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One-relator groups

Definition 1

A one-relator group is a group G admitting a presentation G = F/⟨⟨w⟩⟩ with a
single defining relation.

Dehn gave his PhD student Magnus the problem of proving the Freihetssatz:

Theorem 2 (The Freiheitssatz)

If G = F/⟨⟨w⟩⟩ is a one-relator group and A ⩽ F is a free factor not containing
a conjugate of w, then the natural map A→ G is injective.

which Magnus did in 1930.

In the decades that followed, significant contributions to the theory came from
work of G. Baumslag, Lyndon, Magnus, Moldavanskii, Newman, Schupp,
Solitar and many others.
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Some well known examples:

1. Free groups.

2. Surface groups:〈
a1, b1, . . . , ag, bg |

g∏
i=1

[ai, bi]

〉
,

〈
a1, . . . , an |

n∏
i=1

a2i

〉
.

3. Many knot groups. Torus knot and torus link groups:

⟨a, b | am = bn⟩.

4. Many 2-knot groups (i.e. π1(S
4 − S2): if w ∈ [F (a, b), F (a, b)] is any

element, then ⟨a, b | b = w⟩ is a 2-knot group.

5. Baumslag–Solitar groups:

BS(m,n) = ⟨a, t | t−1amt = an⟩.

6. Many parafree groups:

⟨a, b, c | a5b3c2⟩, ⟨a, b, c | a = [a, b][c, b]⟩.

7. Baumslag–Gersten groups:

BG(m,n) = ⟨a, t | (at)−1am(at) = an⟩.
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One-relator groups

One-relator groups have always been a test-piece for new conjectures in
combinatorial/geometric group theory.

They are complicated and interesting enough to not trivially satisfy most
conjectures:

it is still not known whether their conjugacy or isomorphism
problems are solvable!

At the same time, they have a long history of study and a substantial enough
theory so that many conjectures are approachable within the class of
one-relator groups.

Often, resolutions of conjectures for one-relator groups have led to significant
development of theory and techniques that are not specific to one-relator
groups.

The main aim of these talks will be to explain the main ingredients that go into
the proof of the following:

Theorem 3 (Jaikin-Zapirain–L ’23)

One-relator groups are coherent. That is, all their finitely generated subgroups
are finitely presented.
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The Magnus hierarchy

The main tool used to study one-relator groups over the last century is the
Magnus hierarchy, introduced by Magnus in 1930 to prove the Freiheitssatz:

Take a one-relator group G. Embed G into another one-relator group G′
0 which

splits as a HNN-extension over a one-relator group G1 with shorter relator
length. Repeat until we reach a one-relator group GN ∼= Z/nZ:

G = G0 G′
0

G1 G′
1

· · · · · ·

GN

Most classical results are proved for each individual step in the hierarchy,
assuming they hold for all one-relator groups lower down.



A topological hierarchy

Using basic topology, we can simplify the hierarchy somewhat.

A 2-complex X is a 2-dimensional CW-complex. We assume the attaching
maps of 2-cells are immersions. An immersion of 2-complexes Y ↬ X is a
locally injective combinatorial map.

Let us take a surface of genus two as inspiration.

We want to ‘split’ X as a HNN-extension.
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A topological hierarchy

We can cut X over a non-separating curve:

and repeat:



A topological hierarchy

We can cut X over a non-separating curve:

and repeat:



A topological hierarchy

Until eventually we reach a disc:



A topological hierarchy

In general, we want to consider one-relator complexes:

Definition 4

A one-relator complex X = (Γ, λ) is a combinatorial 2-complex with 1-skeleton
Γ and a single 2-cell with attaching map λ : S1 ↬ Γ.

▶ A surface has a one-relator complex structure.

▶ The presentation complex of a one-relator group is a one-relator complex.

▶ Going down the topological hierarchy, we will ‘unravel’ a given one-relator
complex, so we cannot just consider presentation complexes.

▶ Morally, the hierarchy for a one-relator complex is not so different from
the surface case.

However, we cannot split a one-relator complex X along a subcomplex in
general, so we unwrap X via a Z-cover.

Recall that if X is a 2-complex, a Z-cover is a covering space ρ : Y → X such
that Deck(ρ) ∼= Z.
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A topological hierarchy: an example

In the surface case:



The topological Magnus hierarchy

Definition 5

A Magnus subgraph of a one-relator complex M ⊂ X is one that does not
support the attaching map of the 2-cell.

We may recast the Freiheitssatz in terms of one-relator complexes:

Theorem 6 (Freiheitssatz)

If X is a one-relator complex and M ⊂ X is a Magnus subgraph, then the map
π1(M) → π1(X) induced by inclusion is injective.

Theorem 7 (The hierarchy)

If X = (Γ, λ) is a finite one-relator complex, there exists a finite sequence of
immersions

XN ↬ . . .↬ X1 ↬ X0 = X

where:

▶ Xi is a finite one-relator subcomplex of a Z-cover Yi → Xi−1 for each i,

▶ π1(XN ) ∼= F ∗ Z/nZ where F is free and n = deg(λ),

▶ We have:
π1(Xi−1) ∼= π1(Xi)∗ψi

where ψi is induced by identification of two Magnus subgraphs.
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Some consequences

Let G = F/⟨⟨wn⟩⟩ be a one-relator group with w not a proper power in F and
n ⩾ 1. Let X = (Γ, λ) be the presentation complex of G so that π1(X) = G.

Then classical consequences of the Magnus hierarchy are:

▶ (Magnus ’32) The (uniform) word problem for G is decidable.

▶ (Lyndon ’50) If n = 1, then X is an aspherical 2-complex and so G has
cohomological dimension at most 2.

▶ (Karrass–Magnus–Solitar ’60) G has torsion if and only if n ⩾ 2 and every
torsion subgroup is conjugate into ⟨w⟩.

▶ (Newman ’68) If n ⩾ 2, then the presentation F/⟨⟨wn⟩⟩ is a Dehn
presentation, hence G is hyperbolic.
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Magnus splittings

Theorem 8 (Magnus splitting)

Let X be a finite one-relator complex and ρ : Y → X a Z-cover, then there is a
finite one-relator subcomplex Z ⊂ Y such that

π1(X) ∼= π1(Z)∗ψ

where ψ : π1(Z0) → π1(Z1) identifies fundamental groups of two Magnus
subgraphs Z0, Z1 ⊂ Z.

Lemma 9

Let X be a finite one-relator complex, let ρ : Y → X be a Z-cover and let
t ∈ Deck(ρ) be a generator. There is a finite connected one-relator subcomplex
Z ⊂ Y such that the following properties hold:

1. Z is a fundamental domain: Y =
⋃
i∈Z t

i(Z).

2. Z ∩ t(Z) is a connected graph that does not support the attaching map of
a 2-cell.

3. Z ∩ ti(Z) ⊂ ti−1(Z) for all i ⩾ 1.
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Proof of Theorem 8, assuming the Freiheitssatz

Proof of Theorem 8.

Take Z ⊂ Y to be the one-relator complex from Lemma 9 and let t be a
generator of Deck(ρ).

Denote by Z0 = t−1(Z) ∩ Z and ι : Z0 ↪→ Z the inclusion. Denote by

X = Z ⊔ (Z0 × [−1, 1]) /{ι(z) ∼ (z,−1), (t ◦ ι)(z) ∼ (z, 1), z ∈ Z0},

and consider the map
h : X → X

given by ρ when restricted to Z or Z0 × {i} for all i ∈ (−1, 1).

Since Z is a fundamental domain for Y (Property (1)), h is surjective.

By Property (2) and the Freiheitssatz, the maps ι∗ : π1(Z0) → π1(Z) and
(t ◦ ι)∗ : π1(Z0) → π1(Z) are injective. Hence,

π1(X ) ∼= π1(Z)∗ψ

where ψ : π1(Z0) → π1(t · Z0) is given by t∗.

By Property (3), h−1(x) is homeomorphic to a closed subset of R and so h is a
homotopy equivalence, yielding the required splitting for π1(X).



A topological hierarchy: an example

Consider the presentation complex X
of G = ⟨a, b | a2 = b3⟩.

Let ρ : Y → X be the Z-cover induced
by the homomorphism ϕ : G→ Z given
by ϕ(a) = 3, ϕ(b) = 2.



A topological hierarchy: an example



A topological hierarchy

Repeatedly applying Theorem 8 to a one-relator complex, we obtain a
hierarchy. In order to ensure it terminates, we need a notion of complexity.

Define the degree of a cycle λ : S1 ↬ Γ as the minimal degree of a covering
map S1 ↬ S1 that λ factors through.

Define the complexity of a one-relator complex X = (Γ, λ) as:

c(X) :=
|λ|

deg(λ)
−
∣∣∣Im(λ)(0)

∣∣∣ .
In this way, c(X) = 0 if and only if either of the following equivalent conditions
hold:

▶ Im(λ) ∼= S1.

▶ π1(X) ∼= F ∗ Z/nZ where F is a free group and n = deg(λ).
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A topological hierarchy

By proving that c(Z) < c(X) in Theorem 8 and using induction, one obtains a
hierarchy of one-relator complexes:

Theorem 10

If X = (Γ, λ) is a finite one-relator complex, there exists a finite sequence of
immersions

XN ↬ . . .↬ X1 ↬ X0 = X

where:

▶ Xi is a finite one-relator complex for each i,

▶ π1(XN ) ∼= F ∗ Z/nZ where F is free and n = deg(λ),

▶ We have:
π1(Xi−1) ∼= π1(Xi)∗ψi

where ψi is induced by identification of two Magnus subgraphs.



A topological hierarchy

Proof.

If Im(λ) ∼= S1, then π1(XN ) ∼= F ∗ Z/nZ where n = deg(λ) and we are done.

If this is not the case, then let Xλ ⊂ X be the minimal subcomplex containing
the 2-cell. Since Im(λ) is not a circle, it follows that b1(Xλ) ⩾ 1. Hence, there
is a Z-cover ρ : Y → X such that ρ−1(Xλ) → Xλ is a non-trivial Z-cover.

Let Z = (Λ, λ̃) be the one-relator subcomplex from Theorem 8. Since λ̃ is a lift
of λ to Y , we have

|λ̃|
deg(λ̃)

=
|λ|

deg(λ)
.

Since ρ−1(Xλ) → Xλ is a non-trivial Z-cover, the map

Im(λ̃) = Zλ̃ → Xλ = Im(λ) is not injective. Hence∣∣∣Im(λ̃)(0)
∣∣∣ < ∣∣∣Im(λ)(0)

∣∣∣ .
and so c(Z) < c(X). By induction on complexity, there is a hierarchy
XN ↬ . . .↬ X1 = Z ↬ X0 = X as required.
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Coherence

Definition 11

A group G is coherent if all of the finitely generated subgroups of G are finitely
presented.

1. Finite groups, abelian groups, polycyclic groups.

2. Free groups.

3. Surface groups

and, more generally, locally quasi-convex hyperbolic groups.

4. Fundamental groups of three-manifolds (Scott and Shalen).

5. Free-by-cyclic groups (Feighn–Handel).

6. Limit groups (Sela).
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Incoherence

Definition 12

A group G is incoherent if it contains a finitely generated subgroup which is
not finitely presented.

Lemma 13

F2 × F2 is incoherent.

Proof.

Consider the subgroup H = ⟨a, c, bd⟩ ⩽ F (a, b)× F (c, d). Then

H ∼= (⟨⟨a⟩⟩F (a,b) × ⟨⟨c⟩⟩F (c,d))⋊ ⟨bd⟩
∼=
〈
x, y, z |

[
xz

i

, yz
j
]
, i, j ∈ Z

〉
.

If H were finitely presented, then there would be a finite subset the above
relations from which all others would be derivable. This is not possible.

One can also compute that H2(H,Z) ∼= Z∞ to conclude that H is not finitely
presented.



Road to coherence: understanding 2-complexes via immersions
A 2-complex X is a 2-dimensional CW-complex. An immersion of 2-complexes
Y ↬ X is a locally injective combinatorial map. We always assume that
attaching maps of 2-cells are immersions.

We write X = (Γ, λX) where λX : SX =
⊔
S1 ↬ X(1) is the attaching map of

the 2-cells.

Definition 14

A 2-complex X has non-positive immersions if for every immersion Z ↬ X
with Z compact and connected, either χ(Z) ⩽ 0 or Z is contractible.

Some examples of 2-complexes with non-positive immersions are:

▶ Graphs.

▶ Aspherical surfaces.

▶ Mapping tori of graphs.

▶ Spines of aspherical 3-manifolds with non-empty boundary.

Wise conjectured in ’03 that presentation complexes of torsion-free one-relator
groups have non-positive immersions.

Dani Wise predicted that non-positive immersions would be a useful property
to solve Baumslag’s conjecture that all one-relator groups are coherent.
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Non-positive immersions

Theorem 15 (Helfer–Wise, Louder–Wilton ’14)

If X is a one-relator complex with π1(X) torsion-free, then X has non-positive
immersions.

If Y = (Y (1), λY ), X = (X(1), λX) are 2-complexes, an immersion γ : Y ↬ X
can be described by a commutative diagram:

SY SX

Y (1) X(1)

σ

λY λX

γ

of immersions, where λY : SY =
⊔
S1 ↬ Y (1), λX : SX =

⊔
S1 ↬ X(1) are the

attaching maps of the 2-cells in Y and X. The cover σ factors through the
pullback:

SY Y (1) ×X(1) SX SX

σ

pSX

Understanding this pullback was key in confirming Wise’s conjecture.



Subgroups via immersions

Lemma 16

Let X be a compact 2-complex and let H ⩽ π1(X) be a finitely generated
subgroup. There is a sequence of π1-surjective immersions of compact
connected 2-complexes:

Z0 ↬ Z1 ↬ . . .↬ Zk ↬ . . .↬ X

such that
lim
i→∞

π1(Zi) = H.

Fact: H is finitely presented if and only if π1(Zi) → π1(Zi+1) is an
isomorphism for all i≫ 0.

When X has non-positive immersions, χ(Zi) ⩽ 0 for all i. One might hope
that this is enough to guarantee that the sequence stabilises so that H is
finitely presented.
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Subgroups via immersions
A 2-complex X is reducible if there is a homotopy equivalence Z → X with the
following properties:

1. Z → X restricts to a homotopy equivalence Z(1) → X(1).

2. Z → X is a homeomorphism on the interiors of 2-cells.

3. One of the following holds:

3.1 Z = Z1 ∨ Z2 such that Z
(1)
1 and Z

(1)
2 are not contractible

3.2 There is some 1-cell e ⊂ Z such that e is traversed by the attaching map of
precisely one 2-cell precisely once.

Say X is irreducible if it is not reducible. At the level of groups, maps satisfying
1. and 2. are (essentially) those realised by Nielsen moves on a presentation.

Lemma 17 (Louder–Wilton/Scott)

Let X be a compact 2-complex and let H ⩽ π1(X) be a finitely generated
non-cyclic and freely indecomposable subgroup. There is a sequence of
π1-surjective immersions of compact connected irreducible 2-complexes:

Z0 ↬ Z1 ↬ . . .↬ Zk ↬ . . .↬ X

such that
lim
i→∞

π1(Zi) ∼= H.
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Uniform negative immersions

Definition 18

A 2-complex X has uniform negative immersions if there exists an ϵ > 0 such
that for every immersion Z ↬ X with Z compact, connected and irreducible,
we have

χ(Z)

#{2-cells in Z} ⩽ −ϵ.

If X has uniform negative immersions, then the sequence Z0 ↬ Z1 ↬ . . .↬ X
always stabilises! More can be said:

Theorem 19 (Louder–Wilton ’21)

If X has uniform negative immersions, then π1(X) is coherent and, for every
integer k ⩾ 0, there are finitely many conjugacy classes of one-ended subgroups
H ⩽ π1(X) with b1(H) ⩽ k.
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Proof of Theorem 19.

Let H ⩽ π1(X) be a finitely generated non cyclic freely indecomposable
subgroup.

Consider a sequence of immersions

Z0 ↬ Z1 ↬ . . .↬ X

for H as in Lemma 17. Each Zi is irreducible and hence by definition we have

χ(Zi) ⩽ −ϵ ·#{2-cells in Zi}.

Since χ(Zi) = 1− b1(Zi) + b2(Zi), we have

1 + b2(Zi) + ϵ ·#{2-cells in Zi} ⩽ b1(Zi).

Since π1(Zi) → π1(Zi+1) is surjective for all i, we have that

b1(H) ⩽ b1(Zi+1) ⩽ b1(Zi)

for all i. Hence there is some k such that for all i ⩾ k we have b1(H) = b1(Zi)
and so

#{2-cells in Zi} ⩽
b1(H)− 1

ϵ
.
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Proof of Theorem 19 continued.

Thus, there is a bound on the number of 2-cells in the 2-complexes Zi for all
i ⩾ k. We need a simple lemma.

Lemma 20

If X is a finite 2-complex and k a positive integer, there are finitely many
immersions Z ↬ X with Z irreducible (and core) and with
#{2-cells in Z} ⩽ k.

By Lemma 20, for n large enough, each Zi ↬ Zi+1 is an isomorphism for all
i ⩾ n. Hence, π1(Zn) → π1(X) is injective.

We have shown that for any finitely generated non-cyclic freely indecomposable
subgroup H ⩽ π1(X) with b1(H) ⩽ k, there exists a π1-injective immersion

Z ↬ X with Z compact, irreducible and with at most b1(H)−1
ϵ

many 2-cells
and with π1-image precisely (a conjugate of) H. This proves the second
statement.

Now let H be an arbitrary finitely generated subgroup, By Grushko’s theorem,
H ∼= H1 ∗ . . . ∗Hn ∗ F where each Hi is non-cyclic, freely indecomposable and
finitely generated and where F is free. By the above, each Hi is finitely
presented and hence so is H.
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Primitivity rank

A deep theorem of Louder–Wilton characterises when a one-relator group is
k-free; that is, when every k-generated subgroup is free.

Theorem 21 (Louder, Wilton ’18)

A one-relator group G = F/⟨⟨w⟩⟩ is k-free if and only if π(w) ⩾ k + 1.

The primitivity rank of an element w ∈ F (Σ) is defined as:

π(w) = min {rk(K) | w ∈ K < F (Σ), w imprimitive in K} ∈ N ∪ {∞}

▶ π(w) is computable (Puder ‘11),

▶ Generically π(w) = |Σ| (Puder ‘12).
▶ π(w) = 1 if and only if w is a proper power (hence, F/⟨⟨w⟩⟩ has torsion).

Example 22

w = a2b2c2b2c−2b−2a−2b3 has primitivity rank 2 as w is imprimitive in
⟨a2b2c2, b⟩.
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Uniform negative immersions and strong coherence

Louder–Wilton characterise uniform negative immersions for one-relator
complexes.

Theorem 23 (Louder–Wilton ’21)

If X is the presentation complex of the one-relator group G = F/⟨⟨w⟩⟩, then
the following are equivalent:

▶ X has (uniform) negative immersions.

▶ π1(X) = G is 2-free.

▶ π(w) ⩾ 3.

Lemma 24

If X is a one-relator complex such that π1(X) has torsion, then there is a finite
sheeted cover Y ↬ X and an inclusion ι : Z ↪→ Y inducing an isomorphism on
π1 such that Z has uniform negative immersions.

Theorem 25 (Louder–Wilton ’21)

If G = F/⟨⟨w⟩⟩ is a one-relator group with π(w) ̸= 2, then G is coherent and,
for every integer k ⩾ 0, there are finitely many conjugacy classes of one-ended
subgroups H ⩽ π1(X) with b1(H) ⩽ k.
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The relation module
Let G = F/N be a presentation. Recall that the group ring is the ring:

ZG =

{∑
g∈G

zgg

∣∣∣∣∣ zg ∈ Z and zg = 0 for all but finitely many g ∈ G

}
.

The action of the free group F on

Nab = N/[N,N ]

by conjugation extends linearly to an action of the group ring ZF on Nab.

Since N acts trivially on Nab, the ZF action descends to an action

ZG↷ Nab

With this action, Nab is a ZG-module called the relation module.

If G = F/N has cohomological dimension two, then Nab is a projective
ZG-module and there is resolution P∗:

0 Nab

⊕
s∈S ZG ZG Z 0ϵ

where S ⊂ F is a free generating set. Then
Hi(G,−), Hi(G,−) = Hi(homZG(P∗,−)), Hi(P∗ ⊗ZG −).
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Lyndon’s identity theorem

Theorem 26 (Lyndon’s Identity Theorem)

Let G = F/⟨⟨wn⟩⟩ be a one-relator group with w not a proper power and with
n ⩾ 1. Denoting by N = ⟨⟨wn⟩⟩, we have

Nab
∼= ZG/(w − 1) · ZG.

In particular, if n = 1 then
Nab

∼= ZG.

Lyndon’s theorem allows us to easily compute a resolution of Z:

0 ZG
⊕

s∈S ZG ZG Z 0 if n = 1

. . . ZG ZG
⊕

s∈S ZG ZG Z 0 if n ⩾ 2

( ∂
∂s ) (s−1) ϵ

∑n−1
i=0 wi

w−1 ( ∂
∂s ) (s−1) ϵ

and so to compute H∗(G,−) and H∗(G,−) when G is a one-relator group.



Lyndon’s identity theorem

Theorem 26 (Lyndon’s Identity Theorem)

Let G = F/⟨⟨wn⟩⟩ be a one-relator group with w not a proper power and with
n ⩾ 1. Denoting by N = ⟨⟨wn⟩⟩, we have

Nab
∼= ZG/(w − 1) · ZG.

In particular, if n = 1 then
Nab

∼= ZG.

Lyndon’s theorem allows us to easily compute a resolution of Z:

0 ZG
⊕

s∈S ZG ZG Z 0 if n = 1

. . . ZG ZG
⊕

s∈S ZG ZG Z 0 if n ⩾ 2

( ∂
∂s ) (s−1) ϵ

∑n−1
i=0 wi

w−1 ( ∂
∂s ) (s−1) ϵ

and so to compute H∗(G,−) and H∗(G,−) when G is a one-relator group.



Homological coherence

A group G is of type FP2(Z) if any of the following equivalent conditions hold:

▶ For any presentation G = F/N with F finitely generated, the relation
module Nab is finitely generated.

▶ There is a projective resolution P∗ → Z with P0, P1, P2 finitely generated.

▶ The augmentation ideal IG ⩽ ZG is finitely presented.

▶ There is a finitely presented group H and a surjection H ↠ G with
perfect kernel.

Definition 27

A group is homologically coherent if every finitely generated subgroup is of type
FP2(Z).

Bestvina–Brady constructed the first groups of type FP2(Z) that are not
finitely presented (but they are all homologically incoherent).

Question 28

Does there exist a homologically coherent group that is not coherent?
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A criterion for homological coherence

A ring R is a division ring if every non-zero element is a unit.

Lemma 29

If G is a finitely generated group of cohomological dimension two and ZG ↪→ D
an embedding into a division ring, then

G has type FP2(Z) ⇐⇒ dimDH2(G,D) <∞.

With some work, we will show how to use Lemma 29 to prove:

Theorem 30 (Jaikin-Zapirain–L ‘23)

If X has non-positive immersions, then π1(X) is homologically coherent.
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Division ring embedding example: the Mal’cev–Neumann completion

Theorem 31 (Mal’cev ’48, Neumann ’49)

Let G a group, let < be a bi-ordering on G. The space of Mal’cev–Neumann
series

Q((G,<)) =

{
r =

∑
g∈G

rg · g | rg ∈ Q, supp(r) is well-ordered

}

is a division QG-ring with the natural operation.

To ensure Q((G,<)) has a well-defined ring structure, need to show for all
well-ordered S1, S2 ⊂ G:

1. The set S1 ∪ S2 is well-ordered.

2. The set S1S2 = {s1s2 | s1 ∈ S1, s2 ∈ S2} is well-ordered.

3. For any given element g ∈ S1S2, there are only finitely many products
s1s2 equal to g.

Let r ∈ Q((G,<)) and let g ∈ supp(r) be the minimal element. Then for some
a ∈ Q− {0}, we have r = (ag)(1− s) where s ∈ Q((G,<)) such that for all
h ∈ supp(s), we have h > 1. Then(∑

i∈N

si
)
a−1g−1

is a left and right inverse for r.
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Embeddings into division rings

Conjecture 32 (Kaplansky)

The group ring of a torsion-free group contains no (non-zero) zero-divisors.

A ring that embeds into a division ring clearly has no (non-zero) zero-divisors.

Lewin–Lewin solved the Kaplansky conjecture for torsion-free one-relator
groups:

Theorem 33 (Lewin–Lewin ’78)

If G is a torsion-free one-relator group and k a division ring, then k[G] embeds
into a division ring D.

The proof explicitly constructs the division ring D inductively using the
hierarchy and using Cohn’s universal matrix inverting ring construction. In the
base case of the hierarchy one has a free group and can appeal to the theorem
of Mal’cev and Neumann (free groups are bi-ordered).

Jaikin-Zapirain–López-Álvarez proved something much more general:

Theorem 34 (Jaikin-Zapirain–López-Álvarez)

If G is locally indicable, then Q[G] embeds in a division ring D.
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Proof that X has non-positive immersions =⇒ π1(X) homologically
coherent

We will need some facts before starting the proof:

1. G = F/N has cohomological dimension at most two if and only if Nab is a
projective ZG-module.

2. If F is f.g. then G = F/N is of type FP2(Z) if and only if Nab is finitely
generated as a ZG-module.

3. (Wise ’20) If X has non-positive immersions, then:
3.1 X is aspherical and so π1(X) has cohomological dimension at most 2.
3.2 π1(X) is locally indicable.

Proof.

If X has non-positive immersions and H ⩽ π1(X) is a finitely generated
subgroup, let

Z0 ↬ Z1 ↬ . . .↬ Zk ↬ . . .↬ X

be a sequence of π1-surjective immersions such that

lim
i→∞

π1(Zi) = H

as in Lemma 17.
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Proof continued.

Let F = π1

(
Z

(1)
0

)
, Ni = ker(F → π1(Zi)) for each i and N = ker(F → H).

Note that π1(Zi) = F/Ni for each i and H = F/N . In order to complete the
proof, we need to show that Nab is finitely generated as a left Z[H]-module.

We obtain a dual sequence

N0 ↪→ N1 ↪→ . . . ↪→ Nk ↪→ . . . ↪→ F

with the following properties:

1. The homomorphisms Ni → Ni+1 → ker(F → H) ⩽ F are injective (using
the fact that π1(Zi) → π1(Zi+1) is surjective) for all i.

2. We have:
lim
i→∞

Ni =
⋃
i∈N

Ni = ker(F → H) = N

(using the fact that limi→∞ π1(Zi) = H).

3. The relation module (Ni)ab for π1(Zi) = F/Ni is a finitely generated
(left) Z[π1(Zi)]-module (using the fact that Zi is compact) for all i.
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Proof continued.

4. If D is a division ring which is also a right Q[H]-module, then

dimD(D ⊗Q[F/Ni] (Ni)ab)− rk(F ) + 1 =
2∑
j=0

(−1)j dimDHj(π1(Zi),D)

= χ(Zi)

⩽ 0

(using the fact that Zi is aspherical and χ(Zi) ⩽ 0) for all i.

Since X has non-positive immersions, π1(X) is locally indicable and so by
Jaikin-Zapirain–López-Álvarez’s result, there is a division ring embedding
Q[H] ↪→ D.

We have

dimD(D ⊗QH Nab) ⩽ sup
i∈N

dimD
(
D ⊗Q[F/Ni] (Ni)ab

)
⩽ rk(F )− 1.

Since H has cohomological dimension at most 2, H2(H,D) ⊆ D ⊗QH Nab.

Hence
dimDH2(H,D) ⩽ dimD(D ⊗QH Nab) <∞.

By Lemma 29, H has type FP2(Z).
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From homological coherence to coherence

Theorem 35 (Jaikin-Zapirain–L ’23)

If G has a hierarchy (e.g. splits as an iterated amalgamated free product of
HNN-extension) terminating at coherent groups, then

G is homologically coherent ⇐⇒ G is coherent

Using the Magnus hierarchy, we obtain:

Theorem 36 (Jaikin-Zapirain–L ’23)

One-relator groups are coherent.
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Group ring coherence

A ring R is coherent if all of its finitely generated ideals are finitely presented.

This is a property of interest to ring theorists and algebraic geometers which
predates the corresponding definition for groups.

Using the properties of the division ring D(G), one can prove that the group
ring of a torsion-free one-relator group G is coherent.

The torsion case is handled by appealing to the fact that they are virtually
free-by-cyclic (Kielak–L ’23).

Theorem 37 (Jaikin-Zapirain–L ’23)

If G is a one-relator group, then Q[G] is coherent.
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Concluding questions

Question 38

If X is an aspherical 2-complex, which of the following properties are
equivalent:

1. X has non-positive immersions.

2. b
(2)
2 (X) = 0.

3. π1(X) is coherent.

4. π1(X) is homologically coherent.

5. Q[π1(X)] is coherent.

Question 39 (Effective coherence)

Is there an algorithm that, on input a one-relator group G and a finite set of
elements g1, . . . , gn ∈ G, computes a presentation for the subgroup
⟨g1, . . . , gn⟩ ⩽ G?



Thank you
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