
Benchmarking Operator Learning with Simple and
Interpretable Kernel Methods

Pau Batlle1, Matthieu Darcy1, Bamdad Hosseini2, Houman Owhadi1

1California Institute of Technology 2University of Washington



Table of Contents

1 Operator Learning for PDEs

2 A general framework for operator learning with kernels

3 Numerics



The operator learning problem

Let {ui , vi}Ni=1 be N elements of U × V such that

G†(ui ) = vi , for i = 1, . . . ,N .

Operator learning problem: general version

Given the data {ui , vi}Ni=1 approximate G†.



The operator learning problem: finite dimensional version

In practice, we do not have access to ui , vi but to pointwise values:

ϕ : u 7→ (u(x1), u(x2), . . . , u(xm))
T and φ : v 7→ (v(y1), v(y2), . . . , v(yn))

T .

Operator learning problem II

Given the data {ϕ(ui ), φ(vi )}Ni=1 approximate G†.

More generally, ϕ and φ can be bounded linear operators.



In this talk

Past work has focused on Operator Neural Networks123 that generalize Neural
Networks to functional inputs and outputs. However they have not been benchmarked
against simpler methods.

Our contribution

We propose a family of kernel based-methods that are simple, fast and competitive
in accuracy. The methods are natural benchmarks for more complex methods.

1Zongyi Li et al. Fourier Neural Operator for Parametric Partial Differential Equations. 2020.
2Kaushik Bhattacharya et al. Model Reduction and Neural Networks for Parametric PDEs. 2021.
3Lu Lu et al. “Learning nonlinear operators via DeepONet based on the universal approximation

theorem of operators”. In: Nature Machine Intelligence 3.3 (2021), pp. 218–229.



Table of Contents

1 Operator Learning for PDEs

2 A general framework for operator learning with kernels

3 Numerics



Diagram summary

Summary of our method

Given the data {ϕ(ui ), φ(vi )}Ni=1 our
method to approximate G†:

G†(ui ) = vi , for i = 1, . . . ,N .

can be summarized in two steps:

1 Define the reconstructions ψ and χ as
the optimal recovery map.

2 Approximate the function f † using a
kernel method.

U V

Rm Rn

G†

f †

ϕ MeasurementReconstruction ψ Measurement φReconstruction χ



Optimal recovery

We will assume that U and V are RKHSs arising from kernels Q and K respectively.
The reconstruction operators are defined as optimal recovery maps

ψ(ϕ(u)) := argmin
w∈U

∥w∥Q s.t. ϕ(w) = ϕ(u),

χ(φ(v)) := argmin
w∈V

∥w∥K s.t. φ(w) = φ(v),

The maps are the minmax optimal recovery of u and v respectively4. Optimal recovery
maps can be expressed in closed form using standard representer theorems for kernel
interpolation:

ψ(ϕ(u))(x) = Q(x ,X )Q(X ,X )−1ϕ(u) and χ(φ(v))(y) = K (y ,Y )K (Y ,Y )−1φ(v).

4Houman Owhadi and Clint Scovel. Operator-Adapted Wavelets, Fast Solvers, and Numerical
Homogenization: From a Game Theoretic Approach to Numerical Approximation and Algorithm
Design. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University
Press, 2019.



Recovery of f †

Once the reconstruction operators ψ and χ are defined, our best strategy is to
reconstruct f † in the diagram:

f̄ ≈ f † := φ ◦ G† ◦ ψ
and to approximate the operator G† with the operator

Ḡ := χ ◦ f̄ ◦ ϕ .

U V

Rm Rn

G†

f †

ϕ MeasurementReconstruction ψ Measurement φReconstruction χ



A simple kernel method for f †

Given a kernel S , we approximate f † : Rm → Rn via optimal recovery independently
component wise:

f̄j := argmin
h∈HS

∥h∥S s.t. h(ϕ(ui )) = (φ(vi ))j for i = 1, . . . ,N.

which also has closed form solution given by kernel regression:

f̄j(uuu) = S(uuu,U)S(U,U)−1vvv j .

where Ui := ϕ(ui ) and Vi := φ(vi ).
This can be interpreted as recovering f † with a matrix valued kernel with diagonal
entries (beyond this talk).



Why such a simple method?

The kernel S can be a standard kernel such as the linear5, squared exponential or
Matérn kernel. This simple choice already offers several advantages:

1 Low cost in training (< 5 seconds on a workstation) and at inference (in the
low-medium data regime).

2 Competitive accuracy.

3 Empirically robust to choice of hyper-parameters/kernels.

4 Simple to implement: several libraries solve this problem out of the box.

5 The Gaussian process interpretation provides uncertainty quantification.

6 Convergence guarantees (beyond this talk).

5Equivalent to doing linear regression



Table of Contents

1 Operator Learning for PDEs

2 A general framework for operator learning with kernels

3 Numerics



Experimental protocol

We compare the test performance of our method using the examples from two
comparison papers67 and the best-reported test relative L2 loss.

Low-data regime High-data regime
Burger’s Darcy problem Advection I Advection II Hemholtz Structural Mechanics Navier Stokes

DeepONet 2.15% 2.91% 0.66% 15.24% 5.88% 5.20% 3.63%

POD-DeepONet 1.94% 2.32% 0.04% n/a n/a n/a n/a

FNO 1.93% 2.41% 0.22% 13.49% 1.86% 4.76% 0.26%

PCA-Net n/a n/a n/a 12.53% 2.13% 4.67% 2.65%

PARA-Net n/a n/a n/a 16.64% 12.54% 4.55% 4.09%

Linear 36.24% 6.74% 2.15× 10−13% 11.28% 10.59% 27.11% 5.41%

Kernel method 2.15% 2.75% 2.75× 10−3% 11.44% 1.01% 5.18% 0.12%

Table: Summary of numerical results. When methods in their original work present variation,
we report the best accuracy.

6Maarten V. de Hoop et al. The Cost-Accuracy Trade-Off In Operator Learning With Neural
Networks. 2022.

7Lu Lu et al. “A comprehensive and fair comparison of two neural operators (with practical
extensions) based on FAIR data”. In: Computer Methods in Applied Mechanics and Engineering 393
(2022).



Inverse problem for Darcy’s flow

Let D = (0, 1)2 and consider the two-dimensional Darcy flow problem8:

−∇ · (u(x)∇v(x)) = f , x ∈ D

u(x) = 0, ∂D

In this case, we are interested in learning the mapping from the permeability field u to
the solution v (here f is considered fixed):

G† : u(x) 7→ v(x).

The coefficient u is sampled by u = ψ(µ) where µ = GP(0, (−∆+ 9I )−2) is a
Gaussian random field and ψ is binary function.

8Lu et al., “A comprehensive and fair comparison of two neural operators (with practical
extensions) based on FAIR data”.



Low-data regime: Inverse problem for Darcy’s flow

Method Accuracy

DeepONet 2.91 %
FNO 2.41 %
POD-DeepONet 2.32 %

Linear Regression 6.74 %
GP (Matérn kernel) 2.75%

Table: L2 relative error
on the Darcy problem.

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

−0.4

−0.2

0.0

0.2

0.4

Input, Darcy’s flow

(a) Input

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Output, Darcy’s flow

(b) Output

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

True, Darcy’s flow

(c) True

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Predicted, Darcy’s flow

(d) Predicted

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

0.1

0.2

0.3

0.4

0.5

Relative error, Darcy’s flow

(e) Relative Error



High-data regime: Navier-Stokes

In the periodic domain D = [0, 2π]2, the vorticity-stream (ω − ψ) formulation of the
incompressible Navier-Stokes equations is

∂w

∂t
+ (v · ∇)ω − ν∆ω = f

ω = −∆ψ∫
D
ψ = 0

v =

(
∂ψ

∂x2
,− ∂ψ

∂x1

)
The map of interest is the map from the forcing term f to the vorticity field w at a
given time t = T :

G† : f 7→ w(·,T ).

The forcing is sampled from a centered Gaussian field, f ∼ GP(0, (−∆+ 32I )−4).



High data regime: Navier-Stokes

Method Accuracy

DeepONet 3.63 %
FNO 0.26 %
PCA-Net 2.32 %

Linear Regression 5.41 %
GP (Matérn kernel) 0.12%

Table: L2 relative error
on Navier-Stokes.

0 1 2 3 4 5 6
x1

0

1

2

3

4

5

6

x
2

−0.015

−0.010

−0.005

0.000

0.005

0.010

Input, Navier Stokes

(a) Input

0 1 2 3 4 5 6
x1

0

1

2

3

4

5

6

x
2

−0.100

−0.075

−0.050

−0.025

0.000

0.025

0.050

0.075

Output, Navier Stokes

(b) Output

0 1 2 3 4 5 6
x1

0

1

2

3

4

5

6

x
2

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

True, Navier Stokes

(c) True

0 1 2 3 4 5 6
x1

0

1

2

3

4

5

6

x
2

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

Predicted, Navier Stokes

(d) Predicted

0 1 2 3 4 5 6
x1

0

1

2

3

4

5

6

x
2

−6

−4

−2

0

2

4

6

8

×10−5

Error profile, Navier Stokes

(e) Error



Two versions of the advection problem

Let D = (0, 1) and consider the one-dimensional wave advection equation:

∂v

∂t
+
∂v

∂x
= 0 x ∈ (0, 1), t ∈ (0, 1]

v(x , 0) = u0(x) x ∈ (0, 1)

with periodic boundary conditions. We learn the operator mapping the initial condition
to the solution at time t = 0.5:

G : u0(x) 7→ v(x , 0.5).

The two versions differ in their initial conditions9,10:

u0(x) = h1{c−w
2
,c+w

2
} (c ,w , h) ∼ U (Advection I)

u0(x) = −1 + 21{ũ0 ≥ 0} ũ0 ∼ GP(0, (−∆+ 32)−2) (Advection II)

9Lu et al., “A comprehensive and fair comparison of two neural operators (with practical
extensions) based on FAIR data”.

10Hoop et al., The Cost-Accuracy Trade-Off In Operator Learning With Neural Networks.



Two versions of the advection problem

(a) Advection I: initial condition (b) Advection II: initial condition

Figure: The two versions of the advection problem



Advection I

Method Accuracy

DeepONet 0.66 %
FNO 0.22 %
POD-DeepONet 0.04 %

Linear Regression 2.15× 10−13%
GP (Matérn kernel) 2.75× 10−3%

Table: L2 relative error for the advection I.

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
−0.5

0.0

0.5

1.0

1.5

2.0

2.5

x

u(
x,

0.
5)

Advection I

(a) Input

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
−0.5

0.0

0.5

1.0

1.5

2.0

2.5
True

Predicted

x

u(
x,

0.
5)

Predicted, Advection I

(b) Prediction by Linear regression



Advection II

Method Accuracy

FNO 13.49%
DeepONet 15.24%
PCA-Net 12.53%

Linear Regression 11.28%
GP (Matérn kernel) 11.44%

Table: L2 relative error for advection II.

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
True

Predicted

x

u(
x,

0.
5)

Predicted, Advection II

(a) Prediction by Linear regression



Inference complexity: high data regime

In the “high data” regime (10000 points), vanilla kernel method achieves high
accuracy at the cost of complexity.

Data taken from Hoop et al., The Cost-Accuracy Trade-Off In Operator Learning With Neural
Networks.



Conclusion

Our key contributions are:

• A simple, low-cost, and competitive kernel method for operator learning, which is
a good baseline for many tasks.

• Convergence guarantees for this method.

Going beyond simple kernel methods:

• More complex matrix-valued kernels (non-diagonal, hierarchical kernels).

• “Non-vanilla” kernel methods: random Fourier features, inducing points . . .

Paper coming out next week!


