Kernel Methods (and Some Neural Networks) for Rough
PDEs

Ricardo Baptista ! Edoardo Calvello?

Matthieu Darcy!
Andrew M. Stuart!

Houman Owhadi !
Xianjin Yang 1

IDepartment of Computing and Mathematical Sciences
California Institute of Technology

Workshop on digital twins for inverse problems in Earth science
CIRM 2024

1/25

Talk summary

The problem

We want to solve with machine learning rough PDEs of the form

Plu)=¢&, x€Q,

(RPDE)
u=0, xe€dN

® P: H{(2) — H™* is (non-linear) differential operator.
Canonical example: P(u) = —Au + f(u).
* u* € H5(Q) is the solution and £ € H=°(Q2) is the forcing term.

2/25

Talk summary

The problem

We want to solve with machine learning rough PDEs of the form

Plu)=¢, xe€9Q,

(RPDE)
u=0, xe€dN

® P: H{(2) — H~* is (non-linear) differential operator.

Canonical example: P(u) = —Au + f(u).
* u* € H5(Q) is the solution and £ € H=°(Q) is the forcing term.

Hierarchy of spaces

t 2 —s
HE(Q) cr@c HZ

. - - s
Functions with t derivatives Dual space of Hj

2/25

Talk summary

The problem

We want to solve with machine learning rough PDEs of the form

P(u)=¢&, x€Q,

(RPDE)
u=0, xe€dN

® P: H{(2) — H~* is (non-linear) differential operator.
Canonical example: P(u) = —Au + f(u).
* u* € H5(Q2) is the solution and £ € H~5(Q2) is the forcing term.

The difficulty

Solving (RPDE) is difficult because the forcing term is rough & ¢ L2 and, as a result,
the solution u* is also irregular/rough.

2/25

Talk summary

The problem

We want to solve with machine learning rough PDEs of the form

Plu)=¢, xe€9Q,

(RPDE)
u=0, xe€dN

® P: H{(2) — H™* is (non-linear) differential operator.
Canonical example: P(u) = —Au + f(u).
* u* € H5(Q) is the solution and £ € H=°(Q2) is the forcing term.

The solution

We propose a kernel based method for solving rough PDEs using negative Sobolev
norms and weak measurements, with provable convergence.

2/25

Outline

@ Introduction and motivation

@® Machine learning for smooth PDEs
® Machine learning for rough PDEs
@ Convergence results

©® Numerical results

3/25

Table of Contents

@ Introduction and motivation

4/25

Motivation: Stochastic Partial Differential Equations

Stochastic Partial Differential Equations (SPDEs) are PDEs that include random
fluctuations. A general class of interest are semi-linear SPDEs with additive noise:

Oru(t,x) = Au(x, t) + f(u(t,x)) + £(t,x) (SL-SPDE)
where:

¢ is stochastic forcing term ex: space-time white noise.

5/25

Motivation: Stochastic Partial Differential Equations

Stochastic Partial Differential Equations (SPDEs) are PDEs that include random
fluctuations. A general class of interest are semi-linear SPDEs with additive noise:

Oru(t,x) = Au(x, t) + f(u(t,x)) + £(t,x) (SL-SPDE)
where:

¢ is stochastic forcing term ex: space-time white noise.

® Phase field models (Allen-Cahn equation).
® Mathematical biology (Nagumo equation).
® Filtering and sampling (Kushner=Stratonovich).

5/25

Motivation: Solving SPDEs

Numerically solving an SPDE of the form
Oru(t,x) = Au(x, t) + f(u(t,x)) + &(t,x) (SL-SPDE)

typically involves drawing samples of £ and solving (SL-SPDE) for that realization.

6/25

Motivation: Solving SPDEs

Numerically solving an SPDE of the form
Oru(t,x) = Au(x, t) + f(u(t,x)) + &(t,x) (SL-SPDE)

typically involves drawing samples of £ and solving (SL-SPDE) for that realization.
Difficulty

Solving (SL-SPDE) is difficult because
© The forcing term ¢ ¢ L2 a.s. and is not pointwise defined.

® The solution u* is irregular/rough.

This motivates us to develop methods to solve PDEs with very rough forcing terms
and/or irregular solutions.

6/25

Table of Contents

@® Machine learning for smooth PDEs

7/25

Solving PDEs with ML: the usual way

Machine learning methods solve PDEs by minimizing a physics informed loss:

T : 2 2 ..
ut = argmin [[P(u) = £l[i2q) + [ull2 + YR(u) Infinite data
gmin || ()V 20+ llullZ2(a0) (“)
PDE data Boundary data Regularization

8/25

Solving PDEs with ML: the usual way

Machine learning methods solve PDEs by minimizing a physics informed loss:

UT = arg min HP(U) — £Hfz(9) + ||U||i2(aQ) + 'YR(U) Infinite data
uesS -~ N . ,.
PDE data Boundary data Regularization

{ Discretization

Nag
R~ arg m|n — Z 1P(u)(xi) — &(x))* + Z lu(x)]? +yR(u) Finite data
PDE data approximation Boundary approximation

Three difficulties with Rough PDEs

® The L2 norm is not appropriate.
® Solves the PDE pointwise.
©® Requires that u™ may be well approximated by the class S.

8/25

Solving PDEs with ML: the usual way

Machine learning methods solve PDEs by minimizing a physics informed loss:

UT = arg min ||P(U) — £Hfz(9) + HUH%Q(BQ) + ’}/R(u) Infinite data
uesS -~ N . ,.
PDE data Boundary data Regularization

{ Discretization
N N
A arg miniilp(u)(x;) —E(x))? + iZaflu(xj)]2 +vR(u) Finite data
ves Na = Nog =

PDE data approximation Boundary approximation

Two main approaches to solving PDEs with ML

® Physics Informed Neural networks [Raissi et al.; Tancik et al.]: the class S is a
parametric class of deep neural networks ug.

® Kernel methods/Gaussian Processes [Chen et al.]: the class S is a Reproducing
Kernel Hilbert Space (RKHS).

8/25

Solving PDEs: the RKHS approach

RKHS approach [Chen et al.]: select u' in a RKHS

Solve the non-linear least-squares problem:

Na Naa

1 1

ul = argmin— E P (u)(xi) — £(xi)* + |u() I + 'VHUH%K
ueHgk NQ i—1 NaQ =1

= = RKHS regularization

Interpreted as a MAP estimator of a Gaussian Process conditioned on non-linear
measurements.

9/25

Solving PDEs: the RKHS approach

RKHS approach [Chen et al.]: select u' in a RKHS

Solve the non-linear least-squares problem:

Naa

T—argmln—ZU?(u)(xi) Z| u(x;))* + 7||U||3-1K

ueH Kk
RKHS regularization

Interpreted as a MAP estimator of a Gaussian Process conditioned on non-linear
measurements.
The kernel approach has strong theoretical guarantees:

® Provable convergence (under the condition that u* € H).

® Error estimates [Batlle et al.].

® Bayesian interpretation provides uncertainty quantification.

9/25

Table of Contents

® Machine learning for rough PDEs

10/25

Challenges and solutions

Three difficulties with Rough PDEs 7,

® The L2 norm is not appropriate.
® Solves the PDE pointwise.
© Requires u* € Hk for the convergence theory.

Solutions

Our main contributions are to solve the three main difficulties:
© Using a negative Sobolev norm H~* instead of the usual L? norm.
® Efficient approximation of the H™° norm with weak measurements.
® Convergence results of the method without v* € Hy.

11/25

A Novel Approach to Solving Rough PDEs

Modified loss adapted to the roughness of the forcing term:

uY = argeqr{nin |P(u) — &|I7,-« + "”H%?(afz) + 'yHqu_[K Infinite data
uetk

| Discretization

m
P = argmin [P(u) = €30+ 3 [0+l Finite data
u€Hg i=1

We provide a computationally efficient way to discretize the negative Sobolev norms
through a test space ®" :=span{y;}!; (ex: Fourier, finite element, Haar ...).

!See also [wPINN]
12/25

A Novel Approach to Solving Rough PDEs

Modified loss adapted to the roughness of the forcing term:

uY = argeqr{nin |P(u) — &|I7,-« + HUH%Q(BQ) + 'yHqu_[K Infinite data
uetk

| Discretization

m
P = argmin [P(u) = €30+ 3 [0+l Finite data
u€Hg i=1

We provide a computationally efficient way to discretize the negative Sobolev norms
through a test space ®" :=span{y;}!; (ex: Fourier, finite element, Haar ...).
This method can be interpreted as solving the PDE in weak form®:

[P(u), il =& 9] i=1,...N.

!See also [wPINN]
12/25

Solving rough PDEs with kernel methods

New objective function:

m
u MM = arg min [P(u) ~ €l + Y lua) P + 3wl
ueHg i=1

® Minimized through a Gauss-Newton formulated on function space (very fast,
converges in < 10 steps).

® Closed form solution for linear problems.

13/25

Solving rough PDEs with kernel methods

New objective function:

m
u MM = arg min [P(u) ~ €l + Y lua) P + 3wl
ueHg i=1

® Minimized through a Gauss-Newton formulated on function space (very fast,
converges in < 10 steps).

® Closed form solution for linear problems.
We can also minimize this loss with a PINN wuy:
® Minimized through gradient descent (much slower than Gauss-Newton).
® Perform poorly on linear problems but are good on non-linear problems.
® Typically uses no regularziation (v = 0).
® Requires a random Fourier layer [Tancik et al.] to learn the high frequencies.

13/25

Table of Contents

@ Convergence results

14 /25

Convergence: Assumptions

Assumptions on the PDE

® The operator P : Hf — H™* is continuous.

® The solution operator is (locally) stable

Ju = vy < ClIP(u) = &llH-

Assumptions on the method

® The space ®"V is dense in H=* as N — cc.
® The fill distance on the boundary goes to 0 as M — oo.
® Hy — H{(2) and H is dense in H{(S2) (satisfied for Matérn kernels).

15/25

Convergence: Main Theorem
Theorem (Convergence to the True Solution)
Let u""M:N € 9, solve the approximate problem, then

=0.
Hg

lim lim lim HU%M’N—U*
¥—0 M—o0co N— oo

Hy

16 /25

Table of Contents

©® Numerical results

17/25

2D semi-linear PDE

(0,1) x (0,1)

& xeQ

Tu) =

(

—vAu+ u+sin

u=0 x€0Q

[e. o]

>
ij=

¢ e HY(Q).

uj ~ N(0,1) i.id.

2sin(imx) sin(jmy),

'2)1—{—5

ujj

(i

Forcing term &

Solution u

18/25

2D semi-linear PDE: pointwise loss

Predicted solution uf

Figure: Kernel method (top), PINN (bottom) > 1.00 relative L2 error.
19/25

2D semi-linear PDE: H ! loss

Predicted solution uf

Pointwise error [u®

Figure: Kernel method (top), PINN (bottom) = 0.02 relative L2 error.
20/25

Choosing the right norm is very important

When £ € H™®,s > 0.95.

Norm H=S [s=0.0 (L?) | s=0.95|5s=096 | s=1.0][s=20
PINN error 0.312 0.0896 | 0.0469 | 0.0469 | 0.0740

Table: Relative L2 error for different choices of Sobolev norms as the loss function

True solution u* Predicted solution u' Predicted solution u' Predicted solution u'

(a) True solution (b) Unstable (c) Optimal (d) Overesmoothed
(s=0) (s = 0.96) (s=2)

Figure: Effect of different norms on the recovered solution.

21/25

Time-dependent: stochastic Allen-Cahn equation

O =vAu+u—uP+o& in(0,1)

Prediction u'
Convergence of the L? error

Prediction u'
10
0.4 06 08
x

c
05
0.0 = =
0.5 S
-10 =

10 108
Number of measurements

0.2

Figure: Stochastic Allen-Cahn equation.

22/25

Conclusion

We propose a kernel-based framework for solving PDEs with irregular forcing terms.
Our theoretical contributions:

® We extend machine learning-based solvers to PDEs with weaker norms than L2
(solving the PDE in weak form).

® We leverage the RKHS structure to provide theoretical guarantees of convergence.

® Applies to linear and non-linear PDEs.

23/25

Conclusion

We propose a kernel-based framework for solving PDEs with irregular forcing terms.
Our theoretical contributions:

® We extend machine learning-based solvers to PDEs with weaker norms than L2
(solving the PDE in weak form).

® We leverage the RKHS structure to provide theoretical guarantees of convergence.
® Applies to linear and non-linear PDEs.
Our computational contributions:
® We provide an efficient approximation of the negative Sobolev norm.
® We show numerically that this approach is effective for kernel methods and PINNs.

® We provide empirical (and some theoretical) error rates.

23/25

Preprint out soon

R. Baptista, E. Calvello, M. Darcy, H. Owhadi, A. M. Stuart, and X. Yang. Kernel
Methods for Solving Rough PDEs. 2024.

mdarcy@caltech.edu

24 /25

References |

) & & &

Batlle, Pau et al. (2023). Error Analysis of Kernel/GP Methods for Nonlinear and
Parametric PDEs. arXiv: 2305.04962 [math.NA]J.

Chen, Yifan et al. (2021). “Solving and learning nonlinear PDEs with Gaussian
processes” . In: Journal of Computational Physics.

Owhadi, Houman and Clint Scovel (Oct. 2019). Operator-Adapted Wavelets, Fast
Solvers, and Numerical Homogenization. Cambridge University Press.

Raissi, M., P. Perdikaris, and G.E. Karniadakis (2019). “Physics-informed neural
networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations”. In: Journal of Computational
Physics 378, pp. 686—707.

Tancik, Matthew et al. (2020). Fourier Features Let Networks Learn High
Frequency Functions in Low Dimensional Domains. arXiv: 2006.10739.

25 /25

https://arxiv.org/abs/2305.04962
https://arxiv.org/abs/2006.10739

Table of Contents

® Appendix: RPDE

1/5

Bonus: Negative Sobolev Norm approximation

We need to compute an approximation of the negative Sobolev norm:

1F1lr-= = [[fllon

2/5

Bonus: Negative Sobolev Norm approximation
We need to compute an approximation of the negative Sobolev norm:
[l == = ([f]|on

The recipe:
@ Choose a test space ®" :=span{p;}", to approximate H® (ex: Haar basis).

2/5

Bonus: Negative Sobolev Norm approximation
We need to compute an approximation of the negative Sobolev norm:
[l == = ([f]|on

The recipe:
@ Choose a test space ®" :=span{p;}", to approximate H® (ex: Haar basis).
® Measure f against the test space:

[,] == (/fcply/fwz,-.-,/fson)

2/5

Bonus: Negative Sobolev Norm approximation

We need to compute an approximation of the negative Sobolev norm:
[l == = ([f]|on

The recipe:
@ Choose a test space ®" :=span{p;}", to approximate H® (ex: Haar basis).
® Measure f against the test space:

[,] == (/ﬂply/f@%---a/f@n)

©® Compute the stiffness matrix A € RVN A; ;.= [0j(—A)*¢p; and it's inverse
A~ (can be done efficiently [Owhadi et al.]).

2/5

Bonus: Negative Sobolev Norm approximation

We need to compute an approximation of the negative Sobolev norm:
[l == = ([f]|on

The recipe:
@ Choose a test space ®" :=span{p;}", to approximate H® (ex: Haar basis).
® Measure f against the test space:

[,] == (/ﬂply/f@%---a/f@n)

©® Compute the stiffness matrix A € RVN A; ;.= [0j(—A)*¢p; and it's inverse
A~ (can be done efficiently [Owhadi et al.]).

O Define

[Fllon = \/IF, T A1, @]

2/5

Finite dimensional problem

Finite dimensional problem

MM = argmin[P(u) — & AN [P(w) = &0l + 3 ug) P +lulfy,
uerik j=1

Weak solution

This method can be interpreted as solving the PDE in weak form:

[P(u), 0l =&l i=1,...M.

This problem can be solved efficiently with the representer theorem and a non-linear
least squares optimization techniques such as a variant of the Gauss-Newton algorithm.

3/5

Table of Contents

@ Bonus: numerical method

4/5

1D Poisson PDE

_VAU+U:£ XG[O,].]
u=0 xe{0,1}
£~ &V2sin(mjx), & ~N(0,1)iid.
j=1
Here ¢ € H=5(Q)for any s > 3 and u* € H{(RQ) for t < 3.

Function &

Function u

Pointwise absolute error Convergence of the L? error
— Predicted . o
00 True o 10 ri1gst
1 =
G 2
N =
— = = EN
= = | =
I’/ = L) | 10~
200 ;‘“ =
ER -
100 - 10
s
10
G0 0z 01 06 o o1 06 os 1o o 0o ! o o
T x T Number of measurements
(a) Forcing term (b) Solution

(c) Pointwise error (d) L? error

5/5

