Kernel Methods are Competitive for Operator Learning

Pau Batlle¹, Matthieu Darcy¹, Bamdad Hosseini², Houman Owhadi¹

¹California Institute of Technology ²University of Washington

ICIAM August 22nd, 2023

Table of Contents

1 Operator Learning for PDEs

- 2 A general framework for operator learning with kernels
- 3 Numerics Accuracy results The Complexity-Accuracy tradeof

The operator learning problem

The operator learning problem (informal version)

Let $\{u_i, v_i\}_{i=1}^N$ be N elements of $\mathcal{U} \times \mathcal{V}$ such that

$$\mathcal{G}^{\dagger}(u_i) = v_i, \quad \text{for } i = 1, \dots, N.$$

The operator learning problem is summarized as :

Given the data $\{u_i, v_i\}_{i=1}^N$ approximate \mathcal{G}^{\dagger} .

Throughout this talk

 $\mathcal U$ is a space of functions $u:\Omega \to \mathbb R$

 \mathcal{V} is a space of functions $v:D\to\mathbb{R}$.

In this talk

Past work has focused on Operator Neural Networks¹²³ that generalize Neural Networks to functional inputs and outputs. However they have not been benchmarked against simpler methods.

Our contribution

We propose a family of kernel based-methods that are **simple**, **fast** and **competitive in accuracy**. The methods are natural benchmarks for more complex methods.

¹Zongyi Li et al. Fourier Neural Operator for Parametric Partial Differential Equations. 2020.

²Kaushik Bhattacharya et al. *Model Reduction and Neural Networks for Parametric PDEs.* 2021. arXiv: 2005.03180 [math.NA].

³Lu Lu et al. "Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators". In: *Nature Machine Intelligence* 3.3 (2021), pp. 218–229.

Table of Contents

Operator Learning for PDEs

2 A general framework for operator learning with kernels

Numerics
 Accuracy results
 The Complexity-Accuracy tradeoff

The operator learning problem

The operator learning problem

Let $\{u_i, v_i\}_{i=1}^N$ be N elements of $\mathcal{U} \times \mathcal{V}$ such that

$$\mathcal{G}^{\dagger}(u_i) = v_i, \quad \text{for } i = 1, \dots, N.$$

Let $\phi: \mathcal{U} \to \mathbb{R}^m$ and $\varphi: \mathcal{V} \to \mathbb{R}^n$ be bounded linear operators.

Given the data $\{\phi(u_i), \varphi(v_i)\}_{i=1}^N$ approximate \mathcal{G}^{\dagger} .

A common example is the case where we have pointwise values of the functions:

$$\phi: u \mapsto (u(x_1), u(x_2), \dots, u(x_m))^T$$
 and $\varphi: v \mapsto (v(y_1), v(y_2), \dots, v(y_n))^T$.

Diagram summary

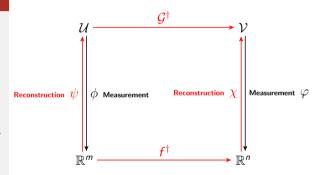
Summary of our method

Given the data $\{\phi(u_i), \varphi(v_i)\}_{i=1}^N$ our method to approximate \mathcal{G}^{\dagger} :

$$\mathcal{G}^{\dagger}(u_i) = v_i, \quad \text{for } i = 1, \dots, N.$$

can be summarized in two steps:

- 1) Define the reconstructions ψ and χ as the optimal recovery map.
- **2** Approximate the function f^{\dagger} using a kernel method.



Optimal recovery

We will assume that $\mathcal U$ and $\mathcal V$ are RKHSs arising from kernels Q and K respectively. The reconstruction operators are defined as optimal recovery maps

$$\begin{split} \psi(\phi(u)) &:= \underset{w \in \mathcal{U}}{\arg\min} \, \|w\|_Q \quad \text{s.t.} \quad \phi(w) = \phi(u), \\ \chi(\varphi(v)) &:= \underset{w \in \mathcal{V}}{\arg\min} \, \|w\|_K \quad \text{s.t.} \quad \varphi(w) = \varphi(v), \end{split}$$

The maps are the minmax optimal recovery of u and v respectively⁴. Optimal recovery maps can be expressed in closed form using standard representer theorems for kernel interpolation:

$$\psi(\phi(u))(x) = Q(x,X)Q(X,X)^{-1}\phi(u) \quad \text{and} \quad \chi(\varphi(v))(y) = K(y,Y)K(Y,Y)^{-1}\varphi(v).$$

⁴Houman Owhadi and Clint Scovel. *Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization: From a Game Theoretic Approach to Numerical Approximation and Algorithm Design.* Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, 2019.

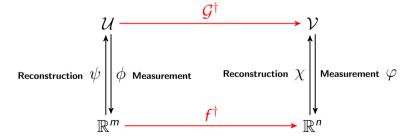
Recovery of f^{\dagger}

Once the reconstruction operators ψ and χ are defined, our best strategy is to reconstruct f^{\dagger} in the diagram:

$$\bar{f} \approx f^{\dagger} := \varphi \circ \mathcal{G}^{\dagger} \circ \psi$$

and to approximate the operator \mathcal{G}^{\dagger} with the operator

$$\bar{\mathcal{G}}:=\chi\circ\bar{\mathit{f}}\circ\phi\,.$$



Recovery of f^{\dagger}

We approximate $f^{\dagger}: \mathbb{R}^m \to \mathbb{R}^n$ by optimal recovery in a **vector valued** RKHS. Let $\Gamma: \mathbb{R}^m \times \mathbb{R}^m \to \mathcal{L}(\mathbb{R}^n)$ be an **matrix valued kernel**. The (simplest) choice of Γ is the diagonal kernel

$$\Gamma(\boldsymbol{u}, \boldsymbol{u}') = S(\boldsymbol{u}, \boldsymbol{u}') \boldsymbol{I}_{n \times n}$$

where S(u, u') is an arbitrary, real valued kernel. This is equivalent to recovering the vector valued $f^{\dagger}: \mathbb{R}^m \to \mathbb{R}^n$ independently component wise:

$$ar{f_j} := rg \min_{h \in \mathcal{H}_S} \|h\|_{\mathcal{S}} \quad ext{s.t.} \qquad h(\phi(u_i)) = (\varphi(v_i))_j \qquad \quad ext{for} \quad i = 1, \dots, N.$$

This map can also be expressed in closed form

$$\bar{f} := \Gamma(\cdot, \mathbf{U})\Gamma(\mathbf{U}, \mathbf{U})^{-1}\mathbf{V}$$

where $U_i := \phi(u_i)$ and $V_i := \varphi(v_i)$.

Why such a simple method?

The kernel S can be a standard kernel such as the linear⁵, squared exponential or Matérn kernel. This simple choice already offers several advantages:

- ullet Low cost in training (< 5 seconds on a workstation) and at inference (in the low-medium data regime).
- 2 Competitive accuracy.
- 3 Empirically robust to choice of hyper-parameters/kernels.
- 4 Simple to implement: several libraries solve this problem out of the box.
- 5 The Gaussian process interpretation provides uncertainty quantification.
- 6 Convergence guarantees.

⁵Equivalent to doing linear regression

Assumptions for convergence guarantees

 $\mathcal{U} = \mathcal{H}_Q$ is an RKHS of functions $u: \Omega \to \mathbb{R}$ $\mathcal{V} = \mathcal{H}_K$ is an RKHS of functions $v: D \to \mathbb{R}$.

Assumption (Two categories of assumptions)

- Accuracy of the reconstruction operators ψ and χ : regularity of the domains, regularity of kernels Q and K, space-filling property of the collocation points.
- Approximation of \mathcal{G}^{\dagger} : regularity of the operator \mathcal{G}^{\dagger} , regularity of kernel S^n , resolution and space filling property of the data.

Theorem (Condensed version of Main Theorem)

$$\lim_{n,m\to\infty}\lim_{N\to\infty}\sup_{u\in B_R(\mathcal{H}_Q)}\|\mathcal{G}^\dagger(u)-\chi^m\circ \bar{f}_N^{m,n}\circ\phi^n(u)\|_{H^{t'}(D)}\to 0\,.$$

Measurement invariance

Mesh invariance is a key property for operator learning methods: this translates to being able to predict the output of a test input function \tilde{u} with a new $\tilde{\phi}(\tilde{u})$. We can do this by using the optimal recovery map $\tilde{\psi}$ that is defined from $\tilde{\phi}$. This gives a new function h^{\dagger} which is approximated by

$$\bar{h}:=\tilde{\varphi}\circ\chi\circ\bar{f}\circ\phi\circ\tilde{\psi}\equiv\tilde{\varphi}\circ\bar{\mathcal{G}}\circ\tilde{\psi}.$$

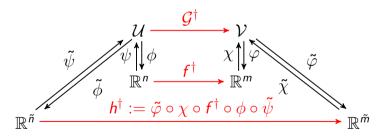


Figure: Mesh invariance of the method.

Table of Contents

Operator Learning for PDEs

- 2 A general framework for operator learning with kernels
- 3 Numerics Accuracy results The Complexity-Accuracy tradeoff

Complexity-accuracy tradeoff

We evaluate our operator learning methods through the **cost-accuracy tradeoff**:

• The **accuracy** is measured by the relative L^2 loss:

$$\mathcal{R}_{N}(\mathcal{G}) = \frac{1}{N} \sum_{i=1}^{N} \left[\frac{\left\| \mathcal{G}(u_{i}) - \mathcal{G}^{\dagger}(u_{i}) \right\|_{L^{2}}}{\left\| \mathcal{G}^{\dagger}(u_{i}) \right\|_{L^{2}}} \right]$$

 The complexity depends on the training cost (qualitative metrics) and the inference cost (measured in floating point operations - FLOPs).

We compare the test performance of our method with different choices of the kernel S using the examples from two comparison papers⁶, ⁷.

⁶Maarten V. de Hoop et al. *The Cost-Accuracy Trade-Off In Operator Learning With Neural Networks*, 2022.

⁷Lu Lu et al. "A comprehensive and fair comparison of two neural operators (with practical extensions) based on FAIR data". In: *Computer Methods in Applied Mechanics and Engineering* 393 (2022), p. 114778. ISSN: 0045-7825.

Summary of results: accuracy

	Low-data regime			High-data regime			
	Burger's	Darcy problem	Advection I	Advection II	Hemholtz	Structural Mechanics	Navier Stokes
DeepONet	2.15%	2.91%	0.66%	15.24%	5.88%	5.20%	3.63%
POD-DeepONet	1.94%	2.32%	0.04%	n/a	n/a	n/a	n/a
FNO	1.93%	2.41%	0.22%	13.49%	1.86%	4.76%	0.26%
PCA-Net	n/a	n/a	n/a	12.53%	2.13%	4.67%	2.65%
PARA-Net	n/a	n/a	n/a	16.64%	12.54%	4.55%	4.09%
Linear	36.24%	6.74%	$2.15 \times 10^{-13}\%$	11.28%	10.59%	27.11%	5.41%
Best of Matérn/RQ	2.15%	2.75%	$2.75 \times 10^{-3}\%$	11.44%	1.00%	5.18%	0.12%

Table: Summary of numerical results: we report the L^2 relative test error of our numerical experiments and compare the kernel approach with variations of DeepONet , FNO, PCA-Net and PARA-Net.

Inverse problem for Darcy's flow

Let $D = (0,1)^2$ and consider the two-dimensional Darcy flow problem⁸:

$$-\nabla \cdot (u(x)\nabla v(x)) = f, \quad x \in D$$

$$u(x) = 0, \quad \partial D$$

In this case, we are interested in learning the mapping from the permeability field u to the solution v (here f is considered fixed):

$$\mathcal{G}^{\dagger}: u(x) \mapsto v(x).$$

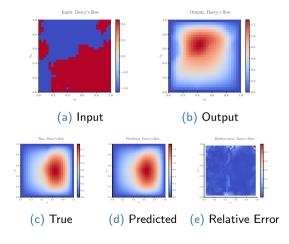
The coefficient u is sampled by $u = \psi(\mu)$ where $\mu = \mathcal{GP}(0, (-\Delta + 9I)^{-2})$ is a Gaussian random field and ψ is binary function.

⁸Lu et al., "A comprehensive and fair comparison of two neural operators (with practical extensions) based on FAIR data".

Inverse problem for Darcy's flow

Method	Accuracy	
DeepONet	2.91 %	
FNO	2.41 %	
POD-DeepONet	2.32 %	
Linear Regression	$\bar{6}.\bar{7}\bar{4}\ \bar{\%}^{-}$	
GP (Matérn kernel)	2.75%	

Table: L^2 relative error on the Darcy problem.



Navier-Stokes

In the periodic domain $\mathcal{D} = [0, 2\pi]^2$, the vorticity-stream $(\omega - \psi)$ formulation of the incompressible Navier-Stokes equations⁹ is

$$\frac{\partial w}{\partial t} + (v \cdot \nabla)\omega - \nu \Delta \omega = f$$

$$\omega = -\Delta \psi$$

$$\int_{D} \psi = 0$$

$$v = \left(\frac{\partial \psi}{\partial x_{2}}, -\frac{\partial \psi}{\partial x_{1}}\right)$$

The map of interest is the map from the forcing term f to the vorticity field w at a given time t = T:

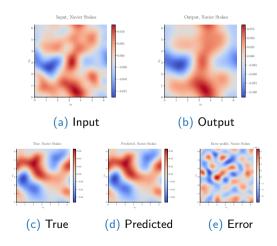
$$G: f \mapsto w(\cdot, T)$$

⁹Hoop et al., The Cost-Accuracy Trade-Off In Operator Learning With Neural Networks.

Navier-Stokes

Method	Accuracy	
DeepONet	3.63 %	
FNO	0.26 %	
PCA-Net	2.32 %	
Linear Regression	$\bar{5.41} \%$	
GP (Matérn kernel)	0.12%	

Table: L^2 relative error on Navier-Stokes.



Inference complexity: high data regime

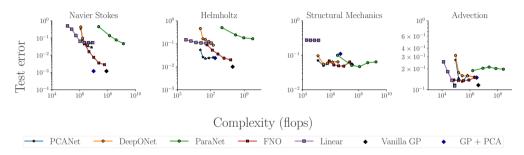


Figure: Linear model refers to the linear kernel, vanilla GP is our implementation with the nonlinear kernels and minimal preprocessing, GP+PCA corresponds to preprocessing through PCA both the input and the output to reduce complexity.

Data taken from Hoop et al., The Cost-Accuracy Trade-Off In Operator Learning With Neural Networks.

Conclusion

Our key contributions are:

- A simple, low-cost, and competitive kernel method for operator learning that is a good baseline for many tasks.
- Theoretical guarantees for these methods.
- A general framework for doing operator learning with kernel methods.

Paper to appear in Journal of Computational Physics Pau Batlle et al. Kernel Methods are Competitive for Operator Learning. 2023. arXiv: 2304.13202

