

MINIMUM MELTING TIME-CURRENT CHARACTERISTIC CURVES

CURRENT IN AMPERES

POSITROL® FUSE LINKS—S&C "K" SPEED

BASIS—These fuse links are tested in accordance with the procedures described in ANSI Standard C37.41-1981, to comply with ANSI Standard C37.42-1981. As required by these standards, the minimum melting current is not less than 200% of fuse-link ampere rating, and the minimum melting curves are based on tests starting with the fuse link at an ambient temperature of 25°C and no initial load.

CONSTRUCTION—Fusible elements for fuse links rated 6K through 100K amperes are silver, helically coiled; fusible elements for fuse links rated 140K and 200K amperes are silver-tin. All are of solder-less construction.

TOLERANCES—Curves are plotted to minimum test points. Maximum variations within the coordinating range (melting times less than 10 seconds) expressed in current values are:

Plus 10% for fuse links rated 6K through 100K amperes; Plus 20% for fuse links rated 140K and 200K amperes.

APPLICATION—Like all high-voltage fuses, these fuse links are intended to accommodate overloads, not to interrupt them. Accordingly, they feature fusible elements which are designed with a minimum melting current of 200% of the fuse-link ampere rating (for fuse links rated 100K amperes or less) or 220% of the fuse-link ampere rating (for fuse links rated over 100K amperes). As a result, these fuse links have considerable peak-load capabilities; however, they should never be exposed to loading in excess of the peak-load capabilities listed in S&C Data Bulletin 350-190.

capabilities listed in S&C Data Bulletin 350-190.

Since fuse links having silver element construction are not subject to damage by aging or transient overcurrents, it is unnecessary to replace unblown fuse links of such construction in single-phase or three-phase installations when one or more fuse links have blown.

However, it is advisable to replace unblown silver-tin element fuse links under the same conditions, since—while not subject to aging—they may be damaged by transient overcurrents.

COORDINATION—Any preloading reduces melting time. While this phenomenon is especially pronounced in fuse links having minimum melting currents appreciably less than 200% of rating, the effect of preloading (as described in S&C Data Bulletin 350-195) must nonetheless be determined for the fuse links represented by these curves and adjustments to these curves must be made:

- When close coordination is required;
 When automatic circuit reclosers of
- When automatic circuit reclosers or three-shot cutouts are involved;
- When, regardless of the preciseness of coordination, the fuse link is subjected to temporary overloads.

If close coordination is to be achieved, overloading must be avoided since it causes a significant shift in time-current characteristics

Because of the damageability of silver-tin element fuse links (rated 140K and 200K amperes), setback allowances must be used in coordinating these fuse links as "protected" devices. These are applied by reducing the current value in the above curves by 10%. On the other hand, silver-element fuse links (rated 6K through 100K amperes) are nondamageable, and no such setback allowances are necessary.

The exclusive use of S&C Positrol Fuse Links—because of their inherently narrower tolerance band and because of their nondamageability—will expand the scope of coordination as follows:

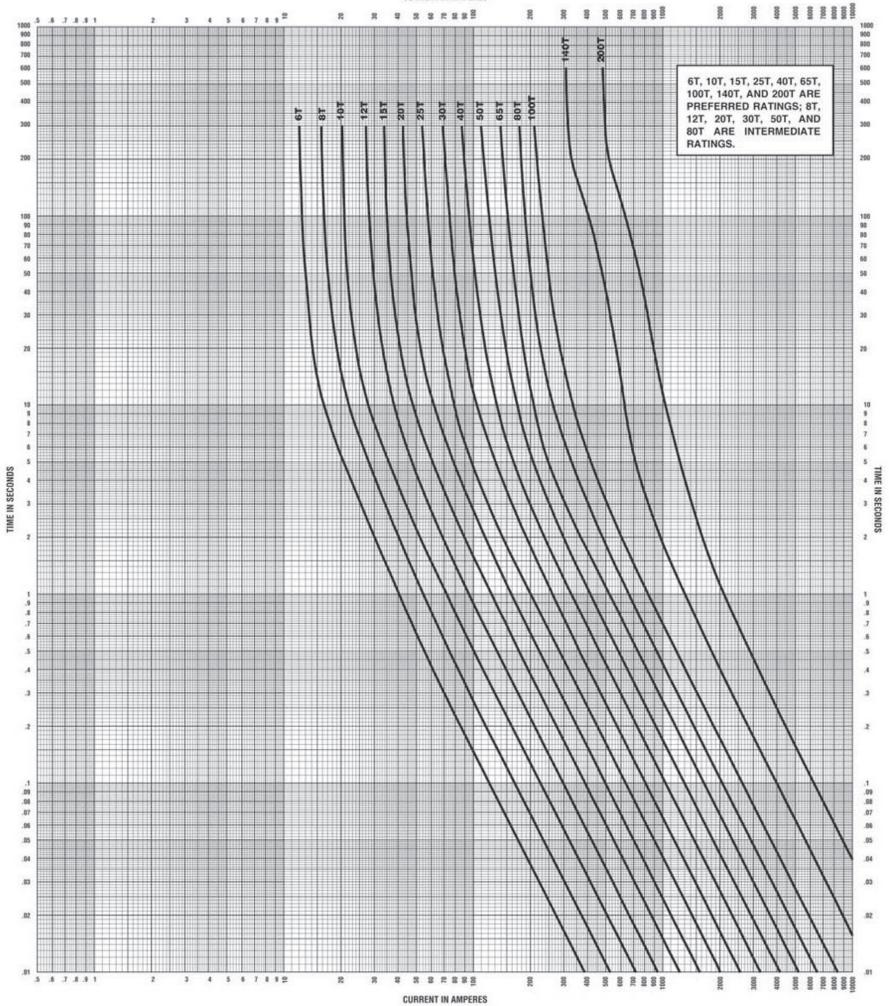
 Coordination of preferred with adjacent intermediate ratings, giving twice as many sectionalizing points. This is true for the

- sequence operation of fuse links alone, or for the sequence operation of fuse links coordinated with automatic circuit
- reclosers.
 Coordination of a larger number of fuse-link ratings with a given automatic circuit recloser between the fast and retarded curves.
- Coordination through a greater range, and to higher levels of fault current, with respect to automatic circuit reclosers.
- Coordination to higher levels of fault current with respect to sequence operation of fuse links.

The breadth of coordination described above can be obtained only by the use of S&C Positrol Fuse Links. No fuse link of low-temperature element construction (tin, lap-joint) can provide similar per-

NOTE—A coordination scheme designed to take full advantage of the nondamageability and the superior coordination capabilities of S&C Positrol Fuse Links may not function satisfactorily if fuse links of the same speed but of other makes are substituted. However, S&C "K" Speed Positrol Fuse Links can replace, on a one-for-one basis, other manufacturers' "K" speed fuse links in existing coordination schemes. Such replacements, unlike tin-element fuse links, are not subject to nuisance fuse operations ("sneakouts") due to damage from surge currents, load cycling, vibration, and aging.

FUSE LINKS AVAILABLE—


Style	Ampere Ratings
Universal	.6K through 200K
Extra-Performance	.6K through 200K

Supersedes TCC No. 165-6 dated 12-17-84

©1986

TCC NUMBER 165-6

Minimum Melting Time-Current Characteristic Curves

Positrol® Fuse Links-S&C "T" Speed

BASIS—These fuse links are tested in accordance with the procedures described in IEEE Standard C37.41 to comply with IEEE Standard C37.42. As required by these standards, the minimum melting current is not less than 200% of the fuse link ampere rating, and the minimum melting curves are based on tests starting with the fuse link at an ambient temperature of 25°C (77°F) and no initial load.

CONSTRUCTION—Fusible elements for fuse links coiled; fusible elements for fuse links rated 140T and 200T amperes are cast tin. All are of solderless construction.

TOLERANCES—Curves are plotted to minimum test points. Maximum variations within the coordinating range (melting times less than 10 seconds) expressed in current values are:

- Plus 10% for fuse links rated 6K through 100K amperes
- Plus 20% for fuse links rated 140K and 200K amperes

APPLICATION—Like all high—voltage fuses, these fuse links are intended to accommodate overloads, not to interrupt them. Accordingly, they feature fusible elements designed with a minimum melting current of 200% of the fuse—link ampere rating (for fuse links rated 100T amperes or less) or 220% of the fuse link ampere rating (for fuse links rated over 100T amperes). As a result, these fuse links have considerable peak-load capabilities; however, they should never be exposed to loading in excess of the peak-load capabilities listed in S&C Information Bulletin 352-190.

Because fuse links having silver-copper eutectic element construction are not subject to damage by aging or transient overcurrents, it is unnecessary to replace unblown fuse links of such construction in single-phase or three-phase installations when one or more fuse links have blown. However, it is advisable to replace unblown silver-tin element fuse links

under the same conditions because, while not subject to aging, they may be damaged by transient overcurrents.

COORDINATION—Any preloading reduces melting time. While this phenomenon is especially pronounced in fuse links having minimum melting currents appreciably less than 200% of rating, the effect of preloading (as described in S&C Information Bulletin 352–195) must nonetheless be determined for the fuse links represented by these curves and adjustments to these curves must be made:

- $\bullet \quad \text{When close coordination is required} \\$
- When automatic circuit reclosers or three-shot cutouts are involved
- \bullet $\,$ When, regardless of the preciseness of coordination, the fuse link is subjected to temporary overloads

If close coordination is to be achieved, overloading must be avoided because it causes a significant shift in time-current characteristics.

Because of the damageability of silver-tin element fuse links (rated 140T and 200T amperes), setback allowances must be used in coordinating these fuse links as "protected" devices. These are applied by reducing the current value in the above curves by 10%. On the other hand, silver—element fuse links (rated 6K through 100K amperes) are nondamageable, and no such setback allowances are necessary.

The exclusive use of S&C Positrol Fuse Links—because of their inherently narrower tolerance band and because of their nondamageability—will expand the scope of coordination as follows:

 Coordination of preferred with adjacent intermediate ratings, giving twice as many sectionalizing points (This is true for the sequence

- operation of fuse links alone, or for the sequence operation of fuse links coordinated with automatic circuit reclosers.)
- Coordination of a larger number of fuse-link ratings with a given automatic circuit recloser between the fast and slow curves
- Coordination through a greater range, and to higher levels of fault current, with respect to automatic circuit reclosers
- Coordination to higher levels of fault current with respect to sequence

operation of fuse links

The breadth of coordination described above can be obtained only by the use of S&C Positrol Fuse Links. No fuse link of low-temperature

element construction (tin, lap-joint) can provide similar performance.

NOTE: A coordination scheme designed to take full advantage of the nondamageability and the superior coordination capabilities of S&C Positrol Fuse Links may not function satisfactorily if fuse links of the same speed but of other makes are substituted. However, S&C "T" Speed Positrol Fuse Links can replace, on a one—for—one basis, other manufacturers' "T" speed fuse links in existing coordination schemes. Such replacements, unlike tin-element fuse links, are not subject to nuisance fuse operations ("sneakouts") due to damage from surge currents, load cycling, vibration, and aging.

FUSE LINKS AVAILABLE

Style	Ampere Ratings
Universal	6T through 200T
Extra-Performance●	6T through 200T

No longer available, listed for reference only.

THE FUSE SELECTION TABLES

TABLE 7—Transformers Rated 7.2 Ky Single-Phase^① or 12.47 Ky Three-Phase

		165-6	TCC No.	Speed—	S&C "K"		-6	No. 123-	S	S&C Positrol Fuse Link Speed						
	Fuse-Link Rating,	n index, ent of ormer ating	Transformer Protection index, Percent of Transformer Kva Rating (see text, page 4)		Fuse-Link Load Capabil Int of Transfo Kva Rating		Fuse-Link Rating,	on index, ent of ormer lating	Transi Protection Perce Transi Kva R		Fuse-Link Load Capabi ent of Transio Kva Rating		Transformer Full-Load		Transformer Rating, Kva	
	Amperes	Δ-⊀	$ \begin{array}{c} 1\phi \\ \text{and} \end{array} $ $ \Delta - \Delta \\ $	Cold-Load Pickup	Hot-Load Pickup	Contin- uous Load	Amperes	△⊀	1φ and Δ-Δ- -√√	Cold-Load Pickup	Hot-Load Pickup	Contin- uous Load	Current, Amperes	Three- Phase	Single- Phase	
							1 2 3	380 900 —	375 790 1380	95 190 285	160 345 520	175 350 520	0.69	15	5	
	6K 8K	_	1150 2170	280 380	670 935	645 865	2 3 5	375 600 —	370 560 1020	95 140 235	130 260 430	175 260 430	1.39	30	10	
	6K 8K 10K	760 1410 —	690 970 1390	185 255 325	410 610 770	435 575 675	3 5 7 10	380 670 —	375 620 780 1700	95 155 230 335	145 290 480 720	175 290 405 625	2.08	45	15	
	6K 8K 10K 12K	410 565 760 1450	405 530 670 1000	110 155 195 260	165 320 450 605	260 345 405 550	5 7 10 15	370 455 800	370 445 660 1160	95 140 200 305	135 290 430 605	175 240 375 550	3.47	75	25	
	8K 10K 12K 15K	350 445 660 920	345 425 600 770	100 130 175 220	130 250 370 480	230 270 365 420	7 10 15 20	295 440 760	295 420 650 960	95 135 205 270	165 290 405 555	160 250 365 480	5.21	112½	37½	
	10K 12K 15K 20K	320 455 590 815	320 430 540 730	100 130 165 205	120 240 345 485	200 275 315 420	10 †5 20 25	315 510 760 1140	315 475 660 820	100 155 205 240	205 300 420 505	185 275 360 445	6.94	150	50	
1	15K 20K 25K 30K	365 485 650 940	345 455 580 780	110 140 175 225	170 285 385 430	210 280 335 375	15 20 25 30	320 445 545 720	315 425 525 640	100 135 160 195	200 280 335 405	180 240 300 355	10.4	225	75	
1	20K 25K 30K 40K	345 445 610 850	335 410 550 730	105 130 170 220	160 255 325 395	210 250 280 340	20 25 30 40	315 395 490 770	315 395 475 670	100 120 145 205	185 250 300 365	180 225 265 315	13.9	300	100	
	30K 40K 50K 65K	335 435 620 860	315 410 555 750	100 130 165 210	130 240 305 425	170 205 265 345	30 40 50 65	285 395 520 730	285 380 490 650	90 120 155 195	135 220 270 390	160 190 230 335	23.1	500	167	
1	50K 65K 80K 100K	370 490 650 920	340 460 580 760	110 140 175 210	185 280 330 360	175 230 285 315	50 65 80 100	325 435 560 800	315 415 515 680	105 130 165 210	180 260 300 360	155 220 265 305	34.7	750	250	
1	65K 80K 100K 140K	350 445 590	335 420 540 1400	105 130 155 245	155 250 270 455	175 215 240 420	65 80 100 125	315 395 530	310 380 490 1100	100 120 155 220	145 225 270 400	165 200 225 380	46.3	1000	333	
1	100K 140K 200K	360 930 —	345 780 2030	105 165 260	180 300 430	160 280 410	100 125 150 200	325 740 1200	315 640 900 1400	105 145 175 230	180 265 325 430	150 250 305 380	69.4	1500	500	

① Phase-to-neutral or phase-to-phase.

Note: Refer to "How to Use the Fuse Selection Tables" on page 48 (foldout).

350-110 DATA BULLETIN

Page 18 of 50 September 24, 1984

② These values reflect the inherent peak-load capabilities of the fuse links themselves--not the peak-load capabilities of the transformers which, in many cases, are much lower. For derivation of these values, see text, page 4.

Table 7. S&C 'T' Speed Fuse Links (TCC No 170-6), Based on Preloading of Source-Side Fuse Link

Load-Side Fuse Link Ampere Rating		Maximum Fault Current in Amperes, RMS①																
Source-Side Fuse Link Ampere Rating	6Т	8T	10T	12T	15T	20T	25T	30T	40T	50T	65T	80T	100T	101●	102●	103●	140T	200T
1■	250	365	530	700	930	1 200	1 550	2 000	2 550	3 250	4 050	5 100	6 500	5 200	8 900	15 000	8 900	15 000
2■	240	355	520	690	920	1 200	1 550	2 000	2 550	3 250	4 050	5 100	6 500	5 200	8 900	15 000	8 900	15 000
3■	225	350	520	690	910	1 200	1 550	2 000	2 550	3 250	4 050	5 100	6 500	5 200	8 900	15 000	8 900	15 000
5■	150	330	510	680	900	1 200	1 550	2 000	2 550	3 250	4 050	5 100	6 500	5 200	8 900	15 000	8 900	15 000
6T		145	410	620	860	1 150	1 500	1 950	2 500	3 200	4 000	5 100	6 500	5 100	8 900	14 500	8 900	14 500
8T			175	520	790	1 100	1 450	1 900	2 500	3 200	4 000	5 100	6 500	5 100	8 900	14 500	8 900	14 500
10T				210	640	1 000	1 400	1 900	2 500	3 200	4 000	5 100	6 500	5 100	8 900	14 500	8 900	14 500
12T					295	800	1 250	1 750	2 400	3 100	3 900	5 000	6 400	5 000	8 800	14 500	8 900	14 500
15T		315 1 000 1 600 2 250 2 950 3 800 4 900 6 300 5 000 8								8 800	14 500	8 800	14 500					
20T							360	1 300	2 050	2 800	3 700	4 800	6 300	4 850	8 600	14 500	8 700	14 500
25T		570 1 700 2 600 3 600 4 700 6 100 4 700 8 500									14 500	8 600	14 500					
30T		820 2 100 3 200 4 400 6 000 4 450 8 400										14 500	8 500	14 500				
40T		640 2 500 4 000 5 600 3 950 8 200											8 300	14 500				
50T		3 300 5 200 3 250 7 900										14 000	8 000	14 000				
65T		1 400 4 200 1 550 7 100										13 500	7 300	14 000				
80T		1 900 6 100											-		6 300			
100T															3 250	12 500	3 800	13 000
101●														13 000	6 600	15 000		
102●														6 200		10 000		
140T														4 400		4 650		

① The maximum fault-current values are based on published total clearing time-current characteristic curves and on minimum melting time-current characteristic curves adjusted for pre-loading of the source-side fuse link to its ampere rating.

- S&C Coordinating Speed Fuse Links, TCC No. 172-6.
- S&C Standard Speed Positrol Fuse Links, TCC No. 123-6.

Preferred ampere rating

Intermediate ampere ratings