<!DOCTYPE html> <html class="writer-html5" lang="en" > <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>1.2. Applications — Thermal machines 1.0 documentation</title> <link rel="stylesheet" href="_static/css/theme.css" type="text/css" /> <link rel="stylesheet" href="_static/pygments.css" type="text/css" /> <!--[if lt IE 9]> <script src="_static/js/html5shiv.min.js"></script> <![endif]--> <script type="text/javascript" id="documentation_options" data-url_root="./" src="_static/documentation_options.js"></script> <script src="_static/jquery.js"></script> <script src="_static/underscore.js"></script> <script src="_static/doctools.js"></script> <script type="text/javascript" src="_static/js/theme.js"></script> <link rel="index" title="Index" href="genindex.html" /> <link rel="search" title="Search" href="search.html" /> <link rel="next" title="2. Thermal machines: Basics" href="chap2_thermMachinesBasics_Chap.html" /> <link rel="prev" title="1.1. Balance equations for open systems" href="chap1_2BalanceForControlVolume.html" /> </head> <body class="wy-body-for-nav"> <div class="wy-grid-for-nav"> <nav data-toggle="wy-nav-shift" class="wy-nav-side"> <div class="wy-side-scroll"> <div class="wy-side-nav-search" > <a href="index.html" class="icon icon-home" alt="Documentation Home"> Thermal machines </a> <div class="version"> 1.0 </div> <div role="search"> <form id="rtd-search-form" class="wy-form" action="search.html" method="get"> <input type="text" name="q" placeholder="Search docs" /> <input type="hidden" name="check_keywords" value="yes" /> <input type="hidden" name="area" value="default" /> </form> </div> </div> <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation"> <p class="caption"><span class="caption-text">Contents:</span></p> <ul class="current"> <li class="toctree-l1 current"><a class="reference internal" href="chap1_balanceEquations_Chap.html">1. Balance equations</a><ul class="current"> <li class="toctree-l2"><a class="reference internal" href="chap1_2BalanceForControlVolume.html">1.1. Balance equations for open systems</a></li> <li class="toctree-l2 current"><a class="current reference internal" href="#">1.2. Applications</a><ul> <li class="toctree-l3"><a class="reference internal" href="#acceleration-in-a-nozzle">1.2.1. Acceleration in a nozzle</a></li> <li class="toctree-l3"><a class="reference internal" href="#heat-exchanger">1.2.2. Heat exchanger</a></li> <li class="toctree-l3"><a class="reference internal" href="#compressor-turbine">1.2.3. Compressor/Turbine</a></li> <li class="toctree-l3"><a class="reference internal" href="#throttling-valves">1.2.4. Throttling Valves</a></li> </ul> </li> </ul> </li> <li class="toctree-l1"><a class="reference internal" href="chap2_thermMachinesBasics_Chap.html">2. Thermal machines: Basics</a></li> <li class="toctree-l1"><a class="reference internal" href="chap3_CompExpGas_Chap.html">3. Compression / Expansion of Gas and vapors</a></li> <li class="toctree-l1"><a class="reference internal" href="chap4_ThermalEngines_Chap.html">4. Heat engines</a></li> <li class="toctree-l1"><a class="reference internal" href="chap5_ThermalGenerators_Chap.html">5. Heat pumps and refrigerators</a></li> <li class="toctree-l1"><a class="reference internal" href="zBibliography.html">6. References</a></li> </ul> </div> </div> </nav> <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"> <nav class="wy-nav-top" aria-label="top navigation"> <i data-toggle="wy-nav-top" class="fa fa-bars"></i> <a href="index.html">Thermal machines</a> </nav> <div class="wy-nav-content"> <div class="rst-content"> <div role="navigation" aria-label="breadcrumbs navigation"> <ul class="wy-breadcrumbs"> <li><a href="index.html" class="icon icon-home"></a> »</li> <li><a href="chap1_balanceEquations_Chap.html"><span class="section-number">1. </span>Balance equations</a> »</li> <li><span class="section-number">1.2. </span>Applications</li> <li class="wy-breadcrumbs-aside"> <a href="_sources/chap1_3Applications.rst.txt" rel="nofollow"> View page source</a> </li> </ul> <hr/> </div> <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article"> <div itemprop="articleBody"> <div class="section" id="applications"> <h1><span class="section-number">1.2. </span>Applications<a class="headerlink" href="#applications" title="Permalink to this headline">¶</a></h1> <p>Balance equations presented in <a class="reference internal" href="chap1_2BalanceForControlVolume.html#sec-chap1-balanceequations"><span class="std std-numref">Section 1.1: </span></a> are applied here to the constituting elements of engineering machines: nozzles, heat exchangers, compressors and turbines, etc. These elements are made for continuous processes (steady flow) and generally present one fluid entry and one fluid exit.</p> <div class="figure align-center" id="id1"> <span id="fig-chap1-twofluidsec"></span><a class="reference internal image-reference" href="_images/twoFluidSec.png"><img alt="_images/twoFluidSec.png" src="_images/twoFluidSec.png" style="width: 305.8px; height: 200.60000000000002px;" /></a> <p class="caption"><span class="caption-number">Figure 1.3: </span><span class="caption-text">A fluid system with one entry and one exit</span><a class="headerlink" href="#id1" title="Permalink to this image">¶</a></p> </div> <p>In that specific case, balance equations <a class="reference internal" href="chap1_2BalanceForControlVolume.html#equation-massequation">Eq.1.9</a> and <a class="reference internal" href="chap1_2BalanceForControlVolume.html#equation-energyequation">Eq.1.10</a> simplify in:</p> <div class="math" id="equation-masstwofluidsec"> <p><span class="eqno">(1.16)<a class="headerlink" href="#equation-masstwofluidsec" title="Permalink to this equation">¶</a></span><img src="_images/math/12b2185335bb85c9ab45fb64a7cf4782a3ba69a2.svg" alt="\dot{m_2} = - \dot{m_1} = \dot{m}"/></p> </div><p>and</p> <div class="math" id="equation-energytwofluidsec"> <p><span class="eqno">(1.17)<a class="headerlink" href="#equation-energytwofluidsec" title="Permalink to this equation">¶</a></span><img src="_images/math/744671ca1c47b0ebf799afc67456208642c21bb5.svg" alt="\dot{m} (h_{t,2} - h_{t,1}) = \dot{Q} + \dot{W}_{t}"/></p> </div><div class="section" id="acceleration-in-a-nozzle"> <h2><span class="section-number">1.2.1. </span>Acceleration in a nozzle<a class="headerlink" href="#acceleration-in-a-nozzle" title="Permalink to this headline">¶</a></h2> <p><strong>Nozzles</strong> can be found in gas turbine or on aircrafts/rocket engines. They are basic components used to accelerate/decelerate a flow.</p> <div class="figure align-center" id="id2"> <span id="fig-chap1-nozzle"></span><a class="reference internal image-reference" href="_images/nozzle.png"><img alt="_images/nozzle.png" src="_images/nozzle.png" style="width: 702.0px; height: 282.59999999999997px;" /></a> <p class="caption"><span class="caption-number">Figure 1.4: </span><span class="caption-text">Left: subsonic convergent nozzle, Middle: subsonic divergent nozzle, Right: Ariane’5 Vulcain engine nozzle.</span><a class="headerlink" href="#id2" title="Permalink to this image">¶</a></p> </div> <p>In nozzle systems:</p> <blockquote> <div><ul class="simple"> <li><p>It is commonly accepted that no thermal energy is exchanged (<img class="math" src="_images/math/b8f4a408665b3c2e50e54df5283a7e3121088b55.svg" alt="\dot{Q}=0" style="vertical-align: -3px"/>) due to important fluid velocities.</p></li> <li><p>Moreover, no working machine is present (<img class="math" src="_images/math/a5235d24c0cb0d4b7894eb493b14e7d1ffa5c949.svg" alt="\dot{W}_{t}" style="vertical-align: -2px"/>)</p></li> <li><p>Potential energy is negligible.</p></li> </ul> </div></blockquote> <p>such that relation <a class="reference internal" href="#equation-energytwofluidsec">Eq.1.17</a> becomes:</p> <div class="math" id="equation-nozzleeq"> <p><span class="eqno">(1.18)<a class="headerlink" href="#equation-nozzleeq" title="Permalink to this equation">¶</a></span><img src="_images/math/f313d5b183ee7f384e693e7ef73ee7841d60f122.svg" alt="h_{2} - h_{1} = - \frac{1}{2}(u_2^2-u_1^2)"/></p> </div></div> <div class="section" id="heat-exchanger"> <h2><span class="section-number">1.2.2. </span>Heat exchanger<a class="headerlink" href="#heat-exchanger" title="Permalink to this headline">¶</a></h2> <p><strong>Heat exchangers</strong> allow to exchange a thermal energy between two fluids without mixing. The simpler heat exchanger is the <em>double-tube</em> presented in <a class="reference internal" href="#fig-chap1-heatexchanger"><span class="std std-numref">Figure 1.5: </span></a>.</p> <div class="figure align-center" id="id3"> <span id="fig-chap1-heatexchanger"></span><a class="reference internal image-reference" href="_images/heatExchanger.png"><img alt="_images/heatExchanger.png" src="_images/heatExchanger.png" style="width: 598.1999999999999px; height: 222.0px;" /></a> <p class="caption"><span class="caption-number">Figure 1.5: </span><span class="caption-text">Double-tube heat exchanger. The cold fluid is absorbing thermal energy provided by the hot fluid.</span><a class="headerlink" href="#id3" title="Permalink to this image">¶</a></p> </div> <p>In heat exchanger systems:</p> <blockquote> <div><ul class="simple"> <li><p>Kinetic energy variation is commonly negligible.</p></li> <li><p>Potential energy is negligible.</p></li> <li><p>No working machine is present (<img class="math" src="_images/math/a5235d24c0cb0d4b7894eb493b14e7d1ffa5c949.svg" alt="\dot{W}_{t}" style="vertical-align: -2px"/>)</p></li> </ul> </div></blockquote> <p>Such that for example if considering the cold fluid system, the balance energy equation <a class="reference internal" href="#equation-energytwofluidsec">Eq.1.17</a> becomes:</p> <div class="math" id="equation-heatexchangeeq"> <p><span class="eqno">(1.19)<a class="headerlink" href="#equation-heatexchangeeq" title="Permalink to this equation">¶</a></span><img src="_images/math/4c1d2c7d5146e8bd7a5054fd1f094ee0502fcc9f.svg" alt="\dot{m}_C (h_{2}^C - h_{1}^C) = \dot{Q}"/></p> </div><p>If the heat exchanger is insulated, the hot fluid system balance energy will read:</p> <div class="math"> <p><img src="_images/math/6476e8c8e276b9e21f7703075af8dc6c81b707d5.svg" alt="\dot{m}_H (h_{2}^H - h_{1}^H) = -\dot{Q}"/></p> </div></div> <div class="section" id="compressor-turbine"> <h2><span class="section-number">1.2.3. </span>Compressor/Turbine<a class="headerlink" href="#compressor-turbine" title="Permalink to this headline">¶</a></h2> <p>These elements contains a rotary mechanical device to convert flow energy into mechanical work (turbine) and reversely (compressor). The mechanical work is transmitted thanks to a shaft.</p> <div class="figure align-center" id="id4"> <span id="fig-chap1-compturb"></span><a class="reference internal image-reference" href="_images/compTurb.png"><img alt="_images/compTurb.png" src="_images/compTurb.png" style="width: 705.0px; height: 244.2px;" /></a> <p class="caption"><span class="caption-number">Figure 1.6: </span><span class="caption-text">Left: schematic representation of a compressor and a turbine. Right: multi-stage compressor.</span><a class="headerlink" href="#id4" title="Permalink to this image">¶</a></p> </div> <p>In these elements, this is commonly accepted that:</p> <blockquote> <div><ul class="simple"> <li><p>Kinetic energy variation is negligible.</p></li> <li><p>Potential energy negligible.</p></li> <li><p>No heat exchanges unless they are cooled (or heated) <img class="math" src="_images/math/06ef3f0bad77bd2fde5617f59b89cdfbc6762332.svg" alt="\dot{Q} =0" style="vertical-align: -3px"/>.</p></li> </ul> </div></blockquote> <p>Balance energy equation becomes:</p> <div class="math" id="equation-turbcompeq"> <p><span class="eqno">(1.20)<a class="headerlink" href="#equation-turbcompeq" title="Permalink to this equation">¶</a></span><img src="_images/math/38506be9c6028eb33c7737420f454ddf3d8eef9a.svg" alt="\dot{m} (h_{2} - h_{1}) = \dot{W}_{t}"/></p> </div><p>In a <strong>turbine</strong>, a work is produced on the shaft (<img class="math" src="_images/math/ddc871c427698be75e6674c56c06f6ec8eaee092.svg" alt="W_t < 0" style="vertical-align: -2px"/> because lost by the turbine), and the flow enthalpy is decreasing because of fluid expansion resulting in a lower pressure at the turbine exit than at the entry.</p> <p>In a <strong>compressor</strong>, as for a pump or a ventilator, the fluid’s enthalpy is increasing because of fluid compression resulting in an increase of flow pressure as a work is provided on the shaft (<img class="math" src="_images/math/c1f4b326f434322f6278dc939084e546ab8b6b80.svg" alt="W_t > 0" style="vertical-align: -2px"/> because earned by the compressor).</p> </div> <div class="section" id="throttling-valves"> <span id="sec-chap1-laminating"></span><h2><span class="section-number">1.2.4. </span>Throttling Valves<a class="headerlink" href="#throttling-valves" title="Permalink to this headline">¶</a></h2> <p><strong>Throttling valves</strong> produce a pressure drop in a flow. It can be obtained thanks to adjustable valve or thanks to a porous.</p> <div class="figure align-center" id="id5"> <span id="fig-chap1-laminating"></span><a class="reference internal image-reference" href="_images/laminating.png"><img alt="_images/laminating.png" src="_images/laminating.png" style="width: 443.6px; height: 207.20000000000002px;" /></a> <p class="caption"><span class="caption-number">Figure 1.7: </span><span class="caption-text">A high pressure gas is expanded through a hole. This kind of expansion is isenthalpic.</span><a class="headerlink" href="#id5" title="Permalink to this image">¶</a></p> </div> <p>Common hypothesis are:</p> <blockquote> <div><ul class="simple"> <li><p>No heat echanges (insulated walls),</p></li> <li><p>No working machine,</p></li> <li><p>Kinetic energy variation is negligible.</p></li> </ul> </div></blockquote> <p>Such that the first principle reduces to:</p> <div class="math" id="equation-isenthalpicexpansion"> <p><span class="eqno">(1.21)<a class="headerlink" href="#equation-isenthalpicexpansion" title="Permalink to this equation">¶</a></span><img src="_images/math/273090edac18110b03314735089c0d062fff1265.svg" alt="h_1 = h_2"/></p> </div><p>If the fluid can be considered as ideal gas, the isenthalpic expansion is also isothermal:</p> <div class="math"> <p><img src="_images/math/21ff4bc85cd322bf87128f6da37345b2379b25f7.svg" alt="T_1 = T_2"/></p> </div></div> </div> </div> </div> <footer> <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation"> <a href="chap2_thermMachinesBasics_Chap.html" class="btn btn-neutral float-right" title="2. Thermal machines: Basics" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right"></span></a> <a href="chap1_2BalanceForControlVolume.html" class="btn btn-neutral float-left" title="1.1. Balance equations for open systems" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left"></span> Previous</a> </div> <hr/> <div role="contentinfo"> <p> © Copyright 2019, Fabien Petitpas, AMU, Polytech Marseille ME </p> </div> Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. </footer> </div> </div> </section> </div> <script type="text/javascript"> jQuery(function () { SphinxRtdTheme.Navigation.enable(true); }); </script> </body> </html>