One-relator groups and the coherence property

Marco Linton

Instituto de Ciencias Matemáticas (Madrid)

20 November, 2024

KIAS workshop on One RElator groups and other Aspects of GGT

Introduction

The Magnus hierarchy: a general approach

Non-positive immersions and subgroups of one-relator groups

Group rings of one-relator groups and coherence

Table of contents

Introduction

The Magnus hierarchy: a general approach

Non-positive immersions and subgroups of one-relator groups

Group rings of one-relator groups and coherence

Definition 1

A one-relator group is a group G admitting a presentation $G=F/\langle\!\langle w\rangle\!\rangle$ with a single defining relation.

Definition 1

A one-relator group is a group G admitting a presentation $G=F/\langle\!\langle w\rangle\!\rangle$ with a single defining relation.

Dehn gave his PhD student Magnus the problem of proving the Freihetssatz:

Theorem 2 (The Freiheitssatz)

If $G = F / \langle \! \langle w \rangle \! \rangle$ is a one-relator group and $A \leq F$ is a free factor not containing a conjugate of w, then the natural map $A \to G$ is injective.

which Magnus did in 1930.

Definition 1

A one-relator group is a group G admitting a presentation $G=F/\langle\!\langle w\rangle\!\rangle$ with a single defining relation.

Dehn gave his PhD student Magnus the problem of proving the Freihetssatz:

Theorem 2 (The Freiheitssatz)

If $G = F / \langle \! \langle w \rangle \! \rangle$ is a one-relator group and $A \leq F$ is a free factor not containing a conjugate of w, then the natural map $A \to G$ is injective.

which Magnus did in 1930.

In the decades that followed, significant contributions to the theory came from work of G. Baumslag, Lyndon, Magnus, Moldavanskii, Newman, Schupp, Solitar and many others.

- 1. Free groups.
- 2. Surface groups:

$$\left\langle a_1, b_1, \dots, a_g, b_g \mid \prod_{i=1}^g [a_i, b_i] \right\rangle, \quad \left\langle a_1, \dots, a_n \mid \prod_{i=1}^n a_i^2 \right\rangle.$$

3. Many knot groups. Torus knot and torus link groups:

$$\langle a,b \mid a^m = b^n \rangle.$$

4. Many 2-knot groups (i.e. $\pi_1(S^4 - S^2)$: if $w \in [F(a, b), F(a, b)]$ is any element, then $\langle a, b \mid b = w \rangle$ is a 2-knot group.

- 1. Free groups.
- 2. Surface groups:

$$\left\langle a_1, b_1, \dots, a_g, b_g \mid \prod_{i=1}^g [a_i, b_i] \right\rangle, \quad \left\langle a_1, \dots, a_n \mid \prod_{i=1}^n a_i^2 \right\rangle.$$

3. Many knot groups. Torus knot and torus link groups:

$$\langle a,b \mid a^m = b^n \rangle.$$

- 4. Many 2-knot groups (i.e. $\pi_1(S^4 S^2)$: if $w \in [F(a, b), F(a, b)]$ is any element, then $\langle a, b \mid b = w \rangle$ is a 2-knot group.
- 5. Baumslag–Solitar groups:

$$BS(m,n) = \langle a,t \mid t^{-1}a^m t = a^n \rangle.$$

- 1. Free groups.
- 2. Surface groups:

$$\left\langle a_1, b_1, \dots, a_g, b_g \mid \prod_{i=1}^g [a_i, b_i] \right\rangle, \quad \left\langle a_1, \dots, a_n \mid \prod_{i=1}^n a_i^2 \right\rangle.$$

3. Many knot groups. Torus knot and torus link groups:

$$\langle a,b \mid a^m = b^n \rangle.$$

- 4. Many 2-knot groups (i.e. $\pi_1(S^4 S^2)$: if $w \in [F(a, b), F(a, b)]$ is any element, then $\langle a, b \mid b = w \rangle$ is a 2-knot group.
- 5. Baumslag–Solitar groups:

$$BS(m,n) = \langle a,t \mid t^{-1}a^m t = a^n \rangle.$$

6. Many parafree groups:

$$\langle a, b, c \mid a^5 b^3 c^2 \rangle, \quad \langle a, b, c \mid a = [a, b][c, b] \rangle.$$

- 1. Free groups.
- 2. Surface groups:

$$\left\langle a_1, b_1, \dots, a_g, b_g \mid \prod_{i=1}^g [a_i, b_i] \right\rangle, \quad \left\langle a_1, \dots, a_n \mid \prod_{i=1}^n a_i^2 \right\rangle.$$

3. Many knot groups. Torus knot and torus link groups:

$$\langle a,b \mid a^m = b^n \rangle.$$

- 4. Many 2-knot groups (i.e. $\pi_1(S^4 S^2)$: if $w \in [F(a, b), F(a, b)]$ is any element, then $\langle a, b \mid b = w \rangle$ is a 2-knot group.
- 5. Baumslag–Solitar groups:

$$BS(m,n) = \langle a,t \mid t^{-1}a^m t = a^n \rangle.$$

6. Many parafree groups:

$$\langle a, b, c \mid a^5 b^3 c^2 \rangle, \quad \langle a, b, c \mid a = [a, b][c, b] \rangle.$$

7. Baumslag-Gersten groups:

$$BG(m,n) = \langle a,t \mid (a^t)^{-1}a^m(a^t) = a^n \rangle.$$

One-relator groups have always been a test-piece for new conjectures in combinatorial/geometric group theory.

They are complicated and interesting enough to not trivially satisfy most conjectures:

One-relator groups have always been a test-piece for new conjectures in combinatorial/geometric group theory.

They are complicated and interesting enough to not trivially satisfy most conjectures: it is still not known whether their conjugacy or isomorphism problems are solvable!

At the same time, they have a long history of study and a substantial enough theory so that many conjectures are approachable within the class of one-relator groups.

Often, resolutions of conjectures for one-relator groups have led to significant development of theory and techniques that are not specific to one-relator groups.

One-relator groups have always been a test-piece for new conjectures in combinatorial/geometric group theory.

They are complicated and interesting enough to not trivially satisfy most conjectures: it is still not known whether their conjugacy or isomorphism problems are solvable!

At the same time, they have a long history of study and a substantial enough theory so that many conjectures are approachable within the class of one-relator groups.

Often, resolutions of conjectures for one-relator groups have led to significant development of theory and techniques that are not specific to one-relator groups.

The main aim of these talks will be to explain the main ingredients that go into the proof of the following:

Theorem 3 (Jaikin-Zapirain-L '23)

One-relator groups are coherent. That is, all their finitely generated subgroups are finitely presented.

Table of contents

Introduction

The Magnus hierarchy: a general approach

Non-positive immersions and subgroups of one-relator groups

Group rings of one-relator groups and coherence

The Magnus hierarchy

The main tool used to study one-relator groups over the last century is the *Magnus hierarchy*, introduced by Magnus in 1930 to prove the Freiheitssatz:

Take a one-relator group G. Embed G into another one-relator group G'_0 which splits as a HNN-extension over a one-relator group G_1 with shorter relator length. Repeat until we reach a one-relator group $G_N \cong \mathbb{Z}/n\mathbb{Z}$:

Most classical results are proved for each individual step in the hierarchy, assuming they hold for all one-relator groups lower down.

Using basic topology, we can simplify the hierarchy somewhat.

A 2-complex X is a 2-dimensional CW-complex. We assume the attaching maps of 2-cells are immersions. An *immersion* of 2-complexes $Y \hookrightarrow X$ is a locally injective combinatorial map.

Using basic topology, we can simplify the hierarchy somewhat.

A 2-complex X is a 2-dimensional CW-complex. We assume the attaching maps of 2-cells are immersions. An *immersion* of 2-complexes $Y \hookrightarrow X$ is a locally injective combinatorial map.

Let us take a surface of genus two as inspiration.

We want to 'split' X as a HNN-extension.

We can cut X over a non-separating curve:

We can cut X over a non-separating curve:

and repeat:

Until eventually we reach a disc:

In general, we want to consider one-relator complexes:

Definition 4

A one-relator complex $X = (\Gamma, \lambda)$ is a combinatorial 2-complex with 1-skeleton Γ and a single 2-cell with attaching map $\lambda : S^1 \hookrightarrow \Gamma$.

- ► A surface has a one-relator complex structure.
- ► The presentation complex of a one-relator group is a one-relator complex.
- Going down the topological hierarchy, we will 'unravel' a given one-relator complex, so we cannot just consider presentation complexes.
- Morally, the hierarchy for a one-relator complex is not so different from the surface case.

In general, we want to consider one-relator complexes:

Definition 4

A one-relator complex $X = (\Gamma, \lambda)$ is a combinatorial 2-complex with 1-skeleton Γ and a single 2-cell with attaching map $\lambda : S^1 \hookrightarrow \Gamma$.

- ► A surface has a one-relator complex structure.
- ▶ The presentation complex of a one-relator group is a one-relator complex.
- Going down the topological hierarchy, we will 'unravel' a given one-relator complex, so we cannot just consider presentation complexes.
- Morally, the hierarchy for a one-relator complex is not so different from the surface case.

However, we cannot split a one-relator complex X along a subcomplex in general, so we unwrap X via a $\mathbb{Z}\text{-cover}.$

Recall that if X is a 2-complex, a \mathbb{Z} -cover is a covering space $\rho \colon Y \to X$ such that $\text{Deck}(\rho) \cong \mathbb{Z}$.

A topological hierarchy: an example

In the surface case:

The topological Magnus hierarchy

Definition 5

A Magnus subgraph of a one-relator complex $M \subset X$ is one that does not support the attaching map of the 2-cell.

We may recast the Freiheitssatz in terms of one-relator complexes:

Theorem 6 (Freiheitssatz)

If X is a one-relator complex and $M \subset X$ is a Magnus subgraph, then the map $\pi_1(M) \to \pi_1(X)$ induced by inclusion is injective.

The topological Magnus hierarchy

Definition 5

A *Magnus subgraph* of a one-relator complex $M \subset X$ is one that does not support the attaching map of the 2-cell.

We may recast the Freiheitssatz in terms of one-relator complexes:

Theorem 6 (Freiheitssatz)

If X is a one-relator complex and $M \subset X$ is a Magnus subgraph, then the map $\pi_1(M) \to \pi_1(X)$ induced by inclusion is injective.

Theorem 7 (The hierarchy)

If $X=(\Gamma,\lambda)$ is a finite one-relator complex, there exists a finite sequence of immersions

$$X_N \hookrightarrow \ldots \hookrightarrow X_1 \hookrightarrow X_0 = X$$

where:

- X_i is a finite one-relator subcomplex of a \mathbb{Z} -cover $Y_i \to X_{i-1}$ for each i,
- $\pi_1(X_N) \cong F * \mathbb{Z}/n\mathbb{Z}$ where F is free and $n = \deg(\lambda)$,

► We have:

$$\pi_1(X_{i-1}) \cong \pi_1(X_i) *_{\psi_i}$$

where ψ_i is induced by identification of two Magnus subgraphs.

Let $G = F/\langle \langle w^n \rangle \rangle$ be a one-relator group with w not a proper power in F and $n \ge 1$. Let $X = (\Gamma, \lambda)$ be the presentation complex of G so that $\pi_1(X) = G$.

Then classical consequences of the Magnus hierarchy are:

▶ (Magnus '32) The (uniform) word problem for G is decidable.

Let $G = F/\langle\!\langle w^n \rangle\!\rangle$ be a one-relator group with w not a proper power in F and $n \ge 1$. Let $X = (\Gamma, \lambda)$ be the presentation complex of G so that $\pi_1(X) = G$.

Then classical consequences of the Magnus hierarchy are:

- ▶ (Magnus '32) The (uniform) word problem for G is decidable.
- (Lyndon '50) If n = 1, then X is an aspherical 2-complex and so G has cohomological dimension at most 2.

Let $G = F/\langle\!\langle w^n \rangle\!\rangle$ be a one-relator group with w not a proper power in F and $n \ge 1$. Let $X = (\Gamma, \lambda)$ be the presentation complex of G so that $\pi_1(X) = G$.

Then classical consequences of the Magnus hierarchy are:

- (Magnus '32) The (uniform) word problem for G is decidable.
- (Lyndon '50) If n = 1, then X is an aspherical 2-complex and so G has cohomological dimension at most 2.
- (Karrass–Magnus–Solitar '60) G has torsion if and only if $n \ge 2$ and every torsion subgroup is conjugate into $\langle w \rangle$.

Let $G = F/\langle\!\langle w^n \rangle\!\rangle$ be a one-relator group with w not a proper power in F and $n \ge 1$. Let $X = (\Gamma, \lambda)$ be the presentation complex of G so that $\pi_1(X) = G$.

Then classical consequences of the Magnus hierarchy are:

- (Magnus '32) The (uniform) word problem for G is decidable.
- (Lyndon '50) If n = 1, then X is an aspherical 2-complex and so G has cohomological dimension at most 2.
- (Karrass–Magnus–Solitar '60) G has torsion if and only if $n \ge 2$ and every torsion subgroup is conjugate into $\langle w \rangle$.
- (Newman '68) If $n \ge 2$, then the presentation $F/\langle\!\langle w^n \rangle\!\rangle$ is a Dehn presentation, hence G is hyperbolic.

Magnus splittings

Theorem 8 (Magnus splitting)

Let X be a finite one-relator complex and $\rho: Y \to X$ a \mathbb{Z} -cover, then there is a finite one-relator subcomplex $Z \subset Y$ such that

$$\pi_1(X) \cong \pi_1(Z) *_{\psi}$$

where $\psi : \pi_1(Z_0) \to \pi_1(Z_1)$ identifies fundamental groups of two Magnus subgraphs $Z_0, Z_1 \subset Z$.

Theorem 8 (Magnus splitting)

Let X be a finite one-relator complex and $\rho: Y \to X$ a \mathbb{Z} -cover, then there is a finite one-relator subcomplex $Z \subset Y$ such that

$$\pi_1(X) \cong \pi_1(Z) *_{\psi}$$

where $\psi : \pi_1(Z_0) \to \pi_1(Z_1)$ identifies fundamental groups of two Magnus subgraphs $Z_0, Z_1 \subset Z$.

Lemma 9

Let X be a finite one-relator complex, let $\rho: Y \to X$ be a \mathbb{Z} -cover and let $t \in \text{Deck}(\rho)$ be a generator. There is a finite connected one-relator subcomplex $Z \subset Y$ such that the following properties hold:

- 1. Z is a fundamental domain: $Y = \bigcup_{i \in \mathbb{Z}} t^i(Z)$.
- 2. $Z \cap t(Z)$ is a connected graph that does not support the attaching map of a 2-cell.
- 3. $Z \cap t^i(Z) \subset t^{i-1}(Z)$ for all $i \ge 1$.

Proof of Theorem 8.

Take $Z \subset Y$ to be the one-relator complex from Lemma 9 and let t be a generator of $\mathrm{Deck}(\rho).$

Denote by $Z_0 = t^{-1}(Z) \cap Z$ and $\iota \colon Z_0 \hookrightarrow Z$ the inclusion. Denote by

$$\mathcal{X} = Z \sqcup (Z_0 \times [-1, 1]) / \{\iota(z) \sim (z, -1), (t \circ \iota)(z) \sim (z, 1), z \in Z_0\},\$$

and consider the map

 $h \colon \mathcal{X} \to X$

given by ρ when restricted to Z or $Z_0 \times \{i\}$ for all $i \in (-1, 1)$.

Since Z is a fundamental domain for Y (Property (1)), h is surjective.

By Property (2) and the Freiheitssatz, the maps $\iota_* \colon \pi_1(Z_0) \to \pi_1(Z)$ and $(t \circ \iota)_* \colon \pi_1(Z_0) \to \pi_1(Z)$ are injective. Hence,

$$\pi_1(\mathcal{X}) \cong \pi_1(Z) *_{\psi}$$

where $\psi \colon \pi_1(Z_0) \to \pi_1(t \cdot Z_0)$ is given by t_* .

By Property (3), $h^{-1}(x)$ is homeomorphic to a closed subset of \mathbb{R} and so h is a homotopy equivalence, yielding the required splitting for $\pi_1(X)$.

A topological hierarchy: an example

Consider the presentation complex X of $G = \langle a, b \mid a^2 = b^3 \rangle$.

Let $\rho: Y \to X$ be the \mathbb{Z} -cover induced by the homomorphism $\phi: G \to \mathbb{Z}$ given by $\phi(a) = 3, \phi(b) = 2.$

A topological hierarchy: an example

Repeatedly applying Theorem 8 to a one-relator complex, we obtain a hierarchy. In order to ensure it terminates, we need a notion of complexity.

Repeatedly applying Theorem 8 to a one-relator complex, we obtain a hierarchy. In order to ensure it terminates, we need a notion of complexity.

Define the *degree* of a cycle $\lambda \colon S^1 \hookrightarrow \Gamma$ as the minimal degree of a covering map $S^1 \hookrightarrow S^1$ that λ factors through.

Define the *complexity* of a one-relator complex $X = (\Gamma, \lambda)$ as:

$$c(X) := \frac{|\lambda|}{\deg(\lambda)} - \left| \operatorname{Im}(\lambda)^{(0)} \right|.$$
A topological hierarchy

Repeatedly applying Theorem 8 to a one-relator complex, we obtain a hierarchy. In order to ensure it terminates, we need a notion of complexity.

Define the *degree* of a cycle $\lambda \colon S^1 \hookrightarrow \Gamma$ as the minimal degree of a covering map $S^1 \hookrightarrow S^1$ that λ factors through.

Define the *complexity* of a one-relator complex $X = (\Gamma, \lambda)$ as:

$$c(X) := \frac{|\lambda|}{\deg(\lambda)} - \left| \operatorname{Im}(\lambda)^{(0)} \right|.$$

In this way, c(X) = 0 if and only if either of the following equivalent conditions hold:

- ▶ $\operatorname{Im}(\lambda) \cong S^1$.
- $\pi_1(X) \cong F * \mathbb{Z}/n\mathbb{Z}$ where F is a free group and $n = \deg(\lambda)$.

A topological hierarchy

By proving that c(Z) < c(X) in Theorem 8 and using induction, one obtains a hierarchy of one-relator complexes:

Theorem 10

If $X=(\Gamma,\lambda)$ is a finite one-relator complex, there exists a finite sequence of immersions

$$X_N \hookrightarrow \ldots \hookrightarrow X_1 \hookrightarrow X_0 = X$$

where:

- ► X_i is a finite one-relator complex for each i,
- $\pi_1(X_N) \cong F * \mathbb{Z}/n\mathbb{Z}$ where F is free and $n = \deg(\lambda)$,
- ► We have:

$$\pi_1(X_{i-1}) \cong \pi_1(X_i) *_{\psi_i}$$

where ψ_i is induced by identification of two Magnus subgraphs.

A topological hierarchy

Proof.

If $\operatorname{Im}(\lambda) \cong S^1$, then $\pi_1(X_N) \cong F * \mathbb{Z}/n\mathbb{Z}$ where $n = \operatorname{deg}(\lambda)$ and we are done.

If this is not the case, then let $X_{\lambda} \subset X$ be the minimal subcomplex containing the 2-cell. Since $\text{Im}(\lambda)$ is not a circle, it follows that $b_1(X_{\lambda}) \ge 1$. Hence, there is a \mathbb{Z} -cover $\rho: Y \to X$ such that $\rho^{-1}(X_{\lambda}) \to X_{\lambda}$ is a non-trivial \mathbb{Z} -cover.

Let $Z = (\Lambda, \widetilde{\lambda})$ be the one-relator subcomplex from Theorem 8. Since $\widetilde{\lambda}$ is a lift of λ to Y, we have

$$rac{|\widetilde{\lambda}|}{\deg(\widetilde{\lambda})} = rac{|\lambda|}{\deg(\lambda)}.$$

Since $\rho^{-1}(X_{\lambda}) \to X_{\lambda}$ is a non-trivial \mathbb{Z} -cover, the map $\operatorname{Im}(\widetilde{\lambda}) = Z_{\widetilde{\lambda}} \to X_{\lambda} = \operatorname{Im}(\lambda)$ is not injective. Hence

$$\left|\operatorname{Im}(\widetilde{\lambda})^{(0)}\right| < \left|\operatorname{Im}(\lambda)^{(0)}\right|$$

and so c(Z) < c(X). By induction on complexity, there is a hierarchy $X_N \hookrightarrow \ldots \hookrightarrow X_1 = Z \hookrightarrow X_0 = X$ as required.

Table of contents

Introduction

The Magnus hierarchy: a general approach

Non-positive immersions and subgroups of one-relator groups

Group rings of one-relator groups and coherence

Definition 11

- 1. Finite groups, abelian groups, polycyclic groups.
- 2. Free groups.
- 3. Surface groups

Definition 11

- 1. Finite groups, abelian groups, polycyclic groups.
- 2. Free groups.
- 3. Surface groups and, more generally, locally quasi-convex hyperbolic groups.
- 4. Fundamental groups of three-manifolds (Scott and Shalen).

Definition 11

- 1. Finite groups, abelian groups, polycyclic groups.
- 2. Free groups.
- 3. Surface groups and, more generally, locally quasi-convex hyperbolic groups.
- 4. Fundamental groups of three-manifolds (Scott and Shalen).
- 5. Free-by-cyclic groups (Feighn-Handel).

Definition 11

- 1. Finite groups, abelian groups, polycyclic groups.
- 2. Free groups.
- 3. Surface groups and, more generally, locally quasi-convex hyperbolic groups.
- 4. Fundamental groups of three-manifolds (Scott and Shalen).
- 5. Free-by-cyclic groups (Feighn-Handel).
- 6. Limit groups (Sela).

Incoherence

Definition 12

A group G is *incoherent* if it contains a finitely generated subgroup which is not finitely presented.

Lemma 13

 $F_2 \times F_2$ is incoherent.

Proof.

Consider the subgroup $H = \langle a, c, bd \rangle \leqslant F(a, b) \times F(c, d)$. Then

$$H \cong (\langle\!\langle a \rangle\!\rangle_{F(a,b)} \times \langle\!\langle c \rangle\!\rangle_{F(c,d)}) \rtimes \langle bd \rangle$$
$$\cong \left\langle x, y, z \mid \left[x^{z^{i}}, y^{z^{j}} \right], i, j \in \mathbb{Z} \right\rangle.$$

If ${\cal H}$ were finitely presented, then there would be a finite subset the above relations from which all others would be derivable. This is not possible.

One can also compute that $H_2(H, \mathbb{Z}) \cong \mathbb{Z}^{\infty}$ to conclude that H is not finitely presented.

Road to coherence: understanding 2-complexes via immersions

A 2-complex X is a 2-dimensional CW-complex. An *immersion* of 2-complexes $Y \hookrightarrow X$ is a locally injective combinatorial map. We always assume that attaching maps of 2-cells are immersions.

We write $X = (\Gamma, \lambda_X)$ where $\lambda_X : \mathbb{S}_X = \bigsqcup S^1 \hookrightarrow X^{(1)}$ is the attaching map of the 2-cells.

Road to coherence: understanding 2-complexes via immersions

A 2-complex X is a 2-dimensional CW-complex. An *immersion* of 2-complexes $Y \hookrightarrow X$ is a locally injective combinatorial map. We always assume that attaching maps of 2-cells are immersions.

We write $X = (\Gamma, \lambda_X)$ where $\lambda_X : \mathbb{S}_X = \bigsqcup S^1 \hookrightarrow X^{(1)}$ is the attaching map of the 2-cells.

Definition 14

A 2-complex X has non-positive immersions if for every immersion $Z \hookrightarrow X$ with Z compact and connected, either $\chi(Z) \leq 0$ or Z is contractible.

Some examples of 2-complexes with non-positive immersions are:

- ► Graphs.
- Aspherical surfaces.
- Mapping tori of graphs.
- ► Spines of aspherical 3-manifolds with non-empty boundary.

Road to coherence: understanding 2-complexes via immersions

A 2-complex X is a 2-dimensional CW-complex. An *immersion* of 2-complexes $Y \hookrightarrow X$ is a locally injective combinatorial map. We always assume that attaching maps of 2-cells are immersions.

We write $X = (\Gamma, \lambda_X)$ where $\lambda_X : \mathbb{S}_X = \bigsqcup S^1 \hookrightarrow X^{(1)}$ is the attaching map of the 2-cells.

Definition 14

A 2-complex X has non-positive immersions if for every immersion $Z \hookrightarrow X$ with Z compact and connected, either $\chi(Z) \leq 0$ or Z is contractible.

Some examples of 2-complexes with non-positive immersions are:

- ► Graphs.
- Aspherical surfaces.
- Mapping tori of graphs.
- ► Spines of aspherical 3-manifolds with non-empty boundary.

Wise conjectured in '03 that presentation complexes of torsion-free one-relator groups have non-positive immersions.

Dani Wise predicted that non-positive immersions would be a useful property to solve Baumslag's conjecture that all one-relator groups are coherent.

Theorem 15 (Helfer–Wise, Louder–Wilton '14)

If X is a one-relator complex with $\pi_1(X)$ torsion-free, then X has non-positive immersions.

If $Y = (Y^{(1)}, \lambda_Y)$, $X = (X^{(1)}, \lambda_X)$ are 2-complexes, an immersion $\gamma: Y \hookrightarrow X$ can be described by a commutative diagram:

of immersions, where $\lambda_Y : \mathbb{S}_Y = \bigsqcup S^1 \hookrightarrow Y^{(1)}, \lambda_X : \mathbb{S}_X = \bigsqcup S^1 \hookrightarrow X^{(1)}$ are the attaching maps of the 2-cells in Y and X. The cover σ factors through the pullback:

Understanding this pullback was key in confirming Wise's conjecture.

Lemma 16

Let X be a compact 2-complex and let $H \leq \pi_1(X)$ be a finitely generated subgroup. There is a sequence of π_1 -surjective immersions of compact connected 2-complexes:

$$Z_0 \hookrightarrow Z_1 \hookrightarrow \ldots \hookrightarrow Z_k \hookrightarrow \ldots \hookrightarrow X$$

such that

$$\lim_{i \to \infty} \pi_1(Z_i) = H.$$

Lemma 16

Let X be a compact 2-complex and let $H \leq \pi_1(X)$ be a finitely generated subgroup. There is a sequence of π_1 -surjective immersions of compact connected 2-complexes:

$$Z_0 \hookrightarrow Z_1 \hookrightarrow \ldots \hookrightarrow Z_k \hookrightarrow \ldots \hookrightarrow X$$

such that

$$\lim_{i \to \infty} \pi_1(Z_i) = H.$$

Fact: *H* is finitely presented if and only if $\pi_1(Z_i) \to \pi_1(Z_{i+1})$ is an isomorphism for all $i \gg 0$.

When X has non-positive immersions, $\chi(Z_i) \leq 0$ for all *i*. One might hope that this is enough to guarantee that the sequence stabilises so that H is finitely presented.

A 2-complex X is reducible if there is a homotopy equivalence $Z \to X$ with the following properties:

1. $Z \to X$ restricts to a homotopy equivalence $Z^{(1)} \to X^{(1)}$.

2. $Z \to X$ is a homeomorphism on the interiors of 2-cells.

A 2-complex X is reducible if there is a homotopy equivalence $Z \to X$ with the following properties:

1. $Z \to X$ restricts to a homotopy equivalence $Z^{(1)} \to X^{(1)}$.

- 2. $Z \rightarrow X$ is a homeomorphism on the interiors of 2-cells.
- 3. One of the following holds:
 - 3.1 $Z = Z_1 \lor Z_2$ such that $Z_1^{(1)}$ and $Z_2^{(1)}$ are not contractible
 - 3.2 There is some 1-cell $e \subset \hat{Z}$ such that e is traversed by the attaching map of precisely one 2-cell precisely once.
- Say X is *irreducible* if it is not reducible.

A 2-complex X is reducible if there is a homotopy equivalence $Z \to X$ with the following properties:

1. $Z \to X$ restricts to a homotopy equivalence $Z^{(1)} \to X^{(1)}$.

- 2. $Z \rightarrow X$ is a homeomorphism on the interiors of 2-cells.
- 3. One of the following holds:
 - 3.1 $Z = Z_1 \vee Z_2$ such that $Z_1^{(1)}$ and $Z_2^{(1)}$ are not contractible
 - 3.2 There is some 1-cell $e \subset \hat{Z}$ such that e is traversed by the attaching map of precisely one 2-cell precisely once.

Say X is *irreducible* if it is not reducible. At the level of groups, maps satisfying 1. and 2. are (essentially) those realised by Nielsen moves on a presentation.

A 2-complex X is reducible if there is a homotopy equivalence $Z \to X$ with the following properties:

1. $Z \to X$ restricts to a homotopy equivalence $Z^{(1)} \to X^{(1)}$.

- 2. $Z \rightarrow X$ is a homeomorphism on the interiors of 2-cells.
- 3. One of the following holds:
 - 3.1 $Z = Z_1 \vee Z_2$ such that $Z_1^{(1)}$ and $Z_2^{(1)}$ are not contractible
 - 3.2 There is some 1-cell $e \subset \hat{Z}$ such that e is traversed by the attaching map of precisely one 2-cell precisely once.

Say X is *irreducible* if it is not reducible. At the level of groups, maps satisfying 1. and 2. are (essentially) those realised by Nielsen moves on a presentation.

Lemma 17 (Louder–Wilton/Scott)

Let X be a compact 2-complex and let $H \leq \pi_1(X)$ be a finitely generated non-cyclic and freely indecomposable subgroup. There is a sequence of π_1 -surjective immersions of compact connected irreducible 2-complexes:

$$Z_0 \hookrightarrow Z_1 \hookrightarrow \ldots \hookrightarrow Z_k \hookrightarrow \ldots \hookrightarrow X$$

such that

$$\lim_{i \to \infty} \pi_1(Z_i) \cong H.$$

Uniform negative immersions

Definition 18

A 2-complex X has uniform negative immersions if there exists an $\epsilon > 0$ such that for every immersion $Z \hookrightarrow X$ with Z compact, connected and irreducible, we have

$$\frac{\chi(Z)}{\#\{\text{2-cells in } Z\}} \leqslant -\epsilon.$$

If X has uniform negative immersions, then the sequence $Z_0 \hookrightarrow Z_1 \hookrightarrow \ldots \hookrightarrow X$ always stabilises! More can be said:

Uniform negative immersions

Definition 18

A 2-complex X has uniform negative immersions if there exists an $\epsilon > 0$ such that for every immersion $Z \hookrightarrow X$ with Z compact, connected and irreducible, we have

$$\frac{\chi(Z)}{\#\{\text{2-cells in } Z\}} \leqslant -\epsilon.$$

If X has uniform negative immersions, then the sequence $Z_0 \hookrightarrow Z_1 \hookrightarrow \ldots \hookrightarrow X$ always stabilises! More can be said:

Theorem 19 (Louder–Wilton '21)

If X has uniform negative immersions, then $\pi_1(X)$ is coherent and, for every integer $k \ge 0$, there are finitely many conjugacy classes of one-ended subgroups $H \le \pi_1(X)$ with $b_1(H) \le k$.

Proof of Theorem 19.

Let $H \leqslant \pi_1(X)$ be a finitely generated non cyclic freely indecomposable subgroup.

Consider a sequence of immersions

$$Z_0 \hookrightarrow Z_1 \hookrightarrow \ldots \hookrightarrow X$$

for H as in Lemma 17. Each Z_i is irreducible and hence by definition we have

 $\chi(Z_i) \leqslant -\epsilon \cdot \# \{ 2 \text{-cells in } Z_i \}.$

Proof of Theorem 19.

Let $H \leqslant \pi_1(X)$ be a finitely generated non cyclic freely indecomposable subgroup.

Consider a sequence of immersions

$$Z_0 \hookrightarrow Z_1 \hookrightarrow \ldots \hookrightarrow X$$

for H as in Lemma 17. Each Z_i is irreducible and hence by definition we have

 $\chi(Z_i) \leqslant -\epsilon \cdot \# \{ 2 \text{-cells in } Z_i \}.$

Since $\chi(Z_i) = 1 - b_1(Z_i) + b_2(Z_i)$, we have

 $1 + b_2(Z_i) + \epsilon \cdot \# \{ 2 \text{-cells in } Z_i \} \leq b_1(Z_i).$

Since $\pi_1(Z_i) \to \pi_1(Z_{i+1})$ is surjective for all *i*, we have that

 $b_1(H) \leqslant b_1(Z_{i+1}) \leqslant b_1(Z_i)$

for all i.

Proof of Theorem 19.

Let $H \leqslant \pi_1(X)$ be a finitely generated non cyclic freely indecomposable subgroup.

Consider a sequence of immersions

$$Z_0 \hookrightarrow Z_1 \hookrightarrow \ldots \hookrightarrow X$$

for H as in Lemma 17. Each Z_i is irreducible and hence by definition we have

 $\chi(Z_i) \leqslant -\epsilon \cdot \# \{ 2 \text{-cells in } Z_i \}.$

Since $\chi(Z_i) = 1 - b_1(Z_i) + b_2(Z_i)$, we have

 $1 + b_2(Z_i) + \epsilon \cdot \# \{ 2 \text{-cells in } Z_i \} \leq b_1(Z_i).$

Since $\pi_1(Z_i) \to \pi_1(Z_{i+1})$ is surjective for all *i*, we have that

$$b_1(H) \leqslant b_1(Z_{i+1}) \leqslant b_1(Z_i)$$

for all i. Hence there is some k such that for all $i \ge k$ we have $b_1(H) = b_1(Z_i)$ and so

$$\#$$
{2-cells in Z_i } $\leqslant rac{b_1(H) - 1}{\epsilon}$.

Proof of Theorem 19 continued.

Thus, there is a bound on the number of 2-cells in the 2-complexes Z_i for all $i \ge k$. We need a simple lemma.

Lemma 20

If X is a finite 2-complex and k a positive integer, there are finitely many immersions $Z \hookrightarrow X$ with Z irreducible (and core) and with #{2-cells in Z} $\leqslant k$.

Proof of Theorem 19 continued.

Thus, there is a bound on the number of 2-cells in the 2-complexes Z_i for all $i \ge k$. We need a simple lemma.

Lemma 20

If X is a finite 2-complex and k a positive integer, there are finitely many immersions $Z \hookrightarrow X$ with Z irreducible (and core) and with #{2-cells in Z} $\leq k$.

By Lemma 20, for n large enough, each $Z_i \hookrightarrow Z_{i+1}$ is an isomorphism for all $i \ge n$. Hence, $\pi_1(Z_n) \to \pi_1(X)$ is injective.

We have shown that for any finitely generated non-cyclic freely indecomposable subgroup $H \leq \pi_1(X)$ with $b_1(H) \leq k$, there exists a π_1 -injective immersion $Z \hookrightarrow X$ with Z compact, irreducible and with at most $\frac{b_1(H)-1}{\epsilon}$ many 2-cells and with π_1 -image precisely (a conjugate of) H. This proves the second statement.

Proof of Theorem 19 continued.

Thus, there is a bound on the number of 2-cells in the 2-complexes Z_i for all $i \ge k$. We need a simple lemma.

Lemma 20

If X is a finite 2-complex and k a positive integer, there are finitely many immersions $Z \hookrightarrow X$ with Z irreducible (and core) and with #{2-cells in Z} $\leq k$.

By Lemma 20, for n large enough, each $Z_i \hookrightarrow Z_{i+1}$ is an isomorphism for all $i \ge n$. Hence, $\pi_1(Z_n) \to \pi_1(X)$ is injective.

We have shown that for any finitely generated non-cyclic freely indecomposable subgroup $H \leq \pi_1(X)$ with $b_1(H) \leq k$, there exists a π_1 -injective immersion $Z \hookrightarrow X$ with Z compact, irreducible and with at most $\frac{b_1(H)-1}{\epsilon}$ many 2-cells and with π_1 -image precisely (a conjugate of) H. This proves the second statement.

Now let H be an arbitrary finitely generated subgroup, By Grushko's theorem, $H \cong H_1 * \ldots * H_n * F$ where each H_i is non-cyclic, freely indecomposable and finitely generated and where F is free. By the above, each H_i is finitely presented and hence so is H.

Primitivity rank

A deep theorem of Louder–Wilton characterises when a one-relator group is k-free; that is, when every k-generated subgroup is free.

Theorem 21 (Louder, Wilton '18)

A one-relator group $G = F/\langle\!\langle w \rangle\!\rangle$ is k-free if and only if $\pi(w) \ge k+1$.

The *primitivity rank* of an element $w \in F(\Sigma)$ is defined as:

 $\pi(w) = \min \{ \operatorname{rk}(K) \mid w \in K < F(\Sigma), w \text{ imprimitive in } K \} \in \mathbb{N} \cup \{ \infty \}$

Primitivity rank

A deep theorem of Louder–Wilton characterises when a one-relator group is k-free; that is, when every k-generated subgroup is free.

Theorem 21 (Louder, Wilton '18)

A one-relator group $G = F/\langle\!\langle w \rangle\!\rangle$ is k-free if and only if $\pi(w) \ge k+1$.

The *primitivity rank* of an element $w \in F(\Sigma)$ is defined as:

 $\pi(w) = \min \left\{ \operatorname{rk}(K) \mid w \in K < F(\Sigma), \ w \text{ imprimitive in } K \right\} \in \mathbb{N} \cup \{\infty\}$

- $\pi(w)$ is computable (Puder '11),
- Generically $\pi(w) = |\Sigma|$ (Puder '12).
- $\pi(w) = 1$ if and only if w is a proper power (hence, $F/\langle\!\langle w \rangle\!\rangle$ has torsion).

Example 22

 $w=a^2b^2c^2b^2c^{-2}b^{-2}a^{-2}b^3$ has primitivity rank 2 as w is imprimitive in $\langle a^2b^2c^2,b\rangle.$

Uniform negative immersions and strong coherence

Louder–Wilton characterise uniform negative immersions for one-relator complexes.

Theorem 23 (Louder-Wilton '21)

If X is the presentation complex of the one-relator group $G = F/\langle\!\langle w \rangle\!\rangle$, then the following are equivalent:

- ► X has (uniform) negative immersions.
- $\pi_1(X) = G$ is 2-free.
- $\blacktriangleright \ \pi(w) \geqslant 3.$

Uniform negative immersions and strong coherence

Louder–Wilton characterise uniform negative immersions for one-relator complexes.

Theorem 23 (Louder-Wilton '21)

If X is the presentation complex of the one-relator group $G = F/\langle\!\langle w \rangle\!\rangle$, then the following are equivalent:

- X has (uniform) negative immersions.
- $\pi_1(X) = G$ is 2-free.
- $\blacktriangleright \ \pi(w) \geqslant 3.$

Lemma 24

If X is a one-relator complex such that $\pi_1(X)$ has torsion, then there is a finite sheeted cover $Y \hookrightarrow X$ and an inclusion $\iota: Z \hookrightarrow Y$ inducing an isomorphism on π_1 such that Z has uniform negative immersions.

Uniform negative immersions and strong coherence

Louder–Wilton characterise uniform negative immersions for one-relator complexes.

Theorem 23 (Louder-Wilton '21)

If X is the presentation complex of the one-relator group $G = F/\langle\!\langle w \rangle\!\rangle$, then the following are equivalent:

- ► X has (uniform) negative immersions.
- $\pi_1(X) = G$ is 2-free.
- $\blacktriangleright \ \pi(w) \geqslant 3.$

Lemma 24

If X is a one-relator complex such that $\pi_1(X)$ has torsion, then there is a finite sheeted cover $Y \hookrightarrow X$ and an inclusion $\iota: Z \hookrightarrow Y$ inducing an isomorphism on π_1 such that Z has uniform negative immersions.

Theorem 25 (Louder–Wilton '21)

If $G = F/\langle\!\langle w \rangle\!\rangle$ is a one-relator group with $\pi(w) \neq 2$, then G is coherent and, for every integer $k \ge 0$, there are finitely many conjugacy classes of one-ended subgroups $H \le \pi_1(X)$ with $b_1(H) \le k$.

Table of contents

Introduction

The Magnus hierarchy: a general approach

Non-positive immersions and subgroups of one-relator groups

Group rings of one-relator groups and coherence

The relation module

Let G = F/N be a presentation. Recall that the group ring is the ring:

$$\mathbb{Z}G = \left\{ \sum_{g \in G} z_g g \, \middle| \, z_g \in \mathbb{Z} \text{ and } z_g = 0 \text{ for all but finitely many } g \in G \right\}.$$

The relation module

Let G = F/N be a presentation. Recall that the group ring is the ring:

$$\mathbb{Z}G = \left\{ \sum_{g \in G} z_g g \, \middle| \, z_g \in \mathbb{Z} \text{ and } z_g = 0 \text{ for all but finitely many } g \in G \right\}.$$

The action of the free group F on

$$N_{\rm ab} = N/[N, N]$$

by conjugation extends linearly to an action of the group ring $\mathbb{Z}F$ on N_{ab} .

Since N acts trivially on $N_{\rm ab}$, the $\mathbb{Z}F$ action descends to an action

 $\mathbb{Z}G \curvearrowright N_{\mathrm{ab}}$

With this action, N_{ab} is a $\mathbb{Z}G$ -module called the *relation module*.

The relation module

Let G = F/N be a presentation. Recall that the group ring is the ring:

$$\mathbb{Z}G = \left\{ \sum_{g \in G} z_g g \, \middle| \, z_g \in \mathbb{Z} \text{ and } z_g = 0 \text{ for all but finitely many } g \in G \right\}.$$

The action of the free group F on

$$N_{\rm ab} = N/[N, N]$$

by conjugation extends linearly to an action of the group ring $\mathbb{Z}F$ on N_{ab} .

Since N acts trivially on $N_{\rm ab}$, the $\mathbb{Z}F$ action descends to an action

 $\mathbb{Z}G \curvearrowright N_{\mathrm{ab}}$

With this action, $N_{\rm ab}$ is a $\mathbb{Z}G$ -module called the *relation module*.

If G = F/N has cohomological dimension two, then $N_{\rm ab}$ is a projective $\mathbb{Z}G$ -module and there is resolution P_* :

$$0 \longrightarrow N_{\mathrm{ab}} \longrightarrow \bigoplus_{s \in S} \mathbb{Z}G \longrightarrow \mathbb{Z}G \stackrel{\epsilon}{\longrightarrow} \mathbb{Z} \longrightarrow 0$$

where $S \subset F$ is a free generating set. Then $H^i(G, -), H_i(G, -) = H^i(\hom_{\mathbb{Z}G}(P_*, -)), H_i(P_* \otimes_{\mathbb{Z}G} -).$
Lyndon's identity theorem

Theorem 26 (Lyndon's Identity Theorem)

Let $G = F/\langle\!\langle w^n \rangle\!\rangle$ be a one-relator group with w not a proper power and with $n \ge 1$. Denoting by $N = \langle\!\langle w^n \rangle\!\rangle$, we have

$$N_{\rm ab} \cong \mathbb{Z}G/(w-1) \cdot \mathbb{Z}G.$$

In particular, if n = 1 then

 $N_{\rm ab} \cong \mathbb{Z}G.$

Lyndon's identity theorem

Theorem 26 (Lyndon's Identity Theorem)

Let $G = F/\langle\!\langle w^n \rangle\!\rangle$ be a one-relator group with w not a proper power and with $n \ge 1$. Denoting by $N = \langle\!\langle w^n \rangle\!\rangle$, we have

$$N_{\rm ab} \cong \mathbb{Z}G/(w-1) \cdot \mathbb{Z}G.$$

In particular, if n = 1 then

$$N_{ab} \cong \mathbb{Z}G.$$

Lyndon's theorem allows us to easily compute a resolution of \mathbb{Z} :

$$0 \longrightarrow \mathbb{Z}G \xrightarrow{\left(\frac{\partial}{\partial s}\right)} \bigoplus_{s \in S} \mathbb{Z}G \xrightarrow{(s-1)} \mathbb{Z}G \xrightarrow{\epsilon} \mathbb{Z} \longrightarrow 0 \qquad \text{ if } n = 1$$

$$\overset{\sum_{i=0}^{n-1} w^i}{\underset{\longrightarrow}{}} \mathbb{Z}G \xrightarrow{w-1} \mathbb{Z}G \xrightarrow{\left(\frac{\partial}{\partial s}\right)} \bigoplus_{s \in S} \mathbb{Z}G \xrightarrow{(s-1)} \mathbb{Z}G \xrightarrow{\epsilon} \mathbb{Z} \longrightarrow 0 \qquad \text{ if } n \geq 2$$

and so to compute $H^*(G,-)$ and $H_*(G,-)$ when G is a one-relator group.

A group G is of type $\operatorname{FP}_2(\mathbb{Z})$ if any of the following equivalent conditions hold:

▶ For any presentation G = F/N with F finitely generated, the relation module N_{ab} is finitely generated.

A group G is of type $FP_2(\mathbb{Z})$ if any of the following equivalent conditions hold:

- For any presentation G = F/N with F finitely generated, the relation module $N_{\rm ab}$ is finitely generated.
- There is a projective resolution $P_* \to \mathbb{Z}$ with P_0, P_1, P_2 finitely generated.
- The augmentation ideal $I_G \leq \mathbb{Z}G$ is finitely presented.
- ► There is a finitely presented group *H* and a surjection *H* → *G* with perfect kernel.

A group G is of type $\operatorname{FP}_2(\mathbb{Z})$ if any of the following equivalent conditions hold:

- For any presentation G = F/N with F finitely generated, the relation module $N_{\rm ab}$ is finitely generated.
- There is a projective resolution $P_* \to \mathbb{Z}$ with P_0, P_1, P_2 finitely generated.
- The augmentation ideal $I_G \leq \mathbb{Z}G$ is finitely presented.
- ► There is a finitely presented group *H* and a surjection *H* → *G* with perfect kernel.

Definition 27

A group is *homologically coherent* if every finitely generated subgroup is of type $FP_2(\mathbb{Z})$.

Bestvina–Brady constructed the first groups of type $FP_2(\mathbb{Z})$ that are not finitely presented (but they are all homologically incoherent).

A group G is of type $FP_2(\mathbb{Z})$ if any of the following equivalent conditions hold:

- For any presentation G = F/N with F finitely generated, the relation module $N_{\rm ab}$ is finitely generated.
- There is a projective resolution $P_* \to \mathbb{Z}$ with P_0, P_1, P_2 finitely generated.
- The augmentation ideal $I_G \leq \mathbb{Z}G$ is finitely presented.
- ► There is a finitely presented group *H* and a surjection *H* → *G* with perfect kernel.

Definition 27

A group is *homologically coherent* if every finitely generated subgroup is of type $FP_2(\mathbb{Z})$.

Bestvina–Brady constructed the first groups of type $FP_2(\mathbb{Z})$ that are not finitely presented (but they are all homologically incoherent).

Question 28

Does there exist a homologically coherent group that is not coherent?

A criterion for homological coherence

A ring R is a *division ring* if every non-zero element is a unit.

Lemma 29

If G is a finitely generated group of cohomological dimension two and $\mathbb{Z}G \hookrightarrow \mathcal{D}$ an embedding into a division ring, then

G has type $\operatorname{FP}_2(\mathbb{Z}) \iff \dim_{\mathcal{D}} H_2(G, \mathcal{D}) < \infty$.

A criterion for homological coherence

A ring R is a *division ring* if every non-zero element is a unit.

Lemma 29

If G is a finitely generated group of cohomological dimension two and $\mathbb{Z}G \hookrightarrow \mathcal{D}$ an embedding into a division ring, then

```
G has type \operatorname{FP}_2(\mathbb{Z}) \iff \dim_{\mathcal{D}} H_2(G, \mathcal{D}) < \infty.
```

With some work, we will show how to use Lemma 29 to prove:

Theorem 30 (Jaikin-Zapirain-L '23)

If X has non-positive immersions, then $\pi_1(X)$ is homologically coherent.

Division ring embedding example: the Mal'cev-Neumann completion

Theorem 31 (Mal'cev '48, Neumann '49)

Let G a group, let < be a bi-ordering on $G. \ \mbox{The space of Mal'cev-Neumann}$ series

$$\mathbb{Q}(\!(G,<)\!) = \left\{ r = \sum_{g \in G} r_g \cdot g \mid r_g \in \mathbb{Q}, \operatorname{supp}(r) \text{ is well-ordered} \right\}$$

is a division $\mathbb{Q}G$ -ring with the natural operation.

Theorem 31 (Mal'cev '48, Neumann '49)

Let G a group, let < be a bi-ordering on $G. \ \mbox{The space of Mal'cev-Neumann}$ series

$$\mathbb{Q}(\!(G,<)\!) = \left\{ r = \sum_{g \in G} r_g \cdot g \mid r_g \in \mathbb{Q}, \, \operatorname{supp}(r) \text{ is well-ordered} \right\}$$

is a division $\mathbb{Q}G$ -ring with the natural operation.

To ensure $\mathbb{Q}((G, <))$ has a well-defined ring structure, need to show for all well-ordered $S_1, S_2 \subset G$:

- 1. The set $S_1 \cup S_2$ is well-ordered.
- 2. The set $S_1S_2 = \{s_1s_2 \mid s_1 \in S_1, s_2 \in S_2\}$ is well-ordered.
- 3. For any given element $g \in S_1S_2$, there are only finitely many products s_1s_2 equal to g.

Theorem 31 (Mal'cev '48, Neumann '49)

Let G a group, let < be a bi-ordering on $G. \ \mbox{The space of Mal'cev-Neumann}$ series

$$\mathbb{Q}(\!(G,<)\!) = \left\{ r = \sum_{g \in G} r_g \cdot g \mid r_g \in \mathbb{Q}, \operatorname{supp}(r) \text{ is well-ordered} \right\}$$

is a division $\mathbb{Q}G$ -ring with the natural operation.

To ensure $\mathbb{Q}((G, <))$ has a well-defined ring structure, need to show for all well-ordered $S_1, S_2 \subset G$:

- 1. The set $S_1 \cup S_2$ is well-ordered.
- 2. The set $S_1S_2 = \{s_1s_2 \mid s_1 \in S_1, s_2 \in S_2\}$ is well-ordered.
- 3. For any given element $g \in S_1S_2$, there are only finitely many products s_1s_2 equal to g.

Let $r \in \mathbb{Q}((G, <))$ and let $g \in \operatorname{supp}(r)$ be the minimal element. Then for some $a \in \mathbb{Q} - \{0\}$, we have r = (ag)(1 - s) where $s \in \mathbb{Q}((G, <))$ such that for all $h \in \operatorname{supp}(s)$, we have h > 1. Then

$$\left(\sum_{i\in\mathbb{N}}s^i\right)a^{-1}g^{-1}$$

is a left and right inverse for r.

Conjecture 32 (Kaplansky)

The group ring of a torsion-free group contains no (non-zero) zero-divisors.

A ring that embeds into a division ring clearly has no (non-zero) zero-divisors.

Conjecture 32 (Kaplansky)

The group ring of a torsion-free group contains no (non-zero) zero-divisors.

A ring that embeds into a division ring clearly has no (non-zero) zero-divisors.

Lewin–Lewin solved the Kaplansky conjecture for torsion-free one-relator groups:

Theorem 33 (Lewin–Lewin '78)

If G is a torsion-free one-relator group and k a division ring, then k[G] embeds into a division ring \mathcal{D} .

The proof explicitly constructs the division ring ${\cal D}$ inductively using the hierarchy and using Cohn's universal matrix inverting ring construction. In the base case of the hierarchy one has a free group and can appeal to the theorem of Mal'cev and Neumann (free groups are bi-ordered).

Conjecture 32 (Kaplansky)

The group ring of a torsion-free group contains no (non-zero) zero-divisors.

A ring that embeds into a division ring clearly has no (non-zero) zero-divisors.

Lewin–Lewin solved the Kaplansky conjecture for torsion-free one-relator groups:

Theorem 33 (Lewin–Lewin '78)

If G is a torsion-free one-relator group and k a division ring, then k[G] embeds into a division ring \mathcal{D} .

The proof explicitly constructs the division ring \mathcal{D} inductively using the hierarchy and using Cohn's universal matrix inverting ring construction. In the base case of the hierarchy one has a free group and can appeal to the theorem of Mal'cev and Neumann (free groups are bi-ordered).

Jaikin-Zapirain–López-Álvarez proved something much more general:

Theorem 34 (Jaikin-Zapirain–López-Álvarez)

If G is locally indicable, then $\mathbb{Q}[G]$ embeds in a division ring \mathcal{D} .

Proof that X has non-positive immersions $\implies \pi_1(X)$ homologically coherent

We will need some facts before starting the proof:

- 1. G=F/N has cohomological dimension at most two if and only if $N_{\rm ab}$ is a projective $\mathbb{Z}G\text{-module}.$
- 2. If F is f.g. then G = F/N is of type $FP_2(\mathbb{Z})$ if and only if N_{ab} is finitely generated as a $\mathbb{Z}G$ -module.
- 3. (Wise '20) If X has non-positive immersions, then:
 3.1 X is aspherical and so π₁(X) has cohomological dimension at most 2.
 3.2 π₁(X) is locally indicable.

Proof that X has non-positive immersions $\implies \pi_1(X)$ homologically coherent

We will need some facts before starting the proof:

- 1. G=F/N has cohomological dimension at most two if and only if $N_{\rm ab}$ is a projective $\mathbb{Z}G\text{-module}.$
- 2. If F is f.g. then G = F/N is of type $FP_2(\mathbb{Z})$ if and only if N_{ab} is finitely generated as a $\mathbb{Z}G$ -module.
- 3. (Wise '20) If X has non-positive immersions, then: 3.1 X is aspherical and so $\pi_1(X)$ has cohomological dimension at most 2. 3.2 $\pi_1(X)$ is locally indicable.

Proof.

If X has non-positive immersions and $H\leqslant\pi_1(X)$ is a finitely generated subgroup, let

$$Z_0 \hookrightarrow Z_1 \hookrightarrow \ldots \hookrightarrow Z_k \hookrightarrow \ldots \hookrightarrow X$$

be a sequence of π_1 -surjective immersions such that

$$\lim_{i \to \infty} \pi_1(Z_i) = H$$

as in Lemma 17.

Let $F = \pi_1 \left(Z_0^{(1)} \right)$, $N_i = \ker(F \to \pi_1(Z_i))$ for each i and $N = \ker(F \to H)$. Note that $\pi_1(Z_i) = F/N_i$ for each i and H = F/N. In order to complete the proof, we need to show that N_{ab} is finitely generated as a left $\mathbb{Z}[H]$ -module.

Let $F = \pi_1 \left(Z_0^{(1)} \right)$, $N_i = \ker(F \to \pi_1(Z_i))$ for each i and $N = \ker(F \to H)$. Note that $\pi_1(Z_i) = F/N_i$ for each i and H = F/N. In order to complete the proof, we need to show that N_{ab} is finitely generated as a left $\mathbb{Z}[H]$ -module.

We obtain a dual sequence

$$N_0 \hookrightarrow N_1 \hookrightarrow \ldots \hookrightarrow N_k \hookrightarrow \ldots \hookrightarrow F$$

with the following properties:

1. The homomorphisms $N_i \to N_{i+1} \to \ker(F \to H) \leqslant F$ are injective (using the fact that $\pi_1(Z_i) \to \pi_1(Z_{i+1})$ is surjective) for all *i*.

Let $F = \pi_1 \left(Z_0^{(1)} \right)$, $N_i = \ker(F \to \pi_1(Z_i))$ for each i and $N = \ker(F \to H)$. Note that $\pi_1(Z_i) = F/N_i$ for each i and H = F/N. In order to complete the proof, we need to show that N_{ab} is finitely generated as a left $\mathbb{Z}[H]$ -module.

We obtain a dual sequence

$$N_0 \hookrightarrow N_1 \hookrightarrow \ldots \hookrightarrow N_k \hookrightarrow \ldots \hookrightarrow F$$

with the following properties:

- 1. The homomorphisms $N_i \to N_{i+1} \to \ker(F \to H) \leqslant F$ are injective (using the fact that $\pi_1(Z_i) \to \pi_1(Z_{i+1})$ is surjective) for all *i*.
- 2. We have:

$$\lim_{i \to \infty} N_i = \bigcup_{i \in \mathbb{N}} N_i = \ker(F \to H) = N$$

(using the fact that $\lim_{i\to\infty} \pi_1(Z_i) = H$).

Let $F = \pi_1 \left(Z_0^{(1)} \right)$, $N_i = \ker(F \to \pi_1(Z_i))$ for each i and $N = \ker(F \to H)$. Note that $\pi_1(Z_i) = F/N_i$ for each i and H = F/N. In order to complete the proof, we need to show that N_{ab} is finitely generated as a left $\mathbb{Z}[H]$ -module.

We obtain a dual sequence

$$N_0 \hookrightarrow N_1 \hookrightarrow \ldots \hookrightarrow N_k \hookrightarrow \ldots \hookrightarrow F$$

with the following properties:

- 1. The homomorphisms $N_i \to N_{i+1} \to \ker(F \to H) \leqslant F$ are injective (using the fact that $\pi_1(Z_i) \to \pi_1(Z_{i+1})$ is surjective) for all *i*.
- 2. We have:

$$\lim_{i \to \infty} N_i = \bigcup_{i \in \mathbb{N}} N_i = \ker(F \to H) = N$$

(using the fact that $\lim_{i\to\infty} \pi_1(Z_i) = H$).

3. The relation module $(N_i)_{ab}$ for $\pi_1(Z_i) = F/N_i$ is a finitely generated (left) $\mathbb{Z}[\pi_1(Z_i)]$ -module (using the fact that Z_i is compact) for all *i*.

4. If ${\mathcal D}$ is a division ring which is also a right ${\mathbb Q}[H]\text{-module},$ then

$$\dim_{\mathcal{D}}(\mathcal{D} \otimes_{\mathbb{Q}[F/N_i]} (N_i)_{ab}) - \operatorname{rk}(F) + 1 = \sum_{j=0}^2 (-1)^j \dim_{\mathcal{D}} H_j(\pi_1(Z_i), \mathcal{D})$$
$$= \chi(Z_i)$$
$$\leqslant 0$$

(using the fact that Z_i is aspherical and $\chi(Z_i) \leq 0$) for all *i*.

4. If \mathcal{D} is a division ring which is also a right $\mathbb{Q}[H]$ -module, then

$$\dim_{\mathcal{D}}(\mathcal{D} \otimes_{\mathbb{Q}[F/N_i]} (N_i)_{ab}) - \operatorname{rk}(F) + 1 = \sum_{j=0}^2 (-1)^j \dim_{\mathcal{D}} H_j(\pi_1(Z_i), \mathcal{D})$$
$$= \chi(Z_i)$$
$$\leqslant 0$$

(using the fact that Z_i is aspherical and $\chi(Z_i) \leq 0$) for all *i*.

Since X has non-positive immersions, $\pi_1(X)$ is locally indicable and so by Jaikin-Zapirain–López-Álvarez's result, there is a division ring embedding $\mathbb{Q}[H] \hookrightarrow \mathcal{D}$.

4. If ${\mathcal D}$ is a division ring which is also a right ${\mathbb Q}[H]\text{-module},$ then

$$\dim_{\mathcal{D}}(\mathcal{D} \otimes_{\mathbb{Q}[F/N_i]} (N_i)_{ab}) - \operatorname{rk}(F) + 1 = \sum_{j=0}^2 (-1)^j \dim_{\mathcal{D}} H_j(\pi_1(Z_i), \mathcal{D})$$
$$= \chi(Z_i)$$
$$\leqslant 0$$

(using the fact that Z_i is aspherical and $\chi(Z_i) \leq 0$) for all *i*.

Since X has non-positive immersions, $\pi_1(X)$ is locally indicable and so by Jaikin-Zapirain–López-Álvarez's result, there is a division ring embedding $\mathbb{Q}[H] \hookrightarrow \mathcal{D}$.

We have

$$\dim_{\mathcal{D}}(\mathcal{D} \otimes_{\mathbb{Q}H} N_{\mathrm{ab}}) \leqslant \sup_{i \in \mathbb{N}} \dim_{\mathcal{D}} \left(\mathcal{D} \otimes_{\mathbb{Q}[F/N_i]} (N_i)_{\mathrm{ab}} \right) \leqslant \mathrm{rk}(F) - 1.$$

Since H has cohomological dimension at most 2, $H_2(H, D) \subseteq D \otimes_{\mathbb{Q}H} N_{ab}$. Hence

$$\dim_{\mathcal{D}} H_2(H,\mathcal{D}) \leqslant \dim_{\mathcal{D}}(\mathcal{D} \otimes_{\mathbb{Q}H} N_{\mathrm{ab}}) < \infty.$$

By Lemma 29, H has type $FP_2(\mathbb{Z})$.

From homological coherence to coherence

Theorem 35 (Jaikin-Zapirain-L '23)

If G has a hierarchy (e.g. splits as an iterated amalgamated free product of HNN-extension) terminating at coherent groups, then

G is homologically coherent $\iff G$ is coherent

From homological coherence to coherence

Theorem 35 (Jaikin-Zapirain-L '23)

If G has a hierarchy (e.g. splits as an iterated amalgamated free product of HNN-extension) terminating at coherent groups, then

G is homologically coherent $\iff G$ is coherent

Using the Magnus hierarchy, we obtain:

Theorem 36 (Jaikin-Zapirain-L '23)

One-relator groups are coherent.

A ring R is *coherent* if all of its finitely generated ideals are finitely presented.

This is a property of interest to ring theorists and algebraic geometers which predates the corresponding definition for groups.

A ring R is *coherent* if all of its finitely generated ideals are finitely presented.

This is a property of interest to ring theorists and algebraic geometers which predates the corresponding definition for groups.

Using the properties of the division ring $\mathcal{D}(G)$, one can prove that the group ring of a torsion-free one-relator group G is coherent.

The torsion case is handled by appealing to the fact that they are virtually free-by-cyclic (Kielak–L '23).

Theorem 37 (Jaikin-Zapirain–L '23)

If G is a one-relator group, then $\mathbb{Q}[G]$ is coherent.

Question 38

If X is an aspherical 2-complex, which of the following properties are equivalent:

- 1. X has non-positive immersions.
- 2. $b_2^{(2)}(X) = 0.$
- 3. $\pi_1(X)$ is coherent.
- 4. $\pi_1(X)$ is homologically coherent.
- 5. $\mathbb{Q}[\pi_1(X)]$ is coherent.

Question 39 (Effective coherence)

Is there an algorithm that, on input a one-relator group G and a finite set of elements $g_1, \ldots, g_n \in G$, computes a presentation for the subgroup $\langle g_1, \ldots, g_n \rangle \leqslant G$?

Thank you