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Talk summary

The problem

We want to solve with machine learning rough PDEs of the form

Plu)=¢&, x€Q,

(RPDE)
u=0, xe€dN
® P: H{(2) — H™* is (non-linear) differential operator.
Canonical example: P(u) = Au + f(u).
* u* € H5(Q) is the solution and £ € H~* is the forcing term.
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Solving (RPDE) is difficult because the forcing term is rough & ¢ L2 and, as a result,
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We want to solve with machine learning rough PDEs of the form

Plu)=¢, xe€9Q,

(RPDE)
u=0, xe€dN

® P: H{(2) — H™* is (non-linear) differential operator.

Canonical example: P(u) = Au + f(u).
* u* € H5(Q) is the solution and £ € H™* is the forcing term.

The solution

We propose a kernel based method for solving rough PDEs using negative Sobolev

norms and weak measurements, with provable convergence. Jtech
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Motivation: Stochastic Partial Differential Equations

Stochastic Partial Differential Equations (SPDEs) are PDEs that include random
fluctuations. A general class of interest are semi-linear SPDEs with additive noise:

%u(t,x) = Au(x, £) + F(u(t,x)) + £(£,x) (SL-SPDE)

where:

£ is space time white noise.
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Stochastic Partial Differential Equations (SPDEs) are PDEs that include random
fluctuations. A general class of interest are semi-linear SPDEs with additive noise:

%u(t,x) = Au(x, £) + F(u(t,x)) + £(£,x) (SL-SPDE)

where:

£ is space time white noise.

® Phase field models (Allen-Cahn equation).
® Mathematical biology (Nagumo equation).

® Filtering and sampling.
ltech
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Motivation: Solving SPDEs

Numerically solving an SPDE of the form

%u(t,x) = Au(x, ) + F(u(t, %)) + £(£,%) (SL-SPDE)

typically involves drawing samples of £ and solving (SL-SPDE) for that realization.

Caltech

6/23



Motivation: Solving SPDEs

Numerically solving an SPDE of the form

%u(t,x) = Au(x, £) + F(u(t,x)) + £(£,x) (SL-SPDE)

typically involves drawing samples of £ and solving (SL-SPDE) for that realization.
Difficulty

Solving (SL-SPDE) is difficult because
© The forcing term ¢ ¢ L2 a.s. and is not pointwise defined.

® The solution u* is irregular/rough.

This motivates us to develop methods to solve PDEs with very rough forcing terms

and/or irregular solutions.
Caltech
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Solving PDEs with ML

Machine learning methods are a novel way of solving PDEs in a data-driven way

ul = argmin ~1||P(u) — f||f2(n) +72||U||f2(ag) + 13R(u) Infinite data
ues S
PDE data Boundary data Regularization
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Solving PDEs with ML

Machine learning methods are a novel way of solving PDEs in a data-driven way

ul == arg min v1||P(u) — §||i2(m +72||u||i2(89) + 13R(u) Infinite data
ueS ~ ~——
PDE data Boundary data  Regularization
WQ Nag
~ argmin - Z 1P(u)(x;) — E(xi) | + Z lu(x)|> +73R(u)  Finite data
uesS
j 1
PDE data approximation Boundary approximation

Three difficulties with Rough PDEs

® The L2 norm is not appropriate.
® Solves the PDE pointwise.
©® Requires that u* may be well approximated by the class S. ltech
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Solving PDEs with ML

The Physics Informed Neural Network (PINN) approach selects ug to be a neural
network.

The Kernel/Gaussian process approach?® selects ut from a Reproducing Kernel
Hilbert Space (RKHS).

Advantages of the kernel approach

® Provable convergence.

® Uncertainty quantification.

Yifan Chen, Bamdad Hosseini, Houman Owhadi, and Andrew M. Stuart. “Solving and learning caltech
nonlinear PDEs with Gaussian processes”. |n: Journal of Computational Physics (2021)
9/23



Kernel Methods and Gaussian Processes

Reproducing Kernel Hilbert Space

A kernel/covariance function K : X x X — R defines a Hilbert space of functions H g
and corresponding Gaussian Process ¢ ~ N(0, K).
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Kernel Methods and Gaussian Processes

Reproducing Kernel Hilbert Space

A kernel/covariance function K : X x X — R defines a Hilbert space of functions H g
and corresponding Gaussian Process ¢ ~ N(0, K).

GP and kernel regression

Given some noisy observations
uv(x)=yi+e, j=1,...,N
we can recover u* by conditioning or solving a linear least-squares problem:
ut=E[CI¢(g) =y t+e] = ul= agin]| 50 = Y112+ yllulf3y,

_ltech
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Gaussian Processes for Solving PDEs

MAP Estimator of a GP?

Solving a non-linear least squares
. 2 2
ut = argmin[[P(u) =€l +  Allull3,
ueHK ~—~——
PDE data RKHS regularization

s.t. u=0o0n 0N
~—_——

Boundary term

Interpreted as a MAP estimator of a GP conditioned on non-linear measurements.

Classical solution
This method solves the PDE in strong form:
Plu)(xi) =&(x) i=1,....,N

wdltech

2Yifan Chen, Bamdad Hosseini, Houman Owhadi, and Andrew M. Stuart. “Solving and learning
nonlinear PDEs with Gaussian processes”. In: Journal of Computational Physics (2021) 11/23



Table of Contents

©® Kernel methods for rough PDEs

Caltech

12/23



Challenges and solutions

Three difficulties with Rough PDEs

Xk
® The L2 norm is not appropriate.

® Solves the PDE pointwise.

© Requires u* € Hk for the convergence theory.

Solutions

Our main contributions are to solve the three main difficulties:
© Using a negative Sobolev norm H~* instead of the usual L? norm.
® Efficient approximation of the H™° norm with weak measurements.
® Convergence results of the method without v* € Hy.

Caltech
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A Novel Approach to Solving Rough PDEs

New problem

u” = arg min||P(u) — |7, + ’YHU”%{K Infinite data
uEH K

s.t. u=0 on 0Q.

u?NM = arg min||P(u) — €|3n +7l|ul?,  Finite data

ueHk

st. u(x;)=0 j=1,...,Mon 0Q.

Caltech
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Negative Sobolev Norm approximation

To go from the infinite data problem to the finite data problem, we need to compute
an approximation of the negative Sobolev norm:

[l = [If]lyw

3Houman Owhadi and Clint Scovel. Operator-Adapted Wavelets, Fast Solvers, and Numerical Caltech

Homogenization. Cambridge University Press, Oct. 2019
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Negative Sobolev Norm approximation

To go from the infinite data problem to the finite data problem, we need to compute
an approximation of the negative Sobolev norm:

[l = [If]lyw

Choose Test Space VN :=span{¢;}¥, (Ex: Haar basis)

[f, o] = </f<p1,/fg02,...,/f<p,,>, A :=/ng,-(_A)—s<pj.

Hf”V’V =V [f7 QO]TA[f7 (P]'

The entries of A can be efficiently computed with fast solvers for elliptic PDEs3.

Then

3Houman Owhadi and Clint Scovel. Operator-Adapted Wavelets, Fast Solvers, and Numerical Caltech

Homogenization. Cambridge University Press, Oct. 2019
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Finite dimensional problem

Finite dimensional problem

uTNM = argmin[P(u) — &, @lA[P(u) — &, ] + vllullF,

ueHk

st. u(x;)=0 j=1,...,Mon 0Q.

Weak solution

This method can be interpreted as solving the PDE in weak form:

[P(u), pil =[] i=1,...M.

This problem can be solved efficiently with the representer theorem and a non-linear
least squares optimization techniques such as a variant of the Gauss-Newton algorithm®a/ech
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Convergence: Assumptions

Assumptions on the PDE

® The operator P : Hf — H™* is continuous.

® The solution operator is (locally) stable

Ju = vy < ClIP(u) = &llH-

Assumptions on the method

e The space VN is dense in H=* as N — co.
® The fill distance on the boundary goes to 0 as M — oo.
® Hy — H{(2) and H is dense in H{(S2) (satisfied for Matérn kernels).
Caltech
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Convergence: Main Theorem
Theorem (Convergence to the True Solution)
Let u""M:N € 9, solve the approximate problem, then

=0.
Hg

lim lim lim HUM’N’7—U*
¥—0 M—o0co N— oo

Hy

Caltech
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Example: Linear Rough PDE

a=1.0
0.04 — v=10"
—— y=10"
— y=10
-01{ "
X
3
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-0.3]

00 02 04 06 08 1.0
X

Figure: Linear PDE: —uy, = f with Dirichlet BC for f(x) = > ; kékpi(x) and eigenfunction
measurements.
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Example:

Non-linear Rough PDE

N=10
N=100
N=1000

10-2 1071

Uy, y(x)

N =1000
1<
o<
_1<
— — y=10"
— y=10"! — y=10"°
_p]— y=107? — y=10"°
— y=10"
0.0 0.2 0.4 0.6 0.8
X

1.0

Figure: Nonlinear PDE: —u,, + sin(u) = f with periodic BC and f(x) = Y2, k“&kpk(x), for

a = 0.49.
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We propose a kernel-based framework for solving PDEs with irregular forcing terms
which addresses 3 difficulties:

® The L2 norm is not appropriate — Use a weaker Sobolev norm.
® Requires pointwise solution — Approximate the norm with weak measurements.
©® Requires that we approximate u* — Convergence holds even when u* ¢ H.

Our numerical experiments show promising initial results and we plan to extend this
methodology to solving SPDEs.

mdarcy@caltech.edu
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