am Windows

The Evolution of CFI Attacks and Defenses

Joe Bialek (@JosephBialek) — MSRC Vulnerabilities & Mitigations Team

s Microsoft

This presentation is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS SUMMARY.

Historical Context
(circa 2011-2012)

Problem: Vulnerabilities Impacting Customers

Vulnerabilities and exploitation are on the rise, Microsoft needs to protect customers

of RCE/EOP CVEs by patch year g % of RCE & EOP CVEs exploited within 30 days of
' patch
l |
CFG Development Starts L |
90%
85% |
80%
75% I
70%
. 65% —
g 60% — —1 —
: ggzﬁ 2 B : oo
; - =
= = =
% = = =
15% j i -
0% — =
84: = _|‘E_FI3 [20 T — 15 1
] 2006 2007 2008 2009 2010 2011 2012 D 2013 2014 2015 2016 2017
2006 2007 2008 2009 2010 2011 2012 _ 2013 2014 2015 2016 2017 i Patch Year |
Patch Year
e Total Linear (Total) i u Exploited within 30 days of patch u Not known to be exploited

Realities (circa 2011-2012)
What we are doing isn't working

We cannot “find all the bugs” Solutions must work for our most
e SDL attacked targets (IE/Office)
 Pentesting / fuzzing

+ Static Analysis Hardcore sandboxes not an option

for IE/Office due to:

Simplistic mitigations aren’t robust > (Cemiperoili

against strong primitives * Huge engineering cost + lack of
. DEP developer resources
 ASLR

All changes have compatibility &
performance hurdles to jump, must
invest wisely

» Heap metadata hardening

CFl Strategy

Theory
Microsoft's overarching goal is to make exploitation financially infeasible or impossible

All RCE memory Constraining control
corruption exploits flow to “legitimate”
found in-the-wild paths breaks all of
hijack control flow these exploits as- Security teams are
» written well positioned to
Attackers often follow drive these changes
“path of least After some formal
resistance”, breaking thought, we believe
them means CFI will robustly
increasing cost of mitigate against
exploitation stronger primitives

CFG had no formal threat model during very early development. Thought of as a way to kill ROP.

Hindsight is 20/20, but we did have formal thought around future exploit trends. See [1]

2012 Strategy Slide Deck

Stronger mitigations for preventing code execution

Making strategic investments in technologies that strongly mitigate code execution is one way we could get to “done”

Indirect call Control Flow Guard Split stack

? Indirect jump Enforce control flow integrity Use a separate stack for return

! on indirect calls addresses
Indirect return

Y Contextswitch

Load executable Image load restrictions Dynamic code restrictions

Modify
writable code Images must be signed and arbitrary Prevent dynamic code generation,

images cannot be loaded modification, and execution

Most indirect jumpise read-only pointers (e.g. import thunks, switch jump tables
and conjkt switches only happen in a limited number of places

Code Integrity Guard (CIG) +
NoChildProc + NoLowlLabel + NoRemotelmage

Intel CET
(hardware
shadow stack)

Not Anymore ©

Arbitrary Code Guard (ACG)

"Since we will be the first major software vendor to
deploy a control-flow integrity solution at scale, we
will have the great distinction of being the first to
experience the school of hard knocks!

— Internal CFG Security Impact Assessment
Document

"The School Of Hard Knocks”

Or: How our understanding of CFI robustness has evolved over time

How Did We Get Here?

Mitigation

In scope

Out of scope

Control Flow Guard(CFG)

Technigues that make it possible to gain

control of the instruction pointer through

an indirect call in a process that has
enabled CFG.

Hijacking control flow viare turn
address corruption

Bypasses related to imitations of
coarse-grained CFl {e.g. calling
functions out of context)

Leveraging non-CHG images

Bypasses that rely on moedifying or
corrupting read-only memory
Bypasses that rely on CONTEXT record
corruption

Bypasses that rely on race conditions or
exception handling
Bypasses that rely on thread
SUSpPEnsion

Instances of missing CHG

instrumentation prior to an indirect call

How Does CFG Work?

CFG implements coarse-grained control-flow integrity for indirect calls

Compile time =

Runtime

CFG is a deterministic mitigation, its security is not
dependent on keeping secrets.

void Foo(...) {
// SomeFunc is address-taken
// and may be called indirectly
Object->FuncPtr = SomeFunc;

}

Metadata is automatically added to the image which
identifies functions that may be called indirectly

void Bar(...) {
// Compiler-inserted check to
// verify call target is valid
_guard_check_icall(Object->FuncPtr);
Object->FuncPtr(xyz);

}

A lightweight check is inserted prior to indirect calls
which will verify that the call target is valid at runtime

Process
Start

Indirect
Call

*Map valid call target data

*Update valid call target data
with metadata from PE image

«Perform O(1) validity check

*Terminate process if invalid
target

«Jmp if target is valid

For C/C++ code, CFG requires no source code changes.

ntdll!LdrpDispatchUserCallTarget:

00007ffb 4e100e10 4c8bld59e50de0 mov
[ntd1l1l!LdrSystemD11InitBlock+0xbo]

00007ffb" 4e100e17 4c8bdo mov
00007ffb" 4el100ela 49clead9 shr
00007ffb" 4el00ele 4f8blcd3 mov
00007ffb" 4e100e22 4c8bdo mov
00007ffb" 4e100e25 49clea0d3 shr
00007ffb" 4e100e29 a80f test
00007ffb" 4el00e2b 7509 jne
ntdll!LdrpDispatchUserCallTarget+0x1d:
00007ffb" 4el00e2d 4defa3d3 bt

00007ffb" 4el00e31 7303 jae

rll,qword ptr

rle, rax

rie,9

rll,qword ptr [rll+rle*8]

rle, rax

rle,3

al,oFh
ntdll!LdrpDispatchUserCallTarget+0x26

rll,rle
ntdll!LdrpDispatchUserCallTarget+0x26

ntdll!LdrpDispatchUserCallTarget+0x23:
00007ffb" 4e100e33 48ffed jmp

rax

Known Limitations Prior To Shipping

Stack No protection for return addresses
Corruption X86 mixed calling conventions can lead to stack imbalance

http://labs.bromium.com/2015/09/28/an-interesting-detail-about-control-flow-guard/

Compat New executable pages default to: all addresses valid icall targets
Non-CFG binaries can be loaded in CFG enabled processes
Some binaries aren't fully instrumented (assembly, libs)

Coarse (alling functions out of context can lead to stack address leaks
Grained Legitimate functions like VirtualProtect can be called
Dangerous * Functions like NtContinue & longjmp directly set RIP/RSP/RBP
Functions
Data Attacker can modify parameters to WinExec, LoadLibrary, etc.
Corruption

’rior to CFG shipping, we were
evaluating it in terms of an
arbitrary read/write primitive

CFG Ships to the World
« November 2014 Optional rollup for Windows 8.1

* Flash is compiled with CFG
» |[E/Flash JITs are not enlightened (all JIT memory valid icall targets)
« WARP D3D JIT not enlightened

» Late 2014 two flash CVEs under active exploitation

« CVE-2014-0311 and CVE-2014-0313
 Exploit doesn't bypass CFG, customers with the latest updates are protected ©

» February 2015: CFG is enabled by default for
Windows 8.1

2015 Learning: External Exploits

Pwn20Own
e |E ENntries

« Indirectly call WinExec with controlled parameters

« Leak stack addresses and call NtContinue
- Stack address leaked from jscript9!StackPinnedBase::global

« Flash Entries

- Leak stack address from the flash heap, call NtContinue

« Global in flash.ocx contains pointer to RWX memory (used to store ATL thunks)
 CRT already updated to fix this, Flash was using old CRT ®

Exploits in-the-wild
 Not covered in this slide deck because they follow the same
patterns as Pwn20wn entries & our own internal research

2015 Learnings and Observations
» Internal prototyping on “CFG+", finer grained CFG

No line-of-sight to truly fine grained CFG on Windows due to compat ®

« The granularity we could achieve (number of function arguments) not worth the
development cost

 Note: Fiqe grain CFG was considered in the original design but wasn't pursued for
version

» Internal red team identifies “stack spray” attack,
predictable way to locate stacks

« MM uses the same allocator for stacks & VirtualAlloc

- Make large allocations in JS, free them, cause thread creation. VirtualAlloc puts the
thread stack where the previous large JS allocation was

 DLLS providing scripting engines (PowerShell, VBScript)
can be loaded into CFG processes

What We Did: Windows 10 THT (July 2015)

Strategic Changes:

 Edge replaces IE as the default Microsoft browser

« Edge JIT supports CFG (only entry points valid indirect calls, JIT pages RX)
- Edge has a much better sandbox

Tactical Changes:

 "Explicit Suppression”: Dangerous functions (e.g. Winkxec, NtContinue,
longjmp) no longer valid indirect call targets

« A number of “stack address leaks” are fixed

« Found using both static analysis and dynamic analysis
« We quickly determine this is a rats nest and not viable to pursue long term

» Instrumentation gaps fixed (found via internal tooling & mitigation bounty)

* Improvements to WOW64 with CFG

What We Did: Windows 10 TH2 (Nov 2015)

Strategic Changes:
 Edge prevents image loading from remote shares (kernel enforced)

 Edge only loads Microsoft signed binaries (CIG)

Tactical Changes:
« Edge opts in to additional explicit suppression

- Edge can be more aggressive than the system-wide explicit suppression shipped in TH1

« Stack isolation / TEB / PEB isolation

« Eliminated some “dangerous wrappers” (valid call targets that wrap
explicitly suppressed call targets such as SetProcessValidCallTargets)

« Found using static analysis

2016 Learnings: External Exploits

Pwn20wn (Edge Browser):

« Edge: Call setjimp to locate stack, corrupt return address
- ROP payload uses VirtualProtect to make memory RWX and deliver the final payload

o Flgéh: Leak a stack address from flash internal structures, corrupt return
address

PwnFest (Edge Browser):

 Edge #1: Out-of-bounds write on the stack used to corrupt return address.
Second stage payload delivered in a RWX page setup using ROP

« Edge #2: Stack address leaked from heap, return address corrupted.
Second stage payload delivered in a RWX page setup using ROP

All exploit competition entries hijack control flow by directly corrupting the stack

2076 Learnings: Bounty Reports

Memory Protection Issues Compiler Bugs

« Attacks against read-only memory « DLL generated with writable Import Address

Make the page storing ntdll! __guard_dispatch_icall_fptr Table (IAT)
writable, set it to _guard_dispatch_icall_nop

o : : . 1 hunks th k
« Race condition: Modify JIT'd code before it's ol el ger?erated thunks that make
unprotected icalls were marked as valid icall

made read-execute
targets

« Wrappers around explicitly suppressed functions

that are valid icall targets
Example: Wrapper around VirtualProtect allows making
arbitrary virtual address RWX

Data Only Attacks

« Modify a global variable containing a DLL path « Stack address leaks
Didn’t really work against Edge due to CIG +

NoRemotelmages . L
 Uninstrumented indirect calls

« Coarse grained CFl limitations [3]

2016 Learnings: Observations & lssues

» External & internal research indicates that data-only
corruption is sufficient to perform arbitrary actions
(e.g. system calls with controlled parameters)

- While there may be cases where this isn't true, it's difficult to reason about so
we must assume the worst

- Still makes writing payloads more expensive

« Emphasizes that CFl goes hand-in-hand with sandboxing, CFl makes breaking
the sandbox much more painful

Binary downgrade attacks
» Attacker loads MS signed binary with known CFG bypasses

2016 Learnings: Code Replacement Attacks

Call Stack

Worker.dll::DoWork
Foo.dll::StartWork

7 Worker.dll
\ Foo.dll

Foo::StartWork has called the function Worker::DoWork.

These functions are in different DLL's, both DLL's are
signed by Microsoft.

2016 Learnings: Code Replacement Attacks

Call Stack

Worker.dll::DoWork
Foo.dll::StartWork

7 m— Workerdll
N\

Attacker forces Bar.dll to be unloaded. We assume this is
possible via data corruption attacks.

2016 Learnings: Code Replacement Attacks

Call Stack

Worker.dll::DoWork
Foo.dll::StartWork

7 Worker.dll
\ Bardll

Attacker forces Bar.dll to be loaded in the virtual address
space that previous mapped Foo.dll.

Bar.dll is signed by Microsoft.

2016 Learnings: Code Replacement Attacks

Call Stack
Worker.dll::DoWork
Foo.dll::StartWork (Worker.dll
Bar.dll

Worker.dll::DoWork eventually returns using the return
pointer stored on it's stack. This used to point in to
Foo.dll::StartWork but because Foo.dll was unloaded, the
return pointer is now a dangling pointer.

DoWork ends up returning to a ROP gadget in Bar.dll.

The Stack Conundrum

« Most CFG improvements will provide little value-add
until stack protection lands, attackers are unanimously
corrupting the stack

» Microsoft would prefer not to wait for CET

- Even if it was released tomorrow, market penetration would take 6+ years

» Should we shift away from CFl in the short-term?

» It only there was a performant, compatible, and robust
way to protect returns in software...

RFG — Return Flow Guaro

RFG was our compatible, ABI compliant, performant software shadow stack

Compile Time Runtime .
[..] //Prior code

call ChildFunction
+1TB shadow stack region created <

Drecaas .ij\g/:o'n canr?ot be qfu;erlled mov rax, [rsp]
. s in region are fata
Start 0

FS segment points to the shadow
stack of the current thread

NOP's added to the prolog & epilog of all
functions

mov fs:[rsp], rax

[..] //Child code

Metadata added to the image to locate the
prolog and epilog NOP bytes

mov rcx, fs:[rsp]

*If process enables RFG: patch NOP's = Cmp rcx, [r‘sp]

with RFG prolog/epilog

<
jne _fast fail

ret

*Prolog: Push return address to @XABCDf []
SMeTeite | shadow stack //Remainder of
Call «Epilog: Fast fail if return address on pa rent function
alls stack and shadow stack are

mismatched

If attacker changes the return address at these points RFG is defeated

RFG relies on a secret; the shadow stack's virtual address

RFG Learnings: Secrets Are Bad!

« AnC attack [2] could successtully leak where shadow
stacks were mapped

« POC took several minutes in Edge, but attacks never get slower

» CFG originally designed to avoid using secrets, we
thought we could get away with it here, but we
couldn’t

RFG Learnings: The By-Design Race

« RFG had a by-design race condition that we
thought was unexploitable

» Theory: If you attempt to “win the race” and

corrupt the return address of another thread, you'll
likely:
- Corrupt the return address too late and the process will fast fail

Do your corruption at the wrong time and corrupt the stack frame of an
unexpected function

RFG Learnings: Winning the Race

WorkerThread()
SEE GetLength() Sleep() GetLength()
Safe Overwrite Time I ‘ Safe Overwrite Time
E T T , t

- Dangerous Time - Dangerous Time

rime I

Thread 1: In the above sleep() -> GetLength() -> sleep() loop
Thread 2: Constantly writing to the virtual address of “RET Pointer” of the strnlen function

By attacking a leaf function, 99.99% of the "writes” are harmless. When the leaf function is entered, you have a
very high probability of winning the race.

Credit goes to Reid Borsuk for discovering this technique

Exploitable Races + CFI = A New Threat Model

« Technigues exist for extending race windows

« Find races that cross cache line boundaries
« SuspendThread/GetThreadContext

« More races exist

« CFG check function (code replacement attack after check passes but before indirect call is made)
« Unwinder

« CFI must be threat modeled against: Arbitrary read/write at
arbitrary times

. This is one of the most powerful primitives an attacker could achieve

° tThdere is no CFl solution that is robust against this threat model
oday

« But we think CFG + CET can be

Windows RSTImprovements (August 2016)

Strategic Changes:

"No Child Process” mitigation policy enabled for
Fdge

Tactical Changes:
 Longjmp hardening

» Instruction pointer protected in a coarse-grained fashion

« Compiler determines were setjmp is called and long allows longjmps to
corresponding locations

» Stack address can become unaligned
 Not safe from races

201/ Learnings

Pwn20wn (Edge Browser)

- All exploits follow the pattern:

 Corrupt the stack
« Use ROP to allocate RWX memory
- Execute stage 2 payload from RWX memory

Bounty

» Most bounty cases: binaries missing
Instrumentation

« Some implementation issues with ACG
« Thanks to Alex lonescu [4] & Ivan Fratric [5]

RS2&3 Improvements (April/October 2017)

Strategic Changes:
» Arbitrary Code Guard enabled for Edge

« Exploits will no longer be able to create RWX memory in Edge

« NolLowMandatoryLabellmages enabled for Edge

 Prevents images with a Low mandatory label from being loaded
« Helps prevent downgrade attacks

» Support for CFG “strict mode” added to Windows

« Only binaries that were compiled with CFG can be loaded
* Issue: Binaries compiled with non-CFG lib’s or non-CFG assembly can be loaded

Tactical Changes:
« Export suppression added (& enabled in Edge)

DLL exports are not valid icall targets unless GetProcAddress is called on them
Makes exploits slightly more difficult, but bypassable by-design

Where Are We Now (Edge specific)?

Stronger mitigations for preventing code execution CFG has
Making strategic investmzg *echnologies that strongly mitigate code execution is oad eTuid get to "done” Sh | pped’ .
outstanding
Indirect call Control Flow Guard Split stack deS|g N |SSU€S
? Indirect jump Enforce control flow integrity Use a separate stack for return
on indirect calls addresses
Indirect return

Y Contextswitch

Load executable Image load restrictions Dynamic code restrictions No Intel CET yet

Modify
writable code Images must be signed and ; Prevent dynamic code gener,
images cannot be loac modification, and execut

Most indirect jumpiuse read-only pointers (e.g. import thunks, switch jump tables)
and conjkt switches only happen in a limited number of places

Code Integrity Guard (CIG) +

, Arbitrary Code Guard (ACG)
NoChildProc + NoLowlLabel /NoRemote Images

What's Left To Do?

i * Needs anti-rollback protection
Code Integrlty Guard * Need to control what binaries are allowed to load (i.e. no scripting engines like PowerShell)

Arbitrary Code Guard » Design is working as intended

CET * Need hardware to be released

* Microsoft is planning on using CET for backwards edge protection

Code Replacement Attacks
* Broker only allows executable pages to be unmapped when safe

Race Conditions
* Unwinder needs to be out-of-process
* CFG check race killed with “code replacement attack” mitigation

X86 Stack Misbalancing & Generic Stack Address Leaks
* Mitigated by CET

Read-Only Memory Attacks
+ Certain regions must be permanently read-only and not unmappable. Broker decides when it is safe to allow unmap
* Operations that require write access to this memory (i.e. when delay loading a DLL) must be OOP

Coarse Grained CFI Limitations
* Look for opportunities to make CFG more fine grained

Takeaways

Building a robust CFl solution is quite difficult

For CFl to be robust in all environments, it must be modeled against arbitrary
read/write at arbitrary times

No CFl solution currently available is robust against this primitive, Microsoft thinks
we can get there

To maximize the impact of CFl, it must be combined with sandboxing

Even non-robust CFl does increase exploit complexity & not all environments give
attackers as much control as web browsers

Bounties @ Microsoft

Mitigation Bounty $100,000

Hyper-V Bounty $250,000
WDAG (Windows Defender Application Guard) $30,000

WIP (Windows Insider Preview) $15,000

See all bounties at: https://aka.ms/BugBounty

https://aka.ms/BugBounty

References

1. Modeling the exploitation and mitigation of memory safety vulnerabilities: https://github.com/Microsoft/MSRC-Security-
Research/blob/master/presentations/2012 10 Breakpoint/BreakPoint2012 Miller Modeling the exploitation and mitigation_of memory safety vulnerabilities.pdf
AnC Attack: https://www.vusec.net/projects/anc/

From read-write anywhere to controllable calls: https://medium.com/@mxatone/mitigation-bounty-from-read-write-anywhere-to-controllable-calls-calb9c7c0130
The Bird that Killed Arbitrary Code Guard: https://www.youtube.com/watch?v=gu i6lYuePg

ACG Bypass Using Duplicate Handle: https://bugs.chromium.org/p/project-zero/issues/detail7id=1299

Uk W

https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2012_10_Breakpoint/BreakPoint2012_Miller_Modeling_the_exploitation_and_mitigation_of_memory_safety_vulnerabilities.pdf
https://www.vusec.net/projects/anc/
https://medium.com/@mxatone/mitigation-bounty-from-read-write-anywhere-to-controllable-calls-ca1b9c7c0130
https://www.youtube.com/watch?v=gu_i6LYuePg
https://bugs.chromium.org/p/project-zero/issues/detail?id=1299

