Kernel Methods are Competitive for Operator Learning

Pau Batlle¹, Matthieu Darcy¹, Bamdad Hosseini², Houman Owhadi¹

¹California Institute of Technology ²University of Washington

Table of Contents

- 1 Operator Learning for PDEs
- 2 A general framework for operator learning with kernels
- Simple kernel methods for operator learning
- Numerics
 Accuracy results
 The Complexity-Accuracy tradeoff
- 5 Theoretical guarantees

The operator learning problem

The operator learning problem (informal version)

Let $\{u_i, v_i\}_{i=1}^N$ be N elements of $\mathcal{U} \times \mathcal{V}$ such that

$$\mathcal{G}^{\dagger}(u_i) = v_i, \quad \text{for } i = 1, \dots, N.$$

The operator learning problem is summarized as :

Given the data $\{u_i, v_i\}_{i=1}^N$ approximate \mathcal{G}^{\dagger} .

Throughout this talk

 $\mathcal U$ is a space of functions $u:\Omega \to \mathbb R$

 \mathcal{V} is a space of functions $v:D\to\mathbb{R}$.

Operator learning for PDEs

In the case where \mathcal{G}^{\dagger} arises from a PDE, operator learning is effective for building surrogate models that are **cheaper** than traditional numerical solvers while retaining **accuracy**. Past work has focused on the use of Operator Neural Networks¹²³.

¹Zongyi Li et al. Fourier Neural Operator for Parametric Partial Differential Equations. 2020.

²Lu Lu et al. "Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators". In: *Nature Machine Intelligence* 3.3 (2021), pp. 218–229.

³Kaushik Bhattacharya et al. *Model Reduction and Neural Networks for Parametric PDEs.* 2021. arXiv: 2005.03180 [math.NA].

In this talk

We propose a family of kernel based-methods that are **simple**, **fast** and **competitive in accuracy**. The methods are natural benchmarks for more complex method.

Table of Contents

- Operator Learning for PDEs
- 2 A general framework for operator learning with kernels
- Simple kernel methods for operator learning
- Numerics
 Accuracy results
 The Complexity-Accuracy tradeoff
- Theoretical guarantees

The operator learning problem

The operator learning problem

Let $\{u_i, v_i\}_{i=1}^N$ be N elements of $\mathcal{U} \times \mathcal{V}$ such that

$$\mathcal{G}^{\dagger}(u_i) = v_i, \quad \text{for } i = 1, \dots, N.$$

Let $\phi: \mathcal{U} \to \mathbb{R}^m$ and $\varphi: \mathcal{V} \to \mathbb{R}^n$ be bounded linear operators.

Given the data $\{\phi(u_i), \varphi(v_i)\}_{i=1}^N$ approximate \mathcal{G}^{\dagger} .

The operator-measure pair

The data is often assumed to be sampled $u_i \sim \mu$ independently so that each data pair (u_i, v_i) can be seen as a sample from the measure $(\mathrm{Id}, \mathcal{G})^\# \mu$ supported on $\mathcal{U} \times \mathcal{V}$. The operator learning problem generally depends on the operator \mathcal{G}^\dagger and the measure μ .

Diagram summary

The operator learning problem

Given the data $\{\phi(u_i), \varphi(v_i)\}_{i=1}^N$ approximate \mathcal{G}^{\dagger} :

$$\mathcal{G}^{\dagger}(u_i) = v_i, \quad \text{for } i = 1, \dots, N \,.$$

Diagram summary

Summary of our method

Our method can be summarized in two steps:

- $oldsymbol{0}$ Define the reconstructions ψ and χ as the optimal recovery map.
- **2** Approximate the function f^{\dagger} using a operator valued kernel.

Optimal recovery

We will assume that $\mathcal U$ and $\mathcal V$ are RKHSs arising from kernels Q and K respectively. The reconstruction operators are defined as optimal recovery maps

$$\begin{split} \psi(\phi(u)) &:= \underset{w \in \mathcal{U}}{\arg\min} \, \|w\|_Q \quad \text{s.t.} \quad \phi(w) = \phi(u), \\ \chi(\varphi(v)) &:= \underset{w \in \mathcal{V}}{\arg\min} \, \|w\|_K \quad \text{s.t.} \quad \varphi(w) = \varphi(v), \end{split}$$

The maps are the minmax optimal recovery of u and v respectively⁴. In our example problem, our optimal recovery maps can be expressed in closed form using standard representer theorems for kernel interpolation:

$$\psi(\phi(u)) = (Q\phi) Q(\phi, \phi)^{-1} \phi(u), \qquad \chi(\varphi(v)) = (K\varphi) K(\varphi, \varphi)^{-1} \varphi(v),$$

⁴Houman Owhadi and Clint Scovel. *Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization: From a Game Theoretic Approach to Numerical Approximation and Algorithm Design.* Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, 2019.

Optimal recovery: example

Consider the case where the measurements are pointwise values of the functions:

$$\phi: u \mapsto (u(x_1), u(x_2), \dots, u(x_m))^T$$
 and $\varphi: v \mapsto (v(y_1), v(y_2), \dots, v(y_n))^T$,

Then the previous formulae become the standard kernel regression solutions

$$\psi(\phi(u))(x) = Q(x,X)Q(X,X)^{-1}\phi(u) \quad \text{and} \quad \chi(\varphi(v))(y) = K(y,Y)K(Y,Y)^{-1}\varphi(v).$$

Recovery of f^{\dagger}

Once the reconstruction operators ψ and χ are defined, our best strategy is to reconstruct f^{\dagger} in the diagram:

$$\bar{f} \approx f^{\dagger} := \varphi \circ \mathcal{G}^{\dagger} \circ \psi$$

and to approximate the operator \mathcal{G}^{\dagger} with the operator

$$\bar{\mathcal{G}}:=\chi\circ\bar{\mathit{f}}\circ\phi\,.$$

Recovery of f^{\dagger}

We approximate $f^{\dagger}: \mathbb{R}^m \to \mathbb{R}^n$ by optimal recovery in a **vector valued** RKHS. Let $\Gamma: \mathbb{R}^m \times \mathbb{R}^m \to \mathcal{L}(\mathbb{R}^n)$ be an **matrix valued kernel** with RKHS \mathcal{H}_{Γ} equipped with the norm $\|\cdot\|_{\Gamma}$ and proceed to approximate f^{\dagger} by the map \bar{f} defined as

$$ar f := rg \min_{f \in \mathcal{H}_\Gamma} \|f\|_\Gamma \quad ext{s.t.} \quad f(\phi(u_i)) = arphi(v_i) \quad ext{for} \quad i = 1, \dots, N.$$

This map can also be expressed in closed form

$$\bar{f} := \Gamma(\cdot, \mathbf{U})\Gamma(\mathbf{U}, \mathbf{U})^{-1}\mathbf{V}$$
,

where $U_i := \phi(u_i)$ and $V_i := \varphi(v_i)$. For pointwise measurements, the final expression for $\bar{\mathcal{G}}$ is

$$\bar{\mathcal{G}}[u] = K(\cdot, X) K(X, X)^{-1} \Gamma(\phi(u), \mathbf{U}) \Gamma(\mathbf{U}, \mathbf{U})^{-1} \mathbf{V}$$

Measurement invariance

Mesh invariance is a key property for operator learning methods: this translates to being able to predict the output of a test input function \tilde{u} with a new $\tilde{\phi}(\tilde{u})$. We can do this by using the optimal recovery map $\tilde{\psi}$ that is defined from $\tilde{\phi}$. This gives a new function h^{\dagger} which is approximated by

$$\bar{h}:=\tilde{\varphi}\circ\chi\circ\bar{f}\circ\phi\circ\tilde{\psi}\equiv\tilde{\varphi}\circ\bar{\mathcal{G}}\circ\tilde{\psi}.$$

Figure: Mesh invariance of the method.

Table of Contents

- Operator Learning for PDEs
- 2 A general framework for operator learning with kernels
- 3 Simple kernel methods for operator learning
- Numerics
 Accuracy results
 The Complexity-Accuracy tradeof
- 5 Theoretical guarantees

A simple choice of kernels: diagonal kernels

The (simplest) choice of Γ is the diagonal kernel

$$\Gamma(\boldsymbol{u},\boldsymbol{u}') = S(\boldsymbol{u},\boldsymbol{u}')\boldsymbol{I}_{n\times n}$$

where S(u, u') is an arbitrary, real valued kernel. This is equivalent to recovering the vector valued $f^{\dagger}: \mathbb{R}^m \to \mathbb{R}^n$ independently component wise:

$$ar{f_j} := rg \min_{h \in \mathcal{H}_S} \|h\|_{\mathcal{S}} \quad ext{s.t.} \qquad h(\phi(u_i)) = (arphi(v_i))_j \qquad \quad ext{for} \quad i = 1, \dots, N.$$

which also has closed form solution given by kernel regression:

$$\bar{f}_j(\boldsymbol{u}) = S(\boldsymbol{u}, U)S(U, U)^{-1}\boldsymbol{v}_j.$$

where $U_i := \phi(u_i)$ and $V_i := \varphi(v_i)$.

Why such a simple method?

The kernel S can be a standard kernel such as the linear⁵, squared exponential or Matérn kernel. This simple choice already offers several advantages:

- ullet Low cost in training (< 5 seconds on a workstation) and at inference (in the low-medium data regime).
- 2 Competitive accuracy.
- 3 Empirically robust to choice of hyper-parameters/kernels.
- 4 Simple to implement: several libraries solve this problem out of the box.
- **5** The Gaussian process interpretation provides uncertainty quantification.
- 6 Convergence guarantees.

⁵Equivalent to doing linear regression

Table of Contents

- Operator Learning for PDEs
- 2 A general framework for operator learning with kernels
- Simple kernel methods for operator learning
- Numerics
 Accuracy results
 The Complexity-Accuracy tradeoff
- 5 Theoretical guarantees

Complexity-accuracy tradeoff

We evaluate our method in the **cost-accuracy tradeoff**. The accuracy is measured in terms of the relative risk:

$$\mathcal{R}(\mathcal{G}) = \mathbb{E}_{u \sim \mu} \left[\frac{\left\| \mathcal{G}(u) - \mathcal{G}^{\dagger}(u) \right\|_{\mathcal{V}}}{\left\| \mathcal{G}^{\dagger}(u) \right\|_{\mathcal{V}}} \right] \approx \frac{1}{N} \sum_{i=1}^{N} \left[\frac{\left\| \mathcal{G}(u_i) - \mathcal{G}^{\dagger}(u_i) \right\|_{\mathcal{V}}}{\left\| \mathcal{G}^{\dagger}(u_i) \right\|_{\mathcal{V}}} \right]$$

The cost of a method comes from:

- The training cost (qualitative metrics).
- The inference cost (can be measured in floating point operations FLOPs).

We compare the test performance of our method using the examples from two comparison papers⁶,⁷ and the best-reported test relative L^2 loss.

⁶Maarten V. de Hoop et al. *The Cost-Accuracy Trade-Off In Operator Learning With Neural Networks*. 2022.

⁷Lu Lu et al. "A comprehensive and fair comparison of two neural operators (with practical extensions) based on FAIR data". In: *Computer Methods in Applied Mechanics and Engineering* 393 (2022), p. 114778. ISSN: 0045-7825.

Summary of results: accuracy

	Low-data regime			High-data regime			
	Burger's	Darcy problem	Advection I	Advection II	Hemholtz	Structural Mechanics	Navier Stokes
DeepONet	2.15%	2.91%	0.66%	15.24%	5.88%	5.20%	3.63%
POD-DeepONet	1.94%	2.32%	0.04%	n/a	n/a	n/a	n/a
FNO	1.93%	2.41%	0.22%	13.49%	1.86%	4.76%	0.26%
PCA-Net	n/a	n/a	n/a	12.53%	2.13%	4.67%	2.65%
PARA-Net	n/a	n/a	n/a	16.64%	12.54%	4.55%	4.09%
Linear	36.24%	6.74%	$2.15 \times 10^{-13}\%$	11.28%	10.59%	27.11%	5.41%
Best of Matérn/RQ	2.15%	2.75%	$2.75 \times 10^{-3}\%$	11.44%	1.00%	5.18%	0.12%

Table: Summary of numerical results: we report the L^2 relative test error of our numerical experiments and compare the kernel approach with variations of DeepONet , FNO, PCA-Net and PARA-Net. We considered two choices of the kernel S, the rational quadratic and the Matérn, but we observed little difference between the two.

Inverse problem for Darcy's flow

Let $D = (0,1)^2$ and consider the two-dimensional Darcy flow problem⁸:

$$-\nabla \cdot (u(x)\nabla v(x)) = f, \quad x \in D$$
$$v(x) = 0, \quad \partial D$$

In this case, we are interested in learning the mapping from the permeability field u to the solution v (here f is considered fixed):

$$\mathcal{G}^{\dagger}: u(x) \mapsto v(x).$$

The coefficient u is sampled by $u = \psi(\mu)$ where $\mu = \mathcal{GP}(0, (-\Delta + 9I)^{-2})$ is a Gaussian random field and ψ is binary function.

⁸Lu et al., "A comprehensive and fair comparison of two neural operators (with practical extensions) based on FAIR data".

Inverse problem for Darcy's flow

Method	Accuracy
DeepONet	2.91 %
FNO	2.41 %
POD-DeepONet	2.32 %
Linear Regression	$\bar{6.74}$ %
GP (Matérn kernel)	2.75%

Table: L^2 relative error on the Darcy problem.

Navier-Stokes

In the periodic domain $\mathcal{D} = [0, 2\pi]^2$, the vorticity-stream $(\omega - \psi)$ formulation of the incompressible Navier-Stokes equations⁹ is

$$\frac{\partial w}{\partial t} + (v \cdot \nabla)\omega - \nu \Delta \omega = f$$

$$\omega = -\Delta \psi$$

$$\int_{D} \psi = 0$$

$$v = \left(\frac{\partial \psi}{\partial x_{2}}, -\frac{\partial \psi}{\partial x_{1}}\right)$$

The map of interest is the map from the forcing term f to the vorticity field w at a given time t = T:

$$G: f \mapsto w(\cdot, T)$$

⁹Hoop et al., The Cost-Accuracy Trade-Off In Operator Learning With Neural Networks.

Navier-Stokes

Method	Accuracy
DeepONet	3.63 %
FNO	0.26 %
PCA-Net	2.32 %
Linear Regression	$\bar{5.41} \%$
GP (Matérn kernel)	0.12%

Table: L^2 relative error on Navier-Stokes.

Two versions of the advection problem

Let D = (0,1) and consider the one-dimensional wave advection equation:

$$\frac{\partial v}{\partial t} + \frac{\partial v}{\partial x} = 0 \quad x \in (0, 1), t \in (0, 1]$$
$$v(x, 0) = u_0(x) \quad x \in (0, 1)$$

with periodic boundary conditions. We learn the operator mapping the initial condition to the solution at time t=0.5:

$$G: u_0(x) \mapsto v(x, 0.5).$$

The two versions differ in their initial conditions 10.11:

$$u_0(x) = h\mathbf{1}_{\{c-\frac{w}{2},c+\frac{w}{2}\}}$$
 $(c,w,h) \sim \mathcal{U}$ (Advection I)
 $u_0(x) = -1 + 2\mathbf{1}\{\tilde{u}_0 \ge 0\}$ $\tilde{u}_0 \sim \mathcal{GP}(0,(-\Delta+3^2)^{-2})$ (Advection II)

¹⁰Lu et al., "A comprehensive and fair comparison of two neural operators (with practical extensions) based on FAIR data".

¹¹Hoop et al., The Cost-Accuracy Trade-Off In Operator Learning With Neural Networks.

Two versions of the advection problem

(a) Advection I: initial condition

(b) Advection II: initial condition

Figure: The two versions of the advection problem

Advection I

Method	Accuracy	
DeepONet	0.66 %	
FNO	0.22 %	
POD-DeepONet	0.04 %	
Linear Regression	$2.15 \times 10^{-13}\%$	
GP (Matérn kernel)	$2.75 \times 10^{-3}\%$	

Table: L^2 relative error for the advection I.

(b) Prediction by Linear regression

Advection II

Method	Accuracy
FNO	13.49%
DeepONet	15.24%
PCA-Net	12.53%
Linear Regression	$\bar{1}1.28\%$
GP (Matérn kernel)	11.44%

Table: L^2 relative error for advection II.

(a) Prediction by Linear regression

Inference complexity: high data regime

Figure: Linear model refers to the linear kernel, vanilla GP is our implementation with the nonlinear kernels and minimal preprocessing, GP+PCA corresponds to preprocessing through PCA both the input and the output to reduce complexity.

Data taken from Hoop et al., The Cost-Accuracy Trade-Off In Operator Learning With Neural Networks.

Table of Contents

- Operator Learning for PDEs
- 2 A general framework for operator learning with kernels
- Simple kernel methods for operator learning
- Numerics
 Accuracy results
 The Complexity-Accuracy tradeoff
- **5** Theoretical guarantees

Assumptions

Suppose that

 $\mathcal U$ is an RKHS of functions $u:\Omega \to \mathbb R$ $\mathcal V$ is an RKHS of functions $v:D \to \mathbb R$.

Assumption (Assumptions for the reconstruction operators)

- Regularity of the domains Ω and D. Ω and D are compact sets of finite dimensions d_{Ω} and d_{D} and with Lipschitz boundary.
- Regularity of the kernels Q and K. Assume that $\mathcal{H}_Q \subset H^s(\Omega)$ and $\mathcal{H}_K \subset H^t(D)$ for some $s > d_\Omega/2$ and some $t > d_D/2$ with inclusions indicating continuous embeddings.
- Space filling property of collocation points. The fill distance between the collocation points $\{X_i\}_{i=1}^n \subset \Omega$ and the $\{Y_j\}_{j=1}^m \subset D$ goes to zero as $n \to \infty$ and $m \to \infty$.

Assumptions

For R > 0, write $B_R(\mathcal{H}_Q)$ for the unit ball of \mathcal{H}_Q of radius R.

Assumption (Assumptions for the approximation of \mathcal{G}^{\dagger})

- Regularity of the operator \mathcal{G}^{\dagger} . The operator \mathcal{G}^{\dagger} is continuous from $H^{s'}(\Omega)$ to \mathcal{H}_K for some $s' \in (0,s)$ as well as from \mathcal{U} to \mathcal{V} and all its Fréchet derivatives are bounded on $B_R(\mathcal{H}_Q)$ for any R > 0.
- Regularity of the kernels S^n . Assume that for any $n \ge 1$ and any compact subset Υ of \mathbb{R}^n , the RKHS of S^n restricted to Υ is contained in $H^r(\Upsilon)$ for some r > n/2 and contains $H^{r'}(\Upsilon)$ for some r' > 0 that may depend on n.
- Resolution and space-filling property of the data Assume that for n sufficiently large, the data points $(u_i)_{i=1}^N \subset B_R(\mathcal{H}_Q)$ belong to the range of ψ^n and are space filling in the sense that they become dense in $\phi^n(B_R(\mathcal{H}_Q))$ as $N \to \infty$.

Convergence result

Under the Assumptions 1, 2, we have the following theorem

Theorem (Condensed version of Main Theorem)

Then, for all $t' \in (0, t)$,

$$\lim_{n,m\to\infty}\lim_{N\to\infty}\sup_{u\in B_R(\mathcal{H}_Q)}\|\mathcal{G}^\dagger(u)-\chi^m\circ \bar{f}_N^{m,n}\circ\phi^n(u)\|_{H^{t'}(D)}\to 0\,,$$

Future work will focus on generalizing these results and removing some of the more restrictive assumptions.

Conclusion

Our key contributions are:

- A simple, low-cost, and competitive kernel method for operator learning that is a good baseline for many tasks.
- Preliminary theoretical guarantees for these methods.

Paper out on arxiv Pau Batlle et al. Kernel Methods are Competitive for Operator Learning. 2023. arXiv: 2304.13202

