Kernel Methods are Competitive for Operator Learning

Pau Batlle ${ }^{1}$, Matthieu Darcy ${ }^{1}$, Bamdad Hosseini ${ }^{2}$, Houman Owhadi ${ }^{1}$

${ }^{1}$ California Institute of Technology ${ }^{2}$ University of Washington

Table of Contents

(1) Operator Learning for PDEs
(2) A general framework for operator learning with kernels
(3) Simple kernel methods for operator learning
(4) Numerics

Accuracy results
The Complexity-Accuracy tradeoff
(5) Theoretical guarantees

The operator learning problem

The operator learning problem (informal version)
Let $\left\{u_{i}, v_{i}\right\}_{i=1}^{N}$ be N elements of $\mathcal{U} \times \mathcal{V}$ such that

$$
\mathcal{G}^{\dagger}\left(u_{i}\right)=v_{i}, \quad \text { for } i=1, \ldots, N .
$$

The operator learning problem is summarized as :
Given the data $\left\{u_{i}, v_{i}\right\}_{i=1}^{N}$ approximate \mathcal{G}^{\dagger}.

Throughout this talk
\mathcal{U} is a space of functions $u: \Omega \rightarrow \mathbb{R}$
\mathcal{V} is a space of functions $v: D \rightarrow \mathbb{R}$.

Operator learning for PDEs

In the case where \mathcal{G}^{\dagger} arises from a PDE, operator learning is effective for building surrogate models that are cheaper than traditional numerical solvers while retaining accuracy. Past work has focused on the use of Operator Neural Networks ${ }^{123}$.

[^0]
In this talk

We propose a family of kernel based-methods that are simple, fast and competitive in accuracy. The methods are natural benchmarks for more complex method.

Table of Contents

(1) Operator Learning for PDEs
(2) A general framework for operator learning with kernels
(3) Simple kernel methods for operator learning
(4) Numerics

Accuracy results
The Complexity-Accuracy tradeoff
(5) Theoretical guarantees

The operator learning problem

The operator learning problem

Let $\left\{u_{i}, v_{i}\right\}_{i=1}^{N}$ be N elements of $\mathcal{U} \times \mathcal{V}$ such that

$$
\mathcal{G}^{\dagger}\left(u_{i}\right)=v_{i}, \quad \text { for } i=1, \ldots, N .
$$

Let $\phi: \mathcal{U} \rightarrow \mathbb{R}^{m}$ and $\varphi: \mathcal{V} \rightarrow \mathbb{R}^{n}$ be bounded linear operators.
Given the data $\left\{\phi\left(u_{i}\right), \varphi\left(v_{i}\right)\right\}_{i=1}^{N}$ approximate \mathcal{G}^{\dagger}.

The operator-measure pair

The data is often assumed to be sampled $u_{i} \sim \mu$ independently so that each data pair $\left(u_{i}, v_{i}\right)$ can be seen as a sample from the measure $(\mathrm{Id}, \mathcal{G})^{\#} \mu$ supported on $\mathcal{U} \times \mathcal{V}$. The operator learning problem generally depends on the operator \mathcal{G}^{\dagger} and the measure μ.

Diagram summary

The operator learning problem
Given the data $\left\{\phi\left(u_{i}\right), \varphi\left(v_{i}\right)\right\}_{i=1}^{N}$ approximate \mathcal{G}^{\dagger} :

$$
\mathcal{G}^{\dagger}\left(u_{i}\right)=v_{i}, \quad \text { for } i=1, \ldots, N
$$

Diagram summary

Summary of our method

Our method can be summarized in two steps:
(1) Define the reconstructions ψ and χ as the optimal recovery map.
(2) Approximate the function f^{\dagger} using a operator valued kernel.

Optimal recovery

We will assume that \mathcal{U} and \mathcal{V} are RKHSs arising from kernels Q and K respectively. The reconstruction operators are defined as optimal recovery maps

$$
\begin{array}{llll}
\psi(\phi(u)):=\underset{w \in \mathcal{U}}{\arg \min }\|w\|_{Q} & \text { s.t. } & \phi(w)=\phi(u), \\
\chi(\varphi(v)):=\underset{w \in \mathcal{V}}{\arg \min }\|w\|_{K} & \text { s.t. } & \varphi(w)=\varphi(v),
\end{array}
$$

The maps are the minmax optimal recovery of u and v respectively ${ }^{4}$. In our example problem, our optimal recovery maps can be expressed in closed form using standard representer theorems for kernel interpolation:

$$
\psi(\phi(u))=(Q \phi) Q(\phi, \phi)^{-1} \phi(u), \quad \chi(\varphi(v))=(K \varphi) K(\varphi, \varphi)^{-1} \varphi(v)
$$

[^1]
Optimal recovery: example

Consider the case where the measurements are pointwise values of the functions:

$$
\phi: u \mapsto\left(u\left(x_{1}\right), u\left(x_{2}\right), \ldots, u\left(x_{m}\right)\right)^{T} \quad \text { and } \quad \varphi: v \mapsto\left(v\left(y_{1}\right), v\left(y_{2}\right), \ldots, v\left(y_{n}\right)\right)^{T}
$$

Then the previous formulae become the standard kernel regression solutions

$$
\psi(\phi(u))(x)=Q(x, X) Q(X, X)^{-1} \phi(u) \quad \text { and } \quad \chi(\varphi(v))(y)=K(y, Y) K(Y, Y)^{-1} \varphi(v)
$$

Recovery of f^{\dagger}

Once the reconstruction operators ψ and χ are defined, our best strategy is to reconstruct f^{\dagger} in the diagram:

$$
\bar{f} \approx f^{\dagger}:=\varphi \circ \mathcal{G}^{\dagger} \circ \psi
$$

and to approximate the operator \mathcal{G}^{\dagger} with the operator

$$
\overline{\mathcal{G}}:=\chi \circ \bar{f} \circ \phi .
$$

Recovery of f^{\dagger}

We approximate $f^{\dagger}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ by optimal recovery in a vector valued RKHS. Let $\Gamma: \mathbb{R}^{m} \times \mathbb{R}^{m} \rightarrow \mathcal{L}\left(\mathbb{R}^{n}\right)$ be an matrix valued kernel with $\mathrm{RKHS} \mathcal{H}_{\Gamma}$ equipped with the norm $\|\cdot\|_{\Gamma}$ and proceed to approximate f^{\dagger} by the map \bar{f} defined as

$$
\bar{f}:=\underset{f \in \mathcal{H}_{\Gamma}}{\arg \min }\|f\|_{\Gamma} \quad \text { s.t. } \quad f\left(\phi\left(u_{i}\right)\right)=\varphi\left(v_{i}\right) \quad \text { for } \quad i=1, \ldots, N .
$$

This map can also be expressed in closed form

$$
\bar{f}:=\Gamma(\cdot, \mathbf{U}) \Gamma(\mathbf{U}, \mathbf{U})^{-1} \mathbf{V}
$$

where $U_{i}:=\phi\left(u_{i}\right)$ and $V_{i}:=\varphi\left(v_{i}\right)$. For pointwise measurements, the final expression for $\overline{\mathcal{G}}$ is

$$
\overline{\mathcal{G}}[u]=K(\cdot, X) K(X, X)^{-1} \Gamma(\phi(u), \mathbf{U}) \Gamma(\mathbf{U}, \mathbf{U})^{-1} \mathbf{V}
$$

Measurement invariance

Mesh invariance is a key property for operator learning methods: this translates to being able to predict the output of a test input function \tilde{u} with a new $\tilde{\phi}(\tilde{u})$. We can do this by using the optimal recovery map $\tilde{\psi}$ that is defined from $\tilde{\phi}$. This gives a new function h^{\dagger} which is approximated by

$$
\bar{h}:=\tilde{\varphi} \circ \chi \circ \bar{f} \circ \phi \circ \tilde{\psi} \equiv \tilde{\varphi} \circ \overline{\mathcal{G}} \circ \tilde{\psi} .
$$

Figure: Mesh invariance of the method.

Table of Contents

(1) Operator Learning for PDEs
(2) A general framework for operator learning with kernels
(3) Simple kernel methods for operator learning
(4) Numerics

Accuracy results
The Complexity-Accuracy tradeoff
(5) Theoretical guarantees

A simple choice of kernels: diagonal kernels

The (simplest) choice of Γ is the diagonal kernel

$$
\Gamma\left(\boldsymbol{u}, \boldsymbol{u}^{\prime}\right)=S\left(\boldsymbol{u}, \boldsymbol{u}^{\prime}\right) \boldsymbol{I}_{n \times n}
$$

where $S\left(\boldsymbol{u}, \boldsymbol{u}^{\prime}\right)$ is an arbitrary, real valued kernel. This is equivalent to recovering the vector valued $f^{\dagger}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ independently component wise:

$$
\bar{f}_{j}:=\underset{h \in \mathcal{H}_{S}}{\arg \min }\|h\|_{S} \quad \text { s.t. } \quad h\left(\phi\left(u_{i}\right)\right)=\left(\varphi\left(v_{i}\right)\right)_{j} \quad \text { for } \quad i=1, \ldots, N .
$$

which also has closed form solution given by kernel regression:

$$
\bar{f}_{j}(\boldsymbol{u})=S(\boldsymbol{u}, U) S(U, U)^{-1} \boldsymbol{v}_{j}
$$

where $U_{i}:=\phi\left(u_{i}\right)$ and $V_{i}:=\varphi\left(v_{i}\right)$.

Why such a simple method?

The kernel S can be a standard kernel such as the linear ${ }^{5}$, squared exponential or Matérn kernel. This simple choice already offers several advantages:
(1) Low cost in training (<5 seconds on a workstation) and at inference (in the low-medium data regime).
(2) Competitive accuracy.
(3) Empirically robust to choice of hyper-parameters/kernels.
(4) Simple to implement: several libraries solve this problem out of the box.
(5) The Gaussian process interpretation provides uncertainty quantification.
(6) Convergence guarantees.

[^2]
Table of Contents

(1) Operator Learning for PDEs
(2) A general framework for operator learning with kernels
(3) Simple kernel methods for operator learning
(4) Numerics

Accuracy results
The Complexity-Accuracy tradeoff
(5) Theoretical guarantees

Complexity-accuracy tradeoff

We evaluate our method in the cost-accuracy tradeoff. The accuracy is measured in terms of the relative risk:

$$
\mathcal{R}(\mathcal{G})=\mathbb{E}_{u \sim \mu}\left[\frac{\left\|\mathcal{G}(u)-\mathcal{G}^{\dagger}(u)\right\|_{\mathcal{V}}}{\left\|\mathcal{G}^{\dagger}(u)\right\|_{\mathcal{V}}}\right] \approx \frac{1}{N} \sum_{i=1}^{N}\left[\frac{\left\|\mathcal{G}\left(u_{i}\right)-\mathcal{G}^{\dagger}\left(u_{i}\right)\right\|_{\mathcal{V}}}{\left\|\mathcal{G}^{\dagger}\left(u_{i}\right)\right\|_{\mathcal{V}}}\right]
$$

The cost of a method comes from:

- The training cost (qualitative metrics).
- The inference cost (can be measured in floating point operations - FLOPs).

We compare the test performance of our method using the examples from two comparison papers ${ }^{6},{ }^{7}$ and the best-reported test relative L^{2} loss.

[^3]
Summary of results: accuracy

	Low-data regime			High-data regime			
	Burger's	Darcy problem	Advection I	Advection II	Hemholtz	Structural Mechanics	Navier Stokes
DeepONet	2.15%	2.91%	0.66%	15.24%	5.88%	5.20%	
POD-DeepONet	1.94%	2.32%	0.04%	n / a	n / a	$\mathrm{n} \%$	n / a
FNO	1.93%	2.41%	0.22%	13.49%	1.86%	4.76%	
PCA-Net	n / a	n / a	n / a	12.53%	2.13%	0.26%	4.67%
PARA-Net	n / a	n / a	n / a	16.64%	12.54%	2.65%	4.55%
Linear	36.24%	6.74%	$2.15 \times 10^{-13} \%$	11.28%	10.59%	2.09%	2.11%
Best of Matérn/RQ	2.15%	2.75%	$2.75 \times 10^{-3 \%} \%$	11.44%	1.00%		5.18%

Table: Summary of numerical results: we report the L^{2} relative test error of our numerical experiments and compare the kernel approach with variations of DeepONet, FNO, PCA-Net and PARA-Net. We considered two choices of the kernel S, the rational quadratic and the Matérn, but we observed little difference between the two.

Inverse problem for Darcy's flow

Let $D=(0,1)^{2}$ and consider the two-dimensional Darcy flow problem ${ }^{8}$:

$$
\begin{aligned}
-\nabla \cdot(u(x) \nabla v(x)) & =f, & & x \in D \\
v(x) & =0, & & \partial D
\end{aligned}
$$

In this case, we are interested in learning the mapping from the permeability field u to the solution v (here f is considered fixed):

$$
\mathcal{G}^{\dagger}: u(x) \mapsto v(x) .
$$

The coefficient u is sampled by $u=\psi(\mu)$ where $\mu=\mathcal{G} \mathcal{P}\left(0,(-\Delta+9 /)^{-2}\right)$ is a Gaussian random field and ψ is binary function.
${ }^{8} \mathrm{Lu}$ et al., "A comprehensive and fair comparison of two neural operators (with practical extensions) based on FAIR data".

Inverse problem for Darcy's flow

Method	Accuracy
DeepONet	2.91%
FNO	2.41%
POD-DeepONet	2.32%
Linear Regression	$-\overline{7} \overline{7} \overline{\%} \bar{\sigma}^{-}$
GP (Matérn kernel)	2.75%

Table: L^{2} relative error on the Darcy problem.

Input, Darcy's flow

(a) Input

True: Darrys \& Alaw

(c) True

Output, Darcy's flow

(b) Output

(d) Predicted
(e) Relative Error

Navier-Stokes

In the periodic domain $\mathcal{D}=[0,2 \pi]^{2}$, the vorticity-stream $(\omega-\psi)$ formulation of the incompressible Navier-Stokes equations ${ }^{9}$ is

$$
\begin{aligned}
\frac{\partial w}{\partial t}+(v \cdot \nabla) \omega-\nu \Delta \omega & =f \\
\omega & =-\Delta \psi \\
\int_{D} \psi & =0 \\
v & =\left(\frac{\partial \psi}{\partial x_{2}},-\frac{\partial \psi}{\partial x_{1}}\right)
\end{aligned}
$$

The map of interest is the map from the forcing term f to the vorticity field w at a given time $t=T$:

$$
\mathcal{G}: f \mapsto w(\cdot, T)
$$

[^4]
Navier-Stokes

Method	Accuracy
DeepONet	3.63%
FNO	0.26%
PCA-Net	2.32%
Linear Regression	$-\overline{5} \overline{1} \overline{1} \bar{\sigma}^{-}$
GP (Matérn kernel)	0.12%

Table: L^{2} relative error on Navier-Stokes.

Input, Navier Stokes

(a) Input

Output, Navier Stokes

(b) Output

Prusidetel. Navier Stakes

(d) Predicted

(e) Error

Two versions of the advection problem

Let $D=(0,1)$ and consider the one-dimensional wave advection equation:

$$
\begin{array}{ll}
\frac{\partial v}{\partial t}+\frac{\partial v}{\partial x}=0 & x \in(0,1), t \in(0,1] \\
v(x, 0)=u_{0}(x) & x \in(0,1)
\end{array}
$$

with periodic boundary conditions. We learn the operator mapping the initial condition to the solution at time $t=0.5$:

$$
\mathcal{G}: u_{0}(x) \mapsto v(x, 0.5)
$$

The two versions differ in their initial conditions ${ }^{10},{ }^{11}$:

$$
\begin{array}{lll}
u_{0}(x)=h \mathbf{1}_{\left\{c-\frac{w}{2}, c+\frac{w}{2}\right\}} & (c, w, h) \sim \mathcal{U} & \text { (Advection I) } \\
u_{0}(x)=-1+2 \mathbf{1}\left\{\tilde{u}_{0} \geq 0\right\} & \tilde{u}_{0} \sim \mathcal{G P}\left(0,\left(-\Delta+3^{2}\right)^{-2}\right) & \text { (Advection II) }
\end{array}
$$

[^5]
Two versions of the advection problem

Advection I

(a) Advection I: initial condition

Advection II

(b) Advection II: initial condition

Figure: The two versions of the advection problem

Advection I

Advection I

Method	Accuracy
DeepONet	0.66%
FNO	0.22%
POD-DeepONet	0.04%
Linear Regression	$\overline{2} \overline{15} \times \overline{1} \overline{1} \overline{-13} \overline{-130}$
GP (Matérn kernel)	$2.75 \times 10^{-36} \%$

Table: L^{2} relative error for the advection I.

(a) Input

Predicted, Advection I

(b) Prediction by Linear regression

Advection II

Method	Accuracy
FNO	13.49%
DeepONet	15.24%
PCA-Net	12.53%
Linear Regression	11.28%
GP (Matérn kernel)	11.44%

Table: L^{2} relative error for advection II.

(a) Prediction by Linear regression

Inference complexity: high data regime

Figure: Linear model refers to the linear kernel, vanilla GP is our implementation with the nonlinear kernels and minimal preprocessing, GP+PCA corresponds to preprocessing through PCA both the input and the output to reduce complexity.

Table of Contents

(1) Operator Learning for PDEs
(2) A general framework for operator learning with kernels
(3) Simple kernel methods for operator learning
(4) Numerics

Accuracy results
The Complexity-Accuracy tradeoff
(5) Theoretical guarantees

Assumptions

Suppose that
\mathcal{U} is an RKHS of functions $u: \Omega \rightarrow \mathbb{R}$
\mathcal{V} is an RKHS of functions $v: D \rightarrow \mathbb{R}$.

Assumption (Assumptions for the reconstruction operators)

- Regularity of the domains Ω and $D . \Omega$ and D are compact sets of finite dimensions d_{Ω} and d_{D} and with Lipschitz boundary.
- Regularity of the kernels Q and K. Assume that $\mathcal{H}_{Q} \subset H^{s}(\Omega)$ and $\mathcal{H}_{K} \subset H^{t}(D)$ for some $s>d_{\Omega} / 2$ and some $t>d_{D} / 2$ with inclusions indicating continuous embeddings.
- Space filling property of collocation points. The fill distance between the collocation points $\left\{X_{i}\right\}_{i=1}^{n} \subset \Omega$ and the $\left\{Y_{j}\right\}_{j=1}^{m} \subset D$ goes to zero as $n \rightarrow \infty$ and $m \rightarrow \infty$.

For $R>0$, write $B_{R}\left(\mathcal{H}_{Q}\right)$ for the unit ball of \mathcal{H}_{Q} of radius R.

Assumption (Assumptions for the approximation of \mathcal{G}^{\dagger})

- Regularity of the operator \mathcal{G}^{\dagger}. The operator \mathcal{G}^{\dagger} is continuous from $H^{s^{\prime}}(\Omega)$ to \mathcal{H}_{K} for some $s^{\prime} \in(0, s)$ as well as from \mathcal{U} to \mathcal{V} and all its Fréchet derivatives are bounded on $B_{R}\left(\mathcal{H}_{Q}\right)$ for any $R>0$.
- Regularity of the kernels S^{n}. Assume that for any $n \geq 1$ and any compact subset Υ of \mathbb{R}^{n}, the RKHS of S^{n} restricted to Υ is contained in $H^{r}(\Upsilon)$ for some $r>n / 2$ and contains $H^{r^{\prime}}(\Upsilon)$ for some $r^{\prime}>0$ that may depend on n.
- Resolution and space-filling property of the data Assume that for n sufficiently large, the data points $\left(u_{i}\right)_{i=1}^{N} \subset B_{R}\left(\mathcal{H}_{Q}\right)$ belong to the range of ψ^{n} and are space filling in the sense that they become dense in $\phi^{n}\left(B_{R}\left(\mathcal{H}_{Q}\right)\right)$ as $N \rightarrow \infty$.

Convergence result

Under the Assumptions 1, 2, we have the following theorem

Theorem (Condensed version of Main Theorem)

Then, for all $t^{\prime} \in(0, t)$,

$$
\lim _{n, m \rightarrow \infty} \lim _{N \rightarrow \infty} \sup _{u \in B_{R}\left(\mathcal{H}_{Q}\right)}\left\|\mathcal{G}^{\dagger}(u)-\chi^{m} \circ \bar{f}_{N}^{m, n} \circ \phi^{n}(u)\right\|_{H^{t^{\prime}(D)}} \rightarrow 0
$$

Future work will focus on generalizing these results and removing some of the more restrictive assumptions.

Conclusion

Our key contributions are:

- A simple, low-cost, and competitive kernel method for operator learning that is a good baseline for many tasks.
- Preliminary theoretical guarantees for these methods.

Paper out on arxiv Pau Batlle et al. Kernel Methods are Competitive for Operator Learning. 2023. arXiv: 2304.13202

[^0]: ${ }^{1}$ Zongyi Li et al. Fourier Neural Operator for Parametric Partial Differential Equations. 2020.
 ${ }^{2}$ Lu Lu et al. "Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators". In: Nature Machine Intelligence 3.3 (2021), pp. 218-229.
 ${ }^{3}$ Kaushik Bhattacharya et al. Model Reduction and Neural Networks for Parametric PDEs. 2021. arXiv: 2005.03180 [math.NA].

[^1]: ${ }^{4}$ Houman Owhadi and Clint Scovel. Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization: From a Game Theoretic Approach to Numerical Approximation and Algorithm Design. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, 2019.

[^2]: ${ }^{5}$ Equivalent to doing linear regression

[^3]: ${ }^{6}$ Maarten V. de Hoop et al. The Cost-Accuracy Trade-Off In Operator Learning With Neural Networks. 2022.
 ${ }^{7}$ Lu Lu et al. "A comprehensive and fair comparison of two neural operators (with practical extensions) based on FAIR data". In: Computer Methods in Applied Mechanics and Engineering 393 (2022), p. 114778. ISSN: 0045-7825.

[^4]: ${ }^{9}$ Hoop et al., The Cost-Accuracy Trade-Off In Operator Learning With Neural Networks.

[^5]: ${ }^{10} \mathrm{Lu}$ et al., "A comprehensive and fair comparison of two neural operators (with practical extensions) based on FAIR data".
 ${ }^{11}$ Hoop et al., The Cost-Accuracy Trade-Off In Operator Learning With Neural Networks.

