_MGR
AD_ASST
AD_PRES
AD_VP
AD_ VP
T PROG
T_PROG
T PROG
MK MAAN
Mk_REP
SA, AN
SA_REP
SA_REP
SA_REP
ST CLERK
ST CLERK
ST CLERK
ST CLERK
ST _MAN

mmmimmm&Q9oooo o o o oo 82 0 o000

20 rows selected.

14. Rewrite the statement in the preceding exercise using the CASE syntax.
Oracle Database 10g: SQL Fundamentals | 3-68

Reporting Aggregated Data
Using the Group Functions

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:

e Identify the available group functions
* Describe the use of group functions
 Group data by using the GROUP BY clause

* Include or exclude grouped rows by using the
HAVING clause

4-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

This lesson further addresses functions. It focuses on obtaining summary information (such
as averages) for groups of rows. It discusses how to group rows in a table into smaller sets
and how to specify search criteria for groups of rows.

Oracle Database 10g: SQL Fundamentals | 4-2

What Are Group Functions?

Group functions operate on sets of rows to give one
result per group.

EMPLOYEES
| DEPARTMENT_ID [saLary
| 50 | 24000
| a0 || 17000
| g0 || 17000
| Cill| 5000
| Ealll B000
| B0 | 4200
I :g I iigg kel i) lety 01 MAX(SALAR
| & u | EMPLOYEES table e
| 50 || 2600
| 50 || 2600
| a0 || 10800
| a0 || 11000
| 80 || 8600
| | 7000
| 10 4400
.20. r.ows selected.
4-3 Copyright © 2004, Oracle. All rights reserved.

Group Functions

Unlike single-row functions, group functions operate on sets of rows to give one result per
group. These sets may comprise the entire table or the table split into groups.

Oracle Database 10g: SQL Fundamentals | 4-3

Types of Group Functions

« AVG
« COUNT
¢ MAX —_
Group
* MIN functions
- STDDEV
e SUM
VARIANCE
4-4 Copyright © 2004, Oracle. All rights reserved.

Types of Group Functions

Each of the functions accepts an argument. The following table identifies the options that

you can use in the syntax:

Function

Description

AVG([DISTINCTJALLIN)

Average value of n, ignoring null values

COUNT({*| [DISTINCT|ALL]expr
1))

Number of rows, where expr evaluates to
something other than null (count all selected
rows using *, including duplicates and rows
with nulls)

MAX([DISTINCT|ALL]expr)

Maximum value of expr, ignoring null values

MINC[DISTINCTJALL]expr)

Minimum value of expr, ignoring null values

STDDEV([DISTINCTJALL]X)

Standard deviation of n, ignoring null values

SUM([DISTINCT[ALL]N)

Sum values of n, ignoring null values

VARTANCE([DISTINCT[ALL]X)

Variance of n, ignoring null values

Oracle Database 10g: SQL Fundamentals | 4-4

Group Functions: Syntax

SELECT [column,] group_function(column), ...
FROM table
[WHERE condition]

[GROUP BY column]
[ORDER BY column];

4-5 Copyright © 2004, Oracle. All rights reserved.

Guidelines for Using Group Functions
- DISTINCT makes the function consider only nonduplicate values; ALL makes it
consider every value, including duplicates. The default is ALL and therefore does not
need to be specified.
» The data types for the functions with an expr argument may be CHAR, VARCHAR2,
NUMBER, or DATE.

» All group functions ignore null values. To substitute a value for null values, use the
NVL, NVL2, or COALESCE functions.

Oracle Database 10g: SQL Fundamentals | 4-5

Using the AVG and SUM Functions

You can use AVG and SUM for numeric data.

SELECT|AVG(salary), MAX(salary),

MIN(salary), SUM(salary)
FROM employees

WHERE job_id LIKE "%REP%";

AVG(SALARY) MAX(SALARY) MIN(SALARY) SUM{SALARY) |
g140 11000 B000 32600

4-6 Copyright © 2004, Oracle. All rights reserved.

Using the Group Functions

You can use AVG, SUM, MIN, and MAX functions against columns that can store numeric

data. The example in the slide displays the average, highest, lowest, and sum of monthly
salaries for all sales representatives.

Oracle Database 10g: SQL Fundamentals | 4-6

Using the MIN and MAX Functions

You can use MIN and MAX for numeric, character, and
date data types.

SELECT|MINChire_date), MAX(hire_date)
FROM employees;
[| MIN{HIRE MAX{HIRE_ |
[17-Jun-a7 29-JAN-00
4-7 Copyright © 2004, Oracle. All rights reserved.

Using the Group Functions (continued)

You can use the MAX and MIN functions for numeric, character, and date data types. The
slide example displays the most junior and most senior employees.

The following example displays the employee last name that is first and the employee last
name that is last in an alphabetized list of all employees:

SELECT MIN(last_name), MAX(last_name)
FROM employees;

| MIN(LAST_NAME) | MAX({LAST_NAME)
bl \Zlotkey

Note: The AVG, SUM, VARIANCE, and STDDEV functions can be used only with numeric
data types. MAX and MIN cannot be used with LOB or LONG data types.

Oracle Database 10g: SQL Fundamentals | 4-7

Using the COUNT Function

COUNT (™) returns the number of rows in a table:
© SELECT[COUNT(®)

FROM employees
WHERE department_id = 50;

| COUNT()
| 5

COUNT (expr) returns the number of rows with non-
null values for the expr:

@ SELECT | COUNT (commissi on_pct)l

FROM employees
WHERE department_id = 80;

| COUNT{COMMISSION_PCT)
| 3

4-8 Copyright © 2004, Oracle. All rights reserved.

COUNT Function

The COUNT function has three formats:
- COUNT(™)
- COUNT(expr)
- COUNT(DISTINCT expr)

COUNT (*) returns the number of rows in a table that satisfy the criteria of the SELECT

statement, including duplicate rows and rows containing null values in any of the columns.
If a WHERE clause is included in the SELECT statement, COUNT (*) returns the number of
rows that satisfy the condition in the WHERE clause.

In contrast, COUNT (expr) returns the number of non-null values that are in the column
identified by expr.

COUNT(DISTINCT expr) returns the number of unique, non-null values that are in the
column identified by expr.

Examples
1. The slide example displays the number of employees in department 50.

2. The slide example displays the number of employees in department 80 who can earn a
commission.

Oracle Database 10g: SQL Fundamentals | 4-8

Using the DISTINCT Keyword

e COUNT(DISTINCT expr) returns the number of
distinct non-null values of the expr.

 To display the number of distinct department
values in the EMPLOYEES table:

SELECT [COUNT(DISTINCT department_id)|
FROM employees;

| COUNT(DISTINCTDEPARTMENT _ID)

4-9 Copyright © 2004, Oracle. All rights reserved.

DISTINCT Keyword
Use the DISTINCT keyword to suppress the counting of any duplicate values in a column.

The example in the slide displays the number of distinct department values that are in the
EMPLOYEES table.

Oracle Database 10g: SQL Fundamentals | 4-9

Group Functions and Null Values

Group functions ignore null values in the column:

SELECT [AVG(commission_pct) |

FROM employees;

| AVG(COMMISSION_PCT)
| 2125

The NVL function forces group functions to include
null values:

SELECT |AVG(NVL(commission_pct, 0))
FROM employees;

@

4-10

| AVG(NVL{COMMISSION_PCT,0))
| 0425

Copyright © 2004, Oracle. All rights reserved.

Group

Functions and Null Values

All group functions ignore null values in the column.
The NVL function forces group functions to include null values.

Examples

1.

The average is calculated based on only those rows in the table where a valid value is
stored in the COMMISSION_PCT column. The average is calculated as the total
commission that is paid to all employees divided by the number of employees
receiving a commission (four).

The average is calculated based on all rows in the table, regardless of whether null
values are stored in the COMMISSION_PCT column. The average is calculated as the

total commission that is paid to all employees divided by the total number of
employees in the company (20).

Oracle Database 10g: SQL Fundamentals | 4-10

Creating Groups of Data

EMPLOYEES
| DEPARTMENT_ID SALARY
[1 10 4400 || 4400
| 0 13000
| 2n | Ao || 9900
| &0 5800
| 50 | 3500 [DEPARTMENT_ID [AVG(SALARY)
| 50| 3im| 3500 Average | 0] 4400
| 50 2500 salary in | 0] 5500
| 50 2600 EMPLOYEES | 50 | 3500
| B0 5000 | BO | B400
| B0 | son| 6400 table for each | 80| 100333333
| B0 4200 | department | o0 19333.3333
| &0 10500 | | 110 10150
| g0 8600 || 10033 | | 7000
| a0 11000
I S
[1 o0 | 17000
20 rowes selected.

4-11 Copyright © 2004, Oracle. All rights reserved.

Creating Groups of Data

Until this point in our discussion, all group functions have treated the table as one large
group of information.

At times, however, you need to divide the table of information into smaller groups. This can
be done by using the GROUP BY clause.

Oracle Database 10g: SQL Fundamentals | 4-11

Creating Groups of Data:
GROUP BY Clause Syntax

SELECT column, group_function(column)
FROM table

[WHERE condition]

'[GROUP BY group_by_expression] |

[ORDER BY column];

4-12

You can divide rows in atable into smaller groups by
using the GROUP BY clause.

Copyright © 2004, Oracle. All rights reserved.

GROUP BY Clause

You can use the GROUP BY clause to divide the rows in a table into groups. You can then
use the group functions to return summary information for each group.

In the syntax:
group_by expression specifies columns whose values determine the basis for

grouping rows

Guidelines

If you include a group function in a SELECT clause, you cannot select individual
results as well, unless the individual column appears in the GROUP BY clause. You
receive an error message if you fail to include the column list in the GROUP BY clause.
Using a WHERE clause, you can exclude rows before dividing them into groups.

You must include the columns in the GROUP BY clause.

You cannot use a column alias in the GROUP BY clause.

Oracle Database 10g: SQL Fundamentals | 4-12

Using the GROUP BY Clause

All columns in the SELECT list that are not in group
functions must be in the GROUP BY clause.

SELECT |department_id, AVG(salary)
FROM employees
GROUP BY department_id | ;

| DEPARTMENT _ID | AVG(SALARY)

| 10| 4400
| 20 9500
| 50 || 3500
| B0 || £400
| a0 || 100333333
| 90 || 19333.3333
| 110 10150
| | 7000
8 rows selected.

4-13 Copyright © 2004, Oracle. All rights reserved.

Using the GROUP BY Clause

When using the GROUP BY clause, make sure that all columns in the SELECT list that are
not group functions are included in the GROUP BY clause. The example in the slide displays
the department number and the average salary for each department. Here is how this
SELECT statement, containing a GROUP BY clause, is evaluated:
* The SELECT clause specifies the columns to be retrieved, as follows:
- Department number column in the EMPLOYEES table
- The average of all the salaries in the group that you specified in the GROUP BY
clause
* The FROM clause specifies the tables that the database must access: the EMPLOYEES
table.
» The WHERE clause specifies the rows to be retrieved. Because there is no WHERE
clause, all rows are retrieved by default.
* The GROUP BY clause specifies how the rows should be grouped. The rows are
grouped by department number, so the AVG function that is applied to the salary
column calculates the average salary for each department.

Oracle Database 10g: SQL Fundamentals | 4-13

Using the GROUP BY Clause

The GROUP BY column does not have to be in the
SELECT list.

SELECT AVG(salary)
FROM employees
GROUP BY department_id| ;

AVG(SALARY)

4400

9500

3500

5400
10033.3333
19333.3333
10150

7000

4-14 Copyright © 2004, Oracle. All rights reserved.

Using the GROUP BY Clause (continued)

The GROUP BY column does not have to be in the SELECT clause. For example, the
SELECT statement in the slide displays the average salaries for each department without
displaying the respective department numbers. Without the department numbers, however,
the results do not look meaningful.

You can use the group function in the ORDER BY clause:

SELECT department_id, AVG(salary)
FROM employees

GROUP BY department_id

ORDER BY AVG(salary);

| DEPARTMENT ID | AVG(SALARY)

| 50 | 3500
| 10| 4400
| B0 | 6400
| a0 | 19333.3333

3 rows selected.

Oracle Database 10g: SQL Fundamentals | 4-14

Grouping by More Than One Column

EMPLOYEES
DEPARTMENT ID [JOB_ID [SALARY
90 |AD_PRES 24000
50 [AD_WP 7000
50 |AD WP 17000
[~ ®ofmProG | ooo|
B0 |IT_PROG [mooo
f0 [IT_PROG 4200
50 |ST_MAN 5800
[s0sTClERK [3500
50([ST_CLERK | 3100
50T CLERK | 2600
50 |ST_CLERK 2500
80 [SA_MAN 10500 |
80 |SA_REP 11000
| 80 |[sa_REP [Be00
| 20 [MK_REP 5000
| 110 |[AC_MGR 12000

| 110 |[AC_ACCOUNT

8300

20 rows selected.

4-15

[DEPARTMENT_ID| JOB_ID [SUM(SALARY)

| 10 [aD_AsST | 4400

| 20 Mk van 13000

| 20 [Mk_REP | FO0D

Add the | 50 [ST_CLERK || 11700
salariesin | 50 /(ST MAN | 5500
the EMPLOYEES | &0 |[IT_PROG | 19200
bt | 80 |[5a_man | 10800
v | 80 [sA_REP | 19600
each job, | o0 [aD_PRES | 24000
grouped by | 50 [AD_WP | 34000
department | 110 |[AC_ACCOUNT | 8300
| 110 [AC_MGR | 12000

| [za_REP | 7000

13 rows selected.

Copyright © 2004, Oracle. All rights reserved.

Groups Within Groups

Sometimes you need to see results for groups within groups. The slide shows a report that

displays the total salary that is paid to each job title in each department.

The EMPLOYEES table is grouped first by department number and then by job title within
that grouping. For example, the four stock clerks in department 50 are grouped together, and

a single result (total salary) is produced for all stock clerks in the group.

Oracle Database 10g: SQL Fundamentals | 4-15

Using the GROUP BY Clause
on Multiple Columns

SELECT department_id dept_id, job_id, SUM(salary)
FROM employees
'GROUP BY department_id, job id|;

DEPT_ID [JOB_ID

10 |aD_ASST

20 (MK A

20 |[MK_REP

50 ||ST_CLERK

50 |[ST_man

&0 |[IT_PROG

80 |[sa_man

a0 |[sa_REP

90 |[aD_PRES

g0 |[aD_vP

110 |[AC_ACCOUNT

110 |[AC_MGR
[s2_REP

SUM(SALARY)

4400
13000
G000
11700
5800
19200
10500
19600
24000
34000
5300
12000
7000

13 rows selected.

4-16 Copyright © 2004, Oracle. All rights reserved.

Groups Within Groups (continued)

You can return summary results for groups and subgroups by listing more than one GROUP
BY column. You can determine the default sort order of the results by the order of the
columns in the GROUP BY clause. In the slide example, the SELECT statement containing a
GROUP BY clause is evaluated as follows:
e The SELECT clause specifies the column to be retrieved:
- Department number in the EMPLOYEES table
- Job ID in the EMPLOYEES table
- The sum of all the salaries in the group that you specified in the GROUP BY
clause
* The FROM clause specifies the tables that the database must access: the EMPLOYEES
table.
e The GROUP BY clause specifies how you must group the rows:
- First, the rows are grouped by department number.
- Second, the rows are grouped by job ID in the department number groups.

So the SUM function is applied to the salary column for all job IDs in each department
number group.

Oracle Database 10g: SQL Fundamentals | 4-16

lllegal Queries
Using Group Functions

Any column or expression in the SELECT list that is not
an aggregate function must be in the GROUP BY clause:

SELECT department_id, COUNT(last_name)
FROM employees;

SELECT department_id, COUNT(last_name)
*

ERROR at line 1:
ORA-00937: not a single-group group function

Column missing in the GROUP BY clause

4-17 Copyright © 2004, Oracle. All rights reserved.

lllegal Queries Using Group Functions

Whenever you use a mixture of individual items (DEPARTMENT _1D) and group functions
(COUNT) in the same SELECT statement, you must include a GROUP BY clause that
specifies the individual items (in this case, DEPARTMENT _ID). If the GROUP BY clause is
missing, then the error message “not a single-group group function” appears and an asterisk
(*) points to the offending column. You can correct the error in the slide by adding the
GROUP BY clause:

SELECT department_id, count(last_name)

FROM employees

GROUP BY department_id;
| DEPARTMENT ID | COUNT{LAST NAME)
| 10| 1
| 20 | 2
|

3 rows selected.

Any column or expression in the SELECT list that is not an aggregate function must be in
the GROUP BY clause.

Oracle Database 10g: SQL Fundamentals | 4-17

lllegal Queries
Using Group Functions

* You cannot use the WHERE clause to restrict groups.
* You use the HAVING clause to restrict groups.
* You cannot use group functions in the WHERE clause.

SELECT department_id, AVG(salary)
FROM employees

WHERE AVG(salary) > 8000

GROUP BY department_1id;

WHERE AVG(salary) > 8000
*

ERROR at line 3:
ORA-00934: group function is not allowed here

Cannot use the WHERE clause to restrict groups

4-18 Copyright © 2004, Oracle. All rights reserved.

lllegal Queries Using Group Functions (continued)

The WHERE clause cannot be used to restrict groups. The SELECT statement in the slide
example results in an error because it uses the WHERE clause to restrict the display of
average salaries of those departments that have an average salary greater than $8,000.

You can correct the error in the example by using the HAVING clause to restrict groups:
SELECT department_id, AVG(salary)
FROM employees
HAVING AVG(salary) > 8000
GROUP BY department_id;

| DEPARTMENT ID | AVG(SALARY)

| 20 | 9500
| a0 | 10033.3333
| a0 | 19333.3333
| 10 | 10140

Oracle Database 10g: SQL Fundamentals | 4-18

Restricting Group Results

EMPLOYEES

[DEPARTMENT_ID | SALARY
50 ZA000]
a0 17000
a0 17000
B0 5000
B0 || B000
B0 4200
& | 00 The maximum | DEPARTMENT_ID | MAX{SALARY)
& | o0 sal ary | 20 13000
=) xm| per department I gg I ;lggg
£0 | 2500 when it is | 0] 12000
m 1 greater than
Elll BE00 $10,000
20 B000
110 || 12000
10 | 5300

20 rows selected.

4-19 Copyright © 2004, Oracle. All rights reserved.

Restricting Group Results
In the same way that you use the WHERE clause to restrict the rows that you select, you use
the HAVING clause to restrict groups. To find the maximum salary in each of the
departments that have a maximum salary greater than $10,000, you need to do the
following:
1. Find the average salary for each department by grouping by department number.
2. Restrict the groups to those departments with a maximum salary greater than $10,000.

Oracle Database 10g: SQL Fundamentals | 4-19

Restricting Group Results
with the HAVING Clause

When you use the HAVING clause, the Oracle server
restricts groups as follows:

1. Rows are grouped.
2. The group function is applied.

3. Groups matching the HAVING clause are
displayed.

SELECT column, group_function
FROM table

[WHERE condition]

[GROUP BY group_by expression]
F[HAVING group_condition] |
[ORDER BY column];

4-20 Copyright © 2004, Oracle. All rights reserved.

Restricting Group Results with the HAVING Clause
You use the HAVING clause to specify which groups are to be displayed, thus further
restricting the groups on the basis of aggregate information.
In the syntax, group_condition restricts the groups of rows returned to those groups
for which the specified condition is true.
The Oracle server performs the following steps when you use the HAV ING clause:
1. Rows are grouped.
2. The group function is applied to the group.
3. The groups that match the criteria in the HAVING clause are displayed.
The HAVING clause can precede the GROUP BY clause, but it is recommended that you
place the GROUP BY clause first because that is more logical. Groups are formed and group

functions are calculated before the HAVING clause is applied to the groups in the SELECT
list.

Oracle Database 10g: SQL Fundamentals | 4-20

Using the HAVING Clause

SELECT department_id, MAX(salary)
FROM employees

GROUP BY department_id

HAVING ~ MAX(salary)>10000 ;

DEPARTMENT ID [MAX{SALARY)

20|

13000

11000

|
|
| a0 |
| %0 |
|

24000

10

12000

4-21 Copyright © 2004, Oracle. All rights reserved.

Using the HAVING Clause

The slide example displays department numbers and maximum salaries for those
departments with a maximum salary that is greater than $10,000.
You can use the GROUP BY clause without using a group function in the SELECT list.

If you restrict rows based on the result of a group function, you must have a GROUP BY
clause as well as the HAV ING clause.

The following example displays the department numbers and average salaries for those
departments with a maximum salary that is greater than $10,000:

SELECT department_id, AVG(salary)
FROM employees

GROUP BY department_id

HAVING max(salary)>10000;

| DEPARTMENT ID | AVG(SALARY)

| 20 | 9500
| a0 | 10033.3333
| a0 | 19333.3333
| 10 | 10150

Oracle Database 10g: SQL Fundamentals | 4-21

Using the HAVING Clause

SELECT job_id, SUM(salary) PAYROLL
FROM employees

WHERE job_id NOT LIKE “%REP%*
GROUP BY job id

'HAVING SUM(salary) > 13000 |

ORDER BY SUM(salary);

| JOB_ID |

[T_PrROG | 19200
|a0_PRES | 24000
|aD_wP | 34000

PAYROLL

4-22 Copyright © 2004, Oracle. All rights reserved.

Using the HAVING Clause (continued)

The slide example displays the job ID and total monthly salary for each job that has a total
payroll exceeding $13,000. The example excludes sales representatives and sorts the list by
the total monthly salary.

Oracle Database 10g: SQL Fundamentals | 4-22

Nesting Group Functions

Display the maximum average salary:

SELECT | MAX(AVG(salary))
FROM employees
GROUP BY department_id;

| MAX (AVG (SALARY))
| 19333.3333

4-23 Copyright © 2004, Oracle. All rights reserved.

Nesting Group Functions

Group functions can be nested to a depth of two. The slide example displays the maximum
average salary.

Oracle Database 10g: SQL Fundamentals | 4-23

Summary

In this lesson, you should have learned how to:
* Use the group functions COUNT, MAX, MIN, and AVG

* Write queries that use the GROUP BY clause
* Write queries that use the HAVING clause

SELECT column, group_function
FROM table

[WHERE condition]

[GROUP BY group_by expression]
[HAVING group_condition]
[ORDER BY column];

4-24 Copyright © 2004, Oracle. All rights reserved.

Summary

Several group functions are available in SQL, such as the following:
AVG, COUNT, MAX, MIN, SUM, STDDEV, and VARIANCE

You can create subgroups by using the GROUP BY clause. Groups can be restricted using the
HAVING clause.

Place the HAV ING and GROUP BY clauses after the WHERE clause in a statement. The order
of the HAVING and GROUP clauses following the WHERE clause is not important. Place the
ORDER BY clause last.

The Oracle server evaluates the clauses in the following order:
1. If the statement contains a WHERE clause, the server establishes the candidate rows.
2. The server identifies the groups that are specified in the GROUP BY clause.
3. The HAVING clause further restricts result groups that do not meet the group criteria in
the HAVING clause.

Note: For a complete list of the group functions, see Oracle SQL Reference.

Oracle Database 10g: SQL Fundamentals | 4-24

Practice 4: Overview

This practice covers the following topics:

* Writing queries that use the group functions

* Grouping by rows to achieve more than one result
* Restricting groups by using the HAVING clause

4-25 Copyright © 2004, Oracle. All rights reserved.

Practice 4: Overview

At the end of this practice, you should be familiar with using group functions and selecting
groups of data.

Oracle Database 10g: SQL Fundamentals | 4-25

Practice 4
Determine the validity of the following three statements. Circle either True or False.

1.

Group functions work across many rows to produce one result per group.
True/False

Group functions include nulls in calculations.

True/False

The WHERE clause restricts rows prior to inclusion in a group calculation.
True/False

The HR department needs the following reports:

4.

Find the highest, lowest, sum, and average salary of all employees. Label the columns
Max i mum, Minimum, Sum, and Average, respectively. Round your results to the nearest
whole number. Place your SQL statement in a text file named lab_04 04 .sqgl.

| Maximum | Minimum | Sum | Average
| 24000 | 2500 | 175500 | a775

Modify the query in lab_04 04 .sql to display the minimum, maximum, sum, and
average salary for each job type. Resave lab_04 04 .sqgl as lab_04 _05.sql. Run
the statement in lab_04_05.sql.

| JOB_ID | Maximum | Minimum | Sum | Average

IAC_ACCOUNT | 300 | 300 | 300 | A300
IAC_MGR | 12000 | 12000 | 12000 | 12000
AD_ASST | 4400 | 4400 | 4400 | 4400
AD_PRES | 24000 | 24000 | 24000 | 24000
IAD_WP | 17000 | 17000 | 34000 | 17000
IT_PROG | 9000 | 4200 | 19200 | 6400
IMK_MARN | 13000 | 13000 | 13000 | 13000
IMK_REP | G000 | G000 | G000 | G000
T4 MAN | 10800 | 10800 | 10500 | 10500
54 _REP | 11000 | 7000 | 26600 | BR67
|ST_CLERK | 3500 | 2500 | 11700 | 2925
IST_MAN | 5800 | 5800 | 5800 | 5500

12 rows selected.

Oracle Database 10g: SQL Fundamentals | 4-26

Practice 4 (continued)
6. Write a query to display the number of people with the same job.

| JOB_ID COUNT()

IAC_ACCOUNT

AC_MGR

AD_ASST

AD_PRES

A0 WP

IVIK_MAN

IMK_REP

SA_MAN

|SA_REP

|ST_CLERK

|
|
|
|
I
IT_PROG |
|
|
|
|
|
|

IST_MAN

12 rows selected.

Generalize the query so that the user in the HR department is prompted for a job title.
Save the script to a file named lab_04_06.sql.

7. Determine the number of managers without listing them. Label the column Number
of Managers. Hint: Use the MANAGER_ID column to determine the number of

managers.
| Number of Managers
| A
8. Find the difference between the highest and lowest salaries. Label the column
DIFFERENCE.
| DIFFERENCE
| 21500

If you have time, complete the following exercises:
9. Create a report to display the manager number and the salary of the lowest-paid
employee for that manager. Exclude anyone whose manager is not known. Exclude any
groups where the minimum salary is $6,000 or less. Sort the output in descending order

of salary.

| MANAGER_ID | MIN({SALARY)

| 102 | 9000
| 205 | A300
| 143 | 7000

Oracle Database 10g: SQL Fundamentals | 4-27

Practice 4 (continued)
If you want an extra challenge, complete the following exercises:
10. Create a query to display the total number of employees and, of that total, the number of
employees hired in 1995, 1996, 1997, and 1998. Create appropriate column headings.

| TOTAL

| 1995 | 1995 | 1997 |

1998

20 | 1| 2 | 2 ||

11. Create a matrix query to display the job, the salary for that job based on department
number, and the total salary for that job, for departments 20, 50, 80, and 90, giving each
column an appropriate heading.

| Joh | Dept20 | Dept0 | Dept80 | Dept90 | Total

IAC_ACCOUNT | | | | | 8300
AC_MGR | | | | | 12000
AD_ASST | | | | | 4400
AD_PRES | | | | 24000 | 24000
AD_WP | | | | 34000 | 34000
IT_PROG | | | | | 19200
IMK_MAN | 13000 | | | | 13000
IMK_REP | G000 | | | | 6000
|SA_MAN | | | 10800 | | 10800
|54 _REP | | | 19600 | | 26600
|ST_CLERK | | 11700 | | | 11700
ST _MAN | | 5800 | | | 5800

12 rowes selected.

Oracle Database 10g: SQL Fundamentals | 4-28

Displaying Data
from Multiple Tables

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:

* Write SELECT statements to access data from
more than one table using equijoins and non-
equijoins

* Join atable to itself by using a self-join

* View datathat generally does not meet a join
condition by using outer joins

 Generate a Cartesian product of all rows from two
or more tables

5-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

This lesson explains how to obtain data from more than one table. A join is used to view
information from multiple tables. Hence, you can join tables together to view information
from more than one table.

Note: Information on joins is found in “SQL Queries and Subqueries: Joins” in
Oracle SQL Reference.

Oracle Database 10g: SQL Fundamentals | 5-2

Obtaining Data from Multiple Tables

1700
1700

110 JAccounting

l l | 190 |Cantracting

EMPLOYEES DEPARTMENTS

EMPLOYEE_ID |[LAST_NAME |DEPARTMENT _ID [DEPARTMENT_ID|DEPARTMENT_NAME|[LOCATION_ID
100 |[King a0 | 10 |Administration | 1700
101 | [Kochhar o0 | 20 |Marketing | 1800
| 50 |Shipping | 1500
202 |[Fay 20 | &0 |IT | 1400
205 |[Higgins 110 | 80 [Sales | 2600
206 |[Gietz 110 | 90 |Executive | 1700

| |

|

[EMPLOYEE_ID [DEPARTMENT_ID [DEPARTMENT_NAME
| 200 || 10 [Adrministration
| 201 || 20 |[Matketing
| 20z | 20 [Marketing
| 102 | 90 ||Executive
| 205 || 110 [Accounting
| 206 || 110 [Accounting
5-3 Copyright © 2004, Oracle. All rights reserved.

Obtaining Data from Multiple Tables

Sometimes you need to use data from more than one table. In the slide example, the report
displays data from two separate tables:

* Employee IDs exist in the EMPLOYEES table.

» Department IDs exist in both the EMPLOYEES and DEPARTMENTS tables.

» Department names exist in the DEPARTMENTS table.

To produce the report, you need to link the EMPLOYEES and DEPARTMENTS tables and
access data from both of them.

Oracle Database 10g: SQL Fundamentals | 5-3

Types of Joins

Joins that are compliant with the SQL:1999 standard
include the following:

5-4

Cross joins

Natural joins

USING clause

Full (or two-sided) outer joins
Arbitrary join conditions for outer joins

Copyright © 2004, Oracle. All rights reserved.

Types of Joins
To join tables, you can use join syntax that is compliant with the SQL:1999 standard.
Note: Prior to the Oracle9i release, the join syntax was different from the ANSI standards.
The SQL:1999-compliant join syntax does not offer any performance benefits over the

Oracle-proprietary join syntax that existed in prior releases. For detailed information about
the proprietary join syntax, see Appendix C.

Oracle Database 10g: SQL Fundamentals | 5-4

Joining Tables Using SQL:1999 Syntax

Use a join to query data from more than one table:

SELECT tablel.column, table2.column
FROM tablel
[NATURAL JOIN table2] |
[JOIN table2 USING (column_name)] |
[JOIN table2
ON (tablel.column_name = table2.column_name)]|
[LEFTJRIGHT|FULL OUTER JOIN table2
ON (tablel.column_name = table2_column_name)]]
[CROSS JOIN table2];

5-5 Copyright © 2004, Oracle. All rights reserved.

Defining Joins
In the syntax:
tablel.column denotes the table and column from which data is retrieved
NATURAL JOIN joins two tables based on the same column name
JOIN table USING column_name performs an equijoin based on the column name

JOIN table ON tablel.column_name performs an equijoin based on the
condition in the ON clause, = table2.column_name

LEFT/RIGHT/FULL OUTER isused to perform outer joins
CROSS JOIN returns a Cartesian product from the two tables
For more information, see “SELECT” in Oracle SQL Reference.

Oracle Database 10g: SQL Fundamentals | 5-5

Creating Natural Joins

e The NATURAL JOIN clause is based on all columns
in the two tables that have the same name.

e It selects rows from the two tables that have equal
values in all matched columns.

e If the columns having the same names have
different data types, an error is returned.

5-6 Copyright © 2004, Oracle. All rights reserved.

Creating Natural Joins

You can join tables automatically based on columns in the two tables that have matching
data types and names. You do this by using the keywords NATURAL JOIN.

Note: The join can happen on only those columns that have the same names and data types

in both tables. If the columns have the same name but different data types, then the
NATURAL JOIN syntax causes an error.

Oracle Database 10g: SQL Fundamentals | 5-6

Retrieving Records with Natural Joins

SELECT department_id, department_name,

location_id, city
FROM departments
NATURAL JOIN locations]| ;

[DEPARTMENT_ID | DEPARTMENT_NAME LOCATION_ID cITY
| B0 [IT 1400 [Southlake
| 50 |Shipping 1500 ||South San Francisco
| 10 [Administration 1700 [Seattle
| 90 [Executive 1700 [Seattle
| 110 [Accounting 1700 [Seattle
| 190 [Contracting 1700 [Seattle
| 20 |Marketing 1800 |[Taranta
| 80 [Sales 2500 |JOxdford
8 rows selected.
5-7 Copyright © 2004, Oracle. All rights reserved.

Retrieving Records with Natural Joins

In the example in the slide, the LOCAT IONS table is joined to the DEPARTMENT table by
the LOCAT ION__1D column, which is the only column of the same name in both tables. If
other common columns were present, the join would have used them all.

Natural Joins with a WHERE Clause

Additional restrictions on a natural join are implemented by using a WHERE clause. The
following example limits the rows of output to those with a department ID equal to 20 or 50:

SELECT department_id, department_name,

location_id, city
FROM departments
NATURAL JOIN locations

WHERE department_id IN (20, 50);

Oracle Database 10g: SQL Fundamentals | 5-7

Creating Joins with the USING Clause

« If several columns have the same names but the
data types do not match, the NATURAL JOIN clause
can be modified with the USING clause to specify
the columns that should be used for an equijoin.

* Use the USING clause to match only one column
when more than one column matches.

Do not use atable name or alias in the referenced
columns.

e The NATURAL JOIN and USING clauses are
mutually exclusive.

5-8 Copyright © 2004, Oracle. All rights reserved.

USING Clause

Natural joins use all columns with matching names and data types to join the tables. The
USING clause can be used to specify only those columns that should be used for an equijoin.
The columns that are referenced in the USING clause should not have a qualifier (table
name or alias) anywhere in the SQL statement.

For example, the following statement is valid:
SELECT l.city, d.department_name
FROM locations 1 JOIN departments d USING (location_id)
WHERE location_id = 1400;

The following statement is invalid because the LOCATION__ID is qualified in the WHERE

clause:
SELECT l.city, d.department_name
FROM locations 1 JOIN departments d USING (location_id)
WHERE d.location_id = 1400;
ORA-25154: column part of USING clause cannot have qualifier
The same restriction also applies to NATURAL joins. Therefore, columns that have the same

name in both tables must be used without any qualifiers.

Oracle Database 10g: SQL Fundamentals | 5-8

Joining Column Names

EMPLOYEES DEPARTMENTS

[EMPLOYEE_ID [DEPARTMENT_ID DEPARTMENT_ID | DEPARTMENT_NAME
| 200 10 10 |Administration
| 201 0 20 |Marksting

| 202 20 20 [[Marketing

| 124 &0 50 |[Shipping

| 141 &0 50 [[Shipping

| 142 &0 &0 |[Shipping

| 143 50 50 [[Shipping

| 144 &0 50 |[Shipping

| 103 ED B0 [T

| 104 B0 B0 fir

| 107] B0 [IT

| 143 a0 80 |[3ales

| 174 a0 a0 [Sales

|

176 a0 ‘ | a0 |Sa|es

Foreign key Primary key

5-9 Copyright © 2004, Oracle. All rights reserved.

The USING Clause for Equijoins

To determine an employee’s department name, you compare the value in the
DEPARTMENT _ID column in the EMPLOYEES table with the DEPARTMENT _ID values in
the DEPARTMENTS table. The relationship between the EMPLOYEES and DEPARTMENTS
tables is an equijoin; that is, values in the DEPARTMENT _ID column in both tables must be
equal. Frequently, this type of join involves primary and foreign key complements.

Note: Equijoins are also called simple joins or inner joins.

Oracle Database 10g: SQL Fundamentals | 5-9

Retrieving Records with the USING Clause

SELECT employees.employee id, employees. last _name,
departments. location_id, department_id

FROM employees JOIN departments

USING (department=id) ;

EMPLOYEE_ID LAST _NAME LOCATION_ID DEPARTMENT_ID
200 Whalen 1700 10
201 Hartstein 1800 20
202 Fay 1800 20
124 Mourgos 1500 0
141 Rajs 1500 50
142 Davies 1500 50
144 “argas 1500 50
143 Matos 1500 50
19 rows selected.
5-10 Copyright © 2004, Oracle. All rights reserved.

Retrieving Records with the USING Clause

The slide example joins the DEPARTMENT _ID column in the EMPLOYEES and
DEPARTMENTS tables, and thus shows the location where an employee works.

Oracle Database 10g: SQL Fundamentals | 5-10

Qualifying Ambiguous
Column Names

* Use table prefixes to qualify column names that
are in multiple tables.

* Use table prefixes to improve performance.

* Use column aliases to distinguish columns that
have identical names but reside in different tables.

« Do not use aliases on columns that are identified
in the USING clause and listed elsewhere in the

SQL statement.

5-11 Copyright © 2004, Oracle. All rights reserved.

Qualifying Ambiguous Column Names

You need to qualify the names of the columns with the table name to avoid ambiguity.
Without the table prefixes, the DEPARTMENT _ID column in the SELECT list could be from
either the DEPARTMENTS table or the EMPLOYEES table. It is necessary to add the table

prefix to execute your query:
SELECT employees.employee_id, employees.last _name,
departments.department_id, departments.location_id
FROM employees JOIN departments
ON employees.department_id = departments.department_id;

If there are no common column names between the two tables, there is no need to qualify
the columns. However, using the table prefix improves performance, because you tell the
Oracle server exactly where to find the columns.

Note: When joining with the USING clause, you cannot qualify a column that is used in the
USING clause itself. Furthermore, if that column is used anywhere in the SQL statement,
you cannot alias it.

Oracle Database 10g: SQL Fundamentals | 5-11

Using Table Aliases

* Use table aliases to simplify queries.
* Use table aliases to improve performance.

SELECT [e]employee_id, [e]last_name,

'd|location_id, department_id
FROM employees[e]JOIN departments|d]
USING (department_id) ;

5-12 Copyright © 2004, Oracle. All rights reserved.

Using Table Aliases

Qualifying column names with table names can be very time consuming, particularly if table
names are lengthy. You can use table aliases instead of table names. Just as a column alias
gives a column another name, a table alias gives a table another name. Table aliases help to
keep SQL code smaller, therefore using less memory.

Notice how table aliases are identified in the FROM clause in the example. The table name is

specified in full, followed by a space and then the table alias. The EMPLOYEES table has
been given an alias of e, and the DEPARTMENTS table has an alias of d.

Guidelines
» Table aliases can be up to 30 characters in length, but shorter aliases are better than
longer ones.

» If atable alias is used for a particular table name in the FROM clause, then that table
alias must be substituted for the table name throughout the SELECT statement.

» Table aliases should be meaningful.
* The table alias is valid for only the current SELECT statement.

Oracle Database 10g: SQL Fundamentals | 5-12

Creating Joins with the ON Clause

 The join condition for the natural join is basically
an equijoin of all columns with the same name.

 Use the ON clause to specify arbitrary conditions
or specify columns to join.

 Thejoin condition is separated from other search
conditions.

« The ON clause makes code easy to understand.

5-13 Copyright © 2004, Oracle. All rights reserved.

ON Clause

Use the ON clause to specify a join condition. This lets you specify join conditions separate
from any search or filter conditions in the WHERE clause.

Oracle Database 10g: SQL Fundamentals | 5-13

Retrieving Records with the ON Clause

SELECT e.employee 1d, e.last name, e.department_id,
d.department_id, d.location_id

EMPLOYEE_ID | LAST NAME DEPARTMENT_ID |

DEPARTMENT_ID

LOCATION_ID

200 |[whalen

10

1700

201 |[Hartstein

20|

1800

202 |[Fay

20|

1800

50 |

1500

141 [Rajs

50 ||

1500

142 [Davies

50 ||

1500

|
|
|
|
| 124 |M0urgos
|
|
|

143 [Matos

50 ||

1500

19 rows selected.

5-14

Copyright © 2004, Oracle. All rights reserved.

Creating Joins with the ON Clause

In this example, the DEPARTMENT _ID columns in the EMPLOYEES and DEPARTMENTS
table are joined using the ON clause. Wherever a department ID in the EMPLOYEES table

equals a department ID in the DEPARTMENTS table, the row is returned.
You can also use the ON clause to join columns that have different names.

Oracle Database 10g: SQL Fundamentals | 5-14

Self-Joins Using the ON Clause

EMPLOYEES (WORKER) EMPLOYEES (MANAGER)

[EMPLOYEE_ID | LAST_NAME | MANAGER_ID | EMPLOYEE_ID | LAST_NAME
| 100 |[King | | 100 |[King

| 101 |[Kochhar | 100 | 101 [Kochhar

| 102 [De Haan | 100 | 102 [De Haan

| 103 |[Hunold | 102 | 103 [Hunold

| 104 [Ernst | 103 | 104 [Emst

| 107 ||Lorentz | 103 | 107 |Lorentz

| 124 [Mourgos | 100 | 124 [Mourgas

5-15

MANAGER_ID in the WORKER table is equal to
EMPLOYEE_ID in the MANAGER table.

Copyright © 2004, Oracle. All rights reserved.

Joining a Table to Itself

Sometimes you need to join a table to itself. To find the name of each employee’s manager,
you need to join the EMPLOYEES table to itself, or perform a self join. For example, to find
the name of Lorentz’s manager, you need to:

Find Lorentz in the EMPLOYEES table by looking at the LAST_NAME column.
Find the manager number for Lorentz by looking at the MANAGER_ 1D column.
Lorentz’s manager number is 103.

Find the name of the manager with EMPLOYEE__ 1D 103 by looking at the
LAST_NAME column. Hunold’s employee number is 103, so Hunold is Lorentz’s
manager.

In this process, you look in the table twice. The first time you look in the table to find
Lorentz in the LAST_NAME column and MANAGER__ID value of 103. The second time you
look in the EMPLOYEE_ ID column to find 103 and the LAST_NAME column to find
Hunold.

Oracle Database 10g: SQL Fundamentals | 5-15

Self-Joins Using the ON Clause

SELECT e.last_name emp, m.last _name mgr
FROM employees e JOIN employees m

ON (e.manager_id = m.employee id);
EMP MGR
Hartstein King
Ilotkey King
Wourgos King
De Haan King
Kochhar King

19 rows selected.

5-16 Copyright © 2004, Oracle. All rights reserved.

Joining a Table to Itself (continued)
The ON clause can also be used to join columns that have different names, within the same
table or in a different table.

The example shown is a self-join of the EMPLOYEES table, based on the EMPLOYEE_ ID
and MANAGER__ID columns.

Oracle Database 10g: SQL Fundamentals | 5-16

Applying Additional Conditions
to a Join

SELECT e.employee_i1d, e.last name, e.department_id,
d.department_id, d.location_id

FROM employees e JOIN departments d

ON (e.department _id = d.department_id)

AND e-manag&id = 149

[EMPLOYEEID | LAST NAME | DEPARTMENT_ID | DEPARTMENT_ID | LOCATION_ID

| 174 [Abel | a0 || a0 | 2500

| 176 [Taylor | a0 || an || 2500
5-17 Copyright © 2004, Oracle. All rights reserved.

Applying Additional Conditions to a Join
You can apply additional conditions to the join.

The example shown performs a join on the EMPLOYEES and DEPARTMENTS tables and, in
addition, displays only employees who have a manager ID of 149. To add additional
conditions to the ON clause, you can add AND clauses. Alternatively, you can use a WHERE
clause to apply additional conditions:

SELECT e.employee_id, e.last _name, e.department_ id,

d.department_id, d.location_id

FROM employees e JOIN departments d

ON (e.department_id = d.department_id)

WHERE e.manager_id = 149;

Oracle Database 10g: SQL Fundamentals | 5-17

Creating Three-Way Joins with the
ON Clause

SELECT employee_i1d, city, department_name
FROM employees e

JOIN departments d
ON d.department_id = e.department_id
JOIN locations 1
ON d.location_id = I.location_id;
— —
| EMPLOYEE_ID | CITY | DEPARTMENT_NAME
| 103 [Southlake iT
| 104 [Southlake i
| 107 [Southlake iT
| 124 |South San Francisco |Shipping
| 141 |South San Francisco |Shipping
| 142 |Snuth San Francisco |Shipping
| 143 |South San Francisco |Shipping
| 144 |South San Francisco |Shipping

19 rows selected.

5-18 Copyright © 2004, Oracle. All rights reserved.

Three-Way Joins

A three-way join is a join of three tables. In SQL:1999-compliant syntax, joins are
performed from left to right. So the first join to be performed is EMPLOYEES JOIN
DEPARTMENTS. The first join condition can reference columns in EMPLOYEES and
DEPARTMENTS but cannot reference columns in LOCAT IONS. The second join condition
can reference columns from all three tables.

Oracle Database 10g: SQL Fundamentals | 5-18

Non-Equijoins

EMPLOYEES JOB_GRADES
| LAST_NAME SALARY [6RA | LOWEST SAL | HIGHEST SAL
[king 24000 & 1000 | 2999
[Kachhar 17000 e 3000 | 5999
[De Haan 17000 lc g000 || 5993
[Hunold 5000 [10000 | 14599
[Emst G000 E 15000 | 24999
[Lorentz 4200 IF 25000 | 40000
|Mourgos 5800
[Rajs 3500
[Davies 3100
[Matas 2600
|Vargas 2500 .
Tiotkey 10 Salary in the EMPLOYEES
Abel 11000 table must be between
Tayl 8600 .
rayter lowest salary and highest
20 rows selected, Salary in the JOB_GRADES
table.
5-19 Copyright © 2004, Oracle. All rights reserved.

Non-Equijoins
A non-equijoin is a join condition containing something other than an equality operator.
The relationship between the EMPLOYEES table and the JOB_GRADES table is an example
of a non-equijoin. A relationship between the two tables is that the SALARY column in the
EMPLOYEES table must be between the values in the LOWEST_SALARY and
HIGHEST_SALARY columns of the JOB__GRADES table. The relationship is obtained using
an operator other than equality (=).

Oracle Database 10g: SQL Fundamentals | 5-19

Retrieving Records
with Non-Equijoins

SELECT e.last_name, e.salary, j.grade_level
FROM employees e JOIN job grades j

ON e.salary

BETWEEN j.lowest _sal AND j.highest_sal|;

| LAST_NAME SALARY | GRA
[Matas 2600 |[A
[wargas 2500 |4
Larentz 4200 (B
|M0urgos 5800 |B
[Rajs 3500 B
[Davies 300 B
[whalen 2400 B
[Hunald g000 ||c
[Ernst &000 [[C
20 rows selected.
5-20 Copyright © 2004, Oracle. All rights reserved.

Non-Equijoins (continued)
The slide example creates a non-equijoin to evaluate an employee’s salary grade. The salary
must be between any pair of the low and high salary ranges.
It is important to note that all employees appear exactly once when this query is executed.
No employee is repeated in the list. There are two reasons for this:

* None of the rows in the job grade table contain grades that overlap. That is, the salary
value for an employee can lie only between the low salary and high salary values of
one of the rows in the salary grade table.

e All of the employees’ salaries lie within the limits that are provided by the job grade
table. That is, no employee earns less than the lowest value contained in the
LOWEST _SAL column or more than the highest value contained in the
HIGHEST_SAL column.

Note: Other conditions (such as <= and >=) can be used, but BETWEEN is the simplest.
Remember to specify the low value first and the high value last when using BETWEEN.

Table aliases have been specified in the slide example for performance reasons, not because
of possible ambiguity.

Oracle Database 10g: SQL Fundamentals | 5-20

Outer Joins

DEPARTMENTS EMPLOYEES
| DEPARTMENT_NAME | DEPARTMENT_ID [DEPARTMENT_ID [LAST_NAME
[adrministration [10 | 90 |[King
[rarketing [0 | 90 |[Kochhar
[Shipping [50 | 90 |[De Haan
T [] | B0 |[Hunald
[sales [a0 | 80 [Emst
|Executi\re | 90 | 50 |L0rentz
|Accounting | 110 | 50 |M0urgos
[Cantracting | 190 | 50 |[Rajs
g rows selectad. | 50 |Davies

| a0 |Matos

| a0 |\f’argas

| 80 |[Flotkey

20 rows selected.

There are no employees in
department 190.

5-21 Copyright © 2004, Oracle. All rights reserved.

Returning Records with No Direct Match with Outer Joins

If a row does not satisfy a join condition, the row does not appear in the query result. For
example, in the equijoin condition of EMPLOYEES and DEPARTMENTS tables, department
ID 190 does not appear because there are no employees with that department ID recorded in
the EMPLOYEES table. Instead of seeing 20 employees in the result set, you see 19 records.
To return the department record that does not have any employees, you can use an outer
join.

Oracle Database 10g: SQL Fundamentals | 5-21

INNER Versus OUTER Joins

* In SQL:1999, the join of two tables returning only
matched rows is called an inner join.

A join between two tables that returns the results
of the inner join as well as the unmatched rows
from the left (or right) tables is called a left (or
right) outer join.

A join between two tables that returns the results
of an inner join as well as the results of a left and
right join is a full outer join.

5-22 Copyright © 2004, Oracle. All rights reserved.

INNER Versus OUTER Joins

Joining tables with the NATURAL JOIN, USING, or ON clauses results in an inner join.
Any unmatched rows are not displayed in the output. To return the unmatched rows, you can
use an outer join. An outer join returns all rows that satisfy the join condition and also
returns some or all of those rows from one table for which no rows from the other table
satisfy the join condition.

There are three types of outer joins:
- LEFT OUTER
- RIGHT OUTER
- FULL OUTER

Oracle Database 10g: SQL Fundamentals | 5-22

LEFT OUTER JOIN

SELECT e.last name, e.department id, d.department name

FROM employees e| LEFT OUTER JOIN departments d |
ON (e.department_id = d.department_id) ;

| LAST_NAME | DEPARTMENT_ID | DEPARTMENT_NAME
|Wha|en | 10 |Administrati0n

|Fay | 20 |Marketing

|Har15tein | 20 |Marketing

|De Haan | a0 |E}{ecutive

|Kochhar | a0 |E}{ecutive

|King | 30 |E}{ecutive

|Gietz | 110 |Accuunting

|Higgins | 110 |Accounting

|/Grant | |

20 rows selected.

5-23 Copyright © 2004, Oracle. All rights reserved.

Example of LEFT OUTER JOIN

This query retrieves all rows in the EMPLOYEES table, which is the left table even if there
IS no match in the DEPARTMENTS table.

Oracle Database 10g: SQL Fundamentals | 5-23

RIGHT OUTER JOIN

SELECT e.last name, e.department_id, d.department_name
FROM employees e RIGHT OUTER JOIN departments d |
ON (e.department_id = d.department_id) ;

LAST_NAME DEPARTMENT_ID DEPARTMENT_MNAME
Wihalen 10 Administration
Fay 20 Marketing
Hartstein 20 Marketing
Davies 50 Shipping
Kaochhar 90 | Executive
Gietz 110 Accounting
Higgins 110 Accounting
| 190 Contracting |

20 rows selected.

5-24 Copyright © 2004, Oracle. All rights reserved.

Example of RIGHT OUTER JOIN

This query retrieves all rows in the DEPARTMENTS table, which is the right table even if
there is no match in the EMPLOYEES table.

Oracle Database 10g: SQL Fundamentals | 5-24

FULL OUTER JOIN

SELECT e.last name, d.department id, d.department name
FROM employees e|FULL OUTER JOIN departments d |
ON (e.department_id = d.department_id) ;

LAST HAME DEPARTMENT_ID DEPARTMENT NAME
Whalen 10 Administration
Fay 20 Marketing
Hartstein 20 Marketing
King 90 Executive
Gietz 110 Accounting
Higgins 110 Accounting

|Grant |
I 190 Contracting I

21 rows selected.

5-25 Copyright © 2004, Oracle. All rights reserved.

Example of FULL OUTER JOIN

This query retrieves all rows in the EMPLOYEES table, even if there is no match in the
DEPARTMENTS table. It also retrieves all rows in the DEPARTMENTS table, even if there is

no match in the EMPLOYEES table.

Oracle Database 10g: SQL Fundamentals | 5-25

Cartesian Products

* A Cartesian product is formed when:
— A join condition is omitted
— A join condition is invalid

— All rows in the first table are joined to all rows in the
second table

« To avoid a Cartesian product, always include a
valid join condition.

5-26 Copyright © 2004, Oracle. All rights reserved.

Cartesian Products

When a join condition is invalid or omitted completely, the result is a Cartesian product, in
which all combinations of rows are displayed. All rows in the first table are joined to all
rows in the second table.

A Cartesian product tends to generate a large number of rows, and the result is rarely useful.
You should always include a valid join condition unless you have a specific need to combine
all rows from all tables.

Cartesian products are useful for some tests when you need to generate a large number of
rows to simulate a reasonable amount of data.

Oracle Database 10g: SQL Fundamentals | 5-26

Generating a Cartesian Product

EMPLOYEES (20 rows) DEPARTMENTS (8 rows)
[EMPLOYEE ID [LAST NAME |DEPARTMENT ID [DEPARTMENT _ID [DEPARTMENT_NAME LOCATION_ID
| 100 [King | a0 | 10 |[Administration | 1700
| 101 [Kochhar | a0 | 20 |Marketing | 1800
. | 50 |[Shipping | 1500
| 202 [Fay | 20 | B0 [IT | 1400
| 205 |[Hingins | 110 | 80 [3ales | 2500
| 05 |Gietz | 110 | a0 |Executive | 1700
o0 rawes selectod. | 110 [Accounting | 1700
I I | 190 [Contracting | 1700
3 rows selected.

[EMPLOYEE_ID [DEPARTMENT_ID [LOCATION_ID

| 100 | a0 || 1700

. | 101 a0 || 1700

Cartesian product: | 102 | o | 1700

20 x 8 =160 rows | 103 | B 1

| 104 B0 | 1700

| 107 | G0 | 1700

160 rows selected.
5-27 Copyright © 2004, Oracle. All rights reserved.

Cartesian Products (continued)

A Cartesian product is generated if a join condition is omitted. The example in the slide
displays employee last name and department name from the EMPLOYEES and
DEPARTMENTS tables. Because no join condition has been specified, all rows (20 rows)
from the EMPLOYEES table are joined with all rows (8 rows) in the DEPARTMENTS table,
thereby generating 160 rows in the output.

Oracle Database 10g: SQL Fundamentals | 5-27

Creating Cross Joins

e The CROSS JOIN clause produces the cross-

product of two tables.

 This is also called a Cartesian product between

the two tables.

SELECT last_name, department_name

FROM employees

|CROSS JOIN degartments| .

| LAST_NAME |

DEPARTMENT_NAME

|King |Administrati0n

|Kochhar |Administrati0n

|De Haan |Administrati0n

|Hun0|d |Administrati0n

160 rows selected.

5-28 Copyright © 2004, Oracle. All rights reserved.

Creating Cross Joins

The example in the slide produces a Cartesian product of the EMPLOYEES and

DEPARTMENTS tables.

Oracle Database 10g: SQL Fundamentals | 5-28

Summary

In this lesson, you should have learned how to use
joins to display data from multiple tables by using:

* Equijoins

* Non-equijoins

e Quter joins

e Self-joins

« Crossjoins

* Natural joins

e Full (or two-sided) outer joins

5-29 Copyright © 2004, Oracle. All rights reserved.

Summary
There are multiple ways to join tables.

Types of Joins
* Equijoins
* Non-equijoins
« Quter joins
e Self-joins
e Cross joins
» Natural joins
* Full (or two-sided) outer joins

Cartesian Products

A Cartesian product results in a display of all combinations of rows. This is done by either
omitting the WHERE clause or specifying the CROSS JOIN clause.

Table Aliases
» Table aliases speed up database access.
» Table aliases can help to keep SQL code smaller by conserving memory.

Oracle Database 10g: SQL Fundamentals | 5-29

Practice 5: Overview

This practice covers the following topics:
* Joining tables using an equijoin

* Performing outer and self-joins

* Adding conditions

5-30 Copyright © 2004, Oracle. All rights reserved.

Practice 5: Overview

This practice is intended to give you practical experience in extracting data from more than
one table using SQL:1999—compliant joins.

Oracle Database 10g: SQL Fundamentals | 5-30

Practice 5
1. Write a query for the HR department to produce the addresses of all the departments.
Use the LOCATIONS and COUNTRIES tables. Show the location 1D, street address,
city, state or province, and country in the output. Use a NATURAL JOIN to produce the

results.

LOCATION_ID STREET_ADDRESS CITY STATE_PROVINCE COUNTRY_NAME

1400 2014 Jabberwocky Southlake Texas Uniteu_:i otates of
Rd Armnerica
South .
1500 | 2011 Interiors Bivd | San California CIiEe) Sieies of

) Armnerica
Francisco

1700|2004 Charade Rd | Seattle | Washington CTiEE SiEEe 67

Armerica
1800 460 Bloor St. WY Toronto | Ontario Canada
Magdalen Centre,
2500 The Oxford Science Oxford Oxford United Kingdom
Park

2. The HR department needs a report of all employees. Write a query to display the last
name, department number, and department name for all employees.

LAST HAME DEPARTMENT ID DEFARTMENT HAME
Whalen 10 Administration
Hartstein 20 Marketing
Fay 20 Marketing
hlourgos A0 | Shipping
Rajs A0 | Shipping
Davies 50 Shipping
Wargas A0 | Shipping
De Haan 890 Executive
Higgins 110 Accounting
Gietz 110 Accounting

19 rows selected.

Oracle Database 10g: SQL Fundamentals | 5-31

Practice 5 (continued)
3. The HR department needs a report of employees in Toronto. Display the last name, job,
department number, and department name for all employees who work in Toronto.

| LAST NAME | JOBID | DEPARTMENTID | DEPARTMENT_NAME
Hartstein IMK_MAN | 20 |Marketing
Fay MK_REP | 20 |Marketing

4. Create a report to display employees’ last name and employee number along with their
manager’s last name and manager number. Label the columns Employee, Emp#,
Manager, and Mgr#, respectively. Place your SQL statement in a text file named
lab 05 04.sql.

| Employee | EMP# | Manager | Mgr#
[Kochhar | 101 |King | 100
D& Haan | 102 |King | 100
IMourgos | 124 |King | 100
Flotkey | 143 |King | 100
Hartstein | 201 |King | 100
Whalen 200 [kiochhar 101
| | | |

Higgins | 205 |Kochhar | 101
Hunaold | 103 |De Haan | 102
Ernst 104 |Hunold 103
| | | |

Lorentz | 107 [Hunald | 103
Rajs | 141 [Maourgos | 124
Davies 142 \Mourgos 124
| | | |

Matos 143 ||Mourgos 124
| | | |

|“v’argas | 144 |Mnurgns | 124
| Employee | EMP3# | Manager | Mgr
bl | 174 |Tlotkey | 143
Taylar | 176 |Zlotkey | 149
|Grant | 178 |Zlotkey | 143
Fay | 202 |Hartstein | 201
|Gietz | 206 |Higgins | 206

19 rows selected.

Oracle Database 10g: SQL Fundamentals | 5-32

Practice 5 (continued)

5. Modify lab_05 04 .sql to display all employees including King, who has no

manager. Order the results by the employee number. Place your SQL statement in a text
file named lab_05_ 05.sql. Run the query in lab_05 05.sql.

| Employee | EMP# | Manager | Myr?
King | 100 | |

[Kochhar | 101 |King | 100
De Haan | 102 |King | 100
Hunold 103 |De Haan 102
| | | |

Ernst 104 |Hunold 103
| | | |

Lorentz | 107 [Hunald | 103
IMourgos | 124 |King | 100

20 rows selected.

6. Create a report for the HR department that displays employee last names, department

numbers, and all the employees who work in the same department as a given employee.

Give each column an appropriate label. Save the script to a file named

lab 05 06.sql.

| DEPARTMENT | EMPLOYEE | COLLEAGUE
| 20 |FEI'_-,-' |Hartstein
| 20 |Har15tein |Faj,r
| 50 |Davies |Mat|:|5
| 50 |Davies |h-'1|:|urg|:|5
| 50 |Davies |Rajs
| 50 |Daviea |\=’argas
| 50 |Matns |Dauies
| 50 |Mat|:|5 |h-'1|:|urg|:|5
| 50 |Mat|:|5 |Rajs
| a0 |Matns |‘v’argas
| 50 |Mnurgns |Dauies
| 50 |hf1|:|urg|:|5 |Mat|:|5
| a0 |hf1|:|urg|:|5 |Rajs
a0 |M|:|urg|:|s |‘v’argas

42 rows selected.

Oracle Database 10g: SQL Fundamentals | 5-33

Practice 5 (continued)

7. The HR department needs a report on job grades and salaries. To familiarize yourself
with the JOB_GRADES table, first show the structure of the JOB_GRADES table. Then

create a query that displays the name, job, department name, salary, and grade for all

employees.

| Hame | Hull? | Type
|GRADE_LEWVEL | WARCHARZ(F)

ILOWEST_SAL | IMUMBER

IHIGHEST_SAL | IMUMBER

| LAST NAME | JOB_ID | DEPARTMENT NAME | SALARY | GRA
IMatos |ST_CLERK Shipping | 2600 A
“Wargas |ST_CLERK Shipping | 2500 A
Lorentz IT_PROG I | 4200 |B
IMourgs ST_MAN Shipping | 5800 |B
Rajs |ST_CLERK Shipping | 3500 |B
Davies |ST_CLERK Shipping | 3100 |B
Wyhalen AD_ASST iAdrmiinistration | 4400 |B

19 rows selected.

If you want an extra challenge, complete the following exercises:

8. The HR department wants to determine the names of all employees who were hired after
Davies. Create a query to display the name and hire date of any employee hired after

employee Davies.

| LAST_NAME | HIRE_DATE
Lorentz 07-FEB-39

IMourgos 11B-NOH-39

IMatas 115-MAR-95

MWargas 09-JUL-98

Zlatkey (29-JAN-00

Taylor |24-MAR-95

|Grant |24-MAY-39

[Fay [17-AUG-97

B rows selected.

Oracle Database 10g: SQL Fundamentals | 5-34

Practice 5 (continued)
9. The HR department needs to find the names and hire dates for all employees who were
hired before their managers, along with their managers’ names and hire dates. Save the
script to a file named lab5_09.sqgl.

| LAST_NAME | HIRE_DATE | LAST_MNAME | HIRE_DATE
Wyhalen 117-SEP-87 \Kochhar 21-SEP-89
Hunaold 03-JAN-30 De Haan [13-JAN-93
Rajs 17-0CT-28 IMourgos 11B-NOY-99
Davies (29-JAN-97 IMourgos 11B-MNO-99
IMatos 115-MAR-93 IMourgos 11B-NOY-99
“Wargas 09-JUL-98 IMourgos 1B-NOY-99
bl [11-MAY-96 \Zlatkey [29-JAN-00
Taylor 24-MAR-93 Zlatkey (29-JAN-00
|Grant 24-MAY-33 \Zlathey (29-JAN-00

9 rows selected.

Oracle Database 10g: SQL Fundamentals | 5-35

Using Subqueries to Solve Queries

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
* Define subqueries
* Describe the types of problems that subqueries
can solve
e List the types of subqueries
* Write single-row and multiple-row subqueries

6-2 Copyright © 2004, Oracle. All rights reserved.

Objectives
In this lesson, you learn about more-advanced features of the SELECT statement. You can
write subqueries in the WHERE clause of another SQL statement to obtain values based on an
unknown conditional value. This lesson covers single-row subqueries and multiple-row

subqueries.

Oracle Database 10g: SQL Fundamentals | 6-2

Using a Subquery
to Solve a Problem

Who has a salary greater than Abel’s?

Main query:
Y ‘? Which employees have salaries greater
\W¥ £ than Abel’s salary? |
Subquery: |

Q»‘? What is Abel’s salary?

6-3 Copyright © 2004, Oracle. All rights reserved.

Using a Subquery to Solve a Problem
Suppose you want to write a query to find out who earns a salary greater than Abel’s salary.

To solve this problem, you need two queries: one to find how much Abel earns, and a
second query to find who earns more than that amount.

You can solve this problem by combining the two queries, placing one query inside the other
query.

The inner query (or subquery) returns a value that is used by the outer query (or main

query). Using a subguery is equivalent to performing two sequential queries and using the
result of the first query as the search value in the second query.

Oracle Database 10g: SQL Fundamentals | 6-3

Subquery Syntax

SELECT select list

FROM table

WHERE expr operator
(SELECT select_list
FROM table);

* The subquery (inner query) executes once before
the main query (outer query).

 Theresult of the subquery is used by the main
query.

6-4 Copyright © 2004, Oracle. All rights reserved.

Subquery Syntax

A subquery is a SELECT statement that is embedded in a clause of another SELECT
statement. You can build powerful statements out of simple ones by using subqueries. They
can be very useful when you need to select rows from a table with a condition that depends
on the data in the table itself.

You can place the subquery in a number of SQL clauses, including the following:
- WHERE clause
- HAVING clause
- FROM clause

In the syntax:

operator includes a comparison condition such as >, =, or IN
Note: Comparison conditions fall into two classes: single-row operators
(>, =, >=, <, <>, <=) and multiple-row operators (IN, ANY, ALL).
The subquery is often referred to as a nested SELECT, sub-SELECT, or inner SELECT

statement. The subquery generally executes first, and its output is used to complete the
query condition for the main (or outer) query.

Oracle Database 10g: SQL Fundamentals | 6-4

Using a Subquery

SELECT last_name
FROM employees 11000
WHERE salary >

(SELECT salary
FROM employees
WHERE last name = "Abel");

| LAST_NAME
|King

|Kochhar

|De Haan

|Hanstein

|Higgins

6-5 Copyright © 2004, Oracle. All rights reserved.

Using a Subquery

In the slide, the inner query determines the salary of employee Abel. The outer query takes
the result of the inner query and uses this result to display all the employees who earn more
than this amount.

Oracle Database 10g: SQL Fundamentals | 6-5

Guidelines for Using Subqueries

 Enclose subqueries in parentheses.

* Place subqueries on the right side of the
comparison condition.

« The ORDER BY clause in the subquery is not
needed unless you are performing Top-N analysis.

* Use single-row operators with single-row

subqueries, and use multiple-row operators with
multiple-row subqueries.

6-6 Copyright © 2004, Oracle. All rights reserved.

Guidelines for Using Subqueries
* A subquery must be enclosed in parentheses.
« Place the subquery on the right side of the comparison condition for readability.

e With Oracle8i and later releases, an ORDER BY clause can be used and is required in
the subquery to perform Top-N analysis.

- Prior to Oracle8i, however, subqueries could not contain an ORDER BY clause.
Only one ORDER BY clause could be used for a SELECT statement; if specified,
it had to be the last clause in the main SELECT statement.

» Two classes of comparison conditions are used in subqueries: single-row operators and
multiple-row operators.

Oracle Database 10g: SQL Fundamentals | 6-6

Types of Subqueries

e Single-row subquery

Main query

returns

Subquery ST _CLERK
* Multiple-row subquery
Main query
returns
Subquery ST_CLERK
SA_MAN
6-7 Copyright © 2004, Oracle. All rights reserved.

Types of Subqueries

» Single-row subqueries: Queries that return only one row from the inner SELECT

statement

» Multiple-row subqueries: Queries that return more than one row from the inner

SELECT statement

Note: There are also multiple-column subqueries, which are queries that return more than
one column from the inner SELECT statement. These are covered in the Oracle Database

10g: SQL Fundamentals 11 course.

Oracle Database 10g: SQL Fundamentals | 6-7

Single-Row Subqueries

* Return only one row
 Use single-row comparison operators

Operator | Meaning
= Equal to
> Greater than
== Greater than or equal to
< Less than
<= Less than or equal to
<= Not equal to
6-8 Copyright © 2004, Oracle. All rights reserved.

Single-Row Subqueries

A single-row subquery is one that returns one row from the inner SELECT statement. This
type of subquery uses a single-row operator. The slide gives a list of single-row operators.

Example

Display the employees whose job ID is the same as that of employee 141.:
SELECT last_name, job id
FROM employees
WHERE job_id =
(SELECT job_id
FROM employees
WHERE employee_ id = 141);

| LAST_NAME | JOB_ID
Rajs |ST_CLERK
Davies |ST_CLERK
IMatos |ST_CLERK
Margas |ST_CLERK

Oracle Database 10g: SQL Fundamentals | 6-8

Executing Single-Row Subqueries

SELECT last_name, job_ id, salary

FROM employees

WHERE job_id = p ST_CLERK
(SELECT job_id

FROM employees

WHERE employee id = 141)
AND salary > y 2600
(SELECT salary

FROM employees

WHERE employee id = 143);

| LAST_NAME | JOB_ID | SALARY

[Rajs [ST_CLERK | 3500

[Davies [ST_CLERK | 3100
6-9 Copyright © 2004, Oracle. All rights reserved.

Executing Single-Row Subqueries

A SELECT statement can be considered as a query block. The example in the slide displays
employees whose job ID is the same as that of employee 141 and whose salary is greater
than that of employee 143.

The example consists of three query blocks: the outer query and two inner queries. The inner
query blocks are executed first, producing the query results ST _CLERK and 2600,
respectively. The outer query block is then processed and uses the values that were returned
by the inner queries to complete its search conditions.

Both inner queries return single values (ST_CLERK and 2600, respectively), so this SQL
statement is called a single-row subquery.

Note: The outer and inner queries can get data from different tables.

Oracle Database 10g: SQL Fundamentals | 6-9

Using Group Functions in a Subquery

SELECT last_name, job id, salary
FROM employees 2500
WHERE salary = I
(SELECT MIN(salary)
FROM employees);

SALARY

| LAST_NAME | JOB_ID |
[ST_CLERK |

|Va rgas 2500

6-10 Copyright © 2004, Oracle. All rights reserved.

Using Group Functions in a Subquery
You can display data from a main query by using a group function in a subquery to return a
single row. The subquery is in parentheses and is placed after the comparison condition.
The example in the slide displays the employee last name, job ID, and salary of all
employees whose salary is equal to the minimum salary. The MIN group function returns a
single value (2500) to the outer query.

Oracle Database 10g: SQL Fundamentals | 6-10

The HAVING Clause with Subqueries

 The Oracle server executes subqueries first.
e The Oracle server returns results into the HAVING
clause of the main query.

SELECT department_id, MIN(salary)

FROM employees

GROUP BY department id 2500

[HAVING MIN(salary) > 1
(SELECT MIN(salary)
FROM employees
WHERE department _id = 50);

6-11 Copyright © 2004, Oracle. All rights reserved.

The HAVING Clause with Subqueries
You can use subqueries not only in the WHERE clause but also in the HAV ING clause. The
Oracle server executes the subquery, and the results are returned into the HAVING clause of
the main query.
The SQL statement in the slide displays all the departments that have a minimum salary
greater than that of department 50.

| DEPARTMENT ID | MIN{SALARY)

| 10| 4400
| 20 | G000
| | 7000

7 rows selected.
Example
Find the job with the lowest average salary.
SELECT job_id, AVG(salary)
FROM employees
GROUP BY job_id
HAVING AVG(salary) = (SELECT MINCAVG(salary))
FROM employees
GROUP BY job_id);

Oracle Database 10g: SQL Fundamentals | 6-11

What Is Wrong with This Statement?

SELECT employee_id, last_name
FROM employees

WHERE [salary]|=

(SELECT MIN(salary)
FROM employees

[SROUP BY department_id);

ERROR at line 4:
ORA-01427: single-row subquery returns more than
one row

Single-row operator with multiple-row subquery

6-12 Copyright © 2004, Oracle. All rights reserved.

Errors with Subqueries
One common error with subqueries occurs when more than one row is returned for a single-
row subquery.
In the SQL statement in the slide, the subquery contains a GROUP BY clause, which implies
that the subquery will return multiple rows, one for each group that it finds. In this case, the
result of the subquery are 4400, 6000, 2500, 4200, 7000, 17000, and 8300.

The outer query takes those results and uses them in its WHERE clause. The WHERE clause
contains an equal (=) operator, a single-row comparison operator that expects only one
value. The = operator cannot accept more than one value from the subquery and therefore
generates the error.

To correct this error, change the = operator to IN.

Oracle Database 10g: SQL Fundamentals | 6-12

Will This Statement Return Rows?

SELECT last_name, job_ id
FROM employees
WHERE job _id =

(SELECT job_id
FROM employees
WHERE [last_name = “Haas")|;

no rows selected

Subquery returns no values.

6-13 Copyright © 2004, Oracle. All rights reserved.

Problems with Subqueries
A common problem with subqueries occurs when no rows are returned by the inner query.
In the SQL statement in the slide, the subquery contains a WHERE clause. Presumably, the
intention is to find the employee whose name is Haas. The statement is correct but selects no
rows when executed.

There is no employee named Haas. So the subquery returns no rows. The outer query takes
the results of the subquery (null) and uses these results in its WHERE clause. The outer query
finds no employee with a job ID equal to null, and so returns no rows. If a job existed with a
value of null, the row is not returned because comparison of two null values yields a null;
therefore, the WHERE condition is not true.

Oracle Database 10g: SQL Fundamentals | 6-13

Multiple-Row Subqueries

* Return more than one row
* Use multiple-row comparison operators

Operator Meaning

IN Equal to any member in the list

ANY Compare value to each value returned by the
subquery

ALL Compare value to every value returned by
the subquery

6-14 Copyright © 2004, Oracle. All rights reserved.

Multiple-Row Subqueries

Subqueries that return more than one row are called multiple-row subqueries. You use a
multiple-row operator, instead of a single-row operator, with a multiple-row subquery. The
multiple-row operator expects one or more values:

SELECT last_name, salary, department_id

FROM employees

WHERE salary IN (SELECT MIN(salary)
FROM employees
GROUP BY department_id);

Example
Find the employees who earn the same salary as the minimum salary for each department.
The inner query is executed first, producing a query result. The main query block is then

processed and uses the values that were returned by the inner query to complete its search
condition. In fact, the main query appears to the Oracle server as follows:

SELECT last_name, salary, department_id

FROM employees

WHERE salary IN (2500, 4200, 4400, 6000, 7000, 8300,
8600, 17000);

Oracle Database 10g: SQL Fundamentals | 6-14

Using the ANY Operator
In Multiple-Row Subqueries

SELECT employee_id, last name, job id, salary
FROM employees 9000, 6000, 4200
WHERE salary <[ANY]

]
(SELECT salary

FROM employees

WHERE job_id = "IT_PROG")
AND job _id <> "1T_PROG";

[EMPLOYEE_ID | LAST_NAME | JOB_ID | SALARY

[124 [Mourgos [ST_man | 800
[141 [Rajs [ST_CLERK | 3500
[142 [Davies [ST_CLERK | 3100
[143 |Matos [ST_cLERK | 2600
[144 [vargas [ST_CLERK | 2500
10 rows selected.

6-15 Copyright © 2004, Oracle. All rights reserved.

Multiple-Row Subqueries (continued)
The ANY operator (and its synonym, the SOME operator) compares a value to each value
returned by a subquery. The slide example displays employees who are not IT programmers
and whose salary is less than that of any IT programmer. The maximum salary that a
programmer earns is $9,000.
<ANY means less than the maximum. >ANY means more than the minimum. =ANY is
equivalent to IN.

Oracle Database 10g: SQL Fundamentals | 6-15

Using the ALL Operator
In Multiple-Row Subqueries

SELECT employee_id, last _name, job id, salary
FROM employees 9000, 6000, 4200
WHERE salary <[ALL| 1

(SELECT salary

FROM employees

WHERE job_id = "IT_PROG")
AND job_id <> "IT_PROG";

| EMPLOYEE_ID | LAST_NAME | JOB_ID | SALARY

| 141 [Rajs [ST_CLERK | 3500

| 142 [Davies [ST_CLERK | 3100

| 143 [Matas [ST_CLERK | 2600

| 144 [Vargas [sT_CLERK | 2500
6-16 Copyright © 2004, Oracle. All rights reserved.

Multiple-Row Subqueries (continued)

The ALL operator compares a value to every value returned by a subquery. The slide
example displays employees whose salary is less than the salary of all employees with a job
ID of IT_PROG and whose job is not 1T_PROG.

>ALL means more than the maximum, and <ALL means less than the minimum.
The NOT operator can be used with IN, ANY, and ALL operators.

Oracle Database 10g: SQL Fundamentals | 6-16

Null Values in a Subquery

SELECT emp.last_name

FROM employees emp

WHERE emp.employee id NOT IN
(SELECT mgr.manager_id
FROM employees mgr);

no rows selected

6-17 Copyright © 2004, Oracle. All rights reserved.

Returning Nulls in the Resulting Set of a Subquery

The SQL statement in the slide attempts to display all the employees who do not have any
subordinates. Logically, this SQL statement should have returned 12 rows. However, the
SQL statement does not return any rows. One of the values returned by the inner query is a
null value, and hence the entire query returns no rows.

The reason is that all conditions that compare a null value result in a null. So whenever null
values are likely to be part of the results set of a subquery, do not use the NOT IN operator.
The NOT IN operator is equivalent to <> ALL.

Notice that the null value as part of the results set of a subquery is not a problem if you use
the IN operator. The IN operator is equivalent to =ANY. For example, to display the
employees who have subordinates, use the following SQL statement:

SELECT emp.last_name

FROM employees emp

WHERE emp.employee id IN

(SELECT mgr.manager_id
FROM employees mgr);

Oracle Database 10g: SQL Fundamentals | 6-17

Returning Nulls in the Resulting Set of a Subquery (continued)

Alternatively, a WHERE clause can be included in the subquery to display all employees who
do not have any subordinates:
SELECT last_name FROM employees
WHERE employee_id NOT IN
(SELECT manager_id
FROM employees
WHERE manager_id IS NOT NULL);

Oracle Database 10g: SQL Fundamentals | 6-18

Summary

In this lesson, you should have learned how to:
* ldentify when a subquery can help solve a
guestion

* Write subqueries when a query is based on
unknown values

SELECT select _list

FROM table

WHERE expr operator
(SELECT select_list
FROM table);

6-19 Copyright © 2004, Oracle. All rights reserved.

Summary
In this lesson, you should have learned how to use subqueries. A subquery is a SELECT
statement that is embedded in a clause of another SQL statement. Subqueries are useful
when a query is based on a search criterion with unknown intermediate values.
Subqueries have the following characteristics:
» Can pass one row of data to a main statement that contains a single-row operator, such
as =, <> > >=<,0r<=
» Can pass multiple rows of data to a main statement that contains a multiple-row
operator, such as IN
» Are processed first by the Oracle server, after which the WHERE or HAV ING clause
uses the results
» Can contain group functions

Oracle Database 10g: SQL Fundamentals | 6-19

Practice 6: Overview

This practice covers the following topics:

* Creating subqueries to query values based on
unknown criteria

* Using subqueries to find out which values exist in
one set of data and not in another

6-20 Copyright © 2004, Oracle. All rights reserved.

Practice 6: Overview
In this practice, you write complex queries using nested SELECT statements.
Paper-Based Questions

You may want to create the inner query first for these questions. Make sure that it runs and
produces the data that you anticipate before you code the outer query.

Oracle Database 10g: SQL Fundamentals | 6-20

Practice 6

1. The HR department needs a query that prompts the user for an employee last name. The
query then displays the last name and hire date of any employee in the same department
as the employee whose name they supply (excluding that employee). For example, if the
user enters Zlotkey, find all employees who work with Zlotkey (excluding Zlotkey).

LAST _NAME

HIRE_DATE

bl

11-MAY-96

|Taj,rlnr

24-MAR-93

2. Create a report that displays the employee number, last name, and salary of all
employees who earn more than the average salary. Sort the results in order of ascending

salary.

| EMPLOYEE_ID | LAST_NAME | SALARY

| 103 [Hunold | 9000
| 143 |Zlotkey | 10500
| 174 |Abel | 11000
| 205 |Higgins | 12000
| 201 |Hartstein | 13000
| 101 |Kochhar | 17000
| 102 |De Haan | 17000
| 100 |King | 24000

g rows selected.

3. Write a query that displays the employee number and last name of all employees who
work in a department with any employee whose last name contains a u. Place your SQL
statement in a text file named lab_06_03.sql. Run your query.

EMPLOYEE_ID

LAST _NAME

124 |hf1|:|urg|:|5

141 |Rajs

142 |Davies

143 Matos

144 |‘v’argaa

103 [Hunald

104 [Ermst

107 |L|:|rentz

g rows selected.

Oracle Database 10g: SQL Fundamentals | 6-21

Practice 6 (continued)
4. The HR department needs a report that displays the last name, department number, and
job 1D of all employees whose department location 1D is 1700.

| LAST_NAME | DEPARTMENT _ID | JOB_ID
/halen | 10 |AD_ASST

King | 90 |AD_PRES
\Kaochhar | 90 |AD_WP

D& Haan | 90 |AD_P

Higgins | 110 |AC_MGR

Gietz | 110 |AC_ACCOUNT

B rows selected.

Modify the query so that the user is prompted for a location ID. Save this to a file named
lab 06 _04.sql.

5. Create a report for HR that displays the last name and salary of every employee who
reports to King.

| LAST_NAME | SALARY

Kochhar 17000
| |

De Haan 17000
| |

hWlourgos A300
Mourg |

Tlotke 10500
Zlotkey |

Hartstein | 13000

6. Create a report for HR that displays the department number, last name, and job ID for
every employee in the Executive department.

| DEPARTMENT_ID | LAST_NAME | JOB_ID
| 90 |King D_PRES

| 90 |Kachhar A0 WP

| 90 |De Haan A0 P

If you have time, complete the following exercise:

7. Modify the query in lab_06_03.sql to display the employee number, last name, and
salary of all employees who earn more than the average salary and who work in a
department with any employee whose last name contains a u. Resave
lab 06 _03.sqgl as lab_06_07.sqgl. Run the statement in lab_06_07.sql.

| EMPLOYEE_ID | LAST_NAME | SALARY
| 103 Hunold | 9000

Oracle Database 10g: SQL Fundamentals | 6-22

Using the Set Operators

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
* Describe set operators
* Use aset operator to combine multiple queries
into a single query
» Control the order of rows returned

7-2 Copyright © 2004, Oracle. All rights reserved.

Objectives
In this lesson, you learn how to write queries by using set operators.

Oracle Database 10g: SQL Fundamentals | 7-2

Set Operators
A B A B

UNTON/UNION ALL

INTERSECT

MINUS

7-3 Copyright © 2004, Oracle. All rights reserved.

Set Operators

The set operators combine the results of two or more component queries into one result.
Queries containing set operators are called compound queries.

Operator Returns

UNION All distinct rows selected by either query

UNION ALL All rows selected by either query, including all duplicates

INTERSECT All distinct rows selected by both queries

MINUS All distinct rows that are selected by the first SELECT
statement and not selected in the second SELECT statement

All set operators have equal precedence. If a SQL statement contains multiple set operators,
the Oracle server evaluates them from left (top) to right (bottom) if no parentheses explicitly
specify another order. You should use parentheses to specify the order of evaluation
explicitly in queries that use the INTERSECT operator with other set operators.

Oracle Database 10g: SQL Fundamentals | 7-3

Tables Used in This Lesson

The tables used in this lesson are:

« EMPLOYEES: Provides details regarding all
current employees

e JOB_HISTORY: Records the details of the start
date and end date of the former job, and the job
identification number and department when an
employee switches jobs

7-4 Copyright © 2004, Oracle. All rights reserved.

Tables Used in This Lesson

Two tables are used in this lesson. They are the EMPLOYEES table and the JOB_HISTORY
table.

The EMPLOYEES table stores the employee details. For the human resource
records, this table stores a unique identification number and e-mail address for each
employee. The details of the employee’s job identification number, salary, and
manager are also stored. Some of the employees earn a commission in addition to
their salary; this information is tracked, too. The company organizes the roles of
employees into jobs. Some of the employees have been with the company for a long
time and have switched to different jobs. This is monitored using the JOB_HISTORY
table. When an employee switches jobs, the details of the start date and end date of
the former job, the job identification number, and the department are recorded in the
JOB_HISTORY table.

The structure and data from the EMPLOYEES and JOB_HISTORY tables are shown on
the following pages.

Oracle Database 10g: SQL Fundamentals | 7-4

Tables Used in This Lesson (continued)

There have been instances in the company of people who have held the same
position more than once during their tenure with the company. For example,
consider the employee Taylor, who joined the company on 24-MAR-1998. Taylor
held the job title SA_REP for the period 24-MAR-98 to 31-DEC-98 and the job title
SA_MAN for the period 01-JAN-99 to 31-DEC-99. Taylor moved back into the job title

of SA_REP, which is his current job title.

Similarly, consider the employee Whalen, who joined the company on 17-SEP-1987.
Whalen held the job title AD_ASST for the period 17-SEP-87 to 17-JUN-93 and the
job title AC_ACCOUNT for the period 01-JUL-94 to 31-DEC-98. Whalen moved back

into the job title of AD_ASST, which is his current job title.

| Name | |
[EMPLOYEE_ID INOT MULL [NUMBER(E)
[FIRST_MAME | [WARCHARZ(20)
|LAST _NAME INOT MNULL [VARCHARZ(25)
[EralL INOT MULL [WARCHARZ(25)
[PHONE_NUMBER | [VARCHARZ(20)
|HIRE_DATE INOT MULL [DaTE

lJOB_ID INOT MULL [VARCHAR2(10)
[sALARY | [MUMBER(® 2)
[COMMISSION_PCT | [NUMBER(2 2)
[MANAGER_ID | [NUMBER(&)
[DEPARTMENT_ID | [NUMBER(4)

Oracle Database 10g: SQL Fundamentals | 7-5

Tables Used in This Lesson (continued)

SELECT employee_id,
FROM employees;

last_name, job_id, hire_date, department_id

| EMPLOYEE_ID | LAST NAME | JOB_ID | HIRE_DATE | DEPARTMENT_ID
| 100 | |King AD_PRES n7-Junar | a0
| 101 |[Kachhar DR 21-5EP-83 | a0
| 102 ||De Haan AD P M3-JaM-93 | a0
| 103 |Hunaold IT_PROG 03-JAnN-90 | B0
| 104 |[Ernst IT_PROG 21-MaY-1 | B0
| 107 |Lorentz IT_PROG 07-FEB99 | B0
| 124 [Mourgos ST_MAN MB-NOW-E9 | 50
| 141 |Rajs |5T_CLERK n7-0cT95 | 50
| 142 |Davies |ST_CLERK 29-ANG7 | 50
| 143 |Matos |ST_CLERK N5-MARGE | 50
| 144 [vargas |ST_CLERK 09-JuL-es | 50
| 143 |Zlotkey S8 AN 29-JAN-00 | a0
| 174 |Abel SA,_REP 11-MAY-95 a0
| 176 [Taylor SA_REP 24-MAR-93 a0
| EMPLOYEE_ID | LAST_NAME JOB_ID HIRE_DATE | DEPARTMENT_ID
| 178 ||Grant SA,_REP 24-MAY-99
| 200 [vhalen AD_ASST 17-SEP-57 10
| 201 |Hartstein MK_MAN 17-FEB-96 20
20 rovwes selected.

DESCRIBE job_history
| Mame | Mull? | Type
[EMPLOYEE_ID IMOT NULL IMUMBER(E)
|START_DATE INOT MULL IDATE
[END_DATE IMOT MULL IDATE
\JOB_ID INOT MULL WARCHARZ(10)
IDEPARTMENT_ID | IMUMBER(4)

Oracle Database 10g: SQL Fundamentals | 7-6

Tables Used in This Lesson (continued)
SELECT * FROM job_ history;

| EMPLOYEE_ID | START DAT | END DATE | JOB_ID | DEPARTMENT_ID

| 102 [13-JAN-93 24-JUL28 IT_PROG | BD
| 101 [21-5EP-9 27-0CT-93 |AC_ACCOUNT | 110
| 101 [28-0CT-93 NE-MARD? |AC_MGR | 110
| 201 |17-FEB-96 19-DEC-99 |MK_REP | 20
| 114 [24-MAR-98 31-DEC-99 |ST_CLERK | 500
| 122 |01-JAN-93 31-DEC-99 ||3T_CLERK | 50
| 200 |17-SEP-87 M7-JUN-G3 |AD_ASST | 90
| 176 [24-MAR-98 31-DEC-38 |SA_REP | a0
| 176 [01-JAN-99 31-DEC-39 |34 _MAN | a0
| 200 |01-JUL-94 31-DEC-98 |AC_ACCOUNT | 90

10 rows selected.

Oracle Database 10g: SQL Fundamentals | 7-7

7-8

UNITON Operator

The UNION operator returns results from both
gueries after eliminating duplications.

Copyright © 2004, Oracle. All rights reserved.

UNION Operator

The UNTON operator returns all rows that are selected by either query. Use the UN 10N
operator to return all rows from multiple tables and eliminate any duplicate rows.

Guidelines

The number of columns and the data types of the columns being selected must be
identical in all the SELECT statements used in the query. The names of the columns
need not be identical.

UNION operates over all of the columns being selected.

NULL values are not ignored during duplicate checking.

The IN operator has a higher precedence than the UNTON operator.

By default, the output is sorted in ascending order of the first column of the SELECT
clause.

Oracle Database 10g: SQL Fundamentals | 7-8

Using the UNION Operator

Display the current and previous job details of all
employees. Display each employee only once.
SELECT employee_id, job id

FROM employees

UNITON
SELECT employee_id, job id
FROM job history;

| EMPLOYEE_ID | JOB_ID
| 100 [AD_PRES
| 101 |[AC_ACCOUNT

|. B 200 [AC_ACCOUNT
| 200 |[AD_ASST

| 205 |[AC_MGR
| 206 |[AC_ACCOUNT

7-9 Copyright © 2004, Oracle. All rights reserved.

Using the UNION Operator

The UNION operator eliminates any duplicate records. If records that occur in both the
EMPLOYEES and the JOB_HISTORY tables are identical, the records are displayed only

once. Observe in the output shown on the slide that the record for the employee with the
EMPLOYEE__ID 200 appears twice because the JOB__ID is different in each row.

Consider the following example:
SELECT employee_id, job_id, department_id
FROM employees
UNION
SELECT employee_id, job_id, department_id
FROM job_history;

EMPLOYEE_ID | JOB_ID | DEPARTMENT_ID
200 |AC_ACCOUNT | 90
| 200 |AD_ASST | 10
| 200 |AD_ASST | 90

29 rows selected.

Oracle Database 10g: SQL Fundamentals | 7-9

Using the UNION Operator (continued)
In the preceding output, employee 200 appears three times. Why? Notice the
DEPARTMENT__ID values for employee 200. One row has a DEPARTMENT _ID of 90,
another 10, and the third 90. Because of these unique combinations of job IDs and
department IDs, each row for employee 200 is unique and therefore not considered to be a
duplicate. Observe that the output is sorted in ascending order of the first column of the
SELECT clause (in this case, EMPLOYEE__ID).

Oracle Database 10g: SQL Fundamentals | 7-10

UNITON ALL Operator

The UNION ALL operator returns results from both
queries, including all duplications.

7-11 Copyright © 2004, Oracle. All rights reserved.

UNION ALL Operator
Use the UNTON ALL operator to return all rows from multiple queries.
Guidelines
The guidelines for UNTON and UNTON ALL are the same, with the following two exceptions

that pertain to UNTON ALL.:
e Unlike UNITON, duplicate rows are not eliminated and the output is not sorted by

default.
e The DISTINCT keyword cannot be used.

Oracle Database 10g: SQL Fundamentals | 7-11

Using the UNION ALL Operator

Display the current and previous departments of all
employees.

SELECT employee_id, job id, department_id
FROM employees

[UNION ALL |

SELECT employee id, job_id, department_ id
FROM job_history

ORDER BY employee id;

| EMPLOYEE_ID | JOB_ID | DEPARTMENT_ID

| 100 [AD_PRES | a0
| 101 [AD_vP | o0
| 200 |[aD_ASST | 10
| 200 |[aD_AsST | o0
| 200 [[AC_ACCOUNT | 50
T - 205 |[AC_MGR | 110
| 206 [[AC_ACCOUNT | 110
30 rows selected.

7-12 Copyright © 2004, Oracle. All rights reserved.

UNION ALL Operator (continued)

In the example, 30 rows are selected. The combination of the two tables totals to 30 rows.
The UNION ALL operator does not eliminate duplicate rows. UNTON returns all distinct
rows selected by either query. UNTON ALL returns all rows selected by either query,
including all duplicates. Consider the query on the slide, now written with the UN 10N

clause:
SELECT employee_id, job_id,department_id

FROM employees

UNION

SELECT employee_id, job_id,department_id
FROM jJjob_history

ORDER BY employee_id;
The preceding query returns 29 rows. This is because it eliminates the following row (as it is
a duplicate):
| EMPLOYEE_ID | JOB_ID | DEPARTMENT _ID
| 176 |5A_REP | a0

Oracle Database 10g: SQL Fundamentals | 7-12

INTERSECT Operator

The INTERSECT operator returns rows that are
common to both queries.

7-13 Copyright © 2004, Oracle. All rights reserved.

INTERSECT Operator

Use the INTERSECT operator to return all rows that are common to multiple queries.
Guidelines
* The number of columns and the data types of the columns being selected by the
SELECT statements in the queries must be identical in all the SELECT statements
used in the query. The names of the columns need not be identical.

» Reversing the order of the intersected tables does not alter the result.
- INTERSECT does not ignore NULL values.

Oracle Database 10g: SQL Fundamentals | 7-13

Using the INTERSECT Operator

Display the employee IDs and job IDs of those
employees who currently have ajob title that is the
same as their job title when they were initially hired
(that is, they changed jobs but have now gone back to
doing their original job).

SELECT employee_id, job id
FROM employees

| INTERSECT |

SELECT employee_id, job id
FROM job history;

| 176 [SA_REP
| 200 |aD_asST

| EMPLOYEE_ID | JOB_ID ‘

7-14 Copyright © 2004, Oracle. All rights reserved.

INTERSECT Operator (continued)

In the example in this slide, the query returns only the records that have the same values in
the selected columns in both tables.

What will be the results if you add the DEPARTMENT _ID column to the SELECT
statement from the EMPLOYEES table and add the DEPARTMENT _ 1D column to the
SELECT statement from the JOB_HISTORY table and run this query? The results may be
different because of the introduction of another column whose values may or may not be
duplicates.

Example
SELECT employee_id, job_id, department_id
FROM employees
INTERSECT
SELECT employee_id, job_id, department_id
FROM job_history;
| EMPLOYEE_ID | JOB_ID | DEPARTMENT_ID
| 176 |5A_REP | a0

Employee 200 is no longer part of the results because the EMPLOYEES.DEPARTMENT _ID
value is different from the JOB_HISTORY.DEPARTMENT _1D value.

Oracle Database 10g: SQL Fundamentals | 7-14

MINUS Operator

The MINUS operator returns rows in the first query
that are not present in the second query.

7-15 Copyright © 2004, Oracle. All rights reserved.

MINUS Operator

Use the MINUS operator to return rows returned by the first query that are not present in the
second query (the first SELECT statement MINUS the second SELECT statement).

Guidelines
* The number of columns and the data types of the columns being selected by the
SELECT statements in the queries must be identical in all the SELECT statements

used in the query. The names of the columns need not be identical.
* All of the columns in the WHERE clause must be in the SELECT clause for the MINUS
operator to work.

Oracle Database 10g: SQL Fundamentals | 7-15

MINUS Operator

Display the employee IDs of those employees who
have not changed their jobs even once.

SELECT employee_1id,job_id

FROM employees

MINUS
SELECT employee_id,job id
FROM job history;

EMPLOYEE_ID | JOB_ID
100 [AD_PRES
101 [AD_P
102 |[AD_wP
103 [IT_PROG

201 [MK_MAN
202 |[MK_REP
205 |[AC_MGR
206 [AC_ACCOUNT

|
|
|
|
|
|
|
|
1

8 rows selected.

7-16 Copyright © 2004, Oracle. All rights reserved.

MINUS Operator (continued)

In the example in the slide, the employee IDs and job IDs in the JOB_HISTORY table are
subtracted from those in the EMPLOYEES table. The results set displays the employees
remaining after the subtraction; they are represented by rows that exist in the EMPLOYEES
table but do not exist in the JOB_HISTORY table. These are the records of the employees
who have not changed their jobs even once.

Oracle Database 10g: SQL Fundamentals | 7-16

Set Operator Guidelines

* The expressions in the SELECT lists must match in
number and data type.

 Parentheses can be used to alter the sequence of
execution.

 The ORDER BY clause:
— Can appear only at the very end of the statement

— Will accept the column name, aliases from the first
SELECT statement, or the positional notation

7-17 Copyright © 2004, Oracle. All rights reserved.

Set Operator Guidelines
* The expressions in the select lists of the queries must match in number and data type.
Queries that use UNTON, UNION ALL, INTERSECT, and MINUS operators in their
WHERE clause must have the same number and type of columns in their SELECT list.
For example:
SELECT employee_id, department_id
FROM employees
WHERE (employee_ id, department_id)
IN (SELECT employee_id, department_id
FROM employees
UNION
SELECT employee id, department_id
FROM Jjob_history);
e The ORDER BY clause:
- Can appear only at the very end of the statement
- Will accept the column name, an alias, or the positional notation
e The column name or alias, if used in an ORDER BY clause, must be from the first
SELECT list.

Set operators can be used in subqueries.

Oracle Database 10g: SQL Fundamentals | 7-17

The Oracle Server and Set Operators

* Duplicate rows are automatically eliminated
except in UNION ALL.

¢ Column names from the first query appear in the
result.

 The output is sorted in ascending order by default
except in UNION ALL.

7-18 Copyright © 2004, Oracle. All rights reserved.

The Oracle Server and Set Operators

When a query uses set operators, the Oracle server eliminates duplicate rows automatically
except in the case of the UNTON ALL operator. The column names in the output are decided
by the column list in the first SELECT statement. By default, the output is sorted in
ascending order of the first column of the SELECT clause.

The corresponding expressions in the select lists of the component queries of a compound
query must match in number and data type. If component queries select character data, the
data type of the return values is determined as follows:
» If both queries select values of data type CHAR, the returned values have data type
CHAR.
» If either or both of the queries select values of data type VARCHARZ2, the returned
values have data type VARCHAR2.

Oracle Database 10g: SQL Fundamentals | 7-18

Matching the SELECT Statements

Using the UNION operator, display the department ID,
location, and hire date for all employees.

SELECT department_id, TO_NUMBER(null)
location, hire_date
FROM employees
UNION
SELECT department_id, location_id, TO DATE(null)
FROM departments;

| DEPARTMENT_ID [LOCATION | HIRE_DATE
| 10| 1700 ||
| 10| [17-sEP-87
| 20| 1800 |
| 20 [17-FEB-96
| 10| 1700 |
| 10 | 07-JUn-24
| 190 | 1700 ||
| | 24-MAYT-99
27 rows selected.

7-19 Copyright © 2004, Oracle. All rights reserved.

Matching the SELECT Statements

Because the expressions in the select lists of the queries must match in number, you can use
dummy columns and the data type conversion functions to comply with this rule. In the
slide, the name location is given as the dummy column heading. The TO_NUMBER
function is used in the first query to match the NUMBER data type of the LOCATION_1D
column retrieved by the second query. Similarly, the TO_DATE function in the second query
is used to match the DATE data type of the HIRE_DATE column retrieved by the first query.

Oracle Database 10g: SQL Fundamentals | 7-19

Matching the SELECT Statement:
Example

Using the UNION operator, display the employee ID, job
ID, and salary of all employees.

SELECT employee_id, job_id,salary
FROM employees

UNITON

SELECT employee_id, job_id,0

FROM job history;

| EMPLOYEE_ID | JOB_ID | SALARY

| 100 |AD_PRES 24000
| 101 |AC_ACCOUNT 0
| 101 [AC_MGR | i
| 205 |[AC_MGR | 12000
| 206 |[AC_ACCOUNT | 5300
30 rows selected.

7-20 Copyright © 2004, Oracle. All rights reserved.

Matching the SELECT Statement: Example

The EMPLOYEES and JOB_HISTORY tables have several columns in common (for
example, EMPLOYEE__ 1D, JOB_ 1D, and DEPARTMENT _1D). But what if you want the
query to display the employee ID, job ID, and salary using the UN1ON operator, knowing
that the salary exists only in the EMPLOYEES table?

The code example in the slide matches the EMPLOYEE__ID and JOB__ID columns in the
EMPLOYEES and JOB_HISTORY tables. A literal value of O is added to the
JOB_HISTORY SELECT statement to match the numeric SALARY column in the
EMPLOYEES SELECT statement.

In the preceding results, each row in the output that corresponds to a record from the
JOB_HISTORY table contains a O in the SALARY column.

Oracle Database 10g: SQL Fundamentals | 7-20

Controlling the Order of Rows

Produce an English sentence using two UNION
operators.

COLUMN a_dummy NOPRINT
SELECT "sing®™ AS "My dream', 3 a_dummy
FROM dual
UNION
SELECT "1°"d like to teach®, 1 a dummy
FROM dual
UNITON
SELECT “the world to", 2 a_dummy
FROM dual
ORDER BY a_dummy;
| My dream
[Id like to teach
|the wearld to
|sing
7-21 Copyright © 2004, Oracle. All rights reserved.

Controlling the Order of Rows

By default, the output is sorted in ascending order on the first column. You can use the
ORDER BY clause to change this.

The ORDER BY clause can be used only once in a compound query. If used, the ORDER BY
clause must be placed at the end of the query. The ORDER BY clause accepts the column
name or an alias. Without the ORDER BY clause, the code example in the slide produces the
following output in the alphabetical order of the first column:

| My dream

I'd like to teach

|sing

|the wiotld to

Note: Consider a compound query where the UNION set operator is used more than once. In
this case, the ORDER BY clause can use only positions rather than explicit expressions.

The iISQL*Plus COLUMN Command
You can use the iSQL*Plus COLUMN command to customize column headings.

Oracle Database 10g: SQL Fundamentals | 7-21

The iISQL*Plus COLUMN Command (continued)

Syntax:
COL[LUMN] [{column]alias} [option]]

Where OPTION is:
CLE[AR]: Clears any column formats
HEA[DING] text: Sets the column heading
FOR[MAT] format: Changes the display of the column using a format model
NOPRINT | PRINT: Suppresses or displays the column heading and data
NULL

The following statement suppresses the column data and title heading for the column named
A_DUMMY. Notice that the first SELECT clause in the previous slide creates a dummy
column named A_DUMMY.

COLUMN a_dummy NOPRINT

Oracle Database 10g: SQL Fundamentals | 7-22

7-23

Summary

In this lesson, you should have learned how to:

* Use UNION to return all distinct rows

e Use UNION ALL to return all rows, including
duplicates

* Use INTERSECT to return all rows that are shared
by both queries

 Use MINUS to return all distinct rows that are
selected by the first query but not by the second

* Use ORDER BY only at the very end of the
statement

Copyright © 2004, Oracle. All rights reserved.

Summ

ary

The UNTON operator returns all rows selected by either query. Use the UNTON
operator to return all rows from multiple tables and eliminate any duplicate rows.

Use the UNTON ALL operator to return all rows from multiple queries. Unlike the
case with the UNTON operator, duplicate rows are not eliminated and the output is not
sorted by default.

Use the INTERSECT operator to return all rows that are common to multiple queries.
Use the MINUS operator to return rows returned by the first query that are not present
in the second query.

Remember to use the ORDER BY clause only at the very end of the compound
statement.

Make sure that the corresponding expressions in the SELECT lists match in number
and data type.

Oracle Database 10g: SQL Fundamentals | 7-23

Practice 7: Overview

In this practice, you use the set operators to create
reports:

* Using the UNION operator
* Using the INTERSECTION operator
* Using the MINUS operator

7-24 Copyright © 2004, Oracle. All rights reserved.

Practice 7: Overview
In this practice, you write queries using the set operators.

Oracle Database 10g: SQL Fundamentals | 7-24

Practice 7
1. The HR department needs a list of department IDs for departments that do not contain
the job ID ST_CLERK. Use set operators to create this report.

DEPARTMENT _ID

10
20

|
|
|
| B0
|
|
|
|

g0
=l
110
150

7 rows selected.

2. The HR department needs a list of countries that have no departments located in them.
Display the country ID and the name of the countries. Use set operators to create this

report.

| co | COUNTRY_NAME
|DE |German3,f

3. Produce a list of jobs for departments 10, 50, and 20, in that order. Display job ID and
department ID using set operators.

| JOB_ID | DEPARTMENT_ID

AD_ASST | 10
|ST_CLERK | 50
ST_MAN | 50
INK_MARN | 20
IMIK_REP | 20

4. Create a report that lists the employee 1Ds and job IDs of those employees who
currently have a job title that is the same as their job title when they were initially
hired by the company (that is, they changed jobs but have now gone back to doing
their original job).

| EMPLOYEE_ID | JOB_ID
| 176 |5A_REP
| 200 |AD_ASST

Oracle Database 10g: SQL Fundamentals | 7-25

Practice 7 (continued)
5. The HR department needs a report with the following specifications:

- Last name and department ID of all the employees from the EMPLOYEES table,
regardless of whether or not they belong to a department

- Department ID and department name of all the departments from the
DEPARTMENTS table, regardless of whether or not they have employees
working in them

Write a compound query to accomplish this.

10 |Administratinn

20 |Marketing

50 |Shipping

B0 (I

A0 |Sales

=50 |E}{ecutiwe

110 |A|::t:|:|unting

| LAST NAME | DEPARTMENT ID | TO_CHAR{NULL)
\Abel | a0 |
Daviea	a0
De Haan	50
Ern5t	G0
Fay	20
Gietz	110
Grant	
Hartstein	20
Higgins	10
IHunald	B0
King	a0
[Kochhar	a0
L	:
Matns	a0
LAST NAME	DEPARTMENT ID
h-'1	:
Rajs	50
Taj,rll:	r
‘v’argas	A0
Whialen | 10 |
Zlatkey | a0 |

|

|

|

|

|

|

|

|

140 |C|:|ntra|::ting

28 rows selected.

Oracle Database 10g: SQL Fundamentals | 7-26

Manipulating Data

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:

* Describe each data manipulation language (DML)
statement

* Insert rows into atable
 Update rows in atable
 Delete rows from a table
e Control transactions

8-2 Copyright © 2004, Oracle. All rights reserved.

Objective

In this lesson, you learn how to use DML statements to insert rows into a table, update
existing rows in a table, and delete existing rows from a table. You also learn how to control
transactions with the COMMI T, SAVEPOINT, and ROLLBACK statements.

Oracle Database 10g: SQL Fundamentals | 8-2

Data Manipulation Language

« A DML statement is executed when you:
— Add new rows to atable
— Modify existing rows in a table
— Remove existing rows from a table

A transaction consists of a collection of DML
statements that form alogical unit of work.

8-3 Copyright © 2004, Oracle. All rights reserved.

Data Manipulation Language
Data manipulation language (DML) is a core part of SQL. When you want to add, update, or
delete data in the database, you execute a DML statement. A collection of DML statements
that form a logical unit of work is called a transaction.

Consider a banking database. When a bank customer transfers money from a savings
account to a checking account, the transaction might consist of three separate operations:
decrease the savings account, increase the checking account, and record the transaction in
the transaction journal. The Oracle server must guarantee that all three SQL statements are
performed to maintain the accounts in proper balance. When something prevents one of the
statements in the transaction from executing, the other statements of the transaction must be
undone.

Oracle Database 10g: SQL Fundamentals | 8-3

Adding a New Row to a Table

| 70 |[Public Relations 100 1700 | New
DEPARTMENTS row
[DEPARTMENT_ID | DEPARTMENT_NAME |MANAGER_ID [LOCATION_ID
| 10 [Administration | 200 || 1700 Insert new row
| 20 [Marketing | 201 | 1800 into the
| 50 Shipping | 124 | 1500 DEPARTMENTS table
| B0 || | 103 | 1400
| 80 [Sales | 149 | 2500
| 90 |[Executive | 100 || 1700
| 110 [Accounting | 205 || 1700
| 190 [Contracting | | 1700

8-4

DEPARTMENT_ID |DEPARTMENT_NI\ME |MANAGER_ID |LOCATION_ID

|

| 10 [Administration | 200 || 1700
| 20 |[Marketing | 201 || 1800
| 50 |[Shipping | 124 1500
| g0 (I | 103 | 1400
| 80 |[Sales | 149 | 2600
| 90 | [Executive | 100 | 1700
| 110 [Accounting | 205 || 1700
| 190 [Contracting | | 1700
| 70 |[Public Relations | 100 | 1700

Copyright © 2004, Oracle. All rights reserved.

Adding a New Row to a Table
The slide graphic illustrates adding a new department to the DEPARTMENTS table.

Oracle Database 10g: SQL Fundamentals | 8-4

INSERT Statement Syntax

 Add new rows to atable by using the INSERT
statement:

INSERT INTO table [(column [, column..._.]]
VALUES (value [, value...]);

* With this syntax, only one row is inserted at a
time.

8-5 Copyright © 2004, Oracle. All rights reserved.

Adding a New Row to a Table (continued)
You can add new rows to a table by issuing the INSERT statement.

In the syntax:

table is the name of the table
column is the name of the column in the table to populate
value is the corresponding value for the column

Note: This statement with the VALUES clause adds only one row at a time to a table.

Oracle Database 10g: SQL Fundamentals | 8-5

Inserting New Rows

* Insert a new row containing values for each
column.

e List values in the default order of the columns in
the table.

e Optionally, list the columns in the INSERT clause.

INSERT INTO departments(department_id,
department_name, manager_id, location_id)

VALUES (70, “Public Relations®, 100, 1700);

1 row created.

* Enclose character and date values in single
guotation marks.

8-6 Copyright © 2004, Oracle. All rights reserved.

Adding a New Row to a Table (continued)
Because you can insert a new row that contains values for each column, the column list is
not required in the INSERT clause. However, if you do not use the column list, the values
must be listed according to the default order of the columns in the table, and a value must be

provided for each column.
DESCRIBE departments

| Name | Null? | Type
\DEPARTMENT_ID INOT NULL INUMBER(4)
IDEPARTMENT_MAME IMOT NULL WARCHARZ(3)
IMANAGER_ID | INUMBER(E)
ILOCATION_ID | INUMBER(4)

For clarity, use the column list in the INSERT clause.

Enclose character and date values in single quotation marks; it is not recommended that you
enclose numeric values in single quotation marks.

Number values should not be enclosed in single quotation marks, because implicit
conversion may take place for numeric values that are assigned to NUMBER data type
columns if single quotation marks are included.

Oracle Database 10g: SQL Fundamentals | 8-6

Inserting Rows with Null Values

* Implicit method: Omit the column from the
column list.

INSERT INTO departments (department id,
department_name [][])

VALUES (30, "Purchasing®);
1 row created.

* Explicit method: Specify the NULL keyword in the
VALUES clause.

INSERT INTO departments
VALUES (100, “Finance®, |NULL, |NULL);
1 row created.

8-7 Copyright © 2004, Oracle. All rights reserved.

Methods for Inserting Null Values

Method Description

Implicit Omit the column from the column list.

Explicit Specify the NULL keyword in the VALUES list;
specify the empty string (* *) in the VALUES list for character strings
and dates.

Be sure that you can use null values in the targeted column by verifying the Nul 1? status
with the iISQL*Plus DESCR IBE command.

The Oracle server automatically enforces all data types, data ranges, and data integrity
constraints. Any column that is not listed explicitly obtains a null value in the new row.
Common errors that can occur during user input:

* Mandatory value missing for a NOT NULL column

* Duplicate value violates uniqueness constraint

* Foreign key constraint violated

- CHECK constraint violated

» Data type mismatch

» Value too wide to fit in column

Oracle Database 10g: SQL Fundamentals | 8-7

Inserting Special Values

The SYSDATE function records the current date and
time.

INSERT INTO employees (employee id,
first_name, last _name,
email, phone_number,
hire_date,| job i1d, salary,
commission_pct, manager_id,
department_id)

VALUES (113,

"Louis®, "Popp-,

"LPOPP*, "515.124.4567",
SYSDATE,| "AC_ACCOUNT", 6900,
NULL, 205, 100);

1 row created.

8-8 Copyright © 2004, Oracle. All rights reserved.

Inserting Special Values by Using SQL Functions
You can use functions to enter special values in your table.
The slide example records information for employee Popp in the EMPLOYEES table. It
supplies the current date and time in the HIRE_DATE column. It uses the SYSDATE
function for current date and time.
You can also use the USER function when inserting rows in a table. The USER function
records the current username.
Confirming Additions to the Table
SELECT employee_id, last name, job id, hire_date, commission_pct

FROM employees
WHERE employee_id = 113;

| EMPLOYEE_ID |LAST NAME | JOB_ID | HIRE_DATE | COMMISSION_PCT
| 113 |Popp \AC_ACCOUNT [27-SEP-01 |

Oracle Database 10g: SQL Fundamentals | 8-8

Inserting Specific Date Values

 Add anew employee.
INSERT INTO employees

VALUES

(114,
"Den”, "Raphealy”,
"DRAPHEAL ",

"515.127.4561",

TO_DATE("FEB 3, 1999°,

"MON DD, YYYY®"),

1 row created.

* Verify your addition.

[EMPLOYEE_ID [FIRST_NAME [LAST_NAME | EMAIL
| 114 [Den

[PHOME_NUMBER [HIRE_DATE| JOB_ID [SALARY [COMMISSION_P
[DRAPHEAL (815127 4561 |03-FEB-99 |[AC_ACCOUNT| 11000 |

|Raphea|3r

8-9 Copyright © 2004, Oracle. All rights reserved.

Inserting Specific Date and Time Values

The DD-MON-YY format is usually used to insert a date value. With this format, recall that
the century defaults to the current century. Because the date also contains time information,
the default time is midnight (00:00:00).

If a date must be entered in a format other than the default format (for example, with another
century or a specific time), you must use the TO_DATE function.

The example in the slide records information for employee Raphealy in the EMPLOYEES
table. It sets the HIRE_DATE column to be February 3, 1999. If you use the following
statement instead of the one shown in the slide, the year of the hire date is interpreted as
2099.
INSERT INTO employees
VALUES (114,
"Den”, “Raphealy”,
"DRAPHEAL", "515.127.4561",
"03-FEB-99",
"AC_ACCOUNT", 11000, NULL, 100, 30);
If the RR format is used, the system provides the correct century automatically, even if it is
not the current one.

Oracle Database 10g: SQL Fundamentals | 8-9

Creating a Script

¢ Use & substitution in a SQL statement to prompt
for values.

» &is aplaceholder for the variable value.
INSERT INTO departments
(department_id, department_name, location_id)

VALUES (&department_id|,["&department_name ;

Define Substitution Variables

“department_jd" [40 (cancel) (Continue)
"department_name" IHuman Resources { Cancel) { CDntinUE)
"location” [2500 (cancel) (Continue)

1 row created.

8-10 Copyright © 2004, Oracle. All rights reserved.

Creating a Script to Manipulate Data
You can save commands with substitution variables to a file and execute the commands in
the file. The slide example records information for a department in the DEPARTMENTS
table.
Run the script file and you are prompted for input for each of the & substitution variables.
After entering a value for the substitution variable, click the Continue button. The values

that you input are then substituted into the statement. This enables you to run the same script
file over and over but supply a different set of values each time you run it.

Oracle Database 10g: SQL Fundamentals | 8-10

Copying Rows
from Another Table

* Write your INSERT statement with a subquery:

INSERT INTO sales_reps(id, name, salary, commission_pct)
SELECT employee id, last name, salary, commission_pct
FROM employees

WHERE job_id LIKE “"%REP%";

4 rows created.

e Do not use the VALUES clause.

* Match the number of columns in the INSERT
clause to those in the subquery.

8-11 Copyright © 2004, Oracle. All rights reserved.

Copying Rows from Another Table

You can use the INSERT statement to add rows to a table where the values are derived from
existing tables. In place of the VALUES clause, you use a subquery.

Syntax
INSERT INTO table [column (, column)] subquery;

In the syntax:

table is the table name
column is the name of the column in the table to populate
subquery is the subquery that returns rows to the table

The number of columns and their data types in the column list of the INSERT clause must

match the number of values and their data types in the subquery. To create a copy of the
rows of a table, use SELECT * in the subquery:
INSERT INTO copy_emp
SELECT *
FROM employees;

For more information, see “SELECT” (*subqueries” section) in the Oracle Database SQL
Reference.

Oracle Database 10g: SQL Fundamentals | 8-11

Changing Data in a Table

EMPLOYEES
[EMPLOYEE_ID [FIRST_NAME [LAST_NAME| EMAIL [HIRE_DATE| JOB_ID [SALARY [DEPARTMENT_ID [COMMISSION_F
[100 |[Steven [King [SKING [17-oung7 [aD_PRES | 24000 | 50 |
[101 |[Neena [Kochhar [MKOCHHAR |[21-SEP-83 |[AD_vP [17000 | Elll
[102 ||Lex [De Haan [LDEHAAN [13-JAN-33 [AD_WP [17000 | 50
[103 |[Alexander [Hunold [4HUNOLD [33-Jan-20 [[IT_PROG E &0
[104 [Bruce [Ernst [BERNST |[21-maY-81 [[IT_PROG [eoo0 || B0
[107 ||Diana |Larentz |DLORENTZ |07-FEB-99 [[IT_PROG [200 B0
[124 | [Kevin [Mourgos [KMOURGOS [16-NOV-83 |[ST_MAN [sa00 || 50
Update rows in the EMPLOYEES table: 1
[EMPLOYEE_ID [FIRST_NAME [LAST_NAME | EMAIL |[HIRE_DATE| JOB_ID [SALARY [DEPARTMENT_ID [COMMISSIO
100 [Steven [King [SKING [17-un87 [aD_PRES		24000 a0
101 [Meena [Kachhar [MKOCHHAR [21-5EP-83 [AD_vP [17000	a0	
102 ([Lex [De Haan [LDEHAAN [[13-JAN-93 [AD_vP [17000		g0
103 [Alexander	[Hunold [sHUNOLD 0z-Jansn [[IT_PROG [o000	
104 [Bruce [Ermst [BERNST [21-mAY-S1 [[T_PROG [sooo		a0
107 [Diana [Lorentz [DLORENTZ 07-FEB99 [[T_PROG [4200 0		
124 [[Kevin [Mourgos [KMOURGOS/[16-NOv-89 [ST_man [sa00	50	
8-12 Copyright © 2004, Oracle. All rights reserved.

Changing Data in a Table

The slide illustrates changing the department number for employees in department 60 to
department 30.

Oracle Database 10g: SQL Fundamentals | 8-12

UPDATE Statement Syntax

* Modify existing rows with the UPDATE statement:

UPDATE table
SET column = value [, column = value, ...]
[WHERE condition];

* Update more than one row at a time (if required).

8-13 Copyright © 2004, Oracle. All rights reserved.

Updating Rows
You can modify existing rows by using the UPDATE statement.

In the syntax:

table is the name of the table

column is the name of the column in the table to populate

value is the corresponding value or subquery for the column
condition identifies the rows to be updated and is composed of column names,

expressions, constants, subqueries, and comparison operators
Confirm the update operation by querying the table to display the updated rows.
For more information, see “UPDATE” in the Oracle Database SQL Reference.

Note: In general, use the primary key to identify a single row. Using other columns can
unexpectedly cause several rows to be updated. For example, identifying a single row in the
EMPLOYEES table by name is dangerous, because more than one employee may have the

Same name.

Oracle Database 10g: SQL Fundamentals | 8-13

Updating Rows in a Table

* Specific row or rows are modified if you specify
the WHERE clause:

UPDATE employees

SET department id = 70
[WHERE employee_id = 113;
1 row updated.

* Allrows in the table are modified if you omit the
WHERE clause:
UPDATE copy_emp

SET department_id = 110;
22 rows updated.

8-14 Copyright © 2004, Oracle. All rights reserved.

Updating Rows (continued)
The UPDATE statement modifies specific rows if the WHERE clause is specified. The slide
example transfers employee 113 (Popp) to department 70.

If you omit the WHERE clause, all the rows in the table are modified.
SELECT last_name, department_id
FROM copy_emp;

| LAST_NAME | DEPARTMENT_ID

King | 110
\Kachhar | 110
D Haan | 110
Hunaold | 110
Ernist | 110
|L|:|rentz | 110

22 rowes selected.

Note: The COPY_EMP table has the same data as the EMPLOYEES table.

Oracle Database 10g: SQL Fundamentals | 8-14

Updating Two Columns with a Subquery

Update employee 114’s job and salary to match that of
employee 205.

UPDATE employees
SET job_id = |(SELECT job_id

FROM employees
WHERE employee_ i1d = 205),
salary = |[(SELECT salary
FROM employees
WHERE employee_id = 205)

WHERE employee_1id = 114;
1 row updated.

8-15 Copyright © 2004, Oracle. All rights reserved.

Updating Two Columns with a Subquery

You can update multiple columns in the SET clause of an UPDATE statement by writing
multiple subqueries.

Syntax
UPDATE table
SET column =
(SELECT column
FROM table
WHERE condition)
L.
column =
(SELECT column
FROM table

WHERE condition)]
[WHERE condition] ;

Note: If no rows are updated, the message “O rows updated” is returned.

Oracle Database 10g: SQL Fundamentals | 8-15

Updating Rows Based
on Another Table

Use subqueries in UPDATE statements to update
rows in a table based on values from another table:

UPDATE
SET department_id

(SELECT department_id

FROM |employee

WHERE employee i1d = 100)
WHERE job_ id = (SELECT job_id

FROM [employees

WHERE employee_id = 200);

1 row updated.

8-16 Copyright © 2004, Oracle. All rights reserved.

Updating Rows Based on Another Table

You can use subqueries in UPDATE statements to update rows in a table. The example in the
slide updates the COPY _EMP table based on the values from the EMPLOYEES table. It
changes the department number of all employees with employee 200’s job ID to employee
100’s current department number.

Oracle Database 10g: SQL Fundamentals | 8-16

Removing a Row from a Table

DEPARTMENTS
| DEPARTMENT_ID | DEPARTMENT_NAME [manAGER_ID [LocaTion_ID
| 10 [Adrninistration [200 || 1700
| 20 |[Marketing [201 || 1600
| 30 |Purchasing
L 100 _|Finance
| 50 |[Shipping [124 | 1500
| 60 |[IT [103 1400
Delete a row from the DEPARTMENTS table:
| DEPARTMENT_ID | DEPARTMENT_NAME [MANAGER_ID [LocaTioN_ID
| 10 | [Adrninistration | 200 | 1700
| 20 |[Marketing | 201 || 1800
| 30 |F'urchasing | |
| 50 |[Shipping | 124 1500
| &0 [T | 103 | 1400
8-17 Copyright © 2004, Oracle. All rights reserved.

Removing a Row from a Table

The slide graphic removes the Finance department from the DEPARTMENTS table
(assuming that there are no constraints defined on the DEPARTMENTS table).

Oracle Database 10g: SQL Fundamentals | 8-17

DELETE Statement

You can remove existing rows from a table by using
the DELETE statement:

DELETE [FROM] table
[WHERE condition];

8-18 Copyright © 2004, Oracle. All rights reserved.

Deleting Rows
You can remove existing rows by using the DELETE statement.

In the syntax:
table is the table name
condition identifies the rows to be deleted and is composed of column names,
expressions, constants, subqueries, and comparison operators

Note: If no rows are deleted, the message “O rows deleted” is returned.
For more information, see “DELETE” in the Oracle Database SQL Reference.

Oracle Database 10g: SQL Fundamentals | 8-18

Deleting Rows from a Table

* Specific rows are deleted if you specify the WHERE
clause:

DELETE FROM departments
WHERE department_name = "Finance-;
1 row deleted.

 Allrows in the table are deleted if you omit the
WHERE clause:

DELETE FROM copy_emp;
22 rows deleted.

8-19 Copyright © 2004, Oracle. All rights reserved.

Deleting Rows (continued)
You can delete specific rows by specifying the WHERE clause in the DELETE statement.
The slide example deletes the Finance department from the DEPARTMENTS table. You can
confirm the delete operation by displaying the deleted rows using the SELECT statement.

SELECT =*

FROM departments

WHERE department_name = “Finance-;
no rows selected.

If you omit the WHERE clause, all rows in the table are deleted. The second example in the
slide deletes all the rows from the COPY_EMP table, because no WHERE clause has been

specified.
Example
Remove rows identified in the WHERE clause.

DELETE FROM employees WHERE employee id = 114;
1 row deleted.

DELETE FROM departments WHERE department_id IN (30, 40);
2 rows deleted.

Oracle Database 10g: SQL Fundamentals | 8-19

Deleting Rows Based
on Another Table

Use subqueries in DELETE statements to remove rows
from atable based on values from another table:

DELETE FROM employees

WHERE department_id =

(SELECT department_id

FROM departments

WHERE department_name
LIKE “%Public%");

1 row deleted.

8-20 Copyright © 2004, Oracle. All rights reserved.

Deleting Rows Based on Another Table

You can use subqueries to delete rows from a table based on values from another table. The
example in the slide deletes all the employees who are in a department where the department
name contains the string Publ 1c. The subquery searches the DEPARTMENTS table to find
the department number based on the department name containing the string Public. The
subquery then feeds the department number to the main query, which deletes rows of data
from the EMPLOYEES table based on this department number.

Oracle Database 10g: SQL Fundamentals | 8-20

TRUNCATE Statement

« Removes all rows from a table, leaving the table
empty and the table structure intact

* Is adata definition language (DDL) statement
rather than a DML statement; cannot easily be
undone

* Syntax:

TRUNCATE TABLE table name;

 Example:

TRUNCATE TABLE copy_emp;

8-21 Copyright © 2004, Oracle. All rights reserved.

TRUNCATE Statement

A more efficient method of emptying a table is with the TRUNCATE statement.
You can use the TRUNCATE statement to quickly remove all rows from a table or cluster.
Removing rows with the TRUNCATE statement is faster than removing them with the
DELETE statement for the following reasons:
» The TRUNCATE statement is a data definition language (DDL) statement and
generates no rollback information. Rollback information is covered later in this lesson.
» Truncating a table does not fire the delete triggers of the table.
» If the table is the parent of a referential integrity constraint, you cannot truncate the
table. You need to disable the constraint before issuing the TRUNCATE statement.
Disabling constraints is covered in a subsequent lesson.

Oracle Database 10g: SQL Fundamentals | 8-21

Using a Subquery in an INSERT Statement

INSERT INTO
(SELECT employee_id, last name,
email, hire_date, job id, salary,
department_id
FROM employees
WHERE department_id = 50)
VALUES (99999, “Taylor®, "DTAYLOR",
TO_DATE("07-JUN-99", *DD-MON-RR®),
"ST_CLERK", 5000, 50);

1 row created.

8-22 Copyright © 2004, Oracle. All rights reserved.

Using a Subquery in an INSERT Statement
You can use a subquery in place of the table name in the INTO clause of the INSERT
statement.

The select list of this subquery must have the same number of columns as the column list of
the VALUES clause. Any rules on the columns of the base table must be followed if the
INSERT statement is to work successfully. For example, you could not put in a duplicate
employee ID or omit a value for a mandatory not-null column.

Oracle Database 10g: SQL Fundamentals | 8-22

Using a Subquery in an INSERT Statement

Verify the results:

SELECT employee_id, last _name, email, hire_date,
job_id, salary, department_id

FROM employees

WHERE department_id = 50;

[EMPLOYEE_ID | LAST_NAME | EMAIL [HIRE_DATE | JOB_ID |SALARY | DEPARTMENT_ID
| 124 [Mourgos [kMoURGOS [16-MOv-99 ST man | 5800 50
| 141 |[Rajs [TRAJS [17-0cT-95 [ST_CLERK || 3500 50
| 142 |[Davies [cDaviES [29-Jan-g7 [ST_CLERK [3100 | 50
| 143 [Matos [RMaTOS [15-MaR-08 [ST CLERK [2600 | 50
144 [Vargas PYVARGAS 09-JUL-98 ST_CLERK 2500 50
59999 [Taylor DTAYLOR 07-JUN-93 ST CLERK 5000 50
B rows selected.
8-23 Copyright © 2004, Oracle. All rights reserved.

Using a Subquery in an INSERT Statement (continued)

The example shows the results of the subquery that was used to identify the table for the
INSERT statement.

Oracle Database 10g: SQL Fundamentals | 8-23

Database Transactions

A database transaction consists of one of the
following:

« DML statements that constitute one consistent
change to the data

* One DDL statement
* One data control language (DCL) statement

8-24 Copyright © 2004, Oracle. All rights reserved.

Database Transactions

The Oracle server ensures data consistency based on transactions. Transactions give you
more flexibility and control when changing data, and they ensure data consistency in the
event of user process failure or system failure.

Transactions consist of DML statements that make up one consistent change to the data. For
example, a transfer of funds between two accounts should include the debit to one account
and the credit to another account in the same amount. Both actions should either fail or
succeed together; the credit should not be committed without the debit.

Transaction Types

Type Description

Data manipulation Consists of any number of DML statements that the Oracle
language (DML) server treats as a single entity or a logical unit of work
Data definition Consists of only one DDL statement

language (DDL)

Data control language Consists of only one DCL statement

(DCL)

Oracle Database 10g: SQL Fundamentals | 8-24

Database Transactions

* Begin when the first DML SQL statement is
executed.

 End with one of the following events:
— A COMMIT or ROLLBACK statement is issued.

— A DDL or DCL statement executes (automatic
commit).

— The user exits iISQL*Plus.
— The system crashes.

8-25 Copyright © 2004, Oracle. All rights reserved.

When Does a Transaction Start and End?

A transaction begins when the first DML statement is encountered and ends when one of the
following occurs:

e A COMMIT or ROLLBACK statement is issued.

» A DDL statement, such as CREATE, is issued.

» A DCL statement is issued.

e The user exits iISQL*Plus.

* A machine fails or the system crashes.

After one transaction ends, the next executable SQL statement automatically starts the next
transaction.

A DDL statement or a DCL statement is automatically committed and therefore implicitly
ends a transaction.

Oracle Database 10g: SQL Fundamentals | 8-25

Advantages of COMMIT
and ROLLBACK Statements

With COMMIT and ROLLBACK statements, you can:

 Ensure data consistency

 Preview data changes before making changes
permanent

 Group logically related operations

8-26 Copyright © 2004, Oracle. All rights reserved.

Advantages of COMMIT and ROLLBACK
With the COMMIT and ROLLBACK statements, you have control over making changes to the
data permanent.

Oracle Database 10g: SQL Fundamentals | 8-26

Controlling Transactions

Time COMMIT

Transaction

DELETE

SAVEPOINT A

INSERT

UPDATE

SAVEPOINT B

INSERT

8-27

]

ROLLBACK ROLLBACK ROLLBACK
to SAVEPOINT B to SAVEPOINT A

Copyright © 2004, Oracle. All rights reserved.

Explicit Transaction Control Statements
You can control the logic of transactions by using the COMMIT, SAVEPOINT, and

ROLLBACK statements.
Statement Description
COMMIT Ends the current transaction by making all pending data

changes permanent

SAVEPOINT name

Marks a savepoint within the current transaction

SAVEPOINT name

ROLLBACK ROLLBACK ends the current transaction by discarding all
pending data changes.
ROLLBACK TO ROLLBACK TO SAVEPOINT rolls back the current

transaction to the specified savepoint, thereby discarding any
changes and or savepoints that were created after the
savepoint to which you are rolling back. If you omit the TO
SAVEPOINT clause, the ROLLBACK statement rolls back the
entire transaction. Because savepoints are logical, there is no
way to list the savepoints that you have created.

Note: SAVEPOINT is not ANSI standard SQL.

Oracle Database 10g: SQL Fundamentals | 8-27

Rolling Back Changes to a Marker

* Create a marker in a current transaction by using
the SAVEPOINT statement.

* Roll back to that marker by using the ROLLBACK
TO SAVEPOINT statement.

UPDATE. . .

|SAVEPOINT update donej
Savepoint created.
INSERT. ..

[ROLLBACK TO update_done;]
Rollback complete.

8-28 Copyright © 2004, Oracle. All rights reserved.

Rolling Back Changes to a Marker
You can create a marker in the current transaction by using the SAVEPOINT statement,
which divides the transaction into smaller sections. You can then discard pending changes
up to that marker by using the ROLLBACK TO SAVEPOINT statement.
If you create a second savepoint with the same name as an earlier savepoint, the earlier
savepoint is deleted.

Oracle Database 10g: SQL Fundamentals | 8-28

Implicit Transaction Processing

* An automatic commit occurs under the following
circumstances:
— DDL statement is issued
— DCL statement is issued

— Normal exit from iSQL*Plus, without explicitly
issuing COMMIT or ROLLBACK statements

e An automatic rollback occurs under an abnormal
termination of iISQL*Plus or a system failure.

8-29 Copyright © 2004, Oracle. All rights reserved.

Implicit Transaction Processing

Status Circumstances

Automatic commit DDL statement or DCL statement is issued.
iISQL*Plus exited normally, without explicitly issuing
COMMIT or ROLLBACK commands.

Automatic rollback Abnormal termination of iSQL*Plus or system failure.

Note: A third command is available in iSQL*Plus. The AUTOCOMMIT command can be

toggled on or off. If set to on, each individual DML statement is committed as soon as it is
executed. You cannot roll back the changes. If set to off, the COMMIT statement can still be
issued explicitly. Also, the COMMIT statement is issued when a DDL statement is issued or

when you exit iISQL*Plus.

Oracle Database 10g: SQL Fundamentals | 8-29

Implicit Transaction Processing (continued)
System Failures

When a transaction is interrupted by a system failure, the entire transaction is automatically
rolled back. This prevents the error from causing unwanted changes to the data and returns
the tables to their state at the time of the last commit. In this way, the Oracle server protects
the integrity of the tables.

From iSQL*Plus, a normal exit from the session is accomplished by clicking the Exit button.
With SQL*Plus, a normal exit is accomplished by typing the command EXIT at the prompt.
Closing the window is interpreted as an abnormal exit.

Oracle Database 10g: SQL Fundamentals | 8-30

State of the Data
Before COMMIT or ROLLBACK

 The previous state of the data can be recovered.

e The current user can review the results of the DML
operations by using the SELECT statement.

e Other users cannot view the results of the DML
statements by the current user.

e The affected rows are locked; other users cannot
change the data in the affected rows.

8-31 Copyright © 2004, Oracle. All rights reserved.

Committing Changes

Every data change made during the transaction is temporary until the transaction is
committed.

The state of the data before COMMIT or ROLLBACK statements are issued can be described
as follows:

« Data manipulation operations primarily affect the database buffer; therefore, the
previous state of the data can be recovered.

» The current user can review the results of the data manipulation operations by
querying the tables.

» Other users cannot view the results of the data manipulation operations made by the
current user. The Oracle server institutes read consistency to ensure that each user sees
data as it existed at the last commit.

e The affected rows are locked; other users cannot change the data in the affected rows.

Oracle Database 10g: SQL Fundamentals | 8-31

8-32

State of the Data After COMMIT

« Data changes are made permanent in the
database.

 The previous state of the data is permanently lost.
* All users can view the results.

« Locks on the affected rows are released; those
rows are available for other users to manipulate.

* All savepoints are erased.

Copyright © 2004, Oracle. All rights reserved.

Committing Changes (continued)
Make all pending changes permanent by using the COMMIT statement. Here is what happens
after a COMMIT statement:

Data changes are written to the database.

The previous state of the data is no longer available with normal SQL queries.

All users can view the results of the transaction.

The locks on the affected rows are released; the rows are now available for other users
to perform new data changes.

All savepoints are erased.

Oracle Database 10g: SQL Fundamentals | 8-32

Committing Data

 Make the changes:

DELETE FROM employees
WHERE employee_ id = 99999;
1 row deleted.

INSERT INTO departments
VALUES (290, “Corporate Tax®, NULL, 1700);
1 row created.

¢ Commit the changes:

[ComrT

Commit complete.

8-33 Copyright © 2004, Oracle. All rights reserved.

Committing Changes (continued)

The slide example deletes a row from the EMPLOYEES table and inserts a new row into the
DEPARTMENTS table. It then makes the change permanent by issuing the COMMIT
statement.

Example

Remove departments 290 and 300 in the DEPARTMENTS table, and update a row in the
COPY_EMP table. Make the data change permanent.

DELETE FROM departments
WHERE department_id IN (290, 300);
1 row deleted.

UPDATE employees
SET department_id
WHERE employee id =
1 row updated.

80
6

20
COMMIT;

Commit Complete.

Oracle Database 10g: SQL Fundamentals | 8-33

State of the Data After ROLLBACK

Discard all pending changes by using the ROLLBACK
statement:

« Data changes are undone.
« Previous state of the data is restored.
« Locks on the affected rows are released.

DELETE FROM copy_emp;
22 rows deleted.

[FOLLBACK] ;

RolIback complete.

8-34 Copyright © 2004, Oracle. All rights reserved.

Rolling Back Changes
Discard all pending changes by using the ROLLBACK statement, which results in the
following:
« Data changes are undone.
» The previous state of the data is restored.
» Locks on the affected rows are released.

Oracle Database 10g: SQL Fundamentals | 8-34

State of the Data After ROLLBACK

DELETE FROM test;
25,000 rows deleted.

ROLLBACK;
Rollback complete.

DELETE FROM test WHERE id = 100;
1 row deleted.

SELECT * FROM test WHERE id = 100;
No rows selected.

COMMIT;
Commit complete.

8-35 Copyright © 2004, Oracle. All rights reserved.

Example

While attempting to remove a record from the TEST table, you can accidentally empty the
table. You can correct the mistake, reissue the proper statement, and make the data change
permanent.

Oracle Database 10g: SQL Fundamentals | 8-35

Statement-Level Rollback

« If asingle DML statement fails during execution,
only that statement is rolled back.

e The Oracle server implements an implicit
savepoint.

* All other changes are retained.

 The user should terminate transactions explicitly
by executing a COMMIT or ROLLBACK statement.

8-36 Copyright © 2004, Oracle. All rights reserved.

Statement-Level Rollback
Part of a transaction can be discarded by an implicit rollback if a statement execution error is
detected. If a single DML statement fails during execution of a transaction, its effect is
undone by a statement-level rollback, but the changes made by the previous DML
statements in the transaction are not discarded. They can be committed or rolled back
explicitly by the user.
The Oracle server issues an implicit commit before and after any DDL statement. So, even if
your DDL statement does not execute successfully, you cannot roll back the previous
statement because the server issued a commit.

Terminate your transactions explicitly by executing a COMMIT or ROLLBACK statement.

Oracle Database 10g: SQL Fundamentals | 8-36

Read Consistency

* Read consistency guarantees a consistent view of
the data at all times.

* Changes made by one user do not conflict with
changes made by another user.

 Read consistency ensures that on the same data:
— Readers do not wait for writers
— Writers do not wait for readers

8-37 Copyright © 2004, Oracle. All rights reserved.

Read Consistency

Database users access the database in two ways:
* Read operations (SELECT statement)
* Write operations (INSERT, UPDATE, DELETE statements)

You need read consistency so that the following occur:
* The database reader and writer are ensured a consistent view of the data.

* Readers do not view data that is in the process of being changed.
» Writers are ensured that the changes to the database are done in a consistent way.
» Changes made by one writer do not disrupt or conflict with changes that another writer

IS making.
The purpose of read consistency is to ensure that each user sees data as it existed at the last
commit, before a DML operation started.

Oracle Database 10g: SQL Fundamentals | 8-37

Implementation of Read Consistency

User A
< UPDATE employees Data
[~ SET salary = 7000 blocks
= WHERE last _name = "Grant”;
Undo
segments
Changed
SELECT * d i and
- FROM userA.employees;| | Réad- unchanged
consistent data
image Before
7 change
User B (“old” data)
8-38 Copyright © 2004, Oracle. All rights reserved.

Implementation of Read Consistency

Read consistency is an automatic implementation. It keeps a partial copy of the database in
undo segments. The read-consistent image is constructed from committed data from the
table and old data being changed and not yet committed from the undo segment.

When an insert, update, or delete operation is made to the database, the Oracle server takes a
copy of the data before it is changed and writes it to an undo segment.

All readers, except the one who issued the change, still see the database as it existed before
the changes started; they view the undo segment’s “snapshot” of the data.

Before changes are committed to the database, only the user who is modifying the data sees
the database with the alterations. Everyone else sees the snapshot in the undo segment. This
guarantees that readers of the data read consistent data that is not currently undergoing
change.

When a DML statement is committed, the change made to the database becomes visible to
anyone issuing a select statement after the commit is done. The space occupied by the old
data in the undo segment file is freed for reuse.

If the transaction is rolled back, the changes are undone:
» The original, older version of the data in the undo segment is written back to the table.
« All users see the database as it existed before the transaction began.

Oracle Database 10g: SQL Fundamentals | 8-38

Summary

In this lesson, you should have learned how to use the
following statements:

Function Description
INSERT Adds a new row to the table
UPDATE Modifies existing rows in the table
DELETE Removes existing rows from the table
COMMIT Makes all pending changes permanent
SAVEPOINT Is used to roll back to the savepoint marker
ROLLBACK Discards all pending data changes
8-39 Copyright © 2004, Oracle. All rights reserved.
Summary

In this lesson, you should have learned how to manipulate data in the Oracle database by
using the INSERT, UPDATE, and DELETE statements, as well as how to control data
changes by using the COMMIT, SAVEPOINT, and ROLLBACK statements.

The Oracle server guarantees a consistent view of data at all times.

Oracle Database 10g: SQL Fundamentals | 8-39

Practice 8: Overview

This practice covers the following topics:

* Inserting rows into the tables
 Updating and deleting rows in the table
 Controlling transactions

8-40 Copyright © 2004, Oracle. All rights reserved.

Practice 8: Overview

In this practice, you add rows to the MY_EMPLOYEE table, update and delete data from the
table, and control your transactions.

Oracle Database 10g: SQL Fundamentals | 8-40

Practice 8

The HR department wants you to create SQL statements to insert, update, and delete employee
data. As a prototype, you use the MY_EMPLOYEE table, prior to giving the statements to the HR
department.
Insert data into the MY _EMPLOYEE table.
1. Run the statement in the lab_08 01 .sql script to build the MY_EMPLOYEE table to be
used for the lab.
2. Describe the structure of the MY_EMPLOYEE table to identify the column names.

| Name | Hull? | Type
D INOT MULL INUMBER({4)
ILAST_MAME | WARCHARZ(25)
IFIRST_MAME | WARCHARZ(25)
IUSERID | WARCHARZ(E)
|SALARY | INUMBER(9 2)

3. Create an INSERT statement to add the first row of data to the MY_EMPLOYEE table from
the following sample data. Do not list the columns in the INSERT clause. Do not enter all

rows yet.

ID | LAST_NAME FIRST_NAME USERID SALARY
1 Patel Ralph rpatel 895

2 Dancs Betty bdancs 860

3 Biri Ben bbiri 1100

4 Newman Chad cnewman 750

5 Ropeburn Audrey aropebur 1550

4. Populate the MY_EMPLOYEE table with the second row of sample data from the preceding
list. This time, list the columns explicitly in the INSERT clause.
5. Confirm your addition to the table.

| ID | LAST_NAME | FIRST_NAME | USERID | SALARY
|1 |Patel IRalph rpatel | 895
| 2 |Dan|:5 |Eiett3,r |hdan|:5 | 560

Oracle Database 10g: SQL Fundamentals | 8-41

Practice 8 (continued)

6. Write an insert statement in a dynamic reusable script file named loademp.sql to load
rows into the MY_EMPLOYEE table. Concatenate the first letter of the first name and the
first seven characters of the last name to produce the user ID. Save this script to a file
named lab_08_06.sql.

7. Populate the table with the next two rows of sample data by running the insert statement
in the script that you created.

8. Confirm your additions to the table.

|ID | LAST _NAME | FIRST_NAME | USERID | SALARY

|1 |Patel Ralph rpatel | 895
| 2 |Dan|:s |Eiett3,r |hdan|::5 | gh0
| 3 |Bi Ben Ibhir | 1100
| 4 |Newman |Chad |cnewman | 750

9. Make the data additions permanent.
Update and delete data in the MY_EMPLOYEE table.
10. Change the last name of employee 3 to Drexler.
11. Change the salary to $1,000 for all employees who have a salary less than $900.
12. Verify your changes to the table.

|ID | LAST_NAME | FIRST_NAME | USERID | SALARY
|1 |Patel Ralgh rpatel | 1000
| 2 |Dan|:5 |Eiett3,r |hdan|:5 | 1000
| 3 |Drexler [Ben Ibbiri | 1100
| 4 |Newman |Chad ||::newman | 1000
13. Delete Betty Dancs from the MY_EMPLOYEE table.
14. Confirm your changes to the table.
|ID | LAST_NAME | FIRST_NAME | USERID | SALARY
|1 |Patel Ralgh rpatel | 1000
| 3 |Drexler [Ben Ibbir | 1100
| 4 |Newman |Chad |cnewman | 1000

Oracle Database 10g: SQL Fundamentals | 8-42

Practice 8 (continued)
15. Commit all pending changes.
Control data transaction to the MY _EMPLOYEE table.
16. Populate the table with the last row of sample data by using the statements in the script

that you created in step 6. Run the statements in the script.
17. Confirm your addition to the table.

|ID | LAST_NAME | FIRST_NAME | USERID | SALARY

|1 |Patel Ralgh |rpatel | 1000
| 3 |Drexler Ben |bbiri | 1100
| 4 |Newman |Chad |cnewman | 1000
| 5 |Rnpehurn |Audrey |arnpehur | 1550

18. Mark an intermediate point in the processing of the transaction.

19. Empty the entire table.

20. Confirm that the table is empty.

21. Discard the most recent DELETE operation without discarding the earlier INSERT

operation.

22. Confirm that the new row is still intact.
|ID | LAST_NAME | FIRST_NAME | USERID | SALARY
|1 |Patel Ralph rpatel | 1000
| 3 |Drexler Ben |bbiri | 1100
| 4 |Newman |Chad |cnewman | 1000
| 5 |anehurn |Audrey |arnpehur | 1550

23. Make the data addition permanent.

Oracle Database 10g: SQL Fundamentals | 8-43

Using DDL Statements
to Create and Manage Tables

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:

» Categorize the main database objects

* Review the table structure

 Listthe data types that are available for columns
 Create asimple table

e Understand how constraints are created at the
time of table creation

 Describe how schema objects work

9-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

In this lesson, you are introduced to the data definition language (DDL) statements. You are
taught the basics of how to create simple tables, alter them, and remove them. The data
types available in DDL are shown, and schema concepts are introduced. Constraints are tied
into this lesson. Exception messages that are generated from violating constraints during
DML are shown and explained.

Oracle Database 10g: SQL Fundamentals | 9-2

Database Objects

Object Description

Table Basic unit of storage; composed of rows

View Logically represents subsets of data from
one or more tables

Sequence Generates numeric values

Index Improves the performance of some
gueries

Synonym Gives alternative names to objects

9-3 Copyright © 2004, Oracle. All rights reserved.

Database Objects

An Oracle database can contain multiple data structures. Each structure should be outlined
in the database design so that it can be created during the build stage of database
development.

* Table: Stores data

* View: Subset of data from one or more tables

» Sequence: Generates numeric values

* Index: Improves the performance of some queries

* Synonym: Gives alternative names to objects

Oracle Table Structures

» Tables can be created at any time, even while users are using the database.

* You do not need to specify the size of a table. The size is ultimately defined by the
amount of space allocated to the database as a whole. It is important, however, to
estimate how much space a table will use over time.

» Table structure can be modified online.

Note: More database objects are available but are not covered in this course.

Oracle Database 10g: SQL Fundamentals | 9-3

Naming Rules

Table names and column names:

* Must begin with a letter

* Must be 1-30 characters long

¢ Must contain only A-Z, a-z,0-9, ,$,and #

* Must not duplicate the name of another object
owned by the same user

e Must not be an Oracle server reserved word

9-4 Copyright © 2004, Oracle. All rights reserved.

Naming Rules

You name database tables and columns according to the standard rules for naming any
Oracle database object:
» Table names and column names must begin with a letter and be 1-30 characters long.
» Names must contain only the characters A-Z, a—z, 0-9, _ (underscore), $, and # (legal
characters, but their use is discouraged).
* Names must not duplicate the name of another object owned by the same Oracle server
user.
* Names must not be an Oracle server reserved word.

Naming Guidelines
Use descriptive names for tables and other database objects.

Note: Names are case-insensitive. For example, EMPLOYEES is treated as the same name as
eMPloyees or eMpLOYEES.

For more information, see “Object Names and Qualifiers” in the Oracle Database SQL
Reference.

Oracle Database 10g: SQL Fundamentals | 9-4

CREATE TABLE Statement

* You must have:
— CREATE TABLE privilege

— A storage area

CREATE TABLE [schema.]table
(column datatype [DEFAULT expr][, ---1);

* You specify:
— Table name
— Column name, column data type, and column size

9-5 Copyright © 2004, Oracle. All rights reserved.

CREATE TABLE Statement

You create tables to store data by executing the SQL CREATE TABLE statement. This
statement is one of the DDL statements, which are a subset of SQL statements used to
create, modify, or remove Oracle database structures. These statements have an immediate
effect on the database, and they also record information in the data dictionary.

To create a table, a user must have the CREATE TABLE privilege and a storage area in
which to create objects. The database administrator uses data control language statements to
grant privileges to users (DCL statements are covered in a later lesson).

In the syntax:

schema is the same as the owner’s name

table is the name of the table

DEFAULT expr specifies a default value if a value is omitted in the INSERT
statement

column is the name of the column

datatype is the column’s data type and length

Oracle Database 10g: SQL Fundamentals | 9-5

Referencing Another User’s Tables

 Tables belonging to other users are not in the
user’s schema.

* You should use the owner’s name as a prefix to
those tables.

«
. b = P =
USERA USERB
SELECT * SELECT *
FROM userB.employees; FROM userA_employees;
9-6 Copyright © 2004, Oracle. All rights reserved.

Referencing Another User’s Tables

A schema is a collection of objects. Schema objects are the logical structures that directly
refer to the data in a database. Schema objects include tables, views, synonyms, sequences,
stored procedures, indexes, clusters, and database links.

If a table does not belong to the user, the owner’s name must be prefixed to the table. For
example, if there are schemas named USERA and USERB, and both have an EMPLOYEES
table, then if USERA wants to access the EMPLOYEES table that belongs to USERB, he must

prefix the table name with the schema name:
SELECT *

FROM userb.employees;
If USERB wants to access the EMPLOYEES table that is owned by USERA, he must prefix

the table name with the schema name:
SELECT *

FROM usera.employees;

Oracle Database 10g: SQL Fundamentals | 9-6

DEFAULT Option

* Specify a default value for a column during an
insert.

.-- hire_date DATE DEFAULT SYSDATE, ...

* Literal values, expressions, or SQL functions are

legal values.
* Another column’s name or a pseudocolumn are
illegal values.
 The default data type must match the column data
type.
CREATE TABLE hire_dates
(id NUMBER(8),

hire_date DATE DEFAULT SYSDATE);
Table created.

9-7 Copyright © 2004, Oracle. All rights reserved.

DEFAULT Option
When you define a table, you can specify that a column be given a default value by using the
DEFAULT option. This option prevents null values from entering the columns if a row is
inserted without a value for the column. The default value can be a literal, an expression, or
a SQL function (such as SYSDATE or USER), but the value cannot be the name of another
column or a pseudocolumn (such as NEXTVAL or CURRVAL). The default expression must

match the data type of the column.
Note: CURRVAL and NEXTVAL are explained later in this lesson.

Oracle Database 10g: SQL Fundamentals | 9-7

Creating Tables

e Create the table.
CREATE TABLE dept

(deptno NUMBER(2),
dname VARCHAR2(14),
loc VARCHAR2(13),

[create_date DATE DEFAULT SYSDATE); |

Table created.

* Confirm table creation.
DESCRIBE dept

Name Null? Type
DEPTND MNUMBER(2)
DMAME WARCHARZ2(14)
LoC WARCHARZ2(13)
CREATE_DATE DATE
9-8 Copyright © 2004, Oracle. All rights reserved.

Creating Tables

The example in the slide creates the DEPT table, with four columns: DEPTNO, DNAME,
LOC, and CREATE_DATE. The CREATE_DATE column has a default value. If a value is
not provided for an INSERT statement, the system date is automatically inserted.

It further confirms the creation of the table by issuing the DESCR IBE command.

Because creating a table is a DDL statement, an automatic commit takes place when this
statement is executed.

Oracle Database 10g: SQL Fundamentals | 9-8

Data Types

Data Type Description

VARCHAR2(size) | Variable-length character data

CHAR(size) Fixed-length character data

NUMBER(p,S) Variable-length numeric data

DATE Date and time values

LONG Variable-length character data (up to 2 GB)

CLOB Character data (up to 4 GB)

RAW and LONG Raw binary data

RAW

BLOB Binary data (up to 4 GB)

BFILE Binary data stored in an external file (up to 4 GB)

ROWID A base-64 number system representing the unique
address of a row in its table

9-9 Copyright © 2004, Oracle. All rights reserved.

Data Types

When you identify a column for a table, you need to provide a data type for the column.
There are several data types available:

Data Type Description

VARCHAR2(size) Variable-length character data (A maximum size must be
specified: minimum size is 1; maximum size is 4,000.)

CHAR [(size)] Fixed-length character data of length size bytes (Default and
minimum size is 1; maximum size is 2,000.)

NUMBER [(p,S)] Number having precision p and scale s (The precision is the
total number of decimal digits, and the scale is the number of
digits to the right of the decimal point; the precision can range
from 1 to 38, and the scale can range from -84 to 127.)

DATE Date and time values to the nearest second between January 1,
4712 B.C., and December 31, 9999 A.D.

LONG Variable-length character data (up to 2 GB)

CLOB Character data (up to 4 GB)

Oracle Database 10g: SQL Fundamentals | 9-9

Data Types (continued)

Data Type Description

RAW(size) Raw binary data of length size (A maximum size must be specified:
maximum size is 2,000.)

LONG RAW Raw binary data of variable length (up to 2 GB)

BLOB Binary data (up to 4 GB)

BFILE Binary data stored in an external file (up to 4 GB)

ROWID A base-64 number system representing the unique address of a row
in its table

Guidelines

A LONG column is not copied when a table is created using a subquery.

A LONG column cannot be included in a GROUP BY or an ORDER BY clause.
Only one LONG column can be used per table.

No constraints can be defined on a LONG column.

You might want to use a CLOB column rather than a LONG column.

Oracle Database 10g: SQL Fundamentals | 9-10

Datetime Data Types

You can use several datetime data types:

Data Type

Description

TIMESTAMP

Date with fractional seconds

MONTH

INTERVAL YEAR TO Stored as an interval of years

and months

SECOND

INTERVAL DAY TO Stored as an interval of days, hours,

minutes, and seconds

9-11

Copyright © 2004, Oracle. All rights reserved.

Other Datetime Data Types

Data Type

Description

TIMESTAMP

Enables the time to be stored as a date with fractional seconds. There
are several variations of this data type.

INTERVAL YEAR TO
MONTH

Enables time to be stored as an interval of years and months. Used to
represent the difference between two datetime values in which the only
significant portions are the year and month.

INTERVAL DAY TO
SECOND

Enables time to be stored as an interval of days, hours, minutes, and
seconds. Used to represent the precise difference between two datetime
values.

Note: These datetime data types are available with Oracle9i and later releases. For detailed
information about the datetime data types, see the topics “T IMESTAMP Datatype,”
“INTERVAL YEAR TO MONTH Datatype,” and “INTERVAL DAY TO SECOND
Datatype” in the Oracle SQL Reference.

Oracle Database 10g: SQL Fundamentals | 9-11

Datetime Data Types

e The TIMESTAMP data type is an extension of the
DATE data type.

* |t stores the year, month, and day of the DATE data
type plus hour, minute, and second values as well
as the fractional second value.

* You can optionally specify the time zone.

TIMESTAMP[(fractional _seconds_precision)]

TIMESTAMP[(fractional _seconds_precision)]
WITH TIME ZONE

TIMESTAMP[(fractional _seconds_precision)]
WITH LOCAL TIME ZONE

9-12 Copyright © 2004, Oracle. All rights reserved.

TIMESTAMP Data Type

The TIMESTAMP data type is an extension of the DATE data type. It stores the year, month,
and day of the DATE data type plus hour, minute, and second values. This data type is used
for storing precise time values.

The fractional _seconds_precision optionally specifies the number of digits in
the fractional part of the SECOND datetime field and can be a number in the range 0 to 9.
The default is 6.

Example

In this example, a table is created named NEW_EMPLOYEES, with a column START_DATE
that has a data type of TIMESTAMP:
CREATE TABLE new_employees
(employee_id NUMBER,
first_name VARCHAR2(15),
last _name VARCHAR2(15),

start_date TIMESTAMP(7),
---)s
Suppose that two rows are inserted in the NEW_EMPLOYEES table. The displayed output

shows the differences. (A DATE data type defaults to display the DD-MON-RR format.):

Oracle Database 10g: SQL Fundamentals | 9-12

TIMESTAMP Data Type (continued)
SELECT start_date
FROM new_employees;

17-JUN-03 12.00.00.000000 AM
21-SEP-03 12.00.00.000000 AM

TIMESTAMP WITH TIME ZONE Data Type

TIMESTAMP WITH TIME ZONE is a variant of TIMESTAMP that includes a time-zone
displacement in its value. The time-zone displacement is the difference (in hours and
minutes) between local time and UTC (Universal Time Coordinate, formerly known as
Greenwich Mean Time). This data type is used for collecting and evaluating date
information across geographic regions.
For example,

TIMESTAMP "2003-04-15 8:00:00 -8:00"

is the same as
TIMESTAMP *"2003-04-15 11:00:00 -5:00°

That is, 8:00 a.m. Pacific Standard Time is the same as 11:00 a.m. Eastern Standard Time.

This can also be specified as follows:
TIMESTAMP ®2003-04-15 8:00:00 US/Pacific”

TIMESTAMP WITH LOCAL TIME ZONE Data Type

TIMESTAMP WITH LOCAL TIME ZONE is another variant of TIMESTAMP that
includes a time-zone displacement in its value. It differs from TIMESTAMP WITH TIME
ZONE in that data stored in the database is normalized to the database time zone, and the
time-zone displacement is not stored as part of the column data. When users retrieve the
data, it is returned in the users' local session time zone. The time-zone displacement is the
difference (in hours and minutes) between local time and UTC.

Unlike TIMESTAMP WITH TIME ZONE, you can specify columns of type TIMESTAMP
WITH LOCAL TIME ZONE as part of a primary or unique key, as in the following example:

CREATE TABLE time_example
(order_date TIMESTAMP WITH LOCAL TIME ZONE);

INSERT INTO time_example VALUES("15-JAN-04 09:34:28 AMT");

SELECT =*
FROM time_example;

ORDER_DATE

15-JAN-04 09.34.28.000000 AM

The TIMESTAMP WITH LOCAL TIME ZONE type is appropriate for two-tier

applications in which you want to display dates and times using the time zone of the client
system.

Oracle Database 10g: SQL Fundamentals | 9-13

Datetime Data Types

e The INTERVAL YEAR TO MONTH data type stores a
period of time using the YEAR and MONTH datetime
fields:

INTERVAL YEAR [(year_precision)] TO MONTH

e The INTERVAL DAY TO SECOND datatype stores a

period of time in terms of days, hours, minutes,
and seconds:

INTERVAL DAY [(day_precision)]
TO SECOND [(fractional_seconds_precision)]

9-14 Copyright © 2004, Oracle. All rights reserved.

INTERVAL YEAR TO MONTH Data Type

INTERVAL YEAR TO MONTH stores a period of time using the YEAR and MONTH
datetime fields.

Use INTERVAL YEAR TO MONTH to represent the difference between two datetime
values, where the only significant portions are the year and month. For example, you might
use this value to set a reminder for a date that is 120 months in the future, or check whether
6 months have elapsed since a particular date.

In the syntax:

year_precision is the number of digits in the YEAR datetime field. The
default value of year_precisionis 2.

Examples
- INTERVAL "123-2" YEAR(3) TO MONTH

Indicates an interval of 123 years, 2 months
- INTERVAL "123" YEAR(3)

Indicates an interval of 123 years 0 months
- INTERVAL "300" MONTH(3)

Indicates an interval of 300 months
- INTERVAL "123" YEAR

Returns an error because the default precision is 2, and 123 has 3 digits

Oracle Database 10g: SQL Fundamentals | 9-14

INTERVAL YEAR TO MONTH Data Type (continued)
CREATE TABLE time_example2
(loan_duration INTERVAL YEAR (3) TO MONTH);

INSERT INTO time_example2 (loan_duration)
VALUES (INTERVAL "120" MONTH(3));

SELECT TO_CHAR(sysdate+loan_duration, “dd-mon-yyyy")
FROM time_example2; --today’s date is 26-Sep-2001
| TO_CHAR{SYS
26-sep-2011
INTERVAL DAY TO SECOND Data Type

INTERVAL DAY TO SECOND stores a period of time in terms of days, hours, minutes,
and seconds.

Use INTERVAL DAY TO SECOND to represent the precise difference between two
datetime values. For example, you might use this value to set a reminder for a time that is 36
hours in the future, or to record the time between the start and end of a race. To represent
long spans of time, including multiple years, with high precision, you can use a large value
for the days portion.
In the syntax:
day_precision is the number of digits in the DAY datetime
field. Accepted values are 0 to 9. The default is
2.
fractional_seconds_precision is the number of digits in the fractional part of
the SECOND datetime field. Accepted values
are 0to 9. The default is 6.

Examples
< INTERVAL "4 5:12:10.222° DAY TO SECOND(3)

Indicates 4 days, 5 hours, 12 minutes, 10 seconds, and 222 thousandths of a second.
INTERVAL "180" DAY(3)

Indicates 180 days.
INTERVAL "4 5:12:10.222" DAY TO SECOND(3)

Indicates 4 days, 5 hours, 12 minutes, 10 seconds, and 222 thousandths of a second
INTERVAL "4 5:12" DAY TO MINUTE

Indicates 4 days, 5 hours, and 12 minutes
INTERVAL "400 5" DAY(3) TO HOUR

Indicates 400 days and 5 hours.
INTERVAL "11:12:10.2222222° HOUR TO SECOND(7)

Indicates 11 hours, 12 minutes, and 10.2222222 seconds.

Oracle Database 10g: SQL Fundamentals | 9-15

INTERVAL DAY TO SECOND Data Type (continued)

Example
CREATE TABLE time_example3
(day_duration INTERVAL DAY (3) TO SECOND);

INSERT INTO time_example3 (day_duration)
VALUES (INTERVAL "180° DAY(3));

SELECT sysdate + day_duration *"Half Year™
FROM time_example3; --today’s date is 26-Sep-2001

| Half Year

(25-MAR-02

Oracle Database 10g: SQL Fundamentals | 9-16

Including Constraints

« Constraints enforce rules at the table level.

* Constraints prevent the deletion of a table if there
are dependencies.

 The following constraint types are valid:
— NOT NULL
— UNIQUE
— PRIMARY KEY
— FOREIGN KEY
— CHECK

9-17 Copyright © 2004, Oracle. All rights reserved.

Constraints
The Oracle server uses constraints to prevent invalid data entry into tables.

You can use constraints to do the following:
« Enforce rules on the data in a table whenever a row is inserted, updated, or deleted
from that table. The constraint must be satisfied for the operation to succeed.
« Prevent the deletion of a table if there are dependencies from other tables
» Provide rules for Oracle tools, such as Oracle Developer

Data Integrity Constraints

Constraint Description
NOT NULL Specifies that the column cannot contain a null value
UNIQUE Specifies a column or combination of columns whose values

must be unique for all rows in the table
PRIMARY KEY Uniquely identifies each row of the table

FOREIGN KEY Establishes and enforces a foreign key relationship between the
column and a column of the referenced table

CHECK Specifies a condition that must be true

Oracle Database 10g: SQL Fundamentals | 9-17

Constraint Guidelines

* You can name a constraint, or the Oracle server
generates a name by using the SYS_Cn format.

* Create a constraint at either of the following times:
— At the same time as the table is created
— After the table has been created

« Define a constraint at the column or table level.
* View aconstraint in the data dictionary.

9-18 Copyright © 2004, Oracle. All rights reserved.

Constraint Guidelines

All constraints are stored in the data dictionary. Constraints are easy to reference if you give
them a meaningful name. Constraint names must follow the standard object-naming rules. If
you do not name your constraint, the Oracle server generates a name with the format
SYS_Cn, where n is an integer so that the constraint name is unique.

Constraints can be defined at the time of table creation or after the table has been created.
For more information, see “Constraints” in the Oracle Database SQL Reference.

Oracle Database 10g: SQL Fundamentals | 9-18

Defining Constraints

* Syntax:

CREATE TABLE [schema.]table
(column datatype [DEFAULT expr]
[column_constraint],

-[ic';lble_constrai nt]l,-.-1);

* Column-level constraint:
column [CONSTRAINT constraint_name] constraint_type,

e Table-level constraint:

column, ...
[CONSTRAINT constraint_name] constraint_type
(column, ...),
9-19 Copyright © 2004, Oracle. All rights reserved.

Defining Constraints

The slide gives the syntax for defining constraints when creating a table. You can create the
constraints at either the column level or table level. Constraints defined at the column level
are included when the column is defined. Table-level constraints are defined at the end of
the table definition and must refer to the column or columns on which the constraint pertains
in a set of parentheses.

NOT NULL constraints must be defined at the column level.
Constraints that apply to more than one column must be defined at the table level.
In the syntax:

schema is the same as the owner’s name

table is the name of the table

DEFAULT expr specifies a default value to use if a value is omitted in the
INSERT statement

column is the name of the column

datatype is the column’s data type and length

column_constraintis an integrity constraint as part of the column definition
table_constraint isan integrity constraint as part of the table definition

Oracle Database 10g: SQL Fundamentals | 9-19

Defining Constraints

e Column-level constraint:

CREATE TABLE employees(

employee_id NUMBER(6)
CONSTRAINT emp_emp_id_pk PRIMARY KEY, @

first_name VARCHAR2(20),
---)s
« Table-level constraint:

CREATE TABLE employees(
employee_id NUMBER(6),
first_name VARCHAR2(20),

job_id VARCHAR2(10) NOT NULL,

CONSTRAINT emp_emp_i1d_pk
PRIMARY KEY (EMPLOYEE 1D));

Copyright © 2004, Oracle. All rights reserved.

9-20

Defining Constraints (continued)
Constraints are usually created at the same time as the table. Constraints can be added to a

table after its creation and also temporarily disabled.
Both slide examples create a primary key constraint on the EMPLOYEE__ 1D column of the

EMPLOYEES table.
1. The first example uses the column-level syntax to define the constraint.

2. The second example uses the table-level syntax to define the constraint.
More details about the primary key constraint are provided later in this lesson.

Oracle Database 10g: SQL Fundamentals | 9-20

NOT NULL Constraint

Ensures that null values are not permitted for the

column:

[EMPLOYEE_ID [LAST_NAME [EMAIL | PHONE_NUMBER [HIRE_DATE | JOB_ID [SALARY [DEPARTMENT_ID
| 100 [[King [SKING [515.123.4567 [17-Jung7 [[aD_PRES [24000 | 50
| 101 [Kachhar [NKOCHHAR [515.123 4568 [21-3EP-89 [[AD_wP [17000 | 50
| 102 [De Haan [LDEHA&N [515.123 4569 [13-dan-g3 [[aD_wP [17000 | a0
| 103 [Hunold [AHUNOLD [590.423. 4867 [03-Jan-a0 [[IT_PROG [o000 | &0
| 104 [Emst [BERNST [590.423 4568 [21-Mav-91 [[IT_PROG [Eooo | B0
| 178 [Grant [KGRANT [011.44 1644 429263 |[24-MAY-99 [SA_REP [7oo00 |

| 200 |[whalen [WHALEN [515.123 4444 [17-5EP-87 |[AD_ASST [4400 | 10

20 rows selected.

| |

NOT NULL constraint NOT NULL Absence of NOT NULL
(No row can contain constraint constraint
a null value for (Any row can contain
this column.) a null value for this
column.)
9-21 Copyright © 2004, Oracle. All rights reserved.

NOT NULL Constraint

The NOT NULL constraint ensures that the column contains no null values. Columns
without the NOT NULL constraint can contain null values by default. NOT NULL
constraints must be defined at the column level.

Oracle Database 10g: SQL Fundamentals | 9-21

UNIQUE Constraint

l_ UNIQUE constraint

EMPLOYEES
| EMPLOYEE_ID | LAST_NAME | EMAIL
| 100 [King [sKING
| 101 [Kochhar [NKOCHHAR
| 102 |[De Haan [LDERAAN
| 103 [Hunold [HUNOLD
| 104 [Emst [BERNST
A inserT 1NTo
| 208 |[Smith [JSMITH |— Allowed
| 209 [Smith [SMITH — Not allowed:
already exists
9-22 Copyright © 2004, Oracle. All rights reserved.

UNIQUE Constraint

A UNIQUE key integrity constraint requires that every value in a column or set of columns
(key) be unique—that is, no two rows of a table can have duplicate values in a specified
column or set of columns. The column (or set of columns) included in the definition of the
UNIQUE key constraint is called the unique key. If the UNIQUE constraint comprises more
than one column, that group of columns is called a composite unique key.

UNIQUE constraints enable the input of nulls unless you also define NOT NULL constraints
for the same columns. In fact, any number of rows can include nulls for columns without
NOT NULL constraints because nulls are not considered equal to anything. A nullin a
column (or in all columns of a composite UN IQUE key) always satisfies a UN1QUE
constraint.

Note: Because of the search mechanism for UN 1QUE constraints on more than one column,

you cannot have identical values in the non-null columns of a partially null composite
UNIQUE key constraint.

Oracle Database 10g: SQL Fundamentals | 9-22

UNIQUE Constraint

Defined at either the table level or the column level:

CREATE TABLE employees(

employee_id NUMBER(6),

last_name VARCHAR2(25) NOT NULL,
email VARCHAR2(25),

salary NUMBER(8,2),
commission_pct NUMBER(2,2),

hire_date DATE NOT NULL,

[CONSTRAINT emp_email_uk UNIQUE(email));

9-23 Copyright © 2004, Oracle. All rights reserved.

UNIQUE Constraint (continued)

UNIQUE constraints can be defined at the column level or table level. A composite unique
key is created by using the table-level definition.

The example in the slide applies the UNIQUE constraint to the EMAIL column of the
EMPLOYEES table. The name of the constraint is EMP_EMAIL UK.

Note: The Oracle server enforces the UNIQUE constraint by implicitly creating a unique
index on the unique key column or columns.

Oracle Database 10g: SQL Fundamentals | 9-23

PRIMARY KEY Constraint

DEPARTMENTS
,— PRIMARY KEY
[DEPARTMENT_ID | DEPARTMENT_NAME [MANAGERID | LOCATION_ID
| 10 [Administration | 200 || 1700
| 20 |[Marketing | 201 || 1800
| 50 |[Shipping | 124 1500
| g0 [T | 103 | 1400
| 80 |[Sales | 149 2500
Not allowed — 4R INSERT INTO
(null value)
| [Public Accaurting | | 1400
| 50 |[Finance | 124 | 1500
Not allowed
(50 already exists)
9-24 Copyright © 2004, Oracle. All rights reserved.

PRIMARY KEY Constraint

A PRIMARY KEY constraint creates a primary key for the table. Only one primary key can
be created for each table. The PRIMARY KEY constraint is a column or set of columns that
uniquely identifies each row in a table. This constraint enforces uniqueness of the column or
column combination and ensures that no column that is part of the primary key can contain a
null value.

Note: Because uniqueness is part of the primary key constraint definition, the Oracle server
enforces the uniqueness by implicitly creating a unique index on the primary key column or
columns.

Oracle Database 10g: SQL Fundamentals | 9-24

FOREIGN KEY Constraint

DEPARTMENTS
[DEPARTMENT_ID | DEPARTMENT_NAME [mamAGER.ID | LOCATION_ID
| 10 [Administration [200 || 1700
| 20 [Marketing [201 || 1800
| 50 |[Shipping [124 1500
PRIMARY_ | B0 (I [103 | 1400
KEY 80 [Sales [149 | 2500
EMPLOYEES |
| EMPLOYEE_ID | LAST_NAME | DEPARTMENT_ID —— FOREIGN
| 100 [King | a0 KEY
| 101 [Kochhar | a0
| 102 |[De Haan | a0
| 103 [Hunold |]
| 104 [Emst | G0
| 107 |[Lorentz | B0
G Not allowed
| 200 [Ford | g|—— Eexist)
201 [[Ford &0
| | | — Allowed
9-25 Copyright © 2004, Oracle. All rights reserved.

FOREIGN KEY Constraint

The FOREIGN KEY (or referential integrity) constraint designates a column or combination
of columns as a foreign key and establishes a relationship between a primary key or a unique
key in the same table or a different table.

In the example in the slide, DEPARTMENT _ID has been defined as the foreign key in the
EMPLOYEES table (dependent or child table); it references the DEPARTMENT _ 1D column
of the DEPARTMENTS table (the referenced or parent table).

Guidelines
» A foreign key value must match an existing value in the parent table or be NULL.
» Foreign keys are based on data values and are purely logical, rather than physical,
pointers.

Oracle Database 10g: SQL Fundamentals | 9-25

FOREIGN KEY Constraint

Defined at either the table level or the column level:

CREATE TABLE employees(

employee_id NUMBER(6) ,

last_name VARCHAR2(25) NOT NULL,
email VARCHAR2(25),

salary NUMBER(S8,2),
commission_pct NUMBER(2,2),

hire_date DATE NOT NULL,

department_id NUMBER(4) ,
CONSTRAINT emp_dept_fk FOREIGN KEY (department_id)
REFERENCES departments(department_id),
CONSTRAINT emp_emarl_uk UNIQUE(Cemarl));

9-26 Copyright © 2004, Oracle. All rights reserved.

FOREIGN KEY Constraint (continued)

FOREIGN KEY constraints can be defined at the column or table constraint level. A
composite foreign key must be created by using the table-level definition.
The example in the slide definesa FOREIGN KEY constraint on the DEPARTMENT _1D

column of the EMPLOYEES table, using table-level syntax. The name of the constraint is
EMP_DEPTID_FK.

The foreign key can also be defined at the column level, provided the constraint is based on
a single column. The syntax differs in that the keywords FOREIGN KEY do not appear. For

example:
CREATE TABLE employees

C--
department_id NUMBER(4) CONSTRAINT emp_deptid_fk
REFERENCES departments(department_id),

Oracle Database 10g: SQL Fundamentals | 9-26

FOREIGN KEY Constraint:
Keywords

e FOREIGN KEY: Defines the column in the child
table at the table-constraint level

« REFERENCES: Identifies the table and column
in the parent table

« ON DELETE CASCADE: Deletes the dependent
rows in the child table when arow in the
parent table is deleted

* ON DELETE SET NULL: Converts dependent
foreign key values to null

9-27 Copyright © 2004, Oracle. All rights reserved.

FOREIGN KEY Constraint: Keywords
The foreign key is defined in the child table, and the table containing the referenced column
is the parent table. The foreign key is defined using a combination of the following

keywords:
e FOREIGN KEY is used to define the column in the child table at the table-constraint

level.
REFERENCES identifies the table and column in the parent table.
ON DELETE CASCADE indicates that when the row in the parent table is deleted, the

dependent rows in the child table are also deleted.
= ONDELETE SET NULL converts foreign key values to null when the parent value is

removed.
The default behavior is called the restrict rule, which disallows the update or deletion of
referenced data.
Without the ON DELETE CASCADE or the ON DELETE SET NULL options, the row in
the parent table cannot be deleted if it is referenced in the child table.

Oracle Database 10g: SQL Fundamentals | 9-27

CHECK Constraint

* Defines a condition that each row must satisfy

 The following expressions are not allowed:
— References to CURRVAL, NEXTVAL, LEVEL, and
ROWNUM pseudocolumns
— Calls to SYSDATE, UID, USER, and USERENV
functions
— Queries that refer to other values in other rows

..., salary NUMBER(2)

CONSTRAINT emp_salary_min

9-28 Copyright © 2004, Oracle. All rights reserved.

CHECK Constraint

The CHECK constraint defines a condition that each row must satisfy. The condition can use
the same constructs as query conditions, with the following exceptions:

» References to the CURRVAL, NEXTVAL, LEVEL, and ROWNUM pseudocolumns

» Callsto SYSDATE, UID, USER, and USERENYV functions

* Queries that refer to other values in other rows
A single column can have multiple CHECK constraints that refer to the column in its
definition. There is no limit to the number of CHECK constraints that you can define on a
column.
CHECK constraints can be defined at the column level or table level.

CREATE TABLE employees

(.-.
salary NUMBER(8,2) CONSTRAINT emp_salary min

CHECK (salary > 0),

Oracle Database 10g: SQL Fundamentals | 9-28

CREATE TABLE: Example

CREATE TABLE employees
(employee_id NUMBER(6)
CONSTRAINT emp_employee_id PRIMARY KEY
, First_name VARCHAR2 (20)
, last_name VARCHAR2(25)
CONSTRAINT emp_last_name_nn NOT NULL
, email VARCHAR2(25)
CONSTRAINT emp_email_nn NOT NULL
CONSTRAINT emp_email_uk UNIQUE
, phone_number VARCHAR2(20)
, hire _date DATE
CONSTRAINT emp_hire_date_nn NOT NULL
, job_id VARCHAR2(10)
CONSTRAINT emp_job_nn NOT NULL
, salary NUMBER(S8, 2)
CONSTRAINT emp_salary_ck CHECK (salary>0)
, commission_pct NUMBER(2,2)
, manager_id NUMBER(6)
, department_id NUMBER(4)
CONSTRAINT emp_dept_fk REFERENCES
departments (department_id));

9-29 Copyright © 2004, Oracle. All rights reserved.

The CREATE TABLE Example
The example shows the statement used to create the EMPLOYEES table in the HR schema.

Oracle Database 10g: SQL Fundamentals | 9-29

Violating Constraints

UPDATE employees
SET department_id = 55
WHERE department_id 110;

UPDATE employees
*

ERROR at line 1:

ORA-02291: integrity constraint (HR.EMP_DEPT_FK)
violated - parent key not found

Department 55 does not exist.

9-30 Copyright © 2004, Oracle. All rights reserved.

Integrity Constraint Error

When you have constraints in place on columns, an error is returned to you if you try to
violate the constraint rule.

For example, if you attempt to update a record with a value that is tied to an integrity
constraint, an error is returned.

In the example in the slide, department 55 does not exist in the parent table,
DEPARTMENTS, and so you receive the parent key violation ORA-02291.

Oracle Database 10g: SQL Fundamentals | 9-30

Violating Constraints

You cannot delete a row that contains a primary key
that is used as a foreign key in another table.

DELETE FROM departments
WHERE department_id = 60;

DELETE FROM departments
*

ERROR at line 1:
ORA-02292: iIntegrity constraint (HR.EMP_DEPT_FK)
violated - child record found

9-31 Copyright © 2004, Oracle. All rights reserved.

Integrity Constraint Error (continued)
If you attempt to delete a record with a value that is tied to an integrity constraint, an error is
returned.
The example in the slide tries to delete department 60 from the DEPARTMENTS table, but it

results in an error because that department number is used as a foreign key in the
EMPLOYEES table. If the parent record that you attempt to delete has child records, then
you receive the child record found violation ORA-02292.

The following statement works because there are no employees in department 70:
DELETE FROM departments
WHERE department_id = 70;

1 row deleted.

Oracle Database 10g: SQL Fundamentals | 9-31

Creating a Table
by Using a Subquery

* Create atable and insert rows by combining the
CREATE TABLE statement and the AS subquery
option.

CREATE TABLE table

[(column, column...)]
AS subquery;

 Match the number of specified columns to the
number of subquery columns.

e Define columns with column names and
default values.

9-32 Copyright © 2004, Oracle. All rights reserved.

Creating a Table from Rows in Another Table

A second method for creating a table is to apply the AS subquery clause, which both
creates the table and inserts rows returned from the subquery.

In the syntax:

table Is the name of the table

column is the name of the column, default value, and integrity constraint

subquery is the SELECT statement that defines the set of rows to be inserted into
the new table

Guidelines

» The table is created with the specified column names, and the rows retrieved by the
SELECT statement are inserted into the table.

e The column definition can contain only the column name and default value.

» If column specifications are given, the number of columns must equal the number of
columns in the subquery SELECT list.

* If no column specifications are given, the column names of the table are the same as
the column names in the subquery.

* The column data type definitions and the NOT NULL constraint are passed to the new
table. The other constraint rules are not passed to the new table. However, you can add
constraints in the column definition.

Oracle Database 10g: SQL Fundamentals | 9-32

Creating a Table
by Using a Subquery

CREATE TABLE dept80
AS

SELECT employee 1d, last _name,
salary*12 ANNSAL,
hire_date

FROM employees

WHERE department id = 80;

Table created.

DESCRIBE dept80

| Name | Null? | Type
[EMPLOYEE_ID | [NUMBER(E
[LasT MamE [MOT MULL [WARCHARZ(25)
[ANNSAL | [MUMBER
[HIRE_DATE [MOT MULL [DaTE

9-33 Copyright © 2004, Oracle. All rights reserved.

Creating a Table from Rows in Another Table (continued)

The slide example creates a table named DEPT80, which contains details of all the

employees working in department 80. Notice that the data for the DEPT80 table comes from
the EMPLOYEES table.

You can verify the existence of a database table and check column definitions by using the
iISQL*Plus DESCR I1BE command.

Be sure to provide a column alias when selecting an expression. The expression
SALARY*12 is given the alias ANNSAL. Without the alias, the following error is generated:
ERROR at line 3:

ORA-00998: must name this expression with a column alias

Oracle Database 10g: SQL Fundamentals | 9-33

ALTER TABLE Statement

Use the ALTER TABLE statement to:
e Add anew column
* Modify an existing column

« Define a default value for the new column
 Drop acolumn

9-34 Copyright © 2004, Oracle. All rights reserved.

ALTER TABLE Statement
After you create a table, you may need to change the table structure for any of the following
reasons:
e You omitted a column.

* Your column definition needs to be changed.
* You need to remove columns.

You can do this by using the ALTER TABLE statement. For information about the
ALTER TABLE statement, see the Oracle Database 10g SQL Fundamentals Il course.

Oracle Database 10g: SQL Fundamentals | 9-34

Dropping a Table

* All data and structure in the table are deleted.
* Any pending transactions are committed.
 Allindexes are dropped.

* All constraints are dropped.
* You cannot roll back the DROP TABLE statement.

DROP TABLE dept80;
Table dropped.

9-35 Copyright © 2004, Oracle. All rights reserved.

Dropping a Table

The DROP TABLE statement removes the definition of an Oracle table. When you drop a
table, the database loses all the data in the table and all the indexes associated with it.

Syntax
DROP TABLE table
In the syntax, table is the name of the table.

Guidelines

» All data is deleted from the table.

* Any views and synonyms remain but are invalid.

* Any pending transactions are committed.

* Only the creator of the table or a user with the DROP ANY TABLE privilege can

remove a table.

Note: The DROP TABLE statement, once executed, is irreversible. The Oracle server does
not question the action when you issue the DROP TABLE statement. If you own that table

or have a high-level privilege, then the table is immediately removed. As with all DDL
statements, DROP TABLE is committed automatically.

Oracle Database 10g: SQL Fundamentals | 9-35

Summary

In this lesson, you should have learned how to use the
CREATE TABLE statement to create a table and include

constraints.

» Categorize the main database objects

* Review the table structure

* List the data types that are available for columns
 Create a simple table

e Understand how constraints are created at the
time of table creation

* Describe how schema objects work

9-36 Copyright © 2004, Oracle. All rights reserved.
Summary
In this lesson, you should have learned how to do the following:
CREATE TABLE

» Use the CREATE TABLE statement to create a table and include constraints.
» Create a table based on another table by using a subquery.
DROP TABLE

* Remove rows and a table structure.
* Once executed, this statement cannot be rolled back.

Oracle Database 10g: SQL Fundamentals | 9-36

Practice 9: Overview

This practice covers the following topics:

* Creating new tables
 Creating a new table by using the CREATE TABLE
AS syntax

* Verifying that tables exist
 Dropping tables

9-37 Copyright © 2004, Oracle. All rights reserved.

Practice 9: Overview
Create new tables by using the CREATE TABLE statement. Confirm that the new table was
added to the database. Create the syntax in the command file, and then execute the
command file to create the table.

Oracle Database 10g: SQL Fundamentals | 9-37

Practice 9
Create the DEPT table based on the following table instance chart. Place the

1.

2. Populate the DEPT table with data from the DEPARTMENTS table. Include only columns

3.

syntax in a script called lab_09 01 .sqgl, then execute the statement in the script to

create the table. Confirm that the table is created.

Column Name 1D NAME
Key Type Primary key
Nulls/Unique
FK Table
FK Column
Data type NUMBER VARCHAR2
Length 7 25
| Hame | Hull? | Type
D | IMUMBER(7)
IMNAME | WARCHARZ(25)

that you need.

Create the EMP table based on the following table instance chart. Place the syntax in
a script called lab_09 03.sqgl, and then execute the statement in the script to create the

table. Confirm that the table is created.

Column Name | 1D LAST_NAME FIRST_NAME | DEPT_ID
Key Type
Nulls/Unigue
FK Table DEPT
FK Column ID
Data type NUMBER VARCHAR2 VARCHAR2 NUMBER
Length 7 25 25 7

| Name | Null? | Type

D | IMUMBER(7)

ILAST_NAME | WARCHARZ(25)

[FIRST_MAME | WARCHARZ(25)

\DEPT_ID | IMUMBER(7)

Oracle Database 10g: SQL Fundamentals | 9-38

Practice 9 (continued)
4. Create the EMPLOYEESZ2 table based on the structure of the EMPLOYEES table. Include
only the EMPLOYEE_ 1D, FIRST_NAME, LAST_NAME, SALARY, and

DEPARTMENT _ID columns. Name the columns in your new table ID, FIRST_NAME,
LAST_NAME, SALARY , and DEPT_ID, respectively.
5. Drop the EMP table.

Oracle Database 10g: SQL Fundamentals | 9-39

Creating Other Schema Objects

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:

 Create simple and complex views

* Retrieve data from views

* Create, maintain, and use sequences
* Create and maintain indexes

* Create private and public synonyms

10-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

In this lesson, you are introduced to the view, sequence, synonym, and index objects. You
are taught the basics of creating and using views, sequences, and indexes.

Oracle Database 10g: SQL Fundamentals | 10-2

Database Objects

Object Description

Table Basic unit of storage; composed of rows

View Logically represents subsets of data from
one or more tables

Sequence Generates numeric values

Index Improves the performance of some
gueries

Synonym Gives alternative names to objects

10-3 Copyright © 2004, Oracle. All rights reserved.

Database Objects

There are several other objects in a database in addition to tables. In this lesson, you learn
about views, sequences, indexes, and synonyms.

With views, you can present and hide data from tables.

Many applications require the use of unique numbers as primary key values. You can either
build code into the application to handle this requirement or use a sequence to generate
unique numbers.

If you want to improve the performance of some queries, you should consider creating an
index. You can also use indexes to enforce uniqueness on a column or a collection of
columns.

You can provide alternative names for objects by using synonyms.

Oracle Database 10g: SQL Fundamentals | 10-3

What Is a View?

EMPLOYEES table
100 Steven Kirg SKING 915.123. 4567 17-JUN-57 AD_FRES 2400
101 Meena Kozhhar NOCHAAR 515,123 4568 21-ZEP-35 AD WP 170
102 Lex De Haan LDEHAAN 515123 4569 13-JAN-93 AD_WP 1700

103 Alexander Hunold AHUNO_D A50.423. 4567 03-JAN-90 IT_PROG 90

149 Zlotkay

174 | Abel 1o

176 Tayler _ 8al
U Py [CTFIm [T T Sa_REP ul
200 Jennifer YWhalen JWHALEN 5151234444 17-5EP-87 AD_ASST 44
201 Michael Hatstein WHARTSTE 515.123.5555 17-FEB-86 | MK_MAN 130
202 Pat Fay PEAY 603,123, 6666 17-AUG-97 MK_REP BOI
205 Shelley Hicgins SHIGGINS 515.123.8080 O7-JUn-34 AC MGR 120
206 william Gistz WIGIETZ 515.123.8181 O7-JUN-34 AC_ACCOUNT g3

20 rowws selected.
10-4 Copyright © 2004, Oracle. All rights reserved.

What Is a View?
You can present logical subsets or combinations of data by creating views of tables. A view
is a logical table based on a table or another view. A view contains no data of its own but is

like a window through which data from tables can be viewed or changed. The tables on
which a view is based are called base tables. The view is stored as a SELECT statement in

the data dictionary.

Oracle Database 10g: SQL Fundamentals | 10-4

Advantages of Views

To restrict To make complex
data access gueries easy

To provide To present
data different views of
independence the same data
10-5 Copyright © 2004, Oracle. All rights reserved.

Advantages of Views

« Views restrict access to the data because the view can display selected columns from
the table.

* Views can be used to make simple queries to retrieve the results of complicated
queries. For example, views can be used to query information from multiple tables
without the user knowing how to write a join statement.

* Views provide data independence for ad hoc users and application programs. One view
can be used to retrieve data from several tables.

* Views provide groups of users access to data according to their particular criteria.

For more information, see “CREATE VIEW” in the Oracle SQL Reference.

Oracle Database 10g: SQL Fundamentals | 10-5

Simple Views and Complex Views

Feature Simple Views Complex Views
Number of tables One One or more
Contain functions No Yes

Contain groups of data | No Yes

DML operations Yes Not always
through a view

10-6 Copyright © 2004, Oracle. All rights reserved.

Simple Views and Complex Views

There are two classifications for views: simple and complex. The basic difference is related
to the DML (INSERT, UPDATE, and DELETE) operations.
e Asimple view is one that:
- Derives data from only one table
- Contains no functions or groups of data
- Can perform DML operations through the view
* A complex view is one that:
- Derives data from many tables
- Contains functions or groups of data
- Does not always allow DML operations through the view

Oracle Database 10g: SQL Fundamentals | 10-6

Creating a View

* You embed a subquery in the CREATE VIEW

statement:

AS subquery

CREATE [OR REPLACE] [FORCE|NOFORCE] VIEW view
[(alias[, alias]-..)]

[WITH CHECK OPTION [CONSTRAINT constraint]]
[WITH READ ONLY [CONSTRAINT constraint]];

« The subquery can contain complex SELECT

syntax.

10-7

Copyright © 2004, Oracle. All rights reserved.

Creating a View

You can create a view by embedding a subquery in the CREATE VIEW statement.

In the syntax:
OR REPLACE
FORCE
NOFORCE
view

alias

subquery

WITH CHECK OPTION

constraint
WITH READ ONLY

re-creates the view if it already exists

creates the view regardless of whether or not the base tables exist
creates the view only if the base tables exist (This is the default.)
is the name of the view

specifies names for the expressions selected by the view’s query
(The number of aliases must match the number of expressions
selected by the view.)

is a complete SELECT statement (You can use aliases for the
columns in the SELECT list.)

specifies that only those rows that are accessible to the view can
be inserted or updated

is the name assigned to the CHECK OPT ION constraint

ensures that no DML operations can be performed on this view

Oracle Database 10g: SQL Fundamentals | 10-7

Creating a View

« Create the EMPVUS8O view, which contains details
of employees in department 80:

CREATE VIEW empvu80

AS SELECT employee id, last name, salary
FROM employees
WHERE department_id = 80;

View created.

* Describe the structure of the view by using the
ISQL*Plus DESCRIBE command:

DESCRIBE empvu80

10-8

Copyright © 2004, Oracle. All rights reserved.

Creating a View (continued)

The example in the slide creates a view that contains the employee number, last name, and
salary for each employee in department 80.

You can display the structure of the view by using the iSQL*Plus DESCR IBE command.

| Hame | Hull? | Type
[EMPLOYEE_ID IMOT NULL INUMBER(E)
ILAST_MNAME IMOT NULL ARCHARZ(25)
|SALARY | INUMBER(Z 2)

Guid

elines for Creating a View:

The subquery that defines a view can contain complex SELECT syntax, including
joins, groups, and subqueries.

If you do not specify a constraint name for a view created with the WITH CHECK
OPTION, the system assigns a default name in the format SYS_Cn.

You can use the OR REPLACE option to change the definition of the view without
dropping and re-creating it or regranting object privileges previously granted on it.

Oracle Database 10g: SQL Fundamentals | 10-8

Creating a View

 Create aview by using column aliases in the
subquery:

CREATE VIEW salvu50
AS SELECT employee id 1D _NUMBER, last name NAME,
salary*12 ANN_SALARY
FROM employees
WHERE department_id = 50;
View created.

« Select the columns from this view by the given
alias names:

10-9 Copyright © 2004, Oracle. All rights reserved.

Creating a View (continued)
You can control the column names by including column aliases in the subquery.
The example in the slide creates a view containing the employee number (EMPLOYEE__ ID)

with the alias 1D_NUMBER, name (LAST_NAME) with the alias NAME, and annual salary
(SALARY) with the alias ANN_SALARY for every employee in department 50.

As an alternative, you can use an alias after the CREATE statement and prior to the SELECT
subquery. The number of aliases listed must match the number of expressions selected in the
subquery.
CREATE OR REPLACE VIEW salvu50 (ID_NUMBER, NAME, ANN_SALARY)
AS SELECT employee id, last name, salary*12
FROM employees

WHERE department_id = 50;
View created.

Oracle Database 10g: SQL Fundamentals | 10-9

Retrieving Data from a View

SELECT *
FROM | salvu50);

ID_NUMBER | NAME
124 |hﬂourgos
141 [Rajs
142 [Davies
143 [Matas
144|Va@as

ANN_SALARY

B9E00
42000
37200
31200
30000

10-10 Copyright © 2004, Oracle. All rights reserved.

Retrieving Data from a View

You can retrieve data from a view as you would from any table. You can display either the
contents of the entire view or just specific rows and columns.

Oracle Database 10g: SQL Fundamentals | 10-10

Modifying a View

* Modify the EMPVU8O0 view by using a CREATE OR
REPLACE VIEW clause. Add an alias for each

column name:
CREATE OR REPLACE VIEW empvu80

(id_number, name, sal, department_id)
AS SELECT employee_id, first_name || ° *©

|l last _name, salary, department_id

FROM employees

WHERE department_id = 80;
View created.

e Column aliases in the CREATE OR REPLACE VIEW

clause are listed in the same order as the columns
in the subquery.

10-11 Copyright © 2004, Oracle. All rights reserved.

Modifying a View
With the OR REPLACE option, a view can be created even if one exists with this name
already, thus replacing the old version of the view for its owner. This means that the view
can be altered without dropping, re-creating, and regranting object privileges.

Note: When assigning column aliases in the CREATE OR REPLACE VIEW clause,
remember that the aliases are listed in the same order as the columns in the subquery.

Oracle Database 10g: SQL Fundamentals | 10-11

Creating a Complex View

Create a complex view that contains group functions
to display values from two tables:

CREATE OR REPLACE VIEW dept_sum_vu
(name, minsal, maxsal, avgsal)
AS SELECT d.department_name, MIN(e.salary),
MAX(e.salary) ,AVG(e.salary)
FROM employees e JOIN departments d
ON (e.department_id = d.department_id)
GROUP BY d.department_name;
View created.

10-12 Copyright © 2004, Oracle. All rights reserved.

Creating a Complex View

The example in the slide creates a complex view of department names, minimum salaries,
maximum salaries, and average salaries by department. Note that alternative names have
been specified for the view. This is a requirement if any column of the view is derived from
a function or an expression.

You can view the structure of the view by using the iSQL*Plus DESCR IBE command.
Display the contents of the view by issuing a SELECT statement.

SELECT *

FROM dept sum vu;
| NAME | MINSAL | MAXSAL | AVGSAL
Accounting | 300 | 12000 | 10150
\Adrministration | 4400 | 4400 | 4400
[Executive | 17000 | 24000 | 19333.3333
(i) | 4200 | 9000 | G400
Ik eting | OO0 | 13000 | 9500
Sales | A600 | 11000 | 10033.3333
Shipping | 2600 | 5800 | 3600

7 rows selected.
Oracle Database 10g: SQL Fundamentals | 10-12

Rules for Performing
DML Operations on a View

* You can usually perform DML operations /
on simple views.

* You cannot remove arow if the view contains the
following:

— Group functions @
— A GROUP BY clause

— The DISTINCT keyword

— The pseudocolumn ROWNUM keyword

10-13 Copyright © 2004, Oracle. All rights reserved.

Performing DML Operations on a View

You can perform DML operations on data through a view if those operations follow certain
rules.

You can remove a row from a view unless it contains any of the following:
e Group functions
e AGROUP BY clause
e The DISTINCT keyword
* The pseudocolumn ROWNUM keyword

Oracle Database 10g: SQL Fundamentals | 10-13

Rules for Performing
DML Operations on a View

You cannot modify data in a view if it contains:
e Group functions
* A GROUP BY clause
e The DISTINCT keyword
« The pseudocolumn ROWNUM keyword

 Columns defined by expressions

10-14 Copyright © 2004, Oracle. All rights reserved.

Performing DML Operations on a View (continued)

You can modify data through a view unless it contains any of the conditions mentioned in
the previous slide or columns defined by expressions (for example, SALARY * 12).

Oracle Database 10g: SQL Fundamentals | 10-14

Rules for Performing
DML Operations on a View

You cannot add data through a view if the view
includes:

¢ Group functions

* A GROUP BY clause

e The DISTINCT keyword

« The pseudocolumn ROWNUM keyword
 Columns defined by expressions

e NOT NULL columns in the base tables that are not
selected by the view

10-15 Copyright © 2004, Oracle. All rights reserved.

Performing DML Operations on a View (continued)
You can add data through a view unless it contains any of the items listed in the slide. You
cannot add data to a view if the view contains NOT NULL columns without default values in
the base table. All required values must be present in the view. Remember that you are
adding values directly to the underlying table through the view.

For more information, see “CREATE VIEW” in the Oracle SQL Reference.

Oracle Database 10g: SQL Fundamentals | 10-15

Using the WITH CHECK OPTION Clause

* You can ensure that DML operations performed on
the view stay in the domain of the view by using
the WITH CHECK OPTION clause:

CREATE OR REPLACE VIEW empvu20
AS SELECT *

FROM employees

WHERE department_id = 20

[WITH CHECK OPTION CONSTRAINT empvu20=EEJ;
View created.

* Any attempt to change the department number for
any row in the view fails because it violates the
WITH CHECK OPTION constraint.

10-16 Copyright © 2004, Oracle. All rights reserved.

Using the WITH CHECK OPTION Clause

It is possible to perform referential integrity checks through views. You can also enforce
constraints at the database level. The view can be used to protect data integrity, but the use
is very limited.
The WITH CHECK OPTION clause specifies that INSERTs and UPDATEs performed
through the view cannot create rows that the view cannot select, and therefore it enables
integrity constraints and data validation checks to be enforced on data being inserted or
updated. If there is an attempt to perform DML operations on rows that the view has not
selected, an error is displayed, along with the constraint name if that has been specified.

UPDATE empvu20

SET department_id = 10

WHERE employee_id = 201;

causes:
ERROR at line 1:
ORA-01402: view WITH CHECK OPTION where-clause violation

Note: No rows are updated because if the department number were to change to 10, the view
would no longer be able to see that employee. With the WITH CHECK OPTION clause,
therefore, the view can see only employees in department 20 and does not allow the
department number for those employees to be changed through the view.

Oracle Database 10g: SQL Fundamentals | 10-16

Denying DML Operations

* You can ensure that no DML operations occur by
adding the WITH READ ONLY option to your view
definition.

* Any attempt to perform a DML operation on any
row in the view results in an Oracle server error.

10-17 Copyright © 2004, Oracle. All rights reserved.

Denying DML Operations

You can ensure that no DML operations occur on your view by creating it with the WITH
READ ONLY option. The example in the next slide modifies the EMPVU10 view to prevent
any DML operations on the view.

Oracle Database 10g: SQL Fundamentals | 10-17

Denying DML Operations

CREATE OR REPLACE VIEW empvulO
(employee number, employee name, job_ title)
AS SELECT employee_id, last _name, job id
FROM employees
WHERE department_id = 10
[WITH READ ONLY |;
View created.

10-18 Copyright © 2004, Oracle. All rights reserved.

Denying DML Operations (continued)
Any attempt to remove a row from a view with a read-only constraint results in an error:
DELETE FROM empvulO

WHERE employee_number = 200;
DELETE FROM empvulO
*

ERROR at line 1:
ORA-01752: cannot delete from view without exactly one
key-preserved table

Any attempt to insert a row or modify a row using the view with a read-only constraint
results in an Oracle server error:
01733: virtual column not allowed here.

Oracle Database 10g: SQL Fundamentals | 10-18

Removing a View

You can remove a view without losing data because a
view is based on underlying tables in the database.

DROP VIEW view;

DROP VIEW empvu80;
View dropped.

10-19 Copyright © 2004, Oracle. All rights reserved.

Removing a View
You use the DROP VIEW statement to remove a view. The statement removes the view
definition from the database. Dropping views has no effect on the tables on which the view

was based. Views or other applications based on deleted views become invalid. Only the
creator or a user with the DROP ANY VIEW privilege can remove a view.

In the syntax:
view is the name of the view

Oracle Database 10g: SQL Fundamentals | 10-19

Practice 10: Overview of Part 1

This practice covers the following topics:

* Creating a simple view

* Creating a complex view

* Creating a view with a check constraint
* Attempting to modify data in the view

* Removing views

10-20 Copyright © 2004, Oracle. All rights reserved.

Practice 10: Overview of Part 1

Part 1 of this lesson’s practice provides you with a variety of exercises in creating, using,
and removing views.

Complete questions 1-6 at the end of this lesson.

Oracle Database 10g: SQL Fundamentals | 10-20

Sequences

Object Description

Table Basic unit of storage; composed of rows

View Logically represents subsets of data from
one or more tables

Sequence Generates numeric values

Index Improves the performance of some
gueries

Synonym Gives alternative names to objects

10-21 Copyright © 2004, Oracle. All rights reserved.

Sequences

A sequence is a database object that creates integer values. You can create sequences and
then use them to generate numbers.

Oracle Database 10g: SQL Fundamentals | 10-21

Sequences

A sequence:
 Can automatically generate unique numbers
* Is asharable object
* Can be used to create a primary key value
 Replaces application code

* Speeds up the efficiency of accessing sequence
values when cached in memory

® 6 6 & ®

10-22 Copyright © 2004, Oracle. All rights reserved.

Sequences

A sequence is a user-created database object that can be shared by multiple users to generate
integers.

You can define a sequence to generate unique values or to recycle and use the same numbers
again.

A typical usage for sequences is to create a primary key value, which must be unique for
each row. The sequence is generated and incremented (or decremented) by an internal
Oracle routine. This can be a time-saving object because it can reduce the amount of
application code needed to write a sequence-generating routine.

Sequence numbers are stored and generated independently of tables. Therefore, the same
sequence can be used for multiple tables.

Oracle Database 10g: SQL Fundamentals | 10-22

CREATE SEQUENCE Statement:
Syntax

Define a sequence to generate sequential numbers
automatically:

CREATE SEQUENCE sequence
[INCREMENT BY n]
[START WITH n]
[{MAXVALUE n | NOMAXVALUE}]
[{MINVALUE n | NOMINVALUE}]
[{CYCLE | NOCYCLE}]
[{CACHE n | NOCACHE}];

10-23 Copyright © 2004, Oracle. All rights reserved.

Creating a Sequence
Automatically generate sequential numbers by using the CREATE SEQUENCE statement.

In the syntax:
sequence is the name of the sequence generator
INCREMENT BY n specifies the interval between sequence numbers, where
n is an integer (If this clause is omitted, the sequence
increments by 1.)

START WITH n specifies the first sequence number to be generated (If
this clause is omitted, the sequence starts with 1.)

MAXVALUE n specifies the maximum value the sequence can generate

NOMAXVALUE specifies a maximum value of 10727 for an ascending

sequence and -1 for a descending sequence (This is the
default option.)

MINVALUE n specifies the minimum sequence value

NOMINVALUE specifies a minimum value of 1 for an ascending
sequence and —(10726) for a descending sequence (This
is the default option.)

Oracle Database 10g: SQL Fundamentals | 10-23

Creating a Sequence

 Create a sequence named DEPT _DEPTID_ SEQ to
be used for the primary key of the DEPARTMENTS
table.

* Do not use the CYCLE option.

CREATE SEQUENCE dept_deptid_seq
INCREMENT BY 10
START WITH 120
MAXVALUE 9999
NOCACHE
NOCYCLE;
Sequence created.

10-24 Copyright © 2004, Oracle. All rights reserved.

Creating a Sequence (continued)

CYCLE | NOCYCLE specifies whether the sequence continues to generate
values after reaching its maximum or minimum value
(NOCYCLE is the default option.)

CACHE n | NOCACHE specifies how many values the Oracle server preallocates
and keeps in memory (By default, the Oracle server
caches 20 values.)

The example in the slide creates a sequence named DEPT_DEPT ID_SEQ to be used for the
DEPARTMENT _ID column of the DEPARTMENTS table. The sequence starts at 120, does
not allow caching, and does not cycle.

Do not use the CYCLE option if the sequence is used to generate primary key values, unless
you have a reliable mechanism that purges old rows faster than the sequence cycles.
For more information, see “CREATE SEQUENCE” in the Oracle SQL Reference.

Note: The sequence is not tied to a table. Generally, you should name the sequence after its
intended use. However, the sequence can be used anywhere, regardless of its name.

Oracle Database 10g: SQL Fundamentals | 10-24

NEXTVAL and CURRVAL Pseudocolumns

 NEXTVAL returns the next available sequence
value. It returns a unique value every time it is
referenced, even for different users.

 CURRVAL obtains the current sequence value.

« NEXTVAL must be issued for that sequence before
CURRVAL contains a value.

10-25 Copyright © 2004, Oracle. All rights reserved.

NEXTVAL and CURRVAL Pseudocolumns

After you create your sequence, it generates sequential numbers for use in your tables.
Reference the sequence values by using the NEXTVAL and CURRVAL pseudocolumns.

The NEXTVAL pseudocolumn is used to extract successive sequence numbers from a
specified sequence. You must qualify NEXTVAL with the sequence name. When you
reference sequence . NEXTVAL, a new sequence number is generated and the current
sequence number is placed in CURRVAL.

The CURRVAL pseudocolumn is used to refer to a sequence number that the current user has
just generated. NEXTVAL must be used to generate a sequence number in the current user’s
session before CURRVAL can be referenced. You must qualify CURRVAL with the sequence
name. When you reference sequence . CURRVAL, the last value returned to that user’s
process is displayed.

Oracle Database 10g: SQL Fundamentals | 10-25

NEXTVAL and CURRVAL Pseudocolumns (continued)
Rules for Using NEXTVAL and CURRVAL

You can use NEXTVAL and CURRVAL in the following contexts:
* The SELECT list of a SELECT statement that is not part of a subquery
* The SELECT list of a subquery in an INSERT statement
e The VALUES clause of an INSERT statement
» The SET clause of an UPDATE statement

You cannot use NEXTVAL and CURRVAL in the following contexts:
» The SELECT list of a view
* A SELECT statement with the DISTINCT keyword
* A SELECT statement with GROUP BY, HAVING, or ORDER BY clauses
* Asubquery ina SELECT, DELETE, or UPDATE statement
» The DEFAULT expression ina CREATE TABLE or ALTER TABLE statement

For more information, see “Pseudocolumns” and “CREATE SEQUENCE” in the Oracle SQL
Reference.

Oracle Database 10g: SQL Fundamentals | 10-26

Using a Sequence

* Insert a new department named “Support” in
location ID 2500:

INSERT INTO departments(department_id,
department_name, location_id)

VALUES (dept_deptid_seq-NEXTVAL,
*Support®, 2500);

1 row created.

¢ View the current value for the DEPT_DEPTID_ SEQ

sequence.
SELECT dept_deptid_seq.CURRVAL
FROM dual ;

10-27 Copyright © 2004, Oracle. All rights reserved.

Using a Sequence

The example in the slide inserts a new department in the DEPARTMENTS table. It uses the
DEPT_DEPTID_SEQ sequence to generate a new department number as follows.

You can view the current value of the sequence:
SELECT dept_deptid_seq.CURRVAL
FROM dual;

| CURRVAL
| 120

Suppose that you now want to hire employees to staff the new department. The INSERT

statement to be executed for all new employees can include the following code:
INSERT INTO employees (employee_id, department_id, ...)
VALUES (employees seq-NEXTVAL, dept _deptid seq .CURRVAL, ...);

Note: The preceding example assumes that a sequence called EMPLOYEE_SEQ has already
been created to generate new employee numbers.

Oracle Database 10g: SQL Fundamentals | 10-27

Caching Sequence Values

* Caching sequence values in memory gives faster
access to those values.
« Gaps in sequence values can occur when:
— Arrollback occurs
— The system crashes
— A sequence is used in another table

10-28 Copyright © 2004, Oracle. All rights reserved.

Caching Sequence Values

You can cache sequences in memory to provide faster access to those sequence values. The
cache is populated the first time you refer to the sequence. Each request for the next
sequence value is retrieved from the cached sequence. After the last sequence value is used,
the next request for the sequence pulls another cache of sequences into memory.

Gaps in the Sequence

Although sequence generators issue sequential numbers without gaps, this action occurs
independent of a commit or rollback. Therefore, if you roll back a statement containing a
sequence, the number is lost.

Another event that can cause gaps in the sequence is a system crash. If the sequence caches
values in memory, then those values are lost if the system crashes.

Because sequences are not tied directly to tables, the same sequence can be used for multiple
tables. If you do so, each table can contain gaps in the sequential numbers.

Oracle Database 10g: SQL Fundamentals | 10-28

Modifying a Sequence

Change the increment value, maximum value,
minimum value, cycle option, or cache option:

ALTER SEQUENCE dept_deptid_seq
INCREMENT BY 20
MAXVALUE 999999
NOCACHE
NOCYCLE;
Sequence altered.

10-29 Copyright © 2004, Oracle. All rights reserved.

Modifying a Sequence
If you reach the MAXVALUE limit for your sequence, no additional values from the sequence
are allocated and you will receive an error indicating that the sequence exceeds the
MAXVALUE. To continue to use the sequence, you can modify it by using the ALTER
SEQUENCE statement.

Syntax
ALTER SEQUENCE sequence
[INCREMENT BY n]
[{MAXVALUE n | NOMAXVALUE}]
[{MINVALUE n | NOMINVALUE}]
[{CYCLE | NOCYCLE}]
[{CACHE n | NOCACHE}];

In the syntax, sequence is the name of the sequence generator.
For more information, see “ALTER SEQUENCE” in the Oracle SQL Reference.

Oracle Database 10g: SQL Fundamentals | 10-29

Guidelines for Modifying
a Sequence

* You must be the owner or have the ALTER
privilege for the sequence.
* Only future sequence numbers are affected.

* The sequence must be dropped and
re-created to restart the sequence at a different
number.

 Some validation is performed.

« Toremove a sequence, use the DROP statement:

DROP SEQUENCE dept_deptid_seq;
Sequence dropped.

10-30 Copyright © 2004, Oracle. All rights reserved.

Guidelines for Modifying a Sequence

* You must be the owner or have the ALTER privilege for the sequence to modify it.
You must be the owner or have the DROP ANY SEQUENCE privilege to remove it.
e Only future sequence numbers are affected by the ALTER SEQUENCE statement.
* The START WITH option cannot be changed using ALTER SEQUENCE. The
sequence must be dropped and re-created to restart the sequence at a different number.
» Some validation is performed. For example, a new MAXVALUE that is less than the
current sequence number cannot be imposed.
ALTER SEQUENCE dept_deptid_seq
INCREMENT BY 20
MAXVALUE 90
NOCACHE
NOCYCLE;
ALTER SEQUENCE dept_deptid_seq

ERROR at line 1:
ORA-04009: MAXVALUE cannot be made to be less than the
current value

Oracle Database 10g: SQL Fundamentals | 10-30

Indexes

Object Description

Table Basic unit of storage; composed of rows

View Logically represents subsets of data from
one or more tables

Sequence Generates numeric values

Index Improves the performance of some
gueries

Synonym Gives alternative names to objects

10-31 Copyright © 2004, Oracle. All rights reserved.

Indexes

Indexes are database objects that you can create to improve the performance of some
queries. Indexes can also be created automatically by the server when you create a primary
key or unique constraint.

Oracle Database 10g: SQL Fundamentals | 10-31

Indexes

An index:
* |Is aschema object

« Can be used by the Oracle server to speed up the
retrieval of rows by using a pointer

 Can reduce disk I/O by using a rapid path access
method to locate data quickly

* Isindependent of the table that it indexes
* Is used and maintained automatically by the

Oracle server /—?‘

10-32 Copyright © 2004, Oracle. All rights reserved.

Indexes (continued)

An Oracle server index is a schema object that can speed up the retrieval of rows by using a
pointer. Indexes can be created explicitly or automatically. If you do not have an index on
the column, then a full table scan occurs.

An index provides direct and fast access to rows in a table. Its purpose is to reduce the
necessity of disk 1/0 by using an indexed path to locate data quickly. The index is used and
maintained automatically by the Oracle server. After an index is created, no direct activity is
required by the user.

Indexes are logically and physically independent of the table that they index. This means
that they can be created or dropped at any time and have no effect on the base tables or other
indexes.

Note: When you drop a table, corresponding indexes are also dropped.
For more information, see “Schema Objects: Indexes” in Database Concepts.

Oracle Database 10g: SQL Fundamentals | 10-32

How Are Indexes Created?

* Automatically: A unique index is created
automatically when you define a PRIMARY KEY or
UNIQUE constraint in a table definition.

fﬁﬁ‘.) ‘ﬁﬁ.i "

.
* Manually: Users can create nonunique indexes on
columns to speed up access to the rows.

il

LYo >
Wi

o

10-33 Copyright © 2004, Oracle. All rights reserved.

Types of Indexes
Two types of indexes can be created.

Unique index: The Oracle server automatically creates this index when you define a column
in a table to have a PRIMARY KEY or a UNIQUE key constraint. The name of the index is
the name that is given to the constraint.

Nonunique index: This is an index that a user can create. For example, you can create a
FOREIGN KEY column index for a join in a query to improve retrieval speed.

Note: You can manually create a unique index, but it is recommended that you create a
unique constraint, which implicitly creates a unique index.

Oracle Database 10g: SQL Fundamentals | 10-33

Creating an Index

e Create an index on one or more columns:

CREATE INDEX index
ON table (column[, column]...);

 Improve the speed of query access to the
LAST_NAME column in the EMPLOYEES table:

CREATE INDEX emp_last_name_idx
ON employees(last_name);
Index created.

10-34 Copyright © 2004, Oracle. All rights reserved.

Creating an Index
Create an index on one or more columns by issuing the CREATE INDEX statement.

In the syntax:

index is the name of the index
table is the name of the table
column is the name of the column in the table to be indexed

For more information, see “CREATE INDEX” in the Oracle SQL Reference.

Oracle Database 10g: SQL Fundamentals | 10-34

Index Creation Guidelines

Create an index when:

A column contains a wide range of values

A column contains a large number of null values

One or more columns are frequently used together in a WHERE
clause or ajoin condition

The table is large and most queries are expected to retrieve less
than 2% to 4% of the rows in the table

0 not create an index when:

The columns are not often used as a condition in the query

The table is small or most queries are expected to retrieve more
than 2% to 4% of the rows in the table

The table is updated frequently

X[x] x [X[.] &~ AR [~

The indexed columns are referenced as part of an expression

10-35 Copyright © 2004, Oracle. All rights reserved.

More Is Not Always Better

Having more indexes on a table does not produce faster queries. Each DML operation that is
committed on a table with indexes means that the indexes must be updated. The more
indexes that you have associated with a table, the more effort the Oracle server must make to
update all the indexes after a DML operation.

When to Create an Index

Therefore, you should create indexes only if:
e The column contains a wide range of values
e The column contains a large number of null values
* One or more columns are frequently used together in a WHERE clause or join condition
* The table is large and most queries are expected to retrieve less than 2% to 4% of the
rows

Remember that if you want to enforce uniqueness, you should define a unique constraint in
the table definition. A unique index is then created automatically.

Oracle Database 10g: SQL Fundamentals | 10-35

Removing an Index

* Remove an index from the data dictionary by
using the DROP INDEX command:

DROP INDEX index;

* Remove the UPPER_LAST NAME_IDX index from
the data dictionary:

DROP INDEX emp_last name_idx;
Index dropped.

e To drop an index, you must be the owner of the
index or have the DROP ANY INDEX privilege.

10-36 Copyright © 2004, Oracle. All rights reserved.

Removing an Index
You cannot modify indexes. To change an index, you must drop it and then re-create it.

Remove an index definition from the data dictionary by issuing the DROP INDEX statement.
To drop an index, you must be the owner of the index or have the DROP ANY INDEX
privilege.

In the syntax, 1ndex is the name of the index.

Note: If you drop a table, indexes and constraints are automatically dropped but views and
sequences remain.

Oracle Database 10g: SQL Fundamentals | 10-36

Synonyms

Object Description

Table Basic unit of storage; composed of rows

View Logically represents subsets of data from
one or more tables

Sequence Generates numeric values

Index Improves the performance of some
gueries

Synonym Gives alternative names to objects

10-37 Copyright © 2004, Oracle. All rights reserved.

Synonyms
Synonyms are database objects that enable you to call a table by another name. You can
create synonyms to give an alternate name to a table.

Oracle Database 10g: SQL Fundamentals | 10-37

Synonyms

Simplify access to objects by creating a synonym
(another name for an object). With synonyms, you can:

e Create an easier reference to a table that is owned
by another user

 Shorten lengthy object names

CREATE [PUBLIC] SYNONYM synonym
FOR object;

10-38 Copyright © 2004, Oracle. All rights reserved.

Creating a Synonym for an Object

To refer to a table that is owned by another user, you need to prefix the table name with the
name of the user who created it, followed by a period. Creating a synonym eliminates the
need to qualify the object name with the schema and provides you with an alternative name
for a table, view, sequence, procedure, or other objects. This method can be especially useful
with lengthy object names, such as views.

In the syntax:

PUBLIC creates a synonym that is accessible to all users

synonym is the name of the synonym to be created

object identifies the object for which the synonym is created
Guidelines

* The object cannot be contained in a package.
* A private synonym name must be distinct from all other objects that are owned by the
same user.

For more information, see “CREATE SYNONYM” in the Oracle SQL Reference.

Oracle Database 10g: SQL Fundamentals | 10-38

Creating and Removing Synonyms

* Create a shortened name for the DEPT_SUM_VU
view:

CREATE SYNONYM d_sum
FOR dept_sum vu;
Synonym Created.

« Drop asynonym:

DROP SYNONYM d_sum;
Synonym dropped.

10-39 Copyright © 2004, Oracle. All rights reserved.

Creating a Synonym
The slide example creates a synonym for the DEPT_SUM_ VU view for quicker reference.
The database administrator can create a public synonym that is accessible to all users. The
following example creates a public synonym named DEPT for Alice’s DEPARTMENTS
table:

CREATE PUBLIC SYNONYM dept
FOR alice.departments;
Synonym created.

Removing a Synonym
To remove a synonym, use the DROP SYNONYM statement. Only the database administrator

can drop a public synonym.
DROP PUBLIC SYNONYM dept;

Synonym dropped.
For more information, see “DROP SYNONYM” in the Oracle SQL Reference.

Oracle Database 10g: SQL Fundamentals | 10-39

Summary

In this lesson, you should have learned how to:
« Create, use, and remove views

 Automatically generate sequence numbers by
using a sequence generator

 Create indexes to improve query retrieval speed

 Use synonyms to provide alternative names for
objects

10-40 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned about database objects such as views, sequences,
indexes, and synonyms.

Oracle Database 10g: SQL Fundamentals | 10-40

Practice 10: Overview of Part 2

This practice covers the following topics:
* Creating sequences

* Using sequences

* Creating nonunique indexes
 Creating synonyms

10-41 Copyright © 2004, Oracle. All rights reserved.

Practice 10: Overview of Part 2

Part 2 of this lesson’s practice provides you with a variety of exercises in creating and using
a sequence, an index, and a synonym.

Complete questions 7-10 at the end of this lesson.

Oracle Database 10g: SQL Fundamentals | 10-41

Practice 10
Part1l
1. The staff in the HR department wants to hide some of the data in the EMPLOYEES
table. They want a view called EMPLOYEES_VU based on the employee numbers,
employee names, and department numbers from the EMPLOYEES table. They want the
heading for the employee name to be EMPLOYEE.
2. Confirm that the view works. Display the contents of the EMPLOYEES VU view.

| EMPLOYEE_ID | EMPLOYEE | DEPARTMENT _ID

| 100 |King | a0
| 101 [Kochhar | a0
| 102 |De Haan | a0
| 103 [Hunald | B0
| 104 [Ermst | B0
| 107 |Lorertz | B0
| 6 |Gietz | 110

20 rows selected.

3. Using your EMPLOYEES VU view, write a query for the HR department to display all
employee names and department numbers.

| EMPLOYEE | DEPARTMENT_ID

King | a0
[Kochhar | a0
Gietz | 110

20 rows selected.

Oracle Database 10g: SQL Fundamentals | 10-42

Practice 10

4. Department 50 needs access to its employee data. Create a view named DEPT50 that
contains the employee numbers, employee last names, and department numbers for all
employees in department 50. You have been asked to label the view columns

EMPNO, EMPLOYEE, and DEPTNO. For security purposes, do not allow an employee to

be reassigned to another department through the view.

5. Display the structure and contents of the DEPT50 view.
| Name | Hull? | Type
[EMPMO INOT NULL INUMBER(E)
[EMPLOYEE INOT MULL WARCHARZ(2E)
[DEPTMO | IMUMBER(4)
| EMPNO | EMPLOYEE | DEPTNO
| 124 |hf1|:|urg|:|5 | a0
| 141 |Rajs | 50
| 142 |Davies | a0
| 143 Matos | 50
| 144 [vargas | 50
6. Test your view. Attempt to reassign Matos to department 80.
Oracle Database 10g: SQL Fundamentals | 10-43

Practice 10

Part 2

7. You need a sequence that can be used with the primary key column of the DEPT table. The
sequence should start at 200 and have a maximum value of 1,000. Have your sequence
increment by 10. Name the sequence DEPT_ID_SEQ.

8. To test your sequence, write a script to insert two rows in the DEPT table. Name your script
lab_10 08.sql. Be sure to use the sequence that you created for the ID column. Add
two departments: Education and Administration. Confirm your additions. Run the
commands in your script.

9. Create a nonunique index on the NAME column in the DEPT table.

10. Create a synonym for your EMPLOYEES table. Call it EMP.

Oracle Database 10g: SQL Fundamentals | 10-44

Managing Objects
with Data Dictionary Views

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:

 Usethe data dictionary views to research data on
your objects

* Query various data dictionary views

11-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

In this lesson, you are introduced to the data dictionary views. You will learn that the
dictionary views can be used to retrieve metadata and create reports about your schema
objects.

Oracle Database 10g: SQL Fundamentals | 11-2

The Data Dictionary

Oracle server

Tables containing Data dictionary

business data: views:
EMPLOYEES DICTIONARY
DEPARTMENTS USER_OBJECTS
LOCATIONS USER_TABLES

JOB_HISTORY USER_TAB_COLUMNS

11-3 Copyright © 2004, Oracle. All rights reserved.

The Data Dictionary

User tables are tables created by the user and contain business data, such as EMPLOYEES.
There is another collection of tables and views in the Oracle database known as the data
dictionary. This collection is created and maintained by the Oracle server and contains
information about the database. The data dictionary is structured in tables and views, just
like other database data. Not only is the data dictionary central to every Oracle database, but
it is an important tool for all users, from end users to application designers and database
administrators.

You use SQL statements to access the data dictionary. Because the data dictionary is read-
only, you can issue only queries against its tables and views.

You can query the dictionary views that are based on the dictionary tables to find
information such as:

» Definitions of all schema objects in the database (tables, views, indexes, synonyms,

sequences, procedures, functions, packages, triggers, and so on)

» Default values for columns

* Integrity constraint information

* Names of Oracle users

» Privileges and roles that each user has been granted

e Other general database information

Oracle Database 10g: SQL Fundamentals | 11-3

Data Dictionary Structure

Oracle server

Consists of:
— Base tables

p—b> . .
— User-accessible views

11-4 Copyright © 2004, Oracle. All rights reserved.

Data Dictionary Structure

Underlying base tables store information about the associated database. Only the Oracle
server should write to and read these tables. You rarely access them directly.

There are several views that summarize and display the information stored in the base tables

of the data dictionary. These views decode the base table data into useful information (such
as user or table names) using joins and WHERE clauses to simplify the information. Most

users are given access to the views rather than the base tables.

The Oracle user SYS owns all base tables and user-accessible views of the data dictionary.
No Oracle user should ever alter (UPDATE, DELETE, or INSERT) any rows or schema
objects contained in the SYS schema, because such activity can compromise data integrity.

Oracle Database 10g: SQL Fundamentals | 11-4

Data Dictionary Structure

View naming convention:

View Prefix Purpose

USER User’s view (what is in your schema;
what you own)

ALL Expanded user’s view (what you can
access)

DBA Database administrator’s view (what is in
everyone’s schemas)

V$ Performance-related data

11-5 Copyright © 2004, Oracle. All rights reserved.

Data Dictionary Structure (continued)

The data dictionary consists of sets of views. In many cases, a set consists of three views
containing similar information and distinguished from each other by their prefixes. For
example, there is a view named USER_OBJECTS, another named ALL_OBJECTS, and a
third named DBA_OBJECTS.

These three views contain similar information about objects in the database, except that the
scope is different. USER_OBJECTS contains information about objects that you own or
created. ALL_OBJECTS contains information about all objects to which you have access.
DBA_OBJECTS contains information on all objects that are owned by all users. For views
that are prefixed with ALL or DBA, there is usually an additional column in the view named
OWNER to identify who owns the object.

There is also a set of views that is prefixed with v$. These views are dynamic in nature and
hold information about performance. Dynamic performance tables are not true tables, and
they should not be accessed by most users. However, database administrators can query and
create views on the tables and grant access to those views to other users. This course does
not go into details about these views.

Oracle Database 10g: SQL Fundamentals | 11-5

How to Use the Dictionary Views

Start with DICTIONARY. It contains the names and
descriptions of the dictionary tables and views.

DESCRIBE DICTIONARY

Name Null? Type
TABLE_MAME WARCHARZ(ED)
COMMENTS WARCHARZ(4000)
SELECT *

FROM dictionary
WHERE table_name = “USER_OBJECTS";

TABLE_NAME COMMENTS
USER_OBJECTS Objects owned by the user
11-6 Copyright © 2004, Oracle. All rights reserved.

How to Use the Dictionary Views
To familiarize yourself with the dictionary views, you can use the dictionary view named
DICTIONARY. It contains the name and short description of each dictionary view to which
you have access.
You can write queries to search for information on a particular view name, or you can search
the COMMENTS column for a word or phrase. In the example shown, the DICT IONARY
view is described. It has two columns. The SELECT statement retrieves information about
the dictionary view named USER_OBJECTS. The USER_OBJECTS view contains
information about all the objects that you own.

You can write queries to search the COMMENTS column for a word or phrase. For example,
the following query returns the names of all views that you are permitted to access in which
the COMMENTS column contains the word columns:

SELECT table_name

FROM dictionary

WHERE LOWER(comments) LIKE "%columns”®;

Note: The names in the data dictionary are uppercase.

Oracle Database 10g: SQL Fundamentals | 11-6

11-7

USER_OBJECTS and ALL_ OBJECTS Views

USER_OBJECTS:

* Query USER_OBJECTS to see all of the objects that
are owned by you

* Is auseful way to obtain a listing of all object

names and types in your schema, plus the
following information:

— Date created
— Date of last modification
— Status (valid or invalid)
ALL OBJECTS:
* Query ALL_OBJECTS to see all objects to which
you have access

Copyright © 2004, Oracle. All rights reserved.

USER_OBJECTS View

You can query the USER_OBJECTS view to see the names and types of all the objects in
your schema. There are several columns in this view:

Note:

OBJECT_NAME: Name of the object

OBJECT _ID: Dictionary object number of the object

OBJECT_TYPE: Type of object (such as TABLE, VIEW, INDEX, SEQUENCE)
CREATED: Timestamp for the creation of the object

LAST_DDL_TIME: Timestamp for the last modification of the object resulting from a
DDL command

STATUS: Status of the object (VALID, INVALID, or N/A)

GENERATED: Was the name of this object system-generated? (Y | N)

This is not a complete listing of the columns. For a complete listing, see

“USER_OBJECTS” in the Oracle Database Reference.

You can also query the ALL_OBJECTS view to see a listing of all objects to which you
have access.

Oracle Database 10g: SQL Fundamentals | 11-7

USER_OBJECTS View

FROM user_objects
ORDER BY object type;

SELECT object name, object type, created, status

OBJECT MAME OBJECT TYPE CREATED STATUS
REG_ID PK INDEX 10-DEC-03 WALID
DEPARTMENTS _SEQ SEQUENCE 10-DEC-03 WALID
REGIONS TABLE 10-DEC-03 WALID
LOCATIONS TABLE 10-DEC-03 WALID
DEPARTMENTS TABLE 10-DEC-03 WALID
JOBE_HISTORY TABLE 10-DEC-03 WALID
JOE_GRADES TABLE 10-DEC-03 WALID
EMPLOYEES TABLE 10-DEC-03 WALID
JOBS TABLE 10-DEC-03 WALID
COUNTRIES TABLE 10-DEC-03 WALID
EMP_DETAILS WIEW WIEWY 10-DEC-03 WALID
11-8 Copyright © 2004, Oracle. All rights reserved.

USER_OBJECTS View (continued)

The example shows the names, types, dates of creation, and status of all objects that are

owned by this user.

The OBJECT_TYPE column holds the values of either TABLE, VIEW, SEQUENCE,
INDEX, PROCEDURE, FUNCTION, PACKAGE, or TRIGGER.

The STATUS column holds a value of VALID, INVALID, or N/A. While tables are always
valid, the views, procedures, functions, packages, and triggers may be invalid.

The CAT View

For a simplified query and output, you can query the CAT view. This view contains only two
columns: TABLE_NAME and TABLE_TYPE. It provides the names of all your INDEX,
TABLE, CLUSTER, VIEW, SYNONYM, SEQUENCE, or UNDEF INED objects.

Oracle Database 10g: SQL Fundamentals |

11-8

Table Information

USER_TABLES:
DESCRIBE user_tables

Name Null? Type
TABLE_MNAME MOT MULL WARCHARZ(30)
TABLESPACE NAME WARCHARZ(30)
CLUSTER_MAME WARCHARZ(30)
IOT_MAME WARCHARZ(30)

SELECT table_name
FROM user_tables;

TABLE HAME
JOB_GRADES
REGIONS
COUNTRIES
LOCATIONS
DEPARTMEMTS
11-9 Copyright © 2004, Oracle. All rights reserved.

USER_TABLES View

You can use the USER_TABLES view to obtain the names of all of your tables. The
USER_TABLES view contains information about your tables. In addition to providing the
table name, it contains detailed information on the storage.

The TABS view is a synonym of the USER_TABLES view. You can query it to see a listing
of tables that you own:

SELECT table_name
FROM tabs;

Note: For a complete listing of the columns in the USER_TABLES view, see
“USER_TABLES” in the Oracle Database Reference.

You can also query the ALL_TABLES view to see a listing of all tables to which you have
access.

Oracle Database 10g: SQL Fundamentals | 11-9

Column Information

USER_TAB_COLUMNS:
DESCRIBE user_tab_columns

Name Null? Type
TABLE_NAME MOT MULL WARCHARZ(30)
COLUMN_MAME MOT MULL WARCHARZ(30)
DATA_TYPE WARCHARZ2(106)
DATA_TYPE_MOD WARCHARZ(3)
DATA_TYPE_OWWHNER WARCHARZ(30)
DATA_LENGTH MOT MULL NUMBER
DATA_PRECISION MNUMBER
DATA SCALE NUMBER
MULLABLE WARCHARZ2(1)
COLUMMN_ID NUMBER
DEFAULT LENGTH NUMBER
DATA _DEFAULT LONG

11-10 Copyright © 2004, Oracle. All rights reserved.

Column Information
You can query the USER_TAB_COLUMNS view to find detailed information about the
columns in your tables. While the USER_TABLES view provides information on your table
names and storage, detailed column information is found in the USER_TAB_COLUMNS
view.

This view contains information such as:
e Column names
e Column data types
» Length of data types
» Precision and scale for NUMBER columns
* Whether nulls are allowed (Is there a NOT NULL constraint on the column?)
* Default value

Note: For a complete listing and description of the columns in the USER_TAB_COLUMNS
view, see “USER_TAB_COLUMNS” in the Oracle Database Reference.

Oracle Database 10g: SQL Fundamentals | 11-10

Column Information

SELECT column_name, data_type, data_length,
data precision, data scale, nullable

FROM user_tab columns

WHERE table name = "EMPLOYEES®;

COLUMN_NAME DATA TYPE DATA LENGTH DATA_PRECISION DATA_SCALE HNUL

EMPLOYEE_ID NUMBER 22 B oM
FIRST_MAME WARCHARZ 20 '
LAST_MNAME WARCHARZ 25 M
EmAIL WARCHARZ 25 M
PHOMNE_MUMBER WARCHARZ 20 '
HIRE_DATE DATE 7 M
JOB_ID WARCHARZ 10 M
SALARY NUMBER 2 il 20
COMMISSION_PCT NUMBER 22 2z 20
MANAGER_ID NUMBER 22 B o
DEPARTMEMNT_ID NUMBER 22 4 oy

11-11 Copyright © 2004, Oracle. All rights reserved.

Column Information (continued)
By querying the USER_TAB_COLUMNS table, you can find details about your columns such
as the names, data types, data type lengths, null constraints, and default value for a column.
The example shown displays the columns, data types, data lengths, and null constraints for

the EMPLOYEES table. Note that this information is similar to the output from the
iISQL*Plus DESCR I1BE command.

Oracle Database 10g: SQL Fundamentals | 11-11

Constraint Information

« USER_CONSTRAINTS describes the constraint
definitions on your tables.

e USER_CONS_COLUMNS describes columns that are
owned by you and that are specified in
constraints.

DESCRIBE user_constraints

Name Null? Type

OWWHER MOT MULL WARCHARZ(30)
CONSTRAINT_NAME MOT MULL WARCHARZ(30)
CONSTRAINT_TYFE VARCHARZ(T)
TABLE_MAME MOT MULL WARCHARZ(30)
SEARCH_CONDITION LONG

F_OWHNER WARCHARZ(30)
F_COMSTRAINT_NAME WARCHARZ(30)
DELETE_RULE VARCHARZ(D)
STATUS VARCHARZ(Z)

11-12 Copyright © 2004, Oracle. All rights reserved.

Constraint Information

You can find out the names of your constraints, the type of constraint, the table name to
which the constraint applies, the condition for check constraints, foreign key constraint
information, deletion rule for foreign key constraints, the status, and many other types of
information about your constraints.

Note: For a complete listing and description of the columns in the USER_CONSTRAINTS
view, see “USER_CONSTRAINTS” in the Oracle Database Reference.

Oracle Database 10g: SQL Fundamentals | 11-12

Constraint Information

SELECT constraint_name, constraint_type,
search_condition, r_constraint_name,
delete_rule, status

FROM user_constraints

WHERE table name = "EMPLOYEES®;

CONSTRAINT_NAME CON SEARCH_CONDITION R_CONSTRAINT NAME DELETE_RULE STATUS

"LAST NAME" IS
EMP_LAST_NAME NN ¢ 2 o ENABLED
EMP_EMAIL_NN G "EMAIL" IS NOT NULL ENABLED
EMP_HIRE_DATE_NN C ;;JTELE—DATE" IS Lo ENABLED

"JOB_ID" IS NOT
EMP_JOE MR C e ENABLED
EMP_SALARY MIN G salary » 0 ENABLED
EMP_EMAIL UK U ENABLED
EMP_EMP_ID_PK p ENABLED
EMP_DEPT_FK R DEPT_ID_PK NO ACTION EMABLED
EMP_JOB_FK R JOB_ID_PK NO ACTION EMABLED
EMP_MANAGER_FKK R EMP_EMP_ID_PK NO ACTION | EMABLED

11-13 Copyright © 2004, Oracle. All rights reserved.

USER_CONSTRAINTS: Example

In the example shown, the USER_CONSTRAINTS view is queried to find the names, types,
check conditions, name of the unique constraint that the foreign key references, deletion rule
for a foreign key, and status for constraints on the EMPLOYEES table.

The CONSTRAINT_TYPE can be:
- C (check constraint on a table)
- P (primary key)
- U (unique key)
- R (referential integrity)
-V (with check option, on a view)
- O (with read-only, on a view)

The DELETE_RULE can be:
- CASCADE: If the parent record is deleted, the child records are deleted too.
- NO ACTION: A parent record can be deleted only if no child records exist.

The STATUS can be:
- ENABLED: Constraint is active.
- DISABLED: Constraint is made not active.

Oracle Database 10g: SQL Fundamentals | 11-13

Constraint Information

DESCRIBE user_cons_columns

Name Null? Type
OWHER MOT MULL WARCHARZ(ED)
CONSTRAINT_MAME MOT MULL WARCHARZ(ED)
TABLE_MAME MOT MULL WARCHARZ(ED)
COLUMN_MAME WARCHARZ(4000)
POSITION MUMBER

SELECT constraint_name, column_name
FROM user_cons_columns
WHERE table name = "EMPLOYEES®;

CONSTRAINT_NAME COLUMN_NAME
EMP_EMAIL_UK EMAIL

EMP_SALARY _MIN SALARY

EMP_JOE_NM JOE_ID

EMP_HIRE_DATE_NN HIRE_DATE

11-14 Copyright © 2004, Oracle. All rights reserved.

Querying USER_CONS_COLUMNS
To find the names of the columns to which a constraint applies, query the
USER_CONS_COLUMNS dictionary view. This view tells you the name of the owner of a
constraint, the name of the constraint, the table that the constraint is on, the names of the
columns with the constraint, and the original position of column or attribute in the definition
of the object.
Note: A constraint may apply to more than one column.

You can also write a join between the USER_CONSTRAINTS and USER_CONS_COLUMNS
to create customized output from both tables.

Oracle Database 10g: SQL Fundamentals | 11-14

View Information

@ DESCRIBE user_views

Name Null? Type
WIEW_NAME MOT MULL WARCHARZ(30)
TEXT_LEMNGTH NUMBER
TEXT LONG

@ SELECT DISTINCT view_name FROM user_views;

VIEW_NAME

EMP_DETAILS_WIEW

@ SELECT text FROM user views

WHERE view name = "EMP_DETAILS_VIEW";

TEXT

SELECT e.employee_id, e job_id, e.manager_id, e.department_id, d.locat ion_id, |.country_id,
e.first_name, e last_name, e.salary, e.commissio n_pct, d.department_name, j.job_title, | city,
|.state_prowince, c.cou ntry_name, r.region_name FROM employees e, departments d, jobs j, loca tions |,
countries ¢, regions r WWHERE e.department_id = d.department_id AN D d.location_id = llocation_id AND
l.country_id = c.country_id AND c.region _id = r.region_id AND j.job_id = e.job_id WITH READ ORMLY

11-15 Copyright © 2004, Oracle. All rights reserved.

Views in the Data Dictionary

After your view is created, you can query the data dictionary view called USER_VIEWS to
see the name of the view and the view definition. The text of the SELECT statement that
constitutes your view is stored in a LONG column. The LENGTH column is the number of
characters in the SELECT statement. By default, when you select from a LONG column,
only the first 80 characters of the column’s value are displayed. To see more than 80
characters, use the iISQL*Plus command SET LONG:

SET LONG 1000

In the examples in the slide:
1. The USER_VIEWS columns are displayed. Note that this is a partial listing.
2. The names of your views are retrieved.
3. The SELECT statement for the EMP_DETAILS_VIEW is displayed from the
dictionary.
Data Access Using Views
When you access data using a view, the Oracle server performs the following operations:
e Itretrieves the view definition from the data dictionary table USER_VIEWS.
» It checks access privileges for the view base table.

» It converts the view query into an equivalent operation on the underlying base table or
tables. In other words, data is retrieved from, or an update is made to, the base tables.

Oracle Database 10g: SQL Fundamentals | 11-15

Sequence Information

DESCRIBE user_sequences

Name Null? Type
SEQUENCE_MNAME HOT MULL WARCHARZ(E0)
MIr_WALUE MUMBER
MK WALUE MUMBER
INCREMENT_BY HOT MULL MUMBER
CYCLE_FLAG WARCHARZ(1)
ORDER_FLAG WARCHARZ()
CACHE_SIZE HOT MULL MUMBER
LAST _MUMBER MOT MULL MNUMBER

11-16 Copyright © 2004, Oracle. All rights reserved.

USER_SEQUENCES View

The USER_SEQUENCES view describes all sequences that are owned by you. When you
create the sequence, you specify criteria that are stored in the USER_SEQUENCES view.
The columns in this view are:
- SEQUENCE_NAME: Name of the sequence
- MIN_VALUE: Minimum value of the sequence
- MAX_VALUE: Maximum value of the sequence
- INCREMENT_BY: Value by which sequence is incremented
- CYCLE_FLAG: Does sequence wrap around on reaching limit?
- ORDER_FLAG: Are sequence numbers generated in order?
- CACHE_SIZE: Number of sequence numbers to cache
- LAST_NUMBER: Last sequence number written to disk. If a sequence uses caching, the
number written to disk is the last number placed in the sequence cache. This number is
likely to be greater than the last sequence number that was used.

Oracle Database 10g: SQL Fundamentals | 11-16

Sequence Information

* Verify your sequence values in the
USER_SEQUENCES data dictionary table.

SELECT sequence_name, min_value, max_value,
increment_by, last_number
FROM

USEr Sequences,

SEQUENCE_NAME MIN_VALUE MAX_WVALUE INCREMENT_BY LAST_NUMBER

LOCATIONS_SEQ 1 5500 100 3300
DEPARTMEMNTZ_SEQ 1 5950 10 280
EMPLOYEES_SEQ 1 1.0000E+27 1 207

e The LAST_NUMBER column displays the next
available sequence number if NOCACHE is
specified.

11-17 Copyright © 2004, Oracle. All rights reserved.

Confirming Sequences

After creating your sequence, it is documented in the data dictionary. Because a sequence is
a database object, you can identify it in the USER_OBJECTS data dictionary table.

You can also confirm the settings of the sequence by selecting from the
USER_SEQUENCES data dictionary view.

Viewing the Next Available Sequence Value Without Incrementing It

If the sequence was created with NOCACHE, it is possible to view the next available
sequence value without incrementing it by querying the USER_SEQUENCES table.

Oracle Database 10g: SQL Fundamentals | 11-17

Synonym Information

DESCRIBE user_synonyms

Name Null? Type

SYMONYM_MAME MNOT MULL WARCHARZ(30)
TABLE_OWHER WARCHARZ(30)
TABLE_MAME MNOT MULL WARCHARZ(30)
DE_LIMK WARCHAR2(128)
SELECT *
FROM user_synonyms;

SYNONYM_NAME TABLE_OWNER TABLE_NAME DB_LINK
EMP ORA1 EMPLOYEES

11-18 Copyright © 2004, Oracle. All rights reserved.

USER_SYNONYMS View

The USER_SYNONYMS dictionary view describes private synonyms (synonyms that are
owned by you).

You can query this view to find your synonyms. You can query ALL_SYNONYMS to find
out the name of all of the synonyms that are available to you and the objects on which these
synonyms apply.
The columns in this view are:

- SYNONYM_NAME: Name of the synonym

- TABLE_OWNER: Owner of the object that is referenced by the synonym

- TABLE_NAME: Name of the table or view that is referenced by the synonym

- DB_LINK: Name of the database link reference (if any)

Oracle Database 10g: SQL Fundamentals | 11-18

Adding Comments to a Table

* You can add comments to a table or column by
using the COMMENT statement:

COMMENT ON TABLE employees
IS "Employee Information-;
Comment created.

¢ Comments can be viewed through the data
dictionary views:
— ALL_COL_COMMENTS
— USER_COL_COMMENTS
— ALL_TAB_COMMENTS
— USER_TAB_COMMENTS

11-19 Copyright © 2004, Oracle. All rights reserved.

Adding Comments to a Table

You can add a comment of up to 4,000 bytes about a column, table, view, or snapshot by
using the COMMENT statement. The comment is stored in the data dictionary and can be
viewed in one of the following data dictionary views in the COMMENTS column:

- ALL_COL_COMMENTS
USER_COL_COMMENTS
ALL_TAB_COMMENTS
USER_TAB_COMMENTS

Syntax

COMMENT ON TABLE table | COLUMN table.column
IS "text”;

In the syntax:
table is the name of the table
column is the name of the column in a table
text is the text of the comment

You can drop a comment from the database by setting it to empty string (" ®):
COMMENT ON TABLE employees IS = ~;

Oracle Database 10g: SQL Fundamentals | 11-19

Summary

In this lesson, you should have learned how to find
information about your objects through the following
dictionary views:

« DICTIONARY

-« USER_OBJECTS

- USER_TABLES

« USER_TAB_COLUMNS
« USER_CONSTRAINTS
« USER_CONS_COLUMNS
e USER_VIEWS

« USER_SEQUENCES

- USER_TAB_SYNONYMS

11-20 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you learned about some of the dictionary views that are available to you. You
can use these dictionary views to find information about your tables, constraints, views,
sequences, and synonyms.

Oracle Database 10g: SQL Fundamentals | 11-20

Practice 11: Overview

This practice covers the following topics:

* Querying the dictionary views for table and
column information

* Querying the dictionary views for constraint
information

* Querying the dictionary views for view information

* Querying the dictionary views for sequence
information

* Querying the dictionary views for synonym
information

« Adding acomment to atable and querying the
dictionary views for comment information

11-21 Copyright © 2004, Oracle. All rights reserved.

Practice 11: Overview

In this practice, you query the dictionary views to find information about objects in your
schema.

Oracle Database 10g: SQL Fundamentals | 11-21

Practice 11

1. For aspecified table, create a script that reports the column names, data types, and data
types’ lengths, as well as whether nulls are allowed. Prompt the user to enter the table
name. Give appropriate aliases to the columns DATA_PRECISION and
DATA_SCALE. Save this script in a file named lab_11 01.sql.

For example, if the user enters DEPARTMENTS, the following output results:
COLUMN_NAME DATA_TYPE DATA LENGTH PRECISION SCALE HNUL

DEPARTMENT_ID MNUMBER 22 4 oM
DEFARTMENT MAME WARCHARZ 30 M
MAMAGER_ID MNUMBER 22 b
LOCATICN_ID MNUMBER 22 Y

2. Create a script that reports the column name, constraint name, constraint type, search
condition, and status for a specified table. You must join the USER_CONSTRAINTS
and USER_CONS_COLUMNS tables to obtain all of this information. Prompt the user
to enter the table name. Save the script in a file named lab_11 02.sqgl.

For example, if the user enters DEPARTMENTS, the following output results:

COLUMN_NAME CONSTRAINT_NAME CON SEARCH_CONDITION STATUS
"DEFPARTMEMT _MAME"

DEPARTMENT MAME DEFT_MAME MM C 12 NOT MULL ENAELED
DEPARTMENT ID DEFT ID_PK F EMABLED
LOCATION 1D DEPT LOC Fi R EMABLED
MANAGER_ID DEFT MGR_Fi R ErABLED
3. Add a comment to the DEPARTMENTS table. Then query the
USER_TAB_COMMENTS view to verify that the comment is present.
COMMENTS
Company department infarmation including name, code, and location.
4. Find the names of all synonyms that are in your schema.
SYNONYM_NAME TABLE OWHNER TABLE NAME DB _LINK

EmP ORAT EMPLOYEES

Oracle Database 10g: SQL Fundamentals | 11-22

Practice 11

5. You need to determine the names and definitions of all of the views in your schema.
Create a report that retrieves view information: the view name and text from the
USER_VIEWS data dictionary view.

Note: Another view already exists. The EMP_DETAILS_VIEW was created as part of
your schema. Also, if you completed practice 10, you will see the DEPT50 view.
Note: To see more contents of a LONG column, use the iSQL*Plus command SET
LONG n, where n is the value of the number of characters of the LONG column that
you want to see.

| VIEW NAME | TEXT

SELECT employee_id, last_name employee, department_id FROM
employees

EMPLOYEES U

SELECT e.employee_id, e.job_id, e.manager_id, e.department_id,
d.locat ion_id, l.eountry_id, efirst_name, e.last_name, e.salary,
e.commissio n_pct, d.department_name, |.job_title, l.city,
|.state_province, c.cou ntry_name, r.region_name FROM employees e,
departments d, jobs |, loca tions |, countries ©, regions r YWHERE
e.department_id = d.department_id AN D d.location_id = |.location_id
AMD L country_id = c.country_id AND coregion _id = r.region_id AND
I.job_id = e job_id WITH READ OMNLY

EMP_DETAILS_VIEWY

6. Find the names of your sequences. Write a query in a script to display the following
information about your sequences: sequence name, maximum value, increment size,
and last number. Name the script lab_11 06.sql. Run the statement in your script.

| SEQUENCE_NAME | MAX_VALUE | INCREMENT BY | LAST NUMBER

IDEPARTMENTS_SEQ | 9990 | 10 | 280
\DEPT_ID_SEQ | 1000 | 10 | 200
[EMPLOYEES_SEQ | 1.0000E+27 | 1 207
ILOCATIONS_SEQ | 9a00 | 100 | 3300

Oracle Database 10g: SQL Fundamentals | 11-23

