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The operator learning problem

The operator learning problem (informal version)

Let {u;, vi}, be N elements of ¢ x V such that
Gl(u)=v, fori=1,...,N.
The operator learning problem is summarized as :

Given the data {u;, v,-}f\’:1 approximate G1.

Throughout this talk

U is a space of functions u : Q — R
V is a space of functions v : D — R.



In this talk

Past work has focused on Operator Neural Networks'?3 that generalize Neural

Networks to functional inputs and outputs. However they have not been benchmarked
against simpler methods.

Our contribution

We propose a family of kernel based-methods that are simple, fast and competitive
in accuracy. The methods are natural benchmarks for more complex methods.

1Zongyi Li et al. Fourier Neural Operator for Parametric Partial Differential Equations. 2020.

2Kaushik Bhattacharya et al. Model Reduction and Neural Networks for Parametric PDEs. 2021.
arXiv: 2005.03180 [math.NAJ.

3Lu Lu et al. “Learning nonlinear operators via DeepONet based on the universal approximation
theorem of operators”. In: Nature Machine Intelligence 3.3 (2021), pp. 218-229.


https://arxiv.org/abs/2005.03180
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@ A general framework for operator learning with kernels



The operator learning problem

The operator learning problem

Let {u;, i}, be N elements of ¢ x V such that
QT(u,-) =v;, fori=1,...,N.
Let ¢ : U — R™ and ¢ : V — R" be bounded linear operators.

Given the data {#(u;), p(v;)} ., approximate G.

A common example is the case where we have pointwise values of the functions:

¢ u (ulxa), u(x2), ..., ulxm))” and @ v (vy), v(y2), ... viya))' .



Diagram summary

Summary of our method

;
Given the data {#(u;), p(v;)}Y; our u g ,
method to approximate GT:

Gl(u)=v;, fori=1,....N.

Reconstruction 1/} ¢ Measurement Reconstruction X' || Measurement SD
can be summarized in two steps:
@ Define the reconstructions i and x as
the optimal recovery map. ) £ "

@® Approximate the function £t using a
kernel method.



We will assume that I/ and V are RKHSs arising from kernels @ and K respectively.
The reconstruction operators are defined as optimal recovery maps
Y(o(u)) == argminflwlq st o(w) = ¢(uv),
welu
x(p(v)) :==argmin|lw|x st o(w) =p(v),
wey

The maps are the minmax optimal recovery of u and v respectively*. Optimal recovery
maps can be expressed in closed form using standard representer theorems for kernel
interpolation:

Y(9(u))(x) = Qx, X)Q(X, X)"tp(u) and  x(w(v))(y) = K(y, Y)K(Y,Y)e(v).

*Houman Owhadi and Clint Scovel. Operator-Adapted Wavelets, Fast Solvers, and Numerical
Homogenization: From a Game Theoretic Approach to Numerical Approximation and Algorithm
Design.



Once the reconstruction operators 1) and x are defined, our best strategy is to
reconstruct fT in the diagram:

fafl ::cpogjfod)

and to approximate the operator G' with the operator

G:=xofodp.
gt
Uu V
Reconstruction ’(p gb Measurement Reconstruction X' || Measurement (O
al

R™ R"



We approximate fT : R™ — R" by optimal recovery in a vector valued RKHS. Let
[:R™xR™— L(R") be an matrix valued kernel. The (simplest) choice of I is the
diagonal kernel

MNu,u") = S(u, ) yxn

where S(u, u’) is an arbitrary, real valued kernel. This is equivalent to recovering the
vector valued ff : R™ — R” independently component wise:

fi:=argmin|hlls st.  h(o(u;)) = ((vi)); for i=1,...,N.

heHs
This map can also be expressed in closed form
f:=T(,U)r(U,U)" v,

where U; := ¢(u;) and V; := ¢(v;).



The kernel S can be a standard kernel such as the linear®, squared exponential or
Matérn kernel. This simple choice already offers several advantages:

@ Low cost in training (< 5 seconds on a workstation) and at inference (in the
low-medium data regime).

® Competitive accuracy.

® Empirically robust to choice of hyper-parameters/kernels.

O Simple to implement: several libraries solve this problem out of the box.
® The Gaussian process interpretation provides uncertainty quantification.

® Convergence guarantees.

®Equivalent to doing linear regression



Assumptions for convergence guarantees

U =Hg is an RKHS of functions v : Q@ =+ R
V = Hk is an RKHS of functions v : D — R.

Assumption (Two categories of assumptions)

® Accuracy of the reconstruction operators 1 and x: regularity of the domains,
regularity of kernels Q and K, space-filling property of the collocation points.

e Approximation of G': regularity of the operator GI, regularity of kernel S",
resolution and space filling property of the data.

Theorem (Condensed version of Main Theorem)

lim lim sup ||QT(U) —x"o F/\T’n © ¢n(u)||Hr’(D) — 0.

mm—00 N—00 e Bp(Hq)



Measurement invariance

Mesh invariance is a key property for operator learning methods: this translates to
being able to predict the output of a test input function & with a new qz(ﬁ) We can
do this by using the optimal recovery map v that is defined from &. This gives a new
function h' which is approximated by

E::QEOXOFO(ﬁozZE@og_qu,

Uu g Y
R" R™
R hhz@oxoﬁoqﬁoz/; R

Figure: Mesh invariance of the method.
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We evaluate our operator learning methods through the cost-accuracy tradeoff:
® The accuracy is measured by the relative L? loss:

ZN: 19 (ui) — G (ui) | 2
R u,>||L2

® The complexity depends on the training cost (qualitative metrics) and the
inference cost (measured in floating point operations - FLOPs).

We compare the test performance of our method with different choices of the kernel S
using the examples from two comparison papers®,”.

®Maarten V. de Hoop et al. The Cost-Accuracy Trade-Off In Operator Learning With Neural
Networks.

"Lu Lu et al. “A comprehensive and fair comparison of two neural operators (with practical
extensions) based on FAIR data”.



Low-data regime

High-data regime

Burger’s | Darcy problem | Advection | | Advection Il | Hemholtz | Structural Mechanics | Navier Stokes

DeepONet 2.15% 2.91% 0.66% 15.24% 5.88% 5.20% 3.63%
POD-DeepONet 1.94% 2.32% 0.04% n/a n/a n/a n/a

FNO 1.93% 2.41% 0.22% 13.49% 1.86% 4.76% 0.26%
PCA-Net n/a n/a n/a 12.53% 2.13% 4.67% 2.65%
PARA-Net n/a n/a n/a 16.64% 12.54% 4.55% 4.09%
Linear 36.24% 6.74% 2.15 x 10~ 3% 11.28% 10.59% 27.11% 5.41%
Best of Matérn/RQ | 2.15% 2.75% 275 x 1073% 11.44% 1.00% 5.18% 0.12%

Table: Summary of numerical results: we report the L2 relative test error of our numerical
experiments and compare the kernel approach with variations of DeepONet , FNO, PCA-Net

and PARA-Net.




Let D = (0,1)? and consider the two-dimensional Darcy flow problem?:

In this case, we are interested in learning the mapping from the permeability field u to
the solution v (here f is considered fixed):

G 1 u(x) = v(x).

The coefficient u is sampled by u = (1) where u = GP(0,(—A +9/)72) is a
Gaussian random field and % is binary function.

8Lu et al., “A comprehensive and fair comparison of two neural operators (with practical
extensions) based on FAIR data”.



Inverse problem for Darcy’s flow

Method Accuracy
DeepONet 291 %
FNO 2.41 % :
POD-DeepONet 2.32 %

____________________ Input b) Output
Linear Regression 6.74 % (2) Inpu (b) Outpe

GP (Matérn kernel) | 2.75% B g T
Table: L2 relative error ) . :
on the Darcy problem. : o -

(c) True (d) Predicted (e) Relative Error



In the periodic domain D = [0, 27]?, the vorticity-stream (w — 1)) formulation of the
incompressible Navier-Stokes equations® is

%—V:—i—(v-V)w—qu:f

= —Ay

w
for=e
D
s (Ov v
N 8X27 (‘)xl
The map of interest is the map from the forcing term f to the vorticity field w at a

given time t = T:
G:f—w(,T)

%Hoop et al., The Cost-Accuracy Trade-Off In Operator Learning With Neural Networks.



Navier-Stokes

Output, Navier Stokes

Method Accuracy
DeepONet 3.63 %
FNO 0.26 %
PCA-Net 2.32 %
| Linear Regression | 5.41 % |
GP (Matérn kernel) | 0.12% T —_
N
Table: L? relative error \
on Navier-Stokes. ‘ 1

(c) True (d) Predicted (e) Error



Inference complexity: high data regime

100 Navier Stokes 100 Helmholtz 100 Structural Mechanics " Advection
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Complexity (flops)

—+— PCANet —e— DeepONet —e— ParaNet —e— FNO —&— Linear ¢ Vanilla GP ¢ GP+ PCA

Figure: Linear model refers to the linear kernel, vanilla GP is our implementation with the
nonlinear kernels and minimal preprocessing, GP+PCA corresponds to preprocessing through

PCA both the input and the output to reduce complexity.

Data taken from Hoop et al., The Cost-Accuracy Trade-Off In Operator Learning With Neural

Networks.



Our key contributions are:
® A simple, low-cost, and competitive kernel method for operator learning that is a
good baseline for many tasks.
® Theoretical guarantees for these methods.
® A general framework for doing operator learning with kernel methods.
Paper to appear in Journal of Computational Physics Pau Batlle et al. Kernel Methods
are Competitive for Operator Learning.



https://arxiv.org/abs/2304.13202

