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Talk summary

The problem

We want to solve with machine learning rough PDEs of the form

P(u) = ξ, x ∈ Ω,

u = 0, x ∈ ∂Ω
(RPDE)

• P : Ht
0(Ω) → H−s is (non-linear) differential operator.

Canonical example: P(u) = ∆u + f (u).

• u∗ ∈ Ht
0(Ω) is the solution and ξ ∈ H−s is the forcing term.
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Canonical example: P(u) = ∆u + f (u).

• u∗ ∈ Ht
0(Ω) is the solution and ξ ∈ H−s is the forcing term.

The difficulty

Solving (RPDE) is difficult because the forcing term is rough ξ /∈ L2 and, as a result,
the solution u∗ is also irregular/rough.
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We want to solve with machine learning rough PDEs of the form

P(u) = ξ, x ∈ Ω,

u = 0, x ∈ ∂Ω
(RPDE)

• P : Ht
0(Ω) → H−s is (non-linear) differential operator.

Canonical example: P(u) = ∆u + f (u).

• u∗ ∈ Ht
0(Ω) is the solution and ξ ∈ H−s is the forcing term.

The solution

We propose a kernel based method for solving rough PDEs using negative Sobolev
norms and weak measurements, with provable convergence.
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Motivation: Stochastic Partial Differential Equations

Stochastic Partial Differential Equations (SPDEs) are PDEs that include random
fluctuations. A general class of interest are semi-linear SPDEs with additive noise:

d

dt
u(t, x) = ∆u(x, t) + f (u(t, x)) + ξ(t, x) (SL-SPDE)

where:

ξ is space time white noise.

Examples

• Phase field models (Allen-Cahn equation).

• Mathematical biology (Nagumo equation).

• Filtering and sampling.
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Motivation: Solving SPDEs

Numerically solving an SPDE of the form

d

dt
u(t, x) = ∆u(x, t) + f (u(t, x)) + ξ(t, x) (SL-SPDE)

typically involves drawing samples of ξ and solving (SL-SPDE) for that realization.

Difficulty

Solving (SL-SPDE) is difficult because

1 The forcing term ξ /∈ L2 a.s. and is not pointwise defined.

2 The solution u∗ is irregular/rough.

This motivates us to develop methods to solve PDEs with very rough forcing terms
and/or irregular solutions.
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Solving PDEs with ML

Machine learning methods are a novel way of solving PDEs in a data-driven way

u† := argmin
u∈S

γ1||P(u)− ξ||2L2(Ω)︸ ︷︷ ︸
PDE data

+ γ2||u||2L2(∂Ω)︸ ︷︷ ︸
Boundary data

+ γ3R(u)︸ ︷︷ ︸
Regularization

Infinite data

≈ argmin
u∈S

γ1
NΩ

NΩ∑
i=1

|P(u)(xi )− ξ(xi )|2︸ ︷︷ ︸
PDE data approximation

+
γ2
N∂Ω

N∂Ω∑
j=1

|u(xj)|2︸ ︷︷ ︸
Boundary approximation

+γ3R(u) Finite data

Three difficulties with Rough PDEs

1 The L2 norm is not appropriate.

2 Solves the PDE pointwise.

3 Requires that u∗ may be well approximated by the class S.
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Solving PDEs with ML

The Physics Informed Neural Network (PINN) approach selects u†θ to be a neural
network.
The Kernel/Gaussian process approach1 selects u† from a Reproducing Kernel
Hilbert Space (RKHS).

Advantages of the kernel approach

• Provable convergence.

• Uncertainty quantification.

1Yifan Chen, Bamdad Hosseini, Houman Owhadi, and Andrew M. Stuart. “Solving and learning
nonlinear PDEs with Gaussian processes”. In: Journal of Computational Physics (2021)
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Kernel Methods and Gaussian Processes

Reproducing Kernel Hilbert Space

A kernel/covariance function K : X × X → R defines a Hilbert space of functions HK

and corresponding Gaussian Process ζ ∼ N(0,K ).

GP and kernel regression

Given some noisy observations

u∗(xj) = yj + εj , j = 1, . . . ,N

we can recover u∗ by conditioning or solving a linear least-squares problem:

u† = E
[
ζ | ζ(xj) = yj + εj

]
⇐⇒ u† = argmin

u∈HK

||u(X )− Y ||2 + γ||u||2HK
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Gaussian Processes for Solving PDEs

MAP Estimator of a GP2

Solving a non-linear least squares

u† = argmin
u∈HK

||P(u)− ξ||2L2︸ ︷︷ ︸
PDE data

+ γ||u||2HK︸ ︷︷ ︸
RKHS regularization

s.t. u = 0 on ∂Ω︸ ︷︷ ︸
Boundary term

Interpreted as a MAP estimator of a GP conditioned on non-linear measurements.

Classical solution

This method solves the PDE in strong form:

P(u)(xi ) = ξ(xi ) i = 1, . . . ,N

2Yifan Chen, Bamdad Hosseini, Houman Owhadi, and Andrew M. Stuart. “Solving and learning
nonlinear PDEs with Gaussian processes”. In: Journal of Computational Physics (2021) 11 / 23
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Challenges and solutions

Three difficulties with Rough PDEs

1 The L2 norm is not appropriate.

2 Solves the PDE pointwise.

3 Requires u∗ ∈ HK for the convergence theory.

Solutions

Our main contributions are to solve the three main difficulties:

1 Using a negative Sobolev norm H−s instead of the usual L2 norm.

2 Efficient approximation of the H−s norm with weak measurements.

3 Convergence results of the method without u∗ ∈ Hk .

13 / 23



A Novel Approach to Solving Rough PDEs

New problem

uγ = argmin
u∈HK

∥P(u)− ξ∥2H−s + γ∥u∥2HK
Infinite data

s.t. u = 0 on ∂Ω.

uγ,N,M = argmin
u∈HK

∥P(u)− ξ∥2VN + γ∥u∥2HK
Finite data

s.t. u(xj) = 0 j = 1, . . . ,M on ∂Ω.
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Negative Sobolev Norm approximation

To go from the infinite data problem to the finite data problem, we need to compute
an approximation of the negative Sobolev norm:

∥f ∥H−s ≈ ∥f ||VN

Choose Test Space V N := span{φi}Ni=1 (Ex: Haar basis)

[f ,φ] :=
(∫

f φ1,

∫
f φ2, . . . ,

∫
f φn

)
, Ai ,j :=

∫
Ω
φi (−∆)−sφj .

Then
∥f ∥VN :=

√
[f ,φ]⊺A[f ,φ].

The entries of A can be efficiently computed with fast solvers for elliptic PDEs3.

3Houman Owhadi and Clint Scovel. Operator-Adapted Wavelets, Fast Solvers, and Numerical
Homogenization. Cambridge University Press, Oct. 2019
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Finite dimensional problem

Finite dimensional problem

uγ,N,M = argmin
u∈HK

[P(u)− ξ,φ]A[P(u)− ξ,φ] + γ∥u∥2HK

s.t. u(xj) = 0 j = 1, . . . ,M on ∂Ω.

Weak solution

This method can be interpreted as solving the PDE in weak form:

[P(u), φi ] = [ξ, φi ] i = 1, . . .M.

This problem can be solved efficiently with the representer theorem and a non-linear
least squares optimization techniques such as a variant of the Gauss-Newton algorithm.
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Convergence: Assumptions

Assumptions on the PDE

• The operator P : Ht
0 → H−s is continuous.

• The solution operator is (locally) stable

∥u − u∗∥Ht
0
≤ C∥P(u)− ξ∥H−s

Assumptions on the method

• The space VN is dense in H−s as N → ∞.

• The fill distance on the boundary goes to 0 as M → ∞.

• HK ↪→ Ht
0(Ω) and HK is dense in Ht

0(Ω) (satisfied for Matérn kernels).
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Convergence: Main Theorem

Theorem (Convergence to the True Solution)

Let uγ,M,N ∈ HK solve the approximate problem, then

lim
γ→0

lim
M→∞

lim
N→∞

∥∥∥uM,N,γ − u∗
∥∥∥
Ht
0

= 0.
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Example: Linear Rough PDE
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Figure: Linear PDE: −uxx = f with Dirichlet BC for f (x) =
∑∞

k=1 kξkφk(x) and eigenfunction
measurements.
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Example: Non-linear Rough PDE
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Figure: Nonlinear PDE: −uxx + sin(u) = f with periodic BC and f (x) =
∑∞

k=1 k
αξkφk(x), for

α = 0.49.
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Conclusion

We propose a kernel-based framework for solving PDEs with irregular forcing terms
which addresses 3 difficulties:

1 The L2 norm is not appropriate → Use a weaker Sobolev norm.

2 Requires pointwise solution → Approximate the norm with weak measurements.

3 Requires that we approximate u∗ → Convergence holds even when u∗ /∈ HK .

Our numerical experiments show promising initial results and we plan to extend this
methodology to solving SPDEs.

mdarcy@caltech.edu
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