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The operator learning problem

The operator learning problem (informal version)

Let {ui , vi}Ni=1 be N elements of U × V such that

G†(ui ) = vi , for i = 1, . . . ,N .

The operator learning problem is summarized as :

Given the data {ui , vi}Ni=1 approximate G†.

Throughout this talk

U is a space of functions u : Ω → R
V is a space of functions v : D → R.



Operator learning for PDEs

In the case where G† arises from a PDE, operator learning is effective for building
surrogate models that are cheaper than traditional numerical solvers while retaining
accuracy. Past work has focused on the use of Operator Neural Networks123.

1Zongyi Li et al. Fourier Neural Operator for Parametric Partial Differential Equations. 2020.
2Lu Lu et al. “Learning nonlinear operators via DeepONet based on the universal approximation

theorem of operators”. In: Nature Machine Intelligence 3.3 (2021), pp. 218–229.
3Kaushik Bhattacharya et al. Model Reduction and Neural Networks for Parametric PDEs. 2021.

arXiv: 2005.03180 [math.NA].

https://arxiv.org/abs/2005.03180


In this talk

We propose a family of kernel based-methods that are simple, fast and competitive
in accuracy. The methods are natural benchmarks for more complex method.
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The operator learning problem

The operator learning problem

Let {ui , vi}Ni=1 be N elements of U × V such that

G†(ui ) = vi , for i = 1, . . . ,N .

Let ϕ : U → Rm and φ : V → Rn be bounded linear operators.

Given the data {ϕ(ui ), φ(vi )}Ni=1 approximate G†.

The operator-measure pair

The data is often assumed to be sampled ui ∼ µ independently so that each data pair
(ui , vi ) can be seen as a sample from the measure (Id,G)#µ supported on U × V. The
operator learning problem generally depends on the operator G† and the measure µ.



Diagram summary

The operator learning problem

Given the data {ϕ(ui ), φ(vi )}Ni=1 approximate G†:

G†(ui ) = vi , for i = 1, . . . ,N .

U V

Rm Rn

G†

f †

ϕ MeasurementReconstruction ψ Measurement φReconstruction χ



Diagram summary

Summary of our method

Our method can be summarized in two steps:

1 Define the reconstructions ψ and χ as the optimal recovery map.

2 Approximate the function f † using a operator valued kernel.

U V

Rm Rn

G†

f †

ϕ MeasurementReconstruction ψ Measurement φReconstruction χ



Optimal recovery

We will assume that U and V are RKHSs arising from kernels Q and K respectively.
The reconstruction operators are defined as optimal recovery maps

ψ(ϕ(u)) := argmin
w∈U

∥w∥Q s.t. ϕ(w) = ϕ(u),

χ(φ(v)) := argmin
w∈V

∥w∥K s.t. φ(w) = φ(v),

The maps are the minmax optimal recovery of u and v respectively4. In our example
problem, our optimal recovery maps can be expressed in closed form using standard
representer theorems for kernel interpolation:

ψ(ϕ(u)) = (Qϕ)Q(ϕ, ϕ)−1ϕ(u), χ(φ(v)) = (Kφ)K (φ,φ)−1φ(v),

4Houman Owhadi and Clint Scovel. Operator-Adapted Wavelets, Fast Solvers, and Numerical
Homogenization: From a Game Theoretic Approach to Numerical Approximation and Algorithm
Design. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University
Press, 2019.



Optimal recovery: example

Consider the case where the measurements are pointwise values of the functions:

ϕ : u 7→ (u(x1), u(x2), . . . , u(xm))
T and φ : v 7→ (v(y1), v(y2), . . . , v(yn))

T ,

Then the previous formulae become the standard kernel regression solutions

ψ(ϕ(u))(x) = Q(x ,X )Q(X ,X )−1ϕ(u) and χ(φ(v))(y) = K (y ,Y )K (Y ,Y )−1φ(v).



Recovery of f †

Once the reconstruction operators ψ and χ are defined, our best strategy is to
reconstruct f † in the diagram:

f̄ ≈ f † := φ ◦ G† ◦ ψ
and to approximate the operator G† with the operator

Ḡ := χ ◦ f̄ ◦ ϕ .

U V

Rm Rn

G†

f †

ϕ MeasurementReconstruction ψ Measurement φReconstruction χ



Recovery of f †

We approximate f † : Rm → Rn by optimal recovery in a vector valued RKHS. Let
Γ : Rm ×Rm → L(Rn) be an matrix valued kernel with RKHS HΓ equipped with the
norm ∥ · ∥Γ and proceed to approximate f † by the map f̄ defined as

f̄ := argmin
f ∈HΓ

∥f ∥Γ s.t. f (ϕ(ui )) = φ(vi ) for i = 1, . . . ,N.

This map can also be expressed in closed form

f̄ := Γ(·,U)Γ(U,U)−1V ,

where Ui := ϕ(ui ) and Vi := φ(vi ). For pointwise measurements, the final expression
for Ḡ is

Ḡ[u] = K (·,X )K (X ,X )−1Γ(ϕ(u),U)Γ(U,U)−1V



Measurement invariance

Mesh invariance is a key property for operator learning methods: this translates to
being able to predict the output of a test input function ũ with a new ϕ̃(ũ). We can
do this by using the optimal recovery map ψ̃ that is defined from ϕ̃. This gives a new
function h† which is approximated by

h̄ := φ̃ ◦ χ ◦ f̄ ◦ ϕ ◦ ψ̃ ≡ φ̃ ◦ Ḡ ◦ ψ̃.

U V

Rn Rm

Rñ Rm̃

G†

f †

h† := φ̃ ◦ χ ◦ f † ◦ ϕ ◦ ψ̃

ϕψ φχ

χ̃

φ̃ψ̃

ϕ̃

Figure: Mesh invariance of the method.
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A simple choice of kernels: diagonal kernels

The (simplest) choice of Γ is the diagonal kernel

Γ(uuu,uuu′) = S(uuu,uuu′)III n×n

where S(uuu,uuu′) is an arbitrary, real valued kernel. This is equivalent to recovering the
vector valued f † : Rm → Rn independently component wise:

f̄j := argmin
h∈HS

∥h∥S s.t. h(ϕ(ui )) = (φ(vi ))j for i = 1, . . . ,N.

which also has closed form solution given by kernel regression:

f̄j(uuu) = S(uuu,U)S(U,U)−1vvv j .

where Ui := ϕ(ui ) and Vi := φ(vi ).



Why such a simple method?

The kernel S can be a standard kernel such as the linear5, squared exponential or
Matérn kernel. This simple choice already offers several advantages:

1 Low cost in training (< 5 seconds on a workstation) and at inference (in the
low-medium data regime).

2 Competitive accuracy.

3 Empirically robust to choice of hyper-parameters/kernels.

4 Simple to implement: several libraries solve this problem out of the box.

5 The Gaussian process interpretation provides uncertainty quantification.

6 Convergence guarantees.

5Equivalent to doing linear regression
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Complexity-accuracy tradeoff

We evaluate our method in the cost-accuracy tradeoff. The accuracy is measured in
terms of the relative risk:

R(G) = Eu∼µ

[∥∥G(u)− G†(u)
∥∥
V

∥G†(u)∥V

]
≈ 1

N

N∑
i=1

[∥∥G(ui )− G†(ui )
∥∥
V

∥G†(ui )∥V

]

The cost of a method comes from:

• The training cost (qualitative metrics).

• The inference cost (can be measured in floating point operations - FLOPs).

We compare the test performance of our method using the examples from two
comparison papers6,7 and the best-reported test relative L2 loss.

6Maarten V. de Hoop et al. The Cost-Accuracy Trade-Off In Operator Learning With Neural
Networks. 2022.

7Lu Lu et al. “A comprehensive and fair comparison of two neural operators (with practical
extensions) based on FAIR data”. In: Computer Methods in Applied Mechanics and Engineering 393
(2022), p. 114778. issn: 0045-7825.



Summary of results: accuracy

Low-data regime High-data regime
Burger’s Darcy problem Advection I Advection II Hemholtz Structural Mechanics Navier Stokes

DeepONet 2.15% 2.91% 0.66% 15.24% 5.88% 5.20% 3.63%

POD-DeepONet 1.94% 2.32% 0.04% n/a n/a n/a n/a

FNO 1.93% 2.41% 0.22% 13.49% 1.86% 4.76% 0.26%

PCA-Net n/a n/a n/a 12.53% 2.13% 4.67% 2.65%

PARA-Net n/a n/a n/a 16.64% 12.54% 4.55% 4.09%

Linear 36.24% 6.74% 2.15× 10−13% 11.28% 10.59% 27.11% 5.41%

Best of Matérn/RQ 2.15% 2.75% 2.75× 10−3% 11.44% 1.00% 5.18% 0.12%

Table: Summary of numerical results: we report the L2 relative test error of our numerical
experiments and compare the kernel approach with variations of DeepONet , FNO, PCA-Net
and PARA-Net. We considered two choices of the kernel S , the rational quadratic and the
Matérn, but we observed little difference between the two.



Inverse problem for Darcy’s flow

Let D = (0, 1)2 and consider the two-dimensional Darcy flow problem8:

−∇ · (u(x)∇v(x)) = f , x ∈ D

v(x) = 0, ∂D

In this case, we are interested in learning the mapping from the permeability field u to
the solution v (here f is considered fixed):

G† : u(x) 7→ v(x).

The coefficient u is sampled by u = ψ(µ) where µ = GP(0, (−∆+ 9I )−2) is a
Gaussian random field and ψ is binary function.

8Lu et al., “A comprehensive and fair comparison of two neural operators (with practical
extensions) based on FAIR data”.



Inverse problem for Darcy’s flow

Method Accuracy

DeepONet 2.91 %
FNO 2.41 %
POD-DeepONet 2.32 %

Linear Regression 6.74 %
GP (Matérn kernel) 2.75%

Table: L2 relative error
on the Darcy problem.
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Navier-Stokes

In the periodic domain D = [0, 2π]2, the vorticity-stream (ω − ψ) formulation of the
incompressible Navier-Stokes equations9 is

∂w

∂t
+ (v · ∇)ω − ν∆ω = f

ω = −∆ψ∫
D
ψ = 0

v =

(
∂ψ

∂x2
,− ∂ψ

∂x1

)
The map of interest is the map from the forcing term f to the vorticity field w at a
given time t = T :

G : f 7→ w(·,T )

9Hoop et al., The Cost-Accuracy Trade-Off In Operator Learning With Neural Networks.



Navier-Stokes

Method Accuracy

DeepONet 3.63 %
FNO 0.26 %
PCA-Net 2.32 %

Linear Regression 5.41 %
GP (Matérn kernel) 0.12%

Table: L2 relative error
on Navier-Stokes.
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Two versions of the advection problem

Let D = (0, 1) and consider the one-dimensional wave advection equation:

∂v

∂t
+
∂v

∂x
= 0 x ∈ (0, 1), t ∈ (0, 1]

v(x , 0) = u0(x) x ∈ (0, 1)

with periodic boundary conditions. We learn the operator mapping the initial condition
to the solution at time t = 0.5:

G : u0(x) 7→ v(x , 0.5).

The two versions differ in their initial conditions10,11:

u0(x) = h1{c−w
2
,c+w

2
} (c ,w , h) ∼ U (Advection I)

u0(x) = −1 + 21{ũ0 ≥ 0} ũ0 ∼ GP(0, (−∆+ 32)−2) (Advection II)

10Lu et al., “A comprehensive and fair comparison of two neural operators (with practical
extensions) based on FAIR data”.

11Hoop et al., The Cost-Accuracy Trade-Off In Operator Learning With Neural Networks.



Two versions of the advection problem

(a) Advection I: initial condition (b) Advection II: initial condition

Figure: The two versions of the advection problem



Advection I

Method Accuracy

DeepONet 0.66 %
FNO 0.22 %
POD-DeepONet 0.04 %

Linear Regression 2.15× 10−13%
GP (Matérn kernel) 2.75× 10−3%

Table: L2 relative error for the advection I.
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Advection II

Method Accuracy

FNO 13.49%
DeepONet 15.24%
PCA-Net 12.53%

Linear Regression 11.28%
GP (Matérn kernel) 11.44%

Table: L2 relative error for advection II.
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Inference complexity: high data regime
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Figure: Linear model refers to the linear kernel, vanilla GP is our implementation with the
nonlinear kernels and minimal preprocessing, GP+PCA corresponds to preprocessing through
PCA both the input and the output to reduce complexity.

Data taken from Hoop et al., The Cost-Accuracy Trade-Off In Operator Learning With Neural
Networks.
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Assumptions

Suppose that

U is an RKHS of functions u : Ω → R
V is an RKHS of functions v : D → R.

Assumption (Assumptions for the reconstruction operators)

• Regularity of the domains Ω and D. Ω and D are compact sets of finite
dimensions dΩ and dD and with Lipschitz boundary.

• Regularity of the kernels Q and K. Assume that HQ ⊂ Hs(Ω) and HK ⊂ Ht(D)
for some s > dΩ/2 and some t > dD/2 with inclusions indicating continuous
embeddings.

• Space filling property of collocation points. The fill distance between the
collocation points {Xi}ni=1 ⊂ Ω and the {Yj}mj=1 ⊂ D goes to zero as n → ∞ and
m → ∞.



Assumptions

For R > 0, write BR(HQ) for the unit ball of HQ of radius R.

Assumption (Assumptions for the approximation of G†)

• Regularity of the operator G†. The operator G† is continuous from Hs′(Ω) to HK

for some s ′ ∈ (0, s) as well as from U to V and all its Fréchet derivatives are
bounded on BR(HQ) for any R > 0.

• Regularity of the kernels Sn. Assume that for any n ≥ 1 and any compact subset
Υ of Rn, the RKHS of Sn restricted to Υ is contained in H r (Υ) for some r > n/2
and contains H r ′(Υ) for some r ′ > 0 that may depend on n.

• Resolution and space-filling property of the data Assume that for n sufficiently
large, the data points (ui )

N
i=1 ⊂ BR(HQ) belong to the range of ψn and are space

filling in the sense that they become dense in ϕn(BR(HQ)) as N → ∞.



Convergence result

Under the Assumptions 1, 2, we have the following theorem

Theorem (Condensed version of Main Theorem)

Then, for all t ′ ∈ (0, t),

lim
n,m→∞

lim
N→∞

sup
u∈BR(HQ)

∥G†(u)− χm ◦ f̄ m,n
N ◦ ϕn(u)∥Ht′ (D) → 0 ,

Future work will focus on generalizing these results and removing some of the more
restrictive assumptions.



Conclusion

Our key contributions are:

• A simple, low-cost, and competitive kernel method for operator learning that is a
good baseline for many tasks.

• Preliminary theoretical guarantees for these methods.

Paper out on arxiv Pau Batlle et al. Kernel Methods are Competitive for Operator
Learning. 2023. arXiv: 2304.13202

https://arxiv.org/abs/2304.13202

