Benchmarking Operator Learning with Simple and Interpretable Kernel Methods

Pau Batlle ${ }^{1}$, Matthieu Darcy ${ }^{1}$, Bamdad Hosseini ${ }^{2}$, Houman Owhadi ${ }^{1}$
${ }^{1}$ California Institute of Technology ${ }^{2}$ University of Washington

Table of Contents

(1) Operator Learning for PDEs
(2) A general framework for operator learning with kernels
(3) Numerics

Let $\left\{u_{i}, v_{i}\right\}_{i=1}^{N}$ be N elements of $\mathcal{U} \times \mathcal{V}$ such that

$$
\mathcal{G}^{\dagger}\left(u_{i}\right)=v_{i}, \quad \text { for } i=1, \ldots, N .
$$

Operator learning problem: general version
Given the data $\left\{u_{i}, v_{i}\right\}_{i=1}^{N}$ approximate \mathcal{G}^{\dagger}.

The operator learning problem: finite dimensional version

In practice, we do not have access to u_{i}, v_{i} but to pointwise values:

$$
\phi: u \mapsto\left(u\left(x_{1}\right), u\left(x_{2}\right), \ldots, u\left(x_{m}\right)\right)^{T} \quad \text { and } \quad \varphi: v \mapsto\left(v\left(y_{1}\right), v\left(y_{2}\right), \ldots, v\left(y_{n}\right)\right)^{T} .
$$

Operator learning problem II

Given the data $\left\{\phi\left(u_{i}\right), \varphi\left(v_{i}\right)\right\}_{i=1}^{N}$ approximate \mathcal{G}^{\dagger}.

More generally, ϕ and φ can be bounded linear operators.

In this talk

Past work has focused on Operator Neural Networks ${ }^{123}$ that generalize Neural Networks to functional inputs and outputs. However they have not been benchmarked against simpler methods.

Our contribution

We propose a family of kernel based-methods that are simple, fast and competitive in accuracy. The methods are natural benchmarks for more complex methods.

[^0]
Table of Contents

(1) Operator Learning for PDEs
(2) A general framework for operator learning with kernels
(3) Numerics

Diagram summary

Summary of our method

Given the data $\left\{\phi\left(u_{i}\right), \varphi\left(v_{i}\right)\right\}_{i=1}^{N}$ our method to approximate \mathcal{G}^{\dagger} :

$$
\mathcal{G}^{\dagger}\left(u_{i}\right)=v_{i}, \quad \text { for } i=1, \ldots, N .
$$

can be summarized in two steps:
(1) Define the reconstructions ψ and χ as the optimal recovery map.
(2) Approximate the function f^{\dagger} using a kernel method.

Optimal recovery

We will assume that \mathcal{U} and \mathcal{V} are RKHSs arising from kernels Q and K respectively. The reconstruction operators are defined as optimal recovery maps

$$
\begin{array}{lll}
\psi(\phi(u)):=\underset{w \in \mathcal{U}}{\arg \min }\|w\|_{Q} & \text { s.t. } & \phi(w)=\phi(u) \\
\chi(\varphi(v)):=\underset{w \in \mathcal{V}}{\arg \min }\|w\|_{K} & \text { s.t. } & \varphi(w)=\varphi(v),
\end{array}
$$

The maps are the minmax optimal recovery of u and v respectively ${ }^{4}$. Optimal recovery maps can be expressed in closed form using standard representer theorems for kernel interpolation:

$$
\psi(\phi(u))(x)=Q(x, X) Q(X, X)^{-1} \phi(u) \quad \text { and } \quad \chi(\varphi(v))(y)=K(y, Y) K(Y, Y)^{-1} \varphi(v)
$$

[^1]
Recovery of f^{\dagger}

Once the reconstruction operators ψ and χ are defined, our best strategy is to reconstruct f^{\dagger} in the diagram:

$$
\bar{f} \approx f^{\dagger}:=\varphi \circ \mathcal{G}^{\dagger} \circ \psi
$$

and to approximate the operator \mathcal{G}^{\dagger} with the operator

$$
\overline{\mathcal{G}}:=\chi \circ \bar{f} \circ \phi .
$$

A simple kernel method for f^{\dagger}

Given a kernel S, we approximate $f^{\dagger}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ via optimal recovery independently component wise:

$$
\bar{f}_{j}:=\underset{h \in \mathcal{H}_{S}}{\arg \min }\|h\|_{S} \quad \text { s.t. } \quad h\left(\phi\left(u_{i}\right)\right)=\left(\varphi\left(v_{i}\right)\right)_{j} \quad \text { for } \quad i=1, \ldots, N .
$$

which also has closed form solution given by kernel regression:

$$
\bar{f}_{j}(\boldsymbol{u})=S(\boldsymbol{u}, U) S(U, U)^{-1} \boldsymbol{v}_{j} .
$$

where $U_{i}:=\phi\left(u_{i}\right)$ and $V_{i}:=\varphi\left(v_{i}\right)$.
This can be interpreted as recovering f^{\dagger} with a matrix valued kernel with diagonal entries (beyond this talk).

Why such a simple method?

The kernel S can be a standard kernel such as the linear ${ }^{5}$, squared exponential or Matérn kernel. This simple choice already offers several advantages:
(1) Low cost in training (<5 seconds on a workstation) and at inference (in the low-medium data regime).
(2) Competitive accuracy.
(3) Empirically robust to choice of hyper-parameters/kernels.
(4) Simple to implement: several libraries solve this problem out of the box.
(5) The Gaussian process interpretation provides uncertainty quantification.
(6) Convergence guarantees (beyond this talk).

[^2]
Table of Contents

(1) Operator Learning for PDEs
(2) A general framework for operator learning with kernels
(3) Numerics

Experimental protocol

We compare the test performance of our method using the examples from two comparison papers ${ }^{67}$ and the best-reported test relative L^{2} loss.

	Low-data regime			High-data regime			
	Burger's	Darcy problem	Advection I	Advection II	Hemholtz	Structural Mechanics	Navier Stokes
DeepONet	2.15\%	2.91\%	0.66\%	15.24\%	5.88\%	5.20\%	3.63\%
POD-DeepONet	1.94\%	2.32\%	0.04\%	n/a	n / a	n/a	n/a
FNO	1.93\%	2.41\%	0.22\%	13.49\%	1.86\%	4.76\%	0.26\%
PCA-Net	n/a	n/a	n/a	12.53\%	2.13\%	4.67\%	2.65\%
PARA-Net	n/a	n/a	n / a	16.64\%	12.54\%	4.55\%	4.09\%
Linear	36.24\%	6.74\%	$2.15 \times 10^{-13} \%$	11.28\%	10.59\%	27.11\%	5.41\%
Kernel method	2.15\%	2.75\%	$2.75 \times 10^{-3} \%$	11.44\%	1.01\%	5.18\%	0.12\%

Table: Summary of numerical results. When methods in their original work present variation, we report the best accuracy.

[^3]
Inverse problem for Darcy's flow

Let $D=(0,1)^{2}$ and consider the two-dimensional Darcy flow problem ${ }^{8}$:

$$
\begin{aligned}
-\nabla \cdot(u(x) \nabla v(x)) & =f, & & x \in D \\
u(x) & =0, & & \partial D
\end{aligned}
$$

In this case, we are interested in learning the mapping from the permeability field u to the solution v (here f is considered fixed):

$$
\mathcal{G}^{\dagger}: u(x) \mapsto v(x) .
$$

The coefficient u is sampled by $u=\psi(\mu)$ where $\mu=\mathcal{G} \mathcal{P}\left(0,(-\Delta+9 /)^{-2}\right)$ is a Gaussian random field and ψ is binary function.
${ }^{8} \mathrm{Lu}$ et al., "A comprehensive and fair comparison of two neural operators (with practical extensions) based on FAIR data".

Low-data regime: Inverse problem for Darcy's flow

Method	Accuracy
DeepONet	2.91%
FNO	2.41%
POD-DeepONet	2.32%
Linear Regression	$6.7 \overline{\%} \overline{\%}{ }^{-}$
GP (Matérn kernel)	2.75%

Table: L^{2} relative error on the Darcy problem.

Input, Darcy's flow

(a) Input

True. Darty: Anw

(c) True

Output, Darcy's flow

(b) Output

(d) Predicted
(e) Relative Error

High-data regime: Navier-Stokes

In the periodic domain $\mathcal{D}=[0,2 \pi]^{2}$, the vorticity-stream $(\omega-\psi)$ formulation of the incompressible Navier-Stokes equations is

$$
\begin{aligned}
\frac{\partial w}{\partial t}+(v \cdot \nabla) \omega-\nu \Delta \omega & =f \\
\omega & =-\Delta \psi \\
\int_{D} \psi & =0 \\
v & =\left(\frac{\partial \psi}{\partial x_{2}},-\frac{\partial \psi}{\partial x_{1}}\right)
\end{aligned}
$$

The map of interest is the map from the forcing term f to the vorticity field w at a given time $t=T$:

$$
\mathcal{G}^{\dagger}: f \mapsto w(\cdot, T)
$$

The forcing is sampled from a centered Gaussian field, $f \sim \mathcal{G} \mathcal{P}\left(0,\left(-\Delta+3^{2} I\right)^{-4}\right)$.

High data regime: Navier-Stokes

Method	Accuracy
DeepONet	3.63%
FNO	0.26%
PCA-Net	2.32%
Linear Regression	$\overline{5} . \overline{4} \overline{\%}{ }^{-}$
GP (Matérn kernel)	0.12%

Table: L^{2} relative error on Navier-Stokes.

Input, Navier Stokes

(a) Input

Output, Navier Stokes

(b) Output

Prstatatel. Navier Seckiss

(d) Predicted

(e) Error

Two versions of the advection problem

Let $D=(0,1)$ and consider the one-dimensional wave advection equation:

$$
\begin{array}{ll}
\frac{\partial v}{\partial t}+\frac{\partial v}{\partial x}=0 & x \in(0,1), t \in(0,1] \\
v(x, 0)=u_{0}(x) & x \in(0,1)
\end{array}
$$

with periodic boundary conditions. We learn the operator mapping the initial condition to the solution at time $t=0.5$:

$$
\mathcal{G}: u_{0}(x) \mapsto v(x, 0.5)
$$

The two versions differ in their initial conditions ${ }^{9},{ }^{10}$:

$$
\begin{array}{lll}
u_{0}(x)=h \mathbf{1}_{\left\{c-\frac{w}{2}, c+\frac{w}{2}\right\}} & (c, w, h) \sim \mathcal{U} & \text { (Advection I) } \\
u_{0}(x)=-1+2 \mathbf{1}\left\{\tilde{u}_{0} \geq 0\right\} & \tilde{u}_{0} \sim \mathcal{G P}\left(0,\left(-\Delta+3^{2}\right)^{-2}\right) & \text { (Advection II) }
\end{array}
$$

[^4]
Two versions of the advection problem

Advection I

(a) Advection I: initial condition

Advection II

(b) Advection II: initial condition

Figure: The two versions of the advection problem

Advection I

Advection I

Method	Accuracy
DeepONet	0.66%
FNO	0.22%
POD-DeepONet	0.04%
Linear Regression	$\overline{2} \overline{15} \times \overline{1} \overline{1} \overline{-13} \overline{-130}$
GP (Matérn kernel)	$2.75 \times 10^{-36} \%$

Table: L^{2} relative error for the advection I.

(a) Input

Predicted, Advection I

(b) Prediction by Linear regression

Advection II

Method	Accuracy
FNO	13.49%
DeepONet	15.24%
PCA-Net	12.53%
Linear Regression	11.28%
GP (Matérn kernel)	11.44%

Table: L^{2} relative error for advection II.

(a) Prediction by Linear regression

Inference complexity: high data regime

In the "high data" regime (10000 points), vanilla kernel method achieves high accuracy at the cost of complexity.

Data taken from Hoop et al., The Cost-Accuracy Trade-Off In Operator Learning With Neural Networks.

Conclusion

Our key contributions are:

- A simple, low-cost, and competitive kernel method for operator learning, which is a good baseline for many tasks.
- Convergence guarantees for this method.

Going beyond simple kernel methods:

- More complex matrix-valued kernels (non-diagonal, hierarchical kernels).
- "Non-vanilla" kernel methods: random Fourier features, inducing points ...

Paper coming out next week!

[^0]: ${ }^{1}$ Zongyi Li et al. Fourier Neural Operator for Parametric Partial Differential Equations. 2020.
 ${ }^{2}$ Kaushik Bhattacharya et al. Model Reduction and Neural Networks for Parametric PDEs. 2021.
 ${ }^{3} \mathrm{Lu}$ Lu et al. "Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators". In: Nature Machine Intelligence 3.3 (2021), pp. 218-229.

[^1]: ${ }^{4}$ Houman Owhadi and Clint Scovel. Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization: From a Game Theoretic Approach to Numerical Approximation and Algorithm Design. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, 2019.

[^2]: ${ }^{5}$ Equivalent to doing linear regression

[^3]: ${ }^{6}$ Maarten V. de Hoop et al. The Cost-Accuracy Trade-Off In Operator Learning With Neural Networks. 2022.
 ${ }^{7} \mathrm{Lu} \mathrm{Lu}$ et al. "A comprehensive and fair comparison of two neural operators (with practical extensions) based on FAIR data". In: Computer Methods in Applied Mechanics and Engineering 393 (2022).

[^4]: ${ }^{9} \mathrm{Lu}$ et al., "A comprehensive and fair comparison of two neural operators (with practical extensions) based on FAIR data".
 ${ }^{10}$ Hoop et al., The Cost-Accuracy Trade-Off In Operator Learning With Neural Networks.

