Benchmarking Operator Learning with Simple and Interpretable Kernel Methods

Pau Batlle¹, Matthieu Darcy¹, Bamdad Hosseini², Houman Owhadi¹

¹California Institute of Technology ²University of Washington

1 Operator Learning for PDEs

2 A general framework for operator learning with kernels

Let $\{u_i, v_i\}_{i=1}^N$ be *N* elements of $\mathcal{U} \times \mathcal{V}$ such that

$$\mathcal{G}^{\dagger}(u_i) = v_i, \quad \text{for } i = 1, \dots, N.$$

Operator learning problem: general version

Given the data $\{u_i, v_i\}_{i=1}^N$ approximate \mathcal{G}^{\dagger} .

In practice, we do not have access to u_i , v_i but to pointwise values:

$$\phi: u \mapsto (u(x_1), u(x_2), \dots, u(x_m))^T$$
 and $\varphi: v \mapsto (v(y_1), v(y_2), \dots, v(y_n))^T$.

Operator learning problem II

Given the data $\{\phi(u_i), \varphi(v_i)\}_{i=1}^N$ approximate \mathcal{G}^{\dagger} .

More generally, ϕ and φ can be bounded linear operators.

Past work has focused on Operator Neural Networks¹²³ that generalize Neural Networks to functional inputs and outputs. However they have not been benchmarked against simpler methods.

Our contribution

We propose a family of kernel based-methods that are **simple, fast** and **competitive in accuracy.** The methods are natural benchmarks for more complex methods.

¹Zongyi Li et al. Fourier Neural Operator for Parametric Partial Differential Equations. 2020. ²Kaushik Bhattacharya et al. Model Reduction and Neural Networks for Parametric PDEs. 2021. ³Lu Lu et al. "Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators". In: Nature Machine Intelligence 3.3 (2021), pp. 218–229.

1 Operator Learning for PDEs

2 A general framework for operator learning with kernels

Summary of our method

Given the data $\{\phi(u_i), \varphi(v_i)\}_{i=1}^N$ our method to approximate \mathcal{G}^{\dagger} :

$$\mathcal{G}^{\dagger}(u_i) = v_i, \quad ext{for } i = 1, \dots, N.$$

can be summarized in two steps:

- 1 Define the reconstructions ψ and χ as the optimal recovery map.
- Approximate the function f[†] using a kernel method.

Optimal recovery

We will assume that U and V are RKHSs arising from kernels Q and K respectively. The reconstruction operators are defined as optimal recovery maps

$$\begin{split} \psi(\phi(u)) &:= \argmin_{w \in \mathcal{U}} \|w\|_Q \quad \text{s.t.} \quad \phi(w) = \phi(u), \\ \chi(\varphi(v)) &:= \arg\min_{w \in \mathcal{V}} \|w\|_{\mathcal{K}} \quad \text{s.t.} \quad \varphi(w) = \varphi(v), \end{split}$$

The maps are the minmax optimal recovery of u and v respectively⁴. Optimal recovery maps can be expressed in closed form using standard representer theorems for kernel interpolation:

$$\psi(\phi(u))(x) = Q(x,X)Q(X,X)^{-1}\phi(u) \quad \text{and} \quad \chi(\varphi(v))(y) = K(y,Y)K(Y,Y)^{-1}\varphi(v).$$

⁴Houman Owhadi and Clint Scovel. Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization: From a Game Theoretic Approach to Numerical Approximation and Algorithm Design. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, 2019.

Recovery of f^{\dagger}

Once the reconstruction operators ψ and χ are defined, our best strategy is to reconstruct f^{\dagger} in the diagram:

$$ar{f}pprox f^\dagger:=arphi\circ \mathcal{G}^\dagger\circ\psi$$

and to approximate the operator \mathcal{G}^{\dagger} with the operator

$$\bar{\mathcal{G}}:=\chi\circ\bar{f}\circ\phi\,.$$

A simple kernel method for f^{\dagger}

Given a kernel *S*, we approximate $f^{\dagger} : \mathbb{R}^m \to \mathbb{R}^n$ via optimal recovery **independently** component wise:

$$ar{f}_j := rgmin_{h\in\mathcal{H}_S} \min \|h\|_S$$
 s.t. $h(\phi(u_i)) = (\varphi(v_i))_j$ for $i=1,\ldots,N.$

which also has closed form solution given by kernel regression:

$$\bar{f}_j(\boldsymbol{u}) = S(\boldsymbol{u}, U)S(U, U)^{-1}\boldsymbol{v}_j.$$

where $U_i := \phi(u_i)$ and $V_i := \varphi(v_i)$.

This can be interpreted as recovering f^{\dagger} with a matrix valued kernel with diagonal entries (beyond this talk).

The kernel S can be a standard kernel such as the linear⁵, squared exponential or Matérn kernel. This simple choice already offers several advantages:

- Low cost in training (< 5 seconds on a workstation) and at inference (in the low-medium data regime).
- **2** Competitive accuracy.
- **3** Empirically robust to choice of hyper-parameters/kernels.
- **④** Simple to implement: several libraries solve this problem out of the box.
- **5** The Gaussian process interpretation provides uncertainty quantification.
- 6 Convergence guarantees (beyond this talk).

⁵Equivalent to doing linear regression

1 Operator Learning for PDEs

2 A general framework for operator learning with kernels

Experimental protocol

We compare the test performance of our method using the examples from two comparison papers⁶⁷ and the best-reported test relative L^2 loss.

	Low-data regime			High-data regime			
	Burger's	Darcy problem	Advection I	Advection II	Hemholtz	Structural Mechanics	Navier Stokes
DeepONet	2.15%	2.91%	0.66%	15.24%	5.88%	5.20%	3.63%
POD-DeepONet	1.94%	2.32%	0.04%	n/a	n/a	n/a	n/a
FNO	1.93%	2.41%	0.22%	13.49%	1.86%	4.76%	0.26%
PCA-Net	n/a	n/a	n/a	12.53%	2.13%	4.67%	2.65%
PARA-Net	n/a	n/a	n/a	16.64%	12.54%	4.55%	4.09%
Linear	36.24%	6.74%	$2.15 imes 10^{-13}\%$	11.28%	10.59%	27.11%	5.41%
Kernel method	2.15%	2.75%	$2.75 imes10^{-3}\%$	11.44%	1.01%	5.18%	0.12%

Table: Summary of numerical results. When methods in their original work present variation, we report the best accuracy.

⁶Maarten V. de Hoop et al. The Cost-Accuracy Trade-Off In Operator Learning With Neural Networks. 2022.

⁷Lu Lu et al. "A comprehensive and fair comparison of two neural operators (with practical extensions) based on FAIR data". In: *Computer Methods in Applied Mechanics and Engineering* 393 (2022).

Inverse problem for Darcy's flow

Let $D = (0, 1)^2$ and consider the two-dimensional Darcy flow problem⁸:

$$-\nabla \cdot (u(x)\nabla v(x)) = f, \quad x \in D$$

 $u(x) = 0, \quad \partial D$

In this case, we are interested in learning the mapping from the permeability field u to the solution v (here f is considered fixed):

$$\mathcal{G}^{\dagger}: u(x) \mapsto v(x).$$

The coefficient u is sampled by $u = \psi(\mu)$ where $\mu = \mathcal{GP}(0, (-\Delta + 9I)^{-2})$ is a Gaussian random field and ψ is binary function.

 $^{^{8}}$ Lu et al., "A comprehensive and fair comparison of two neural operators (with practical extensions) based on FAIR data".

Low-data regime: Inverse problem for Darcy's flow

Method	Accuracy	
DeepONet	2.91 %	
FNO	2.41 %	
POD-DeepONet	2.32 %	
Linear Regression	$\bar{6.74}$ $\bar{\%}$	
GP (Matérn kernel)	2.75%	

Table: L^2 relative error on the Darcy problem.

High-data regime: Navier-Stokes

In the periodic domain $\mathcal{D} = [0, 2\pi]^2$, the vorticity-stream $(\omega - \psi)$ formulation of the incompressible Navier-Stokes equations is

$$egin{aligned} &rac{\partial w}{\partial t} + (v\cdot
abla) \omega -
u \Delta \omega &= f \ &\omega &= -\Delta \psi \ &\int_D \psi &= 0 \ &v &= \left(rac{\partial \psi}{\partial x_2}, -rac{\partial \psi}{\partial x_1}
ight) \end{aligned}$$

The map of interest is the map from the forcing term f to the vorticity field w at a given time t = T:

$$\mathcal{G}^{\dagger}: f \mapsto w(\cdot, T).$$

The forcing is sampled from a centered Gaussian field, $f \sim \mathcal{GP}(0, (-\Delta + 3^2 I)^{-4})$.

High data regime: Navier-Stokes

Method	Accuracy
DeepONet	3.63 %
FNO	0.26 %
PCA-Net	2.32 %
Linear Regression	$\bar{5.41}$ %
GP (Matérn kernel)	0.12%

Table: L^2 relative error on Navier-Stokes.

Two versions of the advection problem

Let D = (0, 1) and consider the one-dimensional wave advection equation:

$$egin{aligned} &rac{\partial m{v}}{\partial t}+rac{\partial m{v}}{\partial x}=0 \quad x\in(0,1), t\in(0,1] \ &m{v}(x,0)=u_0(x) \quad x\in(0,1) \end{aligned}$$

with periodic boundary conditions. We learn the operator mapping the initial condition to the solution at time t = 0.5:

$$\mathcal{G}: u_0(x) \mapsto v(x, 0.5).$$

The two versions differ in their initial conditions⁹,¹⁰:

$$\begin{split} u_0(x) &= h \mathbf{1}_{\{c - \frac{w}{2}, c + \frac{w}{2}\}} & (c, w, h) \sim \mathcal{U} & (\text{Advection I}) \\ u_0(x) &= -1 + 2\mathbf{1}\{\tilde{u}_0 \geq 0\} & \tilde{u}_0 \sim \mathcal{GP}(0, (-\Delta + 3^2)^{-2}) & (\text{Advection II}) \end{split}$$

 9 Lu et al., "A comprehensive and fair comparison of two neural operators (with practical extensions) based on FAIR data".

¹⁰Hoop et al., The Cost-Accuracy Trade-Off In Operator Learning With Neural Networks.

Two versions of the advection problem

Figure: The two versions of the advection problem

Advection I

Method	Accuracy	
DeepONet	0.66 %	
FNO	0.22 %	
POD-DeepONet	0.04 %	
Linear Regression	$2.15 \times 10^{-13}\%$	
GP (Matérn kernel)	$2.75 imes10^{-3}\%$	

Table: L^2 relative error for the advection I.

(b) Prediction by Linear regression

Method	Accuracy
FNO	13.49%
DeepONet	15.24%
PCA-Net	12.53%
Linear Regression	11.28%
GP (Matérn kernel)	11.44%

Table: L^2 relative error for advection II.

(a) Prediction by Linear regression

Inference complexity: high data regime

In the "high data" regime (10000 points), vanilla kernel method achieves high accuracy at the cost of complexity.

Data taken from Hoop et al., *The Cost-Accuracy Trade-Off In Operator Learning With Neural Networks*.

Our key contributions are:

- A simple, low-cost, and competitive kernel method for operator learning, which is a good baseline for many tasks.
- Convergence guarantees for this method.

Going beyond simple kernel methods:

- More complex matrix-valued kernels (non-diagonal, hierarchical kernels).
- "Non-vanilla" kernel methods: random Fourier features, inducing points ...

Paper coming out next week!