Kernel Methods for Rough PDEs

Ricardo Baptista ¹ Edoardo Calvello¹ **Matthieu Darcy**¹ Houman Owhadi ¹ Andrew M. Stuart¹ Xianjin Yang ¹

> ¹Department of Computing and Mathematical Sciences California Institute of Technology

> > SIAM UQ 2024

The problem

We want to solve with machine learning rough PDEs of the form

$$\mathcal{P}(u) = \xi, \quad x \in \Omega,$$

 $u = 0, \quad x \in \partial \Omega$ (RPDE)

• $\mathcal{P}: H_0^t(\Omega) \to H^{-s}$ is (non-linear) differential operator.

Canonical example: $\mathcal{P}(u) = \Delta u + f(u)$.

• $u^* \in H_0^t(\Omega)$ is the solution and $\xi \in H^{-s}$ is the forcing term.

Talk summary

The problem

We want to solve with machine learning rough PDEs of the form

$$\mathcal{P}(u) = \xi, \quad x \in \Omega,$$

 $u = 0, \quad x \in \partial \Omega$ (RPDE)

- $\mathcal{P}: H_0^t(\Omega) \to H^{-s}$ is (non-linear) differential operator. Canonical example: $\mathcal{P}(u) = \Delta u + f(u)$.
- $u^* \in H_0^t(\Omega)$ is the solution and $\xi \in H^{-s}$ is the forcing term.

Hierarchy of spaces $\underbrace{H_0^t(\Omega)}_{\text{Functions with } t \text{ derivatives}} \subset L^2(\Omega) \subset \underbrace{H^{-s}}_{\text{Dual space of } H_0^s}$ Iltech

Talk summary

The problem

We want to solve with machine learning rough PDEs of the form

$$\mathcal{P}(u) = \xi, \quad x \in \Omega,$$

 $u = 0, \quad x \in \partial \Omega$ (RPDE)

• $\mathcal{P}: H_0^t(\Omega) \to H^{-s}$ is (non-linear) differential operator.

Canonical example: $\mathcal{P}(u) = \Delta u + f(u)$.

• $u^* \in H_0^t(\Omega)$ is the solution and $\xi \in H^{-s}$ is the forcing term.

The difficulty

Solving (RPDE) is difficult because the forcing term is rough $\xi \notin L^2$ and, as a result, the solution u^* is also irregular/rough.

lltech

Talk summary

The problem

We want to solve with machine learning rough PDEs of the form

$$\mathcal{P}(u) = \xi, \quad x \in \Omega,$$

 $u = 0, \quad x \in \partial \Omega$ (RPDE)

• $\mathcal{P}: H_0^t(\Omega) \to H^{-s}$ is (non-linear) differential operator.

Canonical example: $\mathcal{P}(u) = \Delta u + f(u)$.

• $u^* \in H_0^t(\Omega)$ is the solution and $\xi \in H^{-s}$ is the forcing term.

The solution

We propose a kernel based method for solving rough PDEs using **negative Sobolev** norms and weak measurements, with provable convergence.

lltech

Outline

1 Introduction and motivation

2 Machine learning for smooth PDEs

3 Kernel methods for rough PDEs

4 Convergence results

5 Numerical results

Table of Contents

1 Introduction and motivation

2 Machine learning for smooth PDEs

3 Kernel methods for rough PDEs

4 Convergence results

5 Numerical results

Motivation: Stochastic Partial Differential Equations

Stochastic Partial Differential Equations (SPDEs) are PDEs that include **random fluctuations**. A general class of interest are semi-linear SPDEs with additive noise:

$$\frac{d}{dt}u(t,\mathbf{x}) = \Delta u(\mathbf{x},t) + f(u(t,\mathbf{x})) + \xi(t,\mathbf{x})$$
(SL-SPDE)

where:

ξ is space time white noise.

Motivation: Stochastic Partial Differential Equations

Stochastic Partial Differential Equations (SPDEs) are PDEs that include **random fluctuations**. A general class of interest are semi-linear SPDEs with additive noise:

$$\frac{d}{dt}u(t,\mathbf{x}) = \Delta u(\mathbf{x},t) + f(u(t,\mathbf{x})) + \xi(t,\mathbf{x})$$
(SL-SPDE)

where:

 ξ is space time white noise.

Examples

- Phase field models (Allen-Cahn equation).
- Mathematical biology (Nagumo equation).
- Filtering and sampling.

lltech

Motivation: Solving SPDEs

Numerically solving an SPDE of the form

$$\frac{d}{dt}u(t,\mathbf{x}) = \Delta u(\mathbf{x},t) + f(u(t,\mathbf{x})) + \xi(t,\mathbf{x})$$
(SL-SPDE)

typically involves drawing samples of ξ and solving (SL-SPDE) for that realization.

Motivation: Solving SPDEs

Numerically solving an SPDE of the form

$$\frac{d}{dt}u(t,\mathbf{x}) = \Delta u(\mathbf{x},t) + f(u(t,\mathbf{x})) + \xi(t,\mathbf{x})$$
(SL-SPDE)

typically involves drawing samples of ξ and solving (SL-SPDE) for that realization.

Difficulty

Solving (SL-SPDE) is difficult because

- **1** The forcing term $\xi \notin L^2$ a.s. and is not pointwise defined.
- **2** The solution u^* is irregular/rough.

This motivates us to develop methods to solve PDEs with very rough forcing terms and/or irregular solutions.

Table of Contents

Introduction and motivation

2 Machine learning for smooth PDEs

(3) Kernel methods for rough PDEs

4 Convergence results

5 Numerical results

Solving PDEs with ML

Machine learning methods are a novel way of solving PDEs in a data-driven way

$$u^{\dagger} := \underset{u \in \mathcal{S}}{\arg\min} \underbrace{\gamma_{1} ||\mathcal{P}(u) - \xi||^{2}_{L^{2}(\Omega)}}_{\text{PDE data}} + \underbrace{\gamma_{2} ||u||^{2}_{L^{2}(\partial\Omega)}}_{\text{Boundary data}} + \underbrace{\gamma_{3}\mathcal{R}(u)}_{\text{Regularization}}$$
 Infinite data

Solving PDEs with ML

Machine learning methods are a novel way of solving PDEs in a data-driven way

Solving PDEs with ML

Machine learning methods are a novel way of solving PDEs in a data-driven way

Three difficulties with Rough PDEs

- **1** The L^2 norm is not appropriate.
- Ø Solves the PDE pointwise.
- **8** Requires that u^* may be well approximated by the class S.

ltech

The **Physics Informed Neural Network** (PINN) approach selects u_{θ}^{\dagger} to be a neural network.

The **Kernel/Gaussian process approach**¹ selects u^{\dagger} from a Reproducing Kernel Hilbert Space (RKHS).

Advantages of the kernel approach

- Provable convergence.
- Uncertainty quantification.

¹Yifan Chen, Bamdad Hosseini, Houman Owhadi, and Andrew M. Stuart. "Solving and learning Caltech nonlinear PDEs with Gaussian processes". In: *Journal of Computational Physics* (2021)

Kernel Methods and Gaussian Processes

Reproducing Kernel Hilbert Space

A kernel/covariance function $\mathcal{K} : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ defines a Hilbert space of functions $\mathcal{H}_{\mathcal{K}}$ and corresponding Gaussian Process $\zeta \sim N(0, \mathcal{K})$.

Kernel Methods and Gaussian Processes

Reproducing Kernel Hilbert Space

A kernel/covariance function $\mathcal{K} : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ defines a Hilbert space of functions $\mathcal{H}_{\mathcal{K}}$ and corresponding Gaussian Process $\zeta \sim N(0, \mathcal{K})$.

GP and kernel regression

Given some noisy observations

$$u^*(x_j) = y_j + \varepsilon_j, \quad j = 1, \dots, N$$

we can recover u^* by conditioning or solving a linear least-squares problem:

$$u^{\dagger} = \mathbb{E} ig[\zeta \,|\, \zeta(x_j) = y_j + arepsilon_j ig] \quad \Longleftrightarrow \quad u^{\dagger} = rgmin_{u \in \mathcal{H}_K} \min ||u(X) - Y||^2 + \gamma ||u||^2_{\mathcal{H}_K}$$

iltech

Gaussian Processes for Solving PDEs

MAP Estimator of a GP^2

Solving a non-linear least squares

Interpreted as a MAP estimator of a GP conditioned on non-linear measurements.

Classical solution

This method solves the PDE in strong form:

$$\mathcal{P}(u)(x_i) = \xi(x_i) \quad i = 1, \dots, N$$

²Yifan Chen, Bamdad Hosseini, Houman Owhadi, and Andrew M. Stuart. "Solving and learning nonlinear PDEs with Gaussian processes". In: *Journal of Computational Physics* (2021)

Jultech

Table of Contents

1 Introduction and motivation

2 Machine learning for smooth PDEs

3 Kernel methods for rough PDEs

4 Convergence results

5 Numerical results

Challenges and solutions

Three difficulties with Rough PDEs

- **1** The L^2 norm is not appropriate.
- Ø Solves the PDE pointwise.
- **(3)** Requires $u^* \in \mathcal{H}_K$ for the convergence theory.

Solutions

Our main contributions are to solve the three main difficulties:

- **1** Using a **negative Sobolev norm** H^{-s} instead of the usual L^2 norm.
- **2** Efficient approximation of the H^{-s} norm with weak measurements.
- **3** Convergence results of the method without $u^* \in \mathcal{H}_k$.

A Novel Approach to Solving Rough PDEs

New problem

$$\begin{split} u^{\gamma} &= \operatorname*{arg\,min}_{u \in \mathcal{H}_{K}} \|\mathcal{P}(u) - \xi\|_{H^{-s}}^{2} + \gamma \|u\|_{\mathcal{H}_{K}}^{2} \quad \text{Infinite data} \\ &\text{s.t. } u = 0 \text{ on } \partial\Omega. \end{split}$$

$$\begin{split} u^{\gamma,N,M} &= \operatorname*{arg\,min}_{u\in\mathcal{H}_{K}} \|\mathcal{P}(u) - \xi\|_{V^{N}}^{2} + \gamma \|u\|_{\mathcal{H}_{K}}^{2} \quad \text{Finite data} \\ &\text{s.t. } u(x_{j}) = 0 \quad j = 1, \dots, M \text{ on } \partial\Omega. \end{split}$$

Negative Sobolev Norm approximation

To go from the infinite data problem to the finite data problem, we need to compute an approximation of the negative Sobolev norm:

 $\|f\|_{H^{-s}}\approx \|f\|_{V^N}$

³Houman Owhadi and Clint Scovel. *Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization.* Cambridge University Press, Oct. 2019

Negative Sobolev Norm approximation

To go from the infinite data problem to the finite data problem, we need to compute an approximation of the negative Sobolev norm:

 $\|f\|_{H^{-s}} \approx \|f\|_{V^N}$

Choose Test Space $V^N := \operatorname{span}\{\varphi_i\}_{i=1}^N$ (Ex: Haar basis)

$$[f,\varphi] := \Big(\int f\varphi_1, \int f\varphi_2, \ldots, \int f\varphi_n\Big), \quad A_{i,j} := \int_{\Omega} \varphi_i(-\Delta)^{-s}\varphi_j.$$

Then

$$\|f\|_{V^N} := \sqrt{[f,\varphi]^{\mathsf{T}}A[f,\varphi]}.$$

The entries of A can be efficiently computed with fast solvers for elliptic $PDEs^3$.

³Houman Owhadi and Clint Scovel. *Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization.* Cambridge University Press, Oct. 2019

Finite dimensional problem

Finite dimensional problem

$$u^{\gamma,N,M} = \arg\min_{u \in \mathcal{H}_{K}} [\mathcal{P}(u) - \xi, \varphi] A[\mathcal{P}(u) - \xi, \varphi] + \gamma ||u||_{\mathcal{H}_{K}}^{2}$$

s.t. $u(x_{j}) = 0$ $j = 1, \dots, M$ on $\partial \Omega$.

Weak solution

This method can be interpreted as solving the PDE in weak form:

$$[\mathcal{P}(u),\varphi_i]=[\xi,\varphi_i]\quad i=1,\ldots,M.$$

This problem can be solved efficiently with the representer theorem and a non-linear least squares optimization techniques such as a variant of the Gauss-Newton algorithm.^{Caltech}

Table of Contents

1 Introduction and motivation

2 Machine learning for smooth PDEs

3 Kernel methods for rough PDEs

4 Convergence results

5 Numerical results

Convergence: Assumptions

Assumptions on the PDE

- The operator $\mathcal{P}: H_0^t \to H^{-s}$ is continuous.
- The solution operator is (locally) stable

$$||u - u^*||_{H_0^t} \le C ||\mathcal{P}(u) - \xi||_{H^{-s}}$$

Assumptions on the method

- The space V^N is dense in H^{-s} as $N \to \infty$.
- The fill distance on the boundary goes to 0 as $M \to \infty$.
- $\mathcal{H}_{\mathcal{K}} \hookrightarrow H_0^t(\Omega)$ and $\mathcal{H}_{\mathcal{K}}$ is dense in $H_0^t(\Omega)$ (satisfied for Matérn kernels).

Convergence: Main Theorem

Theorem (Convergence to the True Solution)

Let $u^{\gamma,M,N} \in \mathcal{H}_{\mathcal{K}}$ solve the approximate problem, then

$$\lim_{\gamma \to 0} \lim_{M \to \infty} \lim_{N \to \infty} \left\| u^{M,N,\gamma} - u^* \right\|_{H_0^t} = 0.$$

Table of Contents

Introduction and motivation

2 Machine learning for smooth PDEs

3 Kernel methods for rough PDEs

4 Convergence results

5 Numerical results

Example: Linear Rough PDE

Example: Non-linear Rough PDE

Figure: Nonlinear PDE: $-u_{xx} + \sin(u) = f$ with periodic BC and $f(x) = \sum_{k=1}^{\infty} k^{\alpha} \xi_k \varphi_k(x)$, for $\alpha = 0.49$.

We propose a kernel-based framework for solving PDEs with irregular forcing terms which addresses 3 difficulties:

- **1** The L^2 norm is not appropriate \rightarrow Use a weaker Sobolev norm.
- **2** Requires pointwise solution \rightarrow Approximate the norm with weak measurements.
- **3** Requires that we approximate $u^* \to \text{Convergence}$ holds even when $u^* \notin \mathcal{H}_K$.

Our numerical experiments show promising initial results and we plan to extend this methodology to solving SPDEs.

mdarcy@caltech.edu