
Learn to Read to Read to Learn

Michelangelo Conserva Alessia Eletti Pauline de Lavallade Jaeik Jeon

Abstract
The aim of this project is to study the benefits
of informing Reinforcement Learning (RL)
agents using Natural Language (NL). The set-
ting in which we chose to explore this is that
commonly referred to as Contextual Multi-
Armed Bandit. In this framework, the agent
must make a sequence of decisions on which
action to take. Before making each decision
the bandit is shown some context. After the
action is chosen a stochastic reward is revealed
for the chosen action only. We propose to
give a Natural Language description of the en-
vironment as context and argue that this will
yield better performance than that of the non-
informed agent, as is true in general when
comparing contextual and non-contextual ban-
dits, and, more importantly, near to same per-
formance as the agent to which exact knowl-
edge of the environment is given. The rele-
vance of this work is twofold. On one hand,
contextual multi-armed bandit problems arise
frequently in important industrial applications.
On the other giving language the role of con-
text is both a very natural way of modelling the
learning of human-like tasks as well as a cheap
way to feed typically data avid Reinforcement
Learning algorithms.

1 Introduction

Since their inception RL algorithms have been
successful in applications such as marketing (Col-
lier and Llorens, 2018), games (Tesauro, 1995),
dialogue systems (Singh et al., 2002), continuous
control (White and Sofge, 1992) and so on. Fur-
ther, in the past few years, we have seen a surge
in the use of RL algorithms in Natural Language
Processing (NLP) models. There are many rea-
sons for this recent increase in interest, includ-
ing the fact that language is one of the most nat-
ural ways a human user can interact with artifi-
cial agents. Both when provided directly from the
user under the form of short instructions as well as
from commonly available game manuals or wiki

tutorials, we have an abundance of NL informa-
tion on how to achieve various tasks or describ-
ing the dynamics of a certain game. The main
reason of this being that humans are themselves
habitual users of this type of information. Fur-
ther, the wide and cheap availability of this data
is a valuable quality that should not be ignored,
as in research data collection is often expensive.
Put in different words, humans learn to read and
read to learn and we believe that artificial agents
should too. In this paper, we consider a contex-
tual bandit setting in which the agent must choose
among a prefixed number of actions and that, at
the moment of choice, it is given context on the
current environment under the form of a NL de-
scription of the environment itself. Many of the
efforts made in the direction of integrating NL in
RL agents do so in an instruction following set-
ting or more generally speaking in the form of in-
structive and specific textual information. This is
due to the fact that using unstructured and descrip-
tive text requires first retrieving useful information
for a given context and then grounding the infor-
mation with respect to observations. Nonetheless,
unstructured textual information is more abundant
as it can be found in wikis, manuals, book or can
be easily provided by a human user. In this paper,
we consider this second type of NL text. The de-
scriptions given as context, in fact, are obtained by
combining human written sentences and are very
similar to what an actual game manual could con-
tain. This can be seen as an element of novelty
also in consideration of the fact that to constrain
the difficulty of problems considered, the majority
of the works currently published use synthetic lan-
guage (automatically generated from simple gram-
mar and limited vocabulary). Furthermore, the
language text we provide only aids the decision
making process of the agent indirectly, by giving
an insight on the type of the current environment
which in turn influences the way a specific action



is connected to the reward. We believe, in fact, that
a more general type of dependence from NL could
be more interesting and have more potential than
a very specific study case. The performance of the
agent described is compared to that of other two
agents, which represent the limit cases of our base
agent. The first is an agent which disposes of ex-
act knowledge on the environment when making
its choice. The second is an agent with no knowl-
edge of the environment at all. We expect to see
the performance of the base agent upper bounded
by the former and lower bounded by the latter. We
then consider many interesting variations of the
base agent which help draw further insight on the
potential of this type of integrated model. We con-
clude this introduction by describing more in de-
tail the structure of this paper. In Section 2 we
give a brief overview of the current state of the
field and highlight the main points of reference for
this work, including how it differs from them. In
Section 3 we introduce our model, describing how
we fused an NLP architecture together with an RL
one, and the dynamics of the contextual bandit set-
ting, namely how the action depends on the con-
text and how these jointly result in a positive or
negative reward. In Section 4 we comment on a
number of variations of the base model highlight-
ing how and why changes in the architecture of
our model influence overall performance. In Sec-
tion 5 we describe the results observed overall and
comment on them with respect to our initial ex-
pectations. In particular, we focus our attention to
critically analysing our findings and understanding
why these conformed or did not conform to our ex-
pectations. Finally, in Section 6 we summarize our
findings and expand on potential future works and
extensions of our model.

2 Literature review

This paper stems from the picture given in
(Luketina et al., 2019) of the current state of two
ever-growing fields, NLP and RL, and how they
are being tied together. There are many reasons
for which much effort is being made in the di-
rection of integrating them. One of these is that
RL methods tend to be inefficient, requiring mil-
lions or billions of interactions, as well as gener-
alise poorly to new tasks, even when they are only
slightly different from those seen during train-
ing. In this context, language provides a natural
way of aiding the learning process of an agent.

In fact, common techniques to learn word repre-
sentations involve co-occurrence statistics, as in
(Deerwester et al., 1990) and in (Mikolov et al.,
2013), and contextual word-representations using
pseudo-language model objectives as in (Peters
et al., 2018) and in (Devlin et al., 2018). The lat-
ter can transfer knowledge to downstream tasks
that have to deal with language. Similarly, word
and task-specific knowledge communicated in NL
could also be transferred to sequential decision-
making problems, as found in RL settings. We in-
deed believe that the time is right to investigate a
tight integration of NL understanding into RL. In
order to contribute to this movement though, one
must first recognize that there are many ways of
doing this. The survey done by (Luketina et al.,
2019), thus serves, among others, also the purpose
of introducing a useful taxonomy of the efforts
made so far in integrating language in RL. One
important distinction is that of separating the liter-
ature into language-conditional RL and language-
assisted RL. The former refers to experiments in
which the interaction with language is necessitated
by the problem formulation itself, the latter to
those in which language is used to facilitate learn-
ing. These two categories are not mutually ex-
clusive, in that for some language conditional RL
tasks, NLP methods or additional textual corpora
are used to assist learning (Bahdanau et al., 2018)
and (Goyal et al., 2019). A recent example of the
first category is (Zhong et al., 2019). Here the au-
thors demonstrate that language understanding via
a reading policy learner is a promising vehicle for
generalisation to new environments, which is of-
ten a challenging problem in RL. In particular, in
a setting in which they procedurally generate en-
vironment dynamics and corresponding language
descriptions of the dynamics, they show that the
agents are able to generalise to new environments
with dynamics not seen during training via reading
of the NL descriptions. This first category can fur-
ther be distinguished in two subcategories instruc-
tion following and rewards from instruction. In the
former, the agents are presented with tasks defined
by high-level sequences of NL instructions. Effec-
tive instruction following agents execute the low-
level actions corresponding to the optimal policy
or reach the goal specified by their instructions
and can generalize to unseen instructions during
testing. In the latter, NL instructions induce a re-
ward function for RL agents or planners to opti-



mize. This is relevant when the environment re-
ward is not available to the agent at test time but
is either given during training (Tellex et al., 2011)
or can be inferred from parts of expert trajecto-
ries. With regards to the second category, instead,
we can further distinguish between language for
communicating domain knowledge and language
for structuring policies. Examples of the former
are (Eisenstein et al., 2009) and (Branavan et al.,
2012). What is meant by this is we are dealing
with task-relevant text which contains advice re-
garding the policy an agent should follow or infor-
mation about the environment dynamics. Exam-
ples of the latter are instead (Andreas et al., 2016)
and (Das et al., 2018). In this second type of liter-
ature, language is used to communicate informa-
tion about the state and/or dynamics of an envi-
ronment and thus to construct priors on the model
structure or representation of an agent. The util-
ity and potential of integrating NL in RL thus be-
gin to become clear. In general in fact, learning
is severely constrained by data efficiency due to
limited or expensive environment interactions. In
this context, NL provides an interesting and sig-
nificantly efficient way to render RL agents more
data-efficient. Further, often we dispose of human
priors that would help to solve the task, these can
be expressed easily and cheaply in NL. Our paper
falls under the category of language assisted RL
and in particular in the subcategory of language for
structuring policies. Further, as mentioned in Sec-
tion 1, our RL setting is that of multi-armed con-
textual bandit (Collier and Llorens, 2018). This
is done both because we believe that including
language as context is a very natural way of in-
tegrating text in an RL setting and because it al-
lows us to consider a simpler setting than that of
an MDP, in which we have to account for more
dynamics. We will now spend a few words on
the deep contextual multi-armed bandit setting,
as in e.g. (Collier and Llorens, 2018), since this
will occupy an important role in our paper. Here
the authors present a deep learning framework for
contextual multi-armed bandits that is both non-
linear and enables principled exploration at the
same time. Further, the exploration versus ex-
ploitation trade-off is tackled through Thompson
sampling by exploiting the connection between in-
ference time dropout and sampling for the poste-
rior over the weights of a Bayesian Neural Net-
work (Gal and Ghahramani, 2016). Interestingly,

the dropout rate is learned rather than considered
a hyperparameter in order to adjust the level of
exploration automatically as more data is made
available. (Riquelme et al., 2018) provide in-depth
analysis to understand the impact of using approx-
imate Bayesian Neural Networks in a Thompson
sampling framework. This is done by benchmark-
ing well-established and recently developed meth-
ods for approximate posterior sampling combined
with Thompson sampling over a series of contex-
tual bandit problems.Note that recent efforts have
been made specifically in the direction of giv-
ing context under the form of NL, for instance in
(Karampatziakis et al., 2019) and in (Misra et al.,
2017). In conclusion, this review provides a clear
idea that there are many different ways of integrat-
ing NL into RL. These possibilities grow quickly
when considering the extent of different RL and
NLP models which can be used and how they can
be combined. This means that there is a fertile
ground with ample space for experimentation. We
restrict our application to the one described above.
In the following section we begin by describing
more in detail the main components of our pro-
posed model.

3 Methods

As mentioned in the introduction, we will focus
our attention on the contextual bandit setting. The
contextual bandit problem is a variant of the exten-
sively studied multi-armed bandit problem. The
bandit problem models a situation in which the
agent is constrained to choose one action from a
possible set of actions, i.e. the action space A, with
the intention of maximising the expected gain. In
fact, after an action is taken, the agent receives a
reward that represents the gain of having selected
the action taken. The reward, in most cases, is not
deterministic and therefore poses an extra chal-
lenge to the agent due to the intrinsic stochasticity
of the problem. As the reward is only revealed for
the chosen action, bandit problems involve trading
off exploration, i.e. to try potentially better ac-
tions at the cost of facing uncertain rewards, and
exploitation, i.e. to select actions which are known
to be good. Further in a contextual bandit setting,
before making each decision the bandit is shown
some context x ∈ X , where X is usually referred
to as the context space. In this case, the reward is a
function of both the action and the context, i.e. the
same action can lead to different rewards given a



different context. The role of the context is to give
some degree of information about the current dy-
namics of the rewards and, therefore, inform the
agent. The degree of information depends on the
nature of the problem. The full range of possible
scenarios that it is possible to model using RL is
presented in Figure 1.

Figure 1: Different kinds of RL problems.

In particular, we imagined a simple setting in
which an agent must choose one among seven
weapons in order to survive the current dun-
geon. Note that the choice is made before en-
tering the dungeon. There are five such dun-
geons: desert, swamp, mountain, rocky
plains, forest. In other terms, the choice of
the weapon is the action a ∈ A = {a1, a2, ..., a7}
and the dungeon is the environment e ∈ E =
{e1, e2, ..., e5}. The context x is instead given by
a short description of the given dungeon which is
generated by randomly combining human-written
sentences. The final text is designed so as to in-
clude a few dungeon-specific elements in the mid-
dle of numerous non-informative words. To avoid
positional bias, the order of the sentences is also
randomized within the text. The space of all con-
texts X, which is thus combinatorially large, is rep-
resented by all the possible descriptions generated
in this way. It is in this sense that our agent is in-
formed by NL. The generation of the context space
is loosely inspired by the language templates for
the goals and dynamics in (Zhong et al., 2019).
We will now go in more detail with regards to the
environment dynamics and, in particular, to the de-
pendence of the rewards on the actions and the en-
vironments. For every given environment e there
is an action a∗e that will yield positive reward with
certainty. Every action has at least a 0.01 prob-
ability of yielding a positive reward even if it is
selected in the wrong context, i.e. even if it is not
the optimal action a∗e for the given environment.
Moreover, there is an action that performs poorly

regardless of the current environment and another
one which gives a decent performance regardless
of the context. In fact, the latter action is such
that, given that the agent is completely agnostic
of the environment, the expected reward resulting
from selecting it is higher than the expected re-
ward of selecting any other action. Note that we
designed the experiment so that for every given
context there exists a deterministic optimal policy.
Table 1 summarises the dynamics of the environ-
ment.

a1 a2 a3 a4 a5 a6 a7

e1 1.0 0.01 0.01 0.01 0.01 0.01 0.3
e2 0.01 1.0 0.01 0.01 0.01 0.01 0.3
e3 0.01 0.01 1.0 0.01 0.01 0.01 0.3
e4 0.01 0.01 0.01 1.0 0.01 0.01 0.3
e5 0.01 0.01 0.01 0.01 1.0 0.01 0.3

Table 1: Probability of survival given the action choice
and the context.

So far we have explained the setting we will
be testing our models in. We now proceed to
introduce the model we will be using. It is the
union of two models that are widely used in the
NLP and the RL literature. In fact, we com-
bine the Convolutional Neural Network (CNN)
model (Kim, 2014) with a modified version of
the Sample Efficient Actor-Critic with Experience
Replay (ACER) (Wang et al., 2016) algorithm in
order to use it in the contextual bandit setting.
Both of these models have shown great success
in their respective fields. We call their combina-
tion NLP ActorCritic (NLPAC). The idea of using
several Neural Network architectures combined is
inspired by Modular Neural Networks. In particu-
lar, (Devin et al., 2017) address the renown issue
of data inefficiency in Deep Reinfocement Learn-
ing through the use of modular Neural Network
policies. In fact, the authors exploit this modu-
lar decomposition to train mix-and-match modules
that can solve new robot-task combinations that
were not seen during training. We strongly be-
lieve that this approach will be further studied in
the future and will mitigate the data-inefficiency
problem while allowing for more flexible RL al-
gorithms.

We will now describe the base form of our
model. In Figure 2 we report a schematic rep-
resentation of this architecture. Variations of the
base model will be described in the following sec-
tion. The CNN is composed of three 2D convolu-



Figure 2: Graph representation of NLPAC

tional layers and one linear layer, which is charac-
terised by K = 5 output neurons. In fact, given
the dungeon description as an input, the CNN will
output a vector s ∈ R5 of which the elements rep-
resent scores, using a softmax activation function,
given to the likelihood (or not) of being in a given
dungeon. The ActorCritic is instead composed of
a shared series of linear layers and two final and
separated linear layers for the policy and the q-
values. In the following, in particular, we will
consider an end-to-end model in which the out-
put neurons of the linear layer of the CNN are the
input neurons of the first linear layer in the Ac-
torCritic, i.e. the context given to the RL agent is
that of the dungeon in which it finds itself. With
regards to the training process, we designed two
different procedures. The first one is an end-to-
end training using the RL loss to update both the
NLP model as well as the RL model. In other
terms, the two parts are updated using the same
information. The second one is a two-step train-
ing procedure. The NLP architecture is trained us-
ing a cross-entropy loss as if this were a Super-
vised Learning task and the same is done for the
RL architecture. It is important to underline that
the optimisation step happens at the end of every
batch of episodes. Note that in this way we are per-
fectly reproducing the contextual bandit setting as
the training is happening simultaneously for both
the NLP and the RL architectures with the label,
i.e. the true current environment, becoming avail-
able only once the action is chosen. We are spec-
ifying this as the training process should not be
confused with a simple SL problem plugged into
an RL framework. Note that the downside of this
is that since the NLP model is training during this
process it yields a context which is not very infor-
mative in the first epochs. Further, it is possible
and correct to use this second procedure as well
since we designed the experiment in such a way
that the true environment is revealed only after tak-
ing the action. These two training procedures cor-

respond to the two main agents we will comment
on in the following. Note that the performance of
these agents is not only compared to that of the
random agent but more importantly, to that of the
non-informed agent. We expect to see the per-
formance lower bounded by this agent and upper
bounded by the deterministically informed agent.
The latter is what we call the agent to which the
context given is not a score vector s ∈ [0, 1]5 but a
one-hot-encoding of the current dungeon, i.e. the
agent is given exact knowledge of the environment
instead of the dungeon description from which it
has to extract information on the current environ-
ment. Our metric of success thus consists in ob-
serving the performance curve of the base agents
upper and lower bounded as described above and,
in particular, to find that it is much closer to that
of the deterministically informed agent than it is
to the non-informed agent. This, in fact, would
show that providing context under the form of NL,
which is much easier to provide for a human user
than a vector of scores, we obtain performance
close to that in which exact context is given. Note
that by performance curve we mean the curve of
the rewards obtained across the training epochs.

With regards to the hyperparameters of the
model, these are reported in Table 2. We empir-
ically tested different values without experiencing
significant changes in the performance, with the
exception of the learning rate. The main result for
the rewards during training is reported in Figure
3. The curves present in the plot were obtained
in the following way. The training consists of five
trials taking about 1h 30m of training for each al-
gorithm. At the beginning of each trial, the Neural
Networks are reset. This is done so we can have
an unbiased estimate of the performance. We then
take the average value every 320 rewards and, fi-
nally, smooth the curve.

We now comment on our findings.
ACER NLP JustRL represents the agent that
is trained with RL end-to-end, i.e. the opti-



reward (victory) reward (defeat) Learning rate Gamma Optimizer Batch size
10 -10 0.0002 0.98 Adam 256

Table 2: Hyper-Parameters

Figure 3: Rewards during training.

mizer backpropagates the information given
by the RL loss through the entire architecture.
ACER NLP SL//RL represents the agent in which
the NLP and RL parts of the model are trained
separately. In particular, the CNN is trained by
backpropagating the information coming from
the classification loss, i.e. the error made on the
scores assigned to the dungeons, while the RL
is trained by backpropagating the information
coming from the reward observed. The activation
function between the two parts of the model
is the softmax. In other terms, we train the
CNN as if it were just a prediction task and
the ACER as if it were a pure RL task but in
the contextual bandit setting, i.e. at the same
time. Finally, we indicate with ACER NoContext
and ACER DeterministicContext respectively
the agent to which no context is given and
that with exact knowledge of the current dun-
geon. These can thus be trained using only the
ACER architecture as there is no NL involved.
Note also that these two differ only in that in
the NoContext case the input vector of zeros,
whereas for the DeterministicContext the input
is a one-hot encoding that deterministically
identifies the type of the current environment. As
we can see from Figure 3, the performance of
ACER NLP JustRL is initially comparable to the
one of ACER NoContext. However, after a few
epochs we see that ACER NoContext manages to
achieve a better performance, i.e. at that time the

agent always chooses the suboptimal action. This
is the action which is not optimal but which, with
positive probability, yields positive reward and is
the best possible choice when the agent is given
no information whatsoever on the context and
thus is the optimal policy for ACER NoContext.
Conversely, ACER NLP JustRL is not even able
to reach this suboptimal policy. The problem is, in
particular, that it always chooses one of the actions
which is optimal in only one of the five existing
environments. It is interesting to notice that the
gap in performance for ACER NLP SL//RL when
compared to ACER DeterministicContext is quite
narrow. This is a desirable finding as it means
that NL can improve the learning process of an
agent almost as much as when exact knowledge
on the environment is given. Nonetheless, it
is also important to note that this algorithm is
characterised by very high variability. In fact, it
is not infrequent to find that the agent is not able
to reach the optimal deterministic policy. This is
due to the fact that the RL part tends to overfit to
the initial prediction of the NLP part and it is not
always able to recover. The interesting finding is
that, even for a simple setting like the one we are
studying, the end-to-end model fails to learn. This
is a strong call to develop specifically designed
architectures that are able to better integrate the
NLP part into the RL pipeline as it proves that
the connection recent efforts are attempting to
make requires careful exploration. The main



problem is that in the initial phase of training
the agent experiences many negative rewards
and the information that passes between the two
architectures is therefore flawed and causes the
NLP architecture to begin an erroneous learning
process. We also tried a Supervised Learning
warm-up approach as used by (Silver et al.,
2016) and (Das et al., 2017), yet the result is not
significantly better. This was quite surprising
given the level of success achieved in the cited
studies, yet it highlights the difficulty of the task
and the concrete necessity of further studies on
the topic.

4 Experiments

As mentioned above we consider two variants
of the base model. The first is changing the
training procedure, i.e. we consider a vari-
ant of the ACER NLP SL//RL model, called
ACER NLP SL&RL, in which we train using
both the end-to-end RL procedure and the Super-
vised Learning one at the same time. The learn-
ing rate for the NLP architecture of the end-to-
end training is set to be of one order of magni-
tude smaller to give more weight to the Supervised
training and allowing a seamless integration of the
two parts of the end-to-end pipeline, as in Table 2.
Moreover, we believe that this can avoid that the
initial errors of the agent are not backpropagated
by the RL loss. The second is including dropout in
our Neural Networks. We report the result for the
ablations in Figure 5. Note that we maintained in
this new plot also the findings plotted in figure Fig-
ure 3 so as to make it easier to compare the main
model with its variations. We now comment on the
result. With regards to the ACER NLP SL&RL
variation we can observe that, although it does
a relatively good job at learning in the initial
phase of the training, it ends up being domi-
nated, with a sensible gap, by the performance of
ACER NLP SL//RL. More specifically, looking at
the first part of the training we could have ex-
pected ACER NLP SL&RL to have a better per-
formance than ACER NLP SL//RL. As the train-
ing progresses though, the performance doesn’t in-
crease enough to maintain this ordering.

This is due to the fact that the backpropaga-
tion from the RL to the NLP only results in a
higher degree of exploration. This is beneficial
in the first part of the training but, in the long
run, it weighs down the performance of the agent.

Figure 4: Accuracy of the CNN during training.

To support this we can also examine Figure 4,
in which the accuracy obtained during training is
reported for the two models. What we find is
that ACER NLP SL//RL has higher accuracy than
ACER NLP SL&RL even though the algorithms
have the same NLP architecture.

The takeaway from this is thus that a more so-
phisticated way of integrating of NLP models in
RL algorithms is required. Of all the models pre-
sented so far, we will now discuss the effect of in-
troducing dropout. The first observation we must
make is that the introduction of dropout is in gen-
eral greatly beneficial for the algorithms both in
terms of variability and of increase in the total re-
ward achieved. This is due to the fact that the
higher degree of exploration that the use of this
technique allows the agent to explore the action
space very quickly while not compromising the
learning process. This is true with the exception
of ACER NLP SL&RL, for which the introduc-
tion of dropout does not result in a significant re-
duction of variability or in a significant increase
in performance. Beside this exception we, for in-
stance, observe that the ACER NLP SL//RL with
dropout presents a performance which is much
closer to that of the deterministically informed
agent than the model without dropout. In other
terms, we find noticeably better performance for
the ACER NLP SL//RL dropout model than for
the ACER NLP SL//RL model. The variability
in the performance of the dropout version is also
much smaller than the one without dropout. This
is clearly a desirable finding, as high variability in
the performance estimates is a synonym of insta-
bility in the learning process, in particular in the
simple case that we are examining. However, the
use of dropout is not enough to make the agent
trained end-to-end with only RL achieve better
performance. Finally, note that we have also tried
to use the pre-trained (for classification) BERT
model instead of the CNN described above, find-



Figure 5: Rewards during training.

ing significantly worse performance. We think that
this was due to the fact that the bigger the model
is the slower it is to adapt to changes. This is rele-
vant, as in control tasks fast adaptation to changes
in the environment is of great importance, in par-
ticular in the initial training phase.

5 Results

In this work, we have put much effort into un-
derstanding the complicated but useful link be-
tween NLP and RL. Taking inspiration from Mod-
ular Neural Networks we designed an architecture
which fuses a CNN with and ActorCritic model.
We found that an end-to-end RL training process
does not yield good performances, highlighting
that trivially connecting two models is not enough
to guarantee that the model will work well. The
correct functioning of this simpler end-to-end RL
would have been the desirable finding. Nonethe-
less, we were able to design a hybrid training pro-
cess in which the unveiling of the true current en-
vironment happens once the actions is taken, thus
resulting in correct implementation of the contex-
tual bandit setting while distancing itself from a
simpler but less interesting SL model plugged into
an RL algorithm. With this model, we have found
that giving NL text yields near to same perfor-
mance as that obtained with deterministic infor-
mation on the environment and can thus be con-
sidered a very good substitute. Given the cheap
availability of NL this is an important finding and
it means that further exploration of this new field
could bring very interesting results.

6 Discussions and future work

Our model offers an insight into how an agent
can be informed from both environment dynam-
ics and NL guidelines. The integration of NL in
this model is essential as it offers a significant ad-
vantage in the learning curve compared to non-
informed models. RL models can be implemented
with models using NLP but the combination of
these two pipelines can have the effect of render-
ing the model significantly slower. In future work,
it would be interesting to focus on the different
possible techniques to combine NLP and RL in
this model and thus to find which way is the most
efficient. Recall that the CNN and ActorCritic
models are connected through a common set of K
neurons. The base model is such that K = 5, i.e.
the number of dungeons. This means that the vec-
tor of weights corresponding to these neurons is
a score vector that encodes the likelihood of be-
ing in each dungeon. This relies on the hypothesis
that the number of environments is known a priori.
An interesting extension that could be of wider ap-
plicability is to the case in which this information
is not available. In this case, the model could be
characterised by K 6= 5. The idea behind this is
that we are not giving the model knowledge of the
true number of environments and, therefore, in ad-
dition to learning the scores to assign to each dun-
geon once it is given the description, it should also
learn the number dungeons (when K > 5) or to
project the dungeons down to a lower dimensional
space (when K < 5).



References
Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and

Dan Klein. 2016. Neural module networks. In Pro-
ceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 39–48.

Dzmitry Bahdanau, Felix Hill, Jan Leike, Edward
Hughes, Pushmeet Kohli, and Edward Grefenstette.
2018. Learning to follow language instructions
with adversarial reward induction. arXiv preprint
arXiv:1806.01946.

SRK Branavan, David Silver, and Regina Barzilay.
2012. Learning to win by reading manuals in a
monte-carlo framework. Journal of Artificial Intel-
ligence Research, 43:661–704.

Mark Collier and Hector Urdiales Llorens. 2018. Deep
contextual multi-armed bandits. arXiv preprint
arXiv:1807.09809.

Abhishek Das, Georgia Gkioxari, Stefan Lee, Devi
Parikh, and Dhruv Batra. 2018. Neural modular
control for embodied question answering. arXiv
preprint arXiv:1810.11181.

Abhishek Das, Satwik Kottur, José MF Moura, Stefan
Lee, and Dhruv Batra. 2017. Learning cooperative
visual dialog agents with deep reinforcement learn-
ing. In Proceedings of the IEEE international con-
ference on computer vision, pages 2951–2960.

Scott Deerwester, Susan T Dumais, George W Fur-
nas, Thomas K Landauer, and Richard Harshman.
1990. Indexing by latent semantic analysis. Jour-
nal of the American society for information science,
41(6):391–407.

C. Devin, A. Gupta, T. Darrell, P. Abbeel, and
S. Levine. 2017. Learning modular neural network
policies for multi-task and multi-robot transfer. In
2017 IEEE International Conference on Robotics
and Automation (ICRA), pages 2169–2176.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jacob Eisenstein, James Clarke, Dan Goldwasser, and
Dan Roth. 2009. Reading to learn: Constructing
features from semantic abstracts. In Proceedings
of the 2009 Conference on Empirical Methods in
Natural Language Processing: Volume 2-Volume 2,
pages 958–967. Association for Computational Lin-
guistics.

Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a
bayesian approximation: Representing model uncer-
tainty in deep learning. In international conference
on machine learning, pages 1050–1059.

Prasoon Goyal, Scott Niekum, and Raymond J
Mooney. 2019. Using natural language for reward
shaping in reinforcement learning. arXiv preprint
arXiv:1903.02020.

Nikos Karampatziakis, Sebastian Kochman, Jade
Huang, Paul Mineiro, Kathy Osborne, and Weizhu
Chen. 2019. Lessons from real-world reinforcement
learning in a customer support bot. arXiv preprint
arXiv:1905.02219.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Jelena Luketina, Nantas Nardelli, Gregory Farquhar,
Jakob Foerster, Jacob Andreas, Edward Grefen-
stette, Shimon Whiteson, and Tim Rocktäschel.
2019. A survey of reinforcement learning in-
formed by natural language. arXiv preprint
arXiv:1906.03926.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Dipendra Misra, John Langford, and Yoav Artzi. 2017.
Mapping instructions and visual observations to ac-
tions with reinforcement learning. arXiv preprint
arXiv:1704.08795.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Carlos Riquelme, George Tucker, and Jasper Snoek.
2018. Deep bayesian bandits showdown: An
empirical comparison of bayesian deep net-
works for thompson sampling. arXiv preprint
arXiv:1802.09127.

David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driessche, Ju-
lian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, et al. 2016. Mastering
the game of go with deep neural networks and tree
search. nature, 529(7587):484.

Satinder Singh, Diane Litman, Michael Kearns, and
Marilyn Walker. 2002. Optimizing dialogue man-
agement with reinforcement learning: Experiments
with the njfun system. Journal of Artificial Intelli-
gence Research, 16:105–133.

Stefanie Tellex, Thomas Kollar, Steven Dickerson,
Matthew R Walter, Ashis Gopal Banerjee, Seth
Teller, and Nicholas Roy. 2011. Understanding nat-
ural language commands for robotic navigation and
mobile manipulation. In Twenty-fifth AAAI confer-
ence on artificial intelligence.

Gerald Tesauro. 1995. Temporal difference learning
and td-gammon.

Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr
Mnih, Remi Munos, Koray Kavukcuoglu, and
Nando de Freitas. 2016. Sample efficient actor-
critic with experience replay. arXiv preprint
arXiv:1611.01224.

https://doi.org/10.1109/ICRA.2017.7989250
https://doi.org/10.1109/ICRA.2017.7989250


David A. White and Donald A. Sofge. 1992. Handbook
of intelligent control: Neural, fuzzy, and adaptive
approaches.

Victor Zhong, Tim Rocktäschel, and Edward Grefen-
stette. 2019. Rtfm: Generalising to novel en-
vironment dynamics via reading. arXiv preprint
arXiv:1910.08210.


