
2018 Software Overview

#1391 – Metal Moose FRC 2018

2

Table of contents
Introduction ... 3

FRC 2018 .. 3

Software Overview .. 4

Polynomial Equations .. 4

Elevator Polynomial Function .. 4

Drivebase Polynomial Function ... 5

Simplifying Evaluation ... 5

Autonomous Programming Language ... 5

Syntax .. 5

Optional Parameters ... 6

Chunks ... 6

Language Synthetization ... 6

Turing Completeness ... 7

Version Control, Data Manipulation ... 7

Git Version Controlling .. 7

Offline Event Data Synchronization... 7

Trigonometric Position System ... 7

The Goto Command .. 7

Problems and Solutions ... 8

Robot Control .. 8

Reverse Button .. 8

Sensors .. 8

Double PID Control .. 8

#1391 – Metal Moose FRC 2018

3

Introduction
This paper is a brief rundown of the various software functions of the Metal Moose’s 2018 robot. Some

of the reasons behind writing it include:

• Sharing interesting ideas with other FRC teams, looking for either inspiration or experience

with various programming and real-life challenges that we faced during our 2018 FRC season.

• Serving as a quick reference/catch-up guide for our team’s members.

• Having an easy way to share the interesting functionalities of our 2018 robot with the people

that are interested.

It is also meant to be complemented with the Metal Moose 2018 GitHub repository, where the team

stores all the code used for the robot (https://github.com/daelanr/MetalMoose2018).

FRC 2018
First Robotics Competition (FRC) is a high-school robotics competition. Every year, thousands of teams

made up of high school students and their mentors build and program a robot to compete against (and

with) other robots in various games that include driving, picking up objects and climbing with the robot.

Getting funding and building a good robot is all about innovation and creativity – it is as close to real

life engineering challenges as it gets.

The game is divided into two parts: the autonomous and the teleoperated. In autonomous, each of

the robots operate autonomously (15 seconds). After that, the robots are operated by the drivers (2

minutes and 15 seconds). In the last 30 seconds of teleoperated, the endgame period begins: the has

frequently been to elevate robot above a certain distance.

For this year’s game, the robots pick up cubes to deliver on a switch and scale, with the intent of tipping

them to their team’s favor. They can also score points by completing tasks in the autonomous, by

pushing the collected cubes into the exchange on their side of the field, and by activating power-ups

using the cubes pushed into the exchange.

https://github.com/daelanr/MetalMoose2018

#1391 – Metal Moose FRC 2018

4

Software Overview
This section covers the various techniques used to easily operate our robot (both teleoperated and

autonomous), some of the methods used to version control the code and to synchronize the contents

of the two team’s drive stations, some interesting techniques to help with operating the robot.

Polynomial Equations
One of the problems that we faced for this year was the functionality of the elevator – we would like

to throttle its speed, so it both doesn’t come crashing down (or flying up).

After putting an encoder on the elevator, we had a few options. Restricting the movement would be a

possibility (not going above and below a certain threshold, or simply throttling the speed by a

coefficient). Another way would be using PID. However, after realizing that the range of the values

from the encoder is restricted (by the physical reach of the elevator), we found a more sound solution

that allows us to use the full mechanical potential of the robot with elegancy: a polynomial function.

Elevator Polynomial Function
We selected 5 points to model the equation of the elevator and, using Excel’s trend analysis, we

generated a 4th degree polynomial function going through all the selected points. Combining them into

a piecewise function (the function is different when going down – the elevator needs to slow down

more):

𝑓(𝑥) = {
−0.0000000957𝑥4 + 0.0000191𝑥3 − 0.00163𝑥2 + 0.0679𝑥 − 0.1, 0 ≤ 𝑥 < 50

−0.000000123𝑥4 + 0.0000246𝑥3 − 0.00176𝑥2 + 0.0528𝑥 + 0.45, 50 ≤ 𝑥 ≤ 100

Plotting the equation gives us:

The elevator subsystem now includes a “throttled” function, that automatically adjusts the speed of

the elevator depending on the position.

A note to be made is that going up, the elevator is throttled only when above 50%. Similarly, when

going down, the elevator is only throttled when below 50% (there is no reason to be slowing the

elevator down when it is in no danger of hitting either of the limits).

#1391 – Metal Moose FRC 2018

5

Drivebase Polynomial Function
Another problem that we faced during the first competition was the tipping of the robot when the

elevator was up. As this problem had to be solved immediately (since we discovered the problem

during the first event), we had to come up with another polynomial equation on-the-go, so over a

lunch break, we added this 2nd degree polynomial function that throttles the speed of the robot

depending on the position of the elevator, effectively finding the solution in a high-stress situation:

𝑓(𝑥) = 0.0000245𝑥2 − 0.00490𝑥 + 1

Plotting the equation gives us:

Simplifying Evaluation
A neat little trick that we used to evaluate respective values of the polynomial is algebraically change

the form, as shown on this example:

5𝑥3 + 3𝑥2 − 2𝑥 + 1 = 𝑥(𝑥(𝑥(5) + 3) − 2) + 1

This both speeds up the computation and simplifies the code, since no exponentiation is required.

Autonomous Programming Language
This year’s game posed a significant challenge for the autonomous systems, for the reason of the

randomness in the field layout. We wanted to come up with a way to both easily define sets of

movements for the robot, change them on the go, and easily mirror them over the half-line.

Our solution was creating a language with an intuitive syntax, simple adjustments of parameters and,

most importantly, easy mirroring of a sequence when starting on the opposite side of the field. This

way, we can easily change any part of our autonomous strategy from SmartDashboard at any time.

Syntax
A syntax is best shown on a sample sequence of commands:

DriveTurn(45) DriveDistance(80) DriveTurn(-45) DriveTime(2) Out(0.5)

This short sequence scores the cube on the right switch when starting from the middle. The robot

starts turning and driving at the same time by 45°, drives 80”, drive-turns again by -45° (now facing the

switch), drives forward for 2 seconds (to cross the line and touch the switch), and outtakes the cube

for 0.5 seconds.

#1391 – Metal Moose FRC 2018

6

Generalizing, the default syntax of a command looks like such:

Command(p1,p2,…,pn)

Command is the name of the command, and 𝑝𝑛 is the value of the parameter of the command (usually

a number. The name of the command can be either the full name (DriveDistance, Elevate…), or the

capital letters (DD, E…).

The full documentation of the parsing language can be found on the 2018 Metal Moose GitHub

repository (https://github.com/Metal-Moose/MetalMoose2018).

Optional Parameters
Besides the required parameters of each of the command (DriveDistance needs the distance, TurnBy

needs the angle…), a multitude of optional parameters are available. These do not completely change

the functionality of a command, but simply adjust some of the possible variables of the commands:

TurnBy(45, Speed=0.6, Mode=Parallel)

In this example, the speed of the turning is

adjusted to 0.6, and the command is executed in

parallel with other currently running commands.

Chunks
The autonomous sequences are stored in the

code as so called “chunks.” The main feature of

chunks is that they can be easily mirrored, so

creating the autonomous for a starting position

on other side of the field is very simple.

Take starting on the right as an example. For field

configurations RLR and RRR, we declared that

Chunk(1) (scoring on the switch) and Chunk(2) (scoring on the scale) are going to be used.

When starting on the left, the inverses of these two chunks will be used for configurations LRL and LLL.

Inversing a chunk negates the values of all turn-based commands, so the path is perfectly symmetrical

over the half-field line. The illustration bellow shows the two chunks when starting from the right

(blue), and their reversed counterparts when starting from the left (red). This greatly simplifies

autonomous, since there is always only one sequence that we need to keep track off, and there is no

duplication of the code.

Language Synthetization
To allow the parsing of the language to be as smooth as possible, our code deploys multiple regular

expressions to synthesize the input, making it less prone to typos and mistakes of similar sort. The

language can pass parses incorrect inputs into their correct forms (if the syntactic structure is correct).

The parser converts the input from the first line to the input of the second line:

" TrnB (57°)DrveDisttance (80in, Sped= 0.7)"

"TurnBy(57) DriveDistance(80, S=0.7)"

https://github.com/Metal-Moose/MetalMoose2018

#1391 – Metal Moose FRC 2018

7

Turing Completeness
Before the removal of the trigonometric position system, the language that we developed was a step

away from being Turing complete (that it was computationally universal), meaning that you could

program anything in it – an operating system, a word processing program, an equation solver…

The way it would be done is taking the coordinates of the robot as the tape of the Turing machine,

interpreting the commands as the states of the machine and adding a “jump” command that would

jump between the states.

This is just a side note, because the programming team thought it was cool.

Version Control, Data Manipulation

Git Version Controlling
Version controlling the code was an absolute must, so we

decided to use the Git version control system to keep track of

the changes that we made to the code. This allows for an easy

collaboration between the members of our team, and other

teams. We share not just our codebase, but also the layout of

our SmartDashboard. The diagram on the right shows the

interactions of our programming team and the easy

collaboration that this version control system allows.

Offline Event Data Synchronization
Without WiFi, it is sometimes quite impractical to copy the

contents of one of our drivestations to the other one using

the file browser. That is why we automated the process using

a Python script – we automatically copy the code of one

drivestation onto a flashdrive to a folder with the current date

as the name, to simplify and speed up the work amid the

competition, where every second counts.

Trigonometric Position System
One of the functionalities of our autonomous was a coordinate-based position system. A goal that we

had in mind was that the robot remembers its exact position during autonomous, so whether it

overshoots or overturns, it could correctly calculate its next movement depending on the

circumstances.

The Goto Command
The main feature of this system was the 𝑔𝑜𝑡𝑜 command.

The entire field is interpreted as a large cartesian coordinate plane. The robot gets instructions

𝑔𝑜𝑡𝑜(𝑥, 𝑦) and first generates a turn command to turn to the pair of coordinates and a drive command

to drive the distance to the pair of coordinates.

The angle is calculated using arctan (
𝑦

𝑥
). One needs to be quite carful when using arctan, since it only

works in quadrants I and II. We solved this by following this logic: if both 𝑥 and 𝑦 are negative, the

resulting fraction
𝑦

𝑥
 will be positive, so the result lays in quadrant I, but the coordinates lay in quadrant

III. That is why we subtract 180° from the result to get to quadrant III. Similarly, if only 𝑦 is negative,

the resulting quadrant is quadrant II, but the coordinates lay in quadrant IV, so we add 180°.

#1391 – Metal Moose FRC 2018

8

Distance to the coordinates are calculated using the Pythagorean theorem: √(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2,

where 𝑥0, 𝑦0 are the initial coordinates and 𝑥, 𝑦 are the destination coordinates.

The position of the robot on the plane is calculated using x = sin 𝜃 ∗ 𝑑 and 𝑦 = cos 𝜃 ∗ 𝑑, where 𝜃 is

the angle that the robot was in before the movement started and 𝑑 is the distance that it traveled.

Both values are read from the sensors on the robot (an encoder and a gyro on the drivebase).

This system allows easy mirroring of the commands depending on different field layouts, as going for

the coordinate on the other side is simply negating the 𝑥 value and provides a really easy way to

program the autonomous sequences.

Problems and Solutions
One of the problems was always calculating the correct angle that the robot had to turn, since the

robot could be in any angular position (even over ±360) and turning more than ±180° would be

suboptimal.

The solution was using the modulo operator: 𝜃 ≡ 𝜃0 (𝑚𝑜𝑑 360), bringing the range of possible values

to ±360°. If the values were over ±180°, the optimal solution for a negative angle was 𝑥 = 180 −

(𝜃 𝑚𝑜𝑑 180), and 𝑥 = −180 + (𝜃 𝑚𝑜𝑑 180) for a positive angle (we are essentially calculating an

angle adding up to ±180°).

We ultimately decided against using this system (although it was fully implemented and tested, as seen

in the older versions of the code), for the sole reason of speed. Although the system worked very well,

the amount of precision required from the PIDs of our sensors was too slow for actual usage.

With that being said: with a well-tuned PID, a system like this would be invaluable for games with

randomly generated field layouts.

Robot Control

Reverse Button
Our robot must drive backwards onto the platform to successfully climb, so the primary button of the

joystick reverses the driving so that forward is now backward and vice versa. This makes driving

backwards incredibly simple and intuitive, making the entire process of hanging the robot on the rung

as smooth as possible.

Sensors
The robot is equipped with a navX-MPX navigation sensor that allows for smooth turning during the

autonomous period. It is also equipped with and encoder on one side of the drivebase to precisely

measure distance driven (for autonomous), and one on the elevator motor, to throttle its speed.

Double PID Control
The autonomous heavily relies on driving a correct distance in a straight path. This is achieved by

simultaneously using two PID systems: one to control the encoder (measuring the distance driven) and

one for the gyro (to always drive in a straight line).

A neat trick that we used is that both PID outputs can be fed directly to the arcadeDrive function: the

encoder PID output as the first parameter, to alter the speed of driving, and the gyro PID output as the

second parameter, to alter the turning of the robot.

