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This talk focuses on past and ongoing work on the learning of stochastic differential
equations from data using Gaussian processes.

1 Matthieu Darcy, Boumediene Hamzi, Giulia Livieri, Houman Owhadi, and
Peyman Tavallali. “One-shot learning of stochastic differential equations with
data adapted kernels”. In: Physica D: Nonlinear Phenomena 444 (2023)

2 Ongoing work with Adriano Gualandi on learning and predicting earthquakes, and
extensions of previous work.



Motivation

The general objective of this line of work is to learn the unknown drift f and the
diffusion σ of a generic SDE:

dXt = f (Xt)dt + σ(Xt)dWt

where Xt ∈ Rd , f : Rd → Rd , σ : Rd → Rd×m.

Objective

Given samples X := (Xtn)
N
n=1 from the SDE, learn the drift f and diffusion σ.

This problem is challenging:

• The observations X come from a single (non-ergodic) trajectory.

• We make few assumptions on f and σ.

• Because of the inherent stochasticity of Wt , the observations X only provide
indirect information on f and σ.

• The sampling time-steps ∆t can introduce a discretization error.
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Problem statement

We1 considered the case where d = 1 and N is small (a few hundred data points).

dXt = f (Xt)dt + σ(Xt)dWt

where

f : R → R drift

σ : R → R diffusion.

1Matthieu Darcy, Boumediene Hamzi, Giulia Livieri, Houman Owhadi, and Peyman Tavallali.
“One-shot learning of stochastic differential equations with data adapted kernels”. In: Physica D:
Nonlinear Phenomena 444 (2023)



Method summary

Our method is summarized

1 Assume a Euler-Maruyama discretization of the dynamics.

2 Place Gaussian Process priors on f and σ and recover them using Maximum A
Posteriori (MAP) estimation.

3 Optimize the covariance/kernel functions of the Gaussian processes using
randomized cross-validation.



Step 1 : Modeling Assumption

Let Xn := Xtn . We assume the following discretization, based on the Euler-Maruyama
model:

Xn+1 = Xn + f (Xn)∆t + σ(Xn)
√
∆tξn + εn

where

ξn
d∼ N (0, 1) dynamics noise

εn
d∼ N (0, λ) modeling noise

are independent.
Defining Yn := Xn+1 − Xn, our model can be restated as

Yn = f (Xn)∆t + σ(Xn)
√
∆tξn + εn



Step 2: Gaussian process prior

We assume that f and σ are distributed according to independent Gaussian processes:

f
d∼ GP(0,K )

σ
d∼ GP(0,G ).

We recover f̄ ∈ RN and σ̄ ∈ RN , the function values at the observed data points:

f̄n := f (Xn)

σ̄n := σ(Xn).

Once we have recovered, we can predict future values of f and σ.



Step 2: MAP estimation

By Baye’s rule

p(f̄ , σ̄|Y ,X ) ∝ p(Y |f̄ , σ̄)

independence︷ ︸︸ ︷
p(f̄ |X )p(σ̄|X ) .

Using our model and our prior on f̄ and σ̄:

− ln p(f̄ , σ̄|Y ,X ) ∝ L(f̄ , σ̄) :=

− ln p(Y |f̄ ,σ̄)︷ ︸︸ ︷
(Y −∆tf̄ )T (∆tΣ+ λI )−1(Y −∆tf̄ ) +

N∑
n=1

ln(σ̄2
n∆t + λ)

+ f̄ TK (X ,X )−1f̄︸ ︷︷ ︸
− ln p(f̄ |X )

+ σ̄TG (X ,X )−1σ̄︸ ︷︷ ︸
− ln p(σ̄|X )

.

where Σ is a diagonal matrix with entries σ̄2
n.

The recovery of f , σ is reduced to the minimization of L(f̄ , σ̄).
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Step 2: Alternative minimization

Representer theorem

For any given σ̄, the minimizer in f̄ of L(f̄ , σ̄) is

f̄ ∗(σ) := argmin
f̄

L(f̄ , σ̄) = K (X ,X )∆t
(
∆t2K (X ,X ) + ∆tΣ+ λI

)−1
Y

Using the representer theorem, and plugging f̄ ∗(σ) into the original objective, the
minimization in σ is given by:

L(f̄ ∗(σ), σ).

The objective function is non-convex in σ and its minimization is done through a
gradient descent method.



Step 3: Hyper-parameter optimization

The kernel functions K ,G are parameterized by some parameter θ. We find that in
the low-data regime, learning θ is critical to good performance.
We use a variant of randomized cross-validation2 to select θ which is based on two
principles:

• Cross validation: optimize the model on a subset DΠ of the data and measure
the performance on a withheld subset DΠc .

• Randomly sample subsets (DΠ,DΠc ) randomly and use this noisy loss to optimize
the hyperparameters θ.

2Houman Owhadi and Gene Ryan Yoo. “Kernel Flows: From learning kernels from data into the
abyss”. In: Journal of Computational Physics 389 (2019), Boumediene Hamzi and Houman Owhadi.
“Learning dynamical systems from data: A simple cross-validation perspective, part I: Parametric
kernel flows”. In: Physica D: Nonlinear Phenomena 421 (2021), p. 132817



Example: Exponential decay volatility

dXt = µXtdt + b exp(−X 2
t )dWt Exponential decay volatility.

Figure: Exponential decay volatility process



Example: Exponential decay volatility

Figure: Forecast: non-learned kernel (top) and learned kernel (bottom).



Summary:

We propose a general method to learn the drift and diffusion of general SDEs from one
sample trajectory.

• We can capture a broad class of f and σ thanks to the generality of Gaussian
processes.

• We can address some level of misspecification due to a coarse ∆t.

• We provide a method learn the hyper-parameters of the GPs, which is critical for
a good performance in the low data setting.

• We can leverage the theory of kernels/GPs to obtain theoretical guarantees and
uncertainty quantification.

However, learning the diffusion σ is generally expensive when N or d is large.
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SDEs for labquakes

A recent study 3 has found that laboratory earthquakes can be accurately modeled by
a 4 dimensional stochastic differential equations:

dxt =

(
ex ((β1 − 1)x(1 + λu) + y)− u + κ

(
v0
v∗

− ex
)
− dut+λxy

1+λu + νex

1 + λu + νex

)
dt

dyt = κ

(
v0
v∗

− ex
)
dt − νexdxt + εydW

y
t

dzt = −ρex(β2x + z)dt

dut = (−α− γu)dt + dzt + εudW
u
t

However, this system depends on parameters that are very hard to estimate in practice,
and it is unknown if this model is accurate for real earthquakes.

3A. Gualandi, D. Faranda, C. Marone, M. Cocco, and G. Mengaldo. “Deterministic and stochastic
chaos characterize laboratory earthquakes”. In: Earth and Planetary Science Letters 604 (2023)



SDEs for labquakes

This is an SDE of the form:

dXt = f (Xt)dt +
√
ΓdWt

where Γ is diagonal and constant. Compared to the previous section:

• The system is in higher dimensions d = 4 and we have more data points
N = 10k − 20k .

• The noise is additive and there are good estimates for
√
Γ (no need to learn σ).

• The system is characterized by areas of high acceleration and sharp drops.

Because of the structure of the diffusion, we can apply our method to each dimension
of Xt independently.



Example

Figure: We find good recovery of the dynamics even without kernel learning.



Conclusion and future work

1 We propose a general framework to learn the drift and diffusion of SDEs which is
effective in the low data regime.

2 We apply this framework to the prediction of earthquakes under some simplifying
assumptions on the noise.

Future work focuses on two questions:

1 How can we provide rigorous theoretical guarantees and effective uncertainty
quantification of the prediction?

2 Can we learn the matrix
√
Γ? Can we extend this to “simple” σ(Xt)?

Matthieu Darcy, Boumediene Hamzi, Giulia Livieri, Houman Owhadi, and
Peyman Tavallali. “One-shot learning of stochastic differential equations with data
adapted kernels”. In: Physica D: Nonlinear Phenomena 444 (2023)


