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Introduction 
This paper is a brief rundown of the various software functions of the Metal Moose’s 2018 robot. Some 

of the reasons behind writing it include: 

• Sharing interesting ideas with other FRC teams, looking for either inspiration or experience 

with various programming and real-life challenges that we faced during our 2018 FRC season. 

• Serving as a quick reference/catch-up guide for our team’s members. 

• Having an easy way to share the interesting functionalities of our 2018 robot with the people 

that are interested. 

It is also meant to be complemented with the Metal Moose 2018 GitHub repository, where the team 

stores all the code used for the robot (https://github.com/daelanr/MetalMoose2018). 

FRC 2018 
First Robotics Competition (FRC) is a high-school robotics competition. Every year, thousands of teams 

made up of high school students and their mentors build and program a robot to compete against (and 

with) other robots in various games that include driving, picking up objects and climbing with the robot. 

Getting funding and building a good robot is all about innovation and creativity – it is as close to real 

life engineering challenges as it gets. 

The game is divided into two parts: the autonomous and the teleoperated. In autonomous, each of 

the robots operate autonomously (15 seconds). After that, the robots are operated by the drivers (2 

minutes and 15 seconds). In the last 30 seconds of teleoperated, the endgame period begins: the has 

frequently been to elevate robot above a certain distance.  

For this year’s game, the robots pick up cubes to deliver on a switch and scale, with the intent of tipping 

them to their team’s favor. They can also score points by completing tasks in the autonomous, by 

pushing the collected cubes into the exchange on their side of the field, and by activating power-ups 

using the cubes pushed into the exchange. 

https://github.com/daelanr/MetalMoose2018
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Software Overview 
This section covers the various techniques used to easily operate our robot (both teleoperated and 

autonomous), some of the methods used to version control the code and to synchronize the contents 

of the two team’s drive stations, some interesting techniques to help with operating the robot. 

Polynomial Equations 
One of the problems that we faced for this year was the functionality of the elevator – we would like 

to throttle its speed, so it both doesn’t come crashing down (or flying up). 

After putting an encoder on the elevator, we had a few options. Restricting the movement would be a 

possibility (not going above and below a certain threshold, or simply throttling the speed by a 

coefficient). Another way would be using PID. However, after realizing that the range of the values 

from the encoder is restricted (by the physical reach of the elevator), we found a more sound solution 

that allows us to use the full mechanical potential of the robot with elegancy: a polynomial function. 

Elevator Polynomial Function 
We selected 5 points to model the equation of the elevator and, using Excel’s trend analysis, we 

generated a 4th degree polynomial function going through all the selected points. Combining them into 

a piecewise function (the function is different when going down – the elevator needs to slow down 

more): 

𝑓(𝑥) = {
−0.0000000957𝑥4  +  0.0000191𝑥3  −  0.00163𝑥2  +  0.0679𝑥 −  0.1, 0 ≤ 𝑥 < 50

−0.000000123𝑥4 + 0.0000246𝑥3 − 0.00176𝑥2 + 0.0528𝑥 + 0.45, 50 ≤ 𝑥 ≤ 100
 

Plotting the equation gives us:  

The elevator subsystem now includes a “throttled” function, that automatically adjusts the speed of 

the elevator depending on the position. 

A note to be made is that going up, the elevator is throttled only when above 50%. Similarly, when 

going down, the elevator is only throttled when below 50% (there is no reason to be slowing the 

elevator down when it is in no danger of hitting either of the limits). 
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Drivebase Polynomial Function 
Another problem that we faced during the first competition was the tipping of the robot when the 

elevator was up. As this problem had to be solved immediately (since we discovered the problem 

during the first event), we had to come up with another polynomial equation on-the-go, so over a 

lunch break, we added this 2nd degree polynomial function that throttles the speed of the robot 

depending on the position of the elevator, effectively finding the solution in a high-stress situation: 

𝑓(𝑥) = 0.0000245𝑥2  −  0.00490𝑥 +  1 

Plotting the equation gives us: 

Simplifying Evaluation 
A neat little trick that we used to evaluate respective values of the polynomial is algebraically change 

the form, as shown on this example: 

5𝑥3 + 3𝑥2 − 2𝑥 + 1 = 𝑥(𝑥(𝑥(5) + 3) − 2) + 1 

This both speeds up the computation and simplifies the code, since no exponentiation is required. 

Autonomous Programming Language 
This year’s game posed a significant challenge for the autonomous systems, for the reason of the 

randomness in the field layout. We wanted to come up with a way to both easily define sets of 

movements for the robot, change them on the go, and easily mirror them over the half-line. 

Our solution was creating a language with an intuitive syntax, simple adjustments of parameters and, 

most importantly, easy mirroring of a sequence when starting on the opposite side of the field. This 

way, we can easily change any part of our autonomous strategy from SmartDashboard at any time. 

Syntax 
A syntax is best shown on a sample sequence of commands:  

DriveTurn(45) DriveDistance(80) DriveTurn(-45) DriveTime(2) Out(0.5) 

This short sequence scores the cube on the right switch when starting from the middle. The robot 

starts turning and driving at the same time by 45°, drives 80”, drive-turns again by -45° (now facing the 

switch), drives forward for 2 seconds (to cross the line and touch the switch), and outtakes the cube 

for 0.5 seconds. 
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Generalizing, the default syntax of a command looks like such: 

Command(p1,p2,…,pn) 

Command is the name of the command, and 𝑝𝑛 is the value of the parameter of the command (usually 

a number. The name of the command can be either the full name (DriveDistance, Elevate…), or the 

capital letters (DD, E…). 

The full documentation of the parsing language can be found on the 2018 Metal Moose GitHub 

repository (https://github.com/Metal-Moose/MetalMoose2018). 

Optional Parameters 
Besides the required parameters of each of the command (DriveDistance needs the distance, TurnBy 

needs the angle…), a multitude of optional parameters are available. These do not completely change 

the functionality of a command, but simply adjust some of the possible variables of the commands: 

TurnBy(45, Speed=0.6, Mode=Parallel) 

In this example, the speed of the turning is 

adjusted to 0.6, and the command is executed in 

parallel with other currently running commands.  

Chunks 
The autonomous sequences are stored in the 

code as so called “chunks.” The main feature of 

chunks is that they can be easily mirrored, so 

creating the autonomous for a starting position 

on other side of the field is very simple. 

Take starting on the right as an example. For field 

configurations RLR and RRR, we declared that 

Chunk(1) (scoring on the switch) and Chunk(2) (scoring on the scale) are going to be used.  

When starting on the left, the inverses of these two chunks will be used for configurations LRL and LLL. 

Inversing a chunk negates the values of all turn-based commands, so the path is perfectly symmetrical 

over the half-field line. The illustration bellow shows the two chunks when starting from the right 

(blue), and their reversed counterparts when starting from the left (red). This greatly simplifies 

autonomous, since there is always only one sequence that we need to keep track off, and there is no 

duplication of the code. 

Language Synthetization 
To allow the parsing of the language to be as smooth as possible, our code deploys multiple regular 

expressions to synthesize the input, making it less prone to typos and mistakes of similar sort. The 

language can pass parses incorrect inputs into their correct forms (if the syntactic structure is correct).  

The parser converts the input from the first line to the input of the second line: 

"    TrnB (  57° )DrveDisttance   ( 80in, Sped= 0.7 )" 

"TurnBy(57) DriveDistance(80, S=0.7)" 

https://github.com/Metal-Moose/MetalMoose2018
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Turing Completeness 
Before the removal of the trigonometric position system, the language that we developed was a step 

away from being Turing complete (that it was computationally universal), meaning that you could 

program anything in it – an operating system, a word processing program, an equation solver… 

The way it would be done is taking the coordinates of the robot as the tape of the Turing machine, 

interpreting the commands as the states of the machine and adding a “jump” command that would 

jump between the states. 

This is just a side note, because the programming team thought it was cool. 

Version Control, Data Manipulation 

Git Version Controlling 
Version controlling the code was an absolute must, so we 

decided to use the Git version control system to keep track of 

the changes that we made to the code. This allows for an easy 

collaboration between the members of our team, and other 

teams. We share not just our codebase, but also the layout of 

our SmartDashboard. The diagram on the right shows the 

interactions of our programming team and the easy 

collaboration that this version control system allows. 

Offline Event Data Synchronization 
Without WiFi, it is sometimes quite impractical to copy the 

contents of one of our drivestations to the other one using 

the file browser. That is why we automated the process using 

a Python script – we automatically copy the code of one 

drivestation onto a flashdrive to a folder with the current date 

as the name, to simplify and speed up the work amid the 

competition, where every second counts. 

Trigonometric Position System 
One of the functionalities of our autonomous was a coordinate-based position system. A goal that we 

had in mind was that the robot remembers its exact position during autonomous, so whether it 

overshoots or overturns, it could correctly calculate its next movement depending on the 

circumstances. 

The Goto Command 
The main feature of this system was the 𝑔𝑜𝑡𝑜 command.  

The entire field is interpreted as a large cartesian coordinate plane. The robot gets instructions 

𝑔𝑜𝑡𝑜(𝑥, 𝑦) and first generates a turn command to turn to the pair of coordinates and a drive command 

to drive the distance to the pair of coordinates.  

The angle is calculated using arctan (
𝑦

𝑥
). One needs to be quite carful when using arctan, since it only 

works in quadrants I and II. We solved this by following this logic: if both 𝑥 and 𝑦 are negative, the 

resulting fraction 
𝑦

𝑥
 will be positive, so the result lays in quadrant I, but the coordinates lay in quadrant 

III. That is why we subtract 180° from the result to get to quadrant III. Similarly, if only 𝑦 is negative, 

the resulting quadrant is quadrant II, but the coordinates lay in quadrant IV, so we add 180°. 
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Distance to the coordinates are calculated using the Pythagorean theorem: √(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2, 

where 𝑥0, 𝑦0 are the initial coordinates and 𝑥, 𝑦 are the destination coordinates. 

The position of the robot on the plane is calculated using x = sin 𝜃 ∗ 𝑑 and 𝑦 = cos 𝜃 ∗ 𝑑, where 𝜃 is 

the angle that the robot was in before the movement started and 𝑑 is the distance that it traveled. 

Both values are read from the sensors on the robot (an encoder and a gyro on the drivebase). 

This system allows easy mirroring of the commands depending on different field layouts, as going for 

the coordinate on the other side is simply negating the 𝑥 value and provides a really easy way to 

program the autonomous sequences. 

Problems and Solutions 
One of the problems was always calculating the correct angle that the robot had to turn, since the 

robot could be in any angular position (even over ±360) and turning more than ±180° would be 

suboptimal.  

The solution was using the modulo operator: 𝜃 ≡ 𝜃0 (𝑚𝑜𝑑 360), bringing the range of possible values 

to ±360°. If the values were over ±180°, the optimal solution for a negative angle was 𝑥 = 180 −

(𝜃 𝑚𝑜𝑑 180), and 𝑥 = −180 + (𝜃 𝑚𝑜𝑑 180) for a positive angle (we are essentially calculating an 

angle adding up to ±180°). 

We ultimately decided against using this system (although it was fully implemented and tested, as seen 

in the older versions of the code), for the sole reason of speed. Although the system worked very well, 

the amount of precision required from the PIDs of our sensors was too slow for actual usage.  

With that being said: with a well-tuned PID, a system like this would be invaluable for games with 

randomly generated field layouts. 

Robot Control 

Reverse Button 
Our robot must drive backwards onto the platform to successfully climb, so the primary button of the 

joystick reverses the driving so that forward is now backward and vice versa. This makes driving 

backwards incredibly simple and intuitive, making the entire process of hanging the robot on the rung 

as smooth as possible. 

Sensors 
The robot is equipped with a navX-MPX navigation sensor that allows for smooth turning during the 

autonomous period. It is also equipped with and encoder on one side of the drivebase to precisely 

measure distance driven (for autonomous), and one on the elevator motor, to throttle its speed. 

Double PID Control 
The autonomous heavily relies on driving a correct distance in a straight path. This is achieved by 

simultaneously using two PID systems: one to control the encoder (measuring the distance driven) and 

one for the gyro (to always drive in a straight line).  

A neat trick that we used is that both PID outputs can be fed directly to the arcadeDrive function: the 

encoder PID output as the first parameter, to alter the speed of driving, and the gyro PID output as the 

second parameter, to alter the turning of the robot. 

 


