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Talk summary

The problem

We want to solve with machine learning rough PDEs of the form

P(u) = ξ, x ∈ Ω,

u = 0, x ∈ ∂Ω
(RPDE)

• P : Ht
0(Ω) → H−s is (non-linear) differential operator.

Canonical example: P(u) = −∆u + f (u).

• u∗ ∈ Ht
0(Ω) is the solution and ξ ∈ H−s(Ω) is the forcing term.
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• u∗ ∈ Ht
0(Ω) is the solution and ξ ∈ H−s(Ω) is the forcing term.

The difficulty

Solving (RPDE) is difficult because the forcing term is rough ξ /∈ L2 and, as a result,
the solution u∗ is also irregular/rough.
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P(u) = ξ, x ∈ Ω,

u = 0, x ∈ ∂Ω
(RPDE)

• P : Ht
0(Ω) → H−s is (non-linear) differential operator.

Canonical example: P(u) = −∆u + f (u).

• u∗ ∈ Ht
0(Ω) is the solution and ξ ∈ H−s(Ω) is the forcing term.

The solution

We propose a kernel based method for solving rough PDEs using negative Sobolev
norms and weak measurements, with provable convergence.
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Motivation: Stochastic Partial Differential Equations

Stochastic Partial Differential Equations (SPDEs) are PDEs that include random
fluctuations. A general class of interest are semi-linear SPDEs with additive noise:

∂tu(t, x) = ∆u(x, t) + f (u(t, x)) + ξ(t, x) (SL-SPDE)

where:

ξ is stochastic forcing term ex: space-time white noise.

Examples

• Phase field models (Allen-Cahn equation).

• Mathematical biology (Nagumo equation).

• Filtering and sampling (Kushner–Stratonovich).
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Motivation: Solving SPDEs

Numerically solving an SPDE of the form

∂tu(t, x) = ∆u(x, t) + f (u(t, x)) + ξ(t, x) (SL-SPDE)

typically involves drawing samples of ξ and solving (SL-SPDE) for that realization.

Difficulty

Solving (SL-SPDE) is difficult because

1 The forcing term ξ /∈ L2 a.s. and is not pointwise defined.

2 The solution u∗ is irregular/rough.

This motivates us to develop methods to solve PDEs with very rough forcing terms
and/or irregular solutions.
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Solving PDEs with ML: the usual way

Machine learning methods solve PDEs by minimizing a physics informed loss:

u† := argmin
u∈S

||P(u)− ξ||2L2(Ω)︸ ︷︷ ︸
PDE data

+ ||u||2L2(∂Ω)︸ ︷︷ ︸
Boundary data

+ γR(u)︸ ︷︷ ︸
Regularization

Infinite data

⇓ Discretization

≈ argmin
u∈S

1

NΩ

NΩ∑
i=1

|P(u)(xi )− ξ(xi )|2︸ ︷︷ ︸
PDE data approximation

+
1

N∂Ω

N∂Ω∑
j=1

|u(xj)|2︸ ︷︷ ︸
Boundary approximation

+γR(u) Finite data
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1
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Three difficulties with Rough PDEs

1 The L2 norm is not appropriate.

2 Solves the PDE pointwise.

3 Requires that u∗ may be well approximated by the class S.
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PDE data approximation

+
1

N∂Ω

N∂Ω∑
j=1

|u(xj)|2︸ ︷︷ ︸
Boundary approximation

+γR(u) Finite data

Two main approaches to solving PDEs with ML

1 Physics Informed Neural networks [Raissi et al.; Tancik et al.]: the class S is a
parametric class of deep neural networks uθ.

2 Kernel methods/Gaussian Processes [Chen et al.]: the class S is a Reproducing
Kernel Hilbert Space (RKHS).
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Solving PDEs: the RKHS approach

RKHS approach [Chen et al.]: select u† in a RKHS

Solve the non-linear least-squares problem:

u† = argmin
u∈HK

1

NΩ

NΩ∑
i=1

|P(u)(xi )− ξ(xi )|2 +
1

N∂Ω

N∂Ω∑
j=1

|u(xj)|2 + γ||u||2HK︸ ︷︷ ︸
RKHS regularization

Interpreted as a MAP estimator of a Gaussian Process conditioned on non-linear
measurements.

The kernel approach has strong theoretical guarantees:

• Provable convergence (under the condition that u∗ ∈ HK ).

• Error estimates [Batlle et al.].

• Bayesian interpretation provides uncertainty quantification.
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Challenges and solutions

Three difficulties with Rough PDEs

1 The L2 norm is not appropriate.

2 Solves the PDE pointwise.

3 Requires u∗ ∈ HK for the convergence theory.

Solutions

Our main contributions are to solve the three main difficulties:

1 Using a negative Sobolev norm H−s instead of the usual L2 norm.

2 Efficient approximation of the H−s norm with weak measurements.

3 Convergence results of the method without u∗ ∈ Hk .
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A Novel Approach to Solving Rough PDEs

Modified loss adapted to the roughness of the forcing term:

uγ = argmin
u∈HK

∥P(u)− ξ∥2H−s + ||u||2L2(∂Ω) + γ∥u∥2HK
Infinite data

⇓ Discretization

uγ,N,M = argmin
u∈HK

∥P(u)− ξ∥2ΦN +
m∑
i=1

|u(xi )|2 + γ∥u∥2HK
Finite data

We provide a computationally efficient way to discretize the negative Sobolev norms
through a test space ΦN := span{φi}Ni=1 (ex: Fourier, finite element, Haar . . . ).

This method can be interpreted as solving the PDE in weak form1:

[P(u), φi ] = [ξ, φi ] i = 1, . . .N.

1See also [wPINN]
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Solving rough PDEs with kernel methods

New objective function:

uγ,N,M = argmin
u∈HK

∥P(u)− ξ∥2ΦN +
m∑
i=1

|u(xi )|2 + γ∥u∥2HK

• Minimized through a Gauss-Newton formulated on function space (very fast,
converges in < 10 steps).

• Closed form solution for linear problems.

We can also minimize this loss with a PINN uθ:

• Minimized through gradient descent (much slower than Gauss-Newton).

• Perform poorly on linear problems but are good on non-linear problems.

• Typically uses no regularziation (γ = 0).

• Requires a random Fourier layer [Tancik et al.] to learn the high frequencies.
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Convergence: Assumptions

Assumptions on the PDE

• The operator P : Ht
0 → H−s is continuous.

• The solution operator is (locally) stable

∥u − u∗∥Ht
0
≤ C∥P(u)− ξ∥H−s

Assumptions on the method

• The space ΦN is dense in H−s as N → ∞.

• The fill distance on the boundary goes to 0 as M → ∞.

• HK ↪→ Ht
0(Ω) and HK is dense in Ht

0(Ω) (satisfied for Matérn kernels).
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Convergence: Main Theorem

Theorem (Convergence to the True Solution)

Let uγ,M,N ∈ HK solve the approximate problem, then

lim
γ→0

lim
M→∞

lim
N→∞

∥∥∥uγ,M,N − u∗
∥∥∥
Ht
0

= 0.
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2D semi-linear PDE

− ν∆u + u + sin(πu) = ξ x ∈ Ω = (0, 1)× (0, 1)

u = 0 x ∈ ∂Ω

u∗ ∼
∞∑

i ,j=1

uij
(i2 + j2)1+ε

2 sin(iπx) sin(jπy), uij ∼ N (0, 1) i.i.d. ξ ∈ H−1(Ω).

Figure: Semi-linear elliptic PDE in 2D.
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2D semi-linear PDE: pointwise loss

Figure: Kernel method (top), PINN (bottom) ≥ 1.00 relative L2 error.
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2D semi-linear PDE: H−1 loss

Figure: Kernel method (top), PINN (bottom) ≈ 0.02 relative L2 error.
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Choosing the right norm is very important

When ξ ∈ H−s , s > 0.95.

Norm H−s s = 0.0 (L2) s = 0.95 s = 0.96 s = 1.0 s = 2.0

PINN error 0.312 0.0896 0.0469 0.0469 0.0740

Table: Relative L2 error for different choices of Sobolev norms as the loss function

(a) True solution (b) Unstable
(s = 0)

(c) Optimal
(s = 0.96)

(d) Overesmoothed
(s = 2)

Figure: Effect of different norms on the recovered solution.
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Time-dependent: stochastic Allen-Cahn equation

∂tu = ν∆u + u − u3 + σξ in (0, 1)

Figure: Stochastic Allen-Cahn equation.
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Conclusion

We propose a kernel-based framework for solving PDEs with irregular forcing terms.
Our theoretical contributions:

• We extend machine learning-based solvers to PDEs with weaker norms than L2

(solving the PDE in weak form).

• We leverage the RKHS structure to provide theoretical guarantees of convergence.

• Applies to linear and non-linear PDEs.

Our computational contributions:

• We provide an efficient approximation of the negative Sobolev norm.

• We show numerically that this approach is effective for kernel methods and PINNs.

• We provide empirical (and some theoretical) error rates.
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Bonus: Negative Sobolev Norm approximation

We need to compute an approximation of the negative Sobolev norm:

∥f ∥H−s ≈ ∥f ||ΦN

The recipe:

1 Choose a test space ΦN := span{φi}Ni=1 to approximate Hs (ex: Haar basis).

2 Measure f against the test space:

[f ,φ] :=
(∫

f φ1,

∫
f φ2, . . . ,

∫
f φn

)
3 Compute the stiffness matrix A ∈ RN×N ,Ai ,j :=

∫
Ω φi (−∆)sφj and it’s inverse

A−1 (can be done efficiently [Owhadi et al.]).

4 Define

∥f ∥ΦN :=
√

[f ,φ]⊺A−1[f ,φ].
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Finite dimensional problem

Finite dimensional problem

uγ,N,M = argmin
u∈HK

[P(u)− ξ,φ]A−1[P(u)− ξ,φ] +
m∑
j=1

|u(xj)|2 + γ∥u∥2HK

Weak solution

This method can be interpreted as solving the PDE in weak form:

[P(u), φi ] = [ξ, φi ] i = 1, . . .M.

This problem can be solved efficiently with the representer theorem and a non-linear
least squares optimization techniques such as a variant of the Gauss-Newton algorithm.
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1D Poisson PDE

− ν∆u + u = ξ x ∈ [0, 1]

u = 0 x ∈ {0, 1}

ξ ∼
∞∑
j=1

ξj
√
2 sin(πjx), ξj ∼ N (0, 1) i.i.d.

Here ξ ∈ H−s(Ω)for any s > 1
2 and u∗ ∈ Ht

0(Ω) for t <
3
2 .

(a) Forcing term (b) Solution (c) Pointwise error (d) L2 error
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