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Abstract

JavaScript evolves to a general-purpose language. Si-
multaneously, the complexity of its applications is rising,
demanding for even more computational resources that can
no longer be satisfied by a single-threaded runtime system.
However, the JavaScript community has not widely em-
ployed multithreading because the available standards are
platform-dependent and enforce a messaging-based program-
ming model. This paper presents Parallel.es, a platform-
independent type-safe API and runtime system allowing to
create multithreaded applications in JavaScript with ease.
It abstracts the messaging-based programming model for a
seamless integration into existing program code and allows
to use standard JavaScript functions to define tasks executing
concurrently in background threads. Moreover, the reactive
API of the runtime system simplifies the parallelization of
data-stream-based operations by facilitating automated work
partitioning and result joining. The evaluation shows that the
runtime system performs well compared to related work. Nev-
ertheless, the proposed system is mainly superior because of
its seamless integration into existing code and the type-safety
of its API.

1 Introduction
The role of JavaScript drastically changed in recent years.

It emerged from a browser-only to a general-purpose language
used to write web-, desktop-, mobile-, and server-applications.
This shift comes along with more sophisticated requirements
demanding for more computational resources that can no
longer be provided by a single-threaded runtime system with-
out negatively affecting the user experience. Moreover, the
need for multithreaded runtime systems and applications has
intensified in recent years because of the stagnating CPU
clock rates and the spreading use of mobile devices with low
clocked, multicore CPUs.

The W3C responded to these new demands with the web
worker draft in 2009, laying the foundation for creating multi-
threaded applications [1] in the browser. The draft defines the
web worker API that allows a script to run in a background

thread without interfering with the user interface. The commu-
nication between threads is messaging-based, and each thread
has its distinct memory area. However, the messaging-based
programming model does not fit well into existing applica-
tions and results in a clear seam between existing code and
code running in background threads. Moreover, code running
in background threads has to be located in designated files.
This unnatural division of the code separates coherent logic
and makes the code less understandable. It also increases the
complexity of the build process since two artifacts have to
be created, one for the logic residing in the main thread and
another for the code running in background threads.

Unfortunately, implementing multithreaded applications
targeting different runtime environments in JavaScript is non-
trivial since no uniform standard for creating background
threads exists. The web worker standard, defined by the W3C
consortium, is only implemented in browsers, NodeJS pro-
vides the child-process API [2], and JavaScript applications
running on the JVM can use RingoJS [3], a JVM-based mul-
tithreaded runtime environment. This jungle of standards
requires the explicit adoption of applications to the standards
provided by the used runtime environments.

The platform-dependent standards together with the com-
plexity to bridge the programming model gap are most likely
the main reasons for the low spread of multithreaded ap-
plications in JavaScript. This paper presents Parallel.es, a
platform-independent type-safe API and runtime system for
creating multithreaded applications in JavaScript. The API
consists of two parts: Firstly, a low-level API allowing to run
single functions in a background thread and secondly, a reac-
tive API inspired by the commonly used underscore [4] and
lodash [5] libraries. The reactive API is designed to achieve
simplicity in use by covering the aspects of work partitioning
and result joining while providing a well-known and familiar
API allowing an easy transformation of existing code. The
low-level API provides more flexibility for the cases where
the reactive programming model does not fit well with the
problem to solve. The work further presents a transpiler that
reduces the programming model gap to a minimum by rewrit-
ing the program code before execution allowing a seamless

1



integration into existing code.
The remainder of this paper is structured as follow: Sec-

tion 2 describes the related work and compares it with Par-
allel.es. Section 3 defines the programming model of back-
ground tasks. The execution of a background task and the
design of the runtime system is described in Section 4. Sec-
tion 5 explains the functioning of the transpiler. The related
work and the presented runtime system are evaluated in Sec-
tion 6 that is followed by the conclusion.

2 Related Work
There exist various open source projects addressing simi-

lar or equal goals. This section describes the differences in the
presented work to the already existing ones. The presented
work has two characteristics that none of the related work has:
Firstly, it offers the same debugging functionalities as devel-
opers are used to when working with synchronous code and
secondly, it allows code run in background threads to access
functions and read-only variables from the main thread.

2.1 Hamsters.js
Hamsters.js [6] is the library with the highest attention

measured by the number of GitHub stars. It provides a low-
level API for running functions in a background thread and
uses a global thread pool to manage the created background
threads. It supports transferable objects and provides vari-
ous helper functionalities like array sorting, aggregating, or
caching.

The main difference to Hamsters.js is that the API of the
proposed work is type-safe and integrates seamlessly into ex-
isting program code. Moreover, Hamsters.js has the limitation
that functionalities of external libraries can not be used in a
background thread.

2.2 Parallel.js
Parallel.js [7] has been initiated in 2013 and is the oldest

of the evaluated libraries. Its main goal is to provide a simple
and platform-independent API for multi-core processing in
JavaScript. Parallel.js provides a low-level API for running a
function in a background thread, and a reactive API providing
automatic work partitioning and result joining.

Parallel.js and the presented work differ in three points:
Firstly, Parallel.js does not use a thread pool and therefore,
can not reuse background threads across operations, e.g. map
or filter. Secondly, Parallel.js awaits the sub-results of the pro-
ceeding operation before continuing with the next operation if
operations are chained together, e.g. the reduce step summing
up the values of a filtered array waits until all background
threads have completed filtering before starting with sum-
ming up the values. Thirdly, the sub-results of an operation
are transmitted back to the main thread before starting the
next operation on new background threads resulting in the
unneeded — and potentially very expensive — copying of
intermediate results from and to background threads.

Remark 1. The latest published version on npm1 spawns a
new background thread for every element in the input array
exhausting the thread limit of the browser. The most recent
version on GitHub has corrected this behavior by restricting
the number of spawned workers. Therefore, when Parallel.js
is referenced, the latest version2 from GitHub is meant.

2.3 Threads.js
Thread.js [8] aims to be a simple to use and powerful

multithreading library for NodeJS and the browser. The main
difference of Threads.js is its messaging-based programming
model that is closer to the programming model used by the
underlying standards. Therefore, bridging the programming
model gap is left to the programmer.

3 Programming Model
The programming model of Parallel.es motivates the

programmer to perform time-intensive computations concur-
rently in background tasks without blocking the main thread.

3.1 Background Task
A background task — further referred to as task — repre-

sents an operation that is asynchronously started in the main
thread and is executed in a background thread. Listing 3.1
shows an example of a task computing the Fibonacci number
of 100 in a background thread. The run method creates a
new task implemented by the passed function (line 9) that is
invoked in a background thread with the provided arguments.
Since the returned object implements the promise interface [9,
Section 18.3.18] a then and an optional catch callback
can be registered. The then callback is invoked with the
task-result if the computation is successful and the catch
callback otherwise. These callbacks are executed on the main
thread and allow the retrieval of the result or error.

1 function fib(num) {
2 if (num <= 2) {
3 return 1;
4 }
5

6 return fib(num - 1) + fib(num - 2);
7 }
8

9 parallel.run(fib, 100)
10 .catch(error => console.error(error))
11 .then(result => console.log(result));

Listing 3.1. Fibonacci Implementation

The JavaScript functions used to implement a task have to
comply with the following discussed restrictions. References
to non-read-only variables from the outer scope of a task

1NPM is a package manager for JavaScript. The latest published version
of Parallel.js to date is 0.2.1.

2Commit 2e4b36bf16e330abaaff213e772fcf4074fd866b
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function are prohibited3 as well as references to functions
not resolvable by static scoping, e.g. a function passed as an
argument. Moreover, the values of referenced variables, the
arguments passed to the task function, and the value returned
by the task function are passed “by value” and have to be
structured cloneable [10, Section 2.9.4], e.g. this is not the
case for DOM-Elements and Errors. The structured cloning is
enforced by the underlying, messaging-based standards and
can not be abstracted by the runtime system. The passing of
not cloneable values results in runtime errors. On the contrary,
illegal references to non-read-only variables from the inside
of a task function are detected by the transpiler.

In contrast to standard JavaScript functions, the global
context of the background thread executing the task function
differs from the global context in which the function is defined.
Therefore, the APIs accessible in background threads may
vary from the one offered in the main thread, e.g. the DOM
API is not accessible to web workers. Furthermore, changes
made to the global context of one thread are not visible to the
other threads since each thread has its distinct global context.
Therefore, the global context cannot be used to store shared
state. These are no significant limitations for task functions
since they, in general, perform compute-intensive, but side
effect free, operations only depending on local data.

Tasks are isolated from one another since threads share
no variables, and every thread executes one task at a time.
However, the tasks executed in a specific background thread
share the same global context. It is, therefore, possible that
two tasks affect each other if they access and modify the
same global context. Modification to the global context are
not prevented but are strongly discouraged as changes are
only thread-local and may introduce memory leaks. The
next section describes the reactive API that simplifies the
parallelization of data-stream-based operations.

3.2 Reactive API
The runtime system further offers a reactive API [11].

The goal of it is to provide a well-known and understood
API that uses the available computation resources without
any further doing of the programmer. The API is inspired by
the commonly used underscore [4] and lodash [5] libraries
and motivates the programmer to define the computations as
operations on data streams. This allows the runtime system
to take care of splitting the work into several sub-tasks and
aggregating the task-results into the end-result. The reactive
API uses the infrastructure provided by the low-level API and
therefore, the same programming model applies.

An implementation of the Mandelbrot computation using
the reactive API of Parallel.es is shown in Listing 3.2. It
differs only slightly from the sequential, lodash [5] based im-
plementation shown in Listing 3.3. The differences between
the implementations are highlighted in gray. This alikeness
of the APIs facilitates a fast learning curve and simplifies

3The special identifiers this and super are treated as references to
non-read-only-variables from the outer scope, and their usage inside of a task
function is, therefore, prohibited. This restriction also implies that an arrow
function used as task function is semantically equal to a function expression.

transitioning of existing code.
The range method (line 18) defines the data stream to

process. It creates a data stream containing the values from 0
up to the image height (exclusive) that is transformed by map-
ping (map on line 19) each element to an output element that
is computed by the computeMandelbrotLine function
(line 9). The computeMandelbrotLine function — that
is executed in a background thread — has access to the cur-
rent array element and the read-only variables from its outer
scope. It can further make use of the computePixel (line
4) function defined in its outer scope or functions imported
from other modules. The computation is started using the
then method (line 21) that registers a callback. The then
callback is executed in the main thread and is invoked with
a single array containing the joined lines of the Mandelbrot
if the computation succeeds. An optional error callback can
be defined that is invoked in case the execution fails. The
API further allows retrieving sub-results by registering the
next callback using the subscribe method (line 20). The
next callback is invoked whenever a task has completed and
is passed the lines computed by this task, the index of this
task, and the number of lines computed by each task. The sub-
results can be used to show a progress update, e.g. drawing
already computed lines of the Mandelbrot instead of wait-
ing until all lines have been computed. The next callback is
invoked in the main thread and the order of task completion.

The following section describes the functioning of the
runtime system orchestrating the background tasks.

1 const imageWidth = 10000;
2 const imageHeight = 10000;
3

4 function computePixel(x, y) {
5 // ...
6 return n;
7 }
8

9 function computeMandelbrotLine(y) {
10 const line = new Uint8ClampedArray(imageWidth * 4);
11 for (let x = 0; x < imageWidth; ++x) {
12 line[x * 4] = computePixel(x, y);
13 }
14 return line;
15 }
16

17 parallel
18 .range(imageHeight)
19 .map(computeMandelbrotLine)
20 .subscribe((subResult, index, batchSize) => ...)
21 .then(result => console.log(result));

Listing 3.2. Mandelbrot Implementation in Parallel.es

4 Runtime System
The runtime system of Parallel.es consists of two parts:

Firstly, the slaves running in background threads executing
the tasks and secondly, the public API in the main thread
forming the facade and acting as the master for the slaves.
Applications are using the facade provided by the master
to run a function in a background thread. The master is
responsible for spawning the slaves and distributing the work
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1 const imageWidth = 10000;
2 const imageHeight = 10000;
3

4 function computePixel(x, y) {
5 // ...
6 return n;
7 }
8

9 function computeMandelbrotLine(y) {
10 const line = new Uint8ClampedArray(imageWidth * 4);
11 for (let x = 0; x < imageWidth; ++x) {
12 line[x * 4] = computePixel(x, y);
13 }
14 return line;
15 }
16

17 const result = _.chain()
18 .range(imageHeight)
19 .map(computeMandelbrotLine)
20 .value();
21

22 console.log(result);

Listing 3.3. Sequentiall, Lodash [5] based Mandelbrot Implementa-
tion

onto these. Hence, a thread pool is used to manage the created
slave instances and queue the tasks if no idle slave is available.
The default thread pool uses a FIFO queue, and the number of
slaves is limited to the number of logical processors provided
by the hardware4. The next section describes how the runtime
system executes a single task.

4.1 Task Execution
The steps needed to process a single task are shown in

Fig. 1. The application passes the task function together with
the arguments for its invocation to the facade that acts as the
master (1). The thread pool, residing in the master, selects
an idle slave to execute the task or queues the task until a
slave gets available. The master then transmits the structured
cloned representation of the function call — consisting of
a unique id identifying the task function and the arguments
for the task function invocation — to the available slave (2).
The slave performs a lookup in the function cache to obtain
the function with the given id (3). If the task function is
executed for the first time on this slave instance, then it is not
present in the function cache and, therefore, the slave requests
the definition from the master (4). The master transmits
the function definition to the slave (5) which deserializes and
registers the function in the function cache (6). The slave calls
the deserialized task function with the provided arguments (7)
and returns the structured cloned result back to the master (8).
The master invokes the success handler in the main thread to
hand the result over to the application (9).

The caching of the function definitions on the slave has
the advantage that performed JIT-optimizations are not thrown
away if a task has completed. The caching can be especially
useful for frequent but short running tasks for which the
serialization and JIT-optimization overhead weight heavier.

4The number of logical processors can be determined using
navigator.hardwareConcurrency. The runtime system assumes
that the hardware has four logical processors if the used browser does not
support this API.

4.2 Limitations
The current runtime system supports the essential fea-

tures. However, it misses support for asynchronous task op-
erations and runtime environments other than the browser.
There are no conceptual or technical reasons for not support-
ing either of these features.

5 Transpiler
The absence of a shared memory that is accessible by all

threads5 and allows to store shared variables requires an ex-
plicit passing of the variables referenced by the task function
to the background thread executing the task. The transpiler
covers this explicit passing of the variables by rewriting the
program code. It extracts and rewrites the task functions from
the code run in the main thread and adds it to the file loaded by
the slaves. The transpiler further adds the imports referenced
by the task function and pre-registers it in the slave’s function
cache.

The functioning of the transpiler is following explained
by using the Mandelbrot implementation shown in List-
ing 3.2. The transpiler rewrites the program code to
make the variable imageWidth (line 10) and the func-
tion computePixel (line 4) available to the task func-
tion. Listing 5.1 shows the transpiled Mandelbrot imple-
mentation in which the changes made by the transpiler are
highlighted in gray. The transpiler creates the new function
_environmentExtractor (line 9) that returns an object
containing the values of the variables referenced by the task
function and inserts it above the task function’s declaration.
This function is used to extract the value of the referenced
imageWidth variable in the master thread. The object
returned by the _environmentExtractor function is
set as the task environment by using the inEnvironment
method (line 25). The runtime system passes the task envi-
ronment as the last argument when invoking the task function
in a background thread. The transpiler further replaces the
reference to the task function with a unique function-id (lines
26-29)6.

Listing 5.2 shows the code inserted by the transpiler
into the script run by the slaves. The transpiler injects the
code of the task function (lines 8-14), and the referenced
computePixel function (lines 3-6)7. Furthermore, an
entry-function (lines 16-24) is generated that initializes the
imageWidth variable (line 1) with the value stored in the
task environment (line 19) — that contains the values of the
variables from the main thread — and calls the actual task
function (line 20). The entry function is registered in the
function cache (lines 26-29) using the same function-id as
utilized in the master thread. This pre-registration allows the

5This might change with the SharedMemory [12] standard that is currently
a draft in stage 2. However, the standard only allows storing variables of a
very limited set of types.

6The transpiler does not remove the task function from the code run in the
main thread since it might be referenced elsewhere. Removing unreferenced
functions is left to minifiers as proofing a function to be truly unused is
non-trivial.

7The transpiler wraps the functions of each module with an immediately
invoked function expression to isolate the functions of different modules.4
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Figure 1. Parallel.es Runtime System

1 const imageWidth = 10000;
2 const imageHeight = 10000;
3

4 function computePixel(x, y) {
5 // ...
6 return n;
7 }
8

9 function _environmentExtractor() {
10 return {
11 imageWidth: imageWidth
12 };
13 }
14

15 function computeMandelbrotLine(y) {
16 const line = new Uint8ClampedArray(imageWidth * 4);
17 for (let x = 0; x < imageWidth; ++x) {
18 line[x * 4] = computePixel(x, y);
19 }
20 return line;
21 }
22

23 parallel
24 .range(imageHeight)
25 .inEnvironment(_environmentExtractor())
26 .map({
27 identifier: "static:_entrycomputeMandelbrotLine",
28 _______isFunctionId: true
29 })
30 .then(result => console.log(result));

Listing 5.1. Transpiled Mandelbrot Implementation

slave to retrieve the function immediately from the function
cache without the need to request the function definition from
the master — that requires (de-) serialization of the function.

Additionally, the transpiler generates source maps that
point back to the original location of the extracted task func-
tion and as well, transitively referenced functions. The source
maps enable a true debugging experience allowing to set
breakpoints inside of the browser developer tools8. With-
out these source maps, breaking inside of a task function is
only possible by using the inflexible debugger statement.

8This is currently only supported by the developer tools of Google
Chrome and Microsoft Edge.

1 var imageWidth;
2

3 function computePixel(x, y) {
4 // ...
5 return n;
6 }
7

8 function computeMandelbrotLine(y) {
9 var line = new Uint8ClampedArray(imageWidth * 4);

10 for (var x = 0; x < imageWidth; ++x) {
11 line[x * 4] = computePixel(x, y);
12 }
13 return line;
14 }
15

16 function _entrycomputeMandelbrotLine() {
17 try {
18 var _environment = arguments[arguments.length - 1];
19 imageWidth = _environment.imageWidth;
20 return computeMandelbrotLine.apply(this, arguments);
21 } finally {
22 imageWidth = undefined;
23 }
24 }
25

26 slaveFunctionLookupTable.registerStaticFunction({
27 identifier: 'static:_entrycomputeMandelbrotLine',
28 _______isFunctionId: true
29 }, _entrycomputeMandelbrotLine);

Listing 5.2. Code Generated by the Transpiler that is Executed on
the Slaves

The source maps further allow the browser to translate error
messages back to the original code. This translation of the
error messages helps to locate the source of an error from
production more easily. The source map support is a distinct
feature not offered by any of the related work.

The transpiler is based on top of webpack9 [13] and
Babel10 [14]. The use of the transpiler is optional if task
functions are not referencing symbols from their outer scope.

9A JavaScript module bundler.
10A framework for Transforming JavaScript code.
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Runtime System Version

Parallel.es 0.1.17

Hamsters.js 3.9.011

Parallel.js 0.2.x12

Threads.js 0.7.2

Table 1. Versions of Evaluated Runtime Systems

5.1 Implementation Restrictions
The current transpiler implementation only supports the

reactive API even though no technical reason therefore exists.
Moreover, it only supports import statements according to the
ECMAScript 6 module specification [9, Section 15.2].

6 Evaluation
The evaluation focuses on computations that are expected

to profit from parallelization, e.g. compute-intensive tasks or
tasks over a large set of data. However, using the presented
runtime system may also be beneficial for long-running, but
not parallelized computations that otherwise would block the
main thread and result in a degraded user experience. The
evaluation compares the presented work with the alternatives
introduced in Section 2 concerning applicability and perfor-
mance using the following set of problems:

• Knight Tour: Computes the number of open tours from a
given start field. This problem has low memory but very
high computational needs.

• Mandelbrot 10′000×10′000: Computation of a Mandel-
brot of the given image size. This problem requires a
large amount of memory compared to the computational
time needed.

• Risk Profiling: The Risk Profiling uses a Monte Carlo
simulation to create forecasts for the customer’s asset
development over a period of 15 years for various invest-
ment strategies. The forecast is used to illustrate how a
chosen investment strategy affects the development of
the customer’s assets and therefore, planned investments
— e.g. buying a house after ten years. This problem is an
instance of a real-world problem [15].

The versions of the evaluated runtime systems are shown
in Table 1.

6.1 Applicability
The applicability is assessed by comparing the Mandel-

brot implementations. The reference implementation is the
sequential, lodash [5] based implementation of the Mandel-
brot that has been introduced in Section 3 and is shown in
Listing 3.3. The implementations for the specific runtime

11The version used is based on v. 3.9.0 but contains a bug fix for input data
that is not a typed array (https://github.com/austinksmith/
Hamsters.js/issues/16).

12Latest version from the master as mentioned in Section 2.

systems highlight the differences to the reference implemen-
tations in gray and omit the computation of a single pixel
for brevity. The preliminary focus of the evaluation is the
type-safety of the APIs and how seamless background tasks
integrate into existing code. Some of the results might be
subjective and represent the opinion of the author.

Parallel.es The Parallel.es based implementation of the
Mandelbrot introduced in Section 3 and shown in List-
ing 3.2 is almost identical to the sequential implementation.
The implementation does not require any adjustment to the
computePixel and computeMandelbrotLine func-
tions because the task function can reference read-only vari-
ables and functions from its outer scope allowing a seamless
integration of background tasks into existing applications.
However, this liberty comes at the cost of requiring a poten-
tially additional build step to transpile the program code. It is
reasonable to assume that the benefits of a seamless integra-
tion outweigh the additional complexity in the build process.
Especially because transpiling of source code — mostly using
Babel [14] — is very common in the JavaScript community.
Furthermore, the API of Parallel.es is type-safe, making it an
excellent choice for projects using typed languages.

Parallel.js Listing 6.1 shows the Mandelbrot implemen-
tation using the reactive API of Parallel.js. It differs only
slightly from the sequential implementation. A background
task is created using the Parallel constructor (line 22).
The first constructor argument is the data to process, the sec-
ond, optional, argument is an options object affecting the task
execution. The value of the options object’s env property
is exposed as global.env in the background thread (line
26). The task function passed to the map operation (line 25)
is called for every element in the input array and produces the
elements in the output array.

Functions called from inside of a task function have to
be made explicitly available in the background thread by
using the require method (line 23). Additionally, the vari-
able imageWidth can not be referenced by the task func-
tion (and the computeMandelbrot function). Instead, the
value needs to be explicitly passed to the task by storing it in
the env property of the options object (line 22) and reading it
in the task function from the global.env object (line 26).

The use of the undeclared variable global (line 26) to
expose additional data in the task function is problematic since
it breaks static scoping and requires additional care in typed
languages. Typed languages require the variable global to
be declared. It can either be declared in every module it is
used or globally in a declaration file. In both cases, no spe-
cific type can be annotated for the environment property since
its type depends upon the actual problem. Therefore, type
checking needs to be disabled for the environment property by
annotating a special opt-out type like any in TypeScript [16].
However, declaring the global variable has the undesired
side effect that the type checker no longer detects illegal us-
ages of it outside of a task function in which case the variable
is truly undeclared. The global variable also hinders code
reuse because it is undeclared if a task function is called from

6
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1 const imageWidth = 10000;
2 const imageHeight = 10000;
3

4 function computePixel(x, y) {
5 // ...
6 return n;
7 }
8

9 function computeMandelbrotLine(y, imageWidth) {
10 const arraySize = imageWidth * 4;
11 const line = new Uint8ClampedArray(arraySize);
12

13 for (let x = 0; x < imageWidth; ++x) {
14 line[x * 4] = computePixel(x, y);
15 }
16

17 return line;
18 }
19

20 const lines = _.range(imageHeight);
21

22 new Parallel(lines, { env: { imageWidth } })
23 .require(computeMandelbrotLine)
24 .require(computePixel)
25 .map(function (line) {
26 const width = global.env.imageWidth;
27 return computeMandelbrotLine(line, width));
28 })
29 .then(result => console.log(result));

Listing 6.1. Mandelbrot Implementation using Parallel.js

the main thread.
The implementation of the Risk Profiling problem in Par-

allel.js requires some tricks to be performant. The issue is that
Parallel.js provides no mean to store the result of the compute
intensive Monte Carlo simulation across the invocations of
the task function other than saving it in the global context
of the background thread. Storing the simulation result in
the global context is unaesthetic but does not introduce mem-
ory leaks since Parallel.js terminates the background threads
when the operation has completed. However, an explicit API
from Parallel.js would be favored that also remains functional
if Parallel.js is using thread pools in the future.

To sum up, the API has the disadvantage not to be type-
safe and does not allow to store data across task function
invocations. Furthermore, variables and functions used in
a task function need to be explicitly made available to the
task, resulting in a clear break in the programming style. If
this break can be accepted and type-safety is not a concern,
then Parallel.js is a good choice as it allows to include ad-
ditional functions in a task without the need for static code
transpilation by using the require function (line 23).

Threads.js Listing 6.2 shows the Threads.js based Mandel-
brot implementation. Threads.js can be used with or without
thread pools. A thread pool needs to be created manually if
one is desired (line 20). The pool.run method (line 21)
specifies the task function. A new task for this function is
created by invoking the send method (line 27) whereby the
passed arguments are used to invoke the task function in the
background thread. The result of a single task can be retrieved
by registering a done handler (line 28) that, in this example,
is used to join the sub-results of the tasks. The thread pool
offers the finished event (line 31) that is triggered when

all tasks of this pool have completed13.

1 const imageWidth = 10000;
2 const imageHeight = 10000;
3

4 function computeMandelbrotLine({ y, width}, done) {
5 function computePixel(x, y) {
6 // ...
7 return n;
8 }
9

10 const arraySize = width * 4;
11 const line = new Uint8ClampedArray(arraySize);
12

13 for (let x = 0; x < width; ++x) {
14 line[x * 4] = computePixel(x, y);
15 }
16

17 done.transfer(line, [line.buffer]);
18 }
19

20 const pool = new Pool();
21 pool.run(computeMandelbrotLine);
22

23 const lines = _.range(imageHeight);
24 const result = new Array(imageHeight);
25 for (const y of lines) {
26 pool
27 .send({ y, imageWidth })
28 .on("done", line => result[y] = line);
29 }
30

31 pool.on("finished", () => console.log(result));

Listing 6.2. Mandelbrot Implementation using Threads.js

The Threads.js API offers a clean, flexible, messaging-
based API to run single tasks in background threads but does
not provide a higher-level abstraction for common operations.
This lack of a higher-level API complicates the migration
of existing code since the programmer needs to partition the
work into different tasks, join the sub-results, and is respon-
sible for managing the lifetime of the thread pool. Further-
more, the API provides no mechanism to expose a function
from the same module to a task function. Therefore, the
computePixel function (line 5) has to be nested inside
of the computeMandelbrotLine function. This missing
mechanism restricts the programmer in his options to struc-
ture the code. Alike Parallel.js, the API of Threads.js is not
type-safe. The reason, therefore, is that run does not return a
new thread pool instance; it instead changes the task function
of the existing one. A new instance is required to reflect the
subtyping relation between the arguments passed to send,
that are used to invoke the task function, and the parameters
of the task function, that is specified using the run method,
in the thread pools type signature.

The implementation of the Risk Profiling problem in
Threads.js requires storing the Monte Carlo simulation re-
sults in the global context of the background thread to be
performant for the same reason as for Parallel.js. However,
this misuse of the global context introduces memory leaks
if a shared thread pool is used. Therefore, an explicit API

13The finished event cannot be used to determine the completion of an
operation consisting of multiple tasks if tasks of other operations are executed
on the same thread pool.
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provided by Threads.js to store data across task function invo-
cations would be favored.

To sum up. The API of Threads.js is simple in use but
commonly used features like the joining of the sub-results
are missing, and the messaging-based programming model
results in a clear break in the programming style. Moreover,
Threads.js is a non-ideal choice for projects using typed lan-
guage since the API is not type-safe.

Hamsters.js Listing 6.3 shows the Mandelbrot imple-
mentation using Hamsters.js. A task is started using the
hamsters.run method (line 26). The passed arguments
have the following semantic:

1. An object that is passed to the task function. The special
property array defines the input data. The object is
exposed by the params variable (line 10 and 11) in the
task function.

2. The task function to execute in a background thread.
3. The callback function that is invoked with the joined

end-result of all tasks when the operation has completed.
4. The number of tasks to create at most — into how many

tasks should the input array be partitioned.
5. Defines if the sub-results of the tasks are automatically

joined (true) into the end-result.

Hamsters.js automatically splits the input data into sub-
arrays where each sub-array is processed by a single task.
However, iterating over the elements of the sub-array is left
to the task function (line 15). The result of the task function
has to be written into the rtn.data array (line 22) that is
provided by Hamsters.js.

The run method is a mixture of a low- and high-level
API. It allows to run a single function on a background thread
but also exposes advanced features like work partitioning,
result joining, and result caching. This overloading of the
function makes it difficult to use because remembering the
right order and semantics of the arguments is challenging.
Such methods, which accept many arguments and expose mul-
tiple features, are considered as a code smell. Even though
the run method offers many advanced features, still much
manual work is needed to parallelize a problem, e.g. iter-
ating over the input array elements. Alike Threads.js, the
computePixel function (line 5) needs to be nested inside
of the computeMandelbrotLine function because Ham-
sters.js does not provide an API to expose additional functions
inside of the task function. This restriction limits the program-
mer’s possibilities to structure the code and results in a clear
break in the programming style. Moreover, the API has the
disadvantage not to be type-safe because of the undeclared
params (line 10) and rtn (line 22) variables in the task
function. These variables also hinder code reuse because
they are undeclared if the function is not invoked as a task
function.

To sum up. Alike Parallel.js and Threads.js, Hamsters.js
does not provide a type-safe API. A more significant limita-
tion is that functions from external modules can not be used
inside of background tasks. It is, therefore, impossible to use
any libraries in background tasks.

1 const imageWidth = 10000;
2 const imageHeight = 10000;
3

4 function computeMandelbrotLine () {
5 function computePixel(x, y) {
6 // ...
7 return n;
8 }
9

10 const options = params.options;
11 const input = params.array;
12

13 const arraySize = options.imageWidth * 4;
14

15 for (let i = 0; i < input.length; ++i) {
16 const y = input[i];
17 const line = new Uint8ClampedArray(arraySize);
18

19 for (let x = 0; x < width; ++x) {
20 line[x * 4] = computePixel(x, y);
21 }
22 rtn.data.push(line);
23 }
24 }
25

26 hamsters.run(
27 params: {
28 array: _.range(options.imageHeight),
29 options
30 },
31 computeMandelbrotLine,
32 result => console.log(result),
33 hamsters.maxThreads,
34 true);

Listing 6.3. Mandelbrot Implementation using Hamsters.js

The next section evaluates the different runtime systems
in concern of runtime performance.

6.2 Performance Comparison
The benchmark results from Fig. 2 show the absolute

time needed by each implementation and a percentage indi-
cating the fraction of the sequential runtime. The computer
used for benchmarking has a quad core, 2.5 GHz Xeon E5-
2609v2 processor and runs Windows 10. The benchmark
has been performed on all major browsers whereby some of
the results differ significantly from one another dependent
upon the used browser. These discrepancies are caused by the
browser specific JIT-optimizations. Microsoft Edge shows
the most notable discrepancies since the performance of par-
allel computations drops significantly if the runtime system
uses new Function or eval to create dynamic function
instances — which is the case for Hamsters.js and Threads.js.
This observation has been reported and is confirmed by Mi-
crosoft [17]. The following section describes the benchmark
results measured using Firefox v.50. These benchmark re-
sults are used because they do not contain outliers caused
by the browser’s JIT-Optimizations as it is the case for other
browsers.

Knight Tour The time needed to solve the Knight Tour
problem is mainly determined by the available computational
resources. The calculation is parallelized by computing differ-
ent start-field sequences in each task and then summarizing
the number of found tours by each task.

Parallel.js creates new tasks for accumulating the sub-
results of start-field sequences computed by two tasks and exe-
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Figure 2. Runtimes of Parallelized Implementations Relative to Sequential Execution

cutes them on designated background threads. This spawning
of new background threads for accumulating the sub-results
cause a significant overhead for the smaller 5×5 board. How-
ever, the impact is negligible for the larger board.

The test case of the 6×6 Knight Tour only shows signifi-
cant differences for the Hamsters.js runtime system. This dif-
ference is rooted in the strategy used to split the start-field se-
quences into tasks. Hamsters.js splits the start-field sequences
evenly onto the available background threads14. However,
some start-field sequences require more time to compute than
others, resulting in unused computation resources when other
tasks complete early. Parallel.js and Threads.js always use
a task size of one to avoid this misfortune situation. Paral-
lel.es also uses an even work splitting strategy but creates
four-times as many tasks as background threads are available
for a better workload balance in case of nonlinear problems.
This strategy has shown to be a beneficial trade-off between
having a large enough set of items to process by each task, to
reduce the overhead for starting the tasks, while still leaving
room to compensate for nonlinear problems.

The results of Firefox do not indicate any advantage of
using a thread pool over spawning new background threads
for every task. It seems that creating background threads
in Firefox is very inexpensive. However, the benchmarking
results of Google Chrome v. 54 shown in Fig. 3 give evidence
that a thread pool might be advantageous for very short run-
ning tasks. Thus, Hamsters.js and Parallel.es achieve slightly
better results than Parallel.js, which is not using a thread pool
at all, and Threads.js, for which each benchmark run creates
a new thread pool15.

14The number of background threads used by Hamsters.js is manually set
to the number of logical processors offered by the hardware because it does
not determine the optimal number of background threads automatically.

15A new thread pool for each run is not strictly necessary for the Knight
Tour problem. However, it is needed to store the simulation result of the Risk
Profiling problem without introducing memory leaks.
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Figure 3. Runtime of the Parallelized Knight Tour 5x5 Implementa-
tions using Chrome

Mandelbrot The Mandelbrot problem is parallelized by
computing a subset of the lines per task. The runtime of
computing a single line depends upon the position of the
line in the image. This nonlinearity is the reason why the
Hamsters.js based implementation takes significantly longer.
The even distribution of the lines onto the background threads
results in tasks computing the center of the Mandelbrot taking
longer than these computing the top or bottom of the field.

The better performance of Threads.js is rooted insofar
that Threads.js supports transferables [18, Section 2.7.4].
Transferables allow moving a memory range between threads
instead of copying it. Hamsters.js also support transferables,
however, only if the input and output are transferable objects

9



what is not the case for the Mandelbrot implementation.

Risk Profiling The Risk Profiling problem is parallelized
by computing the outcome for a subset of investments in each
task. However, this requires that each background thread run
the Monte Carlo simulation to calculate the outcome of the
planned investment. The overhead of computing the Monte
Carlo simulation in each background thread is the reason why
the achieved speedup is smaller than for the other problem
instances.

It is important for the Risk Profiling implementation
that the forecasts produced with the Monte Carlo simulation
are reproducible. Therefore, sim.js [19] is used as random
number generator, instead of Math.random, that can be
initialized with a seed number. Hamsters.js is not part of this
evaluation since it lacks support for importing functions from
other modules and can therefore not use the sim.js library.

Parallel.es requires more time for the computation be-
cause of its work splitting strategy that distributes the in-
vestments evenly onto the background threads. However,
computing the result of an investment is nonlinear; It depends
on the year in which the investment takes place, the later, the
more values have to be computed. This nonlinearity results in
some tasks completing earlier than others leaving computa-
tion resources unused. Enforcing a smaller task-size is not a
solution for this problem as it leads to recomputing the Monte
Carlo simulation for each investment reducing the perfor-
mance even more. Therefore, Parallel.es has been configured
to create as many tasks as background threads are available.
Parallel.js and Threads.js can only use a task-size of one as
the thread pool is not reused and therefore, the global context
of the background thread can be used to store the simulation
outcome. Manipulating the global context is not desired if
shared background threads from a thread pool are used as it
creates potential memory leaks.

Recursive Tasks None of the evaluated libraries allow mod-
eling recursive problems like the Knight Tour or Quicksort
naturally. Recursive problems have the characteristic that the
input data for the sub-problems is computed in the same step
as the problem is solved. The backtracking based Knight Tour
algorithm starts with a field and creates branches for every
possible move by recursively descending for each distinct
sub-path allowing to parallelize the problem by computing
each sub-path in a separate task. This strategy requires a
runtime system supporting to start subtasks from inside a task.
These created subtasks can then be executed on any back-
ground thread to achieve a better work balance. The current
implementation does not support this scenario and therefore,
a limited set of start-field sequences are precomputed in the
main thread and started as separate tasks. However, each task
computes the number of tours sequentially without further
dividing into subtasks.

An efficient implementation to support recursive tasks
requires a communication channel between all background
threads to start a subtask on another, idle background thread
without an additional roundtrip over the main thread. How-
ever, web workers only have a single communication channel

between the thread that has started the web worker and the
spawned web worker. Shared Web Workers [1, section 4.6.4]
allow a worker to have multiple channels between various
workers but are not even supported by the latest versions of all
major browsers. Furthermore, the “run to completion” model
of JavaScript can be problematic because a busy background
thread does not process received messages until the current
work has completed. Therefore, the background thread does
not respond to received messages in a guaranteed timeframe.

Further research is required to determine how recursive
tasks can be efficiently supported in an environment without
shared memory and the “run to completion” model.

6.3 Summary of Evaluation Results
The evaluation of the performance shows that the result

is mainly determined by the used work splitting strategy. Sur-
prisingly, the overhead needed to run a task on a background
thread is almost negligible. Therefore, a task size of one —
as used by Parallel.js and Threads.js — seems generally to
be a better choice than processing too many elements in a
single task. The results of Hamsters.js show that the latter is
preliminary problematic if the problem is nonlinear, in which
case a smaller task size helps to balance the workload. The
approach used by Parallel.es is somewhat in between by creat-
ing four times as many tasks as the hardware provides logical
processors. This approach showed to be a good default con-
figuration but might require adjustment for specific problem
instances, e.g. as it is the case for the Risk Profiling problem.

The evaluated systems differ more significantly in their
APIs. Some of the evaluated systems only offer a low-level
API while other provide a high-level API as well. If one or
the other is to be preferred is very subjective and principally
dependent on the specific problem and the programmer’s
preferences. However, other properties are more objective:
Hamsters.js impedes code reuse and is unsuitable if the task
function depends upon libraries since it does not permit to
expose additional functions, e.g. functions imported from
libraries, to task functions. Parallel.es is the only valid op-
tion for projects using typed languages because it is the only
with a type-safe API. Threads.js supports transferables that
allow moving the result of a computation instead of copying
it, resulting in a better runtime for computations over large
amounts of data as it is the case for the Mandelbrot problem.

All the runtime systems have in common that they specify
restrictions for task functions affecting the structuring of the
code. This lack of freedom creates a clearly visible seam
between background tasks and the rest of the application.
Parallel.es reduces this seam to a minimum by transpiling the
program code prior to execution allowing a far more complete
set of JavaScript functions to be used as task functions.

7 Conclusion
Multithreading is only sparsely used in nowadays

JavaScript applications because the standards for creating
background threads are platform-dependent and often enforce
a messaging-based communication model. This paper pre-
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sented a platform-independent type-safe API and runtime
system that provides a seamless integration of background
tasks into existing applications. It addresses the different
needs of programmers by providing two APIs, a low-level
API for executing a single function in a background thread,
and a reactive API allowing parallelizing data-stream-based
operations with ease.

The evaluation shows that most existing runtime systems
perform similarly concerning execution time when applied
to the given set of problems. Even though Parallel.es is one
of the faster runtime systems, its main advantage is the API
and the seamless integration into existing code. The pro-
posed API is close to APIs widely used by the JavaScript
community facilitating fast learning and straightforward tran-
sitioning of existing code. Moreover, the type-safety of the
API is clearly beneficial for projects using typed languages
like TypeScript [16] or Flow [20]. The additional transpilation
step allows a seamless integration of background tasks into
existing code since a task function can reference read-only
variables and functions from its outer scope without any ad-
ditional doing of the programmer. The related work, on the
contrary, defines more restrictions on task functions resulting
in a clear seam between background tasks and the rest of
the program. Besides the seamless integration, the additional
transpilation step has the advantage that it generates source
maps helping to identify errors from production and enabling
a pleasant debugging experience, a feature not offered by any
of the related work.

However, the evaluation also shows that the proposed
system does not fit naturally with recursive problems like
Quicksort or Knight Tour that require a system supporting re-
cursive tasks. Adding support for recursive tasks is non-trivial
and subject of further research. Nevertheless, the proposed
work eases writing multithreaded applications in JavaScript
and enables them to use the device’s hardware efficiently.

8 Availability
The source code of the runtime system, the transpiler, the

implemented problem instances, and the benchmark results
are published on GitHub [21]–[24]. The libraries are released
under the MIT license [25] and are published on NPM [26].
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