{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# BANK MARKETING (With social and economic context)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Summary" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAABEwCAYAAADaW9yxAAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAABmJLR0QA/wD/AP+gvaeTAACAAElEQVR42uz92bN02XUfiP32cE5m3vt9NWGoQqEKE0EQ4ARSBAEChESFIxzR7247erLU4Se3I+z+F/TuJ3loh98khe1uyVaEOzrMsB1uqa2WOUAcmhIlABQmYiAGEjV8w72Z5+zBD2uvfdZZefKrumq5ceVYP8TFdytv5slz9rD2Gn5rLVdrrTAYDAaDwWAwGAwGw7uG/0nfgMFgMBgMBoPBYDD8mwYzpAwGg8FgMBgMBoPhjjBDymAwGAwGg8FgMBjuCDOkDAaDwWAwGAwGg+GOMEPKYDAYDAaDwWAwGO4IM6QMBoPBYDAYDAaD4Y4wQ8pgMBgMBoPBYDAY7ggzpAwGg8FgMBgMBoPhjjBDymAwGAwGg8FgMBjuCDOkDAaDwWAwGAwGg+GOMEPKYDAYDAaDwWAwGO4IM6QMBoPBYDAYDAaD4Y4wQ8pgMBgMBoPBYDAY7ggzpAwGg8FgMBgMBoPhjjBDymAwGAwGg8FgMBjuCDOkDAaDwWAwGAwGg+GOMEPKYDAYDAaDwWAwGO4IM6QMBoPBYDAYDAaD4Y4wQ8pgMBgMBoPBYDAY7ggzpAwGg8FgMBgMBoPhjjBDymAwGAwGg8FgMBjuCDOkDAaDwWAwGAwGg+GOMEPKYDAYDAaDwWAwGO4IM6QMBoPBYDAYDAaD4Y4wQ8pgMBgMBoPBYDAY7ggzpAwGg8FgMBgMBoPhjjBDymAwGAwGg8FgMBjuCDOkDAaDwWAwGAwGg+GOMEPKYDAYDAaDwWAwGO4IM6QMBoPBYDAYDAaD4Y4wQ8pgMBgMBoPBYDAY7ggzpAwGg8FgMBgMBoPhjjBDymAwGAwGg8FgMBjuCDOkDAaDwWAwGAwGg+GOMEPKYDAYDAaDwWAwGO4IM6QMBoPBYDAYDAaD4Y4wQ8pgMBgMBoPBYDAY7ggzpAwGg8FgMBgMBoPhjjBDymAwGAwGg8FgMBjuCDOkDAaDwWAwGAwGg+GOMEPKYDAYDAaDwWAwGO4IM6QMBoPBYDAYDAaD4Y4wQ8pgMBgMBoPBYDAY7ggzpAwGg8FgMBgMBoPhjjBDymAwGAwGg8FgMBjuCDOkDAaDwWAwGAwGg+GOMEPKYDAYDAaDwWAwGO4IM6QMBoPBYDAYDAaD4Y4wQ8pgMBgMBoPBYDAY7ggzpAwGg8FgMBgMBoPhjjBDymAwGAwGg8FgMBjuCDOkDAaDwWAwGAwGg+GOMEPKYDAYDAaDwWAwGO4IM6QMBoPBYDAYDAaD4Y4wQ8pgMBgMBoPBYDAY7ggzpAwGg8FgMBgMBoPhjjBDymAwGAwGg8FgMBjuCDOkDAaDwWAwGAwGg+GOMEPKYDAYDAaDwWAwGO4IM6QMBoPBYDAYDAaD4Y4wQ8pgMBgMBoPBYDAY7ggzpAwGg8FgMBgMBoPhjjBDymAwGAwGg8FgMBjuCDOkDAaDwWAwGAwGg+GOMEPKYDAYDAaDwWAwGO4IM6QMBoPBYDAYDAaD4Y4wQ8pgMBgMBoPBYDAY7ggzpAwGg8FgMBgMBoPhjjBDymAwGAwGg8FgMBjuCDOkDAaDwWAwGAwGg+GOMEPKYDAYDAaDwWAwGO4IM6QMBoPBYDAYDAaD4Y4wQ8pgMBgMBoPBYDAY7ggzpAwGg8FgMBgMBoPhjjBDymAwGAwGg8FgMBjuCDOkDAaDwWAwGAwGg+GOMEPKYDAYDAaDwWAwGO4IM6QMBoPBYDAYDAaD4Y6IP+kbMGzjv/lH/9uf9C38/zUqAISK8eTwVrzC2x/9abwxvIxQgDkk+Go+BsMaHgM+/xf/Arv/9G/i1SdPUHxA8hmxJqDuUF3+Sd+iwfDfCgEVX37wIfztb7yFJ8MAP58wuwOyrwg4wlVTGQyGnyT+k7/zf/9J34JBwbRFg8FgMBgMBoPBYLgjzJAyGAwGg8FgMBgMhjvCDCmDwWAwGAwGg8FguCPMkDIYDAaDwWAwGAyGO8IMKYPBYDAYDAaDwWC4I8yQMhgMBoPBYDAYDIY7wgwpg8FgMBgMBoPBYLgjzJAyGAwGg8FgMBgMhjvC1VrrT/omDAaDwWAwGAwGg+HfJFhEymAwGAwGg8FgMBjuCDOkDAaDwWAwGAwGg+GOMEPKYDAYDAaDwWAwGO4IM6QMBoPBYDAYDAaD4Y4wQ8pgMBgMBoPBYDAY7ggzpAwGg8FgMBgMBoPhjjBDymAwGAwGg8FgMBjuCDOkDAaDwWAwGAwGg+GOMEPKYDAYDAaDwWAwGO4IM6QMBoPBYDAYDAaD4Y4wQ8pgMBgMBoPBYDAY7ggzpAwGg8FgMBgMBoPhjjBDymAwGAwGg8FgMBjuCDOkDAaDwWAwGAwGg+GOMEPKYDAYDAaDwWAwGO4IM6QMBoPBYDAYDAaD4Y4wQ8pgMBgMBoPBYDAY7ggzpAwGg8FgMBgMBoPhjjBDymAwGAwGg8FgMBjuCDOkDAaDwWAwGAwGg+GOiD/pGzBs4//zm/9LPP/885jnGdM04XA4YJomhBCQUoJzDvM843C4hnMOp9MJtVYMQ0DKM2rNcM7Be48YI45Pj3DOYRxHnNIM7z12+z1yLai1opSCiowxVJQKpFIBPyKEgLcfPUauAXHcYZ4ycs5w1aHUGfAOv/u7v40f/fmbuL2ZsN89j3ly2B9eRLl9Ew4JQGlPJe12D1TfXiuAK6vnL4Xui38HgJRdf33KCSVXpJSQSu3vOYaI//6/++8hv/oKfpQrwuEAd6q4ThUoGVM84RQT5tFjNx36GM0zjckWvPdwztFzO4cYI1JKAIAQAmqtq7/zvQCAcw7OOQBAzrm/V77uve9zwK/zawBQa+2fG8cROWfc3Nxgt9v1v8nv2/qdv5+vzeOacwYAjOO4ugfvff8bX0dej7+3lIIQAkII/fdaa/8s33cpBcMw9Hvlv/PY8me89/3Z5XPXWmntnk5nYxZjhPcepRSklBBC2LxX+Uz7/R43NzcYx7F/Rj5/CKGPEX8//8vX1OB74WfhZ9ZjmFLq1+O1pNfY1jzK+eD3l1L6fPL9y3motWK/36OUgmmaAAAxxv5cPGbee4zjuNp3/K9cp/zfcv55vccY+73zdfQalHPCz6Pni8dSj4ncH3I+eC2wXAwVfdzneUb1DtM89/ub0oyUEsb9FR699RbGcQRKxhd//ddR04ySZ9SU+35LcJhyWY27XMd8L7u2vvg9MUZM09TlS4wRwzAglbpa8/JZeY2WUjDGgOPx2PcnjzN/t/ceLpwf4fM893EZhoHWoQNqzat16ZzD8XhECAG73Q7H44Qw7OB9bM9Bz5fzjDh4PH36FCEEPHhwjdMx9T2fUsLhcOj7iMfleDxi3MUz2cHPOE0TxnFEjBG50Gs8R3Ic5efTdEKMcXUuyLVcSkEcd3AxrNaOlCvTNNH15hm73Q4hBMzz3MeN1w7/Pk0Fu90OpRR6pnHs38vvPZ1usY8OBbWv/VwdXCDZNGd63Qdg5z1SSpjnuctEPnn6/gFQ4FZjzHPK+5df4/GQcj2E0GUiv4d/59elHOX1GesyZtWTrIrjoCUdRu/w9OlTOOdo7gvdb84ZPtL4pJTgUfqZxffLa0/KLSlP9bnDa5j0jrKSnTzHPKfeexRU+LhHnk99n5U097EcAu3rKS2yjuU2y0gpg52vK3mL6jGOe0zT1O5lkbV8Jk/T1O+PdYU+d/O0kqG81nmOeJ2UQnI5V9fPpFQq/voHPwnD/YJFpO4ppBDkDcyHIAsMKfD5oJCKIAuqlBKGYejvB7BSdvi/PRxqbcpvBVyhTX51dYWrqyscdnvsDyMOhwN8IEG2Hwd8+MMfxu3TG7z00kt48uQJxjHirTf+Qj/R5YdVRtTZn7sih5XCIX+60KvA3/0//R8xPb7Bc1cHuFyQS0HyQPEOFYBHQCjvfulLhV4KQP7bltKolUwAfU74fdJYkM/Jf5P/SqWXFXap4Mr53rqW/g6+X23I6N+lQcefl8pNP6iUMsP3JO+Rx0mOpX7GZ0Eq0nJM+X5rrX0c5LzI7+b1Ms9z/049PvKAl0q7fNYt8PdqQ1mvJX6v3K/yunJdyB+53vl9+lm1gc4OFzaWWNGVc8zzJOXB1vqXf+d1yAqNlC1b15CQBrPcDxJ6nerX+HPyb/Kack0C6AorrxNWHq+urjCOIz7wgQ90Zwob5vycvM74dfl8/H3RLcaTdkjI9c/rbmtMpRNGGq16PvValWtYri/5zPzccg3wucDOuRBCP2O0fJBnyjwvBpOcU/lczrnVmtD7mOeEPyvlnT6/+D38HVqmynGTMktelw2XnHN3/PBcSSNlHMc+3ux8CGHZn3LNshLPhktBPVv7chylAcPfr2Wp3gt6ruU1eN/pz8o5kOtYOx9SSl0GDMNwJr/kutXOm5TS6vt5DLQckb/rva7lrl7n8t6l7sNzwWtC3x8/R4wRMca+VuW64ufekh3ynNb7iz9zPB5X9y5lhn4ePS+n06kb7XKvz/O8ekaNZ509hp8swt/4G3/jb/ykb8Jwjh99+/e7sGDPphRUy6Z17T0eITSv3hARQoT3YjOjHfKevDG73Q65FDg4ZD444VHTjFo9vAvIuSDNM+IwIIYAhwJXgd0QcLU/YL8fsB8iPvDKy/jFX/h5fPe730WaC/I84/pwhVoymmgE4IAaQC+4fu9AJevnAtaeebqOc46u4AHvPJwHutypFe977gX83pe+hI9+/OPY73d4ioR5FzF7IDiHAIddCSh+UQak0nXpHuQBq72vUshqZUAeKlKoo9/yWqBuGVgyesEH4TzPZwqNVPz5WlLJ4DUklVkZRZDX0+OxFUmT38E/rPDIz7E3UCp00oMqleNL46+VA+1pBRbP4laUTkav5nnuYyqVoe75a4YCG2oySgYsCpx8TUZ6tg5ivmc57nxP8m/asNTKllwz+pDvXlnhUGEFchzHrkDxupWKxpbBvOU1lkq+/Nuz5k5CzrOce/0evq5ck/x+6USS3+W9xxACpmnqcrK06/BrcaDxDp4iPtfX1/jUJ3+G1mbOcKjwLGdiQM1tT9EXIqeEIUY4AMF7ko3OITVPM+8DqfTxOpvnGc4HJdfcajz6uKn1zkaPVPScD2d7/Hg8dqNgicQmlJxWBs40Tdjtdn0/DMOICgfv2cPOCnNArbQXhmHA6XRq50PuyqpW/pb1iJWMkXuPjZZaHJww8Pg5ZFSq/2CJPLLSy04C3n9xGFFLQcm5nVvo/+0qMMahz500JnQEoV8vDpimE2otGIaIUjJKye28Tcg5YRgCSi4AxFnmPByvddf2TCmIYZF93XgR41ZKQakVsRnC0oCT8pX3rhwfuV+kPJHGpjyDpDxLKSGdpiXCW1okWMhmMlATTqcZh/0OMUaSL6X2Z12eBkAtK1kvI2iacaAdRtrJENpcbjl8VmeHA+AChrgY4w5C7nLUUNwn71npbFjG3a2i56jkcGYjMqXcnonmv5Tc9osHQPuI1gX9BLd2fGonAr1ewY9TIc7cEPHph++B4X7BDKl7iu9/80td6RyGYUXXkB6QlDKANTXEefYKAd4HDEOEqw4ZC52GDzPnHHLKKLUCFYiIcM7DI8DxYVgdggdCBbyrGKNHOp0QfUVNCafjLXwFPvOZX8EPf/ADvPnnf4EA16h7AWRINWNqITFQJOqCEbVJbyoAHAsmiqDBeXjnAAcyHCuQb57gOgT8y3/xZXzyIx/Bg/e9F28jIw8OHhEREUMKmPw6ksRK89a96H/5wJIHkfRyScVQKqBbHsZ3A+lZ5kOFrym9yFrBv6SU8zX5nqQnX1KM2IO75fHUBht7wWUkaisSJseQX5MK46Xxlwq3VA5YuWTli41c7XnXHkQAK6eEfGY9RgA6TUtea+sen/U8cmy18agjTjoiwB5L+X3aIJYURkmB4fXJr0sDSr62FR3UirBWmvVe3ZpjDVZWx3Hs1J1nzb1ew3r9SIWMtK1GvcN6Prz3mE4T5mlGmmd89lc/g9df+yBunj7F4XAgJStXpHlqYzkghIhcFrqRVAT5nuZ5Rm6UQbn+O92syWtWNFmRksYAe/l5fBywioKxISi/s9TzaKWMMnUKrXMolYalgn4PccCcMnKpCHFALgWlkLJXShbygBxVzkPInYXOy88p56VT94Zdk9TknON/vQsoucJ7isyUtv7YkGGqmaRt5pwxiIifjM7IZ2YFWUZLJI2KaXwO6yiFXmtL5GMdJWRDVe7VnAtQC2otKPBkRDkHz+cCKnwzKn0t3bAL3je9P5Ah4j08349fG5Z8j8wuYYee3mdsKEv2gqSNsVHPe58dchxZ7fu9GXw+LFREkhMDnbnN0J4z6SjHE9EuY/D0rA4rmSLliZQTOjLLkJFunv/gz40QuR/bYMGHAWmeup4TvJDPpVFI/frckLJkLd+EzCkcnZXRRGAY4uoc5j1xQajBeQ94h+raBbzDsBtRHchwDb6tp7pylvgQzJC6hzBq3z3FlncPOPdeer8o8aycSIoQHWgJxa03ttz0tZIHNoaAECKCC0Ahz+QYBqAWyhsoGXmekaYJ3hGvOwbyAHtX8fTR2/jsZz6DD732Cp57cFBP5MSPXHbPVqDO6DtwCM53mp9vnqbg+AfY7UfMN4+xu73Ff/53/jbqo7cwIMPDoQSH4j0K1ofPOxk18rDSlCS/IdylUaWvo5VOqYBsefYvGS4yOik58VIJuERJ3KItyHGXFCP9eU3b0LSPLTqHzg/bovm9EyVsy1jZMtC2XmOvtfTec3RGGpG8N6TCvPX9W3MqqUdyHjTdT0fkOMqo9+4WXWuL3qXXBytLrOhu0S6l4qvX1JbBLNeinLtLY/5OkIbmlsLxrHXLYy1zi+Q95JxBnh+/ipR657oCOwwDnnv4EIf9HjdPn2K/32MMHii8niM490HmOGhqkRwjVnB11FJGA3SET86PfJ9eJ1LplA4VvTY17VeyGNi5wGeFvpdtubMY2d5FoHqUvI4Gy/mT15L7RxvmrCDL9S5plDrSLteWHI8tarK+pox0sHGmFXy5fiT9S+47vl+Wt5qJkGslI0o+c8ln8lE7WuR+2nJ86XvTY62NkK21xrk/MiKt9yEblVJG6ry8VfQdHgWLTBrCmoq3yisS19fjrWmZ2mGpx1nKAH4WOcfaISrXnjwnNY1VOqgBdLpjyYB3EQ7LnOe80PDYgNdrSc+NjsLrcZDPeUmObukUhp88LCJ1T/Hn3/2DTs+Q1AXG6XSixOU8YxgHeO8aY448qqWQ5yinjGmaUXGeOM6UlJwSvHMIPiJgQEoUio7Bo+SCcRzga0XwFcFTEGk6nuAq4FGR8tyF1xA9Pvkzn8CTJ4/wxluPcfP0FtfXD7qHkQSEpPTxf1/GImwqnG8OHHj44OAcefSqa54j73DECTsA+7niunj88R/8IT7y8Z/C81cP8HSaUOERxgEVazqfjBBoRZUPUz4gNOTrW57zxXO5zj2S15WfkxEnnWsErD3dW1EQ/pxWCuTBrI0lbZzx69Jrx9+h8xQknUTS5uSBwu/l79F5EHLsthQK6dnna3DEjMdWf4b/pqNkkp6p89ZknotM5NZGqPxOpjlJo1ZGJ3T0TRbokNx4fi97mqURuqJ0iTmUYywVCb0m+POUQD+tFAGpPGzN19ae5L+zQiOpjVqB0krSVu7BNE19HLf3//nv8t54nM6pSLRuj8djn6/f+Ct/Be9/z0tApUiCd8B8mpqcGrEbdkTfCQMlrzuHeZqBSjSxIQ5ArT2q4J1vdK+wqYzKfRuakSvpo7yOV1TgvNCHSym4uroCgFW+m1fGMssh+dzee4Q4tIgURZ8qHEIcgBapGsYdRRSC71Q+5yCiuwMAh1IoisR0J6lYa4ON9tII5zzobQ7znOCcRymVolztb7nk1X6UCiXvIY4iyf3I+5VlzjAMQEWfk1oKUCtiiEAlKvhuHBF86PMFYBXt5fngM3YcB8zzBOeAcRxatM5R9KnRuLynwhJxGGh+Y8QQiVY7xIiSE3KaEbxDnug5gjTm2BHjHSoqSmNdSLksZYnMDeL7ZcVfrhGOPsnP8udkflU/b+oiH+dGBS2Cnue9R3HAEAeknAFHays3g3W/G1u0qgK1tCjnmjXQi8K07+TCDPKsk/cqz7ki8nh13ms/yx2QMkUA+xryIoLfIoOlqsItYv9wQRE6OyvmOaFWIMahMWLQ6Z0xBtzcPEWtBTGGtm9mlJIRI+2VlGbkTDTZOI6d6AfnEGJEyhm5ZEqzAN1v8CQTfYhLTq8P+PTD98Jwv2BV++4pWFAypLLNiaoAekUcTpQ+HA54+uRmpVBRmP6yN50FanQeNZ1Tsboi4DjUfJ5QP/eqWB4+AK+//gH89m//IT70kZ/CN7/xHbzwwku4vb3tAupfBfJQqeI1qVhRuJx4iMMMxJxwPXu810c8fustXD//Am5OMyY43MW3Iw2uLQ+6VGqlIim53pLOcza24vn0j87P0c+t8SzFd+s1vr917h1Wh65eD/y7jpjoSII01uTfL93nsyANBIb2essozDvRCrUyf8krL79fjhVDK37P8iryupCFPbaiKme5Ie/CEynnUCoqct2+UyRKe2gvPYden3qstOGk520L77QudGRMfka/Ltco70GuLPf888/j0aNH2MV1vlGpdVVsgK+jvfYycV/mc2zd29Ya1BEDmZu4iuyq59eeeX5NOj7YkcHrdcsIlYaJpoRuQVN+5TqSDhQ5TjrqKsdRrhv53VvyBEDPDz4cDphPx7OqfXpNbkU6LkXS9WckVZZzCnXUQObHyrnVUV8fF1nU11MzIrbWtnQ4LA7HdWTpdDr1NctrlSvWSaeSjK5Ig1euAynLFkeeKNbQaH7Vrccw54zs1mtFOttW0ZYLa1/Lqa1iOVtyj7+Df2ddiKNgKSUUVIz7B0Bd6HopiYq1lffMOldLziXTGLUclI4rXodcfZLHUdJ1pRHMY+fjsJINW0WUci0IQobKaLLh/sEiUvcU3/vG75zRJGS1nBACSs3dmyOFaghxJVzCEOEjeegAITgknQJNsHpK6HXeo7qK1AWDR04FqBS5cswB96Fzjcfdrnte3vvel/DLv/oZfO1rf4LdfsDTpzcYolRSKuBYKLw7kyY048fDAR5w1bVIG1H+HIBK7iai/+UCj4pQCn73t34LX/sXX8brH/4oDoc9ZpxX/tpS8rUglZ5A+XephMhIwpaydEn503SRZxkd6wP3nZXQreiP/H6tvGwp0trokDkeUshL77Q0DHSFJV2haGUQb0ArRPowkgcfr/1LCuIl42SLWgJg5dXVBueWka2vr6MyWhHX96irkekcjq3vZmjal1YipUKtI1cykV/P4SXwGuD73qIWyX8vKZI6GnEJWincoh92pU8oizc3N3jw4AF++Rc/jZJnqkzqKPLiwBHiFt3wHiFGiti0+ZZRUDmfi5NrWQPaSJCGAuc1yX2i97JzS7EJfiappPUx2lA62ZCSldik0syf51Le3nP7B4rYcO4qRYwcaqX2Gnz9aZpa0YXFWD21/Bg20BbKbFgp+xw9Yiokj1eI5wYZR2alkh78upqbphTT586Nqi25GIJf0Qn5XynHdF4iP4Pe1wDln60qJAYqSFJrRXAUZai1wFeiVfhmvLcLIbQiKMUBLnjUsjY45briZ+Ln5n2nI8E6R4/HVBrDK1mcFkW9t0ZRBgU8sVjYAZtzRogDRXXnGcFRNCjXTCkCYWuO1g4qWcVOyzZZkty7deEH1nOkURViRAXlGPWIbl6inWgRJS9aB1S1J+U95FzUXqWoE+epTfMR+8MOtawdBhxdl2yFeZ7hQ9x0iEh5UmtB9Bxh88t+cc4iUvcQZkjdU/zw27+3qhgmKS9LYiT1t5imY/e4xEgUhpQSpimRUTUEzGluBSVEFRz2Ls4tYbVliOaaQYYOCfowREwpYc6ZEmC9RwgDpnlGqUAcR6SmJOda4BrNcEoTPvdrn8F3vvNtvPnG2402JA2p9u+7NKS8q3Bc/QhAdVRpkF5qyiEcxhLgXMAcK9IIVGQcxhHXPuCrX/kT/OInPoEHL76Am7z25PK40Nie52RIz6mm8QHnBSZ4PqSCKL1yupwyC1r+m77upXwlrcjfNZrBAlxS8eQBLu9j65qSE6+90FtccH1QbfHZ9f1LT6TOVdGV52T1vZXSqa6rc7mkZ1RTPKW3UT8j70ndF2lrXfFndE4b37t8v85v2jII5dq4ND+s3EoPux4TvR6kkrb1vbpPzda86Pnnv2+tT1Zi9Jjo+9LrSBppfX8190qpFSXTfZxOJ3zuM7+Kj3z4w3j06BEeXl/DoyCnBFeBWjLGYQTIV4ScSS6llDF4Kgtac0H0gahaKbfKDVTaIM3zKvVTyhUpK6iIgF9FtqSTQVa+HGJYjSG/V+b3xGFc0f9KKdjv96tS5jxf8t40XWxxwEFESwvRvQP3ggpN/tbmSFvWwvX19ea+ned0Fh3UESgyCNcUYd7vu92uy5dxHDFPp/7sunJjXzO5opZC+bSe6H0OVHAjNCq4d+6M7s7XYuOpyw9kKtjkic4Vh4X6yD+lAvOcMOwO2I3DQomtFTXPfa73446KbPD3d13ZEyWtLmuAaRdybUvZovc5rwsuLtELdLRKi5L6y++V+Wq1VkS/RGlTaflxQ1ztaSqGMFD1EedRS8s1KhnBiYhgK2LlfFidKWfFIYDV3peRH5apXF0yC0cyX0M60QCg1IIKKnjR6cxROMFaEYxpTmfyn3tDyZ54KVUMw4gYh77mvXfIZQawUEtLpbXhPFrKRVszNaPUDLiKGAPmdO4c04aUc4Dj/eFD1wtKrfjl598Hw/2CFZu4p9C0Bc6lkB6TWitub28b7WGHGD1ub2+bYFn6u6yUNaGf1Fox+LA66GurildQerG9XKhJr3dU+pNysADAozriEFeH1kejHUwBOFyN+Isf/wC/9mufwzBGDEN4F09+GfQMBVygoitUFXCuwntgQMCYPQbnkaNHih5poJKn09MnwM0t/s9/+2/j9OiRuu47z4fOHdIGjb5X/rtUmLRxshXt4de3fvT15TWe9Vmt2Mrnln+XETHZRHHrs/rzW/fE0NEh7S3Wz7AFmfuhX5OHqc5Dkwnn+npb9yCfj+dFGmX6PrfoKJpGp+dQUn7057XifSmSKK8jx1MXEZBrTfdj0c+pDfRLe2Pr3rWxeWmNPWtdvxu8m7XCVfAoMhDw4osv4vr6Gk+fPj2LOsp1JSPHPAZy/+px27qfLSfGFvVNgv+2lQ+55YyQa1tXaNxal7k65OpQ4FFdAHwEfEQq9Df4eLbOpMzSJfplE2uOcHBlN0BGVMkoDWGAc1TBNYQBMY7I7RwhA23dNFcWTtJRWUmn1FFb3qu8Bnhc5LrTVGb9d6moy7X+rH0PLMaAdibIOXXOXVS6eqQz+E1DSbIKeK/J+Zf3u8Uo0NDl3hk6v1avC+0o2+opJvt1SXm4JV+e5Vzh+yylLI2U1Z6R619+p458SSfZpTHREU5eD/r817LL+zXtdUXlU0457z2qdyjNcJ5LpjYL4jVJgdTPZLh/sIjUPcX3vv47Z+FvzaP3PmDXPFzTlFALsBt3AKgcJ5exHYcRORf46hB9RC219bxofUhAOUcxBso29cAwxm51uQpEBAQf4OEBFLhAXhcHqtyX5olKk/r2Dmp1DoeAw36HT37ipzFPN3jz7b/Aze1jXF8/RM4BMe5RygwyjlhBVkUoKpVOz7W0Tg2uG4RUMKJXEO3RsOIBXx0CApV0r5RcHWvBVcn4yh/8Hl7/6Y/j4dUeT3NCqQHRR/ibhCEDIVRMQ8bsM2KNZ547/lcezlvRHC1wZRRl1cyRvdCq6zuwzv3h/2aBvtvtehK9pPLwOpEc6y0DTipp8kCUXu5L0S1pYGjlud9jo2O4UqmcfgVye47Bh0bTPD/wtTILoHtZ+XdWAvgwfVZE6VL0pZTSSydzeXP+HCsEfEBeUgq4vw6PoW50u6UgyDkCsGoGK5VuueflePA9SeeKnCu+bzY6x3HsCfmSpsjfrYsdaINOfreuTMd/43vSzgZJAeX/lhRCnge5dyQ6vTItfZBkQ+D+vDEgl4JxjHjy5DF8oOpaDx88wC/87M9iPp3gXMHgHY5Pnza5IZQi5+FCQHWtEID3GAaPCnIslVqQ64xcEwpyKyoQUF2mstWtoANFFxxyqYjDCOc9Uqb351LgETDEgSJOmaJi4xAxTbeopWIYyGHkMhGWqe8U3ZsPVLaZy5gz5HjLKpB9vdeEgIoQAIeCAIchBOSZZO/VYY88pzYvHjkXKl3uHLhvElDgXEUIEXNOiAP1IiRHG92Nq5TMz+W+KziXpLbxLqiV1trpdMR+T3RwOJztG96Dzi09p5iiJSNusshCCAG5VvghYjzsSSmtFT4G1OCokqNrMsj7FrlEDy35EPr4wnmKWmQ6x2qpQKVztxSq7IhKFLw0F7gW+VjtpxDhwoBpSojDgFTafIZW6MNxLzByEIZ2jvla4RCouMmcEED3RgVPKso0w8PhcHVFTeaFci9pft57HI/H1XnAe43vkWWqcw5zi0JlVKScMDS5wWfPMAwUtQKoImEtxGzJGT5GwLORTk5WKvDheuSWi4AET88WQ0CaSyuJ7zCdJozD0P6e+7VLzu0cIR2mnYSkw7Q58yEg5YJpmjE2hoovrRlz5v06YM4FrZ4WnPOIcUBKGTlTn7BaK1KeECJV1uLS5s5RMYmcmUoYW9l7h3meVjKOIoqt7yUiduMBMYzIqQJ5wjAE1FSA0gqVtNSEEEaiDoL2oA8DuCDL6TQhBodfev7976g/Gv67hRlS9xQ/+vbvd8WKhaH0zvFByYm4WrGUSjeAnh/Fr0mFsVd+cxSGBgBfRTItGvXCs2IIoIXHlwpPjnp8NIMAlaJTMQaUkrA/7PCBD7yMtx89wjxNSHPC8XamKlDOYdEJuN+UVHgFHfACFiW/orh217VSP6v239xfhvKmKr78lX+OT37ko9g//xyezAlXzz2k8uislKIiwjeBuM7DYaVT/qvpcDoSJf8mDR5dkAFYkp63mitKJel4PPb7YYrBljdTrhkJ6eWUpcC3qrZtUcYkNotwZKqaJe8pNgOqj6cnQ15H53hM5P3LJHdNUeP37nY7nE6nVT8p6S3k52LjVY/HlodaUpIkLUbuJW3EbRXluGQo8DPxM7KhoGldegw09XDLsOd74Qi1pMzoOdV0NL1+mfok15PcF5qyJaNVMoIg50waYHrs5fOHEIAm4zTlMOfcFN2KR48fYbcnY+9XP/OrePUDH2j5Eu0ZSqE+LWLfeO+RMjlqKDLPTUkTUAri4BHiuomyE/IyRI9SFu8536+mvdZaUQtTN5co7TSdqALYIEp/F+Z9NYO3XauXbW5983i+eT43+1h5LhZUkFNBzlSFzDfnVxX5RYOgcsmIRV/v0SOEEXPOqGV5tuBdr5TWI7MVvVpZraXLpxBaHkik6nm9Ya2KYPKe7DLRnRfYANDzsuj+RC8uRzk6LPm6jPHuTK5pGc37a7/btfdSldh5Xvducm5dQVE+B5/bh6srnCaqsFsK5UDByz1EOXbU8LWt9xrovOJ13oyRKAzJOSeiBHI+tMg3ktF0HWVjJws7CFfyeViaLG9Vfa25UCEKkIFUEjkx+JguDqiN3RKcRy4znFv2eQhxZexP09zk0kJPpPlsz+Fri/g4BNdkcd8arjvmaq1wkai3KNQ4u5QC+LYGOBrpKeq3izsMwwig5a55arDM+5nXHM3vuo2Hpqv6ZgyvHKDw4FQGaqVA80zU4ETUQ0/NfeNARbjYOVJqRXB0TXmOOQd8+jmj9t03WJzwnoIPbCnAtnIOtihJwFoplZ/TyplUarYqwlzKQ9A0Cf0+opkEBO7lUhN2uwG/8Rt/BQ8eXmF/2MH5jG7fVW7ai2643GWsNLVKKrhSEewHBgrSW4/wX/xn/yme/uBHeOHhFZ48fRsnVzFHUqRidojzelwBnCnCMtKwZcBs0d22aHyXKEFb9CeplMsqjs+iam2Nm74XPefvhvb4LOhn2zKWNG3wWc98yZjbume5LvX46siJNJD0HuPfNYVO7yP5Pfy6Xns6aqe/T0Z6dFRHf7/+brkOdF6d3K9bc/Msuove53pdaMqZXutaBsn3Xaqsdmme9b5hCp8ERy5feOGFTueT72HjWFKw9Hz3PEa3bjcg19GKLlvX9EC9/uTzaaqXllfcMHZL1m9ROfW1pBEunTx6LKWjTo6jvKetSHbNFJmS63tLnm2tcznmeq1IJ4buO8djq79DNh2W60yfc1v3tUXT2zKu5HrQFKstJ4IeYylv9Bhop6Yu1KLvTUbedPly3WpByyA5BtoxJ+9bFsyQ+7U7UnLq0e2tXOH+mbr9upxfOReykunW+ubXpTNhiz69lSsq949+TrnXNJVRj7s2lM/2hlpT0gmgWQ1bz9b37cZcbfVWM9wPWETqnuJ73/idlUDb7Yiyt5VULg9XGU3Q3nxgLfh5c7MXFRWovvZoVPdm56Ykutq8ZZTOLQWipDR1YeSJoheCQ83Ub2o+HfGZX/lL+MEPf4A33ngDVKyJuPPLj8Ni47teRWqLJqWVCPrEugCFb57R0BJ6vado1XMx4EEI+Oof/3O8/tGP4vrhA7xVZ6RQERCwmwCXHerunKKlm3FqBVff02o8lUdezquMTmhDWhu6rBDyvG71UZJrZOveZJTmUpPKLeX20t/OlLt6ftic3YeK7un7lYeNVBakMiD/lR48huSaA+iKgPTc67lkRVN6TwGs5l4qAVv89S3ng1Se5PNJxUYr+vI7tvpc6bGXBTfkGPBza+qk9MLzvcixkX2ttEF4icYqn03eo44OSnkk51ivKe1IkkoUR+1JKcr47K9+Fq+/9joev/0Y47hDnjNRlasjirIPiDH03lW15ekM49gMo9KT1WvJFMVJBbVQLxmm3rQ2VDQ3YanQJedFevW9p2IH8zwppb+ACzhQQnzEbiCZX0AGQxxif9YQAlV2y0t0Uhci4DGjQgCNFO1av8AQcDpNqzVLr51QRE8nbcyw8VLhEMM6go5aiKZWFmPS+aWnGn+HNthqrYBbFEVJ29RRWCilltcM03PpWuuIts7f1OtR7hsZcWAZnOYlIiejutqBgo3rc7uP0+mE3W7X+kqdRxqIPll7b0MHoty7QNEXJrvnWjClGRVYqvzVRQ5wVV+dx8v7TBp0Mo9HFvJhKh/L09vbW+x2ux7t4vkOrXJv7dXlln+axG7lz0F7p81TSst3cYSK1tUS6aaxbueBX+Z6jMue6PJHFCipAGoh6mqMkXKPKrEe+hniPVwF5ulE95apAiGNG685un8a13NnAK8N3te0hpZ8sdqiyUOLNFGki/S40n6vLvQIFBfrcj3RoqIWisSt90E2at89hEWk7ilY6HQjB7iosGg6hPb2ae+0hPZOIi8eQf5ZKTOu5SnVdQK+zq+pLeRfUoZzFXAFDgXjLuKHP/w+vviFz2EYHIZRL0EHnFH7AOCcNqafQf4uC1B47xG4wlSjJATnEQNQjrcYb47Yn47wTx9jdAWuAslVlMbz1p78LeqRnLdLr12aO+nZkwYvzwu/vuWl1UqC9kjq9bEaUUUplF4xfQi/E7Y8azlnVE8HbQbx7jmpNqMu/16Ilm0p5VvPrp9beiV18QNt9Mo9sWUMy89s5Y1tRSelErcF/Uw6/4m/Qxek2PJcX/Ky64iffFYpDy45AbbmQ0Y8LkU7LyXm6znQRr82dPXY11q7Upnr2sjua60UeOfw0gsv4rDb4/Hbj6ih+WnCENZVMEspq8ILXVFJa0+7LFigow4yyijpZgDOPObS8JdyNQTKh+pKeSElWvcpkgas3K+63+Czoor6Rzrg2AiT1ET5XDqiK8cx54whCMXdhT62l+SJvJ5sYC1LWWsnkF5DIQSM43gWNdP0XL2O9ffLMdLVE/l9sqqcXOfauSYdFHIdyHFdR7AySlkMNe8iSsbKcaH3EN8Lf88W5Vt+Rs6/jozrCNlixMRV7qUcn3EcaV+1Qgn9OhtLTxpusvCCzuuUURdtQOu1vbWOpXyrtfaiDd35WOj+9Dm7XtNlZcRT/ts2XVmPNzlIArFp6vL+lKYzeTLnTHlkYvw9zhkTkpIunXeG+weLSN1T/Nk3f3e1cWQuAQtr7rwuIwpSIdny4AKUeC7zPKRgnU7UqjaG2LvBhyFQt+0YWm4BVsni2su4KHDNu9eUHLiK3TjisN8j5YRPfeqTqCXjz//iTZRSsdvtAbhe8paMqUpW0YUy6VoBpAOWvFi9u1RLKveulUyn+reYMWOoDlcZ+OYffxlf/YM/xMc+8dN47nCN23mGCyOyr8glQdNxdFRQHgYy32MrckJjsy57zZARFx2dYa+j9Ibpw1YeQlIoczEKbYDI79eKrnM0F5eiThqaWrIVWZCRjK3mufz9OuohjQJtZMjP8PfKXjCs4HBpW0l30gaK/u+t6JZueimLUkgjRfamYaw8+OJ5pOGnFXZWOnh/z/O86gElx5M/pwsOyDmRyr+mNzK2lGxeO1zggsd9K1LJP1Lpk0rqVl7Z1t5eUX44/7FWKnFc6H5ub28xNjn4gfe/jI98+COU0O4C8pwxRsqD4KRtFCCEiNM8IwwDYuvPgpbDg5ZAj1oxTxNyrtjvD8i5IOfS5VSMA+V4+oBhoBYQcl45OuWc62NGkf/SvO3rvBwuLz4MlHCeprkbkOxtl/OTS0EUa1FTx25vb3E4HKhITqXSywCV6SbFDKsoEEdQQvCrM+J0Op2tE++o32CaZ4oAcK6lD63ktccwjig59QirHBMpd5xb+inJ/D8dteWIlKZnaUU9qGiu3Ns8F7xHpOxmI2Gapr5Gh2FAEfMonVnciHWJqtHfecw553RVXjxG3N48AUU7iIrLPbo4j4bKzbsWiaK1njKVEg8xtqIKCaUW6nWGpUolj7OWIdJokewRPhNYXnHxDmkI7na7vk97NLyWrg+cpgkPrh9QkY1ERSFyWnp+TdMJgBP6S1wZCt6zfF1XWKXprnAePcfLVd/XPtMbszTmgqfiIs4h5YRpnikCxWdhLsgpt0hZi/y0UvZyvVCzXspf4twn6Vhg3Uue4cOwW8mD3AqjkB5U+neN+wNyqaig/C5ucxB8k0HTqeW0k/7Da5ZkZLWI1D2Eq2bi3kv8k//X3zynNeBcKZrnGbvdrgtGeVBJL4isytUTkEWFMBZeYxiRofjHQXjxIkV15lNaHS4rikP77sEHAKVFHUjYpZIxjnukuWK3v8I0JfzD/+pL+JOvfh3juMc8UVNM70mwUuk/Lnn+7ABqHxc0Jbg1FKyFDqVSFlrWhIKbOiHOBfubhJIdJhfwg6uIf+vf/XfgXnsdP55mXD/3ENPT2z7+sleQhiz0ob1+2ljY6iMkn0H/t6a3yaarcp3IXBpNg9MNWDVPm68vvdXyUJXX3jI+dGltPnglJIVErs8tA03/fYuqqqMpUjlnRZ7vRZei1RE37QGXxp78Lh4H3cyTsTWucuykQpJaY8utedaGtlSQmH5zOBzOckckHZGfR87DO4l8+b3y2pfyimSkbmtPynW69T45H2dFckTeUOmFZADkgppJodnv9zgdj/hLn/4lHA4HlLSm3cp9s5rHeB79QlPKgmOPcoGP49na573Fex4g2aYVf54zSf3M6dijDz3vZM4rAx0AamoVIx1Xo1NRau9oHISzRj4fz808z6g5IcR23eK64s7rSDoh5vkEZkSwrKEmvENTjCcM7Uzwrcl6KQXVrWl0PJ7SQSAV/JUR7kMvb83fI0ug87hE78SYzasclO6AicM6krkROS6lUFSlnY3aIcbfl3NG9Otqnd3pOE3d0VQr9S+7ZLzIMxuV7vt0pCILdDYvTi6WB7muozU6cqSj1Zpuxs9VCvUW05/hcTgejzgcDn1ueTy575yWkcBCVfTed6PCw+H29hbX+wMAYE4npFJQkRH8UlE2xnFFVx5adUiOCPE45UxUPx9ERK00w7GKip1iX1RPskK2daFiK8IRWmjtZGTEgXOm2fm2OAyWvDjXnQn7/b6/LqNE8zyL50B/hlKaYYjcv2dKua8blv8cCR+Ca0ZxgY97MBNnoZom/Icf+nkY7heM2ndPIQ99qfRdSubWkQ+dxK1pIc9KLgfW+QhSsFBoOq2+89le6fVz0LUqck44nm5QSsKvf/FzSPmEw9XYBY66GzyL2ifH4ZJyfH5fXAEoongHuAqPhProMX7z7/5d3P7oR3j+asTTt99Y0ZC26Ef6uzT9ZUvBeTfPoik17xaaAqAjQXKc5LW1Ifyssdw6XJ81D8+6z3d6Nh0RY6VBU3q2fr9UBEK+R//3liGxRTPRn98aqy2FniGNaEnf0Ea3VJzk+y+NsR6vu0A/kxxraWDzazLqeGnuZCRKGrVbdBUdRZPUNXaM8POzgng6nfDe974X19fXK086AJH7sBRl2aI3XVK4iR68roKq8yP5fhjc30evPVYW5VhLo0x/v1xD8loyIru1f6VDQ64d+bp0DLGRqRtZ69w4Hks5P9Jg1FFiaaDwe6WxqPeZpM1xLo58rx4LGbnaWv9yPct9xK9N09TnSc5Hj7pdoFDKuZIGq3S8bFGK6d+8mg/5DKWU3oJBRnLld24Z8+ww4oi7lBG8h/n+ubiCjOTxWHP0jKM//F7p9OHIiD4f+JlkYRMpO2SkfEteSGfVJXkkI2qynyZD02F5PbJTSRap4PdvUf3092+NqZRfMpdWjrFmDMj1qfeEfD5pxOn7MNxPGLXvnuJH3/n91WHJFAKpPDJdi39nwSWjFXKDauGty8g65zBPM1Fmqqjm17y0CELpLVhFouTh03nOXDiiLs160crjhhhw2F8hxgGPnryJz37uM3j77Tfx5z/6McZxRO2dg6tg9F1WClcGTM1A68tAfYooIbxVa22P4jHmAc57zBGYXUZ1FWNwuA4BX/3qV/Dhj3wEL77wIk71XPHYoiLJQ5i91StvKtMTlOdd0kXk4SsFvhSimsKzFfnga/MakB7eS0JZKv7sFZaKzybVRnxWz8NWTp48VHVeib6ujKTJyKfM39P0Rq2Q6rHdopJtHZ78/bLUt/7R9DR5+Ekqrj5MmQrLiseWYiYVFH0g8/cwrVevHWn4X8qLvLQGZPNJVp511FQqLKwcMQVyy5mgDQBpzMgIxdb8y6pscyF6U8kZ00z9dNI04fXXXsPHP/ox3NzcIPqAXSTvePSBKHql9n5lvK+qA7yPSI1i41o0gd6fVuPnw9Dn9FJluZTSilLG98/PslCpHZikRwUHcvNKj208Ws+oRkUGWHbWfn1GLqULNCkLtPHqnCN6dffccx5KONsrFBGJK9oSU8+4cEJqfa/Iw06FOZiq5JzrSfQFBUGs7a312Z/H+ZWhJve93NslLw1oZVsC6Sys2DbUtKyUBqTc73LNAUBOebUfOCIs5W0Ijf6uaMXnEcrcDiMglwQH3xR9rsS3wzwn3N4eMYzDau+wXObXZE4ZR0b5d6kPyKi6XJccfeI8M64WyTKaI5Kn06mPNb9nPOxRHTAl6mflnMPtzS0O464XcIlDQMpc1j2Ks23dy65WdowsETQab17XQmaXdka5xfkU4uIgyY2G51rJe482Zy3XGZn+Po4jXOTWAxOcB4JfF5YAaB/SXIb+/NJolNFWILQ95fu9A1S+vRtijbqZ69ITjfSuCV5En7wPTe6s2SDeWx+p+wgzpO4pvvu138YwDKsKQSEE3Nzc9E0sq6xxNaHj8dgPJN7wMh9qq/QusHh4uVfUGMfee6GiovqCgIiSK/KcV81Rh2E462ifc8YQB6CSUPGtoWTwA1CB02mmqlcVeO65Bzje3OATP/3TuD1O+LPvf6/xxAnVtR4eqxFqHfXA/T0obL44fbkKlgOca4oJ5U557zAgIMzU7+IYCyaXUUPFPg5AKgjF419++V/gtfe/jHp1AFreFXxrKFhbONcVVFdRfIUr6+iEVgqksiiVF5kPIJWCrdwZ4NyQkkaBVkp5bp1zqzKvkmokPYj8frkmpLHA2IpAyPfK60loD6Y2HqRRoStWbl1LeyEBrOhWUuHi52aFRHuNt2g4TJuV75N7R1eq3IrU8vdK7yNfX0cW+P5YaZXriL9XUum2ijPohG2mj+i9vhXpY4NI9qXT60oqi3JNbq0JmbguPfy0X6nCVhbrjZ+1NygeBzjuOeYdHBunjfb2mV/5FTz33HOYpwnPPXjYKFMTqPOsb4RgT/LEi9YMITZFlloh9DFwQC0L/TSEgDwXyr3olNkBlVpWtfyOSBSmuuQASTnbFeBcWu7GvIw7OFLM1y9NeSvN+KFmss45ygsTayo0xU6uCQ9HeVPCWeYqEAcnnonG+Hgkehbn+RF7gGRqSgmn0wkAOoVLNsBlJbDvp3EH34o/OFCF110ckOapyzhei9LwX8bdo6Iiz4nyq9r+1BHL4BeHlJQ30snIBp2UW7wv5FlYChUWqm1NRx+Q5oQhDoitIt7p9rjaT7xH9J6PMWJO85nBwvlWS9Qpt2pxDrvx0J9zGJgi2fZvQCtUAAAsUzK435Rrhic7Une7XZcfbCB1KncuPQdN57EyfY+NL9nHiZ/h9vYW+/1+HU0EumHv29kSvKeeTc3oLrlShUJxctP40PvZgEutIBXTLTmK5D07cptMCmOvadfljV+cU6UUzGlZlzFG1Fz6vdXacvdaH6tc00p+cZGrRYYvlTS5ouDYqnpO07SiQ8Y4tl5pbS3F0J/BOU8VQ1FRcmvSDeqLFWPE06dPqTeYD+C8rKurK1T4bkR2Z03wZkjdQ5ghdU/xw+/8E6TWbC+XTBvSUySnosIHj5RmcNf5EDxKLZjTTN4MH8Ed6gHqwu0ce4NIaFIzydq7dfM1nHdd6aDkaCr5W3PFdJpaE8XSFSQ+cKXy5pzDaZrbvQbkQieW9+SlKqlgHEZKrjwljOMe3jm88MLzCB54480fY0onDGME/IDjaUIMEQ50z2tDCkANqNVRJMtTOV10I8q18ukAmigulSyh4go8gAiPWElpKqgouSDkhK995Sv46C/8HG7LhLkWVBdwtb+GPxW4muBcxTFkJJcRsj9TjLVxJBVrnRSsywJvGTq63LzOG1oltWMdKZIG21ahCk0nk7l1slkvP4vuNSK9wvK5JaSBwd5SXfZa06H477K09Jbxw0qeNELlGMjx5jnYipjpIhj8nay0svIjo1ua6iJzFi7l/TBkCXs2PGRTTU2b0pQ0PX/yM/L68l7Zy6zXwBbdjV/nvy1NVdc5l7p8PXuOK4DSxjrGuBgIFVS0gDpTwrdE8Tm1JPEYMJeMnFJroOpRCzDGAfNpxvXVNT7wyqvwaO0VTjM8PKacqOGpA1F2vUOuGdGDSg/XAgfaO1QsIcE718t2z4lKmTsfUHLBnCYMMWCap9ZcNiKVRIaYJ1Hj44CUC2pRlTVzIsOiFHhU5JrgXQSqa3Ka1w01DM69R0/FnGf46MGJ6lSS3SGnGbU19qSIUKXGuA5wtSAGSkr3DkjzBFcpkT2GgJIzUi482WS8lEIlw0HFDXb7fStoUBCHET5ETHPCbn9AHEYcb2+QS+1jBC6DXaioEInZQk1H/br/jWZNdMfblADnMPiAXArSPC+yO1CkIbUS4SEOKJUiYHSsOCq7zv8q2i1HIGS0vlZqFhtAxvk8zfAV1Hy35Z15x7IS/XwEaj9zuZkwFxMoOfemxDklDDHAu1Ymvun8MUTAe8Q4kKFf0Z6nYJonxCH0ct/j4JFbxMc7h5ROoBLbnvbANOF0vIUfR6Ap98MwYAgR8zTjsN8jp4zBB7gYUFrFSx8C6fWOcod9pP8uoCINvrFIduMI7xxCcx4yOSRzLmClSnjdwRAjciGWjPOeyvZPZJimKRFDpQAoNPYobV84amwtxziEpSDQOOxQcnNGuoA5ZeRCRhHa+ku5IOXSHKYBvlZEUYkyDrRmSqX1nksbh0ol+l3TF1wrCFFroXw8OJzmCXPOcJ6+u9SK/eGAUqlxrg8RFaTflEL6ySLj6cf7QHHv6rozuRYyrIKP7R5HHE8Tclvj3CJB5tCGEPHp5977r0PFNPxrhBWbuKf4vX/wN0WCYVl5gYHFA5PS1BSi5bDing0xjmcUiWk6Ltx1z5SzpReCd8NmYzxJ+fHeI7ckSlauJF2rR7/8oiDyPW9TykL3ivoYcJoS/tE//h185avfQIwjptnh6uoB0inBVS4+IZtweqBGLCl//J41JP2q1oqUK0qLIs1NiUpzbn1baAwn7/HmYcS/9df+A1y98iq+8/YjXD94DnUuCHmG8xXJpVa2eDynmajohH6Nx2drjKWxIK/Lr23lubESKyspSkEsIaMpmgrD3yHnjr1ifC9sYDDFgr9frx1pwOg8A23IPauKm6TKLet5qZwlvcGSr89jsWXYyuIsshqerFoom7nyNThyow1K+R0yl4ipfKuIjIpqyUiTzhWSyqGeJ/m7jBpJmpc2ynm/be2R8/15ma63RXHkMWeqjXMOrgLT6dSrmoUWZZqOJ+RaMFwfziIQck5TSnj69CkePKDqYH/pl34Zh/0e0y0VbqAOCzRGuwcPcHM8NmW5Xa9kjE3O9bVc1tFhzh2RVdYAoKTWb8kvfZyq8ysjcs5tP/i1kyQ49Pvo+zaOZ/TrLSrnOI4r+quMwPaILtaOFrl2x3HsxSRCcH0dcs+sOC7V2EqhcvDRb0eSV3IzpV7uXDsTZA6KNsrZcCcP/kIVq7UiurhEqFsRkNIqllUvite45d5kdGurGa2WJToaPcB3x5Ncw/K+vfc4zscVdZXnXRaykXMpZaJ25tDALNE57YxYxr4giF5Tci3I8a3eYa6+F1gCyNFwPB5xfX2N+XgiZfxqv/osf/8Z/bcs61QWozrLmQ5+RQ3k/SPPJO89fF43Hp6mqUcGee73+z1up9vVGmE5fDweu6yKMaK0/lA8/3yfWv5LuiM/H6+7XpmRdYQsKpS6JT0B7Egb97g9Hbtc1euJnydN82quU0rY7XY4siwSuaaanSKLuegzTjpnAeCvv/4pGO4XrNjEPYUu/7qlSAGLh08eoHwwXlLcde4LK/HS0JGKP3C5Elmnmahoh4SmEPJnF6rMkthMAtPjN/7qX0ZKEw6HHeAKypxanwrq07AsXfn7uytIIe9J/kgvOz9LqEB5+zGuq8fb3/senrs6IKWEKRRMwZPykT2iUMqeVRDk0rjo+7oUbZCRjy2jRUaM9LrZGostZY7/JsdB3t+liNOla8kxeVYUTN+X/tGURb72pfvQ96KNgfNE8PU9y0NvKxH4UjGQZxk6WumTxox+hq1r6mfS0btL9EJt8GxBG3h67HUxga372np+neQvE7WZkqxllF5fUk68+OKLePDgAZ4+fXpGa2UFSkbjdG8fvic9nnKt66IaWxFS/qxUcrb2vnyfdObovdYdUCovUTrCtqK8GpLyteUg4dd1pJPXpozGsiGmx4TH8FIBFjln0lDl/BkuKCHzkfSav7SuLjljtsaWIdsBdGeQX3+XdAjpM1TLDV2UQn6ex27LebPlFNNrvq3m1bnO+VB6bxCdfd2cesshkee0el2u9601pfM79XzovcJGFa/jPg9huyGy1k+0I0mOi472yzW8dS5trRGuuscMmkt9meTntc50iYZ+aS9srVH5Hfp7tW60de5dKnRl+MnCIlL3FH/8W//7LoglD549qrxxh4EobTL5NaelQAWX9KR/y/pgbjoICZWMnCtQl82rk/zZ4Mo5A672w5q9KdIzST0l1tEMTQHie14d5ENEKhmoHqlE/NZv/Ta+8tWvYzc+APIA7q1wFnWqguKGc0/7lsKXU22J3KLCT2nlTHPqUalSHX5w8xT7970Pv/Y/+rdx9eoH8OeOBPG+OFwf6TPTGM8OTZ4TfS9aQF5S1jXeTUSKverPKowhsaX0yeeQnld5qLFCog1++YzSY7gVAdH3cEmZ4nWqD/9e3lmsVxmBkntny/DUCgf/y8/MJZkBnHmaNd1x6/py/+iS99pQkUnq0gjhe5KKlJynrYiRTK6XZZEB9PHi/SsVF12unl+X61l/35m32q1LRfNcRGFAppTga6MdBqLj6WId0iDKOaPmgve///34qZ/6Kdw8fYrD4YDoWhSkUZi8p2tVh1U0sIpKo0NoOR3DUrqax4OfU/bZcZWqcHFEin5f93vja0W/joSk6XQWkaounDkWWBnlJH/puZeRXF1IBGrspYHHeSg0ltOyL0IrY57UtXxEzXOfL12WX0Yz03Ra5Thq5Vo7CeRakgZCV1C58alf9su4350ZNLJcu/cex+Oxr3FJi5XrUEYn5O9jHHrER1N1GXTdZa9RmethJQ+BdesLafRvOWsKliqIOl9RGiLBrfcqPwvnEZVSAO9QfUCZU18rp1uKoF1dXfVcwpvTEfBuFVVjeSblSvSLEc+yUzpH+d7mvHyfniMpJ2Iray9ztnkf7Ha7XswiBLf6XnmmjOO4RKbqdrN6OXb8PXLv8PdIlo+LreKiyKljWmdKiUplOdeadruzs1DqR/M894a/0rks1yA/t3ZuM31POxTkPpKv/Y8/+DMw3C9YjtQ9xXe//ttnBQaYesICkBOHSRCFJarUwvPTNLU+UyPmeVr13ZjnGbksXpnYem84t/aESSqE9M5SYuVyWLLAYqEcY2yc4HX/Hg5f82ecc6go2O1GhBiQ8oTgWuPfkvHxT/wU3nzjDbz5xhvwbgC4EmCryUfQive5b0AKuEVItSt5cY1K+VWu/14RBo9reFxnh6/+sz/Gx19/De56j9w+7KsHZV2su8zLRH1tIOjcptV41IV2Jg8oWeBjSRBfe+JkWVsp6C/RdaTxqw0z+XdOBAZwpmhJGp1U3qXiIhOZ9XNLSgO/Lj2CUtHlaAaw0Ft57HiPyMNri1LB98cOAEkx0T3RpAEkFQFZ2Yo9xpJywnkZ/HlOUmZFTD6njJ7I/C5tbPM8SmNnq4iEpoby2J9Op154QhdDWO0eNe78/fzMUj7I6mBage6J+CEAdU2r9d7DeaqsxXkLfY+UijQn5JQo7yBnjHHAF3/917Hf7VBak9D9MGI6nijPwntE3+jPjvJ9eB7HGHoeJwDEYex5Qpzwrtc8GyDH45FyqpzrSfNUoW0pIhEj5RDVWjFPpy6nU0oIvilrXrRdiMOZjOX14ZzrhQN4vWhjhud8nmfKk1LRSClfFmU9L0a8X4oyyKp1uVBxABlF6k1PhZKXc8ZuHLrDgfe43GO8N/j9rEzrNc7fHeKAOasm0qXly4kolizCIg1NuW9ZLsp9cjgc+n7j3+dmrK6MfdHQttPNReNkWbWNx4SfTxp3PPZbjq4glHG552Q+DBVIEGtGRVX7fHvKRd61Bsq8Jnju0Oiu1VFxiF6URFGS+xnglrOZHZ1ccGdVjdAvBt00Tdjv9132ScqzLBEle+bJ56Fzbe7zKx14zrlepp6a764jwTJ/Vhqr3ESYn4HnhPcWrbnmeHPL+TxPi0OaZZYPkZoiC9kpo8vd4YLFKSKbcetc4iRyB6WMl2e0POs0nfCXX7BiE/cNZkjdU3zna7+1qtgnlWnZd6CWVjmqVXzJKSNESiKOQ8QwUufvUgvG3QjXCi7EGOizziN4WTFmneMjvUxSmRyGuFIApdEAsEeUDqf9fo+nT5+ulOk11YUSwmu3bCoVlggOJWV8+EMfxu996fcwjAd4F7Df7+Gcw6NHjzCOO6wMJ3fu7b8U4XCOKvihOlRQMQouO8yVAhE8TnlGTAVhpoPhq1/+Cj7+iz+HW1Qcb4548OAhbk9zK9qxRIF0FGKruAHdh+uKF1fIYsVDl5qWRgGAlQIvOepyjQAL511z7HWkTo7ZpZ5ZMuKwdcjra8sDYqu8scyrkM/F64WbSa6abl6gLkpFiO+Vn1++l79fGpmyEpj2sspnl9EEHUnke2DlUhq48v6kkbpFe5FGH68dXXFTjrW8PxkV4/Hk9aDpb5fKTT9r/2iDVEfIVsUFVFRSGgKlUDUxio4LCnGlRHFWJA77Pa73Bzz/3AMq0lULUAryPAN936InischInhPRRdEngk8FVDwzRAKQp6xV5mVOaZSDcOAGFo1Q9Ho1YfYaYkAMM0tOunIOOulr2tjDjTZcDqdEIfxLLqnDVY2gKTjqY+PnAMsXm6tTPK6o8/ULk9S87qPLf+vO2x8wBDXzgleO9JZV2vFdDqu1pGsbrnKpRVONJlHxf/dDc5hQMqZ2mPALZHgWhF8wBAHhFaIgpV3qdBKRxB/t8wD5Op5cm/44Kk6XzO8HVeFrBXOu1YkqXRDmj/P54+MQLHjRMo+KScZIQSMrQopyz4ps6SjzAe6NyqsEDCMO1SgF05IOaNWYH84AKUuxkLLGZ3nue8/5/3ifmyOQu+oiIVrxSx6ZTu3lEZnWpw8xwAyQpgiJ88c3TssDhG5FIQY4UPA8XSEDwGltnL+ngpcVWUU8ThICjDpO7lVuFvuOQbfCmKACmDw4Y51L7M1k2fA7em2RXWXcyunZQ3v21lc4ZBL7s/Hspijofw9u3FcGVh8HstoIjlNInJO4CIyoRUOQ5Nf80zVGrlkPBvv8zxjv9/jFx++B4b7BaP23VP8wX/1v15FN6SSx4f84XBAThvFCeq6NHHu5XbXpaK5GARRtFior6uh8UbWofkQ19GLLU5wmhcvoqSrsbDpSmVPIC3IOQGu4Pb2FleHh8g54+HD5/GDH7yJ/+affhlf/co3MAwDbp5OuLq6Wg4p9875URq+tqTbWlBLG6taUFqPrFQLMipukHF4MiPmilwcTs7hrRce4nP/w/8Brj7wCn50POGll17C7aMnK8VTK/FSwdThen5Njmf3FAsPv6aN8XtXAn2365xwbQRLytIl+qCG/B7tHZevSaoH0/40vUEq5TLixs+nn0vn5mnjRq7BLSNDfpf+m44eXorSbEXzpJIkn1FWtFspbSrXUM6tHl9WsLShsmVUdSNB3JdUzOU4Shkh6bh8T3dZE1t7f+ueQ3tbxvrZuNcPfz45quLnHOVznI5HarZ7c4sPvPwKPvGJT2CajguVTtCxeI7YWJybguScQ0Fb9/W8wEZw2+PFnv0eGawt4jjuFycJFkOAKFaUxO6hGt82QwplWV9c5GIrT0SvZ007ldFKuv4S8ddVP2WUqsjiQD6uKGZ83TkT7XGLYixlDFGg0qLcigiCdFjIc0tHlvk6nYIaligKU2pjo2qGFtUorW+RdMZJp4U00LSc4gh0rRUPHjzo7Am9HyX1K6WE/X6P+XRcOTPl+cVjxE4Tji4C6DL4TJY2utvhcOgGo6ZiSgNUy4YVTbAU+CFiDMJJVoRDrFHVOR9MyjydX8rPoovzyPYJnbJacpd1XJCH9yRHXLhtBTNhZFRdrqdSCkqaV2tOOgO13JZzLwv5rNbYbr8qtnQ8Hrtx3WVeaD39TlPf92NzlpxOJwwsV33EnNPqvtnZuTIwy9rZF0VkkB2e9LmFjsrzrmUwfUc8W5O1Vis2cQ9hEal7iu9/60tdQOgDlqkjFKaOqJWaO3YB4VhgyiaMVFa091ZCK79ZClJaDJxhiKuDmj0qwEIbG8cRcEvSrqSlrAReqStPNLB466UC49wAL3IOXAV24x7BB9RSkOYE7wN+5hM/jTfffgOPHr2FGInWWLo3qfnb3Lv3C7jWa4qb9rb2LVSOGa43GvTwrcZFRUaiHimI+Pa3vo2f/5lPIe6v8PTxY6BFcLZofJLKw+PAY6755TrXQCsmUnFnpQ9Y6AB8HT782LsILJS0S/lK2pDQ3y+VWLlGpKEmaTv687rfmKQVrhRrFeHsa0qtM72W5DPoz+m/acVryyC5FNGU0RepjDD1Q74mlRZNg9TPLg0R/exaCZJ0O630amhDjteKVLYvUUCftU4kZFl62l9AqA5wQM1UYnsVSQyeSl03w6qyoyVnjMOAp48e49c//wU899xz2MWhlS7PKDlRqW/Updx067GTS8LY5oDoOaWVmI490lNd6J+Ta1xGyVf7ttHifFP2qbwzrZXulW+KLEeg+LOl5StyE172cEt6s1QytwzFbpSqYkDsBWdI6jfP0bIORQ+nVjWu1LqSPyEOqGXt4GEjQRrdvkUB5B4dhmHVZFrKOxmZl2tH5vGVFg1ybUwpihd73htAvIMsDGcpJ2Tkjg0Z6eRgo4bzz/hzOjqv5dfxeETwa/oVGwaS3icr68l1tHUeuGZIabbJfr9fGSf8PVKJlmuBaaWpUI4g0xGn05JfV8vSkNlVisIGRz+uUt8xB/RS5LksxURkjqHc9xThWheZYiNVzoOUe5J6qeWUc8te5PXL60071oKrvZw8KkWoWA5QiX+PEAdM89IPL+fcDdTVPKYWMRI97k7HU3dUge/PB2oLI+ZL7kteR7txt3nuAYuuRGvLIZcZpWZUFCp3X6kdzTBECqZV1/S6xUnF423lz+8frGrfPYXmUG/lP8hDfys6oTczQ1Mt+IBhb4isaCM95pcUWHmtrdf5XoDlsJfhdvrbUo2Pm1TKA9i5isdP3sTnv/BZfPRjr+M0HVFr/leKRGlcojN57xGdx67QIZ8HjzR4lFCBNOPmL36Mf/Cf/xeYfvwmXn7+xTODV9M69JzK16UxpSl3lxT6LcqVNMbkuMsDRN/ns9bgpTW59SxSgdAH4NY1pBK/ZcBp+tu7hVSML405gJVHWc+VHPd3831aIdsaG3nNrb0px0PTFwFc/A5pBGg+vn4OudZ0dPPdRqO21oae20uGtI52aHnVqVi3R3zoQx/C4XBAKaUr14ytuZLUMzmn/D2rym2VWvVurQk5TroZs15PW2uY74+dBnLO+DN63Pm7dI7e1nivPPnqvdqhoJVSqdRuYW18nT+fdnjo9aXPoa01Ltcr0HqVYolQaRp5lwMqmV8q5tIxxGcMz7k8J4GlaqSM+mwZPjKyKj/L8ynvjyHpX1uUYP5XV2bkKAjTBm9ubs72DBtPMpotFXrtZNFR9XfjbLo07/JvUqnniJVcD7qku76+/lk7VbcL6eg1qu9pdc9+O+dYP7/Or5V7cev6ctx4b0kdiumjfE1eo/L5mR20dTat8nCVXiPPQsP9g0Wk7im+/80vwcH1xnQy2VMm8aZ5Rq3UMJeiOuh1E3JujeW6coFVRMO1gg3SG88yS+YxcAI/IJWdpY+QVnb7oRuoKd+cZlwdrgCgJ+VypMQ5ylFyPbGWGhdSztTyHFeHPcbdiNvTLT72sY/ihz/8Pm5ujhRxkw+9ikjJpr3nB4d3/LyuN3+slTj63MA3VuqFMQdgChUzKnlPc8Hzh4c4PnqMb/zJn+BnPv5x5N2AjEL37QMCPFypyPOEUhOqbw0ZgT6m0nssD9WtA4K9obKSkzZa5AEtcz4k9WersIT8Lp5nGUWUFAq+hnwfR8f4vXK9yuvyZ/iZpHIrIyyyw72kDG5FpCSkAaYP6633y4OOv1O+75IhpSuPyYNX9meRxq0cN1nAQldXlEqofF7pfad9sUSU5PhppY1lhc5J49zGZyktl/AshWuViA2i9QXnUV2jzHKSvqRVlSU3IjiHz37mV3F1ddXzDh5cX+PJk8cIwa/ycXi9p7L02KlZGQmOokA973AgOg9FwdZUnFUPKG6F4Dyc80jt/pyj+BJXxxzHkZqqpoTSGpL2eWjP7NBkbPCYc6bmrW2f6AbHPWJTafxkURXe97z+0rxU2WNDUkq+XsgDggaXyVAZxohhGFsfwYLpdFzRFXmOOcITnEcMrudlsWLvnOtV1VgmyR47Ml9Trpce1Y0BpckZjqxcX19jnmakkqmJLByKo4bBh8Ohf+f19TVyzr1XD8s9uf+cc6siDpzDNk1HHA57IFDBhlZiiM6mnHCaJ1ztD0gi91QWHOhy1AEpZ8zT3Isc8P6SkesuW9uc7nat0mObM9mPqdZKTXRrRZ4LYhww7MeWR+ZA7H3SD8CRjEo50jTP1DgYzfjkoirSSaoN/1orapMv1QE+tLwqlg2BilskMbd8v+yIlY6HnDOmnOBjgA/0E2IEPFXzWzlZQGudaYKn0+k8ugUgetqHMmroHK2NUmht50SNpKXhJJ3QPU2i9VYrYr2P7Ttpn2SK4MUBFWsWQBb7t58jFT1K2PWzlLCLAzVm9gEOXFhnOatl8QleYzGMYJ1lKfBF8umXnn/fu5LRhv/uYIbUPcUP//QPkFJuFakCUqLO35RvRMUZvA/IuSDGAO647ppR0dgcTRA5lFJ7cYmUcq9O41rxCe7OjpbsnaTX0jsM49BNkt1+jzQlOLdU0AvtXkouVL0GJHgzEuJAlQSpF31TuBL9PoQBIQZM0wk5JwyxHU5FVkijew4xAJUoH/vdiD/56pfx4OED3B5vAUcdzqdphneljQ+wGFL8u1DoQZWr6kp3rH1M0Iy06klxCvCI8BhcgK8Oc0rI8wQ3HfHlf/pHeP1Tn0QODslRHsSuegzVI4BKz8+7ApepYTJTYWRBAmAd3ZAKnfSEai+qprfJhpesUMikXUkjkvQyCWm8sbK3qrjlOFEZK8WhUxPbdWTURz4nKw+yKhErOpq6JpWu3sBTUER1JEwemJIGuRU5kh5F6Y2UXml+TX6We+DwPMr70V5zHs+teb7kQZb5RnJ8+ZqryljKCJLPCUA0ZT3PV5PK+5anV9JApWEq50wqRFIhQFOS4RxyKb3SXa21lyfv18gFtVQMccDV1RVefeUDNG7eIQ4Dbm9vMacZIQ6Iw4g5ZaJIzYmoci4Qzbc6+BDptRApUb+t0904wjuQgsn0OupKjmHcYZpnwHnEYaAKfc5hHEbU3AriwCM4KtbgWCFz1DjWeweXOYHfk0IbAkrhHCoyjFJK8OMeJReqmteKCtQCDD4i+tgqFRa43YhaKRd+GEfMXBkORCH0vThOJFkcAnKhQhhoFEI4Dx8CUp4p/xMVwxARokfOCfNpQs5UupkS6iP1xhvGVryjwtWCnGZE7+BdJePTU6GA42lCyhmHqys4rlqaZ5Sc4OCQZzoP4D2dQRVwIcD5QN/hPYpwqnAhkON0osIB3gOO8qN8CICPpCwXqq5aKjCnjDiMrTiDb444f7ZntZwbRg/XDsrgqJS8g+tVbx080jTBg6oU8pjPKSMMI1Eja0WqlQzBEEG3RTRQoio6Ci5UwFWHNCcyhprDjqnrjcfVCkHQeo2BcuCYfldKQpomOrVoMyF4ACCKm69Ed81phkMhSiIqcklUEbH97zgdkUoiOiyIplcqrdFUCoZxR+X9WwEqXu+5rcXduKP1VgBUh3HYAdUhtnUcPFXsnVNCHCNqagaJ922fk2F8Oh5RcsbV4QpzJYfONM9wnvYFKjCE0Kp30hwxRdaB5r4Uyq+jIfYo3gPeI7a2GLKhsTz3hmHAEIe+t0+nCc5RJVEuOFIq5ZVP00TFr+DavLUmLKW2f8kIHKNH8K5RkNucODRqaEHJCSVz+kSk5AHnW1GJgNDGzzuWix61rmn/03TEr7z0gf+f6JyGf3WYIXVP8b2v/247DGgzee9xOOzba/SelGbEOG6Wle6KUd/2Oi/JrRVfVrDA5U2FYtnKv+ZKHOrShLv8LtnHqiuIwZOnyTnU0pSolvwaYkD05GE5nm6x240Yhti9OJJrT974GXDAEANOp1u89N4X8Morr+BHP/4RjrfHJuBaJaBuODnxA/yrMFnJLnVw1aExBuDZUKVUdpDqUfD1b3wDn/rZn8fV9RVOcJhQUIMnZdJX1JyIvljP82HYi7suMb8YLpfoh1LRBhbuvIw0MHQPjC2q2FZEQhpj8p5ZQZfVy7Tyostjy9LfUvnm/9Z5NnJN833LSOhWM8+tJG3+fo7OcWRUGjqS1sWflxFUCfZ6y7G+VJRCQ+eKbFHDJH1H3r98Vv5O2eCWPyu9xTJ/g+dLzr+8ly3DfIuyu0Vf1IYiQErlNE1UpUvk+JScKT8qJTLSQ8Q8TXjxxRfxMz/zM70kcSkFeeYI37oioFwv8tn1GElZx57j2IwOWc2QPeCc78Hy00NRditVI3NsIPIacwE5L9UmZVln51o0vxY4HzHud/263nvklLr333tPjUybsujbZx3auqxLlcH9/tAcWsJdJJZcrRVzyRhD7NF6psJRsrxvFeLI2TYMI/eDQMlU0MiB+mPNM5Uhh4+92qLcPyWnVimOmwJHcIGjLOREFfdQWsGPMid4R4ZF8B5DWNo7yBL183Ri9xcZxTn13JiuvKr1Kh1CpZROn3Mo/UxCLXAgpZbGulW0Db7l7gmKXRx6NNWFATEMGOKIMASc5ok+y1GNee4R0h7l89sFbdiY7NSyZtixo7S2tesdKea8tiItru4A5Aq4FOmgz5e6jh7zXEjHU85kkMYYkNOM6XRszlliiPS8pFrgam1K/uKMrbU0JwUZp6VmeCGzOrul0j6NLT85lWbQBY9RtHOopaBIqnI74x3QHR3OOcAFMqKDp6JRldailNuy16BkV0g9Q8vd3KpIxrBUJeaiJVt0QziSa2y8yQgrSqW5C80xoOSspiHTmojg3Eb+jhA8ful5K39+32CG1D3F977xu0JpaIpv82imtHDA2UCRirRWvIFzvjALTl2tLLABJZRWH7jfk6iC5LYrI60S9j2F7AOWallDXBRpF5qHJ7gzob5VlSvlGcfjLfb7PYL32F/t8As/93P4029/BxSFK4jBoxQHVGpUDKbunVH7ysZr6M/D/zL1kKh+JPh9Oz0ciJJYK+BrRXl6iz/79p/iQ+9/Hx6+/z14Egqm6HAqBTUVHGaPMIxwqhqRpH8AaxqC5v9v5U5IipOMNDEFRVLHZA7CFi3ukuIvIxmSsqbzeLQh5fxSvlUeGJLWIBVsXaiBn0mOlfzRdCH+XvlMfF1JheN9Ig1ZPiBlHiLTLjSXXyprMjfnWWtJvnaJnijzEOSa2DJw5PzoXkiSb890Gbm3JF13i3YpDSu99nR0cSvapj+jK1TV5oFHpcj0zdOn+MIXvoAXXngBuzgsVSdFS4ZSlhwi3YdJUhh53KShrmmQpRRM87zq2SSje9wsdE4z0MqFu0ZRCiH0HnwsWYLzKI0dwMY1lUdu8xPJYIkhIKdChhNT+BqFqImZbnClNOGw3y0945he5FuxDO/hsER2cys4NDRnQd9vtVIFsrqwFUqpGOIIB49aiD7tncc0z62c9NIYtZZC0Z/W1JjLcEsjBSDjlAtRANS7h6Jli2urVqJ6933KZ4fKG+Lf+dllKWm+jozU6qi7Xq8sA4jSNy1V1kqjK/eG7lL+NbnsHVWTBVBdWJ2FDmyEUVTVu6W3FvWCCvAxYAgLfY/HQtI55Zm3rN9FDuko8coJB0cVvBuFlYojUJGEEIde7p4/e9ZCRUb4/eJgYeohjz3PTV8TYv/zHuR9VEpBLmvHW38ulkPtOai5LxV3kFRv7ygyFHiNsSEHisSyIVUqkHJCaUVfQgjwDqt1ofPdpCyQf9e5yjFGKtShzi5Nvae/Z4qatvWRWq/Ori+067H1KdewlMUL/XtACIsjldZHwi+/8DIM9wuWuXZPoRVShvbe64iGpIrp5FG9WXUuBv9NRwvkvejqS1uG2hZFSAseFiJ8OEqDQQpkLmurDxJqArjDabrF57/wOTx5+hZubh6xM3VRtotrUSAvDsvLSfXaiNJ0LV1UY8k3A2KacPujH+Ef/d9+E2995zvwNaHWjOQqEhycG1bJz2eGp1JeLyUTS2zNk1QI5XWl91geeNK42II0RiRNTlKztirGbSUabxVI0bQ8nRyu3y+/b0vh33qNn1PukS06nFyvOm9JQh7M77YYhv5O/bp+Xvksl+ZEG1hb1Dz5/HL+9NxIQ1qPuX7fpWfaWqNyv2+tm1orPvjBD/YcNZ3jxtANXS8Z/vK+dfRWRrlZeZR0RJ0PWmtFxpbStF3kQX5WR0u18iblGjedvTT3vHa1LNTJ8fI16WSR+0XnY8n9JJvY8n1JWS2jf1IeSnki1yV/l6Yayyi1NMa2IqNynUjlU67pLeqzvj/+7625k+MsacE6b5F/l2evlGPyPNb7Qc+Tvj9N89VyW1OAt4rOSKaAHAPeO5f2KX9WVlKUxoS8F0n1vSTH+FnkfpVFKjgSvWX4MiTFfauIjrz3rYIiPAYy10rT4XXurZx7vo7sCyfHR8tbXWxCO/hqrUglbz7r1prXbIpnyTvDTxYWkbqn+OG3f7+HdMeRO8uT0DkebzE3b2oVNgEnlTL04SlpYiwsdHKwZ+NAesEcUZwqFqGHshb6svdGP9xKpkISwsuf5iUxmnMH2EMuE3T5eaS3fxwH5JqQc8L1gys8fvQ24BwePjjgQx/+EG5un+Lm6Q2IXeApIgXKJWvurEZvqSBjatuPcK6YLoGtXj6+1h6VqiWj1IQHz+0QTwnh6RE//O538NFPfAItAxXOB7jsUX3LG8F5hEVS+wD0sWRqizxopcIgryGVJFbOZHESToaVXkg+iJgGpsFrg8vc55wxbBx+PM/S21lq7V5/mecj75ejPrLykVY6+QBhhYCvoSNYuggGX4ebGU7T1L+DIwd8wPekelHaWDsL+NqalsE9RTS00qSN2y3Diu9BHtz83dqxwftcKpLaYcLJ4DKKwz1e5D3ymtjyfl+636171+PDEYVeyjnnnmPHFKOPfexj9NmUiU7WckhOpxPNTYgoKKv1zQnuwEJhZMVI7xc2oCV1aifWg1T2OArC+8W3QhlyryzRaGEgemq0yT26aA655HkR0eAlIoCyeNyHYejNSkspOFxd4XQ6UQ6eV5X+Kij/q8nXGOPSm0s4StokoYg9tvSzmVaKLgD4ELvxFGPEblgUSMr7CZhSBmW5rMs7D7HRsOepR0JrbfciHR9uKavOUTSUujJEpCEoC/LocuP8OlPLOeIk20zoiE53gtSC4COCj2KdUKuNlTMvJ6RMBQx0WX29h4Zh6HO2H3dLJDQEpJIxtmIUDF6TvI7kOToM54WJnFt6Zsn8xS2HQa1L4Rv+jGx6u9X3b5pn6k+ZM25vbzedV1RW/bzino6SD4JOLGVsaREyLjuephnVL9EyzgljI6jU2hom+16eH0IupUylx4dxaKnNRMWUYyP3vTwfpLxzbimAJQvP7MZdj8odDoeVYS7n3ntV/bSNa4gBgZ3hDpgEFVyzb6STs1aKcjEtmdYBLCJ1D2ENee8p/uAf/iddAITAhxHnCtB7nHOoZVE2gaXqDbBuMqg9/sCiJHH1rlIKQhPESdKAcqM/+CUCk0/zKpKklUjtfeZeRmEIK2MOAPKczwS/pB+yMhgjJUmn1LquB6qN4cMA5zxunh7x27/1+/inf/xVPLh+EUM8ICWqeDTPE6hJVKF/UVDrYtA8CzK6lSt7yUTT3lRQfMUNbnB4CsTkcPIDfrDz+Hf+o/8pfjCOwOGA4wy4WuhHHECaZiG9TyvlSVEApJdQH2hsoEiP39ZzSbofgM33ao8nQIeVpJ1dGsdSl6p1+v77Gt4QQVsH1dZ36MgtPzcfTpcKMvC4acg90hXUC9Ex3p/a+Jeflx78raisztOS19WGmzQMJRVNv89735UgrnCnx016yaXyyk4NqbTpeZZzoz26OuIoqTq1/e3m5gbPXT/AkydP8MUv/Drt+SCoNGmpwMclr733mMtaWdaUU1lBVBqWAFY5g33fDePqXnmctiKR7ATIOXealqT6sOLj3Dqy4FyLEqTTEoXBsKLvstwb97uu8I7jiDxPq4p83WngRNQlLSXaT62pKRfyAJr3vxbEes5wYGWaven0mXUkq8vjSE1NAeD6+hqnOSO49b4oqeWhuGUtBE8Ge6rLOMWRjN9pmhDa7y6tG8HKAjvyHJNsAl2+vDMcdvtufLBclQZ3ZwM4v5IBta6dEd048OtG6jUvfbV4rdF/u+604L/N84zqlkarbDj0uWmGFDu7ZM8ovh+5x6Wjis/scX9YnZuy9HpX2FFXRpR2uGzJY37+cRzP8kB5b/Pv0lnTDfFxQAhDlye9GW/LGQuCRplqWhv0LDf9Wr6F3i9zkQvHKQmKJzebzisZxXMhHcqygbSMSJ+NScXZWtTyN+cMHxcZMgThgBB7hPbvOjIqz3deByT/RwCLvkbPnfA/+cgvwnC/YNS+ewy5yVjZkZQMGe6Wwlb+t6ZGyANFfg9jK2Ge36MVOS0EpNJRa8XgB7jiVuV9tdJc3LpPlaTf6J4ieZ6B6hAChepLqivB/ODhFX7x0z+PD33oNaR8wpxu4XzG8Xj732oeAlqhCVdalysyZr2nPlOhVRp0PoJo/xVjSdifZvxf/9bfRnj8BA9cQEpz+/tlCqQU/s+iucn/lp54SZmS4yijVprGdSkqIteSjqjIe3k3hqh+nzysdZ6LpDPIz+lx2rp/TX/Yum+9VyT4oNVK+hbk2uT9pJ9V37ukFW1FFC/NjVamtp5XfofMg9haYzpyI3Py9Gtb62GL8qgNRlaENC3ruesHmI4nvPbqBzG2nIb+rFzQpa4VrSDWNUev5TzIvD9WlvXa4ug2K7A6irlFF5TR9B4liYIqR6EhRLf27G+ttz6mFT3vqr9H5EL0HAlHRkn36PuA6taGuqQ/sSGq95ZeR3wfHNHhdQBQlTSPApTFg+/jcCbj9brQFCZg3UBY0rO28iqlMcQ/srmt3Jtbe0auQfl3Vkz1eaXPR/pbWI0XXFlFf/p4+6VJLkpCcFSau8wJ0al94c8dIJLSKNewfiZNf5XjLOUU71mdO6X37NZ5Ix2hW86mS7JMl8jfKl4k99NSfCX1z8rzbQgBrq7zFF1YaKlbNHH5XHKvy9fl++Xal+O3Jbv02tbrW+8lLferW6J4eq3JPaejUZr2LJ+bx9Fw/2DUvnuKH/zp7/UNmjNHFphyJPv50MaSTfAAnCnh7GE+nU4IIWC/35/lmQBUEYgpWUATBq0XlRfUII819UpS0vrBwR6/CsSxJUWXRVAW17w8WDx+LHAk3Ya989EPqIXKu/oQ4Ft5V8BhnmbUUnG4OuCjH/8IfvjD7yPnijRPuDo8QEqtmlCn9lWwH+GdDAHXClN454BWMbkW9O92XBGpJSLDexRXgHmGTxnf/c538JFXP4iHL72AU17KQGvFQx5kWnlYHfAC3ctXax8naQA8y0iSXjZ5qGhsHWLerRXFS9+hn1VSxfSPPox08rg87HV0RyoIy75ZjPQV3VAZp/pZpTKilS/5fdJrLo0S+Rx6bmWESio+cly2lEN+BnmP/LetqJCUB3p+5fXlPev+KJpqu6WMa++1vGeWI84TBZa978ebW3zx176A5597DkOMSPNMhRwgoqxpWZuhR6Q9Kpbqk3x/Om+KFWhJhxyGoTdq7eWQfVgZJXwNnbNSHBAGqirYDYFau9LcjU9QHzxJZa1MXYPIeXCteEQlA6pWKvOdcwaCh48BqBm+FRkK3iEOI5X85nXlqPQ7akFwzUnFW9BhldfigkdN66qO/IwcPSCjqjSDlavZ5VZSnOTxsDtgGHc4nkg215JXZ0hpsmiIcu21vjyC/SBpfgUVeZqBRNUZhxApUtTKx0cfUHPrp+U9Sp6IVpcTFRQIrdy5+H3O9czoWmjy47JWytJ/sRRebx5wVH2u1goH38uu51bd7+rqCvM0wdXl3Dudjsi59fbLVMgCziG1s5t7QqFQiXNpXPG/ukBKEeO7ZXz19SkiY7I4zsrZkJdKuFqGSecDl9aXP7VklJxQS6YiJ44KRLV6D4CrCJHoq168nkttY1tWekloET4n5EZtkcahVQyms6NF9UruvadK5T50tKa4LcluGDHGAa0WY7sHEfESKQfSSOcx5JytLWPUYTm7dPSezyfa/4WqUHpPelSl/cS93OAchkgVL2UEcSsKSHPY+mqujL6KTz9nfaTuGywidU8hN5f2lGoPiPyRip1ULKQQYUGx9Z36+7VHRSuiUkHm790yBhiXoivyutrDTO/zLWzveolTHV7vytUA/PJf+jRubx9TD410+tcyH1uGST8E4bDLFJXKg8ccKxIyHuwHvPm97+L/8ff/PqYfv4naKi5qr+s74VkeM03d5PvSiehbXlw5X8/67i3vr7yfd/P5Z42hfA7+Xa5DOQfvNE5b3sqtBPJnjbO8r3d6NmB7jV8y+LQxIqmVvDcvzZfe56tIidiDso3ApaiapOnItaPH7p3G+VJkQHu++Ttfe/WDq4bL3GBVyhs91zLCqg1PmbCvn0s6e/S1tsZky5jVkX75ef5vdvzIvEN5Pf6bjNLIda+dKtpQ1ffIn5ORza31qosfSMioHH0uUE8pFXGU37MVJdFK+6W5k5E/+cz6TNEOj37++HUVPi1D+veWupp37z1VehW0M5kvLMfvLIczLk2HpYNH0+cArO5va4/mnKknYV2KCclx5c/I6MnWutiKbOt9rOXnVrRVRmnl2tbnu/6+LYNcOnT6nPi1oSLPdHnP8vm2KLWMjHPmhhxvOT56b+vzjo1rfT7K57/keNuMavnLuaJ670onF+9B6YjmdXhJPhnuHywidU/x/W/9ExFyR+sDk9qGi3CO8nS4nLjk+LKHVlaaYez3+945XG5cBpewlX2kYuN319YLgZvt+eCpvCtHTWpBao0YAfJaUQ+U0kroUgEK7z0QmpCF602CgUUJZJ65c5TnMU0zSmtkOwwRITi8/fgxDvurlSBlr+RzLzzEyy+/ijfffBPH44miR53T7yB9CO8knHzvlbH0rnDw1DzRk9doQIBPDilWTKEiuUb5CRGjCxhKxVf++T/Dz/7Sr9DnhwAMEdU1LySozK5zFdVVxDj0ogiXihzwvPfS8m2eUkrY7/cAsDqYNaSXk9cO5XCsiwBLRbIXDKitdPU7RL2gomMMbSRsXWfpIbZW+PieJJ1RG4u89mUkSs71JQNhKRKgqmtJJbU90zxNiCFgiBGzKuMuFQat/Mgmxfr+WeHSFEMdLZHFGzj/kPfMTiS08/NIhUQmOXMOlMyt0Dl3/NxSUecSxloJY/RnC0CaJ5yOVIDhcDjgp3/q4yRfEjVyffToUe9zVWvFLi7RJJ77cRzh4rBECoTXWOYV8XfLNZNSwpMnT/DgwQOM44hpmnCaJ/iW1s7tHXLOCM5jiBE5JRRuhtmiLRTporLUaZ6Q55ZjhIxSKobdDq4V5ln2JrMHqOgNNzItrtEV2/0FjrKxYtzyVZeoAxBF6W/vgHEYe0SKm9nGGJFaqW4AvXxz8GElB2RETxruaT4R/bu1keBo2TiOuD2eWrVUYjPE4Nf7sNGZHLjn14DTdMR0mjHsxmaAzL1lhHMOY5vrYRwx7nerIgM8l0znnOYThv1IPan8AC7lnmqmvDAX6bqimIZuTbByKLbm6xT5SYhx6BGWZb1XTHNu8tkjxtZHCNQ8+nSaAFQMIVK/odzy5qLDNE8I0WOMI/VESjMO+12Tmx7H47HtNWKb1IpWMn/JraN7oGbGXIKd9hY9e61A8ZS7y2NSSkVx1FNxCGM7t+gckz2UOG9I5nnWdh5XT5GV4CP1FoND9dR8Ois6IMsLLt7Tcxb9gDnNOByuekQwtr3FZ79zDs7XFm1qzsDuEG293yDkYj+Tl+g82TDUCsZ7hzCEpfBKa5obQwBcK0rjPPa7XY949euICDY9GzFOuDgGyxXOvzuMO4qWVvRGwqwfeDCzp/TS/kzfvb297Q2C5VmhHSRULEs70ywidR9hxSbuKf7gH/5v+u/SO7NSulBxOp2wO+yXUr5wON0e6SBuByQVjzjPUZHVZ+hvBbmklZIFLInYvThEKfDCcyejVTJJfquYtmxWp3nWwFqo8PN2719d93nohl6MS98Z75FKxv5w3b2P/+Af/CO88eYtbp6eEIdrzK24RU43F0afS6V7LAUq1pDCjRXIXEihyajIaVHmZpEP8Wh3hX//P/qf4c/3A34UA6ZScIURoWSMaUKJCXSFHRzWvPXj8dgVV35u2QeM51LS/XhMtyhLsocTj+vol6pRvh1kfLitDIC2lNg2ZeXacSmrUoknHtZ5N/xemagv51SPqc5vkg1+pWdZeq614aQNFr4OVyHU3l1ec33d1/My39owK6QB9rWhI8ASuq+JjjbyntWefvl9msbH15XGo7wmjyV/txxfOT56LuRa7/s8Z8RKOQzzPFMlyhA6Zes4nRr1K+Hm6SMc9ld48uQJ/upf/e/hdDohxrEp3lwBNGGMAcfjEbVWXF1drQo/sBzyfmxyaRKG5mI4Od/GPS+FGeZe5WtNxZymCSgVh3G32h96fkN0yLUi5akri1zZSxq/KSWMw1X/rPawS2dErgtlUtJxmWp31ar1Rb9EKJiqeMkzLq8nDUjuBcSFIWREgfc/FxjxQ4R3I6a0FPXQkSNeX6kV3fF1aVIafUDAUnhgTidUvxi9LLM4x433X8oVLuzgUVZrGKW1KmhFF2iPDd1gZgNAr3PJytARYBkNKdMJMjitx5bfOy126Vle0yJ7M4YQMM+nlWGhcydDCChuXYyJHYerc6W4vt7lvEqKLl0jgwtwSAeIlAm1Vgy7/Vk/wa0xYUeslnHSKVtKQfSun7njOPbftY7Ca5bPKs1U6ZVpY4sg1sXx67g5siMqK1xBqGl1jki5tmIglPMiQfLcqLWiOD5vspC3y37MZV5da7Xn8/KZmgvlTUaqyiudere3t0QFbWt+P4xI02lVVESX0V/k7djvb5EjwH/w6idhuF8wat+/AZBeP02h6WWMC21o9obmZ1BDZLh6K2lcK598D1I5kAfDsyiBwDoXZ8VRf0Y04hKdTJaF5nvh75DK7xA9Up7w4MED/NzP/Rym6YiUZ8zTEb4ZoLT8t376SF2cky1aCVp55ug8nMdK2eP7PN48xX/2f/g7mN5+hGGeEI4zUDNF60LAXIFaVbUzcZBqmg1HISRFQSvEOsdJ/67pTHJetMK/RT1DO1h47OW9awNJGw/aQ87vk1ES+Tmd5yPXhzTCpHF/KTfoEkVW3t+lYguX1sRWdOydPq/fd4mKJZ9DKlP6u/XfpKG9RfHR97KKPKn72LqvPu4iR4Ov8fyD5zAdj3jt1VcRyDVABVrg4GoFNhLJ5Zzxc0tKjnwmPaYcveLnv+QnlNE0baxKurBUdtgrzvch8yw4/0r3vpPOIjlHcp/oKKCkesoxkb9vGQf8/fx80pCXtDG9TrYUU0m9kjmw8pn0fpHPqffiVnuMZ51Punm2/P6te5VzoBVSfc68k+9Yjym3CWGDU96blBvagJZyr0fy2zzKuZeOpfV+BnKekdIE5ypCcIjRo5SEUlJ7be000fOhzwv5HZImq390nzH5u5xfKXtWeXnq7NCOJ7l3NW1QGoPS4br1XPrs4nvR8kPrJZoCKZ3VejyLOz8f5H7qTj04uFLhSsufzAW7OCDAoaYM5OW7et63akEi15WWG8+ipBt+sjBq3z3Fd7/+2wC2G272jcXKZsprgdW8hMM4Uk+RUhp9hZ3mtf/uvWuJtiwgy0qB3fL8B/5OUHEKKgCRgErdyL1zRPkT98qCgg8TDo/L59GCigXLYkQs1aXYSyvLrrLwHcYBjx8/xvXVFW5vbvCe97yE9733PXj0+G1M04R5PlGvjESpqmsDqhHbXKFwi3v2obsSsNVRsq3z9LFWptg7SsCtFfC7iHm6xXe/9nX8yi98Gu958BCPTrfIDpgjJZiGMFBhDXFY6fGRYypL+vLfZNRDF6qQwll6B0MIKG0txRiRyjohd0UFCbHTcOS1XfCIPvS1Cb+OzPD3cZEAeUhvHVY6IqWVIW2k6SjNVn4GY0uR4+utFDl1WEsnQR9TtyQ0b3lC+Xc5T1vX0kqZ3iNSsZdRKcnZZ2eKdGRI44T3lE505nmXuXs8R/L5fZMp8zwDYVFi+e8xREynE+Z5wpNHj/DFL34RL77wnk43rT3C16g4IaDkNcWQx4fnhO6PY9xL9dGUZjE2jcJcBM2w5aQwfU+ut3EYkWtBrkQfypXpxwUuEL05ZSoYEeOANGfUAoQQUXJFzgUhUB8i5zyGYaHrSCVVUqiJprcuhsJyjItU8PujKgywRObWjhJZaEBGpFf5Ws5jThkVDiEOKBUIcaDnI5IbvA/ISjmVa2/V9NYR+0Hek3dUen1olRhrAVGd4FtOKxA80e8q1W2gvzmHUonavMoXYqOL6U0AhmG3ylHiNceFTFj51vKE75PWDDMtqCYEPz+PTS6VCks4Dx8ivA+rohwywr7IJ4c5zQhxQIgDKhxO09yKdfj+7zQnxDBgiESXowJFvo8Rqmvria6p5ZOmOdPzl752pmnqv8s9Pad0Jgu1QcRRQpYZ0qElHQe73Q7T6dR7Kh2Pxx5d5HUnmSS8bmSeI39Hd2hwQ0wnWANlqS5ZKjDPE3x1fbxqAXIuSHPue5DXlmtUOhd839el1t6T6jRPKGWhyy1ngchFr21/xh1y4cI5nvq+hUA6D4AQI6Z5xrjf4TSdVvlzu90Ox+MRwzD06PDQioZxo98t43+JdkKt89n6SN1DmCF1T/H9b35p04AChILhqCkkgB46DiFQqTSIilxYR5lk2U0dEi8ln32P9CyxUhaUN1fSPjp1pN2T9HJpL5L0NmuFmr+bIy8ll5UiDiz0AOldnqYTDtd7nE5HDAMJvP1+j5/91M/im9/6BlKa8fTpDULYt9HmrCDf/mUDihr7rTOG2ic2lN9W8xRwVK2oltLmiJQM0sIqfJnhnx7xz//J7+Fjr74K//ABcig4hQCPCF+4t9NS/lfT43jc+NklRU560LUCLZVmVpjl35yYizkviplT+Tq11rNR6V5uvxxaTny39FLK6zC0t5mfk6H7lenDR97DFl1N36su+btlxANAaYo2J8u54FFA1EU05RHo2261xuUzyP3G75FKnxwHbUDLPSbvbytSfCkqpj3KW4aUNt62KIDOe8p1bDKExzKlhMpGGIBx3OELv/Z5lELK149//GNcX19jmk4A1s8wt+awMgKijdpaebyWtTJNp8UAbIqPh5Azoa0/v6yVEAIZgCmv7l8a4fy9NC5YfVauXx4bYgacV2DUDgvXDDVuJiyNFFaqFoN1vV4vRRF5H7MckOMo+9JoJ4Ts7dPXC5YmtjKy2/v4iXYKUgnknkwpJdoTbT940bSYlWZ5L32AXUAta4ePY/kv9pcsUc7GNJ8TTH+UDIit6FQ3bHFecKeUpZfPPM/NcFpHO3jMZTSDxnG75LYcc+7zKPc053LJ12hvLM6ylQNVyGK657ySdTKC2WWFkCNaPul1pO+ZDTSe83meMQ5Epy+ltBzmSfXAWrMkdPRU7rWcM1WI9J6MUJZZ0inlPHxw8OrepZ6wdoydl9M/l5fcDmGRm+M4iHOV85fDauxdFfMrHX3eUfNd4QDhcVk5/LBdCZYjnmxkOScrT2bUZmz+0vPvh+F+wWKF9xRbRgVwnpsjPW3Sg8xCUQp7KWAZ+r/5vfp3+Zr0bG1RkuTBqWl88ndJgZHX4IP/nOrgV8KdDz1Jn1mEEI3Z8XjEbj9QrkOe8dnP/ipeePE5XD+4ujDy60IUz8KWcv6svznncPv0Ma53Ee50i+tS8Y9+8zdx7YARDh4FHsz0I+WQo21bNBz+kR3q5QEuf790/6zc6J5Dmh8v55HXwBYlTa67rbWjqSx6TcsImDT+9XW2xnhrHfLvkiKory2NVT1fcs0CWM2FhjTytoxC+Wz831JJ0u/V0Gtf01mkES3fr3uTyHvQkA4RGc3cGmOpvEhHBpcR3u92uL297YrWiy++iMePH5+VYz9XIM/7/Oi5kftdr0Hdg2xrnbCRJedZ0q30d2pFWsoj+Rk915KGJJ9Veu71vmODW+4vvW6kQq+NQWlISUNOK8h6H11iP8jv1BRHTSHUe31rT57vjfU8S3+6PbYAAIAASURBVAePlgua/rS1L7bkz26367RyaZxr6BxMvgbLYRl13qKZbVHnpGEunVyarsXXlA4XeT1JF9S9AVNalzfXa1/KcOn81D8yL1p+v1z/KaUeheL85P1+fzb+l85D+TwANpvgyvHjv8cwru6J72er7QTPpYyGyfXNZ56URax38Fgya0LLROlkkffKuZM8znwd2Q5Bsn30eSDXAlP29XlvuJ+wYhP3FL/3X/6vzvqlSM+jc5TsyV3HV8LJrxUqovudU4i26D38d/nv1LzF8rM5rRVALRwBCo1rb7n2ep8l7TeBx4nSq8hArmcHqBQwLGCHkROvyYsG7xDDSBlPNSLnin/8X/82fvijJ3j69BZDPODNN9/Cw4cP2/20aJRjI/XdGVZdOBaqolRFifZUC3IqmHEESkY4AgkepxDx3Vjx1//j/wXeHPY4zh4+EwUwbyTWygpLcvzke+S98OuSTgGsq/2tDq8qCpGIUr1aSFQxb9r72v6wui9dpl4be3rdbXmS9UEiDYXFK7w23qUnUR/AW42AdY6Jc271rPr7Vwqg2HMS2hurG0duYUtJl/MlFVj5GblnAZxR8+Q9aeVaKnl6j8rxW9b5ku/B3terKyos8bnPfQ7z8YTrw5VQFpbI6iW6qTQ0tIJaK3t6l3E+Hm+WPmOxrZ+8zMHcvPW5lk7LAgA/RNS0eN8nERHjces0qrIkywNLdUy9Bvn9WmmVihhAxSbkPMi8qVUUI6fVeySNjuW3NGD5s3IN98qGpa6iShLSGJYUOX4+PntWkau8jn5P00S0sFaEgK+1G8Z+73Ic+DXvG/XKR+T51P82zzNcbdGh2gyLGAA3rM4EdqTJIio6L0w74fQe0/KR13OMsRfR4PcDS0EG6UCYpgkF61LmvDd4PfV9PKfVOue51JXwgLIyEpi2Kw1aeR2eS9kPjuVGaLRTKUdW+oGQCTzXTNertXYqfqehDsv+YPm3Ve1U3s88z9jv92cGRCkF0dP9nObcCwGlshjCuYX9fVk7DaQMkU6iOacVrU7T57z3rXoJFXDgz8/zqc/VabptqQJX/VnStIyDK7WPc0oJCGsmgIw081ognWap/KcdoDISLHUnvu9aK/7DD/08DPcLFpG6p7jkUdVKo6vn1ci2vNTaoNGUPP59y8P7LA/cs77r3XpRdB6MvKZuQrrlvZf36r2HK0zDGeB9REkkmIdWBei55x7gk5/8GUzzLXI+4TQ9xfX1VVc+/1UR4OArAFfgQcUnuIxtAOVPBecRXIT3gK8VoSb44xF//2/9LeDRI/jpiHw6oeI8EqBzf7SXd0vwyvF9VnRTrjnt+d2cswq4cm5AVbrQytsqjaCtPinPmld5OPNBo/Od5H1yro78Pjlm0iiTeVt8X9qI8L51l3QLXVE2WGQKk9sYYx0x0VSOd7M3tsZH70c5dzxmOlH80hzL75FrZktJYfScxUrUFr7W4XDAPM/40Adfw34YV5XISJEJiHFcnt0VVKpxefYsW3JoK+KjFTcdzeJ/pYeXPdFMBZM/+tn5NfaMc3UyPQ9bY3UpeiXHX0YZ5HW3irxsJc3LPjT6nvl1HcHjz0ojRH6P7HPDSiDvLRk9GPw6XzXXpSy2rgaqx0rOqR4T7f3X0SjtwOPn3JJz0rCR5yYr99KI1bllsuKejNpLI1nOn1SAZVRmKwqmn1X2c+L1Jte5nE/+kTJUjqk28qUzSb5X5tDJMWJDQhY40i0SpCNEyxk5JvL+ZLRG39vKgSAic3INy/mU46LPKu0w09FOKfN14RQZDdWVCtkpy/ehzwu95rd61Wnmgz6/Zc6j8xXOa7aEqez3EZYjdU/xZ9/43bONzxuNvVcxRupP0XISuCoeH1WFmj6RslMSAO5XQQnUrvXQ8J7ygkrJCM3YkIKHE1CBZePvhnHpr8K5QABKztQnA4AP572atFdIKkJSYbi6uurlkNkjGkNc0V40bbAryKkCBYgD8Z9z5ihXhncRtze3uHpwjfe9/z148pQKUDx5fIsXX3ypH56UJ0VewXdN9UPrF+Mc4AFXW0ctR31DPBwCApyPKMEhuwTngIfDCHdzwre//g38wqd/Cc8//wA3mXqjaMNH9kSRyoP2WsmDUx4OPAdbXPtaK6K43qy808tzkiFV0SoVqRws6jWSKWkfa8NBcvABrA5lqWRpio80hrSHX0efuACJvDZ7mbUhKseTFQi5rqTyoxU4aaCwciM979oQlc8j1/4lg0orUVuROq1A5Jy71/oShZDfq6NP3AdG71OtrJZCBRoqqPBEasbr48eP8cr73o+PfvSjGAL1ixn8gOgjFQworZ8cChyo/xERaR18iCtZJ9fDsl5jmyMZTRNyI7RnS8LwCKQ0z2lRikMImHNCcOt8Gja2eL3wOEGMjzbIdLRQU1flOujryS90WYbMnevPDay8/pKhwN8l17NUfnn+O71of+hjqSsP8tqXz8WGBEfxmJ7UHVytYAhqhavAuNshcSVCTzIh+kC99ty6AIaMRgCUg1ixFJvg8RiHFk1tkR7nPXJexkdWPtTlvuV+lvtJG1HMfpBGk7yH3W7Xi37w2cPNfeXc1Eo5Pcyi4DliOcRnNp9jWxEwXlv9fAu1nR0twO8qnAdC9ICrqCiUF4i1YbElH+aUzwwYbVhyhJCp8bJ5MRt5TNvNgpYvo5yS5aLnXFculAZOTuSkCHEpHEWFPjjHsRVuUQa0dtD1/VfXFEv5nXyvwbO8X86/cRz6enjw4JqcFblSuX/nMMQIHwLmaaJzzzvqs5kzduOINM0oOZMjtVYE53svKxT6b+5fpaOSMiLJ8ozuPWPJvwz49HPvheF+wQype4rvf+tLKyVtK9zrvV8ahQJArUitMEB1MtJDh5GmVvB15MEcW4NEeWhK71v3cOayOpi2lHvnz73uOroglXj5Hv6XE5rJe3rueTrvt+PhKj0HGZkJtQIlF8AFjANVzolDwHhw+NSnPolvffNPsdsd8OYbbyFGTmBmQ4oLUbwzuDGgc0yvbMp3myDnPGrxgAtIASi+wKNgPCW8MOzx9ptv44+++mW8+pHXkHf7hXOA87wI7U3m8dJeRwmdw7M1NyjCu+63o0TtTIfjimt8aLPirt7La0tf61lzv/Wa/hxDHphb19NKrXx+SQe8FE3dor9qhVYrJVvRA+nd1d5ajXeKXOnolI7gSHqZfp+8Z7ledP6U9riy0gfQ3HtPRSLYqfP5z38er7z/ZTjn8OTxYzx8+BBpYkVX5IM05ZC+g/s1DZvlreXzp7QYT/wMMYYzoyq4pYAHN/MMMawiZHEcSPHPVDTDed8jjRVEv/MxIPqAWhxSyohxaI6mvgtQChWjodfLmTzV8wSAvk85kOQe5/wKLoawtXd0XoVcTzLq2409AFMqpJCGiAqHXCqcD3A+9Cp1bMzI6AuwLgmPUnvVRlaSc1kKGuSmxIYhwlWPeU6r8eLGxDkXeB+ogIv3QF0rx6H10QL33XIA3Dq/bou6J6lUUtHm9cTfMaXSK/WNuz18iJjmhEreR1Lkne9l/bWxygYZy2PnI3KrAghHTZThfK+M6HxALdTIl8eCzgi/WlfeB4TgUeo6h5jXuWyiS3O/yD5JwVxFwNRekhF5uaa2opM6OsbGrVybOv9LOhokvfHm5mZzb5fWuDoOYz/XQlyKiXAFXMdV+RwVhqrtv3ncnKPmxXPNCDEiV1qHqZBehLY+nfcIYAfgItNTIidcjBG3R+ozOYx7Ki7UvqxXrRVrKZUMlCUqyfRfPQ8hBJTWVkX2iJNVjJf9W9se8eDCI855M6TuISxOeE+x5QWXIXDJrV4dmHxYwyH6dmBnopjVug5jLwd88wu75WDQ3w0sHm+dqCupDJou9m4gvTD82WmaugeYvVwsnLeqSsn7kZ5CVBJqh8OBrpXJW5/nhCFSBaXP/dqv4kc/+gH2hwiKQMkwut4i8u88AOeRt+05FInYzrXO7gG1NSG8jhH16RP8P//e38M+Z4RKnvvqyIfvEeBLpZ8AzEgrTyd/l6ZvyjFbeQGZ1gD0UvYZy1yyl34L1QHVr9eApmRu5Qtt0f30etSGtDa+t7j9W5EWbWRKw0AqYvLvW1QQbWzoyIl8HlnZjCswyXvQEaVn7f+tva8/o40d9gDrHCt+r/xXU1Ck4imvL2lHXK1wnk+orS/KOAw47PeYbo84nU6YTxNeeuklPHnyBBkZc5mRsVxnPQ5LQ10pR7agKcyyzLC8X1Z6pTLIffbY2+zrtnyT3833O+zGTu07TifMOVFlSs6BQiWjQRnOOp9T7k9dREAb7XxdFygSF8IAgBxk5LEh2ZRF5JrnerfbrVoh9GimdATkjOg9onACBGEss1zhBHopZ0pTolMtqN71BrNdYXYe0QFjiN2o4mea0tyKm547LeSYyD3P55Ov63wSHaWV619SsuR+k1E3bbR3J0HN8CgIjhq0avoXUxxX545fK8H8nbFFUTwAV+sq8iXlmdyvXOSgsw1c7JXjeK5yorPtrKKcMty7g9ORX07LH5433UKDIZ1Acl44WiXlx9Za5nHldSOLSEnZxsYH721Jt3aOCjG5C/Ou6YSlJCAnjMF3ur2kRPYIXFlH6YB1kYfdbkdOlFpW8+qcQxzbvbb2CbVWHOfprP+j/FfKKHm+yO+WeZqlrIta6Eiu4f7AIlL3FN/51u8gjgOVWuZ8DI5KNfpc8B4uhB6Fyqz0AXBMqiqNGuATQgyNHsdVl6hFZvADgm8ccGwLKn1Y5Vzo+0LoOSSueT4rQN7dXFBbb6mSCyo17SBPXKktQsOUOw/fvEwt0Qa1VBxvj/A+dK+bFGayYuGiPBaE6JFLInqdF4dkLQh+SXpHoVLxDx9c4b3veQHBF5zmI+Z5wrA74K03n+BweIBaE5ZS6KVFqioA34wo6kVVmq+JxSZRBvrwAKgUrvcOPlegOLgakeCQ2/hepYyH04w/+sM/wM9/+pfgvEPZHVDhMNSImCtCzZjcCXV0GMMIh8V44YNR0tP40MilzQGWSFlsfb+o2ntFdQ5e9JDicZZroNSK3KgsLvheprYrFRVtrs9LcWs+OrDmuPPhslV5bauCnPQKXqpYxbQZqaxII1Mmq2vjRRtMMiKqe7LwPcpCD7x/dERXX0tGG3W0bSuCK++RP69LKGv6q1Ra+P61IkHeWrfK/6qomEpCBs15yTOm2xvsdwNuHz/B53/tc3jvSy8huIBQHa4OB+QTUbNyrEBw8N4hoyCVBNd6GlEQhKIhwVG579KKnRQK4fb+O8XF3tLNOVn+f16KJGSiHQ1hXKh2cCiJvMXeUY6iK6xcNuWtVpSUEUOgHkieaLi1tVvIlRwHYYjk5S6l95rifRBiRHEFQ4zIJSMOEXDojAHkgpJyNz4dHGKgFglpTtjvdjgdj10O7sYRxQXABcB7FDhMKdN/u4A5Fxqj4EF8r9CiO77tcYcADw8P5Io5JRz2e0TvqdiNp/5MJWdE74BCsrECqz2oc2v6OhyoeE8I1FOnAnC1wJUEV0szHipOmfJKfIzkfnKO3t8iA7lSyfVcZvjmiOjf4wKxECpFG0ohJXkchjZuVIab+hrO1HcKLarYPP0sH9golk45uIV2VvOM4B2iq/A1wYMKIKCkFmlfdgPL8lpLo8PTeUMKdqTTwAG7cUCeZ0Q4lJRQc8Z+GDDXhIqCXHKj3juknKjXICrR0mojTjuKGNKXeoQ4Yhj3GHd7FKqDggyms1XqDyby28bo4R1QSyZjChRJLDlhGMceORmGAT6OQC1nThudXjAMA4ZxhA+Bvr9UxGFo/117nzI4jxo8ht0Ox3lGdQ5xt4N3vvXrouccGpXQ+bAyKjl1gPvWlTyTYyE42lvBwQePioKUU6NJAKgFo0db21xifqZy+t4jF2CaZgyNIsm9pUIMPZJIrR0qRRLDYuilkruuU0A09jlTdHCIu96XjOXa09tb7A9XXd6FGIDmrGQaqDw/1ucY9WAreaH1Wh+p+wkzb+8pZPRHe9bke/igkNQDqXwBrGyui0ms6XDoidT8HbLiFB+m7G3XSpzc/FKp1R4ZSRXQHkhJy5JGAX9Ol1Rlzx3TirRCK59fJwMvh3VGnicABR/68Gv4hV/4eRyPNzhNR+Q04er6gJTnZiyJrVLXXvtnYTtC1aIXzsN5iPFcFOpwnDCcTph+/CZiTUhpxslnnAKQYoCrHsPsev6GHGepRF/yYPFdaW+ZjjReig7IXIotz5tO4JdrWvPlt7z2W2CPpfZc6znf+tm6f9moVlOk5HhID+tWBER/j6YKbkXTdGROesovRTIuzYOGNqL5GeX9SmoPz4v24q+enbRd1EQGyuFwwDRNeP3111cNsbtBiNor5mla4Wps69K7jKEj1IxxHHsuhzTutyJ9cp5knzWWG7rwCI8D/03myNU8k0JdM1wl5Sy4ipImDMFhNwT6m1sXydDRzbXsWZfk1w6EUkrzwuf+3aT30X8HV+n3jXWq16Z0dEjHw5anfMtYv7TuJFVSR+D62Hv08Rqjx24I/blk5Eca+VveejkfMmLB0Ru+Dx1lleeG3tc6f2qrGAS/V0dI5J6UskRX1qwtCqXLuetxk2ukNNrkFrYKOcgzVEYgdQ6pPBfOaInquaXc0nuNnXUyL/CM5bDhvAKoIJN26HBOJ98r3/vWHr0k37VMYCrglvyX60OuGSl/9T37Sv+OISI6D+SCwQdyRFbe60TH8550C6BgGAJqzRiGgGEIq/mWc6TnimmWMlf4Weex4ScLi0jdU/zZn35pMQ7QPM5chlVsxlyWykq68MAiQDN5SnNBKRDUgQDXef4UQSmiNK9WHNfK3yKogKUkMNODdE4KsM7h4RA2Kw+n02nlLWSlxnuP0+mE3W63EibaY8qH1bp87HpM2PDi5olxiPCBGhqOY8Thao8PvPIBPLl5jNvbI6bTEddXByyBEC/Kei9eIzZL2EDaUkC6sUSEvmZA+eYFbhEl35KIKxBLwVf/2R/jzT/7Hj780Y/iwXPXeOQSpsEje49d9hgSUOE7rURTZfiH8i0c5B25No/wrv/O/y0hDzGpKLGHbFZNl/kzOtIhP68PMH1IXlLgdMLw1nrfen6p4Eqvn7yOzCfS87aVR6QNHTlWkp7B6062L5A5KNqQAtYJ85qWtwWdwyWdC5xLsaVIslHBr8fYIi6CliidG925k2acbp7ilZdfxkc+8lE4R4np4zAS7W+aaIVRml33kFNUyHcaWRCRMYBLyKMXFlgZ9XA9B6GIxq0hLIn8V9eHlg9ERSZKrZ2Gx7kS8JTPwDk32jHF12LjUCr0kr4sFaJe4CMG1LxWWjmXdLX3lOIsI4ms4A7DcNbgWeZfdXpzyj2pvVOm2rcVUCEI7z3iMGCaplW0Wl675+5hoTSy7GBZLAsOBO8o4igoljkliio0GXKcJxB1ua7o1rIQQ9+33mGMdI+9dHdr5DyEpdR2GBYDQPf1YeU9ici1dhBI46+WTM1RIYwjUBSiVPSWISyfNWWW10iMlEtVAYrqV1GwpNI87AbquTS3aOUWNV03opaVGOUalRRC7ymXq+SlNH4WBUdKTr1ARJcXrdjF1Oh8XTaVpbCHlC273e7i2SKLmsg13OV7YzpwlFfmdkn5mOZpNa/aoF/2ztpBq51X3nuSO+1eU2H5Ic5gB8SwdrzyWjqdTqtS+tLJIQuUHI/HVesBogGui//wPk0p9QIltPbrqojTpVQJTVlkWfHp594Hw/2CGVL3FD/87u8LQ6pRHtjb6ha62iQqK0mFUB7myx5lTw+QUkaa2ePBG9Z1Khyw0IWk8AaYFua6wnXJ2NIlbIF1VEwrqVseIn4e9m6xgsfCWlYbkiVq+Xr8nXxP8l7SPKPUghAcUCn3aX8Y8XM/+yl841vfxG434u2330YIeywGkxe/97gO/bhzz5emp7lGw5AFKIInel2plZSgWjAOHuXpE8xvP8K3vvYv8fHXX8O8HzFHovqE7BES5Se4sDynVLjODiF114zq6IcpDtrTrz2wfK2cEilxfPDJ5+Z/lZK/FTnYir5c8oRvRSCkIXYxArcRtWDDWn9+61BzbimHLI0PeT2dFyYNeh2ZkMbYVsGLrefYGhP53hW9cgM6OshKO6+ZzIVqpFc6N8pXqTgdTyg5YwgBX/z1L+B973sfnPO4fXqD5597DmgKZ8oZYRjgHJBbHgJKXe3HIGRVlz2N3gPgbN3A+YUW52RezTJ/nmVXXVeklEqpHEcf/CrKwGMpHS48blKusDIu78976ofkgK54OkdFeQAyJrvCXMtqHaSUVk3EOT+0YvHyS2WP53qrgIrHOvqUS+mFhyRrQcoJvtY4jvDhnNEgnQByHckKqq6KoibNPEEr5CCjlbpMO0cSfAyrQjee3PrN4FkiiRVrGSHnuCv24tzhPSkrzGmHQmdJ1LI6z5ieJh2GWpZJJdiLAh3OETW0r8OwOOGq2PM6ivlOclfu5b4GfOj+L5bDi1FNY8jrq9ba99gwjqs5ZeNxS27Ks4UNDakPpJRW/dV4XMY4IKdMxRloka7SB/p7RSU7uffkGLCDRY/JeX4YpR50pwyfRyw82l45nU690rGs0ikNW2nUyn0oDXkek6oo6XJ/c681uv66yJd0qsk9p/P9eO+YIXX/YNS+ewodyQHOaUfyENyiifBnvTtXmNiDJA0QmaPCCahbFIMt+oMsI6wFG79X/l1WtwGItiMr3cjQthRcfC1NnYoxdmOL71EqbkyX4IgBf4aVL7pOoSIO8wlf+MLn8Wff/zYePnfFTy1G4G7b5lJ0aivSw3+f0glXhz1GFOCtR/gv/y9/Hw/mhKEkhFpQHJDduuyFXht8ra2iD8/CO9HJeL63ojVbzyivKyOFUkF51ngx5PxvUV35s1vUj61cLU1j2bpf6RXUlBb5Hv5ubQDJ68UYeysB+RldAEPuHx0BezdrTNJ2JEVWzot0bMg1o4vXSFlQCrU5OBwOOJ1OuL29xc3NDR4+fIg333xzpRDqAhJyLraMWulRvmRIX+rL0pPHRWNyKds0lUka0FvUH74uRx3kPtXUZJYn0rgCyBg6nU6rZ5GOKbl+2SElDTlJV9saN+kh184a/Tt/h/Zu6+fnedcecfkajx/LAPkcmhIly8nL6IU8r+TYybnkz8kziPc/j4+MmMnvkFEq6byQ87old+V+0PJY0tZ0FJGfWRqWW2e1dF7wPtOyU5/fGl4ZEpqdcdG43KJdigibZgVIOSl780njWxeGkRFa6UjVlD9tlLLxumqvINIatOGqf+Q4yPuQ+4ALOUg5I1tVyIilZgtsMSB4/b2TMazHXufE8u/SMOa9syWvt/KEDT95uPoszojhJ4Y//Mf/u0XwzhRxYdqArL4UWulM2YuCFRgZki9VeBPrOvJD/wY4V5HLEnKWgomvyYog967QjQwlLU9TOaSHHljnh8ioE4MPrXmeO7VP/x1Ymq5qgcZjwa9rClhXzFEAT/dyPB4Rhx2CH/GNb3wL3/j6d/CjP7/FGz9+C9fX13j77cd43/veh9vbW3Qzxq1pMvp3iVV0rLhWVnU5+OeSUXLFE3eLYS4YkoOfHSYf8cbDPf7yX/9rqA8eoF4/jzfffAuH3QiP9RaWUZaFzrDd5LSvCYBKQW9QybTBw1FRTaWTkcJO5cH68NCGCv+rFVd5QOpIAR9Qem1paGNF7g022rdytPQ1pMIjO9Vv0fK0F/lZRim/FmPEPM+4vb2Fa4aK3ht6vqTyJikml4wQSb9h7yh/9yp6LaI0tVI2++l4xIMHD/DWj9/Aa6+9htdf/yCG2JwhLoo1Q4nZlPMQMQwBaTot917WLRw4gFtrRXVc4prWTxypoubxeKTP+ogIVqSWstshCGUWzVgIu7O1xWuH1+DxeFwZSfxeLkW8mrOSV2Mu9xV7mwsqXBxQE8kipv4w5Y5f997j1ApkeO979TNmFayVzEUh5X+lQ4mS6FOXZVK5zzmjYDFu8rxQqnrJchFNYfmY65InBpAhs9/vV0yAYRj6vJ7tlRA7nYnmfDE+mDkgIw8AiIbpPPJE4z6OI71/apXkIPrk+bUTRfbB6k4Rt8gb+aw8Pj0npywULnmGzXl9Pri6znuTDkv+fpq/8/zNYRhQ3SI3pHNDy+Mt+SAp8/ze/X6PnHM31OFjzzOrtSJNpyXS5tb5WKUUzK14QcFiCMzzjAKPMa6b2krjFcCKGirp3ZsytFSMYe0QyGgyPiwRmZvTEXtFc5MGo9Q/XFjnO8qzQDqCVwY8FmfNKqrqw0rHkMbfylHi121DGNyce7fbtbk4l/Uxxh5h9t7jeDxunod6T8jPnU4n6g/axvCvvfazMNwvGLXvnuJ73/xdAE0AtgTN0PjBVdKFsByCOtdDRn6oN6/DPM1nSinT/+j3hYMPoIfsNa2jKD6w9Mzwf0uBpilLfA/Awslnoay9efLvEltKq45ASKEmx6nWiugiUlekqbFxiAHRR0zzhFdeeQWvf+g1/Mm//BrQavRcXR/w5MkTBG427Nbefh1d0PAVLUsKqK7CVdc0Sqq05SoopyM4DC4geI+QM0IpeP7qAf7oj/4Iv/bpT+PR6Yjhao+wocjraJB3DjVR9aNzytS60IG8fzlW2pMYWoEkx4zGSjx4brJKfaaWXJdn0VSk108eYFvGiPzZmmdJjeD1u9vt+u+S6iOVTl6Tct6kh14XApDv2fL2bj3j1mu1Et++lILD4YCx0W10cQT5/HJPSSNKvkdDG7kyV6QraY1edzqdFq9zo53dPnmKz/3qZ/HKyy+jlowxBurpAuHFXhl6rdm3E9U265KP4aH6IgV3liMlldQ4jHBtvodhiT47kec0DBwpqauoCc+PHKv9fn9GYdPUyi4bsRisbPxwBIzlUy0FPhJ9SRo8XGkVQl7mWlYOA63wL/ttXYhHKu6sXEeWEWKvlVb5jfdBKSTbOELUFe6WryKN29o+s6Is1YUGS8ZmAHKm1gyy4bYwovi5UjPApCKooz0Oro/dKmqc6XNMVQOAXHNX3GVrDKkAD4ImKZ0VvN67zCgFh/0I74BpJtkw7PYrQ60UaiKtHWTSUdj3Fzx2w9jLYe92O6ryJp5Ls0dY5qxo80KRl+uRn/F4PFLD4sbiqI0O3sdWPKOk/PF3c3+mUtdR9Ir1+3WkRBaC4PNCykyOLvL9jwM5FjwdbfQdhSrdkdujtn6LFVHsBSnjpOGWUkIUkZotx5zWN5xrVSKL0HUqySXvY9ef+Jry3OjP6JYKwXKfatqdFLsygqSbZnf9o32edR4eY7lG5FxwK4Jfev79MNwvGLXvnkJHc2qtnWMrhY3O/9F9LJbfKb+HekVVpLRNHWAhyUm/kiMsw9vSSNI0B2DNJef/BpZDGsAZFU9CXk8q80yLWBuB69KhUhhqb75WyqPzK69kp4OkpV/WF379s3jy9G2ECDx+/DbG3ZIsK3tIXZrDNT2HfxxVMPKU10CKZYu8OI8rN8IjoDggxYo8AI/e+HPs5xm/+Xf/Hg5zwvzk0War4EsUtVorGXJ1fRBxL4xczw0YHUHUlDBt3PD8SFrVJWoJQ+ezSK+urBQpIydbSpmc5zNjUkXVmE7Ff3snPMsQfNb8X3pdek6vr68xjiNOp1OPwGh6n/zRa/hZUa+te5EHtH5GnZtQa8WTtx/hlfe/jForbm5ucLq9Xai8bqni1aMcLY9PvidIo6kZXyi09vX86sqB+v557mTxB3mNlYEmFFCp9EmZosdZ09EArKrneZReOa9X8CvnVVblz5Y8Y1nORgqwyEQqyFExBAcUKsc9RooY8HcGtyizNDDn/W4qVfvoCq6cKzZE2MHAzzvP80pZ1zJW7kO+D/m3KRXk2sa7VeXjseLnkePH9zWOY4/MyUpuPG7yXNPrdisiLBkIOlLEPxxp249xZQDHGOHCsKLybVGR9R5k+T34deXJVAuxDdyaXijptJoSxhFPGUnmfDqumvn222+fnbMsM6WskeN2aZ9IJ9YW3Uw6Z+Ua4GvLs7kbbW7NcJARcE1x1TJ7y5Dcmn/tFMs5I1cHF5aqgZ1aKJg5MvK+lb8nqXy9Ymku1D4hl17JL8Bh4KiVK6ufEOmMLzWhIiMO59Q+vm/pQOQ9qs9fw/2ERaTuKf7sW19aPJaNHgIW1lLYCgWVvYz6ECEBsVTU4dedWzy6XYCH5XNSCdEVkmIcVptcCn7Jc5f3IiGNPr5OT3gWCg9TCLbKHUtDTh5O8pDSwnGJvgyohYo9lDIDziGEiHk6wfnQuNIeuczYHUZ87GMfww9/+EPsxj1ub2/b/bWDSNAntEdNI/SDgtx0tVWdIM8sejW/4UQlz/LgcTsUzLFgN0ZMj25wfPwEX//mN/CpX/hFFOdRNqI+K68vcHagofUK8t5jbocfe9+2jGA+ePr41/NCEbxeu+Lo3Yp0+CyDRXvfdARUzrlUAraUga371jQ8Xh/S076lKPEa4iiWLl8ur6kVP3l/2rCVr7FBxxEpNqakQiHfv2VI6byNS+Mrn4vRFQrxvPza1X6PL3z+83jl5ZdJQQwR19dXmE+nFr0YlqijbzkOldZ2DB6+rnPMKMKzRCLagwBMTWp7oYj1lVLCaZoRe2RJllqXhRUancwFKr3u0Hvx5bI4C7gPFJdHkWvvPKeswhWqtMVKGkfz5HurqyjwPQLVnVBMWW3rbJqm3pdGG1kSzlXq9ST2IlO4+Z5zzgi+RVrA/bcqfFiUwim1/JaKs4izRJ8joRDrfKVuTORM7avEveVSqbdOoepvVByJSrjLwgRsKMm9k2tTfOt6LrigEVcepLnFpodf5ujmsm5twAaT3G9sBOrPrYrt+IDqKpArQhCNi0XO2KrkONxqPnvPIec6lc05h1074zSTQO9xzbDg++QKt8MwUGS1oldKpLUmDI56bjyinQVOUNa8p+qxQwyrOZCUOSkjWdfgMWZnxtyKXw0DFZngnm2u/1/bk94jFUHVF3lecj3yGukOUsEIkM4I3ptsSPpGKeQIW2aqaXMWBu8wp9yrAPKaYv1plaaAtaNQ6hXL2OVWLfLcsSv1FooO195DStJdgSX/T7atkGwC771FpO4hLCJ1T1Ec/QDrKmMUQaiUnaMUTl01jKaXolDAuqzyJfBmvRQtkp781aH3LiIDLEhksidwnkQuQ9syGia9hboHkfRk83U1VWud/1OQakGqCbMQwOM4Ek2mghpyJrrm+973PvzGX/3L+NGffx/7w4BVmYfqe2SKo02XcR4F0Ieoc7XnkwxNOUX1qMVhvxvwYDeivP02dscThnlGqAXecelyD1c9QgW95gqKK+SZ5jnEecSSv18aGls0se6B9K6vz1JoLKt3cDGsoo7P8iTLeZFzo72clwzyLYNVGxuS0rJFF+U1Lb2B0gMt5+ZZkZ+7eAv1ntjtdp0/z7k1W44BPU6amvZO0TLtkdYe5VLaHLp18jUXlTgej0TzuzkhiBLOK8pnCETnQTkrNsBrpTrKi3HBU/5ILWfPKBPWvfcYgmtRqPlsz2wZJTphn9cSX3ee5xVtUxujCyOAdrpzoefAaCO3iL3K62ppMcG5PQ6pFkw5reheshk0wNEiqozI11/lhTqgugAXBoRhdxbF0DKbjS8pE6XXW/dzc44oc9yzSxYIWGT4uu+flL21UhQtxCU6LfNtFkqmKppRl3vl84fnjPerdObI59ByS75XOkl0VVe+H/mavKeKjOi46NE5w6NWB8otdm19lP680tAAgDG06Hxd94jke5DfXUpCKYkito0uLT9zdXXV859LKT2qJ6OqUtYQndShugD4eLYna+XIcW3NmSkPUVL5ZLT2klMopdSZLFykIhXK1WOLZi4bvbryeZ4rX08XkeDPScbOVp6bzmnsETdHc5fLuTNKUxil3NAROr0nO8GnrqnhJQO1OHjXaHzT2ml3ZmSVdWrFu2UcGH6ysGIT9xT/9f/7byK2IgQuF4w+wjVjKrXkyQL2lmLxTNbaaXxrQ2dpGLlJ0WgHIysYPRqmoh3Sm8iHMyfEysIT5F1eV8gClr4Kq9+r7gV03viUDv1F4I3jiJubm1WStXweXRBAhv4BYNiNOM2nPj7dOy0Sw8loBSrGnoT9J1/9Gv70T7+NH7/5GD/+i0d4+NxLeOPHb+OFF59HTjcgtWsdrQDICAI8nD+vuqPpmbVWlOq64sYFKHLOSGV5xpOPeCM4/Nv/8/8Y027A2wioCfCpYKwFdUzIseIWGWMeEVxce2BFOVfZb4XvXa4THfWTh4tUlLaoWOcH97byL+dwK3olvXNbtDx5QF069CR06XMZUZRzIyNV+n6lkcYGkPZEymfeOgy3lFw9D/J3fi4dmeVoTylEO+F5ds3LPDWvvCw2UbDM7el0gh/owL95/ASvvvoqPvz6h7AbRwQ4TEcqFzz4gClP/fulUcL3yXmVnte32N8+BlTfjIhKkaFY3Wpt6mdlI4eVc+m95v3T78EvSq3Mi5KG0zAMmPM5bYk96qzQu0r0Q1rvy3wNwUE6U7z3OB3p/vfXVz1iMKV5MeJbVKNkkpm7QYxZJbogRZkWeZhaCe1UADRDbZom5OoodyxTH6nCRnfrmZVzxn6/x3GmeQ5lXTGN95Jcd1T+fol+UECF5JB0frHin9K0khPaIQEAHuXsu/g9MufLx/Fsn22pJt6fG/B6f/kYVkoxsFDKVrIDaznBa0i3OWAjWke3pDyShr/8To5+HQ6HVWl1NpgXxydRweh6npgSp7q0I2g5zJxTVERuYFRyphtvLfp3Op0w7K6Q2/uHdo6W1O6nUFXOGBqVLSyOsFwdfByWNewj4ApGF5DS1Oe01rqiY3ZjvSwFqrSRp4tayciQdtBo+a7loY6aSQNayuu1MxVn8lTSLHt0rGTkmdZ6HCmS5MKwnNeOVtOAJbeqcIlzrFu4pDQBhZwN/Ny3t7e4uro6k3ml9ZSkyLbra/Gvv/4pGO4XjNp3T/H97/4+SisQMIaIeZoRQ8Ccl4Z+KSd4sAIh+9lQWe955maKHqUsJVdlVAlYJ1nL13Q4X3vttbdH5sNw8iW/hyl7khrBVW+88+qQd/B+TbGhv9Wzz8rv53uUFf4k3bAnXpcCHzxc876jrA1KHwIKez5DRIXD8fgUFcAHXn0ZH/noR/DVP/kqYhyQ5hn7wwGn07E1GPVADVgiTxxWJDrfJafSeUSPqIOd8hcaFcpxKwxKKn7Pw+fxpd/5Hfzyz/4ccvC4QcI8ULGK4D1CdQhTy/Z1a7rEVhRRU/W2DCP5/ndDTZFezTMPoaBJyOjqpe+TRos08thzyP1SpGKjqz3q592KwOnDWo+J9mLyPW2NmzTmLlG5dPRL0lTkHtDXluVwvW8NnmvFEBaF89RyK+EWii4f+DFQYZV5pkpy0+mEKc34K1/8y3j55ZdRCxWJ6E01PRVOyHW5P/mMZ+PF8gmi55WjnMAKIPiAMURUlcy+NVeSdiMjlRq5LI1XpUEq1yL1fcmIwRMF0QElJyoskUipDN5hniegukbFyUvRCQdUEUkLIXTDwwVZvEEUJwAbmWOLMhccj0cyDNt/A62fW12qaIYQALcU4OCCAeSImgG5Lpzr/ae4miAA7OLaibKllNJ6XgyfnLkoxtLYmQ1kWnvr3B4ZHej7oZw7BLSxws8nzyHpHJDGRynL32XE6//L3p8F27ad52HYN7o519rnnNvg4gIXwAXYAGAHoqMgmhJJ0bJTlSpLdspOHizFlZQeUmmqHJcrL3l2XvKgihVRkUulOJYVRbasIq0qi0osFSm5LFESRVFsQQoghI7ARXe7c87ea805R5OHf/xjfnOsuS8upRK1H/aoWrX3XnutOccczT/+5vu/n8+nlFcnz17tN/2cp77yvruMkAuRiTHAssyV1KTAWqljJsWk5af3DjEuKCVjGAJSirDWVGhgrmei9ofXvG0Q8VzPI4M1wplrhMtWB0KskZ1gnUAodyDlm2eohYYVcplzxlILNBuIoedDQOodrQWtSDMALDFJ1KpsDVmFSet8tbOe5LTqAb0RzPpFT56z59ziZ2XUyp4ewygdjURzX1nWW2ubnsJ9tCgNEqh1rHLZQqIB0/JFSxEDWOZtWzewVGImre+1V3S5yU5yHhkoSsLhY49ewH27W+0e2ndHm6uKMkB1Mzpqaa5AzxhhQA94efUHU6+kMjyDIXW9osmJm30ESAVfCKElNt8GDWS4HgvRLZFAai/x/OYLpVJhGcCWqp2faS9kz/1yZkuG0KAsdoWmwGjR3lS9iAY/+iM/gidPXod1BTfXb+LqOBLET14lm/YytsDYS+NA+9G/pDpihnq9bfVMeevgrVDVOxTE66cYpgk/+9M/heF8wnS+AWzB5IFsLFA8XLZw2Cqne/PLyghH+W5bN/o+z/FbfY7nQtsmd2Yn+tIbLtz3vT7wtb9d47XHCtueJ5ujTEyGoOuYlVP13GvU5+30ozeOdG33BAhvpzHJhz5PD+Hb7MklyisljOOI9777JeSYcLq+QYoRJaZNbk4s21onPJasrN4mZ5T2nIlPVPHmGi58jT2SDQAbebVXx6c32vvaN70BzWyGa8SywOSEvEQgZQTrkEoRiF2Nri15zZfpjUmO4uacG+EC532WUpDKNhKq3415+/zee/FoxxVGlXNGwjq3SskcqqHaE3js9ZH3UD/uvG+ZIIGNnD0jvxiHVEyDlhXjsCR51gwL4wKMW41eJuDgvc1zymPKzgR2rvCeZcO8X6M9hLSXQ30f9ogWLs4UQnfoZ7YwtQwlFtqMV9zmibb9a7YQUiW08GYfEs0ORKb1Ds7AlNUB0YxYu0JQWcYpXI1h0UosorT9rBf048TriYkoekOoJ7jRprDHt8ol1M9xTal+HjiXjcdqk88LbGRtD+3ujTlGc/RGbH9u6fNrRNIYWfu6B2Cl7IO+t6SCJVG+dTb/XOfAffu9a/cRqTvavvU7v4RcYRvWCIVnLhnGrpvKWYdlmasgk+8pE1POCcMQ4L3DPE8bJh8+qDjCxAmPDe8ewubw0u8rvKGHaPBBrMVuFeKgZBL6ecV5R4LSbb1hCaV6/jRKpX1iIdbnQqmAZ89ofxClmNpn+RpMdZurJ88UwHkHawVPblAwHga8//0v45vf+gbGccDjJ2/C2SPQaqiL90mupZGoDOzw7PUHNwDl8WtRKFs9jzBrlAolwyDBLxPi46f4rV/7NXzih38firVYnNTJMMXCRgMTfPNi8uEAbPMw9qIye1CyPYWFFQxWLgBsFK/+u3w47I2FNjUweiVG+xZCaBSxTBl9W0Finvv+INx7j/vIxrk6D/oaKPw8bHjt9aP/fM9QddvY9TC4NmeVwc0YA1/zUtiQkGhBRoqxJWI753AYR3zkB36grq+CR48eYToJPfs4jE1B83516qgXV2ncOQrYqKtJ4ZJ9VpBTpeTHCuvhCDKPR28870X4mvJmV4gp508EGoc9D7bKRM6HGIYBrmz3jLFFyCqslX0Jg5wKvK2KPO2ZpZI9jOOIWBW6+Ty1ewzeYRxCM1SNdYipEjaEAQVrdNWKKMAwHgBIHRsJTpsGAZPPWaAULHVuACAu8wXVOUPutDlPuavW15y9ddwYmqeJ9boOOCKhhgQ7Ilh5vc1o2dsPW5niNsYW/2xzRLKIr88RM1RJrP3lM4Kdc2KIbWut8RiwA4YJabbjtBJcMG26fD9tInshDEgpY5kjYKVCICvtztoG49Sx0j3GzwJsjWBfz8zVmZE3zswlpka+kLJEotpeM6b93fLUsJX1arAoGkTPei63wUZX20tk6PDc9FBhdrD1ThLOt2a5rrKkP9/YqNo76/g6pUjdTmu03MxK2NHkfPV5FyKOsLqGOielDR6e/ybHS5/3J0RYvZMT92QTd7DdG1J3tL3y+V9ATlnqPxnBRp/OZ4yHAzRQn1OCRWWPq7WIchHYmrUC8YARI0BrUbGnqPcc9UK+P8T6oo8MrVPYB4fPlQGwTxBWpWb1DAEhDCgFiLVYpfN6ECljEoCyVYwYg86Jvdof9jipd2sbESk1zF69kzEKFKETaLayG6Ik5FpPKniPR48e4f0vvw+vvfoqrp8+wbIAh8MRp9MJDx8+3Hi0uVbUW7X1vlhftdaUta4pU0Wo+DDZBQMKhlLwYDb49K/8Cj75fd8Pf3WFKSYY7yXBt0JL2EjmA1rHkOuAsJHBygofar1yv0c8wutpz9t7G62tzjN/h/PruA/6+V5B65Vl9qBz9EP/17N9sTK2lxzO3k1W2PjA5j3GjZPnb/OCK1SV9yuTBPTRBB0brd9jqzKWc66QsaowVGPq9PQaD66uEOcFP/oH/gBeeOcLApF0Ht46TKfzmsRd6Zd1fQJoBSY5B4WVZuc9Us5wxiB4D5SCuAhMWV0O1qwMkjo3veLFxAAcgdA9vaGnrlBhhZCpAqvtfD6LkeQdlnkWaJQBzqeT9KUIvA9FmFJzjkDJiGmBqXDlw/EI54LknRiLcRgbOUDMa36GOGCqnKxsaoOzSHFBiksjGsk54+nNCTAG4+EAV5nHrHMCt8LK9DWdT9XBJgXZYSqE0BqgrGvcO9+gmQIxWw1ZLXbcIwO8J0PD6H63rVCx5pDJ2lup1Fl51/mJMSIVwPmAoRqSuQDj4SAQKWPhwyDro0M79JFxnetliRtl/HA4XEK3y8qoxxAx7Z/uvXk6bww93UNMnCHPlxHjAmsNUpK/1VEpUEhlYRVoJL9vKgQ0pYjDYdxAAXNOm/E3xmGaZjjnEWMCrDhQxZdGBkApmKdJoLbEvLuX/7M6DqPkQGGF6OrcWR8AU422asAb68QIgORapQoBNCg4n27WHMh6LS1w3RMNpbyuN84bZcOUI0dsqOq6WpalOatmhSOSfqLrpM+H5L5oX3VNaH+47ACwdXQpqsAp7Lc6pcTJu352mmeklJuBZIzBjTL7koEZQsC0zChZnBxhGIWdtKYPxJRhqhFmrMUyLyhFdApU+GVKCR9/5kXct7vV7qF9d7QxFSx71nsPKkdj9MDZa32kYB8ffzv0DNjWttI+6cHEofXfDQ2zPkfviRdhycmiuWHI+Vq9ks6KXMsvwAo1YQgiC1ntdw/b0LFTEgwV0CkvOE83eP75Z/GhD38nXn75PXju+Yd4/PgNPHr0EK+99lr34P/iW20P7masBazgs4cccTVH/M2/8t8Ab7yJwQDz+Qw3DlDU0J6hzIrpba1fH3tQmw2TEV2X4TV9//eSh3mdsPewLwCpn7stMbn3Ivd/v5XBx2PeQ3pa9KB7jt77fRvMsI+g8HNo45pEColhGBI7RfrWG25y8K8eVzUuUko4Ho9444038O4X34X5PMGbyzpxwzBcFCBlOdDnXOq998aEo8X87PxTlSZWqPp1lrOwgnFtvZ48geeIHS1KG91Ho9lA1mYBIF+yWzIVOYBG5bwZc4qAt/2QclPQWFk3xjQDhed8L3LLDg52Ur0VrJWVTHYs9XKc943mjOh65Hvr+lnzYU1jbPPeYxxHHA6HDfR8b/3w/Or1WV4oPK2vd6V90nXHc8zOlX4NcsmNPWKD0+m0WbtcR0v71sPgdP70umyI6bhx3i6PsRqnvcOSGR95n/Sydg9Oxudcfwbyzx7OqHtA76H9ULp1prDXa+tntZA4O0H2okos73t9gmUWO870WTnfrY9S70Xp9846Nvw5RUKbykYdt8Ph0Iz0Xv9iyKEakSxL9CfnY6kzqD8r+8bOIYZGvl24+H37vW33Eak72r75pV9ESVLryXmHm1koh1PJLaYxhAHzJJCNmNZaQNKk9onIGaHxBXCh2KjA4OTtHtLUGyP9wc6HFMMu8k6i8R5O37tAAhhIOSKlpUKGgJQinPNIaYXGqVCe53kTfeJivAwX6OEOOWepS+PsxqPJxQQzJNN2sANyyRJmlzryiCnCW4+nN0/xjuffge/53g/jn37mM7AOWJYJh8MDUr7qT7MP7dtrtqCC+wBYgfqJIal1nCoFuTNwxcIaA58zXMo4Goff/PSn8cHv/T4cDyMen24wVshnD+vjw4YLg/K89tDOPTiezj9waTjtGS28Bvby2/rv9gazfq5PNN+DhPVkD3xIaWMFZS+5mQ/cHnrWf773cPPPfrxY0Wblro8IstLcM1Lu7UNv1zlYaqSR5zAuC2wBptMZP/YjfxDveeklBCfRI57b1oeyLY2ge5sVbZ6nPsnb0rw55xqRDgqQU5KSDmTksgLRK+q9oq3XbLWPKOrKa5thQNZaGQO7Rs17EgaJRtd6WNYIHLgAuWSkDCwpNqVumiaUWGWjs2teq10jY6mWKXAoKDkhDGOTYcb5Fp1iZbStmQo71jUSnCT8x7yulVKkhpQ1BC3NQhQCg42hw7JA1470d/27ZF1jtn2PWVfneWpG9rIsQlhAMjTGiPFwvDDW2pqg/W6JmIj3W+94K2ULf52mabM+ZAwunTZMiqJr1jt7sYcAbAxMXjssmzhizWu2NxwUfaGGnpCOJFi3QtXlnmtkUu/jyLGVi0TaUPehNwKbLSnL+dDJRnY4CXumRDVtTb8tRdgtC7bySWH7QDW+jZCgNGdnSRiCxxLX59KIiz6jGobq6OudU7xnOZLUy0eG4ZZS2lz30Gk2aPW6bFA655pBzOu+p9rX84Ej6tYK5kdrcy16Dx/WfRMCQhgAMiRd3Scppxa9SykJxPKWc6PXvdKGzVVgxNaa+4jUHWz3Eak72sSI2m4szvPp4WxcO2Ol5SWygs4DcpsXpG97cCP2aHF9p94b1it4eu8eYrgXARDhWj2WSDBm68FUIcQeHj6wL8krtt7cxv5m1qKTm0RYsx0nZy4V+BgjhlqY+ObmBn/gD/4wnj59A84D19dPoHCPf762jo+DkFVYGAhaoHrMYHAoHt4GGO8QfUF2GfPNE/jTCXjzMYbzBJ+WZr7xePQKrx4C/Zjtzf9edAzdPXQu1evKhs9t99DGMC9dM33/9tYpK2O9l3aPgIENnd6R0P+f398jMmHPNnuC+/HZ22N7kTp2YrCn9dslHXO/t6QFAhdSCm1rrTDzlYKbmxvc3NyI/KjKtylSyFkDwRlC9ZuxNXr6CDQ/B0Mj23OpX0ERrzTn+h2pGbU1mji6ofdRlkYuuMrRZ3129aozTNBaC2+FotuUBOQodN3IcKbAVvmZc67MePpajdys38jbPdJHVjnSop5ub7eJ/KUICYNxAdYPgPXI2FmzJW0cAsUaJJSLKIahSBpHj/p9wvtfcwz5jOk9/Uz/zeOtUSOd88PhsHGScBQNWOFU7PBg73szGqmmIY8t92EvMsdnHMtyfr5+Xx2Px/YcLSKKhJQXLHGCsQU+WDhvMM0nOG8QBodcIgoSYHL7mUuEDxbWAdN8qrl1awTN2HLhdJKajxbWemSz1vzbOD/Ldgz4vGXHEsukjdGHvNkjxggZSMzAaVoQs9Ceb6KOZv1ev/d1v+7JSpbDuhc1urPnsOrnlqHovfNkL8+Jn/mtiEHYmdbXGtN78Nhq9JOfiSOHvbzR/mgE6TakQp+Lu3VYOhjjNv/ro5T37W60+4jUHW2vfPbvwwahzF1yggsernr+fE24ddYheMUqc+0agBVxoLQ6BHz49cJ4TwHqvWSsRLAC1SvUwnaHzf+AnYTf6vlcD1rJC1JcOSDUszAFRmqMbxT0w+HQFK5e6HLonb1TTbgrBamxTTm0CpWrz+as1GaS7wHFSM6Ad64mfUuV9PE4wA3Ad3zgu/Daq69iHA+YZ43u/HNEpLDmSAnbhAFKpUKHgbGAh0eYJWkqeotTyEgmI5UFds747c9+Dp/+1V/GJz71+wHnsBAsak+Yr+sFbb73IlG9ssiRBj5UeN73jBu9x1tFndiY6OE4+h3O3eOIWv88fb0XVnL583twJ36Pla89CEm/5vvIG/dHn4XHV++p67FXHHqvdz8faqy0XIAg8BxU54BGYsYw4JMf/RhC9dZfHY+Iy4LgfNsPej1bk9xbBAVbpYT700ewQwgtvwoASi6VeVIgqc65VhdHr9GzwnEkQeeYFe5NficREuj4HA6HDZkFkDE4RzJmSxbS5q6gErWvxcSNdVJrx1rJGqke6KBrjRg/rVtJGookY8LkiFJURtoWRZMbXkZJXSXtcVquoajVlmGcA7S/Og+aEK97tRQUU1rEi6N0fB9A6L1XyBfaz145lmdaZXqMEeM4Nrnb9oX10Di+dR7OB6QsVNzGOiE4qJ/ooZC93JG1NGxkBzvzGrqCnI17DHrNEWjXOWV4ma4DNeCWOLc1rYa7tVZYEXdYHnV8FS3B+0jP51LUMNbn0/1bIXbj0IhKnFkhhSlGeFv3V85w3ldCpkvq7w3UHkXyfNTwzKWRshgj5Amq+DeDvFJ+CynN0taM1BtzF3tff2coMOhsYOOFZQTXhetlssrNniCi11X25GkfJdw4Rjs2xx76ymeV5kgBkPwxIwV9G/U+hDDLkIwyqs9U46ztHwClSH5gLmh7QMobSIRQAsgGwWuxaDaO0z3ZxB1s94bUHW2vffVXMC9zZWkapehlrSUSU4KveS+rcVTrspgqHBJgjYOFQ4oZXEOIPUrAKuBZkbgtkgOsCg9HcABcKJ8hDC0o45waQcJEU3KBs0KCYW2oNa+qIgWLVGGNxkjtBGMCrHEoxdTPWQxDwM3pGsag1g4R48rAtINdMd7KEMjPscSElAvCMCCnjLhEeOdFCY0J3noMIcAGYEmzwCp1fLJWLUeF0hhM5xnvfteL+P7v/1588QufQ8wzrm/exOEwIuaEMDyQxHVkmSAZKXqZmkslEbFiDEq1puS+YkAZW2e7CKNhsWKeuWLhjIeFgzEWLkYMy4zP/NIv4Xs++EE8984X8OY8YU4Fzz56Du6cMRQLmAXJRJxcRCjbBF3G+o/jKONG3kdurAj18Ak+hPdggbyu2FjfHJQMsWtKpl1N0woh43wgvhZDTlih7KMHvO57Jqn+cOa9YVWZUCdFU2xr99Rj2d2rN5AAgbsFVa5Lga3RocLPmguMc1hSRAEapCnVw13WEHCeJhgHnM8nSH25CX/ox38cL77wApaaRB8Gj5vTtcB9rMBVjDWYlwWlesGD89IPGBSrB7/AXVIWSJWtNYGmeRYCiapQ5lKZw6yQnsAaiXBZcRKkmmzdYrhGEu3DMNZrGqSYYep+ExYxg8PVlfxuTPsczy9HwHWutTbSssz1+h7TvLRE+yQaDmLKcCGI/HEOuQCnea5wJVSlFrBWCDRSZbGDNVLjj4gEUkq11ILUmcooMJXlT9ZOhe7FBchCuuOswM9U4VMinJgzYgT8MNSSCwY2GyjnQUoLgALjCzISYCXSdTg+RETBkjOsDYipAMZhSgus9/A+wBkPwCKlIgn0foU9sZNC5PtBdzHG8YCSIpb5jCF4UdxRZXitw4OSpa5UyZX0QIxCVfR576us6JkGTU2VtXVtlZSRU8LgA5ALlnnG8eohDCxKBrJUVIc1FsEPMDAYhwOc9SglYYmTjLW3jeF2GALC4DFNZ6AZgCL7pnmBtQ7LkvHg4TM4nee6vgqCC5UFSF7BC4FSKcAwjMipIKeC0Q8wxSAmtP/DGuSS4YPHeTphnic44+Gdr3Mg9aWMtXBDva6x8INHSXMzlHIBhsOxkpTonhRYm/UBBQbzIkaBzBNqra8sdOooGEMA1OFiDJzzyEXOIVevwWdEW98EjVXjJ+WMJRUcD2OLfFsUYcfNEvk1RQrN9yQS8zxjmqZmjC7VyTMOQyWtiZUsShyeKSbklGGNjL2QdWVx4iwTgnfwXiDzpSxwLgj1OAymecE0L4CxCMOIeYky185L3U4X4MKAYkU3sd5hiQtyUcewxA5dsLDeVgdNqUQ2Bss8I8VFHLMwUow7p0ZqY02GyQXOFHgLoKQKy80Cg4apteaAjz93D+27a+0+TnhHmyrtxgio2RETla1eNkvMNBvveAaYgls9i6qYMrythzwAK9ykVzLZ+8QevB7qBGwTUXuYgXqkuJiitlIoz8J6OOuRs0K8tt77lWpW4G7SLqGMPS1v8/RSMieH9fX7OQtTV84RzhmpJQVcRD0AOdyfffQcTqcTYpzxkR/8PnzzW6/gHe94Bk+evIkQAt588823Oftvb1saW5BdHSvUV7GwqGulZAw54xAT/uZP/VU8/cY3MThJID9PC0G0ssBM7BY+OgxDo7bmSFYPD+xhPpsn6QztPSOKoR5t/VdM+Vsl0N86erTO+8hXn+fUQ1V6UhaOZvY5VH0uTw/r2IMf3gaF7GGWDgZWaLQa/FRhPd4IrJOjVryuGWqlzhGN3nrv8e53vxtPnz7dQKCaoeEsYmVj42vz5xiCtVfHSZ+Jc7o0srYsC1CNgVRKe6mBo1BdjQZwkruOA4/dNE2bPIpsbic0YXnEUa0+96z/fioFcxQ6at0T/DkL8VoDaKQuPUST4Wv9GuGoeYsimO3a1TUrn3UwziIVwFoPiy3cs4dZosL+JB7uYI38DmtRjIE1viIW1ohmD6lk772sC39BrLD3bNyPPuevlx1927tmfx6xY2ONqi0XtYn6+ed93ke4WLblErEsKocsnAuw1tM4yHvGuItzdE9WWmuxzAkprvmGXBIkxij7jwq59n0tpTSYLSBgBX6mDXmSqTXPyhox0ly3jXyqdQv7KJPuEem7GNl6DrPc4uhmW8fWIIQ1SsnyxtT6kD3CheeSmXbZ4aTMffwdPi96OczO3ZQSYppRSm4kJjqPzOrbk7Gkkltxa+PsRZ/ldZnGwHJTngGbwr263wYf4L1AKJEj0jK1vii8Vj973+5eu49I3dH25c/8vRWKkhJ88FKHpCYxxhglEbp6YvSAiikKvalz8BQ+Z5VONzHnF6kwZEHSQzn44OoL63EyN7Pc9BAtpntmymhjNGyvQtM0hWVZ5voczMYnCd5CNQvx9NbrjqMkPc/z3Irg6TOy8gkw3MJsqFFXWKPQ1co4eRoH12B3LfqSFiyzQKief/5ZfPeHPoSvfOUrSCmj5IwHlRK9kj7Lz+JqyEIFcHUrdwyF3HhMi4L9jBBQwNbqU9a0a5ZSYJaEz3/uc/iuD38YhyHgtfNTxGPAYkqNZhkcEWq+x4oLZ9jFXiRzTxHaM5Z6Q3yP6GHvpZ9nJYJhJD0sUXIPLoui6prmfIie7p89qfz9nt2rhy22vuzAI7mx0tcrbP2YWCpXwN/rlbRUMsIQmrHEUTBWQIwR2u9Hjx7hk5/4RKMhH0KQenUAjHMSnYXk47UcAE1s12t7h7GyWVlrMY6j1EmqSsmGwcpcJn/rc3KSuHq59flUqWGKfsPFbepn57q/G6zZ2jZ2vF70fvperHTOPEbq+e5hmApP5DXdK83yx7aAp66nZVma4yiluEL0wHDRdX85J4quEBLYiygu39c7JtHZ1u8rUCisgXWheb+Ddy1K5KxAk00lJjLYIgtUwWTYrMyh5vWQwh2FHr7B3QwQ02XeCqMC2h7KW+cUGzzspNFaXb3CrP313iMXGQsmW9KfQGkU5lK/CZv1ozTv2nKSCG/v7GEilFY0dkeR7+G3IifsRk4BwBKXtu6d9zgcDhKpsAYxLsg51b4KMkH7X3KCc+t+apHUVsdI7unM2iedz17Oyv+Gi5IB7IRcZdkK42VHkt43pST6hzFYYkKpNQyHYUDwDs6uTI7nZRaHAOVcMWyT5TMKNmd6P9arkaiGt/wcVEbGuT0nIPKp5FTLipQWMfXOYggedStt1uLeniylrMiDzqG8ga1bPfu3hlGqMM7gV8PMmNV5wWfXR595AfftbrV7Q+qOtq/+s3+wQu5yrjVCSsPZNkUqCqyn5PWQ0mKzKWekmihtu+ROzvPgCIsqmOwN67HJwLaaeE9zyh5f9gD3h54aSoCB967Wi5KEbmW6ijHC+XpYJTk0VDiqt1XYkEK9TsAyL+0+6unWv5nqmw0mpm7VvopCGJBLQkpbStiiMMRmTInx054DGYP3+OgPfgRf+/rX8dpr35LDEAMASShuxlSLQJkVu3JL6725plS4X+2HrcaVNcLyZwxgSsFoC9LNDV750pfwvd/xATx41zvxxGQsHrDZwWQHvxhkv2W+62uxcN0TXjNs4FwcMDuGwgbG1mHa+cWNcxk2h2u3NvdGr88lGitclqNUPZSIlWmOGLHyoLk7IYQKtbQXfeoNy70oWSlUf03zkYhRiwueqqLnan6MyoOcxWCXgplo8BgAWOKMT33qU3jfe9+LN19/Q/JZjG1GknMC00txW1Q4xoi4LEJU0apyGoG1dBGqFsWlemQghdh7j2EYmmGxyVOjmi4Kw9R92tZVJGKGqrWMh7Gxt2lOQumUb77OZh6wzd3TSIaOt67N0+mEq6ur3TXOEQMfho0xXkppETNVSochEIzNkvzJrdaM5snkso0yqbzkPD1RwHKVi+qc0ucTOSR9wgV1skJ0OfLkKY+QWfpYubXWCizLGoxhEIU5S5TE+QAXnEAX4eTvjn67P3fEqN3fL5ucViPwzyxYPck/GQKsdxXOKkgOjaLv5e+orJf3ssDfrWtQQGe9QOGLoDmcc415kM+yvRzJQM5ErmOk66k9v3FtrTaDmGiy56pUl5jq/jQbBLh3UphXWN0MUpxrDl6NWju/3jOnajhfknrw+tUmBYG3tfv0e7ouhmHAPE9r7l9Zc9HkGmR4V2in7meFPqcsRouMgziJe4OtH2tAIM/jODa6da1rxvTkmr+nBqaMu0bNczMCY8ybNdnn5/H/+v3e0EHstCt5s090vTUGT2OwxFgNpPVZU0qNtbLklZ4/FdH1rHdIJQtjoDH4xLP30L671u7jhHe0sdcNWPNVYowYnJeCmTWK473Qosfq9TFuywRjCJbBrQ+HA9t8Kb12DyvolWWGEWnrIQl7EIf13so0KL/3BheTBOi1WRlj4csQNGbVYbiAeocZosjX4INe7nsJx9I5kpdGAUrzhAYnTE7TdMKnfujjePFd78DDh4dKONGuQC/eim9df4jvDazsZ9ZWY6Qqas7YBjtyziLfPEV4+hR//S/9JcTXvgWbZtgCZCc5LzDbpGs2tvcUR/1Mnz+31+c9D11PcMLXZ9jY29krt/1+G5yII2tsyGkfeJ32fei9zc2oqpFffeUiydYX72GFh/JY8zhaaxsbW7EGxjssObW/9cX7qN/b6lkehgHPPnoGD45XuH7yVOoohaGR1uj92fnRxoBgwcUaZLNNyGYDhf/WMennlqNxPV1xX9eGo4d9RFGvp/uYPdl7sDqd5w2MsXP69FES/alFX9Xj3Uckea/wemHls4c99v3ocwv7PcLz3K/LrVd+W2RdAupb50RPNtMbCTon7EThvcswqCbDQQWpE5DiZbSVHRF7EWkeT44UsrLfR6X7s0uNcM7N1Lnv13f/u36Ov9PX8tE10DtAWmSV+sbGU+/46dfZBXSvPpfWG2PHAxMnee9h/YCM1UBETvLqZFrveOodXvqTZTSPCV+rl4vaF2YS1u/y2jOF2E4hxl+/9nk/MTU5R6wUEaO05nvwx7X/cePscTYAZYUD9vuP53YPHcHjyX1m+Gu/93n8W+FoQniwfNDn2jtr7qF9d7PdR6TuaPva538BsXrZWnJ9liiJeqmyCiQDjNULdzqf5XfnWnJ3TushxAxgKpwZPsOHN3uEgEvDRr2kvYGh1x6God1Po0L6k73qYfANbmFr0m1MEUZhDGKbSISlVpf33kltjVQaiUUpwDIvGyGk0Bo97JR0ghUtfm49JPWneJo04lfvBQOYgmWZJcpUK9inWI0ob5GRUVKBdw7jOOB7PvwhvPH6q3jjjRvcXJ/w8OEjMYorPn4L6avEE2+rlTouEDe9EdhhJfmTSKYzOJsJR+cQrmccl4Lf/NVfxQ987KN49sEjPL6+wXA4YlpmhLBdA1xskg9yTizuvb+cc6bKgM51H33izwPYKN96ODd6WjKAGK7XK1NK7Q2slO59bo1eZ1mWBnHlgpm94aXf4b8Z5tEX2+yVDB03/Uz//L0SwNG3PXY1/ey8LG2paEQq54zz+dyiuj/+4z+OF557DmkR2K8zFjlSbkt1hHjnEFPGEAaJ6pg1uhJ1nVsrRBZlpTFWJwpH95oDozM6NHqkuSFN+SQDUp+vh8UgrfIn1z4MtJ+dk9whDehy7SNdEyklzPPcCA74u2ogKJSPjReGPatyx8qWlQSJjbKt46MyT55NavkoxHfdPyAFS4xffZA+/46Velfr7Fmr0XEuQuuQq9yKywTvXIMyoUKRvLNAKVjmCUPwyHm7v3W82TCRdZmFkCAtjflQWB29OO5q9IhlCMOmmW1xGIa2t3UdcU07XVfGGMlVq3LNWIOUxYExjCPCEBBTahBDhb8pPFvf07FyLggJhLCVwDmP83nCOB5grUOMCTkXLFQ3jusQsUIMiCON1wkX1N4w2en6rN+LMcqZp/UMhwAHg9E7xGWuZARoJB05RczTWeBo1gDWVSZJ104NMRgk6priCoXT9dM7JHTPAaZBFc/nc1vbfB6Kkbjg6uqqyc3eaGzGTUXEKLGIznmGqUgbicwxI6fKOzZ8W/8qUoTlce/IledQqOs2D8taD2MsnPNAEfihAbDMQtihBBwpLrXOXcY0z5sabz3qoBnbnVOax7c5u4ykKFi7Jf1ydYyXeWrPEw5HGGsakZAwNAIff/TOt6kb3Lffq+b/xS9x3/5lNEkUXRU2bSo4cs5w1mKpDE3ZrgoMe4TY09cTROz9v/9fH/pnrw17gnqPIl+H3+8TQuXaq0KyVxPKqse5UyRzVfbKzvvsvdmLKjSBTrDD3kuq/dbDXb8nit/2WipQRbEogF2hfwUJ3g94//vfj1/51d/Gi+98Ca9+61U8fPgMHj9+jOPx+M+9Tvr51PfY26mGJmxBAFByxNVs8QIcvvbK1xAePMB8PiPmhAHud3Wf2zx1HNXc897zOPde0379MByn98zt3Z8P/N6o6Z+JoRx7fWBPuK4tvt9eX/p2m7d0b3/0fWOP5l4rhrLrjBg6OWc8fPgQpRQ8//zzePPNN/Ho6nhBDNCUlm7MVSnhaBN7W/tIDq+Ffm+rIcUGBxvNt815DycyxjTIHo9l7wRSmCPLj70ItzGmyQ69L/ddFeZxHIU6HvtykQ2x/BYyaP1+Icje6rDQ6ZXnS62YJ68tNla1DzPBEXVsVsN7HUeePzbmef40+s7zw5GCth8LpBAsLqO4KSWkst1PvK/64qtN9mJLKKDrb2+seX30URzgMr+ul/99tIVlBhsYDZKIy5wXzpNp8ibFizXB66E5Rmpem+ZFxRgRxpVWfY4RJaZWzLnPkeS9EXNGGA+tfwrN7PdTH11h+bPnAHLOtSK7vbNHHQ7qDN1Da/BY984nlm970Ts+k3u5kfP+c/QRWgZ4c2S6lC0Rjn6+l+E9QqV3vva61NtBTvCcGLMddxUArZ/WNOdPD429b3ev3Uek7mj7+pf+MYDLCuXBe8QlIiepIWErlW5MCRkFwYnXAnSwWGebp7qPLnE0YO+wUi8MJ+BqDoR6GG/z4nPUgI2trYfIVrjbCoAyZnvAG2Nh7FahXr2kK/wHEC9jzqvC0Ssy+h57lhi208MC5HnXmint2bBGOQSOCAx2AMxaRwW2COtgkuTs9773vXj3e17CN77xCowtmOcFDx48IkO1AEYPwbcXkRIC+RrPMgUWtnqyhU3MAALJcsLo53KBQ4FLGf/g7/49vPrVV/Dyd34XxuCxICP4rbevP0BY0e3nlT/bk5OwIsdzC2DjxdU5YDgNeyB7OGAfJeJIic4PK2S8FnR/cdRhr499fh8/L7eMUrPvUT2tEjXOpcgerCvcdRCuvZZ1H2oU2ZimGrSdUq/NY1NqHtPNzQ0ePXqET3ziEygxAfV/BpLsrh7/YRjEi5+z5GkYyXdReLCsY7OZA86F6uF9rGRoFJGVJy6qy98HOUT21lApBSaTIlmHbV7mNg/zPCNVBxM7Ufq10grB8n4upeWhMfyNYWy9wc3Xl3nZFoDuiRJkDIRlTUg8mAmPodLVSDUrXHJvvDW3Yhg9vHeIi+Y2DTUSlWn/2Qt0gMpQnrec1/0zTdNu/R7nNJdOS1igrnm/MslZC+NdLSK+khPxvZk5zmCrEPewsnZvT0QmNMcKZbXWwrt17ax5uOt+XtkZ7cbY6ve7MZI354lohK+zLEuLPPIztJw56ifDb02pY137x7Wv1CC3RiDZOtc9dL7laAEwbo0WGeugdcZyzkAWchP1/O053FgGhTBsjBqVv1yMVmS2rI/d2mtkvI5BIr+J1rf1YXP+s0HE32WjtckeQtWwLG+RHedgTKlQU5kVWbOhOSt0rXu/nl9sfLPjoZRaEoHOCF0jDHsXY2hb8LlfLyrPAbuJlJka+dJrSO6r9Jkhtrp+PvHMfY7UXWv3htQdbV/9Z/9ws3lyzjBFFaFKKlCAaLYsaj6EWm/KNKUKgOjob+E14t+bx5bgfz0Frt6PP7+HT9bPcbTrQqE1Rag/nSRdx7hAiCP0nrUui7UAclUKNGFYIWNov2vYnHPAWGj1MLLeINC25mb4quisZBPqUVJ5aYxFSR6Dl+TnUgrO56kpD2ruHK4Cvv8Hvge/8zu/g8dvPqn2kgrdUv9++9A+a9bPWphmTMm5WQ8RGAxJqqTHAMw+I5uEwVjk84TPf+7z+KGPfATj1RHzTmSpp4nvk2+1cQSKD5neAON1sreegNW4Yq+nKru8jvaiGYmiLsAKRe0/13ujed45V4Tvx7kKeo/mbbaXnlk1VlRpLUVqqOztPW49RGTPA68RGIYQKQPfpz71Kbz88st48uSJJMEL+wSg3s9SC/B2Bo2S1gTnUVLGtMxwvo6BFUWgGDEGdc56Q2rjjKFnZAOJYYu5Qpj7nBb9v34n2DVaoFGPUKHFrRSCc1J3hWQOr9tNzk25jDToXB+Px5pUPzdFhr3zfWR0nmep89TNVZvzsrInKoNZSplk01oOwjmRez6ssEl2Pmn/5fcVNue8QJaWJbb7ej+IYypH5LS04rda10mZ+5TNr3Rp05qDwobGyvpXGmzOh4BcBIJkXKiGsUAHeU55b20ilWY9J3SfsYzRvCflRlOijB4ZYa1FXBbkEuGDA4yw9OWS1mRSCKJAo28K8WVoN0dQfFWyef45b0n3uRZO7g1uNdDVeeFMlY1YoxJhCG0dwRp4Z4DKsliyQNCG4OGdkEw0eKZ1yDYItM/UIs9VobegXDmKeHKUi/eanrVKuqKfm+e5MXHqsy/L3Mop9HA3Hr8hyDPnJCyZMLaVb0lFDD+BE6/wZZWXrIO0fCZs4c+cM6VOEoa5AlIOxjmuSyasflqvyRq0PZDi0mqc5RSrgdPYnC6MNh0/kZ1p8/w9mgFAjTIGLMu8kR/KDqiGlECX1zxtZkL92MN71r671u4z1+5o60PXpnq4mNmrhbO7cH+DtNQ8mT0FjIXRbcJhU9eEjCX2GPVKBve/jxQA+zAvIZvQZ04bocyf4+TflBaKhF3ivVmRZjhCf+heQJF24BOrYrh64uUel8Vl1XMOqE1ECndMcN5giSd88pOfwOE44ngc/4XWifRVmA437xdJPLdWWKJCktpDizdYgkX0kpNVzmeEJeKn/z9/CcvTp7feg8eWD2B+7t67uAeb2jMcNnVPCCLE792W4M9KWt9XNnJ4XWrjg1+VKYblMHSM8zT2xqc3xvp9xs9zCfe6bH1+0J7hqs/dw4meeeYZHI9HXF9f43A44Hg8Cj/kTsSY84i0cdI853fxXOuz6Pz18837j9/jMVPZoQn1exAhjTTwNdhzbW8x6Lj1UB6Vnz00pzeAlPq/j672Yw/gIprJHve9dav35fnooXY9OmBv3cvP9fn6aD/L/D3nhn6G1ycbOwyz2kAlu0i13p8/3xsde5AoviY/L683fo6EglhyI2LJBu0nnG1Fkfv9w+OrZ6g8vyjWMebqZzA1j0acc6J0Xxam50gT54DxOcf934um83jtOZf6M1TbnuOC8xT7c8zgkjmX9+1evmpfN4z3+gqzo5zFvE+QtAcJ3DsjeA3ontezto96bZwhuGQ/lWtdOqLeql+9XGFZq3unr73F65fnY+9+vTziM4YZQnmt6rru1/p9u3vtPiJ1R9tXPvcPAKwKVcoZMAZhGLDEKLWlvAdKwRCC5A/A4Ob6GjZI3kPKGQkF1juYLAJpHIcasUlwVmi4JZLj4ZxHjCsltFYWZ4VKPYPjcURBadW9wxAES16jKrkozEgpvsVLNIxBomUlCjTEy6GVUkFKYhQpHe08zUgpVzhIqR498dpK8qfU0Epp9V6LsMst0mWdRQgewteR5IUsBob1TWj3tNZ8wCxxwjgGwZ9nSXYWAS+QPWtdg1kVU5Ahxuw4jBKpyur9TQhuQFoS3vXiO/HowRWePnkdc5zw+PHrOIwPkIuD91fi3TIJgEZSOhKKIuOaUcTHXDFDmtBurHi55O2aq2UBAwNfHJzxsEXo4jFPCPOEz/7qr+C7vv/78NzVFc5LwmQshgcPcFMLIA4m4SpHmBixmFWBZRhUf4CwJ5t/co2qXsHuv89wTCWGaIpIuWSYZFgNe7d7JZP7xwpx/5n+8GSliOGg1piavGyQYhKq3mHQ1b9SGWM9NDXvR41uVyGZcV7gjMUwDsgpyRoiRSujYF5mDMMBT59ewxiLHCOef+45fNd3fgCDcxicQZzPCNbg+voGsLYldxtrcZ6m5k1uHnYfpBh4hSI655pnNseIUhZh+6swFWOtOGtA5Raqtx1GnlkjFbnUxP0aOUL9n7GuUrETsUulcC9Z6vNYY3CeJ8QsqoTOf1wWlJzhqizINbek97z3zqJlWRoErCkupCSqgvP06VMcBg9nTY0MWKRcYH2AD4M8twEOh+NmH/Aa4bWZUsZSMlwYMY4H2aCV3tgPAnkyQqCJkmcI8rmgpIjBOxibYUxBMBbIGcY6FGMF0gUheXDeNTLQaT4j5YQSMw4HIQc4zwsKHMJwwBIz5hRhvYcLslZjJWtQmZNz2rw3LwvgHIpzgPEoxjZYo8xBBHKCTQkpnuEMUCrJx/EwCoV5zrB+QIER2Jcz8MMA70ekXDDnJOvVexjjEYYDDscHWOZFHEPGoqQMXyMHOc9wxcAiwRjb0OICdXPwgziscgGcD4DxMHDw3mKeJ1grJTg0wpbSjBhn2Wk1eqm1hryzyEnqOE7nM+IyC1y3FKCkVptL63MpSYTWKYolSr2zWg/KWoMUZZ0fxhHBynlebAaclbNwiZhiRCpAKgXBj7AuIMPA2rUobxWiKHo2FIdMck5lnhpfHCUWeRaQM+B9gDGaq2ZrVG+B8wbOy/WN9Ug5Y14Wobn3ATAG8yKRw6vjEct5BlLB4IcaLRW6ftQaWIBEmpVQSogeotTGNAVxmWXfeQPjIPXQssBefQj19KuQTQkzIuWCaABrHFKu9bqwllDQ+UgpotTNNi9R5JAPLUomHCQWh2OAMP9FGJgqC4DpPCHFhMN4xHQ+ATnBO5nzFBfkWjPOVjivRF1dIxlRWR5CkGulDGRJGxjCgBgXuFI1qJyRc0JJCZ989l3/KlTS+/YWzZTbXKL37V9p+8c/95Ptd84fYcUvpSTJ5mYtilsMsOTU6sJI3kTCAPWOrV6VFDWXgb1nl8mxe/CpYrZUxtxPxRw7I3AFiWyJgZbLqvSKgE6Iy5bhrOH/2fNk1KOqHqvKJljU67jWbdDoTCEace/V4xarEp9hTbh4LoVfqIc554yUV6amnklu08ol1TP/nnNGKsCzzz6L119/Hc89/wJOpwk//d/+DK6vT1hmIEUHHwagxJo7lrEbOC6KKbz0BPb3LaUgCclW63csGSlKxXatpzE5iyfveAf+3X//j2G5eoQ3MuCOB9zME5ATQjzDxgWlGJirRwQf8p03cL3vngdyzxvXH+6cN6Vrk2F2PbU2K7+sGPRkEnutj9L00VtmD9uDhfZedYaQ9esAQMs5MMbAUV+VcyslqdlkjChDOYsHXvdlTAmm1kh58uQa4zgipYTf98lP4DCOQIowCuvJul+3UVuFGqoBtXp9B8Q4t9wScaicWy5jizzCXxgLfXSin9M+srbxzhdcvN9DL1n29R5whiJNy7wxovS7HHHMOaOklYlO7zMMA66vr7cwwDg30olSCmIGxuOVXDOtMLvgLinL+Z683ngtcaRmjQZlmLTurx4yrf2eI2Cc3USbdG2FEFrC+tEPDbKF+nlFK7Q5tQaoDKdcB0fnQ58ljANizHBDgDfi4JjnGcF52ELRVCQsy+qImxaBKJWaDxfz6rgwJV3s6b1os1G5h1whc1WuF4qiwiFFqeHlhtDYHHl9FWvgspwVus5EdpBzpdT833xJG855Os0QX4SNUvPA1FnEsqOUGj0DsMwc7Q4ERQVSWmBsJXzBGsWWfF2J7MQojLR+cJtn00i01sqTXKltRLw/29eIrW+fi3FuY12wha0VSMFYhplqzpg2ZyzyPOE4HjDHZSVtqtD7uIEUarF7Zsxc2n1zlvphxo1iDGGNhFlUaK86qQyAUMckKiV8daJglfFLXi4ibXtnqfZhjfC56vxV2N0I7y2W6QTnLomWuCTEFBdYNzZ2UP3cUHOTU62BOQwDlrxcnCHWWvyv3/8R3Le71e6hfXe0ccKnHvAqwBn7r61PCN4LazcoIC5Zj7SxsqVwGVZG+qRSDs3392doVQ/d6BXrXnll3LUKaj68GFbQF0fsn/utGHb6KEVLfqf/7cFrGO6yF7HQ33Xc9TrjGHA6XVfF7ARrgR/78T+IR48ewDmDEIQOXi6gRXuxGk5vo+3BgBgysPfMoswAr73yFfzXf+G/QH76FA+CRZ5O8KiHonXy8lsli5+d78nrjcdTP7sHgejXw167bY57iEwP1+qvy33pld0eAsgGVJ9v1cNC+O/esOR90bN+sYHQk8L0fdLPamHK559/HldXV7i+vt6sT8434HFiR8DeuPBY9LlFqlDzGHL/ehnzVhAzhpH1c9bvJYX5cLR47xl4Xm+Dd+pnGXIGrLk3WjJBP8NjwmxmPK4859qnfq77NcCQpO2zuFtl1gZiZ7eynQkudO60n5wvqs+q12Glv98rzfGmeSplNRL6yGwPq+PIb88cyHKV5WhfL4znsh+PnvxFIsNrCYs+p7GXjf164uv3uS76HV73nCe1Z+jvQdR5DfKz8ZmrdOn6f96zvG90DvT7DMPrZWy/npREiuUZcEk+1ctadVz2MqB/Vl2LG6KNTja/lQNr7zt7ugj3i5+Tf+c1xWfF3rz0fevHnR1Qt6U27EEQrbUYwuFizfPz7xUG1vd79MZ9uzvtPiJ1R9s//rmfbJtUIU19pIjrqTSBVQkRFkp89MaixBnW+k1+VVwSHZR6+K1CT40ohrxo7kAYt/WgWGDp+1LB3cMYOsTM1ssvzE8rs1KLmMSIcRzbe8Mw4HS+2Xj7BNq4pV1OqWAY6qFut0xvmoslh9WAuFzSc/NYqtK3xLndlyMevadcWbN4PPR+2m7qM0jirihCJTsMwwF//Wf+Fn77s1/EOB5hzYB9P4fCN/Yx6XzvjeKRJbqR0qrMLal6YnMlK0gFZ1dgDge8ng3+yH/wv0J49CyeGIvsLZYivkkLA5Niizax0b+nzHLryQYYa89jtUed3nsN+bDRa3AeHF+/J43Q7/N39X69EdV7lfv+6fMo7FAV1J62liNSur48R9nmtbbapj6L3XqNC9DyinLO+OEf/mEcj0c8fvNNHA4HOBSkRfrsrexF64eN8WKtxTiO7dl0H1s7tDWm0MumXFFEKmXborPs0e/XO0ftOILJ/zfGCCSvU775/30UgMeU6zqp57pfFxqh4e86s15LxzbGiOPxiPP5XKHQI5DlvqlG7q+urjDHdDGve4b7KntWZZ0Vyw1ZQWewOrMakGqssJJeSoELq+zU9zUSofsmxgiXqUZbJcPRs6IZVjlhMCtxR7+nucBzMZcKcgWoynlT+z2MdY+S4p2xjS4C27IdajD3jHtCuLTNidGIl0bAcs5wZWWFi5UdLeZ1fGOMgLMY7dCiravRRAVljYx1XDIOh0NzXCgBCcsT3f8L0dGv+bxbmv9cCUKcDWSssCNU9hxMbBGQdS4c7YfKDji4zfVVdrAMynHZnAs6n/p5rQeZ8/b/0h/akyYjJ8CFYWVJ9B7n8xmHw2GbS5kyvAXON6eVOMquEWtsDNd1fa/5eSJ/jFViHYtsLJDyRs8YvOhGLfpuV1bPdv20ntfK/pnABuR2nelzaUSqjV1ClWUZx+NxI2O0vzzG2semswXf9DCWj6i07kirURwOWzSH7pP/5Xu+F/ftbrX7iNQdbXueFq7rwZ4K/QwLTlvkQHNQj9olxGnr+ZFXX+eJq3P3NNBslLFCoP2XtvVw9fAaydG6pGRlqJh+l6NuPaU1368XPqtHJ0CTiBWmwwqPPqMeIKVIMdm9yAjPASti/f/ZyDNG2BaDt8glwjkLby2MTZima3zqhz6OBw8PePDw0N+NXtz2janeA9l+EgGFtRbOrAqQ5KgUHK1BfvoE5nSNMS1wywm+RPh6q1hfved9OweXZCmtx3lbX6f3JrPSvBdFYGNG54zzYXitaB97T3Pv8dzL7fp2/qW9qJnCqoBVQd6LArJnFVgVR/7/khNiyQ0GtCFFqTlTxhg8+8wzOIwjnjx+LIbRdG6U02JEAgx7ZQbO3qjkSGz/fP3ndGyZmILHnvdqi2SQUbU31rfdT5v2mz3R+kws2/r55fngvcreZb6PGpBNsStmA0OLMaKkeMEIysQKwGq49N7znsa6X5+6rtnYYgNfn3nvmXoPORfU7qMTeg3tQ8/Kuid/Ve7q721OsDoUYpHc3GINMixKhUG1PV4uIzZ9ZJfnlOd5S3rU5f7UvKfbEAIso3TM2Ljl4vMsr/TeLJuYYKI5OKivvB/2Ijt70HmWgyzz9qJKPU13/2x9tLWP9gBojh/tp+7lbcSlO3MIGcHRXo1u9bI35wwXvMD5sHVw7TlIZL0LMmMtdCv3vQ1691YpCICgKbg/xZoGle7Hrjc2janJxfWl4+r9Nu9S5XYfZeP/82d4Xenzs8F9qUfdt7vc7skm7mj76uf/4UYw5yyVxrV+UzuMzZZxyRrTantIgnulSs+S6FwK4KyTn17oeJUcQhJtTVMigPUgUWhhC9fn1LxYXMCTvXMxLnBOkmpjXGo9K0m4lMriQhuumHwOd/fKh0SoDvWp1qT0w3FEzkmuXaRyuNSHyMip1ARW02pvHcZDHZ913Hp4Us965INvgjXGiGmaWoSQD6ZlWaExOh9MqmCMqTS3krhe8oKMgsN4QIwLDscj3vXii3jy+A08eXqDnKWmlrWOogfC0qU0vimt3ukeiqN9kTUkETqtLlVqvS5rTM2zA7wxcPOEgAIP4NO/8ev4jV/+J/jQhz+MB4cjTjnh+rzgueeeBeKCeZ5bRGBZFgzDsFEm9UDgWih9xGqlpN3CaHi96VrsqW71YOLr97kdHBHovf63RcuYye6tnQ/YeFG5BlavHLEi2hugatQEtyrqSs7gCL7Gzz9NE5599ll87CM/gPl8ltII9RohBJzPM3IuuDpcwRqHXLY5lrr2+VklN0iIXdgAyLl6t/2qUC5zQsmSFC1kD0LLjCJFQa2phaDtluWP538DZaw5FqrcstOGDQVWElVO6Bpp41kpmXsluFdIc6UV1j5oBEr3t8iwiCVl+DDUmmAASmUTixHBy7PGZcYwjo0OehzHjaxm+FxwXu7tRQammKRIaylVVgu5gXEOKReh84ckzWvNL0e1t3gceb3xeveWoqO1LljKqRUbzlkIRpTd0VqL8/l8cRboM6SYsMyzkCN4j3meZX15J+QWKDheHWvfhRhgmac2tkLcgErjnSs9NoS+vwihg/5PKdqtMZjnCSH4eqbE9ozeDyj1PPGWYFxY67GxPCkATtenttZXeCnBqXxFHhjXcoDYUOY9rPmvS4wIw4AwjMgFmBchhjocrzCMI5a4wHuVQQwDNDTOBcMQsDrK2NFkyYDX2lGrDNF56CPih3Fo+0nrP6khxagAJRYpJWOo5CfOOZzPM5ZF6zZaWKK1Z9nH0bBhHCWCOY5SKLxIvcswDHLg5FqwG0BMETEuCGF15sh6K/A+VH3FwziLwAQ/1sJZ14i3ShHERKzryJotu6AuPKnnd2k06e/jOLaotPcDpmlGKcA4HmCtwfl8Ft0JBaXUmlRmrRUIY6CsMdb5SvAjek/CFokg1Om5wevbuYIt1Fvn6eP3daTuXLuH9t3R9os/+6cvvCxKcqCK4ByXCu/w7aDMOSPOy8Z7KIfXCOe2xQaVRGH1PAncbw+jq0pwU6TSshE+miDKmGtrVOkkr3/pc1gclPIc2GLH+W857KTelD6n9x7GAqfTqR0aIbgVvpZ7IoHVKyW5JcvqYS5bTPwmObhsqZN1Lvqm5B2svGv0rH03Z4iTS7ddRswFx8MDnE4zjlcPcTqd8DN/4+/ga698E8NwwPkU13owQiHSiCgaCqVbK32zFRITa42Rkg1Ske9zvpdZJqSSMaWMs7WYrUd+7ln80X//j+PJcIVrF2qxQNMYHa2VWiMKf9Gx5KgmsFWkdTz66BRHX3ujZE9U6dpk6AMTQBhjpOhs9SKzcd57anXe2dN7Pp9xPB4vcPU9pEchfX3ODbAlYVAFpxVHJSNQl0RKSWieq5KYagRqmiZcXV3hfD7jU5/8IRyPR8R5asnQ6jFdljVhW+9rLTYkBNoP9sTLOAisaOPRdXWOl3NTmlDWwpR6TZ3rTRTQbKNzAFqUd4P7z9v8nr21o/1WSFHv2ea8IV5bffS+QRBRmrxSw50Nc/W0p4LmONFrLtO5Gr/y3hwzwnjYeNmbcVFlsSr+YxiIPCBuZByvR+PsxtmzzWXBRh7tfV/fzzkDtCZUBsTc1dGzBpbqiun89FF5YwzyUhV1R3lBlVmV957Opa4x5xxyPbdMWZ/HuHBRcJidGG0tawJ+VoKl4UJuOJCxXutTxbwas957ZAME+BbVUqis1CmsZ2mJTVbqc3EEq5dDsCuUj/f69gxbUHKF6oPZRD3JDAvnDOblBgrtW2UmO1Qqoc/oN/tFrzlWQ2ZZFgS39kvnQh1fLK+dJ8ifVWjZJfTdBTGeudCyXmsLbysb2XscDyucuBrxx+OxwexKXqGlwuJr1oLABrDBb0h5ZB3V/ZnLxX6KReGP26LupZQGne373BuhOjccMQXIQZcXmSMqjMzODHYK5iwkLYMTOKRCZeMsRrrWyosxIhzCxoDX6/6J7/go7tvdavfQvjva9sL7PSZfvYVq9DBEiA99TgTuD6atYrifRA/g1u+qAO4Zinrvc08IwYraWyXk9p9hJXyjPHX95s/248mQnD6Co99jRa1nzbrttQcv6A0w+eyKdQdszf+6hnMGNzdPkVLCp37/J5DLgiWe8eiZB3j48GG3QhSO+bsL//cQhv5Z5TDwcMbC54IhR7zxta/hr/3lv4z05AkeOINgLg3eHtqgz7wHE+P5+HZGEkcu9hL22WDby63RfcFreA/q0/fhra7Zw1n7vvfX6WFn/Trlz7V13cG8YowtZ+TZZ5/FgwcPcHNzcwEd0X5yAW2O+PXGKdeJ2oMSAWL4qJGo5BV7Dg/2nmqUi+/FNXf6MeujdDz/7ODg+7Lc2cu542sxZJmv3xTDLidIFU7d/xtSlj0D31xGhnVfcKSTDQwe8z0ZpPKcIVT93u0hY300n+fltrW+N67aX11je5AzNRp6VkZ+rQXMLynpeX75mhyB3LsuPwvLZh6X/ln5zNTG+2XvLGDDnp1Ne3W1OKql7+le6Wux8XtqZPTQeX2fHUSKAOHzhnPuWF4xlK1fswyR3BoHHYSY1p3Kk42hb7ZQa15XOh78uZ6Yg9db71Djz/T923upjOrRJP2e6tfcbTLvNqO5l0ltLd6Ss9w/k+5r/l/vdNvLL9bfe1j0fbsb7R7ad0fb177wjwBsD+abm5sGN4kxwtekdRiBhxhjxHteua41bO6s1hkxSGllw1OIQc6RcN9biJ02TdTWlss2CsXwK+23VrWXOk5Ku84GmRp4l3UugEul31ZIonxdD1v1GiksIQr0wFqp29MUalTPmdSfsnb1vO/BsTbwrypfVUFV73KvNFh7SRnMSpkxQt9rjFWAHgCD83SWCFlMePTwGTjnMRwcXnrPu7AsM778pa9giQusUSWADUy3e2j0zUCgINbUpHALiQ5arfEluPFkLGAdggFsjnDIUjclLvhnX/oSvvu7PogQHE55n5GrV2hVEe3hMHuOAW6cBL9n/PTKESsG7ExYlqUlh/eGT2/E9fdjbyj/n9cIOzF4DFSpaVCoTjHkHJEW7aqPKDArqS2US0aKEpEqpeCFF17AR3/gI7W+0QhvxSMrs1jgrIMzUk9IlAwgBI95VpjtaphqRFGVK9nDtQ4Z9dV7iVw5L9+/vr5GMAHO2goltkAWGOLgA5yxSEtEzAmZlKBeAdFnzTkjp9V7zwa4RvtU6QSwgVyyIt3yijr5xcbsBuZT1oil7lON4reI4TjAGI+51p9pc20NvBJqFoHkWb9C+ZR1TfukUKpxHFGWJLVyltjGT1wqQtNsikTycllJhdiw533HkVttzCzZjEBaW6leN5eVDTXnDOscUpXljayhRhJ4HHPOtQYhhNQkl1p3rLQcKRgj18sAjIXBajSglEbg0VrJCN7BaV2oFFvtJa2/VHIS6FwIsM4gV9jXut88rHXwXZQsJaktplHNUgoKAFsMpunc5Upy/queGUMzCnkt9U4RY1cCBDWkesXXOQ8DNcb4rFiNHMBUmJvCozM5C5gISc6iJc6bM4Aj5LqmY43isiHfG44SXVn1A5EX0p9VTsp7McWN3F+L1G+NsDktsE7qxJUiUXZTz5tAOYepklxJeUIl6tBcw4IQhlp3Lku9OZLDvj6rwTbvq5RaY8pZqXdZ5y2hSHSLdKvesNL5ljkZqs4huorct5KGWDQ9qODSaOJIvcqaOS4iLxgBo/PP6Qw5bgw61T/uoX13r90bUne0ff2Lv7jrpWz5JxY4nyU0PhBzU6mWBqvVWTH2xiCEASnFWl9EBalpxoWzW5pNFTDqEVfl1FcssyqZnISs9/ROiuPO84xYDT0tSGotK9flwvhgpWGNPgjMBACGYZQcLK/viWkiEIMEq8VpKx46poxlXgBIwT4RbssGftMfMs2jV2ERmmvC0KJtn1fMM3tZ10LBBd5V2EqSeSoGuDo+QFwSvA944403scwTvLd4/h3P4/3vfz+ePL7Gq699q4MTCtZ7VUxrRUMu2ktNBLX8Tzxo0l8DYVI0BoCxSKXmUpUsBw0A7weMzmE+T/jS5z+H7/3gh7AcRjhjgCwHna1FQVOKMLbAac4aJaG3vtgtYQSvb/69QaHGcTcx3jmHm5sbYaojxYGvrYeZKrK6R/SgZA+mzhEfxD1TnHo+VfHmPvUeel0DfN/ea26wRku0auOSIorJLVfBV4XpD/zIj+B4PCJ4X38GmIqjX3KCsRbeejjrW3FmV9euGEqueW+Px2NzCOge7vunayvGpe1TkTeHVrh3SZITkiXhEbkUnOepFZ3U/MJeYWOyGFsNCYZPsYK29aoDKcXqEFLFNqIUgcw65zEOA2JHBKHRPJUlzlSyFUjB6nmammNqs4dzqfkdgHdrdAqlytQqd6wVUgV1LG32HkXJSimNdYwNb4aEqgGQa36FdR7zEnE4XrX8VtlXLSNjs2+aYtcZkL5Cz5TpdYkRV1dXq0KXEhwlwJdSMI7j1tBwFtZ4DCFgyVLH0HpX2U1XuKozQK5FTWOM8FzrKkshYe8k18kYA+MCYCxikvU+DKHlb7Fy7hQ6mHQuOeJrWv5uyllyDDUqG3w7u2KMNdcmYK6kQzoGIfjViB5qzm8qTebzPukJbkqVlcMwwngrxWrjgpQAHwa44GrR6VSdGCvBy+FwhLW2vi/3GIIo8Byt0u/IfSU/ZwgOzosDJaYVps5OvrjMTUZppIwjiZwjtYkAZ9lT5/O51u1yss/8mq/J+6xBkdWQRM3NpELkcamwV4pWxrTmWee8OibV0QqYWpx3hbi1ea/P6ynyp7A+b6X4t6MIuVpDjhw8LBs411vPIcmRKi1vLOckZ3jd+zEnOBuQUqn70sA5X/UeC3EgAzEXPHj4ADenk8hIWx2bRT6XSkYqEdZZLLVWmvO+FQl23uPjj17Afbtb7d6QuqPti5/9e2KsVCHjg4d1VgRYkRyZUIu4WRjklOXQh2z8mBKc97D1gJPk1VKVWzTPl3i4xNOlUSM+2Nnrzx7hFBNyqp6Uen8Dg2VeME8zrLFiSEGSZw0kErMeigkpRQBbxVWEl8P5PIkXqgqkZYkoJWEYApyz1WMXULJA5bwPGMYR5/ME6yHGgbXwo8f5PFVyBcBY8ZSGwUvl8VtYj1R5E8NMSCtK0URwoKAgBAegIMYF3guJxFpMsCsoXK+/xAXFFBhrqrJpmmK0zDOcNaIIxowHVw9gYXA8HGCQ8PTmKZZlkVyk4iSZtUH82JACeoNK/iPEEis1bB2T+rLGVgIQ6U82FrBeaNITgJRgzxM+/Wu/ig996ocwnyZ444Fia/J6hgvCDHienopBb/xG4eijQrcVQuSDWddMD3PS/CRtDF3Zg7HpZ1YDIW6+p/1iJaSvIdQn3/fOAzXI+gjrBipYDVRVvpZ6WKYsxXZlOSTJizbAzfU1Hj64wnve9RJ8VVQAIW5JyCiysJshv6RlJXpBQY6i0FnrkLN48a11WLRwrRPiGfHwi6KUUkTOEvFtESKoQlCEutigJZCL69fAh9DIa45XR+S4IMXYiAUkaiZKj3dCUBGXGa6uH1GCU90fMhbGSrTDWcCZ0qIVQwg1YiGEBI3AAKau5Rqhq2OuBDVDzafISaIjpUVYRCkbQsBCRAbnacI4hGZ0GrPGSgCRJ8YPiBk4TzPGw7GSU6AZQuJNB+Iyi0PDigwpwoYjDpq4wFiJEuecYKt8MfXZUDLSsiDFRZ6toBUn1edzVXHUvWWM0J2bkhGCQ0G9jxHlngljSilwSI3c4Xy6EYNnGFFgMM0L4KSkRQYQk5D8WCdEAs6IUbrMM0qJOB5EfpecNobivEQsMWEYRiwxwjRFMbV1LPvAyLMCOB5GjOMBKQPWOIzjsUVn1ojcGkUyThRmUxVnjiqXIqQs87xgGA8w1knE31khu8ixRsCyEKc4v3GOaJT9fD5vaw4aPR8yUBJSXOqOEWIDiyJOgCUhpdzKYEh+VmpEGkoiFMJQCYxMI1qSHC51UhVYV5CXBQUZJoujJyZinLMytjmKIajFuxn2pw4l5xyCH2pJEbS9nnOqqBIxIIAic5wzUlyQU8Q4BKAUxGWBd7YRsBhjMPiAtMS2F9s9S2kkFNY4eB+q8RHrGRrbvYX4YamOj4qyQZHfnUQSY5bIFgwwHo6Y69qZljXHz4iVKo4UK0abROs9jLGIMcFaVx21EjV0QXKxfXBCFmWAlNcIZC6QqGWScUEpQsAyTQjeYZknHMYBQ/CIccFSgAQhgJLoecQwyjmZcoQfLOAtsncYxhEpA8Z4LDEBzuGT94bUnWv3htQdbV/9wj+s3pMEmNK8ry1sXMPIFluYlHokVVHs80gYjsAKrjb2nLI3kyNF7KVnxZRfK82xaSF6Vog1zM0wLP2MGFdyQPEBBmwLWTLxg3okjROl3jiDJcqB4YOrERNTc09EYXPmMueheSMpsV1qXAR4v+ZJKMPhyvKEi5pWfYRlDw6i/1OjTecgDB6n0w3iMuHdL70LL730Lnzpy1/GNC0V+mJgnRpSajQxRfrbS3/cQgKraqjPUZVjUyENNhf4oF0P0QAAgABJREFUnGFLxqc//Vv42A9+DM88eoRvnW4wPPMQ13EWQxUZPmcE41HslpRjLxdnP7r39jhwmCWqN2I4h4bHlj3KvfHcwyRvg0z2uTtsEPbf6TH+bBzy36zsnc7XGIYB55sTfuiHPomXX34/LDkiTDEN1pvzmjsGAwQf1qRrCLSvQJRy3fcSWZurAq0eZdMIU/o8l36fZ1q7nPOhMMoGIayRwAZhqdfQRPUGlSU6Z86p3EQvl6V5zGXe1dgzZKhbxHQp47jor0bAck6Vw1LWua3PJVGNNQpTYC7yfJoHv8LEZKxLM3iUcc4aMSBzqgx/1YjsYaR63QZVrMpazlI7SSnGjTFwtVxBY+YzwmSGOm/zMm8IgFLJKCnV6GVCLnXeKO+Fo5Ilr7k64+HYxqIYJ8pnKRIZqs/cZF7OcKZgHAK8dVimGRlmE31juKaxFktVVlMxsM4LWx/qmOaEIShVf43MZLOJQuka2hSsR9mFPOo4N6ZG6yqbmoWr6IySq0FO313illpeyWu06R5ezwU1sXVtyZmj8zUOQyOwYRTEFsXgkJKs5y3xQSWtKbGdPcqaaa2pRvtKcKRGlbe29UH7rBDEvVINnJvE7I99TpTOLTulWK6hlCa39pxbfZkTfc5L+bkWwmb2Uib32MAMVR5UeC07vxqUGpdFcfu8LGPUsXGpA8mz+7o2M8oShcXSeZSUhUgIciKnGFutPMAgODEwLQxKjLBFnD05ZaAYuGKQT7VsTbCYTo/xcHBwj9/Ex158+W2djfft967dk03c0WasJDCzYneZOLwK+z24FBs1e4q7th6yoL/zNfRzPX4YuMRH8+f5Wnw/VaxuU1T5fVY2GHKoz7qB/1UljZMzWSlTxS24bQI+tz45WwUnJwP3UY6+r/1z9+PJB0pvfKlBdzgcEELANJ9wPI74sR/7UZzPN4LLHgzO5xvtQTd6v3sjiseB+8aHpz6nz8D8rW9hiAuevPotPHrmiCfXbyLbUuNhFq44eON277lnaPSv2/rbv/h9HUdmjlSChL373NbejhG3tw7e7vX6vcgH96r0y88XX3wRzz77LG5ubi4MTXmlXQVF256CsreP2MnBin3PtHjb73vrpl9naw7IatDy9/b6vBkvujbDZ/l7TC7C+4sTxvnZ+7XTK1G93LltDep12Zjm+WCZsjf//bW19k0v11nZY8dBL0/085wv1c+H7g8+Q3hs1Bhmx4M+Zy+72aHQYK12S3XPCqt+R2nmeZ7ZkN7bX7xO91AE/bz2z83rq89fZJZEvs7GOUDOvL39vbfu+T0mh1DjWYk91OmgEPZeXu2dGzx+bNTxetI8aI2oMlSa98he1L9f4z0cm40Z3oe8LvZk/t5a6tf3XuFjXrtqlGservf+Yjz6vLb+fOZ9yrpEL5u5H/3f0qFtsXl9dnbuOecQjIVNBSZmuAxYrMRTwQY4Y2Cyx1UZ4ItFmiccbMQhn+Fe/Rru291r9xGpO9q+/uW/X38rNQQMCFmEenWd1BAqeXNQqiJhjGm5Jdp6BaBX3nuPjH6HPVZbZW8lGujpQfWQBFaK36aI+xWv3udWrUqAhPRNhTdN07l5WPmQW6lSdQxkjJxzKFmgBiWheYcEAinKttbo6Q2ZXpmQhOatcuackilI7okUFr40qnTcOHrWK0Gs8LTncwbzcqq1nwzmReABH/jO78TT68f45je/hYcPHlTYoYUYT/qqfjBTqdJvyZvqlThAolFKQOG0zlSFSlW0FFwBnjcOv/hL/whf/MLn8N4PfideeNc7cbMsMMbBFgtbPKwbkM0lQ2O/Bt9uu02p4jWra6o3LvoE8f66tzki+sgi7zMevz2IaN/Pft/p/dh40WdIccG7XnwnPvaxj+H6+oQHh2PF3qNGUmvugMHFnojLSiOd676IqUZNqa+ybtGiOmK8Hze1sXolp0WpOvgiK3UaCS9FYHw8Luq95khRjLHlcPYRHx1rja4VGInUFNTaSk7AfcKgjphyg02xcnwRlQRaKQWNKKVCtMc0j5YcUb2M43WjeTSq1LGzSZ9HPOFMULMaLLw2AIHpDT6sCrwq/E7qzTDRhkZiAKnZxIiEjIKDwiDrfjbGtFzRjeMNAkPz3iPm+kwVHRC8a1G2nIRwg9e/d3UutFhxEainrulmYJVyYVy1yF1eCTbWPDSVo3J9NlZ7soNhGBAGuSfn4am81XmS8yFhmacGPbTWIi6LQLaMbc+3xLU4am8Ybva9qzl1vXOkkgsZmBaN1Agg59QpOUWMEcfjEcBaw22Vc2jngz6bt7XcA2rJExBjnuBZG7EDn3f9Gu7h11zkWdewRrF62abf44iynm96rvVGjTbOv26RLKyySnPHNM/1Nocxy9EwDM0Y5ag/XxNlLSzdy/WNbMOl4dTnIIYQEHzA6XxGzAl+CFhSxDTPsN5VeLKUIRmdQ14iSkySG+oC5piQE2CcQ0wFJWY8sA9hLWDxBM88+Qbmz34a/+gv/Hn8T/+9P4H7drfavSF1R9vXvvz3Kz2dssFJjkJKBQYegBFojh9Qyoq31gODFSBl5+phZew96RVO9ipxYdn++myAAVulrhc6/NoqTLYpeXxP64RZqlT2MpSVzY1r37BhUkqBdVoPS8btcDiQ4bd+J6fts/KBy+Ol+Vg8DtZZgh1qPZ5VYO/R9+r48OHOShkfPN47OC8G2/l8U2tmGTw4HvDB7/4ufPPVb+LNN9+EMWLEbQyormivGFOXUaq9qAGKIQIKrf2VJR9LNE5YZARExGXBAIPPf/Yz+J4PfADBSMJ4BjAbi+Jrjk7nnWQFkpWivfHq+7v3Oa5d1DNlMQSID8g+qsqN98RthpSuX65bcjGW2HrBW3S45hZpnlRTeHNGXBaMw4A//If/dVxdPUBKGaMPFeZ3I/lBykpZJC+AWymlpckZY5BirMqVRQirgSQKhBPZYFcoq0KodAzVMOq9u+giJn3ivTpxSl7he8uyrEosRU0Efjts4LocodPxTjXPQ/vaO3XGcax9HhrMsH23MultiE9KbjAyQ4aoQCRJGbZrvS2OhvD8ctRLIwyqdPZG+jis5ED9Ot4UIoZplM4aQW9Kbk1U18iV9x6uyj9jV3ninBMyCGMaZC/lCokLAzHAOUxLwjgOmOcF1Wav9Y5kSam81mfRecg5A3ktPF4gOXvDMGCuY7CppVcbIxk25BtxaQ6AYRhgneSHCGPf0PK5WObzuVSwQkyZKKOQ4sxMis3gSqtCr4ZmyqXNJ8Mgde8zjN7UnBdb87NSTo2FTSNf2jgixPtA95vcR3OCHRnaQlSR88oMGVNBTKujzjuHnBKs8w0OlwlCz+PNETKWzQw17tk0NcLPZ9nxeGy10xgmrzDI3nBmpwnrD/rsKq/7mnEcHe0dJbrP53luzgRdo8fj8SLKlXbgiHo/JSiSTXrJ8Kr320S9qwE8jmOT6VdXVxvWXm8djCliqIcBcA6xFERYZGPgghe2VgDJJPgy4TviNX7j//3/xG/+dz+Njx4MPvnv/W9x3+5Wu4f23dHWC9i+IKAeTprwqkoqezeVblY9sT3chL3CDDdQRYuxyHzg9Gw/qrToQcCCfy/ypcqjhuFFyUpYlrW4nw96jaJw5ws64VJKy7Pi65ZUEFyAhbCYzee58THEZW7JsXoQMSRAx4MjHcModLvCDG5gnRFDzTiYWsQ4p9K+r4pjD3dhuAQbCpxjonN9Pp9RUkZaYhO+1hSMh4BxDPh9n/w45vNTWAsUJIyjFk98+2tsD+5gnbxcZfkzpsJPrDy3cw42eCym4BAs7PkE9+ZT/PX/4i/CvPE6rowFUsTj6Qb+4fECBnHb4d1DnXpIYb9O+bscgdKDnA9nrmuk39F1w84FNiB6AwhY2dcUOtrDNgC0w5fnmz3XMUakalwuKW6uYSDGwMPjFZ688QSDG4AknvilskZZazEGB+SImOY1QlRZC/X5FcajioSOETsElLFS5YOOE+/Np0+ftmfXFoLkwJQkxb/jvEg+TExIS8QYBuSYEOel5UKxIcnRrmEYcDgcAKD1naE60zS1a4TxAOsDUgGM8yjGYkkZGQawDkvKsD5sPP46d/yMzXgxBjFnwFq4EFCMkfitMVI+guqWAaLUs6LN108pwVsj+wRFSDaWGSVFpGUGcgJywnFc153OO8PLGJZka1S4pC3UqhiJfmhBXXYU6Jj1cobPEPWgM2W/MaZGQYBU2cX8MLZncwY4XT/FfD4BOYmxU5/RUXmIYqQWnc6Hjo8aUgy51X0dQpAivSnCmXWOQgiIueA8L5LP5PwmeqPnjspp/d/Tp08vC0N3cEdRao30vc6NQsX0+YuxiLlsDGg2IlnBV3mSDTYOMTEyM0wpMKXgOI4XOZyKHrm6utoYhGyoMjx9GIb2vxgjirHIMPDD2CCCzjkgJ0ynGziDDduojgPXdOLnY+cIR5gOh0M7g1UG8pnOclfHW2WM3odhkioPdQ3zGaBMrJpLps/NxrcaPi3nrn7v6uqqOX90jd/c3GCaJkzThJubm42c58j4MIhDR5iGY1svCzkEGA2jsjJXx8YcF8xxkVztUdhMU8mwXhwasWRMy4xsC7IziChYarmDOU6w3gK2ILuMU77BVShIX/oyvvWPfgnf5T3C0zf+edTJ+/Yvud1HpO5o++1P/yycC/BeMdMLYpRE1hAcTIVfGKXf3CnqxwppD0Xag6ZoU2GiwkiVNFaKWWiqkFMvHSfi6r1UePbRHvnJtRwyljjXA0Q9RvVZatIxC25AIm7aN1EQMpSR0DQYlGnRqvXQ3eZu9MrRCmMyWCpl6xrZcDSursL/tgVje48Ve/C09YZGu29KQjVsHaw1KLkgDAHTSViB3vniO/Ge974Xr772Gp5eP0VKlXUqa/85IqX3+/b5PA4GpgAZGaZIAj4qbTqK0LXDGCy+wOWCkIFDzDguBV/63Ofw/g9+N64ePgQeHoUdbIkbo5LX3l6eyLdrt63f3knQR/x61i0+7FkhuK0fvUd0D+YDrHCrvWKrpRRkFMzLIoerkTG9vr6G9x7TNOHFd7yAj3zkI62P0zQJw5TzoqTXtVtKgrcWvkZhONJksBpFrvbP+QHTdG6J16Ic1fUIijSVbQ4GPzfDdYzZrm1e32zwWrt1pPT7rM0XJX4rk5k2VbZZiWJnD+eEaJ0iNcQ4n4U9w8MwIJWEMAyV9CBKvS59Fl1P4qnAMA4XHnHti8q1ktNmjTJsqI+S9vC0Hg4WQkCahe3QqEMgeKkrRtHuEtdIa9QclZI3hkoxQI5RGNZyhqtsr6A17L3HzencnqGteSeQaGstSloaoYa+MkU/rQ+btcC1BTVCxI4vlcPTNCFYgaHlQoye5RJeZul7zIzKRbc95V3p+320RfNpTansmBUeN1VYLJ8xcZmbsT9NU4sy6FpVp0g4CFV8qnW0hhCQYhKWziqGffCNvKPPQ1LFfZVJK0HMem6UFa2hRqH1awSlIgjaukcWhsvxcCG/tA9sLPEe0zXMzkX9PDt2VXbpexxx5rXUy1eOcDOaZp7nTY07Nhq5lEhvKLPTK2/0iy2hk66l4Ndooso3RsTo94dx2Di2+TnY+Oz3MUevm4yygPUec06Yc0EygB9GjMHjMA6YT2/iyjtgfoLx9E28eHqMf/in/m/4gbLghXTGiDO+94/9n97WWXnffu+aKXsYmvv2r7z98t/9Mw0XbK3FOBw3jHIafTB08ACXijkfbNrYi8QCtRSpG9LgJFTYD1ghfpxYqp9hbzJjkXuBwuxK2scQRkoQh1C51miIdDjDGo9SXGMVW5ZlQyLAz29rzlApFB0oOnZrflYxWyGsz6PjIRCmAufUa0XYcqghyTj8bR0exob3idDc7/5wAQBvba3fk2G8FA9eUsTV1UPkBNzcnDAernBeIv7mf/9z+OpXvg6DAY8evoCbmzMAochfqdEV/nfZNtExQXLLnFUDLEUxoPT5IwpmZNhlgYnCVpRR8M0l4/Ad34Ef+7f+CPxLL+Hrr7+G8OjZCyWGPXr94bq3XnlsetgcKwe90dQbMj2MitcqG0V7e2nPwGJlqj88VcHnnAI1pJIRWIkqwodhxJtvvIEf/4M/CgA4DGPz5qclwrm6X2vhzVISUAsiR2s3UQxjDOK83tPWfRiz7AdWmIypBomjPINYNjmHCslTA6xRJWNba6ufs5ZzUmIzikbyxuvct367SwOU50MjLRop41IMpRRM0yRlAXLG6fqmQXn2iBZaRNtkuEEKLg8VBrVMsy426Wcp8H6Q+l5VDh4Ohw1sUJ/n4NeouN6LIz4aFRiPD1ajb0dONo99Ighprdml15v19yVhqGN3rnT2sGt0dhgGwFmYGJFjrSXkRQZbHxqSYBxHnKZlM09pmcSjbwBT0oXxqF57ay0OVw+laDEA49aooLfbumE6H5wnl3NE2ES16n2U3txVKF8p8HZLHqLX1fPHew/r1+gvw9g0gqH3OXiHaTq1/qVikGHaGXWeI7wFvDVNsde1F0LA+XxuyvN4POA0TxItrOLUG4s4LzCltIK0w2GUqCdFwDlSzwb/MFyhlG1U1Jh6BlktpWAx52qM188GrXsIImLCGiFT/UGLjev77JDoHX5q5OiaPZ/PLTrL/WcYX7/vGIrXG1Y6V5wrxfPH99F9pBFiNsiaYWXsRd9VVjVjL231H5Y5fNYsKTbYsL6vKB19Tkbp8HnROw3lLEZlxNXyNRZ2mWFNQogTynLGe0eLn/m//J/xcF7wgZsbPLp5AygT/BXwb//UK7hvd6vdQ/vuaEuxwNnQIASMFQZU4cwbxXNP+dTP9hTRHKLuI1cbxY8UGcY1KwxCr6MCmSMDzHSn32PIBSvC2vQ97nsPQWOv2mXkx8B2lNv9WDDUqr8PjwUfwDoGfV5N70neU9r1b37/rSIw6/NZlKKRHKkBcj6fkfKCcRwFwuELPv6Jj+J9L7+EgoxpPkGF9bb97rY697OPwDhr4WFhrYdxFtkVZFvgA/CtV34H/7+f/mnEb72O9zx6ro1BD5m7zeDnz+z1qf+9z93h6/DPPhrYKwr9ffaiZZxvwXPF/elhm30/tJ+q1KWUcHN9jZdffhnH43FjmLBxws+3weUT/IzlAytD7F1n7/LeM/Y5a231UI4Pe2XVWGCY0N5rE33qxmNvz/A1tbFCxQYMX7NnV2vRGibAcE7WrcHGyXGb4cyK4W1OkFLSZu7Va9/Ltn59sQKohoAaVr1itre2blvLvF76seZ8HX6e/gzp1x7naPWf2dunPQGRXoufy3uPMQwXe54dfe38omfbQ1f0z67924OOyfVXg3fP+WetrJFlSVIAOwScTqcGb+PoyOl0unD09HLIGNOMrL3x4rOwz//d29fypUtWSM4D5HXA0c9+vfM+6Nd/v095n/Xyak+W3LZG+ZmYvbGPXLPDgZ+Vf+d79/JJDR+F4nFOao8w2Du32Rmia5ENckY49GdQv4+a/iGVNaWkQUoI1mAswFgSnr864pXf/E28f5owfPPrOJiIcOWBwQHuXmW/i+0e2ndH21c//wsVPuMbjEw3oRAPSJHbkrckBtM0XQhDNZ5YyPZUpfrZ83TC4XjAMIy4vr7GkydPWnV79ZaqF0iNDK1A30e9WrIz9V1heMzAJ0XwNJqVEWvxULmeaVCcZUmNFQlA86jxwTEMI9KyVoE3RoW+Moat3nWtGcOJvwwFEaiT8CyIIbsqabbOzTbBPF5EOHRcFObChxczH2prgjihJRqnmFCMwRCGlvgaayIyUPDg0RU++MEP4muvfB1PnzyFaeWk9MDRdHGDbeHeS4PFmbWSPNqhAiKgEA+aSQbWFGRTEG1BtMDh6oHAAecFr3zms/jgyx/AchgBb1CsRUIt+pwhRT/F1V0rxK/r5q2MTP6cjpeOIyvVXGSyQXQI3scH7oZkANskaj4kNclcozTsHOgdBpvcOGhB54JcMrLJyKm0mjK//1OfwoMHD1rhysPhIKD5dhjLwZtTERZHUxmgDFBo3+vaSnHNaTQ6VnU/piTJ6hLNVePLoiAjLrkW7Kx7x0nRaOssxuGAUoBUktSwK5dkNZwbiNbzLXySlXtWCgtWr7R6fzmiJLWCDlhSxnmaYZ1vRWJ9GIT8ojL4Dd5tomgqKxg6JbWQVmPHeY8nbz6WekxycyEOsBa2vjeOY5v7plwVwJoC7zxgAWe8sKnCoFR+lhwFPTAMo+SzdAocK9yqyE/TBF8LjaYoeVHWOaS0oJSMw3CoRXglWpyZWQyrMi4QxgxvapFi69raXSgnRMZEvnM6nSRyVuWPMr/p3MZlRikZ3ocGedPiw6WIwGz5MJUQQ4qNO4wHIT/w1knx4Aq9TnFZFdAavUlZ1oLACC3GwWOZz0gpQusMah5tShExVkIISJFr3f/zPOPm5qZGklwrOn26ftpKTOSca5FV26J0fvBwMBjGoRYZlrP3+vqayFkqW+UQhPyDYPRjGLDMC3KRQtcwAk9fOvIWduzptQ+HK8nfK7kzSDvWvpxg3ABTpHBuk/alSE2uIgQVBlKcWKPknGd8dXUlcERy9LBjxhiJyOme0jWjMkcjmL1zgc+83rDodRF2eHB6Qi+3dQ42OWIdwmCaJikMTq0Zmt4Jy6GpMPbOiN6T455kh8oA1W04X8zVNQArPJO5CJVoMwBNrvnOBsgGLhu47IQdcj5hKAnvLhFvfOY38Xf/3J/FD776dbxrcLiZ38Dx+Qc4J4nIf+//4j/+tufjffu9bfeG1B1tr37ll4X4NWcs8wLvvOTJ+IC4xKZMA1uPB+cMaFPhA2wNnD2olOz5gpQzhnHA1YOrmpslNODzvOD6+gbDsIWFqOeGI03q/ekZe9i4kvsCpWQsy1yVFA+DNY+pFIOUChxFmphIQL3s8r7QA1tnK5pNeLm0wr3zQSrVE7aZcye0Mc2qCFWPnApyFhZFiaxJzpoUOlyx/KwgcqIw51jxQTXPc/uuHgywthZXlAKVptL+KhO+NRa5ZBgYxCXDGYN3PP8cfv3XfgU+yP9cGJCzRLZW44kNKZlrZeczRqiRC6Qg6LouUGnY5XuSMmVEYTMCL3HGYznPMLnApwIsCz7z67+OD//ADyIGizMKTgYwqcAVg9EUIEVkG+HDUPu4rkNV9nR++rymPjrBBlFPn60HWZ+fow4C9sT3nkneI/p9zm3g942ztUBraYU+jTVYau6csQaxZJQcYXLBYRzw4OqI977nvTiEAXFeMPqAIqlK1HROZAZSrsqq8ZjnCdYYBB/grJWcDJCB2QyCVYFaSQdQlU9fHTIWxRjJuRgGZAOcpknooIsoYtmgMoIZGGdQTIELDj54TMuEmCOKKSimIJUt/JfnpDdenR0kFykMKLlgmRekmDCEAcEH5FSjrSXjeBixzFNT8FMUpX86nxCXGQYGIYhTRnJKbGXe9FKcuGSkGDGOR5QkBUOz5lVamUMfQlV6E7wfEHPB6eZ6VfJyEtpsAyl0myJsGMS5kosUlx0CYv0+jEVMUi7BGItlibDWYRjGKk+iQJidFEZ23qIYWTMFEOPBGhgjeWdpiVjmWZw73lWmOMD5beHUUio7ZIHAkGmPK1yylILD4QBrZG01aJXmBhX5fZWP+pk10musq8XO5XeJvggcTwsIe+swzTOWeYHJQqaBUsRgMKZeY60PhCKU76U6tHJaYCHGBUpB8K6ug4zghX7dOxlnFCsfywnWGAzBYxwGWFuwLLPIP2tQIJ9XinNUA8RZK6yOpSrhxlaafTG6nQ9IuSAMY2WwtLCwcMYhuABnJJ+3ANUwlJ/OB0zLgpiS5HINI3wImOYFS4x49MyzsM7hPE2IWQrTFxQscYF1Too6C72KwE9rGYCSJBfLqWOkCLNjgThdSoI4IWFElzAGw+GAXKo8ccoMLPNqjJz3gMgO2aZamF6KeGu+mxowXAalIRFqiQJjHaxz9Ry2rXwBjIV1Dt6Fdt+cS2XA9TDGIoSh/b5U+GofZe/ZfK1xNb+3UqoPoRa5zpVRMddz1FwYUAwdlWsBa3HtXNcUarHhSt0Pg5gSgg1ABryzdb2i5hUaLMsZKBV6niy8uYK1AY+nCT5khHJG+Ge/id/4//51vPe1b2DMJ8BmHI8DsMwIFggG+PC9IXXn2n2O1B1t//jnfnJTzwFAY6jRDd9D6Xo4B8OxGE7XJ8I3RdWZRuyQ83pfXzHvYtCotyhvlFltPZxKBRvjnbU/6jHuPc8KC1Sljz1aPeMRY9X12lyzRMegZ/HiSuh9BAJYqX73mJ96eMVeFIqjITpnzDClUTmODHLewLKs/cu50s4HhhkaOBdwnubGSvTcO57HZ/7pP8Mv/cqv4rVvPQFKQBGKL5hduB/wdiF//dpKmXKmKsQ0Rcnj0PcXGEwvvBP/xh//4yiPHuL1JEaoyQW+JFiXkU1Cyq7WwtpCtFq+GNHtM3tSv/a4r+ztv03EaYSGP9sTYvR4fza2+3wq61foKjfNrxDnwgwfZI2+8x0v4ns+9GGkWeY6xwSkLNDUrpZxnz+h4xPjjKurq000ek8mOBcoD3Fd7xrVnWdRmjPKxqmg65efWRnqOGdG50zXOTtr1KPMsLDee70sqVFJq9eboYvee0zL6nBQ54POIbdlOrcxYYWIc7lCCMIGhxVaBKzMgfq+cw7nue6/ulWEeCG2HBRV6uDHNt5c16gvBuxtqA6mdUydkzxOzgnpaeg5l6XNqz/sysa9PcH/76GaDQrniZUwS36bKRnHcc0d1flhsgdTa+GIE6hGJXNGrobagwcPcD6fG6Mar6dSCoqtcqVL3u/7Z0ra5LHy8675MaGdVQrfc5Va0Hliks1rlINZJdXh0NAXMJsoCTtweDx4/fQQQd6Len+GqvXnOQAsNVLv7fqscZ4kb4sgoBlbYhX+vcmCvIXGZwNYv0br51RzDovZyAeGrW9fBTc3N41VT2U0R31TSvDDeAFNbDT5ZSXo0dxEXqN70MaUlg1sU/O29DP6e85oMuDJ9VMMx3WfQGV4TGLM0/16KK7IGLvJE2edggk3UhGm23WPriUBmpFnLOI8YxyOMMXBFMDFG7wQH+P8lS/g5//sn0R441V8eHQ4iOkO54FxdMKoWzL+zb/8Rdy3u9XuDak72v7h3/xPN3lMTFXLeRYcfWLjYs+guu3vJsCdEfY32xkvhgv0KQRubtfqPVGszOm1OQFb/89QKQ7fc8ifi+UB68Gr4X2NiqnidXNz037fy5HZwyurAsdj1pNEaN95/BkfzX3rtxQrlKoEpJRavQn+rs6dzMFWQUw5bozXGGe4mjiu/csAhnDAT/+1v4Gvf+01ABbWOJSyGitCQrGncAkD4W2Nny1FoXXVHK5SihQVrKxVKRUspuD1kvHwxZfwP/mj/zbG970fX1tmTLkgmoJgDWxOSMu2Jlm/jjSqyVh1NSj69aFj2Ssvb5e8ojeo+u/p51Vh4oTtYtAUKobPaF+EPGbBMp/xoz/6o/BWKPjjVGs9pYwSE6z1WPIWg89wGc3JkPdLGx82eFShWXOYwkWugX6OGbjUkNK/V2KbLp+prNfeozfv90uvsPY5LNautX04R4jv6wdlMF1LLTAds459UtIFrIo5r+G2L8Nq5OiammcxTHV9aB81atOosJcK9aqXjiUDJmzGgedBo58xRlGeLnK5Kj13iStsKJYGG1JZobKvKel+lfV91K9f65rIz/msfSK/9lf32zRNsKgkRNOpPYvOZSqk7Dq/GWMxplYCGJWzqpTyGsk5bhxb7FzjzzI0ul/nK3x9T26tBrXzVaYYf9GPvVzkVLbRaF3vXJ9Q4e7qzGikIGRY6X14Hjmyoue3zj/DU1dFvCJPDBFJ+cNmD+oYMmNkietYpgrpXdIqD5o8c6uBpmOhc8d9tHY9I0MIuLm5aeuCz0MlzeEzVM9MfT4AGPzWOO7nnddJ74jtnQvy7EOLtrrgN8/e5ImxQN4au/1Z085ZQtuwI5r7mNEx05LMBWppkQIcrMU8n/FwdDDTCS8vN/i5n/xPYV77Bt6brvH01VfwzgcDjmWAdVI43dgEUzKcN/jX/9Lncd/uVrvPXLujjQ9ZYJvoqIJFD0ZtbBixMsqQpj4hlIVcqTKsh+Hp93ovEfevr6dzG2tPO4AJ4sZCiQ0KTihnpVkT9dnD3Ctt/B6PT29M3pYb83YajyHff++eF4ooGW4MEePP8PjqOPQGKx/KcsAZwGR87OM/iIIFQETuDDJJ3qCX3O1tPS+/2GDuf7fWwhmLB8Hhyddewc/8V/81Tl//OkKOcKYAziIaA8BvDinGwvM624sWfbt5ua3f+uoVtb1r3KaYMnST3+MkZm28rpy1eN/73tecB/xsfW2t/l6n00nIRkj5Z6WC1+Bta46fj8eZ9wtHd3vHQy8T+iR3Nlw4B7A3inrDWb/LRBh95JwdFb2yzZ5ihoDyXtK+8F7qx6P3wPOc6nyxIdCeKV96s9l5w31jaHNfu6yHFu3JsX4danur5Pk9xIJ+R99jOK3eU2vt9WcRE0Hodfp1xM+rf++tST6jGqwwxovxvO3c0bOn/14fzeBn7sdMx1IdWcxcu3cm8DV7I4jXn44fIyF4nnge+/nv4a/9Hqh338xjLz96ObV3Zun+2csVVQO1X8M9WoSfh6Oy/XzrGChqhPOo+4jq3jnMck7JI/p2W/S+H5Oe+KOfk9v2m0bde6cJQ8uL5X1X11yR8iTTHOGdRUgzHmHBm7/9WwivfR34xldw/uYreOch4GoIrZ6jd1LvzNhv37/79q+m3edI3dH2zS//0sY7qIeNQptUaPchafbG69/94cIKCyuVOWfYDtJmjCQpr54eIW7Yg0Tt0SCzYmSMaRTFyyLMc+r17BUxPdgBtGKAHLViulUALUmVE9WZREIbKzJ7JAQMf+obHzS9cdp70PkQ75n/9mBp/fM4ZzdKIiC1bHScZZwcpvMZYfS4OV3DByHTMMbixXe+A889/xxee/1VTOcZghVTCnRDL643tR+R6g1vPRxWTop6yLacKcmjQUko+YxnjMczxuOzv/Wb+NDHPorsLZbgUHKBjw5hCLB2y8DYKye6xtSAZo9r39gg7SOm/OohJn2kZE+J5ciQzkVT5pzD+XwWhRSybwRenzFPM5wxuDoe8b3f8z1AKTifJzz36BnkmFFq4U9X8y2KuTTIW9HPvOYnjLXGSb8XNGKre9vXGj+9sqsRNaUTnpd5ozhxfqOOSwgBhQwLvT8TfOje50Ksqjjtja/kRLimePbFY621uK6FRpl2eVmWDcwJAFJc2j16ZU7XmBD2uM2c6r2Y2lzHlaHJaZnXfQ8jeSZJigUwRFDRASxXvPdIkfMkJa+zsakZh2maMZ3njdzfY/LT+3M/OcrELy1mqp9ROanyliGIOkeyjonxsua05FKJKfxa5DjGKPk51m6iI9P53Mb1fD63qEXvjIlxa5zyOmIZ2xtBeh/euyEMHaHBFlq6zBFKtNPnxnBEQvdOGFayJR07diboGaY1ptjhqTKmh73qGuwdA1qTaZqmlnssSr/ki/FcpCy5zN6vxYEZsq772nuPjALrXCUskWceh1HyqrxbyZ+MuVgH7NRd5aNpMun6+hrPPPPMZt/o+Rk7qnPto6YpNEOV4IC8J3vZ69y2xAqnOuh8CCHMOo+ZIuHOWFgYBOcbmQ+vn94RIHsnXKw1Nph1Xzkr+Wjee6QMyXO2QY7YnOG9wP2KBx6WhPedH2P57X+Kn/3TfxLvOr+Jl64CDss1ngkBPmUEP9Q074TBGwzOwVuLl//d/yPu291q99C+O9p++X/4s5tibtp6L5YeSn1oXwVKz1TWe1v5AGZYACuXMS0bGIIxRpLPKcytERH2SO8dhByC75ee9lcFI8NPNnh8Esic56KCsy8qyIJRn09pbPkQ5c8rlKaHVDIscc8DyweujrEainwwMhxnD3rk/EpTre8bbIugNkMwLXCVxQlWCjmmLAbOdF7wd/72z+OffvYLePjgeQzhCssiirUkXW/rTRmzZTviPvXvaZ5BKgoVrNXeS65MYwVLvIafDEoCrkPA148ef+x//7/Dk+NDnJYElwKSLchY55CNnH6sVdHp4ZvfruncMfnJHiR1r8YJr7c9z2uba4PmqXTV+XC6ucHV1RWuHz/BT/zET7QcKWMMcgIsDLwfmnfVG4GlLFmK7uq1eV/0NXl6bz0b6fpcy7J6uDnK13t/Q3C3PitHc9brruyF+j+WIX1ES/vU703Od+m95a0PZks2op/vqYiRL+uTTdPU9lqDSpUVyqXX1D2lCqi1FjmukZpYme5SSoDdrp/b1l0Pd0w114v3vcisVYFnB5quWf7s4XCQQrbjmvDP0Wkec5YVDAlXRVj3WwgBy3Ru/+N6aKlsFU59qbEe56lFKTb7yq3OPn2Pn0XHLc7TxpgwRiCcfTFWrv3HMFC+bpynzfxzRAyw5KBE2/Ocm8vnUAgBqUYU2KGjcDgtWaByn89rhp71e5TnleGxDEPWmll9VKdUVsTmKFnixZnD95JcpS10zsJsnCAqY/u9xc+hhqDcd42mqnNUiy4zLBTWtTlkNlN2RqaUWnSIHQF9/Uqds/4ZeW3p/aOSmQBbeN3GwN6WNenlufZHDXFeZ7pOGFljSkJx8p4LRxQIA+aLzz+Hx69+E2PwKIiImPH9IeBv/Sf/CZYvfxHf6Sdc+RtYk/CwWAzZ4Jgt8rE6RGxCcGjP/vv+wmff1pl3337v2j207w43DmH3CjRDgvRQ5jwEFiyMg9efLHjZCDNmv0ipfi/GeaM8sGeGFWE2FlgZ43uxYsfQAr43CzBghRCyN7xX1jiJ9zYjQO/Re0a5rzwHvRLRQ684v0O9ZP1z6qHdKzh7UKw9g7OHPxnjYLKpJFZ1HI1vijwAPP+OZ/HRj30E3/mdH0BME6b5GjARp9PNv9DatGKzSWFIrYlRFRNvLJyv9aasHLrWAjYvCMuC//Yv/kXYp0/xrPVAjEh5TSDW8eyZHYH1wANwAf353e4pVlh6KMveemGnBa9xnkcl3WCv69XVFeI04zve/wEE5+GtE1x+ylJDxJhNtKZY03IYWCG73Kdbxwd75LlPPTy0dyrw87PCy8/JSdUcSeK1rvPRGwh8fe5Db1hxlHbPiOL552ftyyuo8hvjWgi494irYt47kPbgyU3GYDuOWiy271e/7/ee3zp5beWs33yX2Uh3I1H1uxqd5miUPhsn/quRwMYRQ/Y44mWRhRmODNi9cVQFN8YI69ccGlMSvMVFf/vv70V7+/NjL0LRQxj5/83ZZcsGCmWMQ87YnBm9I4af6aJgNK0djYrzmOg60P7pvmyGaHdNNip7udOi7TkCebtGXRg2Rl9PotTLKc5X2sD7rGlRqJwzvLGofB8XZCd7+7EnDOG56xEtfMbtrQGeC84H23Oq7J2V2gd2vMqaXIuie1PPJRhhjCyX86pjz/PQ35PXGOtYwJp/1b6TM4bgkOcZgy04Dg52vsEzZcZXf+2Xcf6dL+P5kjCmSnphjUACK7OnM0Zeer4aKTly3+5eu4f23dH2pc/+vQ32G1jhIsAlyYMKBYVssGdIG0dfblOMcpaaJ5m8us6pQIwt1D3P8YIFbM8Q6ZWD3ouuv+uhwApEr+S0RO/683A4NA+Zvq9KHysjbJio540roveH8G0KEBs2PXyy7696VHsoko4Xw2/4+tpyyShFcp4UutFqEeXcDKfBjwL5MELNayoFckpS62qZFzzzzCN86Hu+G6+88hXEKHW6Hlw9qrT2DO0TCuy304RsoPr8hNEWyFrDxtT6OjUB1xqUIPVoxgzkpyd85QtfxAdffj+ef/EFnHIG7KUCzx5AZkBUb2Xv3X5b/Tbm4kDceEZ3lLy9XEVew6VILZ8lRkCjvDWROp4n/KEf+3E899xzCNZhWSY4I2UNpKRBRpyFgMA247kgxgkpL0g5ohShvA7BwzqpC1NKRoHMQW9w6bNt1+/WWdCvRYUCOgOULFTbQveb2u/68s4i5RXSohCd2+aPx0rnTinR22cqrTcgNYGclxpKMFo7S1gidX9ybpFGVlQhCn6FGOp62XXMmK2iu5cz5r1FiVH2RskwKJjmBcaubHUFRtgz7VYxZHjaOh6pydZcEqxRI0zXochgoRZfowZq/DFcM8aI8TBuIl69wscKNa91va7uIxmDBUgZpRKJBO9qqYjqtINtkDKFNA7Bt+iMswYlLaszoSSBOGGfvGcjT802D1iNPoV56lpLVQb0zkGeV2elNpU8r0BlY2THYal02mVzJvbrVdfFeDhunJDW2g3hBp+DagTxNXk99M4GNlYYjmtMQUnVWWiFrj6lhFkjqNbDOg9nRa7uGaVMyBBTQqplGdTJZlAdUnGNyGWs+T/63l50HiibHG2Fsaqeos35sEGp9FHz5pB1/mKs2CGpTee1NxIZag8APgw4n8/IyjC5VMdbNXCsMTDkANE5ZF1izYe8NKT6s0LINgZYV8fMeiBlBGsR8oyhRKSbx/jAlUf69D/Bz//5P4PvwoJn84QH+YyrAARjEazA95x38BYI1sLbAu8NvAGcAd71P7uH9t21dh+RuqOtz0tgJYWTwXuh3Udp+HBiWIwKvd7730daWLjx9biQYw8P6qM7vbHH1+ffe2W1j06xUQhgE53Z68dt0YW9/+0px/y5veiQ9pHznvqIGx+uvdexV9j3xoaVQB4fvidgJdk9Xxp76rG0LuOTP/RxTNM1ckmYl/O/0PrsD9b+OdrzwQLOA87COCBd3+C54PH0a1/Df/dX/goev/ZqgyzwmuPWewl1/fbr4dv1lw/kjQd+B/ba358hJ/3a5fWhvxtjMISA973vfQ0KFmPE8XjckFzsQd/6tc/J2H00h/uylxuzpwjpz8ux3taA4agzv9fvAe5bP4/9M/X7ghUifYY96Ff/rPqZ0+nU2Ln0WioDe2W7X58sI/fWh7UWpgClpM2z9CQ3fcSS3+NIRA8haqNOuaG9vNB9zh5wXjO8fvU9NWwZoseRTHVaXayhXGDI491ft59T/kz/7CkliVpTNJ5RE718Zdmqz8x92zPK9/ahMQYFaddJ1st2VX96w477yfPDxjuTRgArm2a/Vvn/aiTxc/fnSls7aT3HOS+2R26kskU1cARJDYE+qsdrc2/8emfh3n7s3+vJW/rx5j7x+71xyYiPfu74uXunEOspKwX6lg6+l0XebAuz9+uJ2UvZ4cSIGH1mNSqlX9V5gow4nWEN4ErEo6sRX/nMb+HTP/u38I50wpVb4PMJD0aLsQCHAgRYwFkkJ9EoYzRKvH3++3a32n1E6o62r33xH21qKQHVg+6MeGdLRkoRyxI3hhW3nDOMM1LYsiZxs2Dtk7FjjDDOSFFHLZBqgSVOgBFPnybCehc2BzwfPNxfjpyxR7U3ClQosme7jxRwwrf3HufzecXoV4/S1dXVRoHgMDx72DZkGrcogto/hitwP3tlgD2WOv4aBdNxUYVpr84IX2cYB6Qkc2xtjS5aB2s9nFvZCy20bpbUSvEhYJ4kv+Pm5lT7KYVJn33uObz00nvxxuuv43SqRSlhakRKnzvX39fCvVwsV5t4QSUPC8pQBCsEC1bWqLUOBQ7FG8SSUGLEQzfApgJvHEbv8Vu//Vv44Ec+KsUNrUMqGTEn+OBhrBA2uJJRUoSxDpHm9Hd7qOjYc2QLqqRhNUTsjvJusEZOewKDlBJyLfLaIqDG4nA44Ds+8AEpmhwjHl49wNMn11Iw2QgcUyJTNS/NaEK8FJEthepoJSmeW0peySCwzd1TZY6Lb68Rkkvooo7B+hxS7NRTPaw+x6OUgikutTCnb0aiRpm0P71yyC+NhDA8SmTZAmeDFN4uBm3ZFYkquHFEARBzQqi5OBvGr1xQckHOKxS6ZwHc0H5DZKOtHvGcEgwAV/favMxIccHxMFZDWIqEFkj00HtfC6ICh2EAsC1L0cNTpQ8RQ+AkfpG743ioCnts0akMKaJaajFU2YdSMHUcD5jnBTlFFKxwYI34qXzjc0Fllkb+1UhurGM1CsVK8BITnDpszNbgGIPkWaaUcDweYSDFbJmsIBqDJUUsKdZCtkJ8ACPFj00tfhsGL6JI10stbp1yQlSGt2GEGwJSzshJ1msplXjUGCBL8dhpOSHVmlYGrkZLhtZv75VGf4Ix2BhtwJqTs6SI8XDAVGsc8dnF49sU/5IxTxPikpDyWhtKc6HWcyECGUg5NQNL91vLlSoZuRIHybkve83oHi5byiAmYNC8v2EYVvitTLDsYY1UOZEjTksvFCGkUCdpXwidZUCMCSllZGSEIeA8TUgxQ4sBu+AwjIcmM5kNUftVkhbFXZ0fKqd7I1T2c7kwiHQelL5d5ft0PuEwjgg1MuWCF4IJPfvl8ELMK3mP6kMtclkyvHPIDoI0qHvWFCnKDGuwxAW5FFw9uBKiJ1sjykVQCdZZhOUa7ywTXvn0r+Lv/r/+HN77+it4L2bk05s4jhYDCh4YiwEG1hvAFpQAHFAEDWANrKvoCWPwzn/nP/xdnXv37V9+uyebuKPtl372TwNQZVwqc1tvkEGFAQuQF4sSC4xX75UYQ9ahkQB475HOq9eqzzNQ5SvmBBccclmTK0Uoq7GgsAyLPG29e3qgMLSF257Xlg2I0+l0UdOEvXF6/Z4t5wKGZ9SjnuDcqjiEWmhS4UFARi6rUtVH886VbUoUrm3+GYCNscSQJfYmqyGsB7AWEWUDs/eW6zWBSxjZJsJExqHeVxnYeq8nAAgoSYgMzqcZ/+P/+PP45rce48mTa4yHh4ixEk6U6WItSh8q419Xi+q2OW6e21xpaFEQl9RgH5rAbYzB16+exf/8T/wJpAdHXA8BU0lY6nobomDIXQZOxgB+rcPVey31Z59r10cbtNlcNgrRNE0bY4DH2RiDOUVRonV9W3lPD+DlZsY4jnhaiSXO5zOOleFLitg6+MFhilMdwtLqCum9VqjgStagSsjNzU1T+rSfLq8sfby/z+ezGOTDgDnV/WxW54Zek72xKSVYlI3Dg4tI8zrUmkEa2eijWDKGCYO9rBm1QsmqLHMWMKHtZ4Vy6TirJ35GRrEGwbqKRpVch5wzTIG8D+C0nJsieTqd2l7j60+nE4KryhVEVtqq2LPjRt5bIUa9DOUC0SJv+hoz8p2Y5hVOnNcCwO3ZqA7WsixwwWOpNW4cagHvCn9qeLlSkMx27fTRITVqUlrgfHUKJXVgbZ1WwhpZoLV6znOtaRWGTQ5cQsFoPeb53OQxR1l5T8a81r3is4H7aa3FFFeoLs855webXICcNmeDXoPZ8WJe8xS1ftc0TZt6acYYDMZt1z+KGHm1ac6LN9uoMTv39NmW6bwp0CyGsG19sX6ojq8MxKnKjzXSa/1anB3WAyaj1HVssBpr43hsEdgQRqSSkSGFipujgo4T7VMqrq1xYCVfYdnN0R6F6qns5DMmxohUuG7XGkUKIWCahHhkHEcYW+cSVKcLRvJrzcqAF4vslY0+EkX2aIQRAHJZ82R5H27mxBogzQ2SCusRxsMKGa1Fh31KwhZY+5BQmozMOTcK8+gM4vmEowsIqZ49wSEHW/eMh0PBk6ev4d3vfi8ePz3jfM44jB5uOeHl+Q38/J/6v+LhG6/j2VdfweGQEWzBoeYTj8YgGHFkOFf7Zg2cjZWMaM3d9Nbig3/u07hvd6vdQ/vuaNtgqd16+CBz6N1Toby1iru1AvXqk805ZN+Hu/V7AFpNFI4KcV5ODy0BtonCfYh/D6bGUIg+AVi/x9fV3/maPTxpT5Hgv/lzCpXgsVHDhz1x3Bc24BjXru9xH/Xze/CYzVjvwGX0/d5o48OMYRCcV8YK1XYMEkw9qI7HIz7ykY9giTNKSZinE0xRPLh9ixfEgNoxovpnX+9dDW1IhGGFxxFj1OkaP/Vf/SVMTx7DzGeYZZG6GQVIOSMCSMYgm3Vs9B79/O9Bh26LXPVriz+n66ONn72EVhgjicA6Tw8eHDGdb/C+l9+DMDgMo4co0mKgAHkTDeY9tnE+dEQx0zRtoCS8jzi3pzcWOXdPjXA1tDkqq+Ol0Yne6877hxVRhhLxuusppfs1zc/RO0+037w/Wh8qwcnePGq0Cew8oL6p04EpnXu4rb7PMiPXtcB7mPvZO474fuxZ72VYv9dVOWYHzG2yr8HKsF8fq792f/9+nfdkE+xUYkODo1u9XOvrYfUQMP38rZGHlBshgMnyty1ofytMcE/O8Hzz3mLZzuuZDYB+rJiMQ89Hrvmmv/N3tPXGH8vjvr+8xvoyJvoeX59lnRaiVkKVvXOq38c9qVHfL0az9Gcwj6nKj+AMTEmwyAjOwBkhGTElYQwOg7eI83n3zO7vxwYdR+V4HnhueznYP1POGTCXZTR4bVprhRyI5o7l3SYat8wYnK/U6YAzBnnJMMXCFAtbLEY74OAOePrmNWKcEbzBcL7Bc2lB/p1XUF57FafXvwV/8Js+sNzc6gtCGPXtoM737W60e2jfHW3f/NI/xpIScimtdkKMCYKkskAxSFFwJcG7NeQPKEoLqGH2eZkQbNgoUJyY3owMFaC5wBRNMLcoWRLMnXUV7WXg7VqXhqMuvWHQK7WsnKpwZ+8XH0Ic7VIFRpVBYIXK6bXlp9b4SciZc0dU2VGlcoaxW6WPx2ar3JqNRxbArjLYJ5br51ix4Fwq/aw+H1PVs5LKyeR7CiaPHRN6bOYBGeM4IEWBAx0OR7zrxRfw9PoJpumMebnBM48eSWSqUM0pLRbVmkL+3rogbnsVsYisdcJM1GpOGVgnUKWCjLIs+J0vfR4f/PAH8cJzz+P6dIMCSeaPxmCu1+oNYh0THSfOIeiV/b5Z4MJQWNcL5fgZKuxKMNipKjFxWRDnBU8fP8ZP/MRP4Pnnn4eDQZyXBjlrc5qS0M5nhWqsB36cZ6CUCn3xbX0qHFcNAd4/yk6VUZBrlCymBB8CnPdIyiTobFt/uo9UcWCDHGWbs8B5HY1aOMYNxJLrTvFeVQgVjIV1vhEUGOuQcoGxTpLoY27ED5toZl9s17kmg1I1dHUcrTFYNEl+8BsFjteI7u8hBInoZIFhGVNZs0pBKkWer66TGNMGysvK3bYunEBjVfkWBVkNIorMmZUGWr3kDx8+xDRNrdYSihAiWF6Xto4PSvVeO4HI7TgUVPas8ChXSTtMgwrnvBqFKntKFjIMAAjDWGXH1rhNOSPOC0JYWf+U5OgCUt1Fdlke7kUxtf/9emoOB2M2hEJ6bZ7niWi4OarLaxOAQMtU8VZnpV3JTNISMVZoGO+9XmbnnOGDxxgG5JwwHK4Qk8DFTudaX+p4gHcVOlYqxLgQEyk5RoyVuSqp5uIZR8/KtRFNhUDbRvqRUkImKvVS5zIX03QEdq7omLExo466zX7p4H78P44M9jnazkieITPcOetgnN2cILHC2HkdoUbHJZ1B98E2t5IjhLqO52WusEjTon5zXTOi51QCj5wrMYlAra21SHk14sZhEBkxz3gQRrgMYM4CyyzAMIwwcHAZyEvEaEf4Q4BFxlU54buWCeYzv4V/8P/4v+NDo0E4PwbSNR6MHqOzGKyHdwahRtmDNQjBwTshSwluRb0E51pfn/+j/wfct7vV7g2pO9q++vlfoEOAK4hXe6fUw7LijCMlFOdSPTh6WGU0ph5gC3fSQ1+F3FzzbUQ4CeZZ4HK2vW+MRZypfkIXBdKmhxcrt6xAMIyqh130FeX5O1zksleQCwopMFQ3px2apSk2ztl2X8WSM6MQoIf0ZYSoz4NieFQp2+Kp2vp8N/3JykTvqeNoF8MaufbJW7X1ADaIea7CWMyg8TjiB3/w+/H5L34eKc14+vQpnD1iW7RX2ALXXCpVL82t99oqSvVKtn6n4s5NVYhzSnjmOCJPN8jThN/4tV/Dd778PvjhAFuAxVhE45CqIWWxjertQfb2xmTvvVyyFBAtWSAdBsgoWFKEdXLYL9VoiFFgfTr2qebTpJhQcsFhHPHDP/zDmOcZhzDg6dOneP7555GWFSZrcqn5NXVdFlkvDWZDntCYMhLtT80rUIhaG2NQcj+tDWbQstZiiStTnipZut4tKY8l503ezB70FAB8vT7ni/Fe1n4oo9ht0Sadm0L3uo2MA8bIqtP9kktjh3TOrbVo7Lr+dEx0n7drGkngbk4UR/WF6r5bv7OFIqu80BpMq8GiuYH8fNWQr9ta8qpWx4wqqL3MEYV6hZWagi2MkIxklh8caWFPfc4JMYky6RrV+mWJCmuAYahQxqoAp1w2LKcu+ErCkTdrso8C6xnE9fp4HrjfPf09K8mbPUsRXT0D+hIYKa+GjvZHjYeN0l8EyjUTWyxKac4Szi3TayiMto/minFKjiI9C4uspzUCLIynsofWGl66/r33gLFIOcIZraeYCeLL56wYUqkaTC2CRGdVqPmO1oXquMKmLl8fgdV57MujsCxoeaBVlmiuMhff1v9zHUZg1UN0HTnvMS+LPItfHQxyLc1fZcKHcDGvLHtUPxG9hdgzran5hFRo2Iihn7HmlSoDriOoNHJGsA45ZYQwwAwDsnOYUkTMCaPziMuC7AxciXDnG7w/X+Mf/LmfxKf/+k/jk48GvGAm2PkpXnrxnchxxmANxmo8DcZhcOIMkvxMwAcvHJnGYCDnmTMWz90bUneu3UP77mjrox0suJs31FoMO1Sr+n0VpqzEMLyBvXacRK+NDzr2JvL3ub+9MdUrWOq5ZGOCC9px//X/wArD0YNznuc1f2Hnfj3caI8FSPu+R9LR/81YbO4ne3P5wOBx7iNYPSMSw2J4PjYRkZ3Efe0Xz31v0LbxqZA69eQCBdYB4xiQc8SP/IHfj3e88CyOV1qMtzdOeDzyzv/X1is+t8FaeIwfv/4qnjuMGFKEn2f8nb/xMziWjKEUmFiVRbPP0MdkA/187xmn/TyrIsiMalx/h/dbD43RJHEAzXAehgE3Nzd49tln8fjx44u1qfkuvP50rbDXnO/PBDG8L27z6vfrihUkhm01cg27ZSnjdcvX4Ggtj81F0n13/z5K3a8PhR0yXJb70UMC+XvsmGFZxHPMcoLn2bhLGmVeM/o93pN8T54D7jPndvLe1XHqGeBMjbIMw4Crq6ttBIZk7R4z2lvVmeL3+Z48jgxZ6yOMPH8s/zT/jPOSuDRHL8d4HFne7sGteiOb5Ubfv95408/09Zz4efW7vWzmMeXxVwfFPM8bEgd19imJk86hytlWv8j7lqe1LIvUkaPn0jmc5xnzPLe1zmPTw/v6M4WJi/qIPMPC10LEdkNIw2MwjuMFPFodBmpI9sXoOcrYn4G8xvUnw+c5+s809/xer7cwbFbnjJ93jyGX57uHpbKs3YMDxrJgqUZTdgLzRnCIWQhJTCV6WvICn2e89OiIb/7Gb+DJFz6Ld185zNev4c1Xv46HhwHXb74BX8QxYiC5nYZKPOjZas06n4z2uW93s92TTdzR9ot/+0+TIlEP+ZQ39ZSstbCokLdMVJ3K6oY1mhOo0C5we0FOPlSYrM2Ylf0u5wzvxs33+ODVfutBy8xfDBVg717v7epzMfaKErMi2Z6lJfwW5EzGWFPEVwxyqjll6glkhU4VY4ECbCEkenj1Bxr/nw1NfT4+zPmg3Dts9BDm+dlrzYuJLYzw4tA0mqNTGoQFMFhibgnCP//zv4BvfOMG19cnjMMDvP76m3j06BnEuACQ3KhSlOxiuOjbXuSiKXXZVA861YopWWBd8w2AjAkWZ2sxG4fXYPG/+Y/+I7xmPa59wGIsTErC3me2uVC9oqHK/h68i8faEwzytnHmd1TRMcbg+voaDx8+xPX1Nf7QH/pDwiymMJq84ttTSsLyRMpOImPDYmUJ06hKSgl2GIXMYp435CW98sKMWPp8vCa4mC8bDIAo0UpwsPZ1VfyVvIQhbW2c7DZ/pleae7gPKynaOELEEbUWkaF5VmWT6wpZyk9zzmGsRCRnTdKn/cSOjhal6chqihFyjmmaEMahyaoxHHYpxPUe5/MZx+MR1kptoq1hVz3sYTXAnA0bpbg3Olb55zcyV9dIqciAEALm83QhE3ntr+MI5FLhyVBl2zWYtCr+Y3BQgoysstK6NvYpJRSrRA3bIsw6vkrsYC2RLXDEiGDl7ayYlyYz1ZnRj4eOJz8nG5NN3sJcyAiOXLU8H6oxJl+UXLWrqyvknHE6naRWYYWJ9SgKRk4oUQ3325RtTmST1xVimQpB0uo4HQ4HLKkWE05zRVOwDGNouIX1DsVIvlLbc4UcCUrgYIIeY+15efx6+cmIEI2cKjJCnmFdv0qU0mqbjSPJUtuMSDUKlmVpUaCW91bkzN46VOR/83Je17UdNvJc5Yiedxq5b1DVIgQluheYodH60J7pcDggLXFDYNXQAWZBKabm6XlEGJgQME1nHIOHm854ODpcnx/j5Zwwf+lL+KX//D/DOx5/DQez4GhnPDBCbT7AIluHMDgEWFhTcPAeJWtBbVMdPIAHlWrAKss+8Gd/DfftbrX7iNRdbfayzoIoJUKbDFh4Ugx7zDBAnriyfZ8Pn76IZ84rBM1Zj5JV8G4VVz24VBhzzkWvxOhBxgpuHz1j4aWCkr3NvXHFnvA+N4mNiB4qxJ/bQtDKRtnj/mu/tP/qodvz/PbRAj6o96Ize8ZArwT03+XPcSSADYWL6+aCUtZ6H85KsUrvDGAyHjw84hOf+Bim+QYxTZjm65q3cb649++mucrQBJPrYZChtTEcDKwTr6N3DsEAIQpT3zBN+Kv/5X+J/OQaQ44w89QYuxjS0UdS2HvO46CHKxtSKQu0T2iWs0B6UHNCCOKTSl7hf/W9R48eIS4LXnr3uxvIse2/Qgoje02rbrHnVVX4FrfeWbCXZN1HgXjPqKKnMD6O3HEUoncE8Prjvugz7rWNQoo1+tLDL3vDe29vsIHGz4xchPELpuW38D4oVghJ+uLYvaOHDdFV7q3GpfVrVFDHlXOh+sg9R+w1etjfe8+YZNmon92wUaaMEldYlfUO1m+jLX2tGzZa+FpqXKvBrPfkOeIzhKMJeg2NauxFeXsjvo8C9v1hWDZHIPpxZ8NwD23Qk7fwWuJoYE9qcuGAKzX3TPOjUmp1hnqnmTqnWL72ObMCFyUHVyVmKGm5iABzpLQ/I/bg5DymfT0wXle8xvvzSOeAx68/D7WpDOE+9ftLc5e5n8uyNKIQvq7ma/La1TXZR1FVduk6uS363M+DXt85B+vDdi2XhJLWnKm2/+3W8eaIXVCZZ5UdeY4zxoNDTGc4LLDzCc+UBfNXvoS/99d+CunrX8MRGaMpsDYDDoCvOXFeIHrOCpmK8DLKyxjTIH1t7so6r/Y+7HEn232O1B1tX/vyL0p9EBRJzLcW1lSvcTbwViEKQm1byAuXs9ZNkXwq7z1AgoQFWEsyhwiewQVJ6EZutRNMVQINpEicd26DP9brMmSADwD2gPEhysKPjaoeVgSshwMLVYVWbQ5Qo4d6gjEE62l1klB/ZmiV9PZdXLIwiUDbQk56JYwhO+xV7Ys28rjwePDBxFE3rtPVf4aTsft6Waz4tfdyqVTPtR5NgdR1cRbzNCGnhEfPPMQ73/VOPH78BpYl4fHjx3j08FHF5a/QA+nHJdRuz+AS3rNam8lCCCOAlneneSqwknfhc0HIwoyUrk/44he+gO/7vu/Bsw+ucIoRpoPtvJXyr/9nxalXJll5YeWIX1MSinJrhVhiWRY8efIE73npJXzoQx/CcRilNkuegZzhvIV1QqJhiowdKqRSht7AW8HEy8Epic/ixRayFziHSNE3ZhHs4ZxsTHHOij6TPqd+Rp9TIUcbaGDJG2OrN47aAW+20SU2JljR4ai07ql+nvoIcw+90b1yPBzhYJCWiMMwSi2pOo6JniOEbWQDWGsoMQxxCAGo+VJGYUNVmT7NE4oBDuOIFCl5v3OcMCxUakItzUgV7/zQyG90PgzWyBtfrzcUcqVv9s7V2ksr7f2cIuZlEcp3s82v6o02MfBmIZwwRkiLKtKBGeyGYUDJqcnFgpUB7XA4rHPjLNIsubS6BnSctf9KkmKd3xhKOjYs10opCEaIV3Jca3mVlJGWKDT3KsEtNkZUbwBaayX/ElvIl0LWGCppvMCzYj0ojTEYhwGnp9coOePq6gqn6YwhBMS0ruPz+byh09e1Oscse9utzr6cxIBiyJ0aDLms8qnQPlqiELF7i5bTtn6fax1ZFK3JRbmjvspIibrXvhSDXgdnucl/9+cTAJzP5/ZeSrW2V0lAyVIXrWQE7xC8Q04RKFlmrJgm15yxbR1ba8XxUQpKPZ/kzDa0bqvTzxP8tqznpRpvmkOqBl9KCcUIkQ0q2UvwEg3TaCAALEnKyhhncbq+qXpClXWFocUJox+k/4vkfT58eES8eYJngsV4foqXPeB/+5/if/jPfhLhm6/gvSZiOD3Fs4NHMAbGehgXYEMQanMUBFtzopDhrToVTSU8Abzw38AYCIttPT+e+SP3OVJ3rd0bUne0ffWLvwBAjQNTDxeHEjm/BoDJIoCcECiUSkbhXC1cqMpQ2VYM7z3GLdej1lsqZYXJCV0AJ9UKyxB75BgXr8qSMvDotXsPL3s3Lxi6uhcbGBzN0tY+a1XxXGDtGr1A0YNCDSc1praeuN7bJgrZFkYAXNINs+dP/9f3Wb1r2ifOMeujVz20sc8H24tA6jX3oIfeBixLhLcezjosaRF2J6otAgOE0eL7v//78IUvfAGH8Yg3Hz9GUPY1lBZN2gtm7xlS4uSr417XZzuwjBT0jaKRwWUDnzJcKfDF4DAMeP3xG/jV3/h1fPf7X0Z58ABz3nqYeUwVKroXvVMFDsBGcWXa+r1oXq61Zea4NCXPGIMf+7Efw7vf/W4gZbzxxhu4ujogLSs8yWRxQpSqBK4QU0kSZ2O4cE6dOkRCAIy5IEDpoU6qDMLW4pIQ5r4iHZUoGtAKbvI6VG+25nxIzbS1qXINYKOk2Gp89ArYnqGfIYptLkAuqIn0QggAI8xlKUvhSV5De5HdsqRmcOo4NJICosaXvb/SNbPTgaPZyw5ZDYwSFtT1YgwsLksVHA6HtudU5g3DiHEcmnyTsVZadlJSi9ko/kx/vTE4QXKvzmeTZ2SE83iwbOR1DhTkWuNKYc7eh/WxddyzFH0uRVx48s9VzoQQEHOqjoVtFLJ3dlkr88uysJdtLYKDFY7ck0dsZC5N1150UwzAS7mk+1wNPJFK9OzV+ThPMx49eFgLmt/gMI6IKcF5MaIUxqYK/CYf1mpBb+p3NTAaWZKXouJCAOFX8hcap5gyYArSMtX1yigLPh+l+HnKUiWwyTFGYCgLp/VtzfSRYDbE2TmzllYpm7PFmFIjIyvpEUd7FcY3jgPivD3nMkpzWmiBYFgDb4Ssgx2xzdFpOL9ymwO1hx4ppbSx1XFJaugn+TkOAcY5LFHm4kHNTXR6Fuo+qvLb1dILtogz+cnrr+I9zz/CzevfwnMl4+f+8z+Pz/83fxXff/Swj9/EgwF4+fnnEOaIB2VAGA9AGBCDxcFYDKVg8EFYDSHOEucA6wycrY4dni+s6+PRv3VvSN21dg/tu6str1AghQrVf6wfyVpvxMG5AKMRK9p8pRTktOzC0PYgZKzAsKLeQ4n4/U23yRs6TVOrgaOJuW91bTYKWh+dbSF37V/Blvp2Y2SUteaVfr6H9un1i7mse7JnwOlzMZyQ4S99PkgPu9F+6oHDnlSms75YAnmlqb/N6OrHkA1CjmRZ6zfQNh6bNufVQ53ygn/tX/thfOvVr+PBg7GrHeXra7sW36r1ytb2GcpGCYlYWZRMTnjoPcJ0xt/6qZ9CyAU2J9gs9M8WTrDrqrSXCOsui5NyVFDH31q7yZFoipumS9R+iGI+N8jWMAw4Ho+N9GSeZ7zrXe/CNC3b63C0Vl3psFJo1xih2M5AMU68xZU1sBhb849ixfbnjZLCe7SUgmAdBrfWkzO5oEQpgNkMCMLXq/F46aBISGmpkUZ7scc3+VE789r/j5X6HrIWnLt4sWOE9xZHrc/nczNwGJ6mBgg7N7TPzHSprS8ey+uFc66stShx6yXnfb3dX1u4Xi8fDBycDbDGX4yhowgCrx9YyZXRJs8h82QLMPrQ1mnvdNEx66O124h4hddCajYpjDBnYEkrlBpYCXVKESVa+mybnF3ZINHes3Zlg9Vn6p1BCofkyCqPDc8rryv9fi9bePz3vsP/132iED41Hs7LjCUnhMOIuVLqB7cSSqiDcC9Ha8+JU4xDSjV3Luv83E6s4cwK4dJ8On6WPWhi3y7ORVsu1jrrBAqZ7fveO10VomyJZZHPKR3HBtVj+UDpCgxBlujPFr5YyhZyyPJIP6c5VzoHHLE3tsCZcuGYbYQZMeFmmpGrM6ZBJK2MVbIZ2dQscytMrjkDPowwNuDZ51/A69/8Ot773LN47dO/jtNnP4P3HDzy08d46bmHePbhETc3T2UNW4koBQN4FKk/bgyskXw5i5oTZ1Z4ty1SvFlf2t7eiXvffq/bPdnEHW2/9Lf/zIbZRuuL7EUg9D1OEt14yoyEjTlhmQ9WFoiuKtz6Oaar3VP2dfmoUsPCkKF3etAyHEKfz1uzweynCldIlDQbY5RQ9wYnHpBibgm4q+dshXEBaIeh9sNai2IKjK/vGWIRXGqCuV+L3sKuHsVxHNuB2ielGnupLKjS1TzNcfXaaSSAPX48jr0SpIdAqzivtK3q2auey5IqqQVBe2LW/BhWOOSw4shEqfRBOWd89rOfw+/8zlfx9W88xs31hDA8g9defRPPPPMQpZwgYr33xVigaAHf/eK9m4hPzmJI1PytOUWUvPYp5lVR+fLxiP/gP/yPka3FkwjADzjnjGIiYBKsiQIlNAOcDW0PcJSO17JBzYWq72UUJGiftP5WwvnpEzx48ACP33yKf+MP/2HM84zgBoJ/CBQ2LieZq2w2BuyqyMm6n/O6b1nxZcUqlBlWplT6AwvrKQG8RhXKIkWVNRLApAqsQMQoirNeXxSeGpExVeFPMn/H4wPM87kZjjlHGLtVRnOy6JV2lT1qZGYUHB5cyborazTAWwfUHCdfYU3Fr9fhunKbqLfZrh1du33+COyq4Gp0hAsRsxzjum7LsuB4POKNN97Ao0ePEELA6XQC8ppEz3v0gvDGrrBTjrhzEVfnDHLNkymZDVkueOxhLRDTeROpYnbPFj23A2KNKo9e5O0ySR2lwVWSHwCn5YwwuJa34pzD4ANSZWFTevPshpaHxfkzTPQxTROcuXQAcW7YKg62tQAVfcCGkyibxPqY13WmMDVxZCwwTq4Vq1jh/BchtwACrfOefEVbzhm+rI4F55zUkjIUnXYWeYmwaY3axhiRDeCCKN9wazTQYY3GMKkFP/PhcMB8njZnJ8v7TR4w1rHriZxYjrow1ppq1UFSo1DBKbwwAmFEqfvCVGNOSzOoIWmrbOqJapSpT1Em03Rqxoo6AvRs55IAIltCG299Ft0Xa95qxMGvMquPRjf6dWuQjN/MKzuCm9GUhXBDx57Pfh7H2TpkAD6LkVNKQvLVkCoFZknwMHg6n/HOd7wbyylimSVP6vT4FfzAQ4P4xc/in/ypP4nvmG9QMFcac4mwjw5wJePgHXw1gUIICF5qCw6+kkikDF+fv+hZbiLGEmGMQzEWxnr8/9n702DbtiwtDPvGbNbae59zm/fyvZcvm8qszMqszKosegkEJYECh+1AICuQkf8ISQFIMnZIWEiyLAuHQ2Hph8PhwHSmDARIVtGYRihkHDaNBEhUS5GVRZJZZN83r7nvvtucs5u15pzDP8Ycc401z75FWZjgJjrzxXn3NHvvtdZsR/ON72NyyEx47x/427htz1e7zUg9x61Pu5+rO+phHdZR0s3POl99Zkp/10dGz2Vp+nvTZiFSyprTU+HaqPqNjc9EmdSQlcicW+lO2HoLNoxHCjc7Fx3Te+0zSRbu09cpLDVHvkEpegPObvaW8MI6UOcgZDbCZrNX5zJs9nttNkLbR0S1lgZYailsFlANshsOhc4DiM6JElC85z3vwS/4Bb8Ax+Me03xCnidsNkNjjDr/pe3nn63SzJRmT8hZsoKlb+JxwiYl8P6IlCecyoTkCrIT0Vxigi8OQ1iYtfootx27Gw5dKaDquIEXaN7l5SWYGe99z3va/FvqYm5G0fv1YY18CRxg9eVQWgE05xmeVOfm2TpO9rP7Qvf++jpv7OvsfT8rk2QzCc8qSrfPbSPyNoptv6xBDYi4az8fbE2YzaKoc6X7Wk8y0691YNG50uyvUsw/q08ts1dfb2h/Z9e2OrE97Xafbe4zQ/1+8ywK9z6T1M9lvYYS/tgsc865aefY7KLuDyDRzNGxOGeoq3OwDkYsX8wZwuCX6zoWhlBlXbPrvP/85ugXs186aucAA6v50889zbLb3/U1YuvM6zpT2u/B/V5BREi83qNt7aslIbJOk61LtHPQ9uu5ddSvIb2ezl+9b5UA6detzeI1u4GXjKLNptrgZSmlCVOfg4bac2yB+C2Ozrl5bvvUrkkdI1uv1u8v9nsbREQujcDCsZAoeZBk5Z0X8ga3DsrY81b7R7NwlAtcyRicR6RQI1eEAA8PD8cO9y4usd9fYeYJwwDEcsS7Bof9Fz+Pv/5n/gzS9WOUUvckc3ZZDc32O1pYg+2+uawRWTsEj4yIjAhGEEVHToiYcduev3abkXpO2yf/xv+t0S33sBJ7oOgmbjeivtBc4Frrgl/93N5JCD6uDK4bcBOs9WNs1MdutnofupnY7Jl13JhZKK3D2igisxG3gzbNCGGJeIUgrIL2IPQ+Yp5PK/iH3ahOJ/nbZrdBYtn80jQ3SuCSM3Iq2Nbs3zzPoE5v61kOWOG8OvTsAdvGrSs0P1fQD9wU+rURvWY0+sq2pUxeqWYRK11xtNG/OK5YkZgrdp0WQ04yHQXBV1ZCInAhvPHGQ3z8E5/EG68/wv56xv3793E8THrH9V9j6NGznajeeGcWanTmyo5XIUWneWEyU1hFYY8HKePinS/jn/5XfjPo3l28dppA5OCYsU0SZZ6csO/ZQ1jXg+1Le8DqtaYkBxVV5rbjcQ/KCd/1Xd+FV199N7bjBofDATGOQnyQM7yPkgUt0yojJeO1QE+Ya2CE1lT5q2xKvb/RO+TKLEV1TcLdJPhI06m9dxzHFgW3a0fmq0SSbWSWWeudKt11BsZxu3KyZI3XNe2NWCziahz1mjZwwiwMXYfDoWUFFCYVQlgY6bSmS6cPCaW4JYbw3jcaY7s3WaIcXWOZhc7YGsk9BNf2l3VCNfO03+/BLOyM10+frAzUlg0iWgWQTnO6YUzaAIc8DyEnWTuOrHO2aOCkVDBNR2y340qLSvdZm5GCWzOnOufW4utVdHfKk+l/3+4puKVOlkkgfS74Vf/mLKLR2+12OW/mm8yF9szRDKWuJyt8rvNGx0uv79xCPlNKQanX8N4jhgCgIHNlbuMq4uvXGQq4AJTFwdAxO51OS7BOM2fzUvfjojiaUxWuXmXXypIlU3ga3FrjSFuj9y435TCIKlV4WFOL273RIkrILwFIdTjUIdK1ZjOeusbICDX7Wl9U3PqazFK0SCSU/77WqB2mEy4uLgAAh8OhzXd1vPW5cl5qxNTG6AOG3ntkXoITOud07tr+s9lmi1ixZyIA+LgIQ9tAh51T8txYOW7a7JxLheHJIRQIQ6bzmInBod7/XODYYS4z4kUQuYTrt/ECAcPnPou/9cf/KMKTt3Dn8BAv7iKCC4g+wHlCJLTsVIDs5wrnIxJmvlidvqHWpjIVobKvcNDCIzyASBMiJgRkuDLj7g99Gbft+Wq3ZBPPafvGF3/8RkEusI7inYMu9YZN+57WYpG2WZw/0c3apWdFuW0Ual0kuo5CryL+Nvuk0SJaY9ctLr8ZvfX/DbNeDztHaxpZIrvZ59XGrM05B+cdStUkCS6unMXgAxwZEWRglYGwBp5eV9iFlqikxbGvom2VCcs6YsDiINlCa2tA2SgyszCuKVMZtO9qNoVQDwzTp6dJRSJPSGluB5/OizbWzoE8A1SEgSxn7HY7fN9HP4Ivf/UrGMcBbz96iBh2UAV56Xc97LhpVkk59/nI/zoSS+2tyuYnCu+1WJ0ZBMamZCBPSKc9PvV3P40Pf+D9gPf1kg4M0VSBE8Yn26/9gXuOWIKZIVwNAmVK84wYPH7Vr/gVeOkd70AMAvW6uLhAOs0GMkTIOUF1dUpmk02xGmiy9uIQVtnYPkOic1dUGo32VS3/J2NYlAo3tfPF9u2ylgq879n4NEija3+pbxmGoWa1T+1z5FmEhVGZLPu9QvtWDb44xDZ3g6tjVY0kJsmCiJO2JktQKJXdW9gw36nBabW92ryya7m+12YRbQa57zOF843jiHEcBVJds+y2tkP71erPgdZU3da4bHDcyoonr4EZIwtjlH0s5yXwYRklV+vVZF/VibL9kXJGYcYwxPa+oWbPpmmqjIWEWR29EEFucej7LJquqSEODQ5pI/09aqJ059U5lIM6EERyH1yk71LOKMkIr6K0vqMKUyurPgTIeXh3MwNlAxbWyYETCHkz1pkRB+PMECGGiDknZEOEQbVvvXFKe0SHdaT1+UVHbF3vqv/2CA3NEPZOiqI+bIa3vQ/cHBsZ/wLnQ2MybOe8YaVTKLMNZlgHz879ZZ9aMm2WlMKe/8zcsqHAmphJz7IG47X3ZuZFX3qgWXr9HDt39F5jjAAvARSbFVtlJOt+6ljgwCCHQgSuNWy+CKvevmTk4x7u+gk+yDOefPKn8RN/9A/gg+UI9/abeGUbcbndwBMwBI/ogegcBu8QHcEBGGowQPZwxhBCK/32JDpvws5MjZCI2MOD4SkjUgYoAw7Y/DP/K9y256vdQvue02YLpvsNwB4IPTTAbmzTNK1T/GURruvx/XoQajsHv7Cth6hZ/L4aOTecly7L1EMc9HpqhNhIVG8croT1zOZrYRQ2cnvzWkvhqYVF2r7S66yKZ3ujzYyRQoD03mw2qu9vey3bzkFgbNZPKV/1+z4KqAQIGr20gpF2jvTf22vZaPEwBjgPnE4H/OAP/ip8+7Wv4/Jy94xZ+2wI2rPasyBWPXOXrIkZAQUbYsxvP8Rf+tN/FvdSwZaBAQR4h+zXWjv2IO2bNbLs/ACAPKfKsrUYMafTCZeXl3jjjTdWc7FfA/ZfO/Y20qqOhq5HNUobo5gZlx7mZceph7/cCKDU9qz1rk7JInQr2RL92e4Z59Zrfy3rtGp0fr/ftwzPOVjduSylXf/2X+072/899MvqY2nTNaP9NE3TDSKXnHMTYVUnzUb7dY1rPZH9XR8EsX3S973dY+w9rvWd4tqAfAa0r59nOl46Tn2wx45lPz8yLwQrfcBOC/Kt3IL9HAubfta4/L3WvY6Nddh0btq+s/qFdhwtIsLWF/fnqN1f7Hp91v6grX+OXpeuh9nauWBrtfr+tTBz+1l6Tfv8zrkFlgnccKSetR5vZplpvd9VJ8cG6+yZZp2aXrvRnkUWgmjH0fZhPz/sGrNz2jpk9vzV91upB6s3qc9vNadsUFXvm0ic6MQ1I+lFLBfka42sfNZmt0XgjFfv3MHDz3wWX/rJn8CLDti4gu961zsx+gA3FwRyCCT6U77CtqU8gW+shWYzPDPQyJKBQgKoIJPD7AJOPuC2PX/tFtr3nLaP/9Xfvzrobc2NGupqdKnquDXULBRwGAYkI0Bn6UP7SD2XNTa6Pxzt4WyzMzbiZj9b/7WHin5Oq+cZ17AD50QbRqPNLXqcTRGyRqmxEGhopmqeFjYvbfq5DeY1RBRUYwhCMcvMrQDXw2T3wnKI6UGpdNANYsii8aB9DuBGvwh08GYEv3cYADRooDWWreo6ICxvAlGoz1TruVCzIMFixY1xmlJCiL7dU0rTDY2vnOeWKRzHLXIB0sz4+te/ic9/7it488Eebz98isvLu3jy5Cleeukl7Pd7ALXOgxRes47V9NuN/bmUgpzUmFucAyWgSCxGE+eClB0yORyGLX7Dv/4/x7QZ8eTyAg+un+BeGBFpbcgqdbEVslTHXw/pEAKurq5weXmJq6dP8e53vxsf/uAHwPWZCFbo10JiCSE4pPkgfZcWg0KhfWLESk2JkqH0mQa7rsKwSAfIHLVU1kuzmVFr7Fg4o/wuopT1unCVHAW0GH7TaamBsFCjEIYbxDF90+vbbI86U7b2yDmH0zw9M9N+DjIma3NaBSms4d0yLADG7eLo97Vg5zII1kDXeWDXWp7XASnrPOu6mecZYRjb5/TR9CWgk+GUzpltzc9iECt5zjQdV6gEa/jaZ7LGsP4cYwQc4XA4iPNHi+6RH5ZAl80oOefggl9Bx3ont0kMdMX8vdOm75krqYiFnWqAJ8aI/X7fCIZijEAuzWGL3jAc5oLCUoc1DAPmLP0857VMRGaCpzVZgV0f+jsLkV/gZesxblk0vwhYy77qbwQkQwgts2X39XMQ7TEOq0Cn7k06n9p5QMtZog6i1SlszkrJN+Y3AKRiYPRdprIRv4QANvpkJS1kDFaI1zopeo7qs1qh6n5fd2FxdjRz2wci+0xl70StHESTgbRwXotwkTXJbT/or6PrfqIE8g48MxwNYHgUT/DRgZhxeOsBNt6BIvDO/TVePBzxl/+j/xB30h4v+GtsfEYA404CLsgj+QQXqwaUcwKhhZDkBK9OszIzAr4o6VGde3UfZhL9xXFOyMTA9hJPmeAvLvHNB4/wg3/4U7htz1e7hfY9p+1bX/pJAD83nM4erjZ1bV+7RHlkI1Sna5qmFf3zNAnFs6ObSco+3a5NHZiFfWdde6IijmpIATejU5pit5EnACvdBEAKS8fNBVS0DxCRQG/w/PL+Gd6ttYT0uW2UKmWBEwFYwQNdNWoclsgb05r9yeq+rAqg3dLf5yAsYkAMq/fYw6IvRu6hkfbzFDaj0EMialC+XGtPhpqZTClhGMdVJJkUIkPrOi/HDqjX9Y7gyGGu9N+b7Rb37t7D93zP9+Czn/ssnBcK/u32EofDocHF5Ea1GP3vnfR2gjCsOHEGwVWNKZkJwh5OmAlw9b9NYgyl4HKzwSc++Un8Y7/kF+M6JVzcvQRKbvNnyWbl1eFrjQQdG+ccYgg4HA741T/4T+KlF98hgrqlVC03ETImEFJeDKTM9THLAuFbxt9SiSuMbr2mey0rImpwTf29MxpPzEKbCy6YU24ZaAtptQEOWXexicPqumItonfL56Y8Y7vdALC1lGFdW2Do0/uAgBXMZuamp+UNyQn5NVFEe6ZOEFkNVN1DFLLVG4R2HUrN17oO1EKsbCDCOtbAEpDSfaJlnN0SxLDOhd2fiESxRo3rHka9XEegPUTU6lHneUaMg9mzKrlKXCCg57ImzjlE50UDqZQGaVTRU7vHpJRqnREwG8hgAcN5Bx88pnlaZeKtcWqDZvM8NyiWPpcNMtlsj/NrZAGwztC1+iG/6GU5dQSJAM24O4IPHuMg0Ms4jLi+vsYwbtZZW3JWLWMF+dJr9/3Y9j8AbOqZOGXEYUCqToe+bn/YAyzwag+hrGYAMQTksjho1pC3Do4yEVodRXuvFhZpySz0vF6T3BREVQip+46Pw4qoppQi4pJZBIJ19gqiza3qn8A3IZ36HHb87Gdb4gq9f50rqcsW2r1J17mF5um+Yf9uUSGq89QTLFl4oZxxedW3dv7qa5IrKACiC+BCyJyxGQecphPS4QnuBcIGBe93B/z5//g/xJs/+eP4iMsYnj7EnVjgBnGYBuex8QHkMqIX+nrvnLBHliKOUj3HCAKfdxBUuq9OrjIgylFHcJQxugw3bvEobPB6uIsvXhX8jS+9iV/7L/1O3Lbnq91C+57j1qeCbVSrh69pOxd9O5cFsFFEC3uxEdwWpXQ3GZN6iKEVU7RF2QAaHEajVpadqqXkCcth2jkSqqkhz7aww1mjSqi815Tv+qz2S59L/y2FMc82uuirITGAaIH82L6298jmsLNMY3ZT13u1m3g/Pn2fr/TA6u/U+NfxshAP+7z2ULKEFyovuwgcLoexOlQ550aPbMdXvtF5w/iVv+qX4+nTt+E84+rqCYYhYpG4XM+1vv/7Rq2mCpW1b9E1sWx+noRF0TkHOCHGePT4AdL+Cn/+T/4JjKcJxzffEi0l08e98d/WEC2R3hgj9tfX2O/3eO+73t1YsRrpAQjUQfiAha5Wx1fHwpKs2LUi2SVh6UNJ4DyDOMOhwFddkeipFdRTB/EiokZr/CxIlTVU+72jnyt633YtlSJE8M5jBevhSlNfCm7ck50r5/YBxwtkp2VhvUMhYVzs9xgLD3oWJFD3Fssi1uvGnPu8PpNujXo1mHtoqXUuzu0jPSOZXfO6h9j36Pf22hYiqv1kyQXO1Y/Y/vRYZ7/meUahZY725wEbZ0tfd671Tm+bc5wkS4Tc/gWpiMCSvexZ3rbbLWKMOJ1OC+263R+8WzSHuj2lh8/9XBlMe55Zh70FFwnI4FX/eO+bFls/V9UFafMHi4PUZzws3FufUclAdP9QqnDdY+z46nOqA2WdE7smWq0rhP1T50zbn8gLcUFZNM1Q5TG0DpKZkbi0PrelAb3mmvahXtfC586tOztv7JlnnTALdf65sluykEpj7vOg1VcgGRPHN7XolFVzVYZADr4y/wUQBvK4fvIE2+AxMuDnE3aOUL76RXzPxmF4+ibK4W1sY0bghCEzYg2iFUc1E6WQvirk61yjl1+v/y4oovFHoSIEWGDqJ3KY4gW+9jThZ19/hCfDHdy256/dQvue0/a3/uvftzKSFFYALBGjcRxX0SKFCOgmpRs4IIrZwLrQ3ma0moGZz1Oj99CNG4dy5zQAWMGLbDaoh1j46JF5Mb5Kyig5Y1OjtAphnDO6IlWPOU1wbsmOSV3LZrX52kzXoiNVRVdLaYLHzIxYGeuoLBteoZtEHhqhtka6MuCp0dUfQqWITpcdw96R0teqtguAG9dqhupQ4YVYxPxUR2qz2eB0OKCUgouLCxSSOil78C7ZKBUlzEBWghEH+MWIZAJyAmIcsT8cgAA8fLDHj/3oT+J0BB69fYVh2KAdEKSsez933RQzw8POITHqKlpFnPQijHfTTGK0lYQ5HZHKjBICHh4SOAzwd17AP/ev/DZcX4w40LqeyEbWm2PoCPNpgY+mecYv/2X/mDj9rJnMgPmwr0adCOnKZ3qBhTjCPGX4QHCVApdgNaKW8U5JoF1jXIyuBlHtghvFRUD10aqgNtUMktKjOwJc3NwwOnqGTBlzj9NJsobDMNRsTB0bstAaIKWliB7sUMrCLKevC+GmwKuuS13vpRSMXkgDcs5gt0ClvPft51KK0eRa7yk6bjFGlDSvYHn6WqvTJFmNmwKufWbHGoJq/KrhqAZuc6RyugHts5/f5hjfLMzvM2jMGaj6bQrtk35jY2SvM132mjYQIG9MEuFWjRySed0yYYPsl74sjtZcF5cLoqOz0sjjfAPaZ6Gx8jwZxGL09aQ7do+SrJJc/3g8ts/ToNrpdBLtMy6YKpxPszXOucbqSCRwZa4BB2EDlH9T4dVemlkEUK3DbPdbmxVRZk7N7JVSUJIEklZnXvTidOWModaoOBDyNK/IRgqhBWf03NPPV+jeMAxN5886hY0cwmQ+T/MC/bNMvMpAOI4jOCeU+Qiq9y8i3wut+Gmu6AQWEXPWNeEIPi61SalCNQOvdaH6ur9+X+vhsvpcOk/nPK3sl75Gqe13WMhbrOab9q2rUDmeptW49s5Z24ewIFemaVqxeLYMdSSUlBE4oiT5nHE7oOQT6PAUm+M1vvLZz+LRD/8efLdPOF5d4d0vXOKNr34NH3jlZQw+gL3DaRCUypAnbKHoFEZwHrHC7R1UH6qAvGh9BWgGSpzCQmUh3gKQvMfBDfjkE8Jf/8YV9nGHaXMff/zP/lXctuer3WakntNWjEJ8n7FQNXvdtO1mcg7eZ/+1DHL2dbaOxx7WtojZRnisoaFO3Yq6lehGgTcgUTA1tJZouEdJlb0LBOc8wOuNEagRnxAgdMzTM4rwl3oyvbdzNKiaXXFY0xovdU0L7MLC685F12xUv4de6mtLKSiZV6/Tv/UZi96R1THQQ7Y5ppUinJQorzY1pGUMM5jL2c9Vx4XIt68YxpapI1pgm2L0BByPe2zGiEAOr77yEn7tP/2r8drr30QcyNRFAYwAPkeNfrbdLNC3rfUzxOD2IMGykAhVX4wDLoaA69ffwCadsGW5upeCP3AGBhdB1YZlAopfDnGFK+12OxyPR1xfX7eM1FtvvY3My1q080GcQMkQRefBhVodlS36LyXVA7wyWHmJcEvG04GZMJdc9Wok4+pchXtwvrFOmzFQKYs1Q6Tz+Hz2ep3J1mex2WR5tlqrU+O8FjrXRstV+JiB2tmgQSAndMJpXSAeQmgMg9p3NoJsafj74nFd2/28seMihvJ637EBm+V1a3iyrSuzDGN9fUZfk2HXrO6Veg2FT9u6MvksJ+uCFwdrcb5U5yfV/UfGTQJFM0R4WTLvi16T0CafI5BomRGWNSh0+lJnJPVyRSCiJPVHPiyMbna/sOQe8qw3iRfsXtiu7+Lqdfqa0+lU4YzCvOqbQbnWzusd11KA02ludYdaV2bvwdV/bZapr1Vq912zG8jr802vqeeZzGmAyjpLZeenXVfzPLe9unfW7fOoY6prYhWgpCUAZDM39jmYGalkkFvrta2cC86Aru06H7RPbjjpRdZ0SkkCmzGs57pb7svOL7u+1vt3qQSuNzUYbbZSzzRFXGjgRD+vr9E+F2gpnMClACzZ0FQyfFx041KR38ERXIhy3jHAhSq5hDAcHo9H5GnCO8aIw1e/iMef/tu4O51wQYyXLneYD3t85Hs/JNkvBwQwIgHBVfhed/63fdxxJZ0Qp8oTwTMQStUudEW0EFv/BaTxHSi7V/DlB1fIwxYYdsj+1mR/HtttRuo5bX/zr/7BViDKJcF5rbJkZFoirzSJM2A3eBttbRpOYSnIBNa00CtHDe7s5qWtJ5PoDTM9tKwQ3rlsld3svY83nB95XUfTzkshrNWmUmgWIIcYl0UNvofZ6e8tmcNms2kRw97I1Pfo79RosnUXzAyuApSLWC2Q5uX6zmkmaE3Lagtw7SasUUwbebf9txi+6/qVaTrWsV4bQ1wWA0WLudXI1Qi8RhrVqNN7GSoZiFJh58wY/abp/3z+C1/CN7/5bXz9Gw/w5oPHeMfL78FbDx/jcreF4yNsrdQCPSWAK80sLcXSAFBgBKa51KCCRKQXp1LYlk7HqRWDz3PGFAPeHgJ+/W/5Lbh4x8t4cJgxhgtgljqSE00oo8ehzAil4GLY4MGDB3jve9+L97///UL/TiLw2JyIRjJha6omMT69h/cOzMA8aYbJztvSdJrEoQXIDe2vNiu8gsphgSX2Rq0V+oxxa9ZUrkbN3CSnGtTOxVXtzvF4XEFDAXEwfa3bsaQctGw9DQaWg+jQIMv+A1QaXxA4F3giMBG0Ws0a2Daj1Ix0v66PsGttyRgl5LzUXtqCd11nGmhSjawGm8uprbMxSjaMEFcZBLv/rAzCOd/4W89aljvHsofu2myoj2MlLTB1cVzgdN6wQN1crR1RB66RMHQBq1bMTwqLKibr6OF9BJCQ8tT2v36Pa1m/yWRvqlHtY2hZEe8lOxN4zRJpIeV2j9J+skKudozbGcU378eOa3teXge8RNNtqQUlItAgdXJEUmNVijj1q3o5EFKawDVzoZpeklVH086S/W8ddORCiHGs/StjNE0TXLjJZtlnpDRTpL/T+h/nXNPqKqVI4Goz3kB1WOfBOQlYlDQ39Ik9C63jPwyDIRda1pk9hwRODAzbzcoxmqZJ5DYsoyJo9V6d21aKAShAEscfJoMF18m0uAUloZlMGzhsv0sJQxDyGleJPVJK8A4oueqVEaEEj6PziEwIqBnI7RanaULmgoCAWAAXIWgHGlBjktjigEs+4fJLn8LP/NDvwQtpxsV8jZFEA2rrpAZvrDBs59BsK+echEmcM6x9NQAIw/brBrhUcFFJJfaUMA0OGcA2bJAOM9zmFfz1p1t87fU38ToDTzYbHJjAw4A/9f/4r3Hbnq92SzbxnLbXvvJxcMuAiO4ASsXdMsEXSQ9zXjZZYNmI+lS7asboz+v6Ihspunkvli3Ivt8aejaq3Ucmz6Xf15kvvvEezTitM2FrhiYL0VlDBdZEEMC64LevX9JmnRYb3bXMSeciv/UpUYpGD5USNpnIprwqhHWth0KTrPFhnTfbelpncQYtfEXGSUg0VNtI4WJrA7FnMFoOLY2S2/HJzRGQPgJccEjzDEbBSy+/jPe+97344pe+hGHc4LC/xjhuwTlDQAoOYF8dJ2ChEhFyCjJ1EOKUmjkJmZMyLjYDiUoAsbybWebSC5d38dM/80l83/d9FHz3AldUcMQMBAJ5AkpCmWcEOFxfX+MHf/AH8d73vleeVaPHJrvIRYua5zZ3mQtiNNo+FEyk3jwLF6Q8r416LBnMc9FW7z0IvDKaLFOXjp++J2clNHBtv+jr1XIurajbMtatWiX3sPUFAKquCRrBAPmqwVIdJ71U8FJSXXJBrpBTHWvLYHluvruw7BvK9Gf3GlnDTiCnWJ5R5qkSk0h/FwZUb0hbyWmp2yIgcxEIpn18ohsOkMxH1Ey56+5nef2cU9Nk63X3btTz1ACZ1TsSYpfKdKfw3RhWzqJCfS3JzzLPhMxErrk8u7xGnAaim3vAom9VxBHjm1kRqtfXa56mSQzWrq7rXP9pP1jnTb+0Hm0YBuTCq8CXDcrZfdk7IWwRnThGjAEAIwSPGIM8o3eNqKLt1zAZn6ZFtKTylRTmcDiuxu/i4gJpTu118j7pY3Euc9s7c7mZlbG1TZaoyDqWer7udjtcX1+DmbHdbsG5VOIB+aJKyoPCogOlNXHg1VjY87HPrPVnnoXhO+cQ4oCSs1yj7od6bTAj+oBUM26qZ2XrefVZZHwneX2a4fxiPzDWtO8MyZyVnGTfKxmn4wGbccB0OmIcIk7HA2IMyEkDQzbwJOvdOdfOBOczXEpwteZ3zhMA+R45wXNBnmaMMWB/usLGZdxzM777eA33pS/gx/7IH8B744xHb34TL+x2CJ4QPGFwog0VnEPwNSsXPHwlmdAMlHdeoNdUIdi07J3wDlPIOISEKYq+X0RAxAZluAPcfRGffPsKP/G1R3g8zTj5iBw22IzCRvobf9O/jNv2fLXbPOFz2nJaUxXPmWvtBSQSXBiusOCGjXGtG9sKN24gAQCMY3KT5MA6EdbpALBylvRa6sTZCLONVFrIUZ9ZWTb81KAq3guE71zrYYfWsemdHFunYB1N26fA+dou/d4efupInnMS7fv7Ivtz0EobPVdHysIktK97GKDNxq2zbEK2YesQFLYHLBS1qp9jHTULf+nrMPq2nhO51t0xGBneE/6JX/mP48GDNzBuAk77pyDK4jyxEoS45Wd2UlRLN+GZ/c/9/Vin3Pazc1I8fPXGA4zTjP/iT/xJcDrh7ccPwIFRvGRtcplBRWpCXnnlFeScsd/vMZ1OMg4NMqfZw9TgedbBIKwNWeckAHBDqw3+xv1aiF6f4bVr1zZlv7T1QDoWudZRtf5iBy60WvN2rlodNtvsurK1LzqvLe24Y6zmbLt/LO9XEoMMbt9rkX/i0ogFdG1YKFwP8+qdB/tv/zq7z50L3ti9qq/xsXDa9myOVveuJBmJ5RntPLX9Z/fStreysHvZSH4pBVNa4NXee8xTRk4MLpIxCX4QuGViCEopmD1gGZe+f1ofUZC6rAqqTHMBF4J3cZWxtO/r9+4egmnn3LPALT0MXB2JJRCwaP30Tqd1ovq9Xp0sO17t3g0UDrks2lJYPtsG/fSaGoTUNarOXntWXiMq1nDLtUagPpvqw9lzuO8TANjv9003S2ufnwX71jnSZ5XsONn1YvtGr3nu7Oy/7+e1NpshAxZCKRtU7dfUjf2zOxNtwEjHVuvplvvPIOPUagbauQByDoWFeRRpBuUkjHnewbHA6kIUNj3ijMvdDsf9CbvNBi5dYXN6gvmrn8dP/Nk/iTtXjzG9/Rbe966X4FyBN0ES6+jbs4gcwynJBN3Um1z2koIcGLMvmHwRRkpEeEQcscFbs8dnHz7GNES4yzuYChBcBBUg8K3J/jy224zUc9q+9fkfgQQTJTLIFWoBlsoTYoYrJErc9T16EKhBorjjeZ6F4rbbVM/BELwPNzbl3kmytRW64VohP/23hwUCNw0vIoLztESUweDCNzYsiTat71nhBn10Xes8+oO6GYAmGm43eus02g3dQgz6OpPFkCPM81R/p8LICyuSRjxTWnRbzhk7lk7eChvbbOLaGFzrcshz5dVBG0IEDMTKHng6TxajQg0X86xen3WpJZF5AcBV3Ld32G22+PBHPoSvf+2rGGKQeowSsJCbA+JQVZp0Zesz9tfNjBSwRNhX+YMadQZym88OKAU758ElY94f8KlPfxq/5lf/GmCeUcpc61ASxs2IIW7wAz/wAzpg2O12ErGE6Kl451s2yhpO2r861mhR/IWCXF+nfQ5oJXpLn7S/WearRq3fQfus4akQGoFprn8PrLVspO/cjTVy1uglWTs2UxZCUAL6BuETruU6MmyMvZq94WLot03mTYMapZRWg6ZzNsYFantub9JMs4WDWWiiNcDJ+dbFLRNCxnlkIbwQZ37tBJ7bE4MJaPTQXoVnMTNCXBuXNhuhz6r33MYo19oOfWZy7ctmcazExCrARfZ+dI9dSA40yyyfv4ZmW3ivBlrI1IwqiQ3Xe2gU4M6BzXy1ML1+j1LH3+ru9RA0ZkbKZWX4W+PaZs8VpWEZFy25ihITKBW9wlHHOLQsc6sbI7vDLFnPpm/YWFKntofpWMj+2M1VM3V0Po3juDrLALR+1PmofahwTCLCZrNZMa7ac6d3Xr2ZD/o5ds+yQRsbvLF7QNv/TYDtdDqtHDLNPKqz2Uua9E6d9w5pmhBjwJwWIW1y672INHvjlqBfjLHVkKWUlrNeSxeqrpiiAgozcpF5JFlvgmMC4JGYgTAAIYBBCH6EJ4e3n+7xwssvYX7rNbwfE46f+TT+m9/3f8a78xF3nzzABSWk4x67cYvoHKIHBu/lewcELxIhwXuZWxC4n3eVuZGoMvYtGSkQobAQbDmqNb804EgbXLsLfPzta/zYV7+Fr5YBh/EOjuQRN3dkTeeC4Dx+w7/wm3Hbnq9260g9p+2Nv/OXMHiCd4wZDB4DKAYkFjaYcbPBdDoCNQpjxVZ7iIVs5Gtq096IX4yhdaTIRimBdY1Tb3BZccx+s7dQHWDBz3vvQY5qVqUeWiTwoIUKVdL385xANYWvmG9g2cD1no7H08rYUOMh59yod4/HY7u/XodHn906MDYq1r+GiJBLRgh6CLkKqRjasys8zXcaOvb6p9NpZTz3elU2UtcidFIRAucdhnEQe73KhqDCrrgsMEh1iK0xqM8xDANOp6nCM7wx4JWpbcnIKaTCB4+cpbDeeYfgPD76ke/Fk0eP8I2vfw1AxDCM2O/3ApNpDHNSV1aBHq0/UH+D9qr6HFgcOXVayDuUXOC8MRiZcTodEOGxdR709ITPfPyT+IUf/DBKAUr0uD4d8Kt+zT+Fl194Gfvra2w2GzFiDkcoc5cWKUuT+7SkHWIoxOp4CklDKdJXerir0RHCAHVoQoiL3k9Z6uVs7Qszo+TF8OgdfqWOlt8p5JGb8yuwmw1CiHXeraG91mnXe2Rm5FKQUm71Fs3ArlTQaqkTgNPpiGJqDQEOgwidAACAAElEQVTJoouhRMLUVwriZiNwGyfF7ikn5CLQPwYwjAPGzYhUBXrtfdkAjTiPQ4N0yVrjauTKv947hOCRC2OaTqualGIJWwgYxhGoemW6pkMIjYpa+2gYBhQuyCUjFyHAdl4M9ZQTfAggJ+tf95g+A6Vrrd1LmpHmWYJiZkwzQ2jA67z3Toh4BG6J9q/OI+c8clmYDHNSI9nBOq/iAOi/HuoUeC/QNP1MItFRa4GS+r0PVrdIoHNTrbGzdTgWnWBZR20G3ZKSWIPeed+CA/Y8shpDRISS5wbv1Hk/z1OFclZIp/MIThgAmRmejH6Yaikxy/BXEpZh0GsvZ5YymTrnMI6irTbPCeOobKpz3c8F6rvdXZi6tMUBUofAZjj1jLRzZg1PLxVeJ7C+nDJyyg3mx3Wv8843yLHNoumZ3KNL7JnVnz8AUHJBrMETR4QhRngnMG4CYRxGpDkt7H8m4308HlfoinmeBIfgBL7nnMN2u63rU5j0vPeY5oQxuBrQKkjzjJJTvQ+N20hwycmBJlpodZ2EGOtfCCEOCDGieI9cAhgRGQHFD2AKSFmcrsBA2AQcnz7Cd5eCn/jDfwhf/K/+Mj4QC7b5gLuDw2UYcRFG+ECIxAhEGFzlChKsYw0OOTAyxiBCvnLPQkK0PsHkR84Jd1xEuC64N9zBg+uMN3b38JmnR/y1r76Gh7TBafsCjmEE+wBHQgDjSEiNft1v+hf/u5qVt+0fULvNEz6n7W//6N/AS9sRm5Jw72KH6ydP5TBzhAJCKgVwN2E1PYylh5mcS+Hr+3uWvj4T0mdD7O97evE+na/v1QiodeiESWodxdXPtNSwFnZhGbFspFOjeL3zp9FwhbfpIW2hIbamrK8/0N/r7+znan9YGmrLhrZK/59J95/7PDtm9jn0XnMXEdZD1OolWUjKuUyAGj/a14fDod1bf0/WAdY+VsNJ/i4HjGgPObz3u17Fxz72fbh7b4fr66e4d+8uHj58uJ7kz4ApPAsi1P+tfx3V0N+w3YA44/jkCTapID14G//PH/6TeHG3w3Q84f79+5jz8nx27G0U1zJv9RAg7YseYmYdU+1zC6tZGaTGqLIZTxuBtmOgfa9R4h6K1UM0z0EFLSyoh6fofLDNBjz0c20dhNWAuREkMQEKC9vTjJpGmQ+Vpr+HPfV1NhYyZA34fn4swaN1oEDHxAZ9erilXWt2Xzs3B22fWqO133fOQcXsfNDnse/pIbcW8reCNxr2v3PZNNvsmgWw0EqbDINlPOyz+nr9UkRewe6X/V7cn0cWeq5BAwtD1vuxJAe6Xykc+dxz2bXTM8zavazPgNq90a5LOwesQ2eDT3qf/Z6u58oKxmU+Q5+ph/ee2xPs+juXKe3PEvsMPcTQnhn9Oa7XsH3WNzsPrTPY7zdaM2X7155FOv9vwBCRV/fan7/9v1Yc2T53ey7nhXafAjIDCR6pMLJKcZQidbKHpxjnPa6+9hXM3/wG3rsdMXJCgNhZArlzGEhEc71TqvI1egQAPJ23k/oxJSIMISLvJ1zGS6QTsLn7Er7y+Bqff/gEuPMCcHEPU/ESUF5KUGXO0LPPxtv2D6/dZqSe0/b0L/1RfPWzn8H9cQPnPbZ372HKCcGPKEmiusEFUHCrAwFYHAEL8dNCWG3nHC75Wutg9FALe7Dbw8RCTmwEVjc6NbyUvQhYnA3U+ijJOEgxsUSRdYP0LRvgvGtaGhqt7CNjQxxu9IeFx9hi+x5S96wD2xoS2n/WEJBM2ZItkWedm5GlMSmitSOmn20NJ2v82mLr3kBxfq3ttYKbwRp6Er23DpgVi7U6XwsMbGGARDt/FuiV8xG5ZMkSVtiUcwQuEjl75yuv4P3vez8+94XPwQeHlCaM484ciJpRyyCjNXUT2mfn5Lrg28LIdO4CgB8CAjxevLyD/cOnyCAc5hO+/uht/Mu//V/H3Rffge32AnmuDHgpC2wihAZVa3UGJMK/IAbBNUO8lJ5mvqDwDCIhvFCjNRuHrY1rZxBbw6qtw7KIZlpjT8cOEIeGHAs6jaRPZK4bhqzWr4uRZOeWzj+5/4Jx3DRjR43meaqGo9kbfFxoi3VtDybQMQwDhnHEaZpXmVxrmK8i41gHUWyAQ+/FZujUuNaMlTp3zIxpntp9mQ5Y5rt32B8PIPKgzvDVz7f6QOcIbWywSB1bm0W2xu/aWM/wkGL5XJa9J3Ui2ICso95p1/5aYNbU9ktHCss1sK9GNjGv7qevH1MnSkk1mBmnmiUkt+xDCpsba1bUwr7s3m+DNxa5YB2pVV0MaOWY6Vlj9ZOccy2zaNEWvWHuzL6szLdlTg3aJ2QFkkUqWttUtF8WFlO5d4XxLffPjEpyARROldRH9L+awLBBZvRBgRXBx5mAQTujsQQMbJ/Z/tB9sT/72cz3/lrnIO/LXnHTIde1BaCtBx/WYtZ27Sx6l1kIhwgVblvHzIhj55xFO6wSSdmAwrlzmCCkU+SsxENlHA0eDBUX9vDsUVjIXcgD3jHK6RqUjrjvHd5bnoK+9kX81A//p/j+CPCD13AvFgRi+FAhexQQRxXaJQRUUpicsd2OiKGyAHsHX6F9wbtGHNP6h5zcM4AyTbjc3sUULjFvX8AnHk/4kdce4bUScBV2mErEbnsBICPAIzgHcgRyokH16//5W2jf89ZuM1LPaQtvP8Lw+Cne+vzn8eIwYP/22xgywxeA2IFzZYQ5814bqdGfz0VJbhRLmkiufa0e3FYTxrY+crlSVjdGhMVX26ieq1om5KRmxkamADQaWmA5KKyTYQ26PiLWO0O9A2T7os9O2b9bw8PWm9hDxIpx6u/OZTD6qK01kpaakUXNXp/HOnPrzEGlmtWfWoRTtIoUNqiQSKvXoZ+txq/9nZ1LPYRH+1MLuD055DmJQQwROmTO+MF/8p/AkycPAcrY76+qQ7wufLbzqB87O07997b/+zk9TRMeP32C7b072L14D8kT/tX/5W/HN77xDQwh4vT0GmBGoMV4D24xZGMVU1SnopQiJBXd+FtCjxZo8Iuxap1Z54IY711Wss8A27qEfi1bsVuFUOm6gNETWjIufnW/tq9tQKPv43MZuFUAoAjFefRy0DsAqRQBQZIIF1uor10bffbNwpx+rkhuiLVvkQEqQvGuhCVUwBANGb1Ha6Bah9cGhPosn85te6/n1rr9tzda7fvt3mczwDLfbmagChxSEeNQ15g6dueyF9Y47utP+/u2gRTnHDabzaoPrKFu54mtcdIglNLnW4fNniF9oKpHR+h5YteT7X/roNqxI8ersT5NB6Q8LecHGZa/vDg/m82m9SHMXOuz932mRs6CUmG8CzKCmasTdVMf0ToTNourP9vsrN3j+z3OQ2psuIoERye1Xf2Xfq6dA/2XJYo5t3c26ClIBIkLN423PM1Nb4vKcs8269U/l16zz3jb61qHMzjAoQh7X5pQ0tR+1n+pyjuMo8Dt2t7R5GA85lzvKc0gLogE0Xkihi8JgWfsXMEuFJSvfh4f/3N/AsPTN/Hkza/j3S/fxYiCEYwBBHhCqWWYrgIJVet7RSZRx03us4iafP1yWPc1kTDCTiHg0TDiW6Xgsw8fYfJb+PEu5rnWU6eMAahqjDXQ7OTrtj1/Lfz9f8Rt+wfR3l8Y39o/xXGa8fG/9Jfxi/7Zfw6Pp4zDNGGEr6xNjClLjYw9bPrC5pRSZVhbaK77iCpQDTusDX8A7UDT11tISA9XssaE1hvYoubNZrNyvCTiuWTLFuy2rdGywn+LQ2cj1K3+oBTktGY9s89jIUm982cNL31u/Vfx/tbgW9dDFFP4v7AaAurA3TRy1IjpD/E+kr30yaL3YXW01IliXgxXa9zbz7RwMusk2bGTz1j6hrF2RgW+L9pQMQj9cEoF05QwDPV90wzyDi+/8w5+4z//P8FP/PhPYTMyrp5ON/r2Zp/fzEjZZl9DtGAfbCBguBPw5sO3MGPG8O534d//Hf87jO9+B8qxYOSAtD8h7KSmTLMIzSmpheh6DynNLSu2wI9olXGtd7aMCS/jbiPyEmWf11AUs9b0d76bG/p8+lnNmZ3mNbyvjq2yfonODRDCULO+y+dZ49l73/S47FoHsNS6YIGE+SDz5HA4LJmbWuRuDUl4D/jKpsUFjoQ6fdhuFgeEl3G18+Ic26Y6N1Y3TueyRsvHcVzBDsVIXCL6mqVfkWKYNWfrvrz3EuEW/mx5bavJFIpynRehYOUwnYOPoTA8Fgr8VKqRXQlylFZeCB4CuAkyO4QwtDm/EDXMYK6OGoV6Xz3sS+dBnyFDc+51j5sO+/YM4zjKa2m9V+n4brfblaNnnVZLRmThXMseUlbGN/mwuoa+TuemfC+Rf4WIWcfPMlmqULn+PjqPYRwFtpjz2lmujtfc4M5hRQYhTtSScdO5Ps8nxGE5l6T2bU1EZKF0FiJ6ro7OOibL3rzMdUsM1D9vD4Xv0RO9U22DdXb/12YDQDqedmyZGXma6xmwzppZKHQpXB3w1F4LAFTHeEVAUiGlyzm/Fjs2u/9ydvLSn36QZ0klY4geIU9wnBBdREoTkBmcT7gzZFwQ4TM/9d/i4R/+PfjwdsD+9BQeE548usI7wwDPcqYcosccCJvE8FW/LDipHfNhFOeSFu3AEII4UOgC1TYYA4dhs8PrnPCJpw/xd994hNdwiRk75CPhznCBMETM6YgNM+AKimPZmwnIt9C+57LdQvue0/b1/9fvg48ewTNwuMKXf/aT+MBL9+E3EU89Y94FPJgnkPdArhEfrkwDDiBHAAGF5CCkmglQjSOBSTDAQPABKXEzSnqcsm54NmqrRqdufroZW6afAkYYK0yCBdLExtEbY6yb0oCUMmIcoTXtClnwwSME0aQQg2FGKRmbzVZew9X5gxTgFtVVImHII0coXKDFyAwxnrx34LLGk/eMVtaBXJqwY+UsMEQpUq4QFKpU1/VehmEDYXKTQ0ViVzfrxYCbmjN6cGrTw8nWC6Q5SVSS9JoAt2Jhbto0JSeApHBd4XkxRvggBqZwUlhnSq6p4xRCRE4Z85zhfYR3cr1QC2H1jIxxQMn1Xn2FOhbCO158AR/7/o/im9/8Kh4/fYxSJpCLAHmkEoR5jBIKMQoKmEqN/4mAbU1zwDU4IJCJwM7hyf4AOI/gB6TjDM9SD3GVEvJ2h+G7vgv/m//L78UpbnCdGHEYMM0zxo0Qt2jfSsYpI/ggRrMaDi4AvpJJsBAmOB9qgbNQ7TovDiWVjFDhG1wywEXEtEk0SLgkpDyjZCnajiGg5IIhChuZc2JolzID5FCcQyGCixExRCEi8B7khYnKkcMwjtWgIIQwAuSQcsa4GeG8k2J6lgM/ZdFYisMAHwKCF6MQJUmRd8oYxhGpyP036C0X5HkSMjkqOB338H4EM1BIivt9iCAvUDkGtX5KUxX0rdo3BDQtGi4F0WsAZMIwRoAWEgHnhZwlZ4FPCX13JU0AgTMjhghXCFQADwdfCMdpgiMHR5U8p5I0jOMGznkcTycwAyESpOJUCEZEx0bgYwSHGCJySigpYxMDKu1DW1M8J5SUwCXDA0L2UNeCEsIpW6pzTkR7lZm06h2J7lUWmmZy4DyDc6oR78qCVjKCc5hORwRibIYA4oIyH0E+oAAgFyv9M4TpFYDzXghEspD0+ODhPHB1/RS5ZJmzBDAnzPNJDHDvEYehOb8hhpWBXkoBsew9gbzAcgvAmbEZNxiHEdNpEi3WOSHEsHI2NIuq2XH93WGehVShGuTDMNT5IoZrJBG+ziWtnGl1KNW5LKVgEzZSs6J6SzGgkmsilYJUa2AyM0IckUmkkL0f4HyoTj9j2GxwmifkPFciH8Y0z9hstwhe4L1lFvKKnDKQpf4FhRtZyJxmQQPEABc8iKWexrOMDxdhqY1DXGpqg5dnjqOIS3CBDwFxHEQPycm8Kixji1jXHjxSFtgbggc7OXtkPQbMXOBCQBgGEAU4H1EctSwyQc4HOIILXoIEQGMOTiUjlVwzewmkWXQilJwxbrarWklmOc8OpwMcGdi8EiDlLCyMlXimMOB8aF9zyiDnMYwb2buIMBGQCmNKM5wnhKEGPbgg13N+nk8YNhGzi9jPBcQRzgFcjrg3P4L7yufwmd/9u/EhTwhpwm7wuDtusIvCyKeEUME5bBjYuAEeAtkbBtGPCo4RINDvSJK9m72DI4EUbuAAT5iQkFzBSHKNp08Trl54Hz7xdsaPfOl1PMUWx/EOchwQQsToHQbO2BAh+xqUdQ4EBwcHKsBv+I230L7nrd1mpJ7Tlj2JVhQXbDkjF8Jn/9aP48O/9n+E3Z0LPGXG9u4l3GGGcwzkjAzAeYH7FaBtcgCQpyWC1aKDDdKgWPMRwLrgFljThNufz8FAbLYLKlCLhVWQ8xqXLw4C15oTXkWC+0iasKKtC+kXkV6FLQiZRIh+Fanraxb0OXoIliVrsLCPvqkztGTnxqblI9dasgLM65qKhuV/BnTqXIG7NgvTshBH208arbQ1OMx041olKwRxifqWsoZ5anTeRtnPFvmvWczbdTZxg/3hAOc9PvThD+Azn/sCxvECzBlzKXBug8xzq8MSMiQHW9PTPpOFwcn+5e7du3jy5AphkK2Mgpei4BhxdXWNf/vf+DfxaH+AGzcILFpPc55xmCYM48UNsoY2HyqEhYIHikJK8wr6aUkb4NawIAvbI6V5RxEorinaXhWye4gWCW7Ov0xoQYkGpWEGJ65OvUBkbfbLZotTqdAZE+11WK8vR0sWajW+XCDbxZIdtLWBLUNr940qitpDl3TdrSG4eRVRt8/dQ1DtWnTOoaRK7OGqMCjEqLGwI2BhFV2yhN26cYsumFxv2SfFWF/0cSTjuJYlyDnDnwFar6CElR7fM1b31/aeXIMkJHtG6w+tz3E1w1SEMt0xY0oJBQSihWnSBoS0ZWRx7Mi1YEkpqXNyxKFIJbd7V/KJHqIV3Zp5VDM12h8tq0JLrZOF8tkaTap1r4qG0OtqjRgVRqHSpLd7Idu+hrCUsqovY1ZuU1YeahQC4liDcaWKMxM1kLRFARS31BPrPOIVLHVhMW3wSWawgdu1+2IgwKEmPVbohkYcFGoWO51niS1FoI3kCB4epYhTCABOM4NM7bmpPpejAIITfTKDyFA9soKl7tOe8TawKvtLggPAxFKzVNeNZh7b3kfA4PyqnquHNdt1YjP0FvLZ1omT+mlxK0qbJy34q7WBIBxOEwpHjMMWrjgcrh/hpYsIeu1N/Ld/+k/he3cj4ryvhBKQ2id2YA9klkC0F6RoDej4yvBY4XrEdY4BnghwDtXCApOWKAipzttPr3BxucPVcUa8+wJeSwFfeOMJwvY+eNhgzsJaXKgGwsFwLP1HZBn/LJ/tbXue2m1G6jltj//CDyEyITDBM0u6OWW8+dbbeOH+OzByAaYCl4EQB7BCLGqmBbkItjpLBLFA8eJicIrholh1m45e120Aa9gRsEAW+gJWW0zOzBg3o1Ahp4QYJPU+T0udCSu8gxcokG6aPaxH7iOb4vul8FfhK7LhqxOwGJSK67eHrtz/kpGwWHy97mzgBkuTqLLq7WhWyVUqXf27FM+rPpb8XjKCa8jCGrrCqzol6gzRUsqK7WocRzmwO+PSZhD1Orll30qDRTqvUBqrK+ZM/yyOphY729qWHj55A7JJhDlJwbqPHvfv38dLr7wTx+MBjx4/xnbcYEoTPFyNbMv1AXWiqyEkevdCmM6SRaUCIDNKTrh75w522w3eevoIR2bg8gJ8eQf/2//oPwbu3sfBOcAHkOp+1AO5lHUmkOtnszmwlO56mYNroVWdXyllBLfWe7E1AYuhJxlYGYO50QSjzRc1ViVbSwyJ2OZSM11S4xGch8NNx982a6gzqOmbNEiRrr96HzXlhMKihdLWM3gNqRoGSP2dMFs1x8eSgdT3K8xqZWB1BCpCzrGuU9F6FitM7Q2JBumY6VysRAQggg8RmZcaJzVQFZYZWiZmkfRS50m1qpS4Q9btem+y+4Rdm14L4E2fFOOgi2PpQUaP7VyAQmFRgAak6vqrBf7TPMmzOgf4uNIl09YHgJRsiOvcUWfQQracc5inhKnuezoGfS1WE2PNZTVeFh7b9oOwBJx0PKyBXF+MuTofq4CTPktdk4Im5hWk1gYNmtYaS4hA98lUMgov9ThOoXrMmKcTuGQMMVSa7QJHMv81q0/ereqthEK/9oXOTb8Ql2if+CjZLa3jgayaBcpqxisp3JQZp8ow6EkyRHaOqRRFqfVCPjjklJHmSbTSvGvZcM2eSpSrtGdK8yQ6dd2XRsMUGmtZaC0aZZpO9fkrPFEDFxXKp2PjgkdQZ6OuXT2z9axa4OrpRo2xhTsqQUiEED5QzYJSdhjjiDwzkBmDjyAfAB9xORP8aUJwR7wHE8oXPouP/57fjxfffoTT/gHuXGwRHDAEwuAJgeR753SvFCSCYyAOXrJaaYJ3co543aspCOqgoNXpZS92F80ZG3+BKxowbS7xiUdX+LGvfhPfmgr2YcCRgeHyLnLNvDpHYA/UlOXZff3X32aknrtGfC7cftv+obev/Gs/ACqLMvuJPI6FcTXuUF5+Ge/78Pdi+97vxmtTAS7uAABSPaCDQ4U1yGIGCiavm2Fson9gNQSsEO1aNLPB9LoaDm16cGj2xToCcITM8jm7CsXTAwlAE3V0cck+qSFqC3cXh23BwzsnxlGuUbt5loNlux1rxG4xwpbMQFfMjrWej6170me2sEXbbL3V6XTCnCZsNkP7HOeWOgs9RXsSinbgninE7+tqrAOon6Wv6eudemNVXq+O5vKcPogBcDhct5qH40EMnt1udyOTZ/vOYvmBm5TQzUkMEqkuzBi3W3g34upwxJ//c38B3379ATbjBdLsWh/ZeYBW0yP9mCRUD18AV8f9OJ2QiHBCxvYd9/FoyhhfehW/4z/432OfEjYvvQMHcniy34O5gHLCEDyiJxzTTUIWZfLzkD48zhM2u+0zs5q2NiDP06of7Hqxvy9lGdM6m5bxJsWGLWKz1iHW8dc1rPAmW79lI+fNMIdDSdM6SFFhOldPHokmEBgxbJE6480rAxVLJPvy8i7mqToXWLLIserr5JyRayQ8nZY9xNYzWgNejPKb9OmrDBDWBfuj0ZcqRaB5bW8KcSUPAAjk2AZnZNyoQVqV1DRnCWZYEW7mjHEcG7zN1qrZOU+lrjUyDnqtXz2dTmBXi/6N8W8zErY+RIImUqOkItFKJpLnBKrF7plCc1p1L1lY0ywBzWIUD8OAUoNnbNgTU71mMk6XJQhaBaHSOqth9+41W91Cv22ZW1NK2Gw2Mq4lo5Brz9myospCaSwUdovzJ0b9dCPA501msWiWiBenuj/LbJ2s1VQ6nU7SVwRMB9EdVIINX7OLmrlWR52ZUYxznvVMNiQaqGeVntfOuQaZ0/cTEVwm5LyuL2Ou4sMwEhhx2643z7OBZC9srBqAtBB2u2/o+4NbzhL9vdZoaZ8BBaH+W0pBrogWuCVTCAikspxOcF6yYTqXcl4Ty8j3vDo3iKhp5emcDk6Y8WR6OjgfQV4CwmpXxBhRwJgZ2M5H3Bs84oOv42/+J38E/sEDfCgdcXjrNfhNwuV2B0LB4IDBCa356Cs5hwkK51QwDlHuEQnRO0Sq6Im64KkwNsFj9gnFSQY1ZI+N3+Kat3htvIPPvvU2/uaDh7imEby5hykxNtsLHKaMOAyi7kZZUAkMeDoPGPuD/9lfxG17vtottO85bZI+rhsoAxGCqacAfPVrX8GIgvfsdti98AquS0KuynUFhGOS9HNApWUsggm3MAxARBjFiF8MSeY1RbalfbVFwpb1yrJb6SFaSmlQDes0gNZwgXPscXJva9ZAzabofTZDK/MKOtAyJm7NVmXhEwvc76ZzpdfTe9AszRpQVl+HUulV9TAl41AKBEKdKqCy+5yR6rDj0sMqe6fV6qyoo9gTEvSxEfnMdV9rv+h7LHOaNTZUdLNvPaNcn0Vc7qnUQ1IgNIfpKTZxxMd+4KMYxy/jW996A8Qb0+9rSBkghgVzRoGHY6NxhYLL3QVOnlDmE9588gQvvO/9+B//pv8Zjs7B7Tb44te+Dndxgc12K0KW9X6PJSMXm1FcyFMWGMk6u3eOnMVqLOX5ptZYP5b2M6SvSsuqrtZaZ6TbuWAdKhuxtdTTdm7lnAGdgxYyx50mzBnYjQO3zK0PAwpSgxH1r10Z1l229RyEtZ/b1sDtMyE9XK1/Rq3rWKitb9Y/qhGsTosQOSyyBHJtfobzu7D72Uzjau9q+9167akzWEjhXTeZ7PQz9LktS18gEfxUYW1U0dk2j3ATCtnDolfz7kzoVDI5vJpDC+FCWu0Pds/SfWChY18Ia+TfNWFEDzteAi5CmmPPmB76Zddgj4jQz2Rm0VqsmVuFMqYpgegmoYPNerR+MJlTvXYPNW+vt3MMC3mJvs/VrKSOg7CcrteOXkud96xkDAir81Tnac65yh4YUh6zL1nkgHXy7J5lGRyfdcbYs8V+H0KtA9VMIS8U/ivCiG6NLvfkb1y3h/Gegycvk1UkRpik7tO5UO0lg6BhAvsCTxmPPv0pzF/8PF7ajXjttS/je973Hpzeeh1R4ZdgwUGQ1D17Etizr0e/C74WcElmnir0r2VMXaU7r9lCYj3FHE4FOIQRX3l8ja+8/RTHsEOKWyQQhkFEwaMDQs22VtTgan+4bc9/u6U/f06bjx4uerggRYsSAJpApz3etQ3Ib72GT/2Nvwb/9G1cYkaernE4XoEGB2wDcnQ4UUHyBL8dV4xD1plSJXb9m25cuvFqhkkjWNZ5UrgGgBWbkIU+2cNPDZF5nlsk0WY1gAWHrt/r9fSQOR6PK2FFe6A22IWpyeipZnshUuCmrop1/k6nU/1bZwCaupcQHMYxNsy+vX9r6K5x5msRRMt01uPIbaTa/qxGVa6sYqlkSO23sPzkqgA/ZzFyLFGFhVLaMdD7V6jMkydPVof9SpvMGKi22WJwjT46B+QyY4wRT68e46Pf+0H8M7/uf4B3v/oihgBwSgI7LAsrIzMhV40UJuDhw7crTEfGBS4A3uPJdMI8jnjpQ9+D3/4f/C688KEP4lGZ8dZpwnj/HsJmxKky5Q3DAPIBwcu8vry8bFAWne+2XkefszesFepo2eHIB7gQ4eMAOI8saBPMuaCAMOeC/fFUM2wFKkSthqhAuaSI/bg/gHMR8cY5SRaCgeDkUB9CxBAWPRpdrzqmlhXNBjnU2dW5qVpAzjnsxg1ynjHGgJJmzKfjMl9ByAz4OGCel1oxu161b6xOzjAMrU+VYMBmYhZ4pFC1MxPmuTJDmi/vI7bjiCEEEDNSKZhzxmmekZlB3gvlen0mu34tPNAaa9rXKQnTXYwRu90O03QEkWRvNRt6LgtvI/d2/9N1oVnD/r2Ag/cRpUgmPaXSfkfkkVLBPGegJAzBgYLUuMBJDVNmoXp2YYALa70tuzfarASK1N5FL1mcUB2ntv+ljKiZM+NQWedzWdNZao4ImNIMJslGuuDF6HQV1tbpG9k+s8EEhZEpyYSuK5vF0Z8FeeAxzxkhDNjtLuG97DPOBYQwSEZNIXm0zPsYo+jFOQ9PDtE7TMcD5tMRwRGid+CcwDkhTSdhaKtHifaDXUsr6GwLWBDCEOHCEkBQaYiSMsY43KAoBwROp8+t92udOuvQ6M+t9irNyPOE6XgASoYX5u4VDXeeJ+R5an8PwpiCkmYMwTfabtvXNhOp2W4bXLXOp9oO/Tlrz8LNZrPKuJ5jfOyzg9vtkm2Dc8ieUELAEcABGck5HPIMN3oM2xFTOqLwCZQfY/vkdZz+zk/jp//TP4L34YDN6Q3cf+cGV4e38MIwIKLAc0YkYPCM4JzQjRPDaWaIGMEzYv1ykFrRnBfHlIiQHfC0HGW9Jcalv4sp3MHb4x387Snjr33l2/gmtng6bzBjA1AEcQAlYMceG3bYFMJAQGCqAaxy60h9h7RbR+o5bQoPYKBGIKuR66U4MpaMmCf8yF/+/+De4HB3O+Lle3eQ8ozEBYkkMpfBmI0Yr83c6M8WQnMzG3NTA6Rf3PravqjcNmvA60arEA/rfNnIrz1se3ierUPpHaK+aN3WOKWUME3TqjC2r+/qo+O2L4TdLa36xPaBPVj7Q9B+b/uu1xzpa430df3fbf2H/XpW3ZpSzzf65zOZBTuGwzBgs9msnEy9vlAAz6uxs/01z/NK/0u3mv1+j+0oxBybzYCPft+HsT88gfOlGa03p5H08auvvtoEbnVuf/vhA8Q7d3Bgxr/4W/81PDxcYwJQnAcHFb512A6jRNdZnPLjdMJUqfRt/66zRUsBdd9H6tz3RB8WOtNn7dSwtRkN7c9+Ta10b7BkRfpslPa5vVZvgOprLOxGP8/W3Ol46b32emltPoVlrtk1oNfshVX1Wjbooq87Ho84Ho839hoL89P1bJ/X1trYvtb36L6ixn+vD2X3QwsNe/LkSesHdZbtGtXPsNfpGT/P6dCt9g8T3LHzYKHWX+8nPfy0h9Pp7/W9ek99nWQ/57TfrLGsBrSFRNqMtd2bLORSA2O942jntq1/6vdqG1yy93wj62eywNpnFhFhs5j6nlJK2/umaWqOva0BsoEtu/fnnBvk0Drj6iS3DByhQzvwyvnS59Y9oz/v7O9sn/XjZl+r1+mF1XX89XrqAPVByyZybK5r+9/uifYe7Bro55RdTzbbr+Nozyv9fV+LZee+FT0XiDhhroHDwhJEDNHh6dUTPHr0EN4VeJdxb2SMD9/Ej/65P4P337+Acyd4SnBUxEkiqgyK1XGCfA+ymfq6thg126XB02Wfavs2EcaLHY6nGcOwweGYwbu7OG7v4me+/i3wnfs4IGLY3AHYgSC1VwIkIngurRTjllDiO6/dQvue0+ZQhPHIi9HIRaiMMwoiFzguuEgTPvaOl/Ezf+G/wHf/8l+J0zhg88KLuCoi6kbOgwHMKS+MT4Z1i5o+CK8MHguVs+rn1gmyhzuwFGL3WR17QOrr9CA7XF/XA2BdlK+vs1An+V1q2iaa/Tnsj/Uzhro5q+J8Xh1WSrWrm/Zms8F0WkeV7PeL/kwwbIKl6nEJy47qAckBJsyBC4xOoQ9UKXyFJrw3CIE1i5k9OHpnUmstrANlITW2Xqc/3NIkmaPDQSLOFxcXmJvuiTmk83KgWz2eUkrr+6Vgf+mzRdeGVwbD6DdApacHMTZbzXA6pPmE7/vI98JjxKd/9jP42te+CXJbqXujUCF9lXGrMI5XR1xsd3DO4a3jHjMnbN/zLhy2W/ybv+t34TqOmEIUZi7H8M6BSMgMUjohu6p7FTyoELyZH22u17UwarZnTgiVKMVqsFk4o/adzXj0otEL8YFDqRT+3sU612TO2CyrzSDqerEZYM08TGle6jYMXMk6A0rKkKpTqA7aOUPVE5CmI3wc2/NU33U9dysRwmE6LXCeunfN8wxUCmE2RmijdzbXbA5ZV8yv/WBfa7NupXNWM5fGyjb4eCNbYMfMZuo0+i/OQMKdO3ckuo6MXCRQEPzQ9hub9enrOQY/VIdjcVCSCWK1ZzGBnu122wIPynqnEGtx4GYUKFxOsmhwSrpyHiJpr2XriezvdY54slo3LNlTs+/a92u2SrO0WjemX+M4rvYAbfZc6MWhmYX9DG4hJmkGP9c5gLXwq32v7odWTN0GwxTqp5nXYRhwuLpGjBFTnlaBIv1Mq5OYUxaCfAN5FMkAlmwJq1CwZMAUNcEsf1dWSSoCkS2GVMHXdSj3vIb6yTxZw2XtXsUw/cludW895NK+vx+bvtbP7lf2tY1gxNxD0xo0NoVlKNQ1O25ic6rGcbwRYJRrnoek62e2vQgMZgfnA4hlfSABL93bgnLC8elD3Nk4uC9/Cj/1e/8Qvut0hJsewt0lkCu4ww4DE+ZRMoWOGJEKIolUiJgi8j1Vco6qJCOSH67KstTsOSDlvcF7nKYTfNzgaXLA3Vfw8Tev8dPf+Dy+vbmH6xIx+h18IYwhiN5fhRWCsjD2GfFeD49nc/fetuet3ZJNPKftwb/xCxajtECgQVNCdlJ0r7AJSsCV87h+8WW8+/u/H/F7Poy3ySNTZZ5iwLHAVFRMdalj0IxNbNkFdWrspqsRZLshPwtfrQdmjLFBznLOjfbc0xKl9nrQe1pBB/rNWCPCISzFwvNco3A+1siwHugCCdAaqd6gUGMsBNWkWT+DNhvp1c8m4karLql9IQeQvnQAFlZA8ALFi9UoFfhDXhkV9oDuD83eWLOR8RBCY4JScgBrHN6Ihqc12QSzgLHl+gsEMobNavxV+FIdbP2bhbb0YtBqhADAlHLLMHlHIo4IEYj1bsA0JcRhwOk04z//8/8lvvG1txDHC8yJ5dAkRuFJoItXchDvT0cML1zg7f0eu3e/G7/13/338HgueOeHvh9vPHoI5EODLZVSKYDhkUEIURyteZY6Qs/LehCHU5xjr4XuMQh8qZvzFiJ3LpKt/QSshS+ZGSUvxp9ot1hSCiUuWAcS1Hm1BncIonE1pbmtPVtQb2G1pzljjEv2QWukcs7wJP2qjrqtJ5ozw1WncqrrwAEY6vyd8kJpnYrJyihVNWg1X6yo6Gq9pfXc10yI3lfOGcTL58+aIXIma1MNWU4sRpIJVChUSPtTxMKD0YlTwzGj8JK1U0PVOoC2/kTv+Xg8IlCtaXGLRlwch8UJiJVA57QIMtugiV3jpRREX2HBJNTsBct+VSpB0BgXB9Uypmk/qtM3BA82GYxhGBDc8l6UKvrpRP9PP8/Cr3Rt695g+9MGvlYOeskr49xmvbMZw8QyV1aZXJVnKMtZlHghItlsNivWylarxMtcUEps4kWct2WOy4wYfcvE2ayRPhe8gw+blROvEMFSCspc62BjkH04BpTZZGIY1YlaoJIKg0tsWG/D4mBasgmF/y7na6oMm0t2N52m1se6R9iAj/a13Y/0LLQwQ2ZG5vUeofuZPaOIGMSMEOR3UxUtTmVdP6hkEz4Q5mmZB2zIlxTuW0pazVttOh4KfZyPM9h50a4jB+KC3Rjw9LWvIqDg7uhx9eXP4Jt//A/i1ZlxePNNXPqCi22Ad8DgJeCZxwG7AgQwopMvT/IF1Hp0IrDzwpwMAqjKQKBUyni1L4RBdTdEPEyMtLnEj71+hY+//hRpdw9PyoDkBoQQMPgAzxmEVGu9uNVWwa1tKc7L97bdkk08f+0W2vectgBGqFSfvhYgeufksK6ClAM7vHp5ie2UcPX6a/ji3/kUXErwBaBUgDkDqTRj5hx8SaOhNrrew9W06QHUWP9Ms599Do6jr9F/z0HcbCaljzza7BKwRC21BkKNW82a2Oezhq2tE+kjY/arP+y1dkif39Y8iahmAhdhAhRCCal3kSwVaq3QTTpTG5WzTpAdL/tazUQtxdxrSMq5uIiNylsDyxpdtkjcQo+swWcdQBvxtxmdPpKp961ts9lgGAbs93scj0ds4oDD8RrjxuMHPvb9GDcRczqtoC3qMG7HDcYoNTdP99d4dP0Uv/m3/RYcAWTn8YWvfRVvvPlQnkd46kQjxEkWaMG1r42Fvs+sTk1fY9dDq3TtCMWxRyoQQVvyUsPlQg2EuGb8OreG/dnW97kNTvSQU71XG3ywUClbn2DXjHUCdG4354LWhDHnYId6n3aO2Aj0OYNIjdMYY6tztLA7ySRrJleCO1rDJHDOm3pwulcxc9PeUWPEOpL93tSv8X6/W+7JmYzBmhXTjp/dS/pMnx3LZZ2Huhf4VqMlR7FDztwMNOAmuQMghrY+q90nrCNzLrpv4V/n1r79LJsFsHtny6YMEXMRgoVCwhhbqoIBOwK79T31sO8etaCvOYeEsI4EMyGEASEMqz7UOUK0OCR2fHsYLXXrXK+tQYRoWCFtlsvWoGngqofPPqtPATS6fgvFPIdA6NEY+jm2X/o9f5XN6uZMv2/Z39nPeBYctP/MHl5qP7OfX89iujyng7ia57XvF8c6w0MkYVxhIGU4BvJhj9E7vHT3Lr76hc/hJ//Kf4WXrw749re+jJfe/SI2BNzJwGUWGYxc9xvn3KJV1n9hgffJDZfmkJ9b944BOs4gF/B0zvjy40c4xBFuvAAnwhhGgfQNbiEKcYziCdkV5MDyL0FEkm/xfd9R7VZH6jltp7/4B2Qxo9TiUCA60bfmyoTGKLg6HRBHj61ziKcDXv/CF/Cul1+GTzNwZ4djYBwcgU4JHh5DCOBanBprYfCcJiTOYGJEv9Zv6g87ayRZ40Apg/U98j2jcEIgjxBEE2MYFmieDwNAilUXjRXvfIPCEQhcRHA0+ADvAuYpoRQg+AAYVsAYRRtmmqbKooeqA1E1phTizK7ikl3TfVJ9p2k6NZ0tZsbhcICyDKko52k6GVgDDAcqIdWgpdbleC/6GPOsGQj5WesQejY8a6jooWNhlNrP+tp5mlEyY7fZwTkPLhnBB6RaTF5q1NVBWdQW5wAAnPNwJMZbYYajNUzNYtmHYWhZAlsH0LRajDFinXLVPQLLOHI1lIc4iNYXZ5zcNY7pGt/zrvdiLA7lOOHt+YTrNAGbiJE83MS4un6CJ2XCKUaEd70Xv+3f+/fhX30fsLsDHjZwINy/s4NjoXIOcaz6QvKsofYRpxlUGGM1mKZpQs5Z4J6Vqt0PUQzDXBACwEUYm4L3VV8mwNc+5iLw2eAJ0+lYx8E1PRrVdInB10woMNWxk7VUkLOQbSguXwH00zzhNJ9QIPChXDVxhs0AEJBrZsAavzpWCrcSeNpNI2pOGc6HSoSRZO471ZMKAHlQXYdpnhEcIQQJHFDwAAmcqXBpTGPNcSFCyZL1cwTkNFeNHqp9Q5XFMiPlglNKSEV0chiAD5LZaVFaIjAJ2QL5AISAnMVBFUHXKPsBy/hwZ4ha46/B9EppY4PClRCgILgIzjJ3HTk475HyhBBkH0tpFliv5G6QS5J9ICfAMYYYMacZACPEQWpqxLvGNJ2wGR3maUJKE1QM2znC6XQEs8LojhiHWBnaZC2NlS4cRfSNBDZsYLQGWqfrWPsgF4aPorHDJALdc86y1/ogmVowwijZdu8gBCeQ7DoYCD5WkC4jOAKnhM0wwDmSPcdLkA+5NMHiwhWGWKHmIdY9P8ucKSz6aY5zPescTscjjoc9QqWxZziQlywExSqIi4zCGcF75DxJ0MQBBDnnHDnRUiyMoBpyQeDCGZIFIB8AyDzzcQBRAMOhMAHeIQwjCrvaDw6l7l8Eh9Npwna7A3kvpnbOyKcjBlogW4JY9PAxYGYhQqFhENg5GMM4iJYfy3N75zCdJkFt5NLWfMX9gQHEYawUk4KUSLOsbe89MhNyYTgfMBchuAlhxCll+DhU8qFSn7s+K6E+AwlkrnOE5Gc5O5gLyBUQHFLOmBODnccwjkh5YadsQYc6fwhLUEjtAu9dO7PnPIMqn7gvlfTBOSROYMdw5BHJYTodkZGwDSOoANenAygSpuMDvGt6G+NXPodP/97fjQ8+eQvb+RFeuNyC04TNEISUxVOF8gEbR3CaEQtB4O1e9hLtcu+BGAC4IgzKJLVNYA9yAcE75DThzibgasp4cv+78YlHwN/61lv4Zh5xFbc4gODGARsqGF3GUApAQPHU9lYZTQdXhJWW9KsLumq71ZF6/tottO85bU//re9fhAhZDs1cGKk4nFjgCwmEuczw8JgzkEE4xA2OL76EVz/6UbgPfgBPGcjjFthXoVvn5RDU6KyTw65toHkdjdLWZzIs1l2NuIVWWAVfJaIjxnWF5/mF4U0Z3ZQm3H5N07Ri/7JRQADoi8dbBqmoQY8GyQshwJEaVJrxyY3A43g8LvUlJqKpVOZoB4E4rwoFynmu6X7ZYAnDyunpoXmWCtpGxRU2o3UHChWy9RsKidL+32w2tS+ciYxW8eGgkVETZSxrem8dU/27/qwZGFuE3kNe1Omw0UabSbN1XjZCbwkKNKvnvUcaJmzHDa7eeIL3vvx+vP7WI/yxP/1n8ebbj7G9+wL2D5/iYtjh9esn+MaTJ3jf934E/9Lv/Hdx99V34UlxmDTyj4IAbkT1mm1didDaqC9oxdKnhej6XnEOAVf70VFoENjNZtcK1tvcHhZIZU9EIfAVYdfzhBW8rc8E65y2428jvBZieZzmNhY9Y6W+5lzEejFquqyr8zgcDthut1IDdTi0+WpZO8m71b3q3/Vnzd6qPpSNiCv0yGZJTnNqwYXr6+sbrIg2Am6j7JbkQfspuPPwJJtVUthXvxYsVbRzTmpUSfSmbDbrXPQfRsvmNCtsre4nToInhRPyab+sj6x1ObKmnAt1HgagTBVupVpD66xQZsIQ1oyoei86V3Q+t3rDUgTu7RwcCHlaMqrkGOy4rZlSCsCuZchKlcnYbAYwZ6Q8ISdLMrPOpg/DBsfp0OayzoHj8YgYI8ZxxPX1NZilhrftE7V2EFhqVOdZ2AGd1npxJXTwApl2WFgqAQdwFTquVOhzXmpemStsOC11vcpOa/tS52j0C0GMrbHVbDQgcY/gGTklzJq1ch7kBUrMZCi/qTQCi3Z+1aBgnmRt5Mq8amsxdb+xsGKgoEyidzVnlnMjDm0cvJd74DyvUAd23dvsd55Lg/drjSYRt3mUS9Wq8+MNshmrYaj7SamwY83wncs0MgHwQPQeAzukuRJm6XlZCLsqYl4c43gUiOblLqDsr/FKvsJf/QP/J8TXXsOH8xFl/wTDkBGdFzifI4wugOr54JzD0O1JXvyoSoEuzpboRomeWSEgO0EaeAY2HOAL4McNXj8+xen+q/j0g4If/+Jr4M2IdOceHqUCF+V8GQFEEvc1UVjgfGbv+fm2W2jf89duoX3fIW05uIXG1pMchIF0I5C6jlAKnrzxBr70qU9hnBPi4Ro7GOY7CDZbYnoLzEG/zhkKfXFqbxj1B3l/z8BisCgUT//eG37a1MDVz7bv6SET1jHpMd/6npsQqpvPdq4Qt4f/9cxTXG4yaeln9QXWPZzIPn9ff9E7ORaG0bO3WeiihSNZUgp76PWMS9ZAtX1qf7YZqnPMgH1/28+3//aMigDgskeeMu7cv4c3n7wJFxj/1K/85bi/GxGZhdY9OGxfeAe+52M/gP/F7/y38eKrr8LFoemjAWj1d9ondszsvdnnsQ6P7R/rAFpIWA8VtWOs/a3QIEsLb1/3LMdOX2fhLSuIo/m9JXexc1KdNX3Wvq/t59lxtM6Ifr51UnpolDr3+kzWudP39sGEnHMzPi1l+H6/X13DwqX6uW/Xhf3ZzrceWvdzGSr2uXqoHwDkdBNm1vdn76jazJxtpYgBfc4JO7dH2LFa1bEYiGMTQ+4kCM7tKf1cOgfdyukmZMxmGrRZwg07x3ooct/6/fYcxK8fs+Zg0U0GOZthb+uQwo25b52Ifo+3IrzDMLQ9077OzjdLbNH2CGRM08IUqevcznm7bs8FtOz5pevZ7lf9GaD1ksqAq3Vt9sw4O8b1HpRqXn+nY2qfVQM3tv/sXq97wZK9WrMlat9Z2Hd/Pqhz2+rOuOoJOpJsrF+eY85AGDyO8x7z47fx0kA4ffXLyN9+DeN0xMOHD8AOCOSqY+Rqts98T4vzJBpSXKF8ta94yaqDHWJZIICiBl9wun6C6Aec5gK6+zK+8OgpPvWNb6BsR9Bmi8M8g7xCeCXFlQnI1UHr95/b9p3dbqF9z2mb/uL/FYyaY64ETQSBt8i6dHBeCh3BjADRQOBSsNtuMV9d481vfxMvX+6wDQMOfmisVilngdGQAxcpuKdckFMWCMUZB8NGFPXQt5koe5gtBuwiTllqIaojW/uhBupNlVqbiWHmxhBlDwR7H7pBhxBRkWwrPQ5lD1MoH0AVFiKCqALNSyAHcH0NEVC4YBw29VCQZ5KDQQQendMslmtQLb03W/dk+1H7qdeH0kNSC+P1sLxZY+HaoTnPqUULU5olo+XUcFiMphCWjIi9nt3IbX9aA0TvW6OhfTayh4Lo361RoIewMlopiyIABHiUueBQZtAWKH7GC7sdfsn3fRRf/NyX8OgwYfIeT7eX+K3/zv8aw4vvwOtXezw+zihDhKtQMYWRwRiQvaPeIpBeIClq5KhBZbV/xBkllEaTvhgV3gfjEMQKlVsMpn69aMZmu92i5CUooDVD1mi1ZB3qFFkja+WMuoXWWMfaUprr8+n60evaAns73rkWduua1rmlUXCdQ3FYszTqMy/zreoqmf7tHSWtpwohNNFSfa+tddTM9DnD1raWwavsbzbwoc+tvycSpj9XIYoFDB9CgyuSrzVIAErJKIVrZaqQ+BBcgwzr/hFqli6VheLded1/MqbTsT5vNYY1aeUcdruLut8ljOMgcGBdv5VkIg5jM8y993A+YH99tapFsfNE+2meZ+SUEL1kHFsdZMpNyDh4j5IZpcKcqRqR8jmqDYYKg051/tRqXVINurhyhnIuK9IfzRhZ+vv2vgpxBDsTlNP63YIQBC7NXGxNvgQASeCJqNDlGAzEsV431PWkzIPkXWPUU3IWpcxvn10zevO0yDzomjkcDiunF0VYZRmMGEcQOUzzBB8i0OCsQEGVIOiQCpWbpWnDOS+i3LpPnoN5ydwmnA572UsGgfHqntDqJiss2fZ5H/xqn0ke87wmrzjVeSvrNVdtJ7fqJ90frAOac8ZYdeP0dYo2WdH/O2GpzCkjTRnkItg5JDhQCBjiIIuKPNyww3x4hBdGj3eeHuP0uZ/FJ3/4j+IjlBGePMRlJNy5GDGCMXiH0TkM3iEwIRCwCQHBOclW+YLoGMEBHoAnQiQv0EwicajgMHIEHFA8g/0JjjJe2N3F4xMh7e7jbz1J+GvffAsPwxZ5dxdPc8a4u4NpLgJhJ5Lu8tptFdbXBal+vu0W2vf8tduM1HPatCB+FVFzqIWK3AoWFaLiSFLQoRSE6YQNz5gevImv/MwncN8TXMmgnMD1IPNDlFiM4rjJyYLvWh+V10MYWLILlgpb32OjYfI8a02nc9Fk26wOS1+4a++rL1S1124UxJ1eiNzPWtvJ3pv9/D5bQ9Dn0pqUUAU0lyyAfb02a2DYz7Z1UtbQPAcf0sNNnVdgLQxp+9w6XotT4M5GW+21+7G3h6L29yKYyzciwn3G4Fxxss1aACI+68mDqWAqCUwZjmY4KviVv+Ifx8MnT3EsBb/td/xbuPeud4OHDWjY4uV3v1tqAkxGxrm1Vo8abws72zrzpMQCtu9XOP/u2ez8t9e181Wf/xzxg76uNzr6+WLnSZ+hsdF7jUbb+jXb/9ag+rkgnfq8lqBC76/PPJ4z6s5F2O299n1j9wmrrdUXpNsIuSXU6AMU9qvv13OZEb2PcwEFHSdLJtDDX20/tP4j3whFWh+VZa7omJcsLHz2uilNq2tZUgh9Rss4qv2i2ZQ+Y2/77tyYEWO1FytZhPce3kV4F9v9xehXa1nnSd+vz+rP/jn6rHEpRVg101qnSqd8nylsGXms106BkzohszfabOg5UhG7F9n1bud1/1yauWkQy9U8ATIXlHZvgiCxsMpzSIxzGVb7+Xa/tP1qs+E9QYXNmNlzyepdnYO+9sEvm0m346Dvt8FBu+56KLnem83YLWe43Tuc1PFpkKKKSYcg1P93vMedPOPhz34KX/jR/wZ35yMefv3LeN9LLyCWBD/Pos1UQx+BhTxCfxZbp2aiuAh7K3GtsxMnStgeHBw7FFczc0wIRQRzjwAOw4gHmfHFB09wjQ1ObsREDsPuDpwbgMQIRWCfvjIon9sfb9t3frvVkXpOWwEWx6YGNBgOpUh9lKsOEArgowflqjtFDpRP8EQYAcyPH+HH//M/iw/+s/9TxO0O15yRKCJD2JW8C6Cckedad2Wi13pw21olYKlNsLjxHlYXglSrKH2r4ueJlo1eKcz3+z3u3r0L55ypS1obUva6+r1et4eLCUkFME+17iIVhFiNncLgWgArbFlrx0UJGTYbKdg/nWaAfaV6pXZ/cVgOoxCqLtb+uHJ0euYwYMm0WYNM+1IjogprVC2gPruihoz0BWG/38M5h8vLnRhUtGY+YmbESourB5lmvOwhpwdvq28xjus60+ja/Wm9lGZz7GFu54mOrRp++nkpJWyHLQoDpzSDAiQrAofiHT74kY/iX/hXfyvuvOe9uHjf+/BwKphLxhw8Xn/4EGEcWhYpEnA4LZAxNfbseNgDnIEb9O4aAVbHJMYIqlVXaS4rY84+RwhBCrlN0EH7zVJ+6/jqfLWwH+sYqMCppbS2dS86V7wPq/llnV0AuLi4MK9dDCwAOB6PuHv3Lvb7vYzDdos0LTo0vSOp82UcRyHlMBFzACtNH32uwVBo9w681gMCQElzJZtwzQHhXIXCYxTdKOdArMYPVZ2wRVB8brCq2Oaw6gfZ/aQJpQaPufZLAeM0T42sY0qSxRm9aNQpK5xzXuqXAEy1NqVpLBFL9L/qjslrZG6O44gxhkayo2s/hDX8S/Yi6R9n9rOWpTAGdSoZg6mvs3C/HrbJWSjOGUINT9U5Uua/OcteeTocJWtaRHR2ux3r/FlnakFC5pJyaXuXc2ElrpwzI9S5YPc7a1zrGtXzoRRuMhdaJwos4tfeS/asD4JlBkBCEDEfp0aN7qKsD5UwUG28xEs9mzf3qHV6awhawThu6nqd6rgp7b3sgcOdOwg0gpxkUOz+BgBOs3vOQJrr/jjPM3abbcvYC735WvdMHapeqytXXSpmRqmMg6mHIZLDPE+rZ7LnkiINnHOYT8tZrigEO8fbGU2xnQHb7bbtVzYoJfpwaVWDtt/vm55Xqw8jh4y616HIOPoAOCBEj+nJU/A8gzAiZMb70wnzV76EH/nDP4RXLyMu0lNcvrBBevIQr8YNKBNyYETUADMxBifEFlICwVUzimQ/gfaFbzVdvtZyFwCP8gn3NlvQ8Rr3x3s4MePR9hI/9foen3v9DXxjvgse78GNgiAqxYFKwTu2F0JwRAW5utYFytCJNg66N9mfn9UsDf9te37aLdnEc9qu/p1fhKK03s4jV20K8k4cniIMPHARXAgoS5ZgZlH9PrIQUFw5j9N3fQDv+cAH4F96BfvNDjM8ZnLgQvCZESvHdB7WQrpqTFlohj2oreo4sERL53mujHZlvTFli/fXa6HquogR0zSNYmwbvb2mHioWTmCpqok8YlycupQSQlygToAKPQ6I0VeHRQzpOU3te+8lKnU8zCvacetEWufGZhuss9KLJPaEFOpcAWJcKuTJ1qBYw9wazjlzM3wOBynSZ5RmgOh7wIvxYY02ACsHWEkXmsFhdFqss6qGuX6/QA3n9hzqwPQYento2MzVdb4CgoCnyuwBv8O39sArv/CXo+wu8SB7lCDG95TmzikRow25tEi1bdYJlH7LgPMNZthHlpeaA4+S58qSaAWpl+yJ6hEV5BV0RvvW1hX0BAzWoLF0vxZu1EewV5THPqycHZuVsX3eZz7VuNd1p+Oo0XNd18fjsWm4WHa4OS8Gl3Uc7VoopWC3GRcSCCMKa3+ncB8NIKhRZh05u97sHqDXU4dTswKHwwHee1xeXp6N5gNoeknqdNnna6QEObfsTZ+h7aGDKr6rxnhKCV4lYqCECwFMfnU/Mp51j/XLXB28zIFSDa9ThfHqWMAFcKX07zNPtu+8F8RBOkkQyEV5tjDEFhhqZEF0E6Si2nc+rHXThmFAmheB6GHYdH0TkHmRptDnssGWRTNrybItf5d5m/LU1p2relClCkK7cLM2DHNe9Jqq40J+LftRKjGm/myJWvqMdPRrGngrvq3rLIQAx251Ls3zjEILfTYgwVA/jOC0Pkd13eVJqV9dy2rZsdxsNqs1DhRBmjCDK4qlYCGSiTFKljTPN4x2vW87D4OLOJ0OANBgvcCCRHG+1lNlamLGzjk8efKkrRu9hvceDmvUQg8Fb7YGZQSK4AniCDqCr4QrISe8GCP2T9/Gq7HgR3/v74f/5tfxAT4A8xOwPyJ6wsgB91MUcoidoBMCCdOqq2MQqnSAd0CodVHL/roWdpa1HZA2DmV/wi5sMCfCtQ/4mVzw//7Ka5jjJbabd4OngDzkloEc4BDJIZCrRBUFTNWZOrPGfr6OVM4Zf+hP/BXctuer3UL7ntN2DjrjXBX4Yxm4c/CSomwzmtrmgpgLjq99E9/+7GdwCUIoDOXqZubGEOTCWj+nT8vbQ7qHcPWMQOegQHYDPVfvYA/+G7DGamxZh8LWAvS1GrbeSP9+DnZi4RQWDqjsbDbyee495/rEHs4WctPDYX4ueJS9377/7X3Y99l7tV/nPv8cjEz/ppTZ6szqa+xY9f3ZQ9GsA277qi+kJyIkZGQqiC4iZAInh7C9g+tC2L7zVVw7hyfTjMwmKwYJMIhop+kHt4hVP6sfVuvJZFrsl47xOWhU/72+vtdVetY92MO6jzCeg6LZvrXj3kNp7JqzdVIWrnhu7lmnzs7l/jP75+znlP5s67y0H84VnPd9b+eF3rc+hzqD9tr92tDr2NrIZzlR9v02O6IOrH6mzczbvVFfa51Guxfo56uTp86a3Vf0NfaadmxWdSQ1E9mMe5PZ7feHfuwArCBldr3a/do+o60HOjf37Hv7edPDl20f2+ezhnS/f/RrzfZtPy9uvMbdXKf9GJ1bP3qm2OfT99i93O6FNujRr4lzn+9oTWhzjtzGEvnodfrsdL9m+jOg7+tn2hPdGuwdRpvl7BEK9l+b6e+debvOLJyzwYfNrTUynir5shkjaD6Cygkv7QZMX/0i5te+hnD9BNcPvoUL7xAJTYCbvQf73u4wJRFErSwCjp7ZR8scLDgcrxHHDeYC8PY+ntIFPvP6E6TNXeThAoc5YRxjraAU4i9yDCaBy7I60/z3b273kNDb9ny0W2jfc9osFEY3o+g8ppzAnOEAjDFgZgcmEUVEdbI4Y0UBPZaC9xOwf/sBPveTP4KP/g9/HR5MCRkkegZOxEKJRMjUQnH6olTLcmQjwjaqD1TqU843jKwVLr45XgXb7RY5Z+z3+1ZsbiGDyoJmD2Y11G3GQ+4DmKYE76kZINN8qoeeZtqo6vkkxOjBLIZLHESfyrnFwIzR3XD2cqOJ14MHzViyGQh7KNpsmO0LC3lR+ERvJKnBZY0wgWQMuLq6ahkGQKKeYuAtmachblc00tbItYezPud2u0VKqX22vqdnZ7POp42wWtY3fbZ5nlcZR33+IwRGd9ePmPcZJ3b41pwQX3oF7n3vx2MMYBfhAXASnafgPVzwmNIMqofLXHLViiqgLrB3w6Ax/amEHr0xL9HmhBhD+3kx1uOq7yTDtSZGsNCelfFmjBXNplrDVyFpdq7YOaJN4Ym2/gaQLJLdR2zmzo714XBoc8Z+voXgDcPQslaWiVAj+L1TZMlhvPeYjodmaOoatWQq+p7oCSVV+BFEv8upCHZ9/u0Ya59ObY3FEMAsGZ+5vj97XsHTeuewkaAEvzKwdeymaWrjpvd8LqK+ckoIcF6fKTUDm3MC5xmprg3vI06zrv2yooInxyBeSEoclgzNXFnAtP8PhwPIxwYXtHNFM+C2fo/gVs6ljuHK+fAOAQv02AaiNBNhIcbTNIHgW3aqD5CllOBjXZv1OfuAW4Obzkrms/xumo4I0WHwCwzM1/28lIL9ccKw2S5zHZpRMk5ancuHw7Exarb7NGvOQugspC7GSsHtlBiBMYyVSITlZ66vTxWWVkxdnMsQRjhe+jnVTKzuPymllvX0aigTAZrNNI6jQid1HIkYpOu67Qtu5YQxnDKirPYO62S24GMuN/awqZJt6LiM44hcFmj9MAy4e/fuah/R71NFN1hns8+CyZwR7jxf93XmDC4zOCXc23i40xWuv/lVfOmP/RA+OGQc8ASXW4fBFwR2gAsgN+AwDghgbPgIqlqRRAwXhGO9dauDAPxdJZhxVdKkZlB9WOrBXhgi9pnh7ryAH//6Y3zxrWt8I94BXd5DmhMuLnY4Xj9GHBdYIzvGRAznkvT/cpJj7dLetn8U2q0j9Zy2khKGmjo/TUdsxw3m0wTyKkYLTEXwvpmEvY8pgzgAzHBMwkZTREH79ORtOOdwPE34wk/9JF7+0EfgthfwYQC7gNNUwCVhO3o4hQVBxAVTKZhqNNWSFVijVDdaPRxOpxMKZ4iOVECMS9TX0iNbw8MaOZYVSSNiimVXjLU18CwUR43cYRDn4Xg8YtxUYcwpASiIcWysVPM8IQQnkKWkGPgBKU2Y5xO8G1ZGZqj1RnJfCxa9j9ZapxFAgy35GKSAtitiX9j3xLlcQbjM4WQzDkSMzaZqxWgEtZ3FcnDoIWbJN/T+9X71GhZqZaFRNjJro4kWi6+GV8/Wl0qWehbvkEpGzjPSvGhNuQgUTjjOHofZYY4bvPq9H8Nj7/FmcRjuXEoR936uyvLCtATnEJwHgjo4AusElVbXpM2yQBJJ1iofj82gUSNFx0ANhHl2mKYDSsbK6bBwOhF9zkDnLNuszAJZKo1+10JrbHDB1mnoZ+l1gXUtVTCvtXUkuj71s06nk8C23OLYenKYjqcWGNGMd4wR+/2+sfbpZ+h8u76+xnZ7AaBCev1iuKkRNs+zZJDTvJp3OsespIGlhNff73a7G3WaNntnHUybpXDOYc5rx8n2ma4TAJjzcn1mxinNDWKo+0mABKaOx6nNlSWjIkYrc8HheMS4AwIFYRzTZxNNibYGp+mIwrE+rzeZahHPzolRnGY+1LiuRCmOkNKMaZK6zOiXdWfhwuegqpwKUPcfdawZhFDn+2maQEXOEmuEy54r9U+OCAgZsTp0h8MBOVkI8kKUoUEh8rHtVZakwNbgNCKc+px6j+MYkadThc0BKWWw98hgpHmtLQagSpsC3vlWm5vr52+32zYvc57hXMDMeeVIKTxZvz+dTtjvj7hzcYkhblA4tfMn+AHwTujxS4KjgFIYCytshZDFCKqflzijzEVEeGmdVWrZw1LXMQlpxWazaeeNBkhaPdOs+2GtuaoOVO4gvUSEXKRGDm4Z3/YshthE5uQ6u6Vri0hEo7ebi1UdpJUyWPYJuafNTgJynA3014k+2fF4BKFge7HD9eGEzCI2DgAZGY73GJFw32X8pR/+Y3jydz+FX/bkDWzujGCXcHn3EvunT3F32AopBBymAGQi+FwJLYjhPTWIrbDyCpeEI4+MgkjU+pGj1EtOZRZ4nnO4uk443b2DLz94hE88fIqr4Q724RJlJlzEDY5Xj3H/cludVhI4p5NsVKkOmoK/iB0cl1tn6h+xdutIPact+tDqoqSQPUmkxqzAwXtRMM+EQAGFZGMHCYU3yCE7xnE6AYPHQA53pwnpW9/Ag3nCvV/2S/EkJ3AUI3ccNhLxLxljiOCckU5C4RqcQyahX88s4nnAGq7VQwCiH+A8IacC1IicFtOOhnra1nBY2mM10PXAZeaGy7ZGrzWYlnoDiVw3B2xSwdsNnCccDyd4r3UXaO/1Tg+EAiDAe9FWEeOgGuIOlXqe4UMVmkcGI6BURXqo6CXVguJc66RiEBil11olwlhF++Z5xuADPAiJlwNJHUYrHKyHK6PANZrbImK8udZuBDnsHHmkvK5TsrUePWzGOdeKtVcU1Qbqop+jv7e1AbamjsnU7qAgc4aPbnGop4T7Fxs8ePgm0p27eG0G6OI+Ljf3sQeBXARmApVUo8sCt8gkfUs+VOcY8CEgTTOG4DBNy9rRugHyAfM0AeDmFCUWYzFDsrqJxcCZSwanGdF7zCeCr5ogSkLhvSVNqX1EDmNUCNeEDKlpkJotlQMIoCp6mnJqQq/WWMl5hg8epSgNv/Y9WlRdqYjz8SSF70AjoZimSZwb1MyRYFuQThMKyT2FGJGnWYzOOYm2XM7YXlxizhk+BoRBDGCUWjtTEhgFQ3BSi1az5AUACjeH9JTEueJSMG53bX56rk5MFmrswQtRxTQfkcgDpUoRuIDDSR3SapTPGYwlQGGd2nmaMASP66srOOew295tNVwuLAQbSqIzTRM2w4gyJxTngSJZME/UGLZ0v4lO6KCjI/jg4D018oJ5FrkBHx1i8UBOQgAxBDhfCRh8AHmhLWciZGaQF7iPuPuMzEVEVJMEP3y1+rgkcIUXMReUJAZY8ELGMZ8ysqGqTlMlp/FOpACqg5sh/T2lE+AIQ51n5ITG2zmHYbvBfDzBcTFSEUBxBBeizImaLQAIXAgEjxAWJ1fWP5oTMwyh3ve8yvCFEBrxBXGB94RCjFRmoADDELHZDEjThKFSmYMFfo7gcTxN4AwMm3GdEYYKXzvAB5DLcBqMqxoiDgzyoo9xPEn9HwohqlZRyXWPEDKCsNmCvMOUMogAH4SEyO824Jr29mEA4EC06CB57zFsRhNwm6ugsmQpSw3UZJZ9m5wI0zvnQIFApSCQSDpwllo73c9LmsFE8CQ02lUAEsQ1MMdCmoTqIIBZmOvqXEjTIrjcMoQk9xGYMYaIwgVTJeKRsRYExyZukDODsMC+ta7Wwk/1RIRzslejIDgHRMLMEkyLmwgHxuGwBxOQZsZue4lHh2vsLjfAdAXeXyG/9nXw3/wxfGT02ESA5wkX44AyFwnoOIIjh0AFsQZHXPSCKgHgSOpmmRnIy7k1kwR2YmYMTCje4Wo6IY4j2BEu/ABMCY9feB9+9u0DvvTWAVd+wMkDiAxPBa5k3B83cKmAvUchB2r/AVR6KN55J+rvVRulrYdo3rbno92STTynbf87fyGA83Sx+ntAKEIzS8SjQL7PXCEhAvxByhnHfAJmhht2eIsZ1z7i7i/+xXjpA9+DxxRBw6VskFrUS2ssdgHL5l0N+Xmem1OjcDRg7dTo4doKfE32pUXRTGZDDx0b1bRMZU0DhBZWMYuv12YzZP307u8PwA0og75OW85cHbyMaT7V+6uRJoN/nmZeZRj0c1aQF2dqGEBwzjc9k5zlEAOAucw3nkEzBJoZQ6NwV4hZffZZndLtKhPSZ/j6mh1lsOszVTouPSVzT4JhIY36O9Z5VIkY1GnNc3UMyOPJ6SncZou3y4CLD/xCuMuXcBUvcWLCKWeAMjjlVcG/3uO5mhZb26WQIn0efa1l9LPPqt/rHDsej/C0sFEpw1U2GVpA4THrDIiFUdmsQYhuFXDo52df7O6dsmaifZZcIyJVchTNRGhTR6A5zmlh4mLmRiKhn8csQt1MEkUPDu0ZoxcnylJtE2Jba6dqKG92EvU/VUipRvgDuZUDXlKdC7wEX1xc723nJBVabUP3fBod17VReCFz6OtvGryPXCMb0H7OEMfLOYdJAw8MBOfhQU3AnJmbk9lISTYj5spIpvejEFnN1DY6aFNsbolo7HwQaNMCvbNzybbgh5aJ1PmsBvIq4z2bvc07gEigsEOsxf5AmQViRsXU+DhCGOS+D9VRizEi4iZcz9YO2XHUjOhms1kFYRrqIHgUkiBadB7T8STjGYJkb6sDzgScmFd9bGUddI8c46b14bLPLVBCRmUn9YNAJCss2p5B+pnixKcV5Xybsx0EW+eRXkeZTHvIM8paRLmHE2pfnqud61k+Jdsk90xQJMCyT8v7HaisYfZ2rs/zDBfre6aE6Pzq/T20P1eWu1SWPcxmufTZEheQc3Alw2eWcXSlQt6q3Eph+OKQPSGlAmKHbQTS4RrvKtd4+PlP46f/yA/h+3jGhmc4PiL6AO8IowtwHogAIgEBhOAF7kyDR6QCR4xIjMFpllq0yiiE6ggXeC7wNdg1DAMOpxPi5hKnTChM+Ph8B3/9M19BCgP4/os4gpCDzGUPwobl+sm5Vp/X2xD//2x/8D/7i/9APve2/Xdvtxmp78C2GPwZ5DwoAXAMD2Gs8rWokosUPAZPiInA3iEEjzFlJGa8/aWvADPjle//RbhKM3yMODBLRkUPCu9Rcu4h1jcKXW10S3/fFzYDa0fG1pHo93rgWMPHGra2HsCSYtg6kXNaIM2IMzht69zZOpS+WDfWOoRS0k1jhl1zpqxWEbBAsVbFrO7m5roYUVieLyyGpR6o9vlKKQhxTbPe4APUibYSgflm9rA/JHsnUJvtt964tUabxce3Q9xB+ocBC3HQlkrBePdFPLjeY3jxJfjdHewTY6KMzBJt9ZB+y10NRn+vdo6pQdlDvCyJiTqOdg7Z2o1Wu0JrDS/97JvCxLj5/M+4V33PueJwu2bsPTkXVp+l6yXnBdbV64w1ow9rKFzfX2oUMCnMyVKy8+qZ5H0L6YE1ju1ztLmdy2puNPILowFGYZmzlszFtp65087NVZ+TX92DPt9COS4Z/oHWjjmZtahN5rBvfz/Xd/qzvY4++1kCEjq/D67Hfj0P+n2pnwd2jZ6rS+3feg4yHLyvtYVmrfulfkj7w7EgHvpn74McfT2f7VMLBQ1DxHEWh6PX2mHmJlarv7dzrWcC1XUt37NxUIyMhDfwVqONZM8ZO+fss2vAwtab9oFOW59m71Gfx7uFddIGWOw+rPPI1hzb+WFbe/76a+sM6vXBazKLnBdtxb4/rZNox2z1DDEgT2W1z9l7dM7BZxaUBIuTIxllQhycBACmGZwlC32aKmNmJLjDhFcC8OhnPo1P/pW/iPdsN5jeeozNJgh6o06lwgkuS6bOOw8HJZaodVGVQc+ZfmpziLVaSUoiCmUQCg7XJ4zDDlN24Iv7eHyc8KkvfQtlcwEXR1ynguyiIAsUBUPimGrNaj/fb9s/+u3WkfoOav0hCUiJpu4sTEUiyWA4D8iBSItDBMKhnDAUwiY4jG89xtXrfxsXxeGlX/wDeO3qLfDlCzjlKlbqHEKFp3GeBQJjjJGmqVSN0T7bca4wG1gf3r1BaiPOth5rgY6sD28bcbbF/Zae1lLbWqNGr2uLq3tDSr8XrSZgu9vUz04QqfIi/5I4qb1yvH7fDtlg6mEAgWcpqYYLYKhIaWwZqZ5JSq+R8qKBJH0nzxKDZCZUt0kyKXnVX5YoRA1UpcPuDSGbIbFf1lGz9Q92bEMUaBKowDuBW5JzoBhRMuM0Zbx5CvDv+AAu3/MBPC4DEkXMcCjOCfgpJzgAec5wwa+MBEt6oAZaT25gM2eWaQ24KQzdz6cQghBY1M+fpqllP4ZhaBkJgRQtBdmqsWUDA81gKgHBa/akIM0L2QQDSPMMcouToRmHYXDGEFKJAA9gqU3Ua1unT6PUOWeBERHh8t7dVnOhYxgrHPR0OiGl3CB0aTohY8kqpVTgXTUECStR45wzfC0azxCj1vFa6LhJOZh1agMF1qG3a3GeMhLVWj+q+llw2O+vsdvtcDxIxnp7MbbnOueQaqbNxUUkkx1VQ8w8g5M9s8wJMDDiGGOj39e6qWmaMJr6T83eqbFu97xkyCjOZczaPlgWkoCSAe9vHte24N8yCvb7LhM3UhaWzl1BsxiMOIiOlPZJBgM5IyeZ34MPYLdknSyBgA3oNDityZJZhIHen77Oofbp4YiZGWMcJENU572cc3WO1s/R86DfzwTiuNRsLf1gAwHyuv31Abvdru2VNiuo2X9xMMMq69cyrRVe3dfD6n6jn2l132SvXIJx1vnQdbCs92FNGmECjavfBQ0IqLO3dmZLAcZg9iGy0g0LsYlkfR1O8wyUOo8coTBjygo79EhzQjneFOrWfcc6iY4LHByIZS4zCkp2KOTg4cFEiGGA34zI8x4XfMArh6e4+szn8YU/8X/HK8c9XnYzXHS4GAO4zBh8hTJ7VzWiBOboQQhekCKOuUIjxYmjvGaALCVjpAiAcYoA+wQC4zJsMU2MvHsJP/raI3zx4SN8O97BvN1if5qwG+/L2ZylDp0co/jKfIz1WXLO6X1WO/e6W2fsO6fdOlLfQa1P8xNL9knUojwEBi4irVTTzKUUBBAmTpgYwGZALBluzngxDbhDHt/85Ccw7xgvf/BDeIszeBxQKOKYEg6pFlmT1BJ5qtC+jh5boXe2sPfJkyfN4FTjNZiD0NaF2GdUGIwePOqoHY/HVTFwjHGlg6Pv7502GzHV32mhLYBa2Dy2Aw+4acRdXl7COYn2TacT4hBApCKd9WBjtMNPceM26qn3p5oxvsIkxBlj+OAwH0/IGXDVSADQ4BwWziiiqKcbWZecM8AzttstjsfJEHukVYRcRIc3K6P8eDyuPstGSy2zlXMixKiHvY3CqyERY0ThDOeAkjJKzgAkQpnZYc6MBA/sdrj/3b8E14h4yAN4uEAmkmxUw5PL9zF6kA8rA7nPPln2QDXgTqfTDep5O8f0GSwMUOvRQggoVfNlt9utnMbj8XiD3EHnrCVPsQLBto/UCL64uFjNF+eWLKdEl31lsVwMMGWAy3mG98uYaN2OPuPhcKjPOWG73TYoz9OnTxuRiBpuOWfMx0Nj2co5Y3/1dDHAXIAjBzgxxsI4tLWsz6dwn2bMV8NO94B5nrEZpHYkGB0ydmtHwhre2icqLmwhw/v9vjF86tqzWSN9LvvZasxbqGjpqJ5bAKMwclnoz1vf8zqLEGNEriQJus6mSYRhexioZfK0+4yd01ITeWjPZDMttuneaINXlsShrY1iBNOByvLKrZbT6zgQQMrWqn1XDXQN2hyPR3AWQhC79iyrqH1m68xap0t/nqYJ5B222y3m09ScE09SQ0Ysji5oHXyzDtQKCtscVzbOpawRIdmQ/rq4uFitOSLCdrtta0frDQsWUgbvfVtT+jodB907LMxQ54Geg845nA779l4rt6FzS/tL64D7YEPfj4VVuFllAhaduhaUqzDRwox5Ws5eMDAZp3SaphsEOH2myTqatk5U++j6+hrMjMvLHQ7Ha+TCDZpZyAMhItUxc1p6kJ7gDjHe8eQt/Myf/E/w7U99Au9JV7g/eLj9Ne7vdjg+fYrt3Q2Cshmy6EJ5cgiOKzlW/RsYgZ0I8gIIfllzRR4OU4XzeSY4lmd+KzPCCy/j4288wcdf32Pv7+HpZoBzARf3LjFdHxFTxsaHSurEAiV0UqNm7bPb9t+fdutIPafNRsqfmdKHZDQcqGkVeO8ljQ+BRIlqeMEwjiBiXEOKex0InqvqNxW8+dUv4fHhGi995JeBPCE5ifqMo0TlKHjwnFA4ITgxitQJsthyPcTVmNYNW6PfFpKkh0ZKqTlEu91uxexnI5tqJPcMbNYYBhZ2PIs1t3AHm7Ww2Q0LOSEiw3C1Qc4zcu4p3JWEokaGsc7i6GutSCE8oVSj5rg/CGYbS8F2Y7g6AxexTo0aTsfjEbud1AScTic53FzA06dPsdnsVvVitm5ot9utSCEsy5deoz8MrANMtAgyamZyJWJKBHI1O1IhNofphDDuMOWCPGwwZQaFLRJ7pLDBzPJ6ClFohZnhXa0lKAlcitTrADhVcVFmKdYnkoJxIoCf4QQCS8ZsGAYRKS2M6Xhq46R1F1wKCgNwi+CmjTCrAabOlTW89LO0/3Qu6nxMqSBXkdFh2OB4nOq8lP4bxxGMpUBf5+o4jp3jM4E5V4dK+lxZ9qzzHWPEsAkL1TYYqWQcTosjqExf23HA6XRsBl6MsRXF6zwcozz/cap1L8b4H2td2XwSdkqFxurcsVH7nBanq1BpfdjXVaoRn7NC3jyowvJCLfR3TrOuDPLcnCt9fiUJsXPesvYFH3H99AohBAxBHIY8p+aYWCfH6svpHITpa/uM+/2+ZYyaQ+EXYW6bLe3FnJ0Lda7MK5IZKwth2TjtPfWGL0Wp59L7lBgQrfZgvf95nptotAayUkqVcIEQfRDBWAMl7FkbbX1U7yD3mR1mYfgrbg2jG8cRh4OIw26qeHBxftW/fYaZiBp7XUoL02KuwsWn0wnjJq76S5/ZfoYyH3rvsRk37bzR+9L6OAu1tjB1XTt9fZTsh0tf2PNen13H1Wa9tI7L1hG3rKavQZ2ccHFxgXFcPkeuWzDnim4IXljjDNtf9AFcWOB+jjBsxhWBhw8BvgZIpjSDCRiHpaZM56yuVc3yHY9HISkZPHJmpFLgBllbKc9AKri72+Lw9AmcBzZcMH3ta/jGT/8Uvuv+FrsTAMzYXYyIDMRxK+RKtcYqEkAsDK4OJKQ6VWQ3kGu/CzUQ1wIzToh/nuyvJUCaGNtxh2MpwMUlXkvAp998E9fuHhB2FRYqaIrdOErdZNWaKSiV3IvABrpu63bP2XZ2Hdt5cNu+M9vtCH6HNyKJ1Gk0RAJxFcLhCIBkrmYABQzPGagbTyoTUi64uxnx1oPX8fTBW3hxcw/v/PBH8HieUcYtTqcDKA4Qamkgp4ycDyAKq4PHwkn0UFFjRuFiffbJRhA3m037nR4kaqQu9LpLEbduRFaY0bZWeF4Krq+v2+YO3NzkNpsNTqdTiyDr82iUTjbRpUB4qS8CStWTIjiAlk1RDUKbrXHONRgfs2gRETwKZzESCxCGWoBsakpsVk0PrGma4INE6fWQ0IjxdDpgs9k0w3W73cJ7Q0ltsliWhnphg1vgJdqX1jhSY1KdX0uZvnL2hWMWc0ogcgjjDk8ngMcLPEwBbncH73jfh/CIRmQnGZaBxNFUDL+vjqbonHHLmuk1bUS8Gbg+NCNQ/9VntK0n0WjOQC08189VQ1KNNus4WmZD72+ug15kWsZvMXStgWbJHOZ5gvNLnY11nhfDWQgoBHbqWvZDM3CaYZ3nGWVOzTBTY1CzHPrcMUZMx4PoNdFi4B9rBLuHwm42m/Y7XRPMwnQHAJxLY47TPljVWZWltovdYnza7KsNzgDr2klbH2PhmEtNY1llgXSv0DmvDKHNALy8aMQvHiSsZyAcp9MKqif6SGF1zZwSvAngaNDC6uG1PSVIYGmVMWJue6Bm9oew3K8ddwsZzHleQW11LGzmopQC8tQYX5nkoOhr+IDF6be1djpHBr9kVGEgXHaM7J5snSabDbTw31a3VOeXzawdj0dcXFyglIL9fo9hswEXXgWE+uCiPNNSl7agARbntV2jMqpqQM1Cgq0zZP9uzw177uhnW1ijZndscM17j5Lmdg96fc082dokSzDSMncm673sM+oQLnp32heSKerlQWTsLAQ4nWTvjtsR+/2+EaXo59g5oSQhttms6mr7H4KwVTo531LJSJASBMIEnjLu+AkX0xNcPt3jr/6R34/vjYzt9ARwE9gxCga47OArtXgggCDyDY4k2OaJhdlQA6GQmmOndhHqnkRcGY0L7r1yB6fDhCHs8GQecUUOn3hrwmcfPMAXc4DfXQKTh0OBR4FDhgNXGKEQcHmSf8EOXAl4/l7N1qHZ/r1t37nt1pH6Tm91oyiVCUoOSYmQtuJHJ3TFgYGYGYkTiiuYRwdiwhYF784OiQve+ImfAF1d4/53vw8UA4gcTiUDqLoM0KwSreANtkC1UarWQ8lGTC30SdvxeOx0PnIz8vuaA3tg2c8DFodODyk1XDQyqK/Rfy0cRTWTbOHv2jiL7fey8a3Z3kh81lWNlUYs9b0AKvwCSHMSSmkiDFGMLfKEkit8hcqadcscoLZ+RwwOgYoMw6bCeNZ6HgKBOqzqMgCsjCA9ZFf3ajJ8Nhv1LJiJGkJ27Cg6OC9G+2FOmPyAY464+90fAbb38ToHhO0OOU+Y8lGM8AJsdHznCcULpMYxI3qh/JUMREKqtPISKScwBdQCwdU4njuopC7IMFTNSaLFuQClgJjhKozVd4ajzcRqlkpZwvpouT0o+5pAS8tt73UYBuSiWaWwyqQsWVOhed/tdqu6EZuNa++hJbNiNcTWDtIEr1mzWRxWFwZQJaA4zYYqHwUxCN1/WwOoWfBas9EKsA2k1va90qJrrZiFDdnI/pJRpNUeYDNCukatU9Ebd2roq7N8SpXeGYQ0LXVLZU7N6VDHQJ5jMaj3R8mUaHaiEACTldcMhzqb9n7Osd1ZA14dMR0zC/2yBDG2jkc/s2fSXOZfaYxiGTVib8gE1EnwNfPDKSOYuld9favRZKyCBjabpuOlDr3dQ3ooY8vyxAhXzytJlhFoHLGvDudQ14j3axkGO59awAnUAhZLIGOpCWr7KPJqv7b7ofb1PM+NbETvV9esRQnY+aq/s/PRnlOcl8CVvsZqK1oIsK1jsnN7RXShkE6njJyHlbaiZPadSDowI9ICY5znGek0tQzc6XjCuN2s5ut6Hi3Zuh6S3++tgRymlMAOiPCAc2DvQdMJg/PYeka6fozv2kX8l//H/wMuU8IHh4y7eUI+7DFcSO1x9AE5RKmLoix1287BE6TelkvNRgHE9Zz3GtwkgDxKXbvFSdaaPYDjNXZhxJ4GPPTvwBcfPsGPfO0KefcipuBBKWMcHAZmqcmsdYYFwEx1x1PplP8flKF0j7NByVtH6ju7ub//j7ht/7Aak2SduFJqw0kUVX8HXZzs4OARiuidhJrydoEaZG87ZWzngjuO8cZXvoi3v/lNbIMHnya4ei3V2rEHMLDGp9sN1R7oPTuRzdL0X2qs6Ea+ImugNUvSuQPVMvI9q4jTfo6t6zkX4e7voTfUeufMQl1W49VFZvv7sfVK2uz3Nurcs3TZg66nQG5OjTHELZvYkikpN55br2X7S504S6ygNVO2YFq1fOAImQvmzLg6zrj74ssI27u4mhkp7nBMIpJJLMxJMQiUgmgZn5JvsjrqvdhxcB5I07yai3b+2S9/5vBTo6dnW9O/2XFe1czUvngWJFL7pBfztWK4fVbBzo/+s/XexnFsGQzNpvb90o+vBhf6zweAGP3qfZawwr6+d8YBrOqO1GnpnQQ7r84Zwv06sv3ev+5ZULZ+ndl1brMD+no7fhYy3BN22NY7QRYapv19jrjGrlP7pWtSjSpLjtO/t89KWTKaPrDUz81+btj1oHPeOipWsNru0f3e18Noe3bTfsxsRrFfw/b+rYNiszN9QMIGIZ61/vqAyrmf7fzWe7PzwELSnzVf7TPb+aZ9qV/n7qufo5ZUxyJAzq0LbTZYpu89d/b0+1IpIpnS7xe6Hmwwre+/fp62PQQAstgb3jn4AmxjwMaJQ/XqC/fwjb/7s3gfCvZf+SLy1dsIruBiHLBhh5EdPAWUEFBCJb9SVj6PdkZIu3mmrsaIqjNFQsx1OQ4o8wSMG/zdNx/gZ7/9EPNwFzlcwpUoSI6h1hWyq1knoDiP4jyy98gkXyJp8PMzp3U+90G22/ad224zUs9pI9HVBYCVCK/+bfnB3XhNO8zUKOOMUIDAgBdcEUDAqSpNbYLHRRFYyv3gQMcDXv/kJ5GGAa986HvxZp6QXcRpzsgFNYrvMNW6J1vcrhAojdT3xaha52EjqCr+CiyHWH+Y22JWhXS0KKqBhFiImToUNoPVO0G95pB1LnrHQ+5PMkoa1V9EVDMcuVXGTWEp6mTEGMFZxqqkAj+IyOs8JzCLETvPAmFyGj2uUWELldED4ng44eJyV2spUquRArB6Xo0+asZPopbHFlkspQC0hg72zpfNglknw+q4WEcO5hA+ZclmHMKID3zsl+LtY8bJb7G5vIv9DGA+YnCEOAaUqYCKCJCSj4jjgGlKmHJCQAF7QmGBbUUXTe1JjejOeQVbylnWh9VY0jWU89wMMu1jYaxbiAuOs9T6nOZa+2Rq31wdMzCQpxmZCrbjIhitWZJgIGgAQH40jjRhmjRDEZpBk/MJzmNVZ9JY74zBrdFxyTruG8TK1gwyM0J02O+PDUJXqDRIq2ZAt+MG+XRsGVpdS2GQrIsVt9U6osQsEeMKKRwqwxlB9ok5ZWT0Rp8aExXqx0lkHAyM12ZKxRAkMC8seTIvQ13jiyxBKUDKC2xPM1DWudG9SsR2ZQ4otTkRIRmQTs+WpuvZ+TXtOqcM7xaWxWb8cwEVNKZHHwMC+Qbts3Wf1ghVggdtcm9CRR/j2Nbw48ePW5ZAM2Gqt9cIBXRfrTKhcxG2RUuuo/c9OA+KC0Nhzhl5TigwmUXHiLTANHUP1vV/Op3ABOy22waDtc5G75hKPzG4FIT6OakUTMejiEeHgP1esu4lzSDvBNZl+to6cikv+ntLlnNugYdcZjGKjcM/DMNKH07ngpwxwsxKxIjRYxgC5nnJZnlPyHmp62qBJEMwonuhkK0I9FHrhi1qQvcMdc5tYGAN6bTMuFidFfpZWhfoap2ndwJ5y3mp34sxYnOxEyInJ+fz/nRcMuXMuN5f4+7duwKxvL5umU1Zp6i1wbllrgECOwdPFQExO/jigCo0f/XkIXae8YGNw1d/4sfwiT/1w/ilT76Bj93dAHzExe4e9o8f4w6NIPbIAZh9tXFKixeLQ8UO3tXgBYyEAJU628WQYhayC3WmPHu89fYJw+U9/OxbV/ib336EfbiDNNzFPDMuN1scj0/hRgdPAwCP4riReDWmZF0TLEqePx+X6FyN1LmA7237zmm3jtRz2oIRbRRON2mqi6AbM3vZWFNeCpCVapQgRZWBHDISyAHsSbJTRBiLiPcyM/aewbsI7x3GwwkvFsLhs5/Fw8MR48c+iry9xLjdYb6agCK0nxfjKAd+LuLQMSGBwEwgH4QI40zkVJ0iPcgslAJYskoretYuCmuN9tPp1HD5ujFZRjUAN/D7lv5amd2AZ4vzLs5XJTaIirlfam8qug9pXteURAuxII8CMT5Ph6OpCwGm6Qjysv3rQWYZ8lTgUftiGAbMU4J3AfA1ql0L+LUweSl2HpDzAhsZhgEgmR+o2Z9xM6Dkm4XctoZHHcjTaca43YiAq6fmxJ0OE0plZItUMKcDeLyDmUbw/XfiabyL65JwTAw/nTC6IEXIBCABpbCgVdlVjZGMrNoy3tW1IJHBzARHHqzMSURwjpGRZSxIGMpSSiip1gIkA0+hhdLYzjFrYMYhgrYD3GbA9dMrgXKRsCsCaAKmiRgliCC2826plUgJnEurt2EC3ADMs9SqbTYbcSBLQc4C7xRjIDSDc84qeF2QK5RuGJaIdilCwCZCnA7eAyJ7IPNvv7/CkDOG4HFKR4E8ESPnaSlq98BhfyUU6CbjYNdhVkY+55BnWU/eOXDKVS5M+l7nqQfglWHLr6GwORfM9dq+eEzTshYyC1SGyCHEAFehtHmeBJbDwgApDtSMUlQqwSElIUrg7OFJtMeo4sVSWtblaT6BqGY3C/9/2fu3Xtu27DwM+1q/jDHnXGtfzqVOVbGKRVK8SaJIWXZkRwmMyIAN+CFBgDw4QPID8hYHfs5TjNwQWDahiJIlORHkIBEUIJLjJBJhU7JEkZQsFVlFimSxLmRVHdapc9lnX87aa805xui9tzy03vpoo6+5q06xKHIf1eoHC2fvteccl35trX1f+1pD9JZlgY8BiQuQSw1QcaXurrRSfVZLF6QqEpNqDS5HBKrCDh6EzMB0c8JuiHBa3DcX2c9zVUFt6mkTxrg6AwgOqdT8xeOCEAYMuxHMC1ASSprhEETFlRjkJGfGOdlLplnGZQgRecqtZpbmyagDe3X1DIfdvtESp2mWoEaMEJcYdY1UQ7Ba8ZmBcX+oqAYhcUEcd0iTnEvLaQG8A5GT9cwMctUhIAcmBxcilkXyKeM4gOcZSy6AY4RBZPg9MZxXB29GiFJUN4QAqqIr407zCj28ijX4IM4yOZALIvJyc70RZ1FH2dIjlXo3z3MtpF1zvNgBvhrvYHCW57bMCysisKG7VxNfze4CKcZO5MEpYT7OG8TCOlIaMLBqjZ4Lgg9AAAozXJC6UWGICKEWbE6TOB6OQMxAAfYXh3YGx3FXA20TYghC5WTZjy92e6F6eo+h5p+CqAXjQnSYs4guhJo76ILDaZ5w//5DPH7rCS6G+5jTAn8x4MHrD8FP38P0pd/B7/x//t/4gedP4YOIROycIOzjOKKQl2ASMnySkhCikOVXe8ipMh/BQ9CqAqBQlDp1zABmZFcQdiPSLLXKRnjcfOwH8GYO+NUvfwlzGIAxYHETEAkJCy6GgMCM7AkZlSWBItU8+LbLZH/z7VAmmyN11z767c6Relkbc9sslDeeUkJwvqkSaUSu0JYqUnICeYeo/PU8w0MMVK6ODsBS34UceABOcxIjkAtGFBzGPa4fvYt3jzd4uB/x+k/+KVxPR4Q4opAIVxQnVecdSX4VBY8AJ/Q/eMARmtR3dXL04LYUNIs2baKytNak0qTttXukdzTqZiWYFWXqc0KURmWjzMCaT2QNCmClwpwr1AugIV/rvV6s1KNNjdKhCgNYesRqwK5OizqM2k8aObWqhLZZVMnSULSPLc1jFQIQieppOsK7YZMDZOlCfb2vZZqR0oxxNwBcME8nybEhQk6MJRfM+ws8KR64fIjDp34Y71PAPEYgCHJTphvsYoQtnlkywcfQ8vwGRcEc1wDDOk4a8QbEkAcVxHGb9Mu8oh3er8IY2QhI6Hzo52LOGVyNrP1eDMzjsmAfhirtvc1/ymBxngzVhYgQ3JpjlWt9LwAb1auGbDqHodX/ShvEz1In5ZnjLUqmriubD8TMYGTEmm/WipY6wpImICndzcE5Q9tyEkmWvlj3meA84iDXmZe5veepogiN/uRWWuWL1kXBtgByqU6gzsFUgJxnBHBbY+s317Woe6I6ONqvlrrb6EkgJIOmWoRAVAyrCuI4YFkWLHml/FnjWvNczgnv6OYtEfz6brTKYut+ZUUztK17pDAF4EJDKsQYB+Yz+6HNk7L06cETUAQ507poKjzT9jrvNvO0iV4M654gCCJvRGqo5qE0gY9hB1dKU6PU98pa2Lm+35wlF815KaZaisANKWcsp7TZv3ReMxep6wWGCh4p06FgFY/YqOQZJoOcDWudMRWEUFaErnvd+0+nE0J08GHdE1tOac1hRHH1M7uNeIVV2dPnkfpl63O3AGGt3egt5cuttbZOp5PUKquMDoukE+e23kPNk9U5kUqR3CSuohRM1YnvCmB7L9Q7g3oDWwEinSfz8YS4GxHAoJxQCuFQhVLSvMB5B88AJeD5kys8fO0hjs+PuLgcwNMVvo9v8MHbX8cv/ed/BfTeO3joC3wEvPOIzmEgqqqClZ7qAEcZBNl3RHVYZM8dCI65KhQzXJGaUjFLPlR24uhejDtcP7+BizvwsMMTJvzT94744ntXeGcO4PsPMRUGOy9lY2SCwMqbq6vk6MPgTi9u56ind+2j3e4cqZe08RlHKoRQdSQ6tIQZzq/RDeccSpczQzkD5ETNRiQP4H2RQ7EwhiAc35IW+IsdXAgYs8NQEt77lc8jZIcH3/8ZHC8uwI6w+KEZuoCrBpg4VsQMz4zigFJoY5iroaEOkHWy9ABTQ88aLNM0tcPNOlqWytBz6fWgtw6AVahTY8CqpdkEYdufel9Lv7BJtzJevPn8i8ZV6UH2eS2N0OacEYk62kpxWukolhKpc8Fy2a1Bdy7HJWfl3ZvcqrwtLqnvY59J+oYxhABiB04LSjohhlEOIgCnZcHkAt73l3j4gz8I2t3HU/J4noFQKU65RnFTWUA1BwouwFd6kDqo03SsxiHWQiG4LVfvPQFUkFIBozrErHWlYv28FORMaZbivsFXJcUCTovM7aLy7QRPDjenCQSIilU1vDNYKEaekJYFKWf4fRBUJkv01jmHliniCCiV0kbbYqm9cAeAjQG2pZauBrd1sM7lbKiRFOOAnBcs89JQOkehXb85ZS4ip+qgk1AWpaiZvEtgUe6c5xOWKjYA7zbXGg/7aqBXRwG3c31UIEHncikFu0EMtrkWf2UzvqGOQ15Wmpg6otZQtsalIsw2Z8cGHnQvtX3vjCFp80P0urZfdfw0yDAMw6YWkL5rQyEWoY+JmMpKJ+4l37f5K3Wf82vuZh9sYu+bgl4qSnkiMBzIEZgccjXQm1iKX9eM7mF6T90zVKxAx6qhbursa/zdhYq2rvvr6D08AbnkdkYUArgoNbDWpGMRTPHO3wrWWGW6trd7QT+zFNoTtMHM4ZxzFUvBxulVB0bnQ783WudL5472jaVellwk35ikcHquSq6lUuWsQqfOTSvQQUQ4HA6Yc0JZ0q2CzKVUZMmcNZZFoc2eUYIQ15w6FyrDwtDj06rCWCsogXxdO6ZUQylZShaosmBZi+pq+QBlSQwhgjjDDzvAEW6uT0iZaqApw7EHMiGwxxB3mI7PcRgXuOkxPn79DP/Nn/9PEJ6+jx/2GUc/wfGCSCM8VbEaCLMg+gAPhvfK7qjqeVnP5QKnzpW4O/DVCYuccTMwFlcQSkE5zrjnL3CFHW7cBT77/Cn+wVe/ATq8hmU3Yk4BFKOwOyAEm0yMwupE/f7Vhvp2OW537aPX7hypl7RtFpZDo2JwLmDDnRenaZtUD9xONpeoIa1qfizR/YUZKBnkg9BwYsTzRQwhzwWRgJwZj778FQDAaz/5x/FkmgE/1Gre9fkY4JproFQaV2v66PPos1i0yRoo/bv3lIbeQbEJ09osomTpGb2SWU/b03tYI8jeR69p5Z7t+zBLhXmL4vR5OfZ758apv25vvNlI4bkk6f55t0aioh3bnCf5MehV4Rdu6vZZpWaG0DFAFUkioHBBZiA7IAeP3WsfxxIusLAD4h4lJ6FuLQuYC6JjpDkJmgTAmbpaVi4bAFwMG4Nc+1H7iLA67JpISGf6RPuvN3ysAb1JiAfAKQPZyCSrEVVzBAoB+2FAniV6m3lLVe2d0l5Vz65nQeVWZa72fuaZzgkW9Pd50fzaFi29rah2KyHfrJn22bLmx7VCr7Vv+rwYu57PPU+fL9PPaf13m9Nn54X9nhUI6K9h+5y6vbB3lqzKqO17K9jR8oHMdey9exXM1albi373QhzbvqqOd1dnxj6zpRH3z2ifaUlrvo2v8yqVvPk8M8G/YN+z8w2AQaNMrum4LZZtnxXmu30gzPaZ9pvdx7W/BZk5bvJXmVZHeTM/zXljaxLa9+pFd+xZoJ+zn9F/O7dGbB/rvm/3Kv2u9x7I6eya6M8lXWPWse3HxD6DPtvxeNwIRrS1XmtHkdlv+gCOPWtsjSyrRhhCwHwzwcWIQH6TX6Zqtvqd69MR9y4ixnSDV3YRp9/8CsYn78F/8D6mMuP1+3s4RHApte4TwzuCY6pUOlvmQBT6vKv9VCQo5epa1vpcDkWk0FlqTkn/jTieCnD/Pq6I8MV3n2HeXcINA6aFsdvtkSUZAiBRbC1O5CN0/+vX3127a9ruHKmXtLXNUv2fSqfT/3w1Gil4ULp94PUoQqy5JHZDBaQmA4JD5oSS5brwQBwCdssCv5zwsTzi6dNneO9Xfhk5JHzix34cj5CwUI14eodcpCCmzxIhoywwuTVIrALRbrfDzc1Ni/ZZNTbdsPvIYG9EA6vQhPLRleJjc52ssaA0ldPphBgjDocDnj171hyJm5ubZhCqgW2Te+3YWNELKdC41uV4kTPS049aXltnBM3zvHlvez19V42ynps7mqeyIgBywO52w0ppifqcNkft9jxKhqqmz3qaFszLCXmZEccBcA43acaEiIKAMuyx7O7Dvf6DmBGxMGFaHPa7S7n/dAMPws4HLGG8ZdwMQQpepsK4f/++GColV97+6mQU3qqDrUZvaIaLGAEZzq1Gvjpqinw653A8Hts4WOpdhENxUhcpa95drY8FAGEIGBCQ50Vqa4EwHg6VnlMNPS14OgyYDKXTOsh2DtjCrjpndP5Yw5FoRUd03Ox7a1FpZokma+K+3l/REF1vMUbAuUZfKaUgOMk1UmqRojk6LyyarPQppSDlvDQjWD9vk/kb6rwsiMMOUemaXBGhOq6llCbwYPvM0vUsfVjXuRr8KqyhfTjPMwqo0R4VpdC9Sms6PX/+/FYBcDUa9bq671hkQdGE4LxQkOIAFJkHdrxVadHWJmtoArZONIoIqWRGqwknRajXZ1LDOefcyi/ovNJC0kpny2Wl7XnvBe01SKilh2q/rXmupQl/6PsOvK1NYzIAAIAASURBVNZCa/Lvw9iccV2zquip+5ulYdp5YfewpmYYhpXyqeNEgDP9ZstEKGJpUV29L2qOmNJflcKm9QtVeEb7U/PoZkPNtXPscLjYKAsqLdI6dzpPndvSpBVZK8mIC9EWsbKIYE/dPp1uGrrkSkL0Dj4OrS9KWlD9WURfHa+a2zXzWq9Nxw5AozLf3Nzg4uJiVR1dZoy7iGlaMOWEVLiKtShaVpDmBbvdIPvk8yt8/3KFZ1/+TfzDv/Qf41PpOT71yiu4efsp9rkWRveS5zR6h4FE2CO4ik6B4ZwEZiMFOEgpAq/qw2Ajfy601yXI9WKWkhjvJcLu9U/g848m/Pq7j/ANvsBpPCAx4/7lJabrI6ILGEMNfFS2DjluNajs2f/dtN4R68/3u/bRa8R3rvVL2U7/y5+U2iQAigFiai4xAIhRWRWwYJR0lGuuf5eLVMMNhp7lguQ6magoCnByjEwOPBe4VBAWwrw74GlZ8HgfUC7v4cf+7L+LOQRclwy6vI/npwVDHOEygdKCkRySco2xlZYlopbvo1QKe+Dr5/s8ExsR7KNmjS9OtKGJbA5ht0oMHw6HTe0jS8uxUWmtYG+RA0vt0b8DgtLY6LWNirfNk2/Tg6xjpuiZzdeyyc99s5+zzqZ9TimiOFWjzSACpP27Rly9GzaIhTUMNpQPzvDe1IMhwnXxeLwQeDzg/sc/jRQPuL74RE0u92AfIEVVcy1uSCAkzBAhiZarRmgGnFWQuz6ecHl5ucn9UGRIqUIxRmRsUY+ct3WT1PFW1MiOuUW6mipkpeTNRg2sKI0z1hyXwsjLbKKn1RHp6stkZsRx15w2NdLVeGzR8JxuPZNeQx0BYK0dBqzFVFWkRI25fl7YuWPFXpZlQRjiVkKbyy3DTR5mDRboWtQ1pDQ3qkZOv65tnbdG3aLVWCdeERprBPd1z6xT9a3WnM4rNWIbpas6g6r82COgek2rRKr0LC1KqusvxiiU0KKCP+v6o7KOPzODwlay3a7X1gdEWPIazEBZx0DmdFX8Y2z2IUv/26CrqbT+/uD6uextcaXuaX6fM0EpHaNNHqI+s+uU93C7KDAAuBBXR7HwZp7rfMk5twLHen116hs10iD4jdJc8iYQoH01LSsNsUeiLfrLec0/tNS/vhH5zbP14jv653wmR9Y6pRpgmLMg8NYJjb6O2bKeVYnTrTNm3dPWvF4VN4kxtvVqHdQQQlNdbOiXeVar8mk/p8+nARS9b4wehZMoLRLAfkDJhDwvGGJApIKcZkTn8OyDJ/jJ/R5/73/7HyI+fgefyM8w0HN4Krhgj5E99uyQdxmOCAN5xCqKF4OORYGPwpjxvAaRFW0iloK8+j6FChZX4AuBEDHHCzzeP8Rvv/8Uv/iNp5iGCxz9JVJ0YCoY4DDAIbCHr/1SPIO9qP8VRHynlYL6oKttPbr7nbaf+et/9/f0vbv2L67dyYZ8RFqpP2fEYjYHWF9t3f5f27qIixg6LBQtiYx5eHgEsGxozoGJ4ZBwCA7h5gbp0SM8+/pv4wIFey6IzBijqMAtacJi8hHOUY5shJ2ZW+RxjdZtC9H2xqn9vz0wbTTY3sv2k+ZT9A6CPSDPXbvvP/2upWr1h55N5u2vrd+399LvnLu2/q7/0fupoWmdTHvw26LE1rA+90xWRdHOHY1IAkAuVdHMETIREjscmXBEBF0+BO69hinsQN5EVBngtIixiZqrg63TTBXl3CBgnEWVzDx3T62xlBq7JkpVfFN00wdqnPd+vHoqpf6+kCLDdMtI8jXf0EbT7TXaO3WUHH2Pvt7OuX7vI9LnnHj9nKVeqUH1Iifc9lPfr21+YK21FJyUUlgl2rcy+NY5smp2fTsXkLD9kUpXiLckOJRba6l/r0Z362ox9eu4X9PWSerXgz6TRTv6/cGiBurEt+vnUhVUIcn85jvnnqmfQ20Pc9u56VCgdqZ9BnVobY6Xzm0NIqkBbvdinftWac4iprZZ9KLR5mok3z5bnyumrIoWNCu8Uno7Z7//cx+1L6XAhbgJwDkUqUXXrVPLGrDXs2vPjqUNbtn52tNSLYpux0/vZevGKXpnpfHt9c+dMRrMUYfGij5YESG7VlQJsO0/JYE4b+YEM1e1VUOrr5/T9WCplv25m3NGZskRJVPouNQ6gHk64cHFHtPVY3x853H11S/DP3kM/+wJQlVeZEeA960GpiBLVTBC/1zVLtVWAda/kzP7IYmIi9TPZHMmeWQ34Oj2+MqTK3zp/Ss8Q0AOe3CRYIfjIvYPr1R1+YFQ/PDhW0/TfJGjdO78v2sf7XZH7XtJm6JRZx0nBZlgpMKxihiEUJNhjWE9xqFy1W8fDOxrjhM8FnaIWWoZZSRkz0iHgJkTiBnfRwELCO/88mdxKIzXPv0pPDneYDxciqS19whRcm1wBuu0CIDlfyva0aNT54xS4HaBXPujuRRWiMHSOtTQ08N0HMd2yFq555RSowD2xpeNqK4G2yrbbg857WtAukSpfUpxUiTKqmNZJOFFqoFtPpwx2vX32r9EvkbRyRgKmhtiKERuRcf6+iYt98U7kA+YFxFpWJxHIo8jDXjtx34CvLuHx7SDO4xIyxE+eDBnpCTSsc47OB+lHhS80DKcA7DNRZBoY4ZTw29YayrpXLLjpUYkhVWdUaWx9/s9yJlCsZ4Bihsj0lK31FBs6Ex1GrVfm7pWyshcKZpE4JybKhm5moNoxl/HVOecRVmtg1HKSv/rZejVWBNKz9Rq7VjD29Zps7TUF63HJtIwJ5APVXymzgMvstrNgeEM5FXBTK9jgwGa06FIim0WQW79GUcZg2XaInElYen6wa5Bi56o4dqXV7BOVd8uLi4a+pFzbqqDdp/RenCKFl9dXW3WasuvrHW2YJ0DV2lPucAxmipdX3DcIoM6XksGyFOrydZQeBJZm3mewQgo3T651jdalUhVuAJAq3UUjOCOGuzOOMi6nlaa5ro+g/NwYUAp07r3cBF58qoKeJpvgCDjGpzbGP9UuN3XikXoHmaDDzrO3nvcnOaq4lj3bZK9Pi8TFkWRC6GgbBxpu1c2quN+v5k31mHoHeV+DalDr5/x3oOqwqJ1Pvu9PKWEuBvhQQ1B9t6jJBkHpZZZFFTPJVv+wtZILDUeXhSBcqtjuZ6ZjIL6PlqYtu4xuyG0e8KJQI6tA2mVAuV6UtbBoSJdKYGCw+WwQygzIhI++N2v4Sc+9gBPPvdZ/OO/9n/FD1HCabnCRQAieQCE6APIEwo7DK6WFXEOAa7lOZEXAQk4qVlVCkAktL6iaLcTbgNIy0wA94cLPBlGTOGAX3s24Rd++23Q4SFSHHBzKtjtBwTM8JCaZOQcChiLnrHOnrUfvtBuH2g7t+/2TIM7R+qj3+4cqZe48YdcX0SSbAncjlD3UbT2eZhDpcVdhLLhktReYUfIBCRXQHDwieCWBC6MiwPhG7/1mzjlBW/8K38ap5SBUuD9AO+8RJGdFFoEbieR22hno1oZ+o7dbM5FJK3DYY0Gi4Cd28Qs3cUmrdsD0UbpewfFGj991LKUfLtvzXPKOK3PYg9DPWxtZLl3Hr9VhKt/nhdt4H2TcTmX6L6NvNqE41IKKEitGKEEeSRPePDaG1jiATfFIe8vcL2cMPAizlktikhO8ouyk1pHmpfV37uvyUEkyfGW0gKgiWMwM1IWBTi3QdXkGjFGzMtp26fEIFr7TR2zfgwUZREj9rYKnfaJD+6WEXUu+lgqCnuOtqQOwzKlW6qElnKnv7NzyOZg3OrPM2N/C4Wq0twEqTf3orkTyIENldY6KhZ5Vhnxfv1YRIMrPUh3rRZlzunW/Z0RcWj0J1Nw1yqb9UiZpf42xBbr2tQaUhbFVuNR6W3qPF1fX28cYKBSBGMVWygd0gE0o5WrirJ1iq0iXptTVYWMmZuY0ErJxdrXgW6NY4/oC1IGhDOoTz//euS0ZxYwMzIX8JLhkW7NNee39Y+ge4lf50qaF0Gn1VFixiktG8fHKtPZ+WX3RVGlW/P0mioh+Vaovt8L7Zq0zAEdd3v+WOaG/e6LDObCW9EQdVjtT/t8efG6tOO4UniHTf3DhlB7By76nLo33UZqx3FEKtt3Vgqtq8GoOqtQym2nwKLiQGWFZ6F0FkBsBjA4zQiU8emPv47f/uX/Fl/7O/8l/ONvYkLBqw92uB+lNiAT6rngUEgcIVd/fNuXRTGPyMnnq0N4rjHVum2V6ldOCfzwAT5gjy89eow83IPze9DiMQYPGoLUpqrrUYr1+taP9i4f1s3px/JFwSu7Xu+cqH852p0j9RFpfUxE86Q2lDS3ytky3Tb2Nb+KGgIhcHZAlYytCZ6eqlqN82BiwGUs84QREZfD2GrwlJsrvPWrn8eRCJd/5McR4eB2kmw6MWEMUmAwldKKnFpDSiOVkxFN0CReGwG0dLzeebEHqHWSbC0gGzmXAy9jHHbtwAaw1kCpkb+rqytcXFy0KGCPjAG4JUse4pqv1RcUbuhQLZCoOWIAcHl52bjomq9hESCbSN43+546F/Q7+mwiMnFY67CogQQ2164oJGcAhDgEGcf51IwAUasrWPICQkBxDuwGXGPAQhEPH34Sy3gPS/H4YJZ6LZyPWCAiEZJPpDlGGRQ98lKQ8wJPpSYVK9KzNMpHQw73B8zzdXt3iUQb6eglgYLfIIFrlNvjeDPh4uICwyAUI/IRy5KrDDs1afVW6LJJmDN8NfwKiZFLkBxFQR0I7IDUnC4v9VtKqpFUWhMdnQPXeZxSwjRNOFRhCiv53NOQLBJl5aj3+z2eP3++qfdjpb41Qj4Mu1tzR+aBOLQpFcxpEXnmKlDREJ+SkZmECOwY3gckAAFrfpevuVVpWjYOd3C0yYWyaK++j3MOs+aXcVVXq84PhSgGm5O+2+YvecBQ6WTPkNpLStXTNaYRfiLJv9nv90hFBFisGqAVKtC9ZpomKao8rEaQpT9ZhNsxWhFg5xy41NpAFdEkLyUorNPe0/Bk3vuW4q4G7LY+WBCWQRwwJ0mMjzVfbslifKYltSDV4MVIPS0zXKXXnU6nTQBqvjlijAOGYUTOS0MWleWgexoyMIwROYt6gS2QrmgoM+P+xSWupxnM28BYC1qZYITmyyqFTdeAjpsiyXArkpdzbqqFF/cuUZaC0+lG9lBa82H1+vp8q2OTm4NyLogk/3eIcUslL0UKaesZZfeLMQ7IXNoa7Cnf7CSXSKnILYhGIjwyH0+trtVxPt4qKK/rXwVDYozgvDSmA7CiSRkMV8s/cElYkozL4XCQOQSqNdLEm3DOocQIFMIwrLljS6nBqxDhGEjzhNEHLDmByWP0I3hOGHcBIwruH4948/OfxWf/b38NP56f443LAcebpwieMU8z7sdBnosLsiNwYPhcpcuJAE9CtSOGE/krSEE2KfQriBU1umgmqTPFjFpTKmCKD/Hrj67wz999jK+WHXh3DyV5yY0uBcc0IRKBOEo9TJJ9HE4DdJojSnAQyuK3tdE6Qayewqmtp2mfo8/etY9WuxObeEnb9X/wU40i0njRmpBtRqzxlk2CvUZvLLTs8lb1xy7ylg9BQKYsEutMLZq/FEKqldhnVU7LGSl43KSE62HAx//kv4bdG5/E9OATuEbAtH+IXbqBR8ZcMhIYPhAyV3oKe5GTZpKK5ybRXh0fKxpho3r2wLZoAaCUj301TtZaNeSUfmQSbOO+9aMadWfzSUyU3eYcWNqUcw7LmXwXvXaf/KwH4bnN90WRKks10z8r3cgiZefeQQ/FPjdDr1NKQRgiShRZWaQFXCT6mVKqUU/fCpPudju8PRGuEbD/oZ/AMl4g7R4iezFcS5pvHSQ9LUt/V+oBr8IeAHDv3r1NvptEu9friICZyNraemGlAEteC8Ra2lwvokGhChMYWfO8pKYMCNSClEV481sqaU3+DxXFLISFVyqdpZJaB1/W8eoc9UqVSlXT7/f5bups23w3a3RyRbvU4FbDy0azdY7YfMTmFLBSfFakaSlCV9TrhuhQTifpV1qd/GHYNedwHPeI0WOZrjfvZKXmW/7IOKCw36xh/Yyt66R853N5KhaNAtKtNaF7he1Tzf/S36mzoutB3h+I5FBKahQqzTGx6IiPI3jZ5oTpPqPPoP+WyrL5d1Wfa7Q5DYJUZbJGga41hpxz7feJS9tTFQGxKJ3dW3rlURVtsEVkPVnRB3VQF8TBb4I53sXNuooxYjF1k3Q9ancs5vxRQQNhLMifB7c6DHYsNugWAB/NvtFRS624jm1KUbTXlHUIqC6kgohWWEKdUOKMEFa0qjkq9b11XY7jHtM0YTZFguEkQGOFNQJvSxhY59OuaWAbhLPn9/o5BucqbU+1wH1ez0nvPTITRkqClFKtg8ciZtKQuEp/yd6Jg1sYvEiNweQAvxsAFGBO8AU4zte49+BVoQInwsUQcLx5hk+Ha/z9/93/BsPbb+PHTycgJPhQED3gnZRTGRwheg9X6jwcRgBcaaGAr5S96J0E12ruUiGAfcAhe/jiUEDI5HB0CXGMiK4gTgtOw0P81zcP8PmvvYklRlwNO8yD0HUjMyITRs4ofmi5r/0Z1SOO32n7/aDtnUNSmflObOIlbHdiEy9pexEd4cO0c4nomjD/rX5ss8bburHX6JqXgr8OwBgi0vGIr3/5y3j2zjsYHRB4gc8T2BFquVdxGigAmUDFSrpSkwLv60r1NBtrhNnClH2faWKtHqwajWx90SXK29Yn3ltqnuYx7Ha7zfWtIdznallD2VJp7Of6ZOVvNSd66uCL5o2t8aO/twhlTydq988AG0fAMUCVhpK5gIvU2pgwINGAeHiA/b2HyEUY+czciuEqO8w6IDqfmoBBjXTruNtnVkPVUrl0HM6tE2s09jQuABujy/a3PoPe0yac2/HSa9jP6vUEfakOZF7giSXhnhjRE4bgWjK8Vemzxrg1fHsxgF5wpRc60N9ZelLvVKugi31mG6HfvHeSgEqba7avjRiEzXNUJ07Xx+l0an2ln7dUyf497RhaxGddLxnMGav0Tmm/s7/vaYSKPFvqsKX76X3tXDm3t9h36MdF9pPbP84JmlaKSNCrQ27nYr/Xa7N0RDtm/eftGrHz3O5xtoSBdVit46LonZ0P/b6oxvk0TTidTu37inxax7+nGNrnvE3dzq2PnIMU167jqX1IdFtR0c6dzXlnAhNbmt7tfrbN5rja8d2iVFtRHt1DFLk7HA6IMeJ0Osm9ynl6va03dk7k4tx427XUrxd9TsvqaDmTmTUuezb4oPtvJAaXBFcyAqSWZPAEVzIoV0EKKhh2e8zXR/gpIaKg5Bs8GIDjF76C4b2ncB9cYXJZcpwglOj1R5gG3suffaXzAdjI5G8p7Q6OHWIB4IEcAHYZjBluSfBMgN/hyu/w1AW8+c67mHKRXNwiUujEbsPk6duH/d0fVLPz1iLWd+3la3fUvpe0Cb+8y38p62bzHV3HEchRoyRJpVysCZVmgwUA8qEaS/VgLoxUBD3yrpZi9QTKGcE5vB53ePb8Gm997nOAH/HwM5/BOAQ8Y4cZDOcJI9XIN3lJFC0ZOWUkx4jjiMUYyFYxyB5qejhqFFcdJM0NUSpPqZGuuRZHDSHAeTXSt8VLe8SkN6z0fk3AohSUZQF5D+ghWySjoZjkYxtltApX1lnoDww7BuccKvs7mycAbIt0WhqkvqeiV9ZJPZcPsJxOgj1yATm0PBICoRRC8YRMO3xzCnj9j/wo/OUreG9xCJeXSOwrvYlBqEVLOmTUigNYY9VGoZ1zUo+pM1yZV+TIUWgUyS2SsTpoakBaUQeLIDpIfSQ4eZ5pmhBcHVesAgZwftPfdk0WTm2cFSl+UQDAGveKFp1T4bL9pGOr11ODScfYJupbQ1UpSxqJPx6PG3n1YRgaxU2f53Q6YahKaLY5FipkVhUyBzGwQkAptkD0SiUMYQCRw5J1DYoxlHJCnoTW6mOlhKFDO/xa2Nr297ncAutkWKfGGtcq39zGyfybvY6lHK7r1CEv6myse1LoDKxlWbCPWzRRx0l/16hgJpcmxtikpS0aLe8vqa/6vDGsSGPKpQkcKB1YayLZe9nisHbPUcPM3m+apooOrHO9V/zU/tpXAQIrbkIaYGjI0zYy366xGVcVBVnruVmatj536xNTMJyIcDwe23rX/U2RJM0xuo1You3rkoND8H5FK3UN67gCQmdsQYwgZ0HwAVOb7wEXFxcSrKhBKhUyIe+AXKpojhTz7gWEzu/7K4PBjpd+TinZQ5ASIqn6kY7cBm0mF6ROVWW0TEsGUWnS9DLnl7ruZtCcoGIQmRjgjHkRpsDI4gy5sMdIAM0nhPkZ3hgKrr/yJfzaf/ZX8EcBfACGGxjRewwABk/wziFSQYCgToFEaIhqnShAHJ6g52IN1kpQzoHYYSgeR5zAHghe0hJ25YBr3uPoL/DLpyf4ypvfxNv5Enl3iZs5YzhcgEutCVnR3NLU+br0h25f+cNudn+7I4+9vO3OkXpJmxivndS2LnLzuXOLqzc+GKtwBYO1VPcqZqGGLhGI64FDgINw+wtnxCCQ/1xk84m7EThJsmYoEmk/OI+v/pNfwPCVL+DH/8yfAd1/DX7YIzqPXCPcAYSUaz5B8Cgl4TithWxtvoNG1mzkfCM0YD63pV3Jd8ZxXFEFNvkHSuFZeOOk3ebHS1NKE7DSomzk1Tp71kHQ59XDqndaetqKNZjPNUvBsvTHPppp6V36zPpvaqiraqDeFwDKkhBoddrneZKDPO5Q4HDNBRkBc9jh8Jk/jpv9fZwWIA97nDIAR3CORNJ8mZEhyniWDqmGqn22oVLsLHqnY6z9Mc8zfFjn9Prs2wg8EcF3DkpPybE0P3VImHkjJFFQAxDk4Mi3OaX9xZrLQ6vkd+HVObVzwqo7WnpoT7G1SGuPxvQok0Vf9bo6x1QcwSI/+6pQZg9mzT2xDqt1KADA1UwdURUmAJLLwLwtM2Dn5ziOmKYFyzLhcNhtPmfHCliDImrUaf/rGrECMjlvKat2vdg1ab+vPxYda9Q+3hrlNshg+zdAHNNpkfEaxxHFUDOdk7wNm19lCyLbfBi7v6nRr8p41mnQ59Rgms7f9py1n7jmxvYIj91Pt6yCdW+ze5I63qeb46Z+UAgm3y2sgZicU5tnjT7b9X3OualbZkMjg3mepEIt2DrDFpnV8RkGyT+yEuJaD9AGSiya3F/Pom3ynNtzlGhFQ21dv5Tm9k76fpZ67pzD9fV1KyRcSsHNzU3NMWShy0MCSzY/UMfIUvjWNbLNJ+73AUVqVPI9hDWHbnOeYou0RQ1gcNnMj1IkL2mIEcRSZw1UyXXWyU+CIB3TDVx+jh+jGf/kp/88Hn/h1/FDI3A5Bvh9xmUhOCcqjpEYnoQmK2UUIEWDoQISonrqvROaFDO8J8mR0sBDKSgU4B2BkUDIKHC4coxHfo+vPjrhH7z5AdL+EqdhB2aPYTcgVBqqmDVaB43AtAptfSs06g/LgbH2SD+P79rL1e6ofS9p+07pfN/qOt/N/Z1WD3eu1kEBNGIZY8RuGDGSxx6EkBbsOeH43ru4fvctjFwQOSMQAC4tmVQPh2EYNoZsS27HlmKlgglqdKghdDqdNhQ2Peh2u12TVFcDBNgm7r8owmMpLNZBmed5U5jyRbQrS6WxeQq9fG5P9+uNvw/bzlFALcXFGlX6fn3OTt8vVOq4uwAmj2lOmHJBogge9uDhEvNwwE0h+P09JDic5gyGRhK3iFMf5bXje64Qs5VZtsaq/ffeGemdUmtYW6UqvbelVWrraUC9AWr/bp0P/bFUHfscy7I0ClTvhOtzKaqk42LpjudokdqfPaq4id6bMVaHzjqTANqz6Wess2FpcPrvVpzA9qGuZ0U2hAJ7uNUHtuyAjq2iB3a99PPnRRLuPZrbO+QWvesDFee+a8fYPqf+2Tofds3ZPtXPWdETHRNb+Fv3vxcFT3QO6LWXZTlL2bUFk+04WlSz33N6CpjSPnV8rNHe74nW4bTvb9e63U913Pt97tw67XMC7VzvKdCWXrdBmp11/tY+1H60f7d7Zr/XAECMa2mMfv+0Z5YGZRTZ1Zy8XlTAIu96RunY6h7QS8HbZ7b7nX1X7SO75jd7DGOzb9p9UKmvRIRpmjGXgsSMDAK5AewHgCIYDsy1LqH38Ej4xMN7eOc3fg3PvvDP8fFQcBiB95++jd3gEbM4yK4q6nlikGN4yQ5AIF3zaMiTXZN2TZUiuYCJJOAVSJ5lYSAfLvCN44Qvvf8EE11gwg4nEPwoAcBcVYiF3lfHUXoML3uz+9LLgpLdtdvtTmziJW3X/8FPtRyFFi3mGqHLWwUvYJvjVNBRYBxtaAH2EOt/l4qkVKvCHyCqXipmkbggE3BiB5cKfGZQAjIRjnlBujjgSMDjPOGVP/1v4uLjnwINe5RhDxcH3MxJ5FKdQ/QOzBlz2lLqbDTRIhTnxCb0cLFyys6FSme6BpHkb5QqPBGjHIrTNCH4sfVvb4zYw1z70x5e9qBr6AO2susqDKAHrBocNmrYGwd9FKzfPO0zWOqgdRjUgNBosTV4bLV7y7tuFMC8ADkhRCeS9uQx+YgURjyZHF779A+BLx7gUXwFqUYs4YaqEgkspyt4chgCsJSMXFbHw0aNLQ3HYc0TsONr+4mI4DxW+qfT7/PGOEmpgPy6ZnSdKL3L9uEyzRsEqDkOJgE55wxW1TgzLqHWWUp5pQ7ldHvMesNQ0K7b1DQ1NDXXqF+n1kjqx1rFJ6xTo/1m14jtJ6U/9Q49EQm9Eav8slVlk2cqAKm8tc13DGb+ViMtbOddT6s7R63tncBVCOHFCLyOs/bNOTqUpf7lnDHs9ps6SpsCpW0PkKR7Isac1n1IC9Dq3Elc4DoBEP133bc0ZzKVrbiMfYdNvo932MVV5dOZ6LnSSJciUtI2WGLRV7uXWsSyzxPd7/cSKCp5sxeps+VcaA5ydB7LfKpCBuaMqvfW33nv4SuCBLc66Np3sta8zKVKwdPxsSwEu+f5ONxyuOxnrLNh99seISQiTMcbKdBNBLDOw62kvyhwrsE7KyZj152IUoijHExAwD6rjrmWBFFWwDkj2Z5jNpDRB4NilFIj4mhoGQO3WVtLFiEHKzhjx7lRM4lAuyh9UQiAh/MRp7Rg3A8Yosfp8WO8cf8SV88f4/XlBvzW7+KzP/Of4GMfvIXDjuBiwgGEfXF4sAwoIcCNHgRZQ2NEy4nyqIErx4JEKfrqzPpjyY3T95qJ8MA5OGI8Y0a5uMQ/fXrCL3zjOVJ4gBkPMRVGvgAGDoImw2Egj0IFTKJonF1paHvf7x+m9Q7rd/Ld76YxM/7if/6z/8Lvc9e+s/byu+R3rbU+T6AXTHhR1IKZV+nzb/Fjr7H94VrsTit/awXyVd1pGCMcEfJ0QswLhpTw3pe+hOM3v4lLYvi0oCwzCnGt2aD3W+l8PWLTv4M9ELf0jG2Usne4bL/ZQ0k3Q5swbx2bHinp0R/riFiKho2w91Hant7U5y70idN9RMoameciqPosPXoBYIM29Aas/jszI4NrcrKIhSx+wIQIf/kAfPEAS9gjO3HY55xQOMGRUC+0XxJvUbE+6tyKu54R3rDj2idVW4fZRpytAWb7T6/xon5Ug1SdtiZXjhejk3aN9dF1G6HviwXbedM7CvqOVr2rR7cs4tGjLwA2ha312tY5sPOuL0K8mXduK8QRnccYIjzEgI99Md2KrlgHuEfdbFT9XLJ8j+bo3y1S96Lggv2dIi0pJSlYy3yrz6zBbvPy7PzpE//tPew7WYlta8D3+4Vdy33B8XPI2GZOnmkWqbCo1xpM2vbfuWdq0ug1x6rtixBBgZWWXDb7lL2Gq0ICbU1iu4f3qK4dc7uuLEJj3+Ncv9g+7tegfQ+bP9jvgZoz2qOq/RlikS1Lj7N72bnAh13TxGhCC3bPsntwjzpZcRC7F9i/6/ywa+1FgYZ+P1DFSu3r6AnRU6VdBskBZtco8ss84+bqOe4f9nj+5H1cRIZ76xv43N/623DvvIshOpBnBDB2LIhRiiIpTizOU3CarlDH0RVwLcTrUJpNofWkVOKcyIMkOobECewDOOwxuwtc0yW++P4VPmCPJQ4oTAgUan2oVZSm0LeXL/+9tjss4q7d5Uh9hJoe/lpZwRqL9jOE7mBGdZb0M/X/0a/KdyWX5uAwoLTl1hy0gKl436z8ac9gONwcj4gxYLcfMS0zSirw7z3CB4+vcC8lXPzYj+F5YSTnkcmBSgFxgGdJSGVaVZ30PewB0RdNTCm1ehgaNdUDUVEKe/CrcaV0mxACSqZbBV7t/RviM0YRk2AGuCaBg2sxRKnhglI2zwmseSk9uuacwziOLTFfD0M7llaV0H5P39M6IPa7vUOnaIBNvHbONUUpm0/QItaDcPxnAmYmXC0ADnvc/6E/jndnh5wICAVhjPCpqm3lLMZCiCjIKJxAjkRcpFMo6x3SUtYxsE6Xvo9+1451WrZ5gCv/X+5vo/HTJPWjdPy1D0dFFVIGdQ73Uosr78YRy5Q2Y2ERFnKrKIUirFwYqaJTQ/Aoec2Rkjo420Ndo+RWyt5G1PW5elRW38PSpiyqY+lF9vspJYxVLMDm8em8CyFgTtM2N9FpYdkCZgeuNb9Aa+BB7yVrQMZzyXNDYpSaRrRKdVuZd/t/K5qgf5cth0HOrYVe6+/kD1rgdt0L1EnoaY/6Y4MntuDxSi9NVZp7zVvrgxRyLw8/SP/Oy2ndi9VQDR7LMoELwYXb+YtWYEOfc0rLZn/yZJyLqgQ3jmMrSaD9ZwVOehVUfV671zCLUIWgG9hQ0k7HE0KtfVfKKrkdQoADIbE6n9WpJ6zFd2ueJRGBrLiOocCmJYOR4Tkh5bUAdmwovgkeYkVULI3WBsHmeW4OovZHv7dr34cQwGl1fu1+05+7Oh+XZWmqlD29canoLRlqpK/FZBuayLiFztq50iTXaS0/YoNEiuTr8wPCVJF3qmUQyjY4EaNDyrnVrwu13mRe5DzYjxG55sKlmvvp4JA5oWTCODo4nnG5i+Bnj/EjFwM++PLn8Qs//X/Gw3nCa4MDL9c47EbsOWBHAzgEzD5glwkEkY93nuAor4gTAOdEhCIgAxD7Qs0Z5gLQirI6FNzbBVwhYvYH/PPnC77yjXfxzfwAKQScjgWXo7AHAhhS+c4BjlFc3V/U+GH3nal2nZkTvaP7B0G9u6P3vZztzpH6CDU1jEraoiAA1uRj5lsbBHGVsda/6z/kIpsZEbzzUkeKtxKbCrcDBUw1Xwo178cxMhwKAYfDfZxOJ3zw5ClCCHg47HC5MJLL+NIv/RJe9w73fvAHgMMlMghIlc7FjEzCC7MHmjVsesTF0pdUUU+bGA7baP6yLBjGWCOKMI7JqhJ1biMUuso2l8by3C1tqIARyG2inNYw6xEBImpGns2nsn9Wp89KN+v1bf6FdU7ORdYt7cuibUBX0LkOODNwMy8owx7Fe7zx/T8MvngF35gZ6fAKTqcb7PMR4AxHkhxcksT+/BDhncc8JzAX7IfVQDynROecQ15W6pFGay3S18bDrwZvSnlzPX2nYRiQyrKZO3ptmx9EDOS0zQGyfagJzqmp063FTcVgU4qhEX+g9d209e++5BlEa4HaLX3KGRRgFeWwCNo5EQ1LMdLvWtqvKiBah8IiPzp/rGqaOuKaP+MqJUzGK6H4igqY6PswWPGTiiyEAakARNWJLAXkHE5zld9XyletO2YdZwAbpUFx384Xpt46lkszONXJVDEHu35b8U3eJvnb668IJsP5dc3remx7USmtGJFFnBQRaSIInlCMEp9F/vo5GEJoRZ+dc+C8OtCuooYpJeSyOpt9Tpe+tzrP6jQpAmQDP4JUpHau2CLGFgWa5gmDD2CyeYlk5lilUEIccKX9NWfZICvee4AIodKiLeOgR/eEDRE368EWte3pgBbh1nG1832eZ4w7+f7pKA7fbnfY7AfyQ1iy/J98lOLULEXsnfNgrEiqLajunKv74xqU2w0jJt4WTe+RSUtTto67Ng2IybvnWmdJAqj2rFrR5rChl5c0tzynZVlwPB5lboLheIFnob0pIrQ8v8G9HeH60dv4oYcP8bd++j/C7nO/gh95sMPz0w18SPjBe68jTzcowWEZR8B7BDh4FBBLEW/nWQKQlb7XqMClQHrRiQCEDQxDUTIHzwU0J3xjYHzl2TP84jeOSOE+Fn+JEcB+55CHhJxOuOBQRbYEXc1O7BTHDmBRAGw0nO+yfSuk/K59b7Q7at9L2s6tccv9b4fGmRpQfWPmW58pBCTeFq10zm0EIYgI7OhW0ToAcCyKQdqmaYKLAffv38cwDDidTmKMLhMuPfDoS1/C069+FQfOGJFq5IlaBfpSc7M8ifypJ5E/JbNJWefAVr3Xw1ONvlQPCjWOrNG5KiUJwqaR4F7eVw8kLYIpETFRs9NxkPyZItQWSC6Vjyttoz/ErdHSi2R47+E8tVyu3mje0A2dKCmeyzGx0Xb9nd7folw26qz9HJzQNEspOKaCyY+YwgGncMD7Nwt2F5coJcEHUa1LKQGqpEYFhRNKqc5jLoL0VGNSkSA7v9uPQQH0fXvUiojgXdy85zn6pdYRsmIJivRYmlEqq9z+ufvHamSX5Xa9rdW5c6hVUBoNpiEQVb3LXnOdw1oDaaVU9knjdp70FFAArU+naUJeUvu7/axet71nzTcQQCcDpSoVFqnjozkJarBvRBdKEVVP51AqL7fkLcrY01gLtuqDNjG/T6jvaXM6nr0oQE/p2m50ruW6NIqpoQbavKBzNOhzfw9hQDnz77cEa7TPSKT5uazOFsEjhhFcCGkpbWwsEmj7sL1fWZGN7b/VeeKBYQiI0UvEv9qGnlylT5X2O0sx7dHvc/Rni9gxs1CzCHAt50kQ+RACfAybAJI+NzODgm8Gs3Uw7FhS2R52Oq/t3CCSPCb7Pd3TdI43RN2RON2cb/Xtrf24jpeOlV5H11NTCDTnTilFGAj193o9+1wtKOAI5CUgVyqLwdKbbV28XpjiHIXYiozI/0nOcbI5wrcFLvq9Rh0x773kskKQXmaujqIEGog87t+7h+n6Cp954zW8+cv/FOWrv4MfvHcAn67w8dcvce/+HsfnVwi8pgI4SJS+oU/O5Dy1nZPhKjqfa1qWL+LseHhBoxzBO2AA4CmgXLyObz6f8TuPnmEKI45EmHOuqQUMpBmXu91mP1mFJf7Fmbt39L7v7XYnNvGStpt//ydvJdT2yAy/yIGqBTPVyHUxIJXbxdx6Y7Vv57j78h0nG21NNF9QkKRyEBIXFLDQCxxEnncpeHK9YDrs8ep/99/A+MlP4uryIVy8B18Cpvkazsk7jnFAcKhR04jMjFQyyIcNAmT7Qp2S5qjQbUOpRQQrLUM+uxb7W+kjetDaQ3x1RiydzCqmLTmBTbFNTw5Fn9dUmkeVYl2vBfig9LRVESwt0s8rXS8j14KVOjZCuRra3/s8ATuOZQHgpTCoSsE758ToyWIUpDRj9gmzG/GYHiB+/x8DLh/ixh2Qa4Q5+Bphrw5GMyywGhqbPA+mFk1Xg6QZdVVJyoWVbuXj2BzsTcAADgEs9ChDf9Kkb6uGRj5gTlsnVOeJGiJpnkEs9ZTUWFL6J7Aq+FkqoBXosHLWYsjN4mR2RS6tg6EGfC4zYqxy08cZh8Nlc4JiHGue0jrn7LzX8WwoTTa1xepHltwLmeSqWrU619rfWl9JxRAIUXKLnKmVBd724RCBXDbBit4JaOMDvuUwWaSojY+Rx14puqtTWEpBJGBZJgzDgJuTIFi7w0Vb3yGEOk8yUNLmeSxSM46jFBXPru2hlu7Vr6GSlluO7rm9kcq2yLAix7dQdS8I59a5kXnHlZbqKKAUdc7VoZI9LETN1wM4bZ3vPq+noY4Um+iQVUa11MllWRC9Q6rqpIrqEUv/DpWSyAShNZ9BXu25Iet5uLVXap/ZtcJ5WzBY10pfIFfH0dLt7J4se0yppRKr0+2C1Easz6T1liJJ7o5lD/T7lwqJ9A7vxhEkQkqzFOSu/Q5IvaYw6HquziQyUOeEOp89Y6D9PWzr/vVsAyus0TtYPUVV+kACfpyXdqY5v3Uq5zkhc8C9+w/xwfvP4IixCxN+aLfg+W//Fn75z/05/Nh8RAknBJfhiDAAuKgy78FTdeodgtNCvKLUR0SINTVAqXcA4KPD5BgxA/sUQeSRHXAk2Qcvo4c7zcgXr+PvPN/j177+DaRhxLM44DoXxN0eA4DIhD0zmBymON6yYfrWBxRedIaeM5E/LPp07nPnrncuOPSi8/xn/vrf/VD3vmt/cO0OkfoItHPR02/3edvOUWH66/YHxLnorEVZPKEToOCW3Elc4MBY5hlcOfTDfgRxxte/8Fs4PXqMfWb4kuBIJNFyrVuRuaoPuYDNU5d8K5LZ59v07283Jy3YaKPSPQ3kXN5RnxDcU8FsZLHdu3QS3GFFB6yRxbxNoi9ldfgsYlWKpXlJlLCnyvVoVB91996DitTqCOSAnGo0UD675IxUgBT2yG6E319gd3kf5AZxjm00v6NC6b0sxcYaPDavp0cQbaRVHRebVH1OTKNvti5LOxQ5gzjDE2MIUmsl+prUjIIQHIYhICWZo+JUc/uReZug6BFQqiErnwUKvK+UV84b47pHefvxIHKb/tR5Yx1s69xZdMXSnywt017H0sbsOFlHxeaL3KqnZfJP7N5g55q9fv8Z+y6KTHLKoFLFPXJBdL7Ow9IQiV557tzY98jVi9b/uWi+Ihd9PTOdOxb9smuqn4u9IIw1qPv6X/b+PSrWzxXbv/qjqIg+mx3/lLZqpX1+nUUV9R52zeq1rBKdNdq/1ZnT5/nYumx2z7E0QbvOtf96StsGSTAOg13nFlXs53obO9zOYdEcJ4vO9Ain7fs+iGnFXNQhVUET+842AKTPaHPX7PzaIty3g5eWstjTc7XftW+sXH1/JhEzXOG6LwKcK0JdHKg4IAu1xQ0RAQW4ucbHHh7w4H7Ag4Fx+uIX8Y//H38T9OwJjjRJANC5te6gzq9aZ853+7o+R//+gCBNvgYul8jIIaP4LEW/QUh+xLMw4mnc4avvPMZNcSh+ROIA70YUBBQEZApIzqO43z+z9g8bZ+hppnft5Wx3OVIvaXuRQ3Puc7eaRuY0KlWVuL7Vd/uDvf//9nk0sp6kcB4IIAg9gKiynQvGMQr1aBxQ5gUDe1xe3eBrP/8L+NS/OuHhH/3jWPyCY4hgcnAUcEwJWBKC8zVZdBXFEIdru7HYpGr9f+HbKl+6gc8m2prz0ugrLSrXVKNWWuA8L+0As4esfQbvPUKUBOxNToQxdj0Iucplqwx7fw1Jlj5hHA5wThAkjSpbw2RZtnLJdhxtDsz67gwuCSF4kJfU51QmAA5LFqW+stvj3SxO1IPP/BieZIfTkkC7vUShlxkOkv/CxcE7oa5xKXA+oHCpxWsZjtb6L5ZCt03SFgPAYaU3cqnGSH2f1Xmu6Ca2RrSKdliBhWG331Dprq+vm6qcRR6UPquf1Vwi/Zw6ftqsQXM6nTaUQXFEls28AHC2nljLaSq0KYwsuVKMUvItFMc5KT7aG4SDjepjVa3biohkDNVRKqWg1FwP5xymRemxHqiGe4yxySPrmPTPwuV8XSbr9OmzaG6OdRosxQ9YUWUdR6V22Vo7aZnbuFt00Ob4gNHWeJtnEHpVTgkX9x5gyQVgBz8EOPNM6rjYfU/Hvd9nrQT26vx5kJP7lNo/FLwU7+UiOX4Q1Fv7YxURUANzq/wWgg2+OFxcXMgzUhUlcBFcCnJKVRyIWj23XMdZnrc0yFLnjnWeWx5ZTnAq1IAqLKTJ/0Zt1SKGAJqgiF1jinIREXa73YbGpuPVZP+921yzIf2dYIpS0vSzvdw5ESH4sAaV4IAsAjC61pX9oLlG5CSPSPrbIy1LK1yv+XaqAqlrPYSA0+nUBI+YuQqvAKmIGNO2XpsIkASKWOoaseI/vbMlKOLKlJimqaFd2ic26NA7qNbhIiJEFvEPOFHsY3ZYTgsQGN5FOPJw5DAcRhBf4yIC09Ov4eHBg778Bfzaf/qf4o0PnuDgT4hDxOA8BicI18CMAUDwQi+N6kCSA0oS8QfnIcGojFjz6Zx53gEDki84xYTIGb447IdLzMXhfX8fv7Z8gC/91tfxFr+KZTdimgF3ONTrCt2dCVhYalWdC6b27dzZee7P30kQ+/ez9TbYXXt5250j9ZK2Pm/gRYv53O9LzX3yNeG7sBWlXVvvJPW/76OlmygvS70MZsmFIBYhiizyDHKSzDM8GEtJGAePkQmH04TX4g7vfvZXEILD5ac+gXjvVUwIQDU6EjFccEDKYCIEkoRUxjb6e47uREQoeVujxkbZbdRYv6fGbggBqPkEMY5IKTU1q54GY43GEAICRMlPjTcbldxEWrMqE92WslcxCX3mxVBAAOGZ2yT8nDOKoZ3YqLt9z5RSjRACp+mmoSoJUvPlg3kRg2McQR//UQyX9/GMDpjdgLDfIXGRQszFN8PTOkV6f1vMU98t1jwKzS3LhnZEZk6psRpj2BwcjZqE28UmLYJjaydZoQlrbMymVo2o7IVNQVRVktP72n7Wcbbqhvp7GwnWJH7N87D3bzSzxFiWDECKR6+1stY6MZeXly3KrBQg278t8r8YdKPOm+DiVvbZu02OmlWps3NVcjq2+0pKaVNXS+emzkvb/zpf9R4bamaH8Krwh0b4bU0rYEULrNLgLkgf2ecofNu5BhzURrLOyjiOmxpa0zQ1J+90OrU/980KIOg1LTK1BgqwCRr0gY6VLrY6HHrNVeAjGgTXG/Rp7pDNAEd+o/hpxTJ0fuo7qdKrHXe7V1iqqpUIb0Ejc8ywivmYoIheyyJFOWeQu43wWSVF+1mLtukc6REnfU/rAFpKowQHNAjh4fU5qmgM+bW+nioD9mdbjzSeQ7+03xWR4lpIbzZ5u8wsAQlym73Yyvv3SJN9Bj217VzTc6o5jV3R342gziZw5FDygnnJICdCDJkZpYiaHtd7XT16iv2O8e7j9/ETA+O9//af4HN//a/iU7Tg5vl7ePjgHu7BI+WCwQd4EAYiRJK6kCqHD1fPOUgM15OIkDjZjiTfuAY8CR7kPDwEMXPEYM/4oBRMtMOvPjnhH711jXn3ADdxBwePgQIAh7QkDCHWMxXgQCA+z8Dp27ej8X0rJ+wPor1Mz3LXvnW7o/b9S9h6NObDNIs49T/WGbA/wW1zUJwREHAslcsP4w5EjP0QEQCEtGCfMw654N3f+Qqu33sHQ8lwKYGyZFo54Q1IDYpmMG9zHvp37f+tpy2eoztaxAhYDRGbV6GHeR95t/1hr9kbEs3RMoahpXvZ71q1NEsjss/Yy+72lB7rgG1phCtCsiwLllyQibDAYfERJY7A/hLxlY9hcjtM7OGGHa5PR5F3h4yrXGtLvdHn6EU2rBR7T8l6sVjESlf5MHQGze/Ra9u+tmNvHR+9Ry/cYFFES8PSdi6JW8dLHQH9nL6jpXJpzR7b7BhbCqR9pn7O9PPi3PxflmXz/SWnzf1sH/QBBztO/fV7ZEn/bo1Z/TfrBFmDv6dn2fv2zrL9sTRGO79u7WV+nX96TZXOt8a5IjN2nPu9zv7O/t7e345xn3dh94P+3+06sTQ3/a7ObX1fdVx1PihK0e/1NsjT71d2D+ufo0eLvuW66+aFpfTaPc3SfEMIzbHrayX1eXa9SIv+Xq9nFVH7520iH93Z1dNa+3WszmS/j2ugQ9FH65hrcKZXfDxHSdU1btGkXgCln1NW9lyfT/vDvmdPp+7rVDFJmY7MRfIWiVAcCUKlVGZOIBYFvdcuDnj8xd/CV//xP8b3jRGHweFTn/44xuAR51JFIcQhckSt/hNVyr84UIwQ7N6/Rek2yoyi/YRQnCjrUUQ5XIIfvorffu8Zkr+H4vaYi6DA5ACkBff2O3gu8Mg1pSDVdIPbgeFb+0R3Jr2s7Q6RevnbHSL1kjYbteqjurad43TbzbhUWl8fXdNmDVv7O2sI6Hf6ZOvMDOYEgKqSGyNkh1wVo6jS3AZHyPOEoRAO+wF5mfBKiDi+90188/oxPrO/h9df/wSIPN6ZJ5D3UhHdOYABLowQBpxSajLpzLyRfbYGaF+PyHvfJF71YJRDUOgWSh+y728js4os9Px3HaeV7lSds9pvPgSQkxoe67OsdJbdbifXywwuQvlx5MFFZJ7JCY0yl1S9GELwFZ1YMrwPKNgerBpdVoeqPW/l84cYkbPDggIOB5wKMIeIy9c+hnR4Dcv4QA7alKVmFiDysVmI9akq8RUEhFqHSQww14w9VU/kmitXSmlOmK/jMc8zgvPVAbn9DtbglDmshuuW8tarLsqfq7FMhJzXgpVjDFVxK2MIHjkvq0hBNVBXEQAghNgivII2zHX+28NXc73W+WKphvqsVjZb5IhXR2XNFRM1vWmaweSa4akGszqK3ns8ffoU3nvc2x3aPRILtVHRFR0bmaMew26PnDNubm5wOBzgCzcRF+dEwnug29Q5b5zEEAKWnAGsRqF1VHqUu6SMMHj4IP/mQJiro1+qhL3DVmXROqubfcog5UsVgGhrSA1SOIzDIJTiKrox7keMe2DJpSXwl1Jw7969htxdXl62++veq+MVY7iFZtp9AqiUYnATYlBEgbkAXPeYSh+TObXdYxUlO52mZrDHSHV+lc2elLOOxQAX1vyhOWkgQOZ+GEZMi5n/FXG1NGFbGFvGL2+FiZxDqRTNXArIEYL3yLyKgFjH2DpCIhKzBjg2SHV1Ctu8qWOVc8Y0TW2e2+CCXVO6XyvtzrIOVOBCTiBqFMNWTsI7oGQkyFjJKmbUjEfEUb7vgse0zOAqFmQLSis1b7/ft/mUqrgGnEfm9Uwtpe4hbhWvsTXX9EzV99F9zIctO8E68tbBtgEMReTtv4cQcMqTOFOjE5mHUuB2A0LwmI83eHCxQ1pmjDHh0yBMX3sTv/RX/xo+Tgm7fASGhKUw9hQx+gAfC8gxPIDoCB5AILEDhBTKtY4gRL4cKs+eRf7fyOUXSDF3XxgHOuC6EPK9e/iV96/xxUdv45v8EEyXSBNjd5nB+YjAHjEQaLnGjqitPWZGIaHB9rZM33p7qv/c74eD9WGdoHP3+qg4enftzpF6aZvdACziYBt3nwfqwuXudy+4hzV6bK5O7zBZA7dFziuHHORFiU12MRBxLbTnUVg447sistgMYOYF7EVq+xMh4Hic8IX/3/8XP/Fv/g8wPnwVb7zxMZycl+K9ADIgBn0tBpmMQWkpKrYfrAFr6SAakVZjxr53H4FUY7hHhCx6oNdQLj9xwVyfqVd1ky+TMcaleKRQolZqoRra1mFoqJPbijoMww5EaXM42xwPS9FMhavj65DASH7E0xmY/Q77T/8w5vECx3DAggIih8QZow+4OIzIy1pUkyjUaPjqhFgj7+bmpj0LESFVI6KYmk06z6ge6OS3NdCEjtrljqWC1NXR0nG1cx3ARop5ayRunWu7tux7nBOI0L+fQ4fmecY0Tc2o6p1ta4Dbf1M6HPOavB4HjwiPeVmRPCuRr07Vw4cPZa7AIBM1r09V9vQ7OSfsxhHPnz8X5+vevTZOFgmLMaIkcY7mvAp4FKWHGsqQbirnAjB2TZ1DjSylbHX0V4dADf6e3gxeaXXeu9v7YZ0/V1dX2O/3rejwPM9t/O1+ZpvNedN1aFUF1dnWZ7HJ/m3/cOsY6V7S00H1/b3f1utalk7tshT4QE0+XZDFWNHg9bmPx+PG6dC1YZFZdcivrq5ARK049Ro8KI1Cuixp69BWQQt1eNT475HupqxoqLD6Hnat6BjofFcnHGUVYjgn3HLLQTdCNhadAQAfh03OpKXPST6WXHtOMu96Y1uvezqdsNvtpPCwWbv6vvaskX3MtXOpnaWp5tdyBoHgiWvm75bNodfWHEUJWKw0V2VHqPiM3UP0mW0AwL6vzL8FFIQSmpKcMQ4ZZZ5xf+9x8/7b2I0RP7xn/Jf/6/8QF+8/wZ+6GPGN330T7o0RB3jEQojOYR48gid4JKHqBYfoahkNAkAs+XWOmkhU9Ip6o9WnKqYobhwIKCNO/hLv8Iivv3uDX3r7Gk8xIPkRA0kQduJrBEAK+2rf1fwo2SOoliK5a3ftD67dOVLfI+2cUXiOcvWi7/ZO15qEUGlCqCc81Q0VDsWJUxVAKPDIlBEOO5zmBXAO6eYGMRN+6NWP4au/+nn8yE/9SeT9Dgt58OESrDWcIHVRpBjwbRnlXlkvdVK7wCprbBGsENQgNgpSUOcR7X2dW1GkXrnP0oeC96AidbesEcks0TLkjNIUuESlz1JQxMCoxr5T2fWtg6fGkXN6YK9o1/q8rj1vQ22AGill5AIk5zCzR7i4Dzo8wOPTAr8fkcsC76Ic+KlG4WtUPaM6y7zmOdn3X5YFu1rDY5omKVC5W4U8RNbZKHTxGo1vEWes/25pN5ZSZVHVns4pqBfXvECuSchCQ81ZZLHJOQQXROLbA7ksEl11HgBLMrpAhCCn6KCc+YyMXAyNizzi4LW2a3teS7OxTroY2hkqbW/nbi6rQxzjVvwAQEMap2la+41vK/YRYeP4q4Og9+8pYNrXzrmNUEtzRrucA+dEba9HuHtaGyD0H63JJc9U2u8cJAG+lIJQa4TZ9WoNV+ccHNY6YY62hiKR5GylAlxcXGCe5xaoUAfArglLKVRnx+ahWMpiLxjS0/PaOxvHVx0k65i3PamswRC7L/f0tDbX3bYmnIzhKtRxjtpn10RPUdSxsmeAOntrXUJGAK1RflScoQvo9Y6OtrXwdbmluqdBJutcWspXjz7Ze9m9F1iFRex75JxR4CD1q1Yan3Mixa3XEbl83uxBdk00qi9v76/PaJ1XQcA9Ctyt89KbopAyL9Yiwv1atBTvPhDTn9/2Oe2z2KCQzlcJXDGWlAEGPDx4ThgHB5xOuDd4jIHw7Nd/FQ+eP8FhucI7X38fn/rEQyS+wchAYKHc5+AQSPKibdBWc16L+bNzDqGqnNaJV9fJmtvlq2Jq9g7Pw4ivPDnhK4+ucIqX8HGH61NBHAiJMzwDTvtBzwASiqL2crnLWLlrf8DtzpF6Sdu56O4tZ4e2DlLbwLmHtF+ctNjnXVgExd7bqgo55wBXqRqQnBlzVFRKmmxwxEDIADghEePxco3kAbDDpXMY2OPJe+/hwcUlfvMf/jz+yL/97+DVT38a73BBYm5JsagOgFIfbPTNHiLWcLX9ZQ0urZ1zrg4OkTpd9iDnDeWiF5HQfgmOWp2qOSdT4LDAkdsY1mu+iMhhy73FwVr7W/NaCM5FzNOCZVmj2NNUZWhNdNzmJek7zWlBLSmJwgULgOwj3vj0j4AuXsXv8ohy+RA3xeGCrpGWSeqNLGJEhxBRIAd2ZpG2dU76aFm2BWDneWlqZuM4IpVl61RCxTwiUCoyYIQBFJHKxvDMOQvy6dwGibIUIjvW1vnQyLxG7tWIW5YFS8nY7/cbx2SDunTr8dyaSCk1FbGStwhiv54U1bFzyY7TitIUOD+AeVv76unTpxjHsdGZQgg4XV1jv9+LQYVViOJ0OoErJYucw3ESGlLOGU+eXTVa27QI0gFksXFiQE55Y8ySo3bPlBJcDHC0VSfs11wz6l5QXFn7YxiGW0IHLVEfOGO41kCDIorm/vIdwmlOGIbdBm1hFhU72TRFxW4IgiSrg3o6nbDf79s46TOmigTYfbh3Np1zmFMV23BCs8zJzFUnxYwF3chtbdtx994j19pR8zxjHFelSRWeUAfEe1VyvMSSMzIzXJCaaOO+1spjBrmAJSXk4xEXFxeN2qnr1aLZOWeEITSkPXgJ1uRKwbT5WPa80LVjqZ2KzOj603taoYm+Pprdt87lftn1YsWD7HoVtbsgASPjYOj3Uq7nBhjFE9itlO6i51mjrMo+EdyKCOu8ULp3Q15jAJHHnBJ8J5ChyHu7T11H+rw6R7TPWk7lEG7lWGqf2H2s78uerTHPM0ZHUqutFtpFynAouHQBeT7h0hf89m98Ae//zE/jk27G1ekxHr66R7l6hNeHARhClSb3Uri9rm0HoXoSGEwF7KroA8Q5ck7Mj6aQamqYNYuBAZcLjhH4Z8+e4h+89RzL8ADFP0BKBeOFwxwyOC+4YA+QQ3FecrwAkKr6shPnjhie13y/P8x2LkB9l/P0L1+7c90/Qq2PTDmN3qNWDO/pEI5akU5r4J2D/s9FFu2frXOl1wPqJqgsP0iCKSl8z6UWAa1OA8lnd3GAr8VQiQiXhz1iSXhlF/G1X/08Hn35y9iVhIACx5JnoAaUr6gUiuTfRO8RLBWEvvVGZfOk1MCyyeR9jRehJBaE6Dc0ne1nVidunudGJ9lEJuth4v1KzbD9LD+iprf2tX5uRS8s0gHUxPoqaa7PoI7BRmyiinXMLmD2O8zxAry/jxs4uGEEeYdhDKK4JFAZFA0T5EUkivdjxDjGZmT3IgJKqZrnGcfj8RaVboN0QB2OgFJlg3Vu2Zo2th/793/ROtFmk9OtkIfSN23toBfNGyaAC4ELAexMJDWCCyEnRk63BRisJL+OXUrl1v0sjSz4Ad6rNHtp9c+895LXZFTucs5wNe9rSsumRo4Nrihd7ng84nQ63ZIdX/sqbRxxSxPaIER5ra3V07s2iG0RKWIbfXfOibOGqmDGpd1bn9s6UhsUpVtvOt+1n4VemzHGiJISpuMReVngSVQ/PRGCc23/GMdxI/hwDlmziKj+ThEuiyYWiKEbncfgg9TIwlpbhwojz8smp1KdDEvP2gZa6t/LSp3VtbEq8y0oaUZJMzwxgtv2kc7vYRhwOp2qgza2e/c5SF401OBxW9renh+25pg6Aeco1hZF0eewqJ3tc/tjBSE2a7ELKlrhlEapi+v+ZOeRRcF0XThGdUqlOC/ydn7r/qbUwXmeb5VJSCU3h6YXm5B9zrW9nFlyq87l2bX10VEb+zNJ547OeXa0QTczWGr/EQBViGTJWvY+wmNALiLmdH19jdcPezz69V/HN37pl/CpGDGWBd/38VcRB4f79y+leC6RqOohI4JFXMI5+CB5UK3A77kNtDA8OwR4OBeQtWwVMgrPSFww717BvH8FX373CW5cwLEwjrmAvORQIi242O1B8Ci0nWfSMXem7F37w2vEd+7xS9mO/6ufan/+lo4BS2E8lT7WKuy25gewRoRss9HyZjzUz9nfn42qkLt1rVufyVLQNHMBUy2FyuIgzKk0GtdEgC8SRbuaM+aLA175N/5VjH/sj+MqM+APOF1JDgOxYiuiFDRNE/xuj1NeAO/gYgSW1CLmSuGwNUyaM7XYorersaeGKgBwK7yqRmeNxBZFk2wUfiul21eeL6WgmOKtLfJrErFbv2duiMKLaGJzWpBQv58XoBSEep9lTghBxDhSWYA04+hHPMIFLr/v+3G6/0ncuB04OLgoctGn6w+wj4fN+Cu9TPuk5Ziw3xSLtcUpVwNKaHHOSY2wUgqGYbeh4+QsnrhGUXsa48bxz6WNoRr8McYWHRZjrRq/fp2XL8zjKbQxfqxB2wyi4JFrcU/HZp4XbsUolWqilFItYExELV/JIkaOt8nmamBpRD9nKUZJ1VhhqlH1sEVFMhOoUju1P/XfFGnQ3ykKpmva9rF1KEu6bRDq82nOUUoJucxAnXuSao6a2yfIqhjECQ7VcKXVQRODrhZgzlIwOU837V0BtPyQNl7kwcsM72lFxc2YWuEL5PU9reHZq3OmbyGTrDk8RITTPDWZelVrsw6IzrPgRKzB3lv3jiVNdY4wfNwjuBU53e12yIvkZKKKnbAjFF5RF0s5s/t1QAaXjFzWuZKKUY90lULFeeOA9Ai+oMRe1litdRf8ILmivDrU+hxL0SLWtxFYOy4W2VdE2aJS62e1xMQ6b3NeMO5ipbOe4JwHJTnrnHNCQzT5gBo0DL6KEJm6bsGt4+RqYC+DN5RvfWZ7TjAzIo0th46CrkVf+2BFmwe/Oro2CGSdPc0/dNypgKZ6TsDkBQa/inaUNY/SBi4yF5QAcEWYQgg45qVSG52IMiRGjsDxNOPecAktORbcDQ68YPflX8OX/spfxivThN38PmKQ3KcYgADG6B1i3esGiiBiUBQH1IPguCB63wq1y7yr1HQqGLLHsNQx2kdcYULmhP0QgLSghHv4B9ev4s2338N77PBB3OHIBD+MIHbYM7Arkjow71YEcTvPvnU7RwX//Wp9cPlfdPuZv/53/0Duc9c+fLuj9r2krc97sW1DqXEiHnBug6Df457xInrcd9qaYQdqNaCIGQzNR6j1N9KCjAzyHvvLHTgn/ObP/wL+2HDAwzc+gSdlxri/RHEOuTBykTwdxwTEoSWaeufhQShdPpEqrykdTiP0Fp2yB9+GxuMshWmVz1Xxi1Ks0blG5S1SY42NYOokae6Kjdw2Y8+FTWRWx91+TqhTBJQEzhneAcEVFAaul2ND5xI88u4enpeA+5/8AbjL10DDAWDJn5nzDE4FwQ9n80JsAUylGTWhiO55NPK8UhPru1cHX1ET/Y5zAT66jZFrDWW9Xu8Q6TVshFkNZGc4+eooa26RRR+8cSJs3+vYNIckRvSNmZFLbmpm1niCWx0FgnFEqxpYWdZ8O2Cl4lhnWeZidbJoFUjY5JuQh6ctzVH7TGWm+/dTNECdXr1/c6w6BNDO3+1cBFRtUWmr6/gZoYmqxrbkdW6kJa3XcwGZzF5TnSJ12loQAg5cpKindaL6fQtApaOuBX8VibDiBvrv+p6WWqh/t1RmK+Cg/WBFKXTvOCehb9GaYYjIvKUmC5KmtOyatxQ8Ul4RsR6F07mNoryp6lDX9apzREVzPG0d9d4RbTRObPON7LrSeb86Xqt4jzpH+hm7jvSefVmH0+nU+rHP49L9Y90vqjNn6HSFRWGvzROzjuxe5L1vNEt53zrvjRqjDWZt6IaFUKg0JC2bwE6E5JMR1YLD87Kh4mnf2rWua5vK9j6tdIQJ1kyV2aB9NwxD62/dJwVhjChzkpzTodQcVwKKq4wRwnIzYR89TvMz7AkYueDV508wf/Mt/JP/y1/Cj/qEp0/ewr37oyirOtS6UAxv6kM5EiEpOIarVBRXnPxbc2plHjMIgx9wLCfkCwfvHHxKeIUGZLfDTY4oY8QXryb8yu9+A6fEmMYDFiLs9heYCzfhiAXCkHhZWk/1tr+7a9977Q4PfYnbuYPp1mdqVE5/FIVSKpn+/F7bd7M56PN4H9sh0egWVOqzFYxRlMXggaWc4KjgtbDDW//8N/D8a1/DK+OAGCDRN09AcCjOYa65ElpvCszI6TY32qIkPZVG/73n/Nsf+exKYbH1ksgYgZa+pgb7Nk+DbxkpakidM26ALc3IGrTq8JUiAhaFkxQ95CLiCfp9MGYAN3AID15DuPcqjrnADXswSIpFVhrP4KNE/rufXPNLClz987bujxqq9jltBN2+s6JRauyp4pw1QHuHSf9vjRxL2bHj0ZCgLIVvSwYIHsucEcMoCmiJG4rSSxqfW29KX938riJMShG1FEarGGZ/p+NpjVHbVz2tVq9h6VTWUNTWFzO1anDnKIv93Lbf6/P/1PmyOVJK0YoxAuw2imkyP5cWVOjXlnUGbT9YmnGvmNj2k85I7Z+9FUgGgx1J5c/6k8FNSCFDPtPPMTu2tg92u92tvaHP4elpjTZAYtFmddDt3F37bXVU9X3s/LxF3TZrIoTQ0Dzr+IzRb+h+9qd/57YeKhWRmDGEABcDKPhW20+dB/ss/XrXd7DOqT6rvfca6MgrAmsQrrRs1VEbjdjdvldZEqhI8ED7zgYjN2g0y95g9wml7m5+gKZYqOvBey8OLAAqDOQCKttct975tHt6vw5t0PTcPtLXT7MBNiKCKxklZSBDUNHEyJnhySNQgIfDxeGA0+mEi/2AUG6wm56C3/wd/LP/19/AvedPcHr8Dj79yVfrcql0V3JmLUh5BudqAV/aCqCg1n9Uar/8CNIGD/DAKDEhlwmuMFx2yOESV7zHr7/9DKdhB7p3iakwyFf1TBIHjp3UvCrufJ3Lj1p7kY1x1z667Q6ReknbuUNzS4VY6XuJGapZ40moD2SMv/Id7DX9gdXTNdbW12A4ezVAaT9QlZ2qvkdUcx6AIUSUISG5AioZLid8ahjx6K338O67j3E47OA/8Qai32PBIAIUDuDoMJWMUCrCAJLaUH4rBwxsC95qNI/QqWlhpXZsZK6pCgCYQ967rapYX8zXUkQswmfrgVjUxxrKzjmwW/Nn9GC26Et7F8ih5gE4iLBEzgV+jDgysBRg2V1gvngNF9/3Q3g8AX6/x5Qy2HnI40veiDV0+mKmNrJuESWdI5ps3qNHer3SDJu1GKeNBPfURWtM2bwQKzayUfsrqxyyNdQspdMa51bFTr9jjZ9eXr3NaKNSpYgikUOgILmCJCqPvSKbfT+LWgJr4rj2pQhXpFtULOf8xijPFRXr66ap4IkNHlgjTOe3HcMml/0CB6NfHzFGhOgasrUiaGSuvbS+ZFqNWkVyYoxwYWgUrFJKlU12ja7Z+qlS1Gw0/kX7l6WgadPrNFrsPDcD377vPM+tjlOPMtnctya8YRBPVKdBnV9r5G8puq7J+1vHd+Mg13HT/tNxtPNbEESCIw3WyLger5/LflhlwO0za1/0+5KibqWw+bdtDTTbt3YN67Pbpp9T9UQdC0UDzyF3q4rftnAzUPMRmZFRmvKn9x55STX31KN3bINfEXBvnD9feb+K+OgY9YGshg7TqiBqWQTeexRVr8yl5c5Zp6dHp9Zrb/u/CQWZa1vnWcVj9vt925MkqEegnOq+6MDwYC/0WoYD10Df4+fP8bE3Pobpna/hR4eM93/7N/Fzf+HP4Qcf3IN//h7uRYflyREX+0s48nAOCMTwjhArQuVBNR+ZwdW58kRwzAhwlR3hQCylNgjCjhgHD5QJzAU+BjxbgCM7/OaTGV945ym+TvdwdTmCMzBcDHBuQE5ZZOqd2DYcJBD7soBS5/bGu/a92+4QqZe09fSVW+IFSqlSRwGiksdmg9bIq0VAAGwiWtYws1HzPqpoDRNr4FlaV7+59A6K88DgJSFbAsYM7xgoCUP0CK5gcIwDAH99hdcp45MO+Px/9bMo77yFV1FwyAv45gMsx2vs9zvMJYsqnvLRiRCd3+SEqIG/UVnqDH51GGwFe+13Rx4xDJIXJR2NXBKm+YTCIo2dy4qEWRGGDeULaOiTFTmw46OUw5YDYWqIWKNaBCBkHLQuypIXHJcFx8w4UcC7pwVv3SyIb3wG9PqncRUuwLt7uGaH45LgqwxvoCCoIQVkBuA8yEsdk+M0g3xAGMb2b2EYN3Oij6xr0z61Dosa7HbOaaR+WZaNsRdjbDlQVirZqoH1hp78+PbjnLyboKIBMY7t/2r0qlOk49AjAyVl5CVhPk0b1GxaZvgoEspq+Ot3nHOtXo9G5fuipS1PqD6DGudqQNucGP27VU9rFKNqwGkkXh2R4/HYaHw5Z5xOp2aQKVVI+9QaktYpG8dx07dqTBKJ6z4Mu3Z/+a4o0mmuUE+dtflZ0zRt3svuRzoeaoirM6LPq2vU0sYa2uwkN21OC3wMCEOEjwGp7hVhiA2512v2zpfOXVvwVd9xmqZW60fHTOe5Ovht7hinR8fAvq86orpf6X10n7BG+bIsmzEexxFwHkwO05JAPmwCBCgZ0/EGy3Rq97UIl93zU0qINcdHlAnWc0MLn6eSUcBIldIKrPX5NiIjtV/tuFiHzqJf696XGyXXznsijxAGiOCOjG2uBrnOHUACHMF5eFodW11T6kzZHFh9lmHYVYXHWFkHsZagQLuvHyKmtICCxy4OOF3fwDGQphmDD9jFNRByOp1uqRHaQIplQ+j7N9pg7a+cM66vrzdI8ziObc6P49gKbjMB12VBCQHJOVyXBYcHD1GiBwcgjBFEBa+8/gqunz3FJ5aCf/Tn/yJ+/i/8RXwmEIabJ3j48IB744iHYYe999jHgNE5eDACgOAJ0QC8zgOhFtt1qKUMSOaMgxQzj17fteBAAfujw0NcYPYHvPPKq/hcKfjZ330XX6EdrsfXkDHA+REOEUMhXCBgD489OxG3yBU+/D22c8jPd4NufTdo0r8MqNpd27Y7ROolbd/pAv12i9E6YjYiqfdqEXF8+0Xd3+tFOQvf6rueRblHDm4tJMyIBJDys1nq+Lw+jvjyZ38ZP4IB4fU3cD8EnMKAPC/YjaOoLRnKVO8gnYseWUqMRVl6Y9LmDG3ydfi27HYvZ237xeaj9CiHRc/6yG4/J/SZN8iUr+/onThAS8GEAI4Rr77xGma/w+Ii5sy15oZD9AFrvklVRcTt2mLWSbLveW4e9EUqRZSjoh68NbT6frMUIH1Xi+j1fdDPKYtgWfTHUtN6OpxzuDVXepqd9Mf67JZOtZFgDms+DrvV4VMkIOfc6EhKC3oRpWx1lOq71X/XXL+G+Jj6NnbO6jzdRNWd2ySqW4n4jXpa91lLtdvm6dymHlu6UTNWaw4XzO/sGl2WBSgJzus+shVTaDk2ttYb3Ub8rNNu54qtyWOd/WEY2jj0c8k6QErntfNaaan2O3ZPtX9PtRZbiDV3iTzmJPW/7Oc1l81hdVa5lhx4ET3TouzNEXRuMw6Nzkxug0LqzzbXAyg5A2r0d/ROpR2o027ROJ2btt+/1T5m+076lm79uw22tDFxa9/afdvuE8SMXAqYXXMCiYz4SNsvzkuw2/61Dm5KCYHWumwbem7N5+mpzDp/1dmepgkUfKNT98+u72WLLAPbPLLNWgdEhMY5UBbH8/Gzp9gdRjgGrm+ucA/AcnXEgwDg0Xu4+drX8emLA3bTDQIB5AEqAaHUOo2oQjcQFV7HBWSfldHUcx1Ro/K5M6bDbrfDcnPEYTjgdJyRX30FX3p8hd96/AGWe6+C/SXmRVT9ABIaNSqXhQsKSrv2XZHdu/aytjtH6iVtvdLYixwrqgfDxtBzhOJkc2M9/7qvn3O8JHfpvCN1+yDPJvrpzMFJ7f9rfaRKYRBbvz4jmiGTnQPNBQMknyq7jIknkAfyMuO+iximCV/+uf8Kf+LP/lvYPXwVblfwvBQQBSwQAqEHIYaxFVm0UVeN+lt6HvPWibF0Kz3MZCzQqEDOGCorIrJU5+p2rouNmnvvoWKH1tg5Z1CfExSzVDrnHG5urkUsokbMS3E4UQDdu8DTE/DKj/0EOOxwDAdw3GGZc00WdkhpBrKo6BHWxOzMZROxPUdvKqXA0+18EI3cb6LMXuZyqNHueU4bA0LuuVXi0/5QB6Q5QYU3xrN+Rv9dBQEsAmRpmtM0bQRIhmEr2WxprCohPwxDJacSyIiQwInIghrAIQTkuY4Dm7pl3m2i8fK5FYGy9B5FR1JKIBYei3NOxFp4Lc671q1icOFbTocimxZlVaTLjqHSTNUAnue5GdHWQbGiD6thbRHIVZ1MDO7qCAKgWl5AnT59Flu0lpiQ5mNDukoRw82+V1lyRRZWQQ29v86bJqxRqb16L9sPmqcn9bW2qLr+2dLnlmWpCmTU8vt2u92tiLRFWWxgwHtVOqzS9MRg9lLY2qAS0zxJPTBo/7q2P1lnRsdKn0/XpToMPgzwfu0jhyJKgOxvCRgpsraOc0F0HqUeFpxFcbVkRhjWwtoUPErOGMe4QeDs2tf+7p1te56swSZR2RSKnC08vCKd8zyLCMl+tzrSzm3zf3MRkYOun5RKZ4M4NthilUEBNFVGnScWUZ/nudWe8xKJaeO+LEurg8csKLWuMUXXAYjaH6+Ipax3tH1HP59LWcfRBFls/zEYwziASmj1Cl+5PODZs6fwPuPCE9zNc/xoYDz60pfx937mL+K/sx/w+M03cflKkMLvwQHwYPZwYHGuCHDeIZAgUg7yOw8GEcOjqvSBmjy6iHisOXSEgnk6Yog73Lh7WO5d4p+98wy/+Og5nvKAKYpK6IP9AcgnEbRwrjpkBdnQPKWkitsoEd+1u/aytDtH6iVt5yLvfVsjQasq3oZaVaM4joCStzU9gC2S1IzTM/5aT1MAgHwmYfnWO0h580YTAYyDWJX3AIDh4CnIZl0PQgQPxID9MGB68hwH8vj4OOKrn/scfuxf+VPAfcarn3wVj66uhWvAEo31ziGnRSKr36bZg/RcHpKN1jq3GqEpJfigBvIa0bRc+h7F0Waj8j21y0Yd+cxAWBUyi4zk6i3PKWHxI06nGfv7nwSP93GdgIVFFIBcqlXmGZkzvJNaXxkZhSWCq/VOrJFnUZtGmSy30TM96Nco7AzGSmPs8wWsEdrnVanhssnBoG3RTjuXe4qaRdNsRPtc3pJ9FjX+rEGcy2rEJjUalMrkaEWatFhnWjb30XdX58WfQdTs/5m5FvXcGk1KUV370W0MQe33XuXN0grPIQXtPXNG9CsKYh1Wi1Jp/TV5tm3AB1Q2hY2Rq7gBr0hNwe3cM5uPCKDRLpvYRl1/NnetR3FboMT82TocFlkqpSC4FVG0/7dIi3wvbtaCnS82v2cIfnM/NS5tUIecB9g3w9lS4VJKlRrlMM0zyA3NqLfvZ/dRqgIxBYRSRWZ0V3coNS9VEf8tymPR8VJKcwr6U0fvm7gIVTxnDJW6p+Ohjrvtd/n/edRP56b0E7dyBaACfYM1sFLrH3kRmWCsgQpfI1NUuOWdLaUgdoEE2GBjDbT5sBU9AcRxHsdxgwbZIFJOopTXYpOlKteZs9M61Va1sO1NjuT7Z+ae9p9zDvMyb+asPTfauBCBWPKSRAkw4/T8OS6HAX6+Bs8nXASP51/4PH75v/hbuDc/x3vvP8Vn3ngFaflAWAhZ+jWDMBBVR0pqRXknCJFv+0FF3kBwVOqZvaJRpX6X6wSP3oHDgA/CDldM+NKj58j+Eruww2kqiIHAPCFCEXhGqReVqduyv18qJ+rD0vHOBcC/Gyrf74VKeNf+xbc7R+olbTbRHnjxAlJxCXVW1FCpqTwAhELnzHV+Lwu5z82yB/K3W9znjGYiBudq/IKwGwYgFaT5BO8Iu1fu4+2nT4D5Bh8b9giZUJ5doaSEz/7sz+JP/g//x3j2zru4ePgQR2iNJmDJCYUA7gQHLNrRaFmVUmjpG9ZYXB1OdaLWA00V+5iNAVe2h66NdDfKmTtT1PiMShrOUCybUVD/PMQRuRSknEDeYS7AEjw4HnD42KfwXiJguMSRPcIyIzgSOWpiXO4CSmEsZUKqjkLKDo4GqUFCa00fEBDHmugOh+AcgLzJ/7HOkMoai4G0dd5tPkqfT2Uj5po7skm6pi19T8fO1qWSe3jMszjE47ivUfPS8h+0jzUir+vNRtZ3ux2AGiGutCbnRLbYOddyES0KBF4LlKpjzMb5y0X6LAzjxlnZ0P8UnQoBzGKo5rqQh1GeqdW08R6uflej2Pr8mh9l0TBLqVOH18quy+dpE/VOKbUcDkVr5Z3VAdsGaBRZyDkB8I0qbB0TF9Zcp9M0ASVhH+v84TWHapM7ZeaOldG2z6r5XC5E3EwnMUJ9XXfBixPgCC6Ghm5aOq51lnohCkUznXNr/5tggzpTKS0NsZL5IddJecY0Tchlwu5wf5OjmXOGr/OknKH8aT/Y/DlL820S4ayCK5XO6ivayAU+Rix5S9PUcW3j7zzKLAXI5d0qycrVGm9uDQrAE/KcN3NM55VSH+VeHe3OILE6frovKoXWUmntvkzeYSlrnSkA4D5IZwItKeU2J0pahSU0n1HOhVgNdq5+pEMpmrenMvLTZkymaULw4gwnrGtH2AGr0IhSAO13iQhLSiISxGudQKrrKZq6VrrXR+O09tRlMOCXAs6AS0XGzBVEFCzPn+H+fodv/tZv4K2f+fP4TCh4/sG7eHgZ8fzqbby+38EXRnYOcySk4OEKI6gSrctwWHNwiQjEIuoUqwOnNDw0+l9pAVQCsPcRjwLhn37wAb743hXexkMUvgRPwKsDwwXCnG/g3U7GIBQsXhDEomQ+XhMO/B2/7669hO3OkXpJ2+iDQPuaK+EdXJDE8RgC4AjLNEuSLUlxQjDDeanPtMlbYoDO5DHdoltQdbog1dFhI0Jl/QyqpLk2ojUC69yacB+jW5EL2hY6ZXJgL/xq+AkJAR5AKEINyNfP8FoU5yUvBcjAfb5EOGXsxxFf+K//C/zof+/fwsMQcDO8gmdECPsRiy8oxxkoJIe4IwRPmE8TQAXj4Ju06lwLKtrk8GEYNjVeTqcTDhceIDEOuYhzoEpZBFEvEiOTG4VDjXs1mNQJCkGkfiVCuYCqkEUpBTmJMhuRBzlfpcETYnVG0jwBY01M5gLnCC5PKAAmDvgmR3z8R/51+HiBJyWAvQO7jMipHnbS7wlF+hSVSplkXPb7XS2eXA+ySlnUdzoej1imCcV7UEWvADaGuDg7aSlS8d57LDMbCmRphqUYK1UZEQQmQioZ3jupB+ZNFJa8zMUistrFCHssy0oTk+sWpLIgcxaEEE5UDavCnHcOJWcMcahIjVLuVufZuQhmh2WZxJiiBC5AISn4m8uMkqXuFpWCnBIyAeO4x5JF0IAcYeYM72TN7na7VlMpFdTEBMlJWiolcBgGcDXI5+qwLbwiB02BTI3XkkBhwFBpiyrmMQQP4oKSCob9gLRkWf/MCN5jyQVjDGCW/8/zDJicGCu8YA33ZVlWZTKgOl2uOYLDWB2IIkGGJUluinOyVzjvEaNDSRnzNMGDcH+/B/OA7ArAogCWc0bWnKGWn7ggDCPGcV+RvdQS70spWNIEhii8LVMGpVTpZyNKdTqO19cg7yRvoxSQlzwzAfcIPgZwTihpQariB8QFDjsEF+HgkFNGmjOCE2ogsQMYiMGj1Pk5zyeEinacTnN9zgMIEUtWh7miXkQ1z8VhOU0AxDkPRCi5KheSOLgurMIXJQv1c3QFiRfJ3akOzLJUKliQfWiaZowjSXCJufWHJ2AxjjR5jzh6lIQqKlHrGC1HjOMe07IAzLgYR6TC7XkAwhAHlGUBkaznAsI4jCi1ZlihNRdvyVIRdkVngsz7VtZhSykWJ43h4DBCpOyXukeHYaX1spfDaQgyjmL4l4Yi6Xzx+4u6JxfAbVHaMMhevxhUWUUTvPdIxLg4XLQAiwYnFl7glwWUEpgFCZxTgnMBc1ow7i/AhZHLjNG5SrdnlFmu42SyobA8dyHC4h3GOGDOC5gy3Chnh8zNAK4KqKAIH0aw8zimjMEnYL7BZyiDvvKb+KX/+P+IH9+dMOaEe6/uMBAj0gUIsl9HcgilwJUkOcokJA8BhgocZP+WvC6xBybHGIqD44IARvbATTphfHCBdHXEhYs45R3eefgpfO7JNf7Zm2/hGHZ4HgluEEXhgYBQCgYXsVRkn0BwhUBO5PdVgv7DtD737jv5/L+o9p0ErW2g98MEqO/ay9PuHKmXuJ1LLiUSRSpi5SHr5+oiLLc1QvlMjtSLGtPtHGxXf69xoXML/JzsNWdDTXrB91i0DySKCi+OBIAghDMUOCQCyBMCAiInHJ8/x4NXD/jal34L48XrON2/QA4Bb735Ju6/dh/DsEdhLRoqhzCTRs62dCV9ZjUYLYVpzWnIkDoaawHOlZ4inZuzGADAWkRWnSlL1xDDIG/QF/2M5IcwiIr5ToAjBnONIIOQVA0Q4tzlsMfzKeP+J38YR7dHwoAcYo0sZwyOkQoaZYaoRsnnBUSiusS0imwAW8WxFyW8i4GxFWFwzsEHeV5JIPctn0bFLXpalKI25+hkSocjIqAm7tufvpCm95LM30sQazK8zbmSWlKqpAfkzC0QsM58RQokCX8rzJAkqBBqvhYXyc9zQv2z1EK9zrmDtZfq1zmkjqbNsdPP6OeXacIYtypsVoGPmpJW2NAbe5pfjwj2aKGqr+l8gPO3PrOlKNXaM9WhoGLEW4gw+KBfbJQ+q/Bo0cF1rZL5Wd/BUrMAqZ9TgJqjJUnzKqJBUKqxUCNTEaqlHSNVjpM8T2rIik3871VOJVhUqoHsuufm6gARHDzYjKmu/ZKFpidBEkiCv6JUSOAsKOuae7U6u/2+bMdZn9c+Ty+SY//cBB2wFWvJeZF8KwJyWZAXCe7ZAsb9+l1yQmjzaVt4vJ0RmqeWz4vK6FzIeYEooQdxuEoBhq1kPDd+Wd7sRwBaAGDNj+UmtW/nr11nrZ+6hNUVYV7vLSU9pAYTQfIDhxAEwTfopnOuzbfUU5fNeDi6XezV5vDKHAW8J0ynCbvDDs57KW5//Ryv7wPw6B38/b/5f8cPHyJCugI5WRse4hRp/UVX85IcC51PptMq6EEkIhBr+nOBljUpqAWOibE/7HBzmnCIO5ymhN3DV/FNt8MX334Lye9B4w4FXr7vSBghEOGpQubyAFDEqfpea9+OgXTXXs5250i9pI2BzUEtdY+2+Q++KoARSbTRJqD21/p2uU/td2c+1w4Vvl0Ytb9Wn9CL+h4FK41GHmc1uva0w7RkEHv4KFH9RBGZhN6VCWC3gFwGTRM+9soDfPHZDR5dRPziz/0D/Jn/6f8MMQaMr97HzjsQ53qYCd2PCmE3epSi+T6MY55b/R5LbbKCBYoSqIGnVI8WAa15KmpkLsvUjCZbuNcKIzhv869cu5ZQhFaEpabtiiQwZ3AR4yE3Z5WQySMND/B4BnavvwE8eAOTH3FKGWG/E0n2XOCCAxlUUMenSZLTWvMlDKuUtjqVOefN3yGPVMdyRY6U2iXjqvRPQZBWI71AUSydG6kalEPQwo+M00moWTEEzPMitJHO6LFUTHvwWPlwS59TGpQaJMEVY+Rq/kGEOMa5UTdT3hYbXo271SkrGdLXkDo1EuQg+R3Lv3kQog8bB8Y1al9ByTUx3a95adu8pNUwbg5pDQwoTW+eZ3BOjdKU07wxHtt61D3F9NG52j76WSvqkZIgCn1dnV4MZauIdtsJZxZkQUo0uFuOiu59+jsrrGFlu/XvfUTX7kellJbHk3NuqH6ZNL/Mb65t5xSDK+q8VAphBPOqrKiBIKHCoSlV2jw2masiX11qTiKpcpujutfI3JimCUtJ2I3RjEFu/SYBDLdS+ur76j0ttc7SzCylzo69ndtK1bTrTEsTKI3xdFrg47ApNi7iLcOmz4WyuHX+tX9tYKY5hJ2jY+mWrbRAWgMkdvzl+/UaNW/LOlNWqVDnF4FuvWufYynjyRtn5+w8qXM5eI+l9vOw2yMVYAgeqc7dIQjVss+JsmsNAIJzGDPBpVSDowR2QOBKJU2VfuiAy4sdPjh9AGbGJ/cj3kgnXH/hS/j7f/mncTEfcfX8bdy7f4B3XmTLmYX9QVpmQhU+geglcChBL99QamrjJHW1QmbAFcAVTFQQQPCJcc9d4hR3yBcDfvm9p/js22/i3Ryx7C4x54KwPyCTsGaypDZvbJ3vJn/oo9xsINHuvXfto9HuHKmXtG2ic47g2DUJYTXSSikITM1x6pPW14vh9xTb0WW8JtW+4PpYc4Ns1HojCYzb4haN55+BggimgIWE5sNOUClGEZqSS8g8Y/aEp1fX8B/7I/iNa8K7+9fxv/9//m38L/7n/x4u4wH7MsGzKFURgOhUpS5LZNpJTSTKGczbwrO9bPbpdILzYmRJ/RZu9WOooRW0edf+wLVS1CEEOC8OVClr5LhkK7WtqnCVrpSzqCJVw41BNaJNeDoxnsLjYz/yJ8DDHnz5Oq6PC9iPSFxqov+ChR1A/pbDwZqfEeSdXAyYlrkZCL1hY5t3rhVctQVYlzkDVN8ZHoWxMdo056PP/7MHSOsrk2um/dkjUtbAU6MujrtbxpnmNux2O8zzjHEcMZ/W2k/9M7XCyMwYh31zNI43kzFWxYHKtShnHGO7l46tUs/UQFYnexO5NzXCgFXQQw1lddTPSZGHOGKZT1tDxFCO9EBeTPFRpWn29aqsGqVVYASA4/GI3W7XHNI5rcpwtiyAGqq6B1jhFR2nNC9CwlMVxrDmgqgzaNfT+l6rkqHrCmITvMAagBQDVcNbjXVmeKKGjOecEchjjH777I7gwoCS5oZEDbuwMfqt46iOTYxREEpso8maS5VzxvF4rPMkbPLZdL5pf0m9oD3m6bqiE6ECAKvAChEjhNXBsoIEms9lkU5dd7bP7F7c5p8TxGeVf1cxiwxHviKtpcshddjv9yvt0Ir3THVuO+O0wNQfxOqw2HGw87BX1RuGAYVqrlMM27XLUk+xR4G3BZG3iHefJ2gFOET5cJvvqv+3iopFi1w7hxhXhx1aiLoinzlnEa/RfEgApTpehRlUkSqkhDHuVoecPFBRSylMK3BOYcJxvobnCSMSLh9/A//oL/4lxMfv4adCxvOnT+D3DoMjeEcYHCHCIxAqVQ+1WHFlYzhZTUL9XAsHu1oNV1X6AgMJGYUYxTOQPQY/4tkS8O7uHr7y6Cl+4e33cRoeYgl7HKeE/eESqVAtIi2sveKAjA9XduV7ofX50337XnU0X/Z25/K+pK2Q/GQYSga2Sfs99G///902t/lzjR6WVbHn1ued2xgZPV2kjz5unplZ8ms8mhR2ABAZiMyIKPAsB0oaRlz5iPcw4p0lIl98DJevfgp/42/9HZxowAeJkb0DO6HoMGepU0PbeiNctoXwbDTIRtZtRNQ6fzaCZA9oPZS1WaN3Ta7e9p2tCyX9ldBkX2sUkEmidwsXLJyRQMguIDx8Hbh4iBQPmBhgHwEjR6/PbalI9rnsO+o767upkWG/29P4VLnQok6OArjQxsju6zj1zpH+2UpP2zo5dr7bn74QcI8m2DmoSJI6DVYYol879vs6vmse4HoPNVDt+52b++coVfYzVob83LOcUxjs15vewyIF+rneubFj3Dtn/TgrKmGdrbaOzDzS+9gi1LZ/ORf5UaQheBGG4VV0wVKqrDPcP1PtuY3DyEWsMysXbcfSvp9K49t+dwYpFeFwB3TUyt7xtvuefUb73HZtWUXAfl/s9wsuQvlbryk/2k+2OLN9z37+27Gxtc/O0WntOrLBiXPzsH9m+84ANkW0+/Vsx9juORun7ty+rFVh697mSc5Fu4ecWx+2ELH+3ipA2r75drQqnb/2rJBrBwAO5OVH5hdafamemtujv7f3uiz0QbhWJD3lglQYcOve5caIHWcc8oynv/WbeP61L+EiHfHkza/h0x97iAGlqu+p2h4Lvc9L8XqHWlzXKcolgkIau/C0PbsLrUJWBKHmMTmcCuHoRvzO4yt8+fEHOMUL5P0FTgyEuAcQECkgVsEK/enH/Hux9efb93p/fNTaHSL1krbcqTdB1eHqZkggFLaywet3X2QQ9s1+rtEehtgOGj2gCktRPJWNBdDUsADzDIZyodK07ZCoiIoqRbnNATtVz40FeUMGbq5xOUrO0PWcMNy7jyeZ8WR8Hd/cBfzSTcSTV78PHxyBYTfCj3v8tb/99/Hv/Y/+LMIQEEHw6QRXGBeXe8zHCZkZuYjxW5iAalTaaL/2i3NOqECVXieH1mroFi4t70Hpefv92OqADMPQcqT0kD6dThvHIaskvceaU0WMGIPQHaoCWqp9e1oS/OEhTgV4cpzx/T/xp/DI3cejHKoS2oC5TBijA0pBdKFJhufOuBS57ioCsSRBRYIHGdU2HatpmtpGrxLcnAU5UCqkvmcp2BhVIQj9KSUV31CjQp5D5cCFMiQIUTHzSPj79c+VRhaCCCRYQ/ick9Goi/XzvSMsYhpqvEDyQJoqlhgy4hgAKUnNrSZ1PQxg5ooySH5brqiCOo7wEjUnFifisNvX9ZBacr2rIhB5qQhgKZiWGXHcYRgGUe2r17SOnPbx6XjExX40ogwFqO8syo6CfNzcnNY5bQ5qS/M6HA5tvGP73s2tWkaWdqLUqmURtTprFMs8KW3fIIOSLHkrFuDdWuvNBi2sOl9KS9tbLJqntFu99+4wNnGX09VzeO+xG4a1NliIUEVJZq5KloBmn5AP4FzgggZRZG6qM7ksgmimJPqoLbBQiwqXbGirRn1Qa2TlRWjFyiQYgqwnkT+vxcgJiFHRzBpoghrgUsfv5ma6NR9s/ymlzwZ6rFNk+7kFGBggV5+zIqoxRqTjEZkFiR52QxNv0DlnHU2dU6UUeGi+2Lb22zqHKjJlBH5031EEb5N/6wjTInTVMQ5tDsDMzd1uaPdX6un19XXbK3TOjuPOULRR9ye/CY7knEFuVRpc97WwyYHNNadR90Pa5JxmcdJT3etMPm5KCaXuq8gZqWTxToLH4jKwGyS/1ZGgsADmNGN0hDktOJ1ucG/v8PFpBn/zd/F3/+pfxY9Gxnh6hnuvXeB4c4VX4gXgZK8PYAzkETwhQBCn4Amu5nm6WgBXGSTeKfVc55UDE+F5OuH+uMd0POHy4gG+8XzC/uOv41fevcLPf+0dpPESy3gfc/bwYcCIKNRmVkGqmk+qeaUfNon7W7Q/LOfj26FIv9fnP3e9u9ypl7PdOVIfodYvou924fbIwouaUvNe9CwvWtybRFnq0JANQsUoVFBAAESJ8DBGpJNQW8b9Ae8vjHR4FW/nAd8sAR8c7uEUDiACxrDDYX/A9TDg5/7x5/Dv/Os/gR94eB8jRlw9eR9Pn32AXYgS2QOqqIUoEvX1imwrpTQp4D5RGlCRgNUw0Cix/TyAjSFjo+S9JLWNxq95O7VuCgEcd3g2L8huwO61j2OOe8zFI1EAFYLjghirocAJropWFM4Q224bIW9oThdd7vMVrMx9e06LlL4Aadn04wuogqsTuscwDDgej81Zs8/aoqEGQbFIi52rlnrVz00bCeea+2QRGeuM2Tms/64ULFvgWcfYXt/OBzsXrDFrDbNz6IteT/+slLdzsua2T9j0hV5LC7ZaClOPytmIuH6/1Q3rxsLR+sz6Pj1aLlQ5U4/LyLvrjmIDGHbM+3nS09G09c9nJbX7ublBMp1DTknC8GZuWPEK+x4WzbBiGLYPNO+TTN94b4UlXEWV6NY9rGNjn3V9/m1Om51rdt0CuJUjZeeh7ZdVuMCsG0Z7V53X1kGzYib92tT8uc1emLcINoCqOFr3lC64AWBDK+0ZDP3ecY7hYNe9dep71O0cGmjRxd6h12Ypfg3NrA60rT+l+Y19Hq4GFfUeFqmy80HOw9zqhDEYmRMuLg5I8wnECz726gPE4wfI776L/+Zv/E38wMUlxumpMDgqjdyzF2q+K/DOwxHDMYEcRFwCq3gEETa5Y/qM+vpydmfEw4ib44RdHHCaCsaHH8P7ifBbj56iXDwE4gFp9nDBA/BwrNcGPJcmBlNXHu7ah2t3SNXL2e4cqY9IY4JQ65xrynz+2/CKN4cJzkc3elpQQ8KMSo8zSVauKuyo0fBhmkWgmlFJ6zNQAcgxHInylUeB44R42ONUCO9jwOP7H8dX8wU+mxweYcCjyzew+D127FCWGc9uMtz+IW72Dn/75z+P/8m//d/Hpy7vIe8WoJyQak6Hd4RCQpXQKKY1gm2/2CbGw7YgphpNLffD5L/YvBc9SCWirfknpUU8GavBIwex0gNrvSZ4ZAecMOLG7eAvX8Xhkz+Ad0rEiSLggxTUzVLAcUmLRNwbTUQq2DvaKuadppM4I/Ud4B2WvE1IV0RnS/MpiMHBB1EyXO9D7b6234DbBVitI2Qj2xcXFxuHxhraNpm9Rys2lKQq6KDXVUdCDdpGjTIUvZ42Zo1D71fxA+tkAlKI1Doo6thpIdlV+n3NF+pzMTbPVL+v/WGplbYuzZr3tKU2qiOlBrO+8253wOl0asaurUuk11f0S/9MRJJLViPvm7FzW8dPf68IUTNOU5a1b5waJsBjfXddI5amafumjTMgil8kapDyvrcLX2+oUmEtfjuEuHGIgYJhN4K5YE6Cviy5bMRHSikgXimLOg9Pp9PGiPfe1y1l3VNyzhjHfdsb1oDEds/R+92mCVrnEJvxymWBDx6O1nw2iz7ZNbZVDuRGQ1XxFXWYdey0zxURVXTPipToXLQBgFWq3BT0rudJsUI3WB2zVJ2KUB0QFfzR4MomGOccXHUIdd7N09zyyqLzyCAstWaUfReb96R9bYUqrJNm57T3vqkA2uewiHebs1gdTQAIfsCc69rReUsFJa97mubQ2RzGFshx1AKOWjKDU8Lx2SMM3iPkE/j9Z4hvfhk/95f/Ml6bE+Kz93B5P0hxeg/JreIIR1L6YfQOlYCIwdei31xlzp0TqiTrGOkevfZHYZZ0g5Qw7i9xWgj54nX86rMTfu2dr+IrOWCJAzAR7h0OWMosIlmk5zshN7tBqLhSOBp37UO0cwXV79offrtzpF7SxmavabpXzFIzirfKVbe+20XcXuRv9QZvO8xRE4IrxN+MVKn/JxFv2kbyvuW78Fp1vhkeRo3M5VGcNVcAkoKxfjfg8Q3jNOzw7r1P4leWEZ+/YXzw8Puw+BHsR8QAjDtguZnx4N7rOC6MgoiH3/9H8fd+5bfwZ//kj+Je2APzCQ+CBxWN9kmNGVfzDWz1eUv/ijHWIrBp01964ArdwzfKzzQdNxSaPj9IPm9U97TP/ToOTflvljo3pRQ8TzMKOXwQAh786I+Cd/fwmO5hCRHgBO8yPAglz1hON1LA0DkwCRUkZwb8Gl1v71fHQJ3sZVk2UuR2bliHWwzDajA7GGOsFr8s6uwUMHJ1JvhW4jijKuJlOcTHGHA6HasRFIXuQStoYA06NYKUhgOsEeQ+Sk1Em8/J/SEULCrVySREFxvqI8anSLjr+OtzWxRIr0tU+f5VnctDCpxyrtL6KlftuNYTyCjJOKoOKFWq3HsCU5ScuEoVshQ8O69OcwIZlTtrIIv6I99ycBRVG4aVGmWdZbsf9M6lNm+ManWG9TviuO0QnEeehY4XSGT7SylNIKAQQMFLPZ6UW86KPmNP3xPZZd0XC8Brn4jzVwU+LncoaQFzQfAeeUm4urrCxf4gKEEuKFTAZByOaqg2h98FkPcorHTThCUJlS6wQ4gVXSlLo6NpEWkibOap7iUiMCP7W1M0LAXLUqmb5v2JPJwfayBhaeMt68ZIw9O2jIMdJxsM6VX1+pyvVbwkbEQjbO6fVQlca66tFM9+bSzLAl+0pMRadNqF9TOFb+eJKXWuRyOp5kcVLsj1WQ5V5EIL3Ip4zook3UJCDTqVzbllAyetiK8GMmz/BBEKUVXRbYBFHE+lx5/muSqRAsxrUV2Qb32vARcbRNBnRMoi7UBAqAIT+yGiXF9j7xmRCqbf/Rq+/J/9BfyxEbi5eg/3h4R7IIjuqwc7jzQ47ItDrKUuPIBQRSYAB/jKFnBAgBTVVWGJqs7S7BHvCSMN2JHHs+xQ7j/AL37zMT776BrXvEPcv4KcCbuLHW5OR+wGJw6UYzARlkrhZ9RaWjLid1ITH7LdKfm9nO1uVD5ibUND+C6v1VMjvlVz3wU11xqgvTFHJNXSXQaoSPopWLj6J+dxQwHvs8fvpoKri3u4jiNmPyA4jyEU5HJCiQnFM3a7EZeHe3j6/IRTcfjcr/8mCkVwLRLZP1PL4+ioJ/3neqpXTxuyh7Wlwdl+7ek8GpneRqBXh6WU7RMX53HvldfhxwMW8pidR9K8kLyg5AWBCIEINXbf7pfKNgnbjon9nKWHWeOsp51pvso5kYJ+PlllLGB1dizSZOWGe3qOnaO9I9tT4mwf905A3/cvEjDo+0j+7iAy1kKVERTEVal0Z363oo99ro+dJ3Ye2Xtu58JK97KIp5VJtgZYP3ZNsKCjSPU0LbufbKLrZyhH9qenWPVj0v69C7L0eZTWWLZrqpc1XxHi7fUsDdT2YU+Nu0VNdbau24oETHwwtQAAgABJREFUar/0QhL6GaXI6b30nSwdbYOOmjHV97T9qd+1yIkdl97A3o7pdg9/4Rhgi6T0+VK2/0spogwXBmQmZCYsmZGZjABHuLWWLHps56JdE32/9P3Qz+Oe9mrfqZfub9c29+xp63Zv6vvz3L/bcbOoljo//b5p55HdG/v8WxWSOveTsRYvdpnhMsOzRLx9AXiZMTDjYhjw9S9/GZ//xZ/HK6fnePrmb+NTH38I5wtGAENhjMxSLDdIXTtPUvS3DzR5Wp0aR71NsJatoArtehBiEfTv6WnGV548wTGOoPECJRGGMMqeOKgqKIOdqPsVz0i+ILuC7IDsIAyRu/ah2h217+Vsd4jUS9o8b2kQrirjWKntXIpIowePtAiFIHoHLrcPhsAatV3kO05qO0lkrkiSKwBic9ByAZfKr4epMcUMSsUYxYwQIpaSkZNEOoPzmGkGU0EogGcpIly4KhEWj0gBHg4lEDLPABIiS17Q03mHpw9/EG/mHf7+zQ7vvPJJXHEGDRFEDoMnhGFEKQHD7gAOQlNYcAV/AHYXr+HxB0/ws5/9Av61H/4MPn0ICOWIV2JByCf44HB1VOrCAHVLG5WrSo5TkegwF6BkrRlC8DXC6qo6oEb19YCPMd6iRIUQsJRaCLEwwBlUCk7TsVFpiEREZBcXnLgg3HuAt96/wvjw43j46T+BxzQgw8OTBy0TOCccdgfksuB0OuHi4gJpKY3G5b1H9IySMsbDoaKDEiV//vwpcmK8+uqrKJyQrmZ4HxFdgCuo7ykR6QgHzqt62OAjKmCEMVYFq+UIjc2EIBH9VIv/IuUm0lAIKDmDU64y/hkAI5UF5CXnJZicHldrDOXTjP1+L2iKi2AWeetxL/Sp4zwBuSDQSg3UtaLyzEqPmqa5GmlR5MJRkDLDO3kvDRw4T8i80s+WRWo0eS+iDCpCIuuySIFkZoxhlMi5KyjEoJKBWjA0+KEaWQByQV4KnCMEL2Id6ZSQ3Iw4DhiGATc3N81hUOP/eDxWZ4fACJUyVItaRydCJcg4LfK+KAVMDsEHuCD1yAhUUSBCqp9ztDUOgdVZsVLzlCU9fDnNcLtRhFO8k7XtHQoBIep9gZwyChg+BpxOp9VBAOCiAzu3oUop5UmkwOXejNUoXpIYdvt9bMggXEXQU4YXohU8BSDIGkbNYxHhFUIYBpR5BldhBzYGb6y0Jw8pkEskqCERwzdnysH5AKA0lL60/VOYXCEGOGakUsV8YqXlRUEz0lIgYm9ORAUqnVIM82yU5SKGYcTxeESuuThLKhiCoLTzMq/U0pIAloxQX5Hocb/HdKro4FjFHKZTQ5yU/jrPCUOQYrreOZkPJcMTwGVBAWNwDimJQT1PQif25JDK1ildSkYYK92QZR6QdyipOkEAXJXAL6FS++ARhhGJE1CFZ7yXen8ZUhSbWSTzmQjX8wmONUADuJ0El06nE1JKuHfv3iYAIcjfJONHEUOo8+ckIkH7/ShlLyryVxLDdeiY7ivqBAOojIRrDMOusQq0BiHKNliiyP3p+ojdboALonxKILDSQjlhmhfsH9xD8AOun1xhNzhMyzUe4gPQV76At/6j/wM+GYDorvB9r1wgf/AU93ZDLagc4D2BqCCmBTsXEAlyXlES2iA0kCVBk0AeR2IMhRBKwQAGk8NVPmG83CNNMy7Z4/kN4dHrn8Ln3r/CF976Jt7ylzjuL5HYwcNjQILjBReke0FoioAMwCmPr8VEto73h2W6vCzt3PP+fjo8H5V++F5uxHej9FK26d//qfZnu4lv5IVjTSAGn430t4hdLQiqB4BKDms+VAGv9Jwl3YrW3Ur8ZzkAbT6G5TgzM2qpdBQq8AxQqVFoV3OsiqgGBSYktyDU6PVMHkvY45uXb+Af3gS8VQZ8/eL7cXPxKuY8Iwy+UT9ijGKwhYBQDS8A8NHj5voaD/YXcCUDT5/gT//Ip/GpVy/gn38TO1cQ8oxCQzOCyflN9LekfCuaqTQdm7+x5jWt9XpKKbfU0bQldrXGU4J3DC6l0jCkX+alcuEJeI6Aq0R44yf/NPLuPt5dHJLfSX4XGLnmOMW4zTfR590k8VNpamyWhqU5E2qMRhpbAr9SlXa73TZfiUStzM65c9F4Jo9cizjrPdT5sDlLKCs9S/vf1pIBKq0vG0lp75BLQYbQToSaUvPUyG3ocPM8NyfVqvf5OIrRCYPQ1WcptZCt916ixKXAUWiBjFKsrLgY3a4aBNkYWkqV1PEFpEB0M2CzFETWnBotgHlcZrjgjVHNmzHQ9UpckMuyGetGma3PEELANK//bkUGdCwanSutVEKrUGjnfl4WVN8ScRiQIUqYu8MeiQt8EGcJAAa3RXxt/pCiXlaW3h5HVinNft/SoSzq1xC6ss3T0b6xBWlTEmPylspgvY/OfaWYnZubFnXU9zqHRtn8x2EImKfjirpAUT+lKerayE1FUvd+m/PTfodV1l/HTceyrUNmpGUtdJxYAj8u+M0ed1pmRASEsBXd8F7W1TCGtoaQXMtxahRCrHmPRIRUC8863uafahF5zfG1a1g/o/NOacOtEHilqere0KODOeeGmEW/CoOUtBbpdajPzP5W3UPmlVmwJKnHpZL6Fqm1NHB9Fn0u23RervsRw7sBhdc5lNKWdqx5hBQ86LTIxhES0nyNT2PGL/70/wn01jfwGT6Cjs9xGBmRHAIBOxJJ81DV+GSNOwxOnF3nGaBF8mKD1lirddggipWeJUjhseamfnB9RBz3yBSRLt/AP3t0wj/64jeA/Q7zxT08LQw/7uBBGAEEiCARuyiBQ/N+387k/Kg5Unas+3f4/bhej5T+zF//u3/Yr3rXunaHSL3k7Rw1afNnksrr9jDvFzFLopOhAnV0BmwXfr9w7bO8KGrUGxsAQOzguf6OJCdmYVGGcvXPDIJ3AC8FjIAy3MN12OHr7PEN7/HIB0y7iOJIosz1IFNHKhsnUJ87LQn3Lu+DFLG4uMBvv/U25uk+fvyN+8jpiMNuRDpNNQesRpcJsIRJS23rqSo9faZHQGzUcjMmJBQ+4ix3Krlx9dk1fgVSHHEzAfvXXsVMAXMqAK05Dp5Qo/irw2Tvp46LdcKtwWmftdGb/NAQSb2eHet1XvgqC7+lZNg5wSyStr4KP/R1Ul40x23/2ua9KD+1HCtDfVI0tdE080qr0d9bYwYQxGNOuRXb1H4L7nZ1+Sbf7VbDPMbBUMPE8HBaEoCrxH4RMYP+PambYwiuSfGL5LCgkwXrmu3nYUv+T6tBZmlKm9+V7XruqXX9gW1/pw6VvV6B5Ei1sYYRNinbGkrnqGWK1L6IWtj3V3NKu78DWwGGRqvk80aN/b42u2ZU+trKuAt6OW2cMru21Xi2TldPbbXO47LwZp/2ThUYz1Os7Xuc23fQBbBsH24prmYMyjrnNe+wUSTzdu+ytFy7FsHigAVDyyK82PDd7JVt3qAFG8jMM/v85+Zkv8/cmv+8PQ/7eaCPee4Ms33c5kfZUob792qBGRMQ6Cmden1FrsdxxNXVVT3LBggqo+vbgaq8+QPvQS5j4SNePQRMv/EboDffxMXpBk+nR3j1/iUcSWmtAAcHIJDOu/UZHUxx3abKx01IimqJeVdKheMLipO1lJcFh+ESpwLgwUN84fETfOWd5+DdCDfsME0zhv0lUAQJJ6w/IL51pn67di4A+b3Y+n74ME7oXfvDaXeO1Evactvt16RidiTRO0dg3h40VjGpV0gD1kNUr0tECEZGWQpU3o4KW6eqKbBRrf9hkS/72eoQuMwgdkiOkEliVCCpVeEpA5jBJcE74IY9kj/g3eFj+F0a8XPHgt997ROYxgOKu0CEQ6Adxppw7SoKFQC4sEWT9uMOmQsWSM2OZymhcMHVu++jlIQf/MTruP7gEV4fRN48eAaRiB4AYsgiBuQsIhlUtjVJpmnC5eXlJrleD01NVNZIqi38KY5vgWcGSBKmqVJeCgGZPeZKfXyUBjz84R8H7S5whQHL/5+9P421Ldvu+7DfbNZae+9zzr23ql69nqLESKJERhZiIzCSAP5gWEmABEiMKFIiJI5hJQYiRJbyJV+TAAFiJBEEyxElSpQti4olMaQE24hlyepJsRcptiL5+Lrq+1v33nN2s9Zs8mHOMddY6+xbr+rxvcf7Hs8snDrn7mY1s1tjjP9//Ef0mN2WOE7kFPHOsB06EnMSuObxr3NjUoDt5qLQXGKqD2+aYWutw9d7nqoxIEnTJ2UszhHYriBOMZJyUS9MGIw1xWkXg4ZlrSKh5mn5cOeWanw6N0cXzcw1cGCdJYgAhnJ8tBKaFiEQhE3GSJTIjOuK8tlC1Ww2JJvxZ1gYS3IsMTKd67DWzJS12ufnpNmhyM1Hck20T2V+WTC9x1hHthZvC53teJzpV2LsasM8jKfqVDmsnQ10yTVMMZFToOuHtob1HJmmqTk2fd9jan00mbNd1zUkU1DZrutagOQ0jmQ709FijLg6fzbDwHg4LozLdX6WUFDlHnWO19pw0DW6tGGrUZpSl0ypjFXDWKNbbWzsUnVQO/Bybpmn8lujUOs1oY+zcM69p691rFIphVTmc1o6xmV+SiHxpRS3Rs4Wcv3OQc1fyglSEqSkPDyKcQ7WqtxDaoFl75rDLw4VaVZ1lIDV6VSESaZwWqChjeFQnzneLZ0hoaUblk6dqcIQQVAva+i8a3W+ZL1qFVRd6FwcZy0gI33TdR2x5Z7OVEOjkcOpokveLa6r3MfstOu5ocdT37feO7RsvDaCtVw+FPGi/T6w3W5Jmba+yjXkIsAD9EPH4fG7XPnMi+P77F/6Ij//V/9jvnvI3Dx6jN90PLjYkMYTvS25Th3gbZEr79xci8/nWnQXwJSgoU3lepyZUck+lYLv2ZW8JpOhNxuexIF8eZ8fe+t9fvLNd7jJF9ire4QQ2WwvuNmPbDZdRR8LBRabq2TF+cCZbuvAy9faYTh3vG8GZ20dyL5rz2a7c6Se0XYuoqoThbWRp5PLtUTyojmLXT2Yycso5jkE4lxSbiajz5CtaVFgMTqbWIJJZOOKs0AJdlljcLkcJRPJwZKGC67thi8Gy8sYHm+f4+AviGZD50vOjrOuPBAlEdzZ2XkQNCcmeucZU5FpNdYSjCW4jpQHXn/0hM32gs/ee44wvgMpMziHyZkYA5hSGyobg7G+quGdbkWZtWEjzpLQLjtFM9TGoVAGnbeYXCKO2KruRiaQmYwlZou5eg52z7GPCfotxnimtIzIphQIafkQ0rLfegzX0tmgEJzVw+scVUm/rq9hHSU+d9/iDJ1DQKytSGDOt5APudYWJMglcm2sJSnnTgyiFNPsxCvxCTFydEK/GH85pzlA4By5Os2+GtnjOGJrPksMWRmxt2WVWzRbiQYIfXY5bgo5cJaxSs477wBBmZfCAcDCIdc0tTUF9xz1TM8P6Red07dGfNbrf6FoBy2IUvL+YqMYi2phmCaiv/140fckf+t/ayRAnHxZW2v6qDhE4piL4yq5nHpO6X1T+mqKc+6Mps3N6num3aMIQqyDVBp9W59zjey386dSlDQZLQhyOwq/RrjXiLhGnfVc0N9vToEqEJtyWjhA82cM1llinBbojHZEG/JfVUelgLfQ7NZru6yLpQiPIMZG1pyS0td7kTxHtBO+3nNkXshrzjnCFM8eT/pOr0Vps2PIIu8ppURO85xc39sa5dfUezmm7uOu68gxEmMCO2BzEZ8I1fG1Zn6WeuuIXcYx8fhf/DKv/cxP8+B04s23XuJ3/rbPcnz7HfpjZHIWV6mS3hRFUodpWnjWgsmFaueMqecBW80/iyn5usa057rJ8mM5YTh1Ox6Nic+/84gbu2HyG1KGbD2d6Rg6uXYlhCLyv3w0J2D9TPmt2vT93/XJs93uHKlntMWsCsAq5+RWy8uHuWzu7W15ANeaFInCUW+GV8wVhi9Sp4l861hrKlhBaXKTdM45z44MZQO13hGO+4K0GE82GYcl7o8MXY/PEb8bCMnyMPS889yn+GIw/N3H8GR3yWH3GfqwqRQS8BtfE3+7pp4lEuqlsmB9yOWE7Xqm6xvYDCRnYdhxMx3ZbgfefvKQN3/ty/x3v/t38il6chp5YTsw3Tzh/tU9Djc3hAjGlfyekCZsngu8NtnpmgNijGGz2bSE+NPpVHKNalRVR/+hXGp5qIa5z/qeJ0/22Hv3efP9J2wv73P57d/JI7MhO0u0PVPKTKfIZvBAJoyHUhvezPlrWlVKzp1z5ng8st1eLKLyKVERjETfb9r3jLM1EVmud44GX15etqixwZJSxjhPTlW8wBRkyneecRwZpwkb9lXeu7x3OuyBapSkQgvL9TpFollTV/W/Y8n6b7LZMu+0A2CMYZxKTpQYiofDgd1uxzRNDMPAZrMhhMAUI6i6VyEERe0ra22z2RQUeIHGFeRO1kjOiZyL5LemcYYQakHKWitK6sAZtzAsGxoATOLYVHRYDFSdj6bXddcNzagbR8kn6atT4IlxKmPiPTc3N62fBInYbrcNoZumic7NddHWzrGWX8fM0W4pztx1ZW2O41jyvsZ5Hkp/yLUL2qHRQykarCP/ckxNDxWE55xRbK3F5Nnp1A6YlnsXGXbdtGOpc+qkifCFrIGGdijESueVrVUI5zEH4eR5b5o4wrx+TwvnVeaAVr5sjosah0J5Xc6rlEswiarcGWNkSrHWnCrCKU0evfMLiuIcgCmOVKkbJ0582QclCGCMIao6VcYYYqp5Wyv2hHHVoYnzM26aRrqKaKUYKhU90m82GFNk460xWFtzmqaAM0WJzliN0E7EVOePnWm9Wp5dAnHjYkxmh6uVAsiiwLksoq7zyrQDpXPVoCBNsn8tEZdS4uB4PIIt/RhCIk0jV9stIZ2Kg3rc87Ep4F57lR/+C/8Rnx4sFzzBvXjF9f4JL7gN5pjIFyUYaDGYFPF4yiM/16COoTdALA7fIAWbwzQX9651Ek8+cdENHPd77l08YMTyaHOPn37nhl978z1eiQOn7pLQFUaCz0UQpO88XQ0OlJ+yt7fcq6/gAJwLHH8t24c95m/kOr6WeVFfr364a1+fdic28Yy2J//ed9/KTTk3VGsKwtqR0p/TxwLItX6Pq9HFSMY4e+uz5+B2i3pd15RSyfWdzWSTONn6UI6Wi9yRx4Qdtrx1OhI7x/vP/S7+8T7wEvD55z/FONyjm+5xnx29t0y7yE2f2PZb+m4zP8hWiFTOxUmM40TXdTw6Hpmq8MP+0UMIEy9cXjAd9vD4If/ad307n3rxecZ3X+e5AcL+ho03GNMxRoh0lKTbuQ6JGHjDMDTHRAt86KRonfjf+q6Gy2OcGMOJbOAmOdjsePOY+PR3/n763RWvx54TXTU8eqCiIzlhKm0j51mQQYwFLc6go7pGOVw6X2VNH5riTFHR9aOkyT2LAIEgcBK1X8+5HOdio9rIuDWfFEqmE911RDqkuU/XNCw5hhi1UtdHnAVNv5Q5sz+OWFIz/FJKrfimSMib6rhJZHruG02ddBRLtRqV9R5ijHRD3xAiccikcKcV9EnuVa0jh1ncj+4bmYfiNJwLouhoubWW4zgLjYiRrR2HZujFM2OYZ5GLWV3SLRAiCSS063J2aTyrcwiCq/ei9X4zjmNzGOQ61jlCesw1tdOvihS38d7vF+is9UuHUTvwWlxA5rjQEDebTfu8Ll4r7+ecF06Xvn9rLXEKt3K7nKu1mfK8bg1usa+scxoL3VUJlSjhDbm+5qjsjwxDoXeKCIQWKZLXe9MRwtjmWzledW6TmoenWuTaqpp5Fbltjmpf6Zo1J0vmx6YvNNDBd+1+pjTX0NI0TVmbM5LpFpLiQikVenPf92AdMWdidUittUxVmKesu5pn6Te3hEum6TQ/T40gZ24xT2X9nJu/2inTe9VC/CSMJCyu2zDFGhwAXE70NuNzxBK5n0d+4k/9B3Svv86nzTXT8RH9ZmKbYMiGi7zB2IwZJgZX9oLeuoJOmYypjq/1hp5SK62Uaihc8iYilRPOl3E++YybDBu/4RB7jn7LzxxO/N0vvUror3C7FwmTIQ8OYwqKucm2ObUAyYpaKbj0zSVt/pvtyHyY89+JTTx77Q6RekbbOhr8tTym/neu+Swlmlk0e58GI69pNS1Kr6mAKuE4Rci2JCGXn4jJJYdkpOO06Th4w8tp4LXseMcYjv2W7Df02eFT4VqXyLJtD7sW6RVDyM30p2QSOMAVcTufDbZGDPtuIOVMwOA2F3zutXe4PkW+42P3OR0fsdlsMbHmQuSEIZVobr5Nd1rXbJH31jQpWOZRzDkMRVo2GhjuPeDdJweGex8nb654HAxR+Ps1pmdMMTym6aSu4zy1bpGPIHkDMZ8dT/35c/eio+q6YCrcFiJYn9+cmU9res65flqjr097uIhDsXb4xWmTvzXadat+1Wqs2jjnM8GHRZ7EfL+zI1PvYaUYJ4aaNabk4aUSbW8oao3EZ3W96+tfj8tME5upifr+dV/Kj843kXUkxmqjb63m65p+N/dzXjhu2mBsQhhPEY/QjvJ6XWlDdO3or4+1RnpAqF1hIT4hDoHuF/nOum7ROUdq3ZdCndVO6xrJ0Z+V622BCeZ6VdJvZ3MbMYv70MGDtsZZrv+nrRVByMoAVBp43y0oeznN4hW670NFLuT1vu9b3uT63E0MRjl9xDmvan2Nej3q9aTHQNPybu0vq3Ur6y+vrmstXrOek2cpykLhi/O1rcdX34OgmFpxdH0PmFQfl6nROZ2BzhhsNpg4svHQETl84XOkV1/i8nTi5vAWF5eufBbosCRvMTbTmxpQycxOlMnYXHJyTXYkQg3OgMiC3N6/DTkErN+xj5Au7vN4TPzam68T+iuCH5hOkYvtBVPJQC5lTUzN6zNFvTQZCpOExF27a78V2p0j9Yy2cxv/ByFN5z63yEepiaeo/AxnbKljUznunbWMOS6OfY7nvzhPpaclKse+RkizMcRTLhHELmNdAgyHGHHdlrftwFvPfZw34sQ/vh54+/LTHDpHNB1Eg9s4TjEWpe+hY9gO5FhqMOGK2ESJyM6oQYnqJ9zOM04jF4PHdIbxOHF/e8E4jkw54rcXHJLhlZuJ1x+/jXOO3/XcFafphpRGHBFjLNbYliirI+8SfZcHvjbUJDqs+1//hFpDJZsihR6t4633n3DxsU9x9dnfzVthQ/I9voPBUugY0whYvO8xdclmU2l1YWpIUKvfohLj5+ubJXrPJbBLlFWoaDriqlEuoUeJceIULW9tkBaef8k3g4z3M4pWXqkiKmYuOKuNaZ0DIUp5sXBZi8BDXiq/6bUj9EpRXRORBJgpTt2wJYWloZZFslnR+VJ1qgQNzTlzOs05WsXAy80Z0Qn5p2nOt7GdL3l+k0q6B9JU6mhZWxwtawzHishoxT6NEDYkxHe3EDxtpMv4bLdbgHYMcSq1EyLUxvVeI5+ZKYRjK7RlTVEO1BH3ZpSnGeHWe5FGTtfO73pNrfNu9Nxb587I59fHAFqNtZwzh8OBYRiwVeBAo0prFFajzzL3hdqnx0dEQeQatBACLB2nGFKl1IV2rhBCNbIVepdnp0Kol0Itbg5mpaKKWMFaTESM/M77kkOorsV33eJ+5TxaElwHWCTPqpQTGOr78xqUuV7qrDnGWNecnSmZ3ntynOXopZyCr5RnZ8FQ6hd2VZG07aeANcVZkbU/HWdFRYDj/kByDus9Q+fbnqKl0q2Zgytrp0/6DChojzElGnjmWSvfXZcHkc/K8bWzllLCK6qrdx3WejoiPiZ2znC6fsj4xit8+S/9h3znBRwOb7PbTNzfduQ04l0JiMShMEN8LnUnrS0CoCbn0lkmFdSbRBQquSly7q7W6EICRBQ2yYube7x+PcLlPX76vUd84d3HvJq2dNsHhCmxvbhgHE8MjobsGZNJFrIJ0Ii+tH77WrYPsnc+6HN3NLm79vVsd47UM96yKLbm3JJH5XWTz39nTQPMOZdincY0hR5jDHEKWGfpKy0rhED2t/nf66gxQCAU1b9qZIZxBO+w1s8UIK+kn1P937Dl/WB4Z3ePn7jOvBZ7Xn/waY5+Q6p1MHzflRpUO1/U+YZaZND1dN1QaHymFMr0zpNNkW5NOYHJhHTCeV/yv3IudZaSYTtsOE0jGEOwFru7TwxHfubXv8zwHR/n2z52n3g64mJk13d4Si0U33WElImq9kzXDUBaOE7GWQbnsankojU1vgJvFGSsK1WjTjnxJHim5Pjkd/5eTnbg/ejwl/c5hcw0PWHTFVnklAM2W8ZDwPWVDlNVBJ0znA7H9kCX3C2hL8UYOZ1OoIqZyliujf4QQqFjIHkLEyGnVkC4GI+GKRWc7DSOszMFhBg43dzgva80olnVSqhaS0pWMehO1SkVqpkYg2KMyOcLRecEribaTzO1UuYrgLem5jqV7282m1aTRuamjhbLevDek0IxfpztmGvKGGLIrS9jjGy3F8t1WpHdruacyHrqh9k4zzljnWvqZ6iofzHGDCkWFHRbiwxrJEI7VS0HyPWAQhVy5ubmhr4vuXTWlrWdxqkZ3i0vKVNU2sZSU+hiu2Mcj7coS9ogb443CWuLYXyKkUQ5nvd9G2+Rf1+jaE1GPCZcrd8WUlw4QjI+WhBBHB25d7kendck9N55js1IqqyNFvDIs9Ml1wzFoO59cVbGcWQ8imqhJZuEtZAzpBDr2jGAbUjfms4o81LmtsmWw+FA1zklAmOaBLiozVlX6bx1PV5cXBBSZAqhKrNV4ZUE4xjqPmgYg0KF6sXGGBtddEqlthpjyeGZVRAT42lksykO5/F4XNQYG4ah1KM7TmBOxSD3ZZ2cTkdc53Gmq9TFka4bOI4ju2HTnA3vPcfpUPebqea7bQixjI1zXV07k3KGZyc0V6PfZJpzFnKpJ+eNLVQ/UenLc0kBHWjIDohg3HJ96TVWkK0ibqP3FvmMRptlrGWdi6M7jiPGlhphZc1EYgTbdaUA9JjIoYjl2DThiPSHx/zUf/aDfPmf/EP+QHqMfX5Ldtc8v7skXz9m2/eErSV4cCRcTnhr6VwZe2dNZX2UotPiaBtRygyGHCM4SwCstyVvN0w4a3j34UT/qd/G5x494kdffp19t4PtPXLyXG069ocD9x5cEffXVY+vQmFGAmapOVAm21pz8K7dtW/tdudIPastzfLn8iurSKnUfvB2Nk7le6KpJyIS2S6NouZkVVGBMYYmr+6MbUo7jfMc08LIwcNkIjZGXM6Fguch5UAMmQ6HM55jelyiZG5LjuWBu8+RcbvldWN4KV/xXn+f4Dqct3hThTVixrmOznQ46+lNh/Ee1/UVdcotuhljJKea7GsN4ZSIsUi3WgzB1PtMESMCATGyGzacMHSd53i0fPHd98kGvuO55zDhyPH6CRddT28N+zHifF9KDGbwrhgLzvtS0DVNJFuk1s0EG+sJRK4JnHIkmUzvPF1IYCeuxyPjcMX7xrB58Amu++eZbMcxWvw44XLGuoEQYjUqIkPX0W+7FvXV+Re2ohJTTAzbHSCCE4Z+s+V02OO9hRTIMdB5T86RFCO+cvbFSJmOkWQsfe+xGAbfEcdTSerOmRhGvHccThPeFoRpOhUnyQLboSJWNRo9xurkdcMs10yZYpliBHrji0HhHFQEIwEYg6/5FGKgjMdTQTpSUf9KNdpsrW3UEpNjUd+KEzEUNcSEFLp0JAzOesgBP/SE06gknLuSBI/DiKT50OM6VxG7Dt8PTHHOMYLi+FnXEVIixoR1Hu/mYqslF7EoQo4ksLARIxXDKUwMdHQNTSiBAUEb1vXKmpDIeChIY5iK2qMxdIMvAYVpKnJgdX14U8ofRClzEFM7X0oFzTWmqNkJTUkKKEsfF0GVI0PvyTEQUsQZar2Y3IqLOimGSqbzvtHJjBE1MYP31dkfJ6Y4tnwXS56LE1tbUEIgTmWcLJQ6akCIEZOLYuNJjYnk7Imh23W+IQSCKPfdluNUrreT9ZQrDS6XfcJWq71zRdmslEuwxFik90mhyIm7jhgNCHWv7p1hPC3yl0iJfthUp2pW1kyprPGCdBejfEymSlUXZ+jmcMT1HcZ3VQnPEarAiDMQcyzPBGdJKeIrQhpSxMaMq86hzB1BC4sse6LbDOx2NdgEXN2/x7vvvluCEONEzOCcRpwDPlsMBVEyJkMKbPqObMuYWGs5hVIAVpxaX+dDoS9WZKoKooSYidlgfV+dj+LwUKnnscrzO2Pp6vqRXLcYU1VyhRSnInaj0NQcI8akKvgzi3oUZzpXhFAEKmKbn15RII0x7A+H6tSXIBTGMInASCwS6uX5WWiG3s+1wpIxnGJiH0e82dFFwDhiuqE3gemVz3P4+3+f//a27EN5f+Ret2GMiW6zIxjorGPAlh3UZLwtc8GaREiZ3rvCqKi7rKnmRE6JIXk605Ow3JiI2w7sD4+56gw+RsZP/x5+6rWH/Nob7zK5+7jhgj1gPZBGLgePPR6ItuylRdpP0OqVDfN1cKK006oDFU8L/n41x/8w7SshY2dTIJhzp3+j579rz1a7c6Se8aZRJ6vlqlNuyn6yONe5IvoY+QPWZ3vvzHfLy0t6G9G0hwW5MqGdFAA0TCkxpRHfDSVKFjMnHKG/4K17H+PlyfKjh563rp7n0F8xAr3JOGdxfaFjWefw/YDzHutqfZ2cMd7RqWRkLV0sUeut2zJKrSBTHsTGO0xIpKoklmsh1SlGNlcPeOnh27z17hPc7/kd/LYXH2BDJNvMeDxhnYNcInYhRcJUqD3TMdI5j+835fUwMlXjZ8oR5wsRL1LpKjnzJCROtuc6e77tu34/ob/iYe4xvseFEuHz9cFsvaPrSsHGlFKTa4aljK/O49AJ/xIxjTlRdZooKNrUDANBXYwxeNfjnNRwmaqB6XGm0FyKYZpJIeN9R+/8IvE6hUhXjdDT6UTIR2xX0KOcTHX8ykNkpmU54jjLy7dcB0NDdYZhwHjH++895P79+8QY2e/3hZ6lqGkNraAYOL31hFyOgS3OgK/9Mk0TtqqHCZJxOhUnTcRXSnFdSwiFuqcpgFr4QaMa2tmR86zry9iuqoJV1FJylLybnRVMKQQsY7lel1qEQK5HBDaEhiZ5MSEEwqkoGRaDNpfCuYpC6ZhLK+hcn0XfUIzM7XaLuZX/oHOb5KVSx2i/3+NQFFgKNSvkWWa6s3MdKTG2ZW7ped72LEUXFJRAo1Xr/tKUtxgj1uvaPrOUtsUwHo5tzJw39G5DznG+FudA5eG4Wgg1crvJuPvOttpREhTIeUarpmnCeUEnOyAVxzdGkimG4m63a86t5LUaY/DGNqcVoN8M7d5Eyr/vHGkKC7VCyc3Tc/NUpd+l/3a7HSEEdrvdjEzmyKYiUeN4bPOw1KiCUOmypzDRbS8batjWSSoy3A0VDqFKoC/l9/V6kzFK5EaxHMMki6G8lxMpJlyeg4sy54Rq2RQFTcSmipiY1NQAYZaSl2K5UxzbHjcMQ6OI6rlTZM2LeufxWM7lK7XwFKZa5LnjeDhhes8OT94f8J2jM5HnTo9Jr77Ej//57+H3POjIx8f03tFZXxxVZys6VoRwugTOVn1xkwoNXZ51pjhQYHCVemdtmVPRZ0xddxvrGR8/4XJ3yZgTB5P4qTfe54c//xqx78j37nFImWxdcYyRHLqMMb7kQlX6e/oGAk86xWCdU7tG05+V9ixe01372rU7R+pbpJ1L3v+wbc3jPvf+4jwxF4nVDOQimJApdLtUKeVpSgx2U1GDQOwHHruOL4WBl3PH2+6KQzcQXZFFd85hvKuOU/nb1hojqaZiSeRRtxgjwzAs8kSAhYENNA640KmMMZhUKHPW9QS/IcTAK+88pPcdL3iHzxG36UnTSK6JvImMybP884IWEiNjltpOYKLF54yJ5TtTzuR+x34cuXj+RY7RMI6ByXSiO1AMHTurb51Lkpcx0bSwdb9oBS/ve2LOreK9Pu6tOaSKz+p5sRZ/sKr4ZstTsku1MJEQF8W7dZRORmaZrL5UgmwUmupw7Pd7rLVcXFy0Y69zWqxb5t9I4ri8pl8v6IVt/WFNUdNrhljfNSl4bbzrgqSaZrb+WTtaek3FUGmM5ny9m8RSqU4f95z0t1Cw1g5HMRyXqn7n6hMVVHJZaqGreTR6TZXzh8Vrcn49d4iGWOlVzqp6RXbOf5L+mcISPZC2jjSv97u1wbye0/reNB3LW7/YC9o1ZxZrKieIRGA5x3Qr1xZJqSCi6zU1C5RkyBZjZO2cF4poCKyf58VaXVG+4xVVOysK4VzvbM6jktelcK7UQlsIQ7BUmxM0Utems9YTqoOm59DaKSPP0vZe7VEpz8IqjTLKPAbnIvt6f1qvRb0vroVK1mt+IeYhiNeKirmce8vajXLsdX7hnJ+m+gRHzhNkW/Y/Sp5kzBnixGAyedpzb9dx/PLn+Okf/CEunjzh4fg2H3twhYu2SJhXNM9Vx0go/uWabKlLWLNOC+pfHWWVCuAwJOOKmh4Rl6DPMHQ9N4cA95/n+nTkV19/g7jpSa7jME1kVxQ6TQGRa1CwMkY5X0vwN6Otx/2rsYO+Ee3OofrWbHeO1DdR04U215Ln+oGtJaY/qJ0TkTi3zG8pGqUiZR6NIRpLNJ5UawLhqtHVQQ6OFB1jP/Bqf8UXJsc/vt7x/sULPHzxU0SfcGbiwg103VDqe3S+OEydx/SebA2TAUdmp/ImSp5S1/IaJCIqSdlWkt5zJqRYC4jmQsfJxUDf5EgC9lPEbl/AGPjS9ft84Z//Kv/qd36W7/zMC7z/zpvcMxO9Lfc/eHDO1lpTlikmUjR4Z9h1jidpYkoJ7wz2dMIni4mGEdhbeO1kuP+p7yDee5GjuyC5gcOUsLWIZGcyOcWCSKyMfkmaljHXxtFaZEDyNVoOUE5VPrwrdBM3Cy/ImIeUyPHUcgCA2r9VwcyLMVFRnUorEtRCjC1b6VGZSMihFDhdFbWcc24SnZ3V8JIYSlUcQyiMycBus2lGjM4FkxyYQj/zlcZV85CsLznWgtrFokwnkWnJF2k1h2JijKHVcZI8FblPLX6hqSW6fpSMVYyxUeR088birCPYvOiLMQZ8ddBjTrcMy3UNKf13zpn9fk/XdWw2m1ZUVvYD5xyhRuyttQx9oVrGEOY6dSFWGuzsNIjxLPfRhDrcLF0dpjmhPycxbgv6CYbdsFkazTmT7FIRUjuLa+l2LamtAwiCEMh1zDS+brFXyn6xFllx1tKrc5a8mIwfevoqzT1NE6k6f9YVdO+wPzTxDilqnnPA+81T99mUQ50jCYtt4iyipOicw+CwtgoeRBaKijHO8xS45SxP08RU88ykCLTcs6D5WsHSGMNUc5TEaQzTxLYfbuWWSQ6VHNN7z3F/A12HrTlxIRXRGKwrxcydY3CQzdLRllzfQKZHiYUYs0Bfdd/ofsxmFotpeZ1KYVGuVRvU6zwmvVbXNaHkuIImx5jBzqixfEaQbP38jXHCub4wCMiElPHdFrCcqtqq6zu2gy007+s3+W3dxHs/+6v8yl/7fi5ef5VP2QAby5XL2AydKwV6O1vynzoDzlq8tdWhKiUbrPe1htjsaDkjVFqLocOQGF3C2BGbwMYNp9PE8Py38yNvvM+vv/0eXzY9+d49juPEdnePZHyZ/1WZL7niTBUX8zdPHny9/z3N+f56tY9CAbw1h59RJ++uffXtzpH6JmqawqUjtDph/oP4t09renGf2yBuIQ85AYFoPdEkMonBupJDMCUSAeMjp7AndltevbjPj047XjYD77zwGfZuy1TzEpyB7GYUquQAOOzQ4bqu1tlJJX8nFIELrb623W45nU7tgdgoQapWjXOuRP1TIuapxIHDRGcgWoO5uOL6EHhyPLGxF+webPi5l99mNJnf9zu/g/Tml8nOEqYRmyKdgzSdsHbDpu8Yo2WaRszpRL6wBBO43u95jgGyIxtPsI6b3vLx/8a/zCEPjMMFx1CU+zYXxQBLcSzHDoHT6cRmV4w1oTBqo7lFequxoQ2Gruu4qaIPjVpUC6VK7SdR8BMHQY7RdX07n/eWUBPqU0rYWjtIClW2wpXV6Bi6qqhVDeNYk+a99y06LW0OBFjiNBc9lWs2zrbixhcXF0ypGOzSxIgRR6pR1JxjipFsinKXUKFMjLhu6QiJkp9QCL2dHUhfDXRBwKTPW1S/GqDWWiVAsW33Jv28Vj+Uz7e1l0vRX6Fkxkqf6bt+sdalltFiHTIb0SLwITQ8rVRW6mPdVlnUxWqbo+586xfpO3Her6+vyTlzeXlJrLlFeo7pYI4gMNtKR0sp4YzF+yKI0iiEzEI4mqIreUxSqFbXvJJzAWfrTS0QJrV3rnOksgkLhMdXCpMxpgZewA8943hs/SXqfpMSSJH8l3NNI7nNaM+mqSbGOFF0R8r9e/pKATzRb7atNpUxht1uR0qp5TQ1Op2gn7WYckjzOpumCVKk6zcNuT9OI957rq6uOBwO7V5kPsucX49Jo9SNI7vdjuPxuJAqlzmjkVEtGDN0fVPUDCEwIgqCc8HnRkc+U9agDlTbd7RAjaaAyjjL9ci8kHkiQig557ZX5ZRrEC5WGp6tcyph3Iw4lT2yWxSxttay2fTYVAsr1/tMWIypBaqtxxlLOo7EKZLyxGf8xM/8hb/Am//8Z/jtXcBfWggjv+PiHofrG9LFlr4kJ9E7j7eUHDtfa9BVJNRZizUGR1Hrc7U/LVBFTitCaNhEg61m3xPnMB9/np996wn/8NX3Cf19jruelA3D7j6nw8TgLX2l7WdjqtJfO/rCZvhGOQg6KKAdfFlvv5Ecqa9Xu5Uecde+pdqdI/VN1HREWm8g6/yM9WItlIhlEUuYYXCdx5HCzK0XZEIelGLUWYqSG7YgJyZHpuORje/ovWOsD+vRecbB8bof+OI08HBzj0OtobEzAbLD2qEYVLYITZS8BI/ruhIJc45NV5KKTV7WwhGZYS1tK/fd1+8n5gegoeaU2ESKgc474pSYYsZ1PZ2xxFNkwnDE8/KbDxl8x3c+dwGk5kjF3FX1qUiKiWxLfSopClyQEEuYCifxhGWfMv7e8+yzZzIdKSSS7YumSCy1OErENJSIYzXQtCqgGF86J05QOW00FnnifuFYG2tJFGPQ90XO2XXFaAuxyG93/VAQm5p4PU0z2mSMI4TqPGEYxxNXu4smLy7GaXGa5vmzP+3r+OSau1PQErlG793CoKdFfWcZ5v1+D85yOWy5ublpxkyLuNf5eToVdbXjeGrUv+PxSF8/K/0k89p1PYfDoQqVzNdv/SxbPmw3C3VDvcak7733bLfb5iBIEydNS1hL3pkumCxGYzazwIRdUVXWSdVy3NPpxG63Wzh70j+y1kWsQs7vxUkaR4w1TLE4fZeXlwvJ5gW1UikHjuNYxEeMBUpxYjlnuS9D11VkI8PxcChOVVUi9N6TTUHdRNjGKFTdOcfhcIC6Xtd0xGmaWpHl/X7fjit5UuL8rYMPMAejjDHkWIVBVI6VjMMYFGLkPNYWMRaMoatiEcaYlmeWKeIezi3FQZpCokYVc6hUXl3nLTJN8rlCxw3jhMngaoFhUkFzehHpqIEFQVGGzWZR36o9H4SWZwqKMthZpXBBpTQsUCGNQIrzKPvQOI6zw5ASIRSKKsaQjS3zmKoMu6IOippjjJFhu2G/3+Mr3VMXyNUqiJoWKiI7olKqVfQkCCDXrfP9ZD9oKp1dxxRKEMS7vr6+pGbKnqyfvzqIOQzl+XVz84Rt5+kHT8r1emUMyE2UI+UJkyO7GBlffpU3f+EX+OzFBdv8hOQDG79h2o9sTM9kHSUVuRYRzhZXn9GFAm+qWA+17mFhRkjhq2wM1hTqfKjjlg8n+qHjkDPT1RWPreOfvf4K48XHyP09sok4W467GzY4DF1Vq0x1f5pzpZR98ZS2yI3Ly5ppX6mdC+6ulWd1cFnvl1/LpoMJ62s4d73ra9Zz59x7H6XdOWHPZjP5bmSeybb/E7/vqe/pIVs/cLRSla6zks3Tucya751CXBiL6/PVb4AJTA6iAZ8su1Aw/5QtwXuOm47XLy55NTj+0WnHr119O8d+x4Xv6YFLa5iGK0K3IdnMdlsEBbz3YA1+6Kti0yxJ66rckmxKEiEVBECM0t55TmEqDoKdk5pTiC367WMkHQ+EnIluyzHWOjYE7DSR9+/h0xE77vk3fv/v5TPPX/H4rdd5bgAbRgZnmQIkHNkWFb/BR57EAylnphRxdkeMnmu3JV/co/v0Z3nSPyBSlOOy8UCJYg7DQNdZ9tePMSbTdcOt3CdxFsRA2Gw2BbnaFERLjOBhGEqC/6oO0XqjF4NEowrTWL7X+WGmAE1x4byMYSq1vKrDJNcyHku9pm1f0JwpnJhSSbQ2iHFsW1QfimzzplPGTlUSm2Joxq21FpxlvDm0aLEYM2tjK6XEaZprSDWjPBVjkCS1qjzOFmdjjHO+jwALOoDQ6uQoBbsFHUz96Bo8YpBqh7jrulIk2lpSFdRILHPhBM2S/hZjUdocLac5cxIZl++IIyIolUZ21nlPEtHXRVNbjR9mIQa5x/1+z3bY3ELAtdHUpKCrEyCUzRBCK6C92GPqGKwdHz1fRUSjSctXQQ1BrgSxkWtZUwM1IjgMA1bVuZGx8H23MNQ1xVWLemgnQ+ZB7weKAMPY+jLGKt/vaOMqa9TZrvWztf4WjVNTGNe5PXJOb2a6Wa4O0rDdNOrrMAxMKcJUFAilvlNKCVvV5OT4ISfGw5Htdtvmxa1c0zo/xVnRTtLaiHXOMd6UQIVR4h7WuzbfGtoe57mm19KCdm4MxyrZLmMie5+uF6UDD3p/kHtqcyonTuOhIrF9XVd9Q9Ga0h5xFqlQgYrD4cBut2O/37PZ9KTxRCSTchU1yZbOGAgTG28YnCGFPS+YQP7yq/zkn/kP+QwHpuMjhmGis4n7eC5zhzMw2hN9zd/snMfbUt/O2ZKOap0UFZfSJnP9O9OcqDpnur7UU+wvuE5w7Tz/PGd+7rU3+XK+ILgXiMEy9A5PddixOGNK8V8D2SSiLflt2X44Z0j3mXZ8Pkyb8zHnos3n0hY+zPEWysbq+B+m6ZxJHVT6oOtY21gf9N5HaTln/tz3/52v+vt37evT7hCpb8K2Xohrh0ei0dIEkXpalKQ9SENoKoE6wn1707Dk1BFtEZbOBLK15OQ4DPc5Djtesx0/cj3wlt/y8nbHYXNB9B3YHovDWIfrB+g8ZjPTsKx3jYpnTNUGi6VWBhRkRcP68qBcb3bOuYrCFAMhUwQSvBirMeA7j88lGu6ZMMTqSEb87h6HGxh2O/7pr77Ov/pdGzp3wdZMXG570nigKChlMoZoM0/GAyZmts5jkuOtKcLlFebFb4ftfa77ewRSiXpGyCSc8VxtNiSTyDGyvSyKUJ1dRuVlnFqtHGbjRRsHzrmG2oiqneb+6+RsXZS1OEynOY8inIhx/lxBCrp6HQnrLCbNCfyn0wmqgdHyC9KE7SqSYqRWU9ciz2XsukWkWhLg18n1YpxqZwNo16ajktvtBah8kGEYSGGi95aaUkfXOaax5jBJkeJezS1bEtHHGOiqYSROixji61oya0EOQVfWYiFpmqlIOLu4p1RFVbYKfRQHYS0UUlCMOY9F5oSgfTAjV+I8rZEwMVbFaZVCxvIZcVRkvMRpjiHecjQ15VT2kEX+WlWLo8p7h0oRNSnTObswUrTBpANAOgdUEGnnHJvNptFZ17Wccs5cXFzw+PFjuq6baWnVkToXMZdrPZxOdLVmk0bE9DU1ymSci0jrHC99X/L5ct0Rg9QtEid0rmPUVYM5pwSVrrwU/Ejs6/7X931T7dMMg5ubG3CW3syGrxi0to65XGfXdZi0pE3J/UhQReaYzJe1EINeh3rPMXE2PlvAz0BIkcthINeivTr6r+eS9Kmm64nEvYyhnFPOIXRXXW9MP/eykvkXNcX9ft9eK7TBooCnKZRCJ9xut0VGv+5BBa3PxFTXaTZsnKHvB8ZH7xAdfGow/L1///8Mb7zDd/sez4H3To/Ybbf02dJhOPiMBS6dKzmTJuNyhpSwzlTp/3J8W5+JzojUuan5TMWJsgasNYTpyGY78Mj2vGku+dKjPf/1F1+he/5FDmORTL/YDdh4qt8rNRkTjklEhIwB3CIo+0F2ifT1ufzHD9P0WH41KQu6/Uaofrq22NcD8foo7U6s4tlszxaR9K59qLY2EvSDdR3plc+vqX7rSF+jpLGMCp5buDZbHJ6i5lMjpJQit6PbcOM2vBENr6Yr3rIvELb3sL2l9xZsD64ndluit2Q/J/Ku87wKxamIWzhuJwdrTr2+vzUip9/T+SWmGrGYgMuBziRMLkZSNpZoHLnb8vCY+Il//stMrufquRd45/1HhFTUCEvOUCiRSFuvNyZSyBwSdJf3cM89z43xHEJFUgilUGOKmBSL6lJmYXjL/evx0kamGGhzMc2lBL6WjxbDby2QoCPu5T03R7frvNJOXJMEZ364yXl0npKmH+q5qRXANNVKRxzXD9s12qOvbz2e5YWlISuf0fOl5fGkqUWX+74vMusq4r82Etcy5vJbO3zakDy3ZkURcP1gXq9XHciQ44ozo88hhqTua+2E6r5bIwsaVZNrkPkg74tRrvcK3b/6ONrQXlPpBB0Q6pa+18pfuoXurSk7msop1ykOYkqpIJ9nKMyCyInze319XYtZu8U1a1rZeg/UtbT0eOq8MD3v9T60nic6uKHHY70O9P67/ls7OTo/TPYImSu73e7W2K+vXc9XnVen8070efX59PjrdbG+f72faYl674uMtja4BTXV16qPsQhKqL1fy95rSrSmpa/nlt4D9X4i80jW17qvBBXVTAhjTKk/p9Z6DCN5mtj1no2FRy+/xP3332W4fpcn77/O8fF7fOL+BZuU6WvAM1cGiTjw5f5vUw71mtS/9fvy2rbzTNPIaej5lffe51feeYS7eJHT1LH1l0VqP5xwiLAERQDEFhQq2MI+iaaxcT9UW+9xv1kEKH0NH9UZ0p99mk10135rtztE6pu0yWKepkKdOh6PzZiQ6OGCCqKQJS0ZvH7w2L4vPOwENudSvNDOD/hC3/M4u8FniXsFRtsxuYFXXM+bqednpp53Xvw9PDYdwT3hoi+KauQNyQ2M/YDfRKwvhUD7flOMwTzfn6Ukt+aaG5BVDlLL91C5RKAknFNqOVKC8MQUiVXZyvUdYTxhKApjnTdY6+hcyfk4jYHN9oon1zdc7B7w+OYd/slP/xLj7/4k3/Gpz3Dz+C18SDhGrE2YFMHClDIpG9L2Ht/2Hb+bm37D6xMwbApZIo14A85bplyKi46HfZV+L5z/WJX0NjUHQd+zPFj73gN9yzcS5Egiqt77cqxGEfOMIbDZlGjreDqRqEU9q3He+1LnxuAgG5Ub1LfcmGEYSo5VTlg0siT1Wkqkf9gUQ/U4HUkRYhwX+VwS9R3HAMqpS3GJNB0Ohc63G4qUvkY4tKEvjoQY8UJl2w5DSdiPkZyFuhM5HA5stxfEWssp5Uw4HpvEfq7za9vPNXlubm4aoiHKgZZaQyYVVas1IqNpLRo9lMh6MpTxrn0i61MjUOM4IgLHks8lqnydJNtXRMNi2PRDKVxsJW+p1tXq++a0hBBaPbYYY3m90jSF1qRzVjRtcDyeWm2zYlyKYVLye4oRWtaVU7TFKAhyraPlMUVFk0KzWsih1z1srewna1zWvwjNdF3HkydPFo6FdvqHYeBwOLTPFnXJuh8aCq2YGeGWcdput4QpNXqrjGu7JjGqUsI5GkIhqIsReXI7ryfnZlEcuT6RRDdK9t/aIvAibU17LCIHG0IcS36emxX+uq4r+YLHYym07jxiw7ZgQkjNoQQYp4nOzlTxYRiasIXMXWtLPauCqFXRHyMS5rnlseLABgtBKazG4njsjwfu3bu3oMiJSqJGmLTiZVvXp2MLeDS0WTlI0q8yhyQHUpByCQKU+5nnSIzioAtlc8L7Hu8tMac2p0JOTDnRDT2PHj3iuXv3maYTQ9dDDiSTiNlCAhsD3mccJ3bTNQ9feYl/+Gf+NP/a4V3YevZxzwu7+6TrGy6GnuAgDbDxhi5Zcp5wgr5VOmxR4oPOzUI/JeDocAmQ/GUotbkAj+Hdm0j3/Av80qM9P/nO+zzJPcFs6eyWLcB0wHa2PO8xJJPA1rwoq2X9LSZXOuGHsFO0Yy7P63M0u3NtLSChnfiP2s6d88M6RLIeZA0+jdp3137rtjtH6hltUrtmHXnKORdFKXE4nC35JJ3HAVMMRfSAAv+Tq5JP2SGB+jeQYyqGQMr0viN3HcFCSqZyqyMQyGkEA954bLakNHHMkS6X3JcQDHsLewevu54vTh1fdp/k0XQi9oHO9eRQIs9db3Au0XWxFOC1rkldz1ShktQtOVLWGo5xwuGolgadylNINZIXVN4H1HoXuUT2JFF73v0t1pQHvjOOOE3sD6da06c8gFIK7DYbpuOJ7eaCJ4+P/MLLbzG5gU9tep4bLHaaSMfHdM6xP050917k/QmebK+4f+8FbiK4VKmLOWCwhFSkxne7S3KMpGmiBB1jMTzJJGMbdaVRHHIqVMIYOI4j3vWQEhfbTTUuJzZ9hzEQp5EUJmx1umLMbHoPKRQRD4qSmzEOX1LPShJ4t1P5KELpyTU5PhHikRwtxg0cpglLmimEYaJzxaBOYSKlgHUdh5rXkIBsSmL+WAv+YimS7DkXp0YQ1pozsR02pJgIMQGF+tTGr9bHEQn84pyUvJTOGaydc31KUWdbC0hauq0jWQNEUk5goOtLUU0DhLEo33XOEqoBu91uZyShrhmbpWi2wXSuybxnCnUop2KkCTWy632Zy86BKQqNTbVOnA4KncsaQ66OvhPjnSIyYGLEO4d3huP+QLaFAigFMztnCDkyjUc6PxCnOo8qYpdjLEQgU+SVw2kWHhBVsuZA1bo0KSdyLIViiYEUQgkAyPskYqVmGukELL2IUKRCNzVZGTF1T5qmiLUz6uN9X1FO8L44mMfxVIUqTJXytw25mGKiE5l1lW9TDObE4XAiZ4O1virlpWLsVycn56p6B01B0RgD3pNTonOuOSLWlhpp3hVFtkY3NAbvbaPI9v0sxOJweNdjukxKkXGshbN7CQTNohflmieyzUxxIop4QFVqm5Uje06PH2LJJQBQi2v3w6YFGbAe7xzTdMQZQ9kqqzHebZbojO0IYWzGqjiefd8vaKDX19dljOwsYrERilyZYuUep4muG0g5EsYT1jvGMHHv8oIwnjidTiUfi0zOwi6I1YmEUgR5SR+UosQaCYI5/0zT+YwxDaXUOU5aAVKcQymGDBR1UFPk+611ONMxxaIcazpHSCNTONJtOiIRazIpjEDmRMK7ggLm44EQn9C5gHnzi3zh//e3+G+ZiOkLXe/+9oJTDPhNR+wqRTQHXExFxMRksqmKvFYcgSpnXimYWEfAMsRK/zOJA7EIadQyBdtosR//nbyWHL/40q9wYsAPl5wMJDMyZMvGFS2/6DqisbjqOFkDpLXTcBsde6odo4IZ8u8PSws8JyDxURGtp+WFP62dZeAopFP+/VFRqa/m/HfyBd887c6RekbbuQUlDwGJ6kg0fh2pPLtoP9SaTJSspGL0YnyhuFkKXzpafO4xtZ4F41SijBf3eOvyeb50zPz40fH+sOXx1SX0jl7oX4CxDt9ZrAXnSj0dYy2u8wtVMInCCxXHAGaaamX3Jc1CJzmfo/JRLv3s7VtfRCKmKRYjd7DkEEHD9ya1qP7m3gu8ff0Or/34z/A/+u/9K1zset57+Dov7jY8ub7G3n+eVw8T/v4LPP+7v5s3xky2Hb7blGPGQIxzfRdRedPUqM55IpGQTEtwl6hxnGZp38F3TNOI7zeLpHctCtCU6w5Hhu1uEe2VqLKm4hU0ryjsrRPNY5rwXRUSSOWBOAwDlpIfNU0TzpTcozJXizOQzRxdvrm5aaiL5OsUI6F0tZYiFwN5ObdTk0pOVTRCzxNrwRhLNkVQQEfW5W8xkovYQ3nID/Vcp9MJk2v/bIqReTqdMH1B5JIy6nIudV6QIIdVNDmcUpdMar3G1ufyWxsJenzkejvnMJIPOBY0rrxejME4jRWdLBTY5hSYjMsF0TU5kvJMw9RKao0mVveNtbKh/oytcRm5577vCXlG4aSYr7W2OsVAYuGUyTGbJHZ1wlvOmNrvWh041S/pDHq33hP6vm8IvYiOSFRc59YlcgnCpCVNVOc16dfXVDbJJxMBDH2PTWxDlWooE5+S51L3RVOpnt53LUetXINy6JCxW9J2jXF0G09R2ax7gMxjNa9SKo74eCqOke83jYGg8w7HUNa0DkzIfWrKo/ceUqx1k4rEd5yCOp+MRySkhKsKjd521bEpkv8l6FICK7ImxWlbl3yQvWisDAyNPGkasqb7aYrmzc3NAuUq899xGg/N4ZJ56LuiRolJpAIZt3UVRxg6R3aWmAI2lsLDGZiswQeLPY34TWZ/esy32RG+/GV+4nu+F959k4udw7mSu9Rj8U4CfFUcwmT6IvaKN2VPc/VHqO5FVKIWrwZMNgRX1PQsmYvNjjFM9JtLTtnwBPjJtx/zq+884fXRkO9dccyAk1qQiYgp7IyW7WHbs/NcuzPxv7btQ9lwd+2ZbXeO1DPaziXvasqJGBNrbvpvZAEaEn2aiPQ1R8iTTSJQFNrImWh6Ousw04noDWmz4ZXdFf/otOM1f8GXr15k9B2hOzA4h3V9kVuuinzd0LfCu0YcJ2taVF4MLZ1noP+tc1N0PoLm6X8Y2D3LsWqEXlp7eC+ciITxHfvTAWt7Hnzy2/gn/+yX+B/+d/5luPw4Lz1+n+c/8e28cRr5+Hd9F6Hf8ubNiby9j3VDQVTGQM8yd2WhlqjUxmKMDJuLaqi4ptS36btGeYuxFOucamRWq5NJfwn9ayHtXM97OBxu0T+dc0ynsRkmYuyFMJJjblFbk22Rg45TqXQv5zcwhiKPL+NqBW1aqXpJ30oRXG1Enht7LSet57g2nsSwDTWq3cZaOcY6D8OY4ijFSr8q8s01aqrWn8tAVPRWZmqhqFxmIn7wzaBeJ87L2vS+yMi3cgMq50uPhajthZSwzuGNwQ61PtUUoJQjYgwRp1AZaw3TVKXjbQlaYG2V2F9GddfBGpkr2kCdpglvZY3N66c5DEHlPCn63Yyiq0Ksq5wtPd/X16JrGzUxhIokAAuJa3lf58I1ifs6D7SaYHMe7e2yEfIZTSHV1yW/Zd5JbmDXdeQ4B3fkfGuhiXJ9oa4XjTjPNZHKXC9mrfceW2sROde19SGUypQixlTnjtk5boGlXLgJKRbad86ZqQUwZge2fH5ZbFrWoGYL6LUr/S6fW+/RXdeRTUFRxSEua6LMB5lQxYG5rbCnHVq9F+h8zLZGVb6mvie5bnFoF8GKaWK7KeI+p+PYxl6og61f6v6Qa/Cyq2ZTMqXUAyZxSiUAeW/oOO7fZIiJz3QTf///+f+if/U1fu/W88jCKYxcbco4DqY4Ug5HZ3NR5TO5Fd/NCaypohJVcdya2dWhFl7uMIxdItmIzwmmCe83XOeBQ7/jF44P+YcvfRmze47jZlf2iX6Lc4XFYiqFb8qpiEx8nVPnvxWchK8HWqT35Ts06pur3RE9n9G2TrTWyZrnjMpzn/2oiZUzTUn06AwJVzjRSahyiRyLuMLJOvbdhtfpeDVveNtdcdrdJwzb4hxJ+kB5AoA1WDcrYBVqwnk0SUcT5b60IaPvdd1vH6bJt3TuxeJ9/TCPGZxnu7sku55ThMdj5Ed/9hc50HPx8U/z2vsHzP3nGbsNN8lg+gusG8jGFnZlzqUOyJnEaU1dEUNPDCxtMLSirRXN0UjUWlwAlrk25xQa14py69ph+hr0nNRGYqPGKMeg0Te0vLSKaEuT7+hrWve9HHv9XZ2nsjZW9TVpg2hdxFhfm3xfF5PVioXaAJO+0f2ugxy6PzSKsRYOWNN2tTOwFh3R55TX1ven0UV9res95VxSOswOyLm1cG5fepqYgv63vjdBhNaiJ7posT7+WghhLWQgDo0eT703agdAUBaNtq0dSr23njvnuq/1GlgfR681Pd7n3tPUoXkOLKl+ep7rOSVrVF/3mgpV9p6l+IucS8//dXBH97X8FsRYzqP7+9w+sf5bziXOkO4f3f9P29vXc0Tvkefm9/p5ovtvvZ7W52tUv6z22QwxBMi5UOyMAeeJGQ43R7AwmMQnLnccP/c5Lh6/h3/ykON7b/LcduDFqys6Y+gqAuWNxTuRLjd4Y2car82FBmuf7nyYStXEzM+QYbPjGBKhu+Axjn/x1kPGzSVj1zNaw2Z7gfc9heRcc5HlGX3XflPa0/acu/bN0e4QqWe0nXsoisEhxo4WWJDfv7FojyXjiMaQa+0ImzM2BVw8YZwlmUBImdjf46XNJa/S8+PjFW899xme0DPhMa48KLabS7zt8H1V5XMOU2uXSFK/tRbjPV4MHpXo7pzDaUUqZbBo409e07lRX7F/UY4MMwIzpYkSxJ8NiYurnuvra04h0G8u2R/2mO1zvHE48Pd+6pf5zt/17Xzqs5+l+9RneC9ZgumZcKQpYS10xjD4HsLYrlmMVl0TR5AXLfkttD7vPSlMjbbT+4I4GTfXoun7vqn4CfUOCtXH+lkFSwzJtTBC13WlCGj9zOl0aO81WhW1IGdQSEueDeomAhETxAlTaYKbWixUxAwkihxCaFL3bZwVOifXLJFxHaHWxqkYSqfTqU2AdQL64XBo1J5pmor8sagextToKguxgnpuERHwthrgNi/yusgJ31Vjsgp1AE2aughgjC0XRGi5ohao171Wo9R1nUTq23nHVGl+fjMrDWpKoHaGRWZeC7RoZ1OMy6mqvK0dxDY2yghtEvV+nkv6WkXW3Si6qdAth2Foc08bznof00VtZydiVrkTxEi+Jw6V5NdpJ1uMZslxaw4deeHIy2c3m02jg2rHT+89WuGvJdArVc21NLj0l9BWnZ3zdITOJqIxpb9KnSCZD4VytywMa4wlZMl7MgjhyuSS/xjVWuoszZnUznKje9Zrcya3NdIosHUM16qPsn6pe4LsTQ258gU9kjzKtRO1vdy1OWF93/pBo+drat9pmhbFuI/HY3OYNV1RPw+1wyv5Uikl7t+/z+PHj4EqKlL3J41w+74jWjDZ0nvP0G+YDiNhynQbT/QZLKQx8eJzD3j0/ut816Xl3Z/9UX7p+/4C9/fv0F9kyIHBW/onR7godF2HYzC1NpQpsubOFAl0iy0FdV3JyXN2HnOHqQ6UFFKODKVaLpieVx7e0D//SX7+4Z5fefNd3nBXnDYXjNFwdXHFaT/SO8NWyhHkTKIydvNdbP3DtA+b5/VRj7kOTN21b452V5D3GW03f/L3fdXf1Q8PYJG8/5Wb5WQ7wOJywuXAJu0hjUzGEPqO0O14dfgkPxwueYkdL937DIdUHkC7zpOdJ20v6DqPdYXi0fVFgc71XUGmOhVFXk1BMTrWFJJ1ZBNYUH/EULQKfVhHjXWEsqEMWUk2J5VvMJX3YwiEKc3OXEyM+xtsDsVoCSeys/yb//b/mmTL/Y/ZcXNzKA/9FLEp4XNRKJT7046TGA7tYT/sSGmONltrIc1FXqUI4xjSQipY8ozW9JzEUjFJ338ztrquiSxow0moRkuEZaZiigGz2WwYax6RjvgvqEaraHkxtFQtHoV23EYnI6fTaWEoaal8aTEvx1mOK98twhgRk2dnVs+flFKra1b63rd5uXD4yApNmWWDc9LUJL0uHZAWfafpaQvkwigHNixlslFzJmbTUF2NWuhgi3MOy3lUSTddH0bTs+JU51O6XTLBeCX17eaclrEWVJbiw0Cj6+lggZYul/fXzo30fUix5UBJ3s5ms+FwOBBC4MGDB8XBCUtjWlNe9VzRhZDFENfrYo3qaMqgzpWTfppOx1sOvqzN4/FI34sKp64xFeYxWiPHlQqcouzp835R1l0m1zy/qToYJs8ItN4DLDMFPCSaUIGeg92wJYzHtl70/eqgi+RDijKolp63thSQzjmz2W0ZA5gcFwIQqQrN5Cr6YYzB+rkenM5xuoU0+7kQsL5HvTbXCL2mvws10FrLph9arT6R0dd5Yyklpjhiho6QS3HpPBm8kVpWCTdY3n33bT758Rd48u673H/8Lj/75/8sD/ZPeP7hq2z7I9lntsmySYb7yRM3da92Bm9ddaDAGoOtCoHOFYEkb3NBpkxu5yySKFV4x2ZOpwP33JbO9TxJjnef+xi/9Nob/OTbN4TugkPcMm57koEeX3KzclHNhERymeSKYFMytx2pr7WJ+LXOAzp3nHPsla/lNZ1Dqr/S5z7M5z/Mee8K8j577S788C3Y1nQxTdfQP9rAbQ8wzKxYRMDliDOZaCwn4Oh79psdb5gNLwfPW27HYbgkm+J4bbJhi6Fzm/bA76ocd0Oj5KFXf4q6lCmGmKmKhdYQcyLmYqCJjLlGntbUIn3vna1S6jGVCF7KmFSpFKaISjSj3SjnU6fRurmGh7G5SR0XOofF+I7sHKdsGXPmB37gB9nv9+QQiaexcN2rxLm1tuQM6fuHW4ajHH/tAAp6sa4/o50PQS00VWfdX2KwST7SmkLqO4t1tMhxMUBnyWy5DkvJhdLUHuycjH6uHpaMz5rGsKY5idEk9ydtbeRoapD+t9yrrnslzqEWOyjOaZ5/pA/qOeRvmUM6Ih9zutV364frmq6mESAZXzHwtcF3a1zcjAxph1M7kvqc634+d2wt7qCbFi3RyIqmUGlBkzWdSgc89DWvHaM1rVEb6nJfmvq5Ht+146EN63V9pnP9I2jdei88911BD2Ve6Tkm514jqpq6qB0SPefLfbF0tm3JtxMnSjvH4nzre9ViEQDZ2MXad6YEXXSdLL0O1mtR97EOfKwL3+q/9TH058QZ0/Nqvc/p/tBqiefooJrmqOe/7iN9Pfpza3RLzq37U46j15newyKZU5wIZGKpHEiejjx/75LT4/d48crx273lxesnpNdeYbezZJ/pDAxVCTe4opLqbRGN8Ctqe9srU8mFMhT6nq2Fdg2AKUwHGYoYMzFbjB04mg1ffO8Jn3v3CU+SJ7gtOTtstpW6n0rwrz7jdbvDP+7aXfvq2h2171uwrR8y5WF2PjKyfvDnVPKgioLfVBJpo+Wmv+KwveK1bsc7Zsc/PVzyyu4eN9tLTs5ysd3QQ6lX4jyuy/SbqqxlAGfxzhVpdmtaBNsYg+v8IhlYjF5NZRSjRxsJrSq9Mhidc+QpYLql0SJojHx+mibc0FeZ81Qei7lQ17AGm+uDzUZyhBzlIVbU3vpuQ4hHQjIEVxSWxkfX/KO//Xf51/+N/z4f/8QnebI/MMWRcToSncV7i43L3BwdLdc1cK6vrxmGrokOwIyaFfqPXVDAhN5yLu/BGNNqwojhJQaPLuibkpLidgbvpF6LoIOlxlbOcSEW4JxfRq2tRx7TOv3sHNrkvaf3XSvWKjLFMj9lTpTvRba7WjcmVHSOmf6XAbIl1fmziKCvcu6GYSCHiaQUuXpf0VJrCSsamzGGOE7NGYaKlPmaG5VnFCjlmYYrSJ4YoznHRvXTyJFQK7XRmqqMtM0UyW9VWwkz1zDSIhhrNHCtfCfn0v3TDE1gt9u1+mPS950rc6azM3VP5k3IKqcoz06RH0rwJIaxiZ5oKpwWRdH0MbkeoaHpObPZbRsFTr4nVEFrbRNQ0ca1FrrQ+x7QlP8kz0j2IHEg5Xvb7XYRILi+vuby8nKx79zc3DB0/paDJ2tUB0G6bttenxHTuJzL6ti69tECZU6Jm5sD/WbDsL0ghbHmdNb8MQtiHuv7mVHcZUBimiY65SRL38h4a6XFFKaGsuk5q/u1jNMAeRZe0QWlRSnSGMPhcGj9JNe7HgtZy3r9rQUwtEy7FqXQSKjM3ZubGzabzeK4TeRFHEIM6RRw3gI1h8yXvYDpwMYk0njgU1vH+C9+mb/3F76Pzzx5zMX9nml8zHaATbZ01pOsY+o9A6HEEG2RtTTGYFxZzya7UpAXcDm3+nHWpPKXgZhF6bA4mJe7K27Mlkfdlp/fT/ydX/sS/cc+wd5YwjHw3OV9TDqWjOdSAYKULZNQoE0RVc+ZD+1NfT2obd+K7WvdJ3d9/Gy2O0TqW7StnaR1ZO5cgq6j1rKpPxhJtnUc3ZYbd8nrccOXTx1vcI9pu4PeYwnYzmO7DbEbSH1H7kJDoJoBYE0rCKrbumjfGq1p16cihGtEQu5ZI2zymvxeUNMUHepclHT5u9IrrIpuW/n8HF22IXHz8BH/+L/+u7z9xut4UyKAxViaEa+nIQdyz/JbDDd5sJ8TUVg7UNpo1GiNWRndOjdGPqtpQ+dQAB1lXueM6GMDi8j+06gXa2qejizrcV63pyGsJQ9vGfGXcwltR370HFrT1c6hDutEfz13jDFtPun70+iLHEOMwrVanU7wX3Pl13lEiyCJyk9bix7ov/U6lLl1run7hblwsM670vNBn0cKQa+NfY0WnNun1k6CXot6bDUdUiM00pe73a7R59b5Veu5Kt9do5lrxAJK/ow4cELXkyKvGrHQY6TRMTn2mnJ7DjFeX6fu5/Vc0PvZuete96NGrzR6o697Lbwj9zuOY6vRJGi2IG0aoTy3t2khi7V6qP68znPTKNF6z/9K+8p6P9Ln0MGntWCNVg1s+2G2eAxdAp9L2QFDxneWXd+z85bndluuv/wSP/03/ya8+yabLnH9/jtsM2yTpcNirMc4h1HrcD3Oa2Sq/H1ebbOtQQwmZNJmy3vG8KsPH9J/7FOc6MAM+H7LaCo1UPoIGp0vuUyyhmgg3tnod+2ufVXtDpF6RltTz/sqNjfZiOUh7r2npHnYQhOoxx7jWDdrTw6ZmHJJbM2BbAoFIBrPaXPF6+5jvBp2/NTU8RY7Ht7/DMYdsB1sTARnmawj9xuMz/g+Fv6+L3V8jHfl3JK7kVJ7qDhjubm5wZhScLHw+OccIolASwT0XI0biW5650jGtAKjYmitjardbreot9LqcaWaD5HnnCpjTKsZZE0CkxlrBNs5wxSKgXW52/LkZs9br+35O//Ff87/5H/2B0kh0F/0WNfx5HhNb7pZ2KGiFpJkLf8GGIau0nFO1cDxmMyiT2znccY1xGUtHtAMG2cXNat0tHe+x0znOqZwxJjZeSvzKFdBjE1N1A6kpGSvm2NQciVE5cp3JZ66Nhylv0Gci4BzBTXT9X/k+LNoRlrkMRgzF+OVeU+2WOsWEXIZd23wxRhx1pMoOVAhjEw1whtDxg89zhnAtih63/cVJUpYX84xpXItne0I8YijyKqL8ecr2lbu3S2QVk2bErl6QVhKTZi5KLVzDutnVMB1njBGUooN7ZimaSEeoJ3TrKhRki8mkXlpEsUXxEhQmizIjqtrofOcwlQosiwpi1q5UOizch6t1LauJ1ZqIS33LH1dKaUmFiLvCQoldcSur69LkWRFXZW+WQdIlucun5N714a1tZaHDx9ycXHB6XRaBB5k/qWU2PQDgi6s6W3e++bglRwd2dtm5MO5UjiYXIrD6vksDpz3/QJVMQaG7YYpTYTx2AQT1o4K1DzVOg6H09SeMXov8MYsHHyZS/v9nvtX97i5ueEYDlxeXhLj1Pp2HTCQOSp5R77rSCHijKUffOvHXNd5cfLOqxxqamDOuYnmyBzXta50DlTp05n2KuO7oFV2PSHl1rfOubIfeIczNZ90igyuY0wZXMfgIIVIPB251yc2j97l3S9+gZ/+y3+J3xtv2Gwyh/iI3YMNp7fe5WMvvkjsPMcOjLX0hlbg2psiJFFuKLbnY3kmFkEJJwZAMiRTyjLIs2rAY2zPODzPLz96zM+/+TZfYMse8P2WrS25XdiEybXQu80Yl8m2FHiuBydnU9R5uaP43bW79lHbndjEM9oO/4fvxqqIqfGu5A+l1Jwra4tjtH74rCNXiUj2CZKhD30BhWxmSqcC66eeLmxJBk4c8C7Re8spG26S482LT/Pj8TleYcev7z7BqeuK4T30hbLXdXS7TakL1XcYVx70SfG/JbKto8UtnyLNhlMIodYfmqlixhVaiLezxLRzjiRCDJlFZNh415ykRf7XeqpPsSTYW7OImtqYixEoDkkyhDiSYyJNxShOcSJNgZRLXZ+YE6c4kadQxAESbDY7/uAf/kNsnnuAsZZ390/o8bWwaaHSAQRxaH2NajuDycvI8jra3WqImdnh0Lkz+rtlsni8ZeGY+kppk0R0oTgCeDcXPLVWR7KBStwTQ0ccH+vL+aekavvkJcoiNE3tRAyuyD3HGIm16KgklTdRDiylrPOMcJTXb0tlW7ukGmoa4YJSVev46LwpMcw0LTabdKv/pYnSl/fFuXDO0btZmbD3XaEBAUPfcxpHsr9d4FWjrwA2TbVApggjzDloonKWc2ZwEKfTYvzXQi04i7NDU6kTdEEcBWk6iV8jWWsURdMddb+vhRayUJNWe9JttDI1hDdMQvFbI9e27lmRrMQkdHDB10T5mr0y7wcq92VxHzEsAhoa7RJHathuSIlb80iKM3sz5/TJ+l30VxUNSaY4AyZlOvxiDzyXSyhy1PpzOuevoXWr3NE1IqODM+LI6fWng0zFWXcLRzBOAUsx/iUg4Dpf5+Oc56dFXTT9OI2ndizpdz0WUm9uCssSCTqQo69T6JfaARSkT54x2tnV96aRzJwzk3PYVBQ7d30HJA5pwvZl7+iywaaM6TxjhM1wwXRKcNyTwg2/+yLzX/1f/k9s3nid77i5xu3Ad6Y4SMbQW0NfKbh9pQQX6XOHsbl8rvp6rq4D64qDla1jMoZtMHQVdU7WcJ1P7DYXRSziGAi7F/gvn2z5xZdfI/Q9j7qeY927B2PosmFHJvQD8WvIP/pKyODXop1jbXy9znUub+/c+fRed0486RvRvuev/FffkPPctQ/f7qh9z2p7ygL+KG2t2mdSLg90Y4nGEmyB85NNRDeSTcA7i8cRg+HIhn1/wRvO83Icec8l8uCxlbKna7isKVYif7ymomlqivzIw3GREK8cmzXFbE0rW9NZWq5UNSrXNK1zNJxztEdNKzlHZZP3W/HPtrGWxN79fs9f/Svfz+mwxxrD6Xgs12Go6eTlxziHVbQbk83iGtb9oM+t+1jfo07W1yITawqldjR1fsmSXmIWRllRlFom2mvjc029kzwLPRd0voSu56KT0vW8l37QqmkhhFmOvH5Wcq20KIM4VLfFCyLeF/pMzhFxEAsNU7+2rGum+17niGhK5JqKKmt6TR3Sjtktap9Z5ruta1PNh11S6XQ/yufHcbzVt+sxXjhAauzOUavOOZXnqFfnDB9NG/1KtNS1s6nnml4HWuBEO6VagU/vB0+bXzrYo9eRPt85h7E45kta8VpcQt+jrAFrbVO8W9+3tPWa1JS5cwGic9S29b4h96H3L/0dqCIHkt+X4mKsZG6s6Xz6M7oEgL4G3Q8yRhopnosUz/cyFwcPDZHWTtSapqfnpN7n9LnyFEotJzKEiMs1MDklCEWePMUifmRDYIgRjjd0bmKXjrz/8z/P7vEThjDChcc4Cj3elNpMztj2d3F663qTz9Xr1b9dyYgqwkgRsklMNhFtJBMYssXhwG+47rY8dB0vvfMO+5xI3jPVPMVsa6F7V3J4vxpmy7PQvtFx/qcFpddtkSZwh0X8lm931L5ntC3yfLxbGih5/n0ukqIfJjlnbIYNhoQn4TjGQvXJnccQyDkUWe4MXTZELjmZnpc393ln2PH3A3zpwQNGt4POYAxs/NByoPxmKA6VLbWiWpFdoSmsaHg6CgsFCWgPYzcnDYszmcIylwTqA5L6kE7LDW2sogprh2ndjDE1lfd2kdLFaxZMNk3emZyxOEJKkIqCW4tOW092qSBWY0El/uZf+xv86/+DP8C3fftv5/H+pqCABqxyAqiV7JsRbjtSlay3xje6T6PmZUuKkWzm6L42QnUkWqhaU5rrCPV9z3g8LIQJvPdEStT3dCxR5pJkvqznBCyMenFqujrWXoy9WKgo+qEjSI04zzlnTAzYWnQym5kyBbQ6WjEX+fO1kqFQQ8u/Lc5YotBiVS6PVgATutVaRWyz2TTjduFUK8Nwrbynjbm+6xeIl7WWGGLJn6qqgK7vIM8OlHOOzWbD8XhsYiAlkFCRGmMwrmu0q6YmZso8OAVBn0wVe7ClztQ0VfENwzQFEonOdq3/hRaljWGN2NnVPWujXChba6REO++n06nUP+r6W2tL5/2VudhxPO3bmIpjstoRi/BGdTzWSNg0TfSu9N1pGunrnrQuHiv3ofOF9ByWeSD3UZxyv3DMj8cjva+iKNohzgXh8rZgvILIZYBY9tdEKfCaTdnXI5nDeCKmuHCWRARH7+3rfLFSOmDe/3VgQjuX0tY5aw1JVkINKeW2nlKVUg+1vpVTIg79plt8X/KoZB7J3ElkcpoVP8uarQ5NrI5zXua/ybgKFVHTRTUSqgMBsm6kD7SzFWNkv9/TdV2jPzrnSOPIzvQkEwuFLls2bsuYIhCw0RCmxDFGrpzl+PAdPn7p8Y/eZHr1FX7tr/5lfmeeeHh6TNr09K4vgksYnIWNr/L/JtNVR8oZi83yPCtOFhmMFQW/+oxMlk12jP1INAFDxGW43z/gYRw4uB2/eLjm119+hdfMBeP2gtMUMNsrnOtwgLFFhXciF0r6Mxw3P/d8/kagXufO+ZWcKH09X2+k7K59c7Q7R+oZbdkWzryp1IBCYXt6cu2aZrN4LUYJbhckKhejfYi1OjsRiJhsOGXPu92Gm91z/OS05YtPMl988HFuLp8jYRicwVPyUGzfNTls412hENX6UMY5vMrBOJdIL4ahqXQSg8HZuS6UTgYXmqMWPHCC4LDcyMS404VAxXnQog0xhmLQrCg0JudWiLW1WwhOjVyjxBkCYDLGGiYbuXd5xfX+hofvvsd/9gM/xB/+X/0RusvLEh2slMKS+ltU4pwxbIYdJmfCSiQEWBjw8rrv/KJG1jl6ZzFuHMf9kd1uB9CKf6aUmvrb6XRqUvC25ggUiqRb9G9xLkrxWz1OxphSr8xZhaIs5bq1My193nlPjFKk17cCxXIPMUZCAm8NU6z5F0PfjEahOY7jWFS3jG3jPAxDcx5kbszzKDVjXgxTmClG0k++7xZGe4yxIVFiPEpuRkN8UmaaJLfFE4lcH/bFGKwBCI3EimMjuVJVPrI6R/WBnROQF/cSwizNfU4WvwkCVGXFdR7QOWofsHAq2jpVOTDaENf1ySTHpqGPLJ2oRoMzpimmnU6nRZ8/zSiZpgnb+ZZ3BrRgg8xLHUgSA7vtISvkNinqp/SX3Is4WsfxhCT86+KzRiL/WdGUk5Jxr9cgDtlR12djRok1Qiz3IC3UWlw6309TN8tedbvftXOkERlNlTsnOOKcI4fQVCz1d4USKkGQlEo+pDix2iHVtN3OzXlielx0XmjOmW7Y3KJh6jHVyLtGlnSelkaC2xifQXvnIMgcIMB5YsqcQsB0VWExgbcdxIjx0HWZ4e3X+Nxf/09571d+gc+4id4HLn3m4jSx3fb0NZhjTabH4kzGWYc35W9ri/KekdpRNUeqc7MUhCBYYcqFumozvgZL3k+JN82OL7574kdef8xpc8l132NzR287jHHNTmgZUM5gvwlBk98MJ+Wc8MvTrk0jsXrO3rXfeu3ZDVHctda+0gLVtApYOivNacmpRAeNVEd3uAw+gUslJyfjmeyG/cU9Xk6Gl5Ll3e6S1N2H6HF0NSegUASFbiFqfE9TUtN8+HN0Hy1jvo40rnnIX6kf1nQ8nZOxyBth+aBdGwHSnoZkyW9NjVk7L9fX12z6Ae8cOSX+1g/+EPkMHWcYhpaMDizoR2tKyvpedeFcaQ21WD0UxHgTo0Yn2zcEpaqTyXcFLdQ0LjF2NHoh0XtNvRFBgXMOvjZ+5Nhy35pquVbukvvTaIKmSmlnex3lXveLjJsk4gsqMY5juxddJFaPkZ5bcnz995pWBrTjrcdfo3Q6J0k/pHXe01qNbE3tW39fByS0YamdjbVKmlzjuVpQWvVQOyjynvTZ05QBNQIqDux6zzpH7dNzQtM59TqQv/V8XRvj+j7WuUpagGO9X4mzIuOkAxaCfqzXiV7D8tpXooCu71H3s1476wCFjOt6fYt8ub5m7eTpdXWu6RzCUhTXc5rGxWfWc3Ctkilz6pzs/TmjVT8zZM9aoNirfXpNGV9TO2UuijMYYyQZmHIi5FTo1jlxDLE8K3Mm58IyGPoemwIXzjK9/gav/tRP8TEyJh55/9F7XO4u2OUOH+d6T64Wu7UGTC55qOXa5v1q/VvfG9YQbXWksiPjiLZjurjileOJX3/vfY6uMEdOAfp+gzEOpoSnFNt1ueRqCV3wrn3ldi6g8bX8/F371mx3YhPPaLv+E//NhbHo7czT1+3DcZ8TOY0k3xMZcKkk7nfjEWLCDAMn27HH8tr2eX7cDbziNvz68AlGc4G3D9hYT/aJsM1Yb+j8tj2cXd8Vuo1ZFp5l9WCEpxdxtKscgFv3WSlWi/yEavhu+2GZ/+GWeRb670W+wlgQqZCXOVIuFWXDGAIpZyIGqqJbFqckTKQQIMXZIBsrPShn0hSYxqKUN1VjxhiD3Wz4t/93fxS8K7KzOTEJrScZUih1g4TOuTbYJaFaDKuYk0LY5sKfx+NxYRgN2wvidFogB72vlMs411k6hVq00/Wqr50at2Ig5Iq2WO8Whq9V8tdl5pkFzbBFquvciTHSGUipIENjqGNhZmdHkL8QxybQ0VXhhfF4wlu7MEhDYnFd4hzudrslda1SxcS4agIeqhljmlKYpidpOmozxpkRCXEsh2Fgfyz1jfq+53A4sNvtbuVvrfNHNEoCMHS+KcTp163vFk7S2smEEqgQ1EfGVJxc+bfMHe1AN0EHRaXS762dXFGG1GqQIhCjDefbeQVpLkCLOG7zuWXexRwIuRTbbrmPSRnVFcHP1jR6sdyjLubc1rqs6axVFv0ikFEUE7tGl2uOTKj0UlTuk3Cu7dLAj2osU0q4bpZol7UwjuOihprslRpNW+9pxhQ6mIjHaCEJ7TxqxDrGuKidpOvBGWNKEdg1+uxcU9prSKPzC6dczqP7Uu+9QgddC+Osv6PPq/MO13Nore6oUSgtIHNOdKY5hiaSYsRi8G5DxnGME66z5Bi5MJAPe2IY+SyRy+trfuRP/T/45P5tCHvMENmQ2CTD/eTIHoxLeOewtiDo3lDULWNVhxw8popGee9bseSu6yrKOTtSozHcMw6L4do6wvaCn3h04B98/m1Cd4UdPknAELpAlwuNsMuG3jogFWlzA8kkcLeDGs+i6febQef7KNf0jby2c+fIOd+JTTyD7S5M8Yy2dYRNO0xWSZjryNwHJT6KYQpgSbgabbPWc0ode7vhpr/PW/aSl4PlTduzHwZG7+lNx854ttQ6Gt4tfqy1zXDR9Zmedl+6lkfLd/G+cPDPfMdWGo1GB3TEXEeUtSGsH+Tnop7nktb1dxfRfnNbaEIMrfZ6Ne6p/WCda5RA7xzkxGl/w1//K3+FJw/fw2WIU6Asw2VNHm1oaORAG4di3K0j0vK+jtSfyzOQ+9S1lTSKcw6huIUSpmUNG40ONdpORXy007Guo7R2JtYoojGGoKhrydyOoJvVmtDXqeeLNlDX8+Jp3Pdz60obc977kgcVVwinswvKmjgga8fp3HkXqNDKEDI5YpREv0Yw1+Olgwxr4QgxNAUpW9+rRr3WfaaRh5SKkmR3hs67RiHX61IrsK1rO62DK+u5rq9pLa6ij6XpiTpPao2qreeDRoP1vBIDX5BXQaOcK4avvs9zzq0eZ01HPOdoflCASaOQGnFqVNsVEqxRLEFr1s6afE/QI2NMC3xYa4taK7cRULnX9Vw+JwKynrNaCEafUyOi63krdEW5di2zL46KXktrx6/l7ho9VzOkVIJLREw48PyFY/Peu/yX3/PnOHzhC4zjgdwlOgNDtvTGlXxjB87a5jxpxUrjLLaTsc44Z7DMNEfLHDBwprIMbC7lR5LnJm+4dpf82luPOA073OWDkguaUqv/aE2td2hWOb/ctbt2176e7S5H6hltxlmMICuhGgKc4Tqn3JyspzkvJlscPRlDyiVx1VhL8pYRz1vdBW9tHvCov+KfHne8euF5MgyEboejw6aEsUVZrhssqYO+G5ph771vKNDasVu3NSVG7jXmRE4lwmzr++JAQYn8ZkWJSSkxVErg8Wa/MG7WRqr+vUD5vK8yycvcHcQwMQZnLSmVPCZyaihbEeIutI12LmfJ2ZNzrAnUnhwiLrsyljFCSDx67S3+wX/xt/kD/9P/Mc+9+HEeHQ4lz8uWMbd5zldZG1za4ZH3xODQuRSbzaYZDDc3N+SQ6JxZ1LMhVUM8LlXEikhCMVaGYSCE2Tkdx5E0jWw6XxxGQzMYEmlOTBcjliVtUmg6C4drmgpdNCWsKw5X75dGEbY4K/1Q894OR9IUiuKZUL5iKoIEvm/ojVyLFFW9NTdNwnd17hZdesilxg3GkLMhrRTENAVR+j3GSFedYZuXSLH3njGG4ox7d9ZQXjs/2biW/2XN0ug1ORLFmTmVHK61g6adM+2oLBC0KgohtCmhXkneozjrmoam0TZYFnbWFF0Z5+P+0Jy5NSKxDErUvKxs2/e1AIS1vsUa1rRYjWqIAa0dLDHKtZPSdR1J5ZfJXNPGt6xz+bc2xJuzZ9X+kioqSfkbA7bui0kLleSlUqPk3GmFUQkcyd+a2qn3tnEa27geDoezAQGNEsLsjEhxXWvtnEs4hVY7TNbPfr8vtQCdJSap2bSkJOp5onPJZM/S5SjWc1BTcTWdVCNPazqizA9xpmQee+9viYVoB1L6JOfMaTyW+l8xMR2OGOvY9p4wXbPF0B1u+KSNPPr5H+Mf/uXv54XTyL1tYGMDHrhIjsGUYNnUG7pkMCZhrMHYCkyWAoR0DSFPTbVvQYHNJT+0OVQxMfTwBMfYXfJz7098/qVXedN9jINJPLkZeXBvy+A60njA2oLmZgOh6osk5BlxFy//jbTfLGTsWUQM79r5dudIPaNNRxahRszScmHZTEns53Yi/7oNeGJKBDNhbCQZwzE5HsfE2/cv+flg+NKTI1+4+nbStic7w8Z5vLVEB8e+cvu3PZ21+FqrJ1szo1IsI/tZRXflQakNQmnO+pa0v+kHRaEzi/vR3xcDdi19671fUPXkXGujskXaywduR4CtLUY1FLStSu3lhj6ZJkyRbMIYi7EOKIpLudL7jCsJ4aJQtXGGiOGNl17h//v/+Wv8m3/4DzNcXpFtQbFyAkMpgivGT2p9kQhVwVBH/tcRfDEU9/t9i8xvdpekMC7khTd9dwuVkVsWxbPS37ZRnqTvpa9jvo0wWGuxQMgZp6hDbd6uKJrGWqytYgLVMJV8DLmXkFgY8H3fY1LmdDyV4pXG4G2RoJ5WqIIY10KfKsbrVB32ORKvi9g2Qz6OoIooa/ROo6HOWDqjUA1nWzK+Rk5zNZg0cirn10alFmoRg0tac0zJ4DtScWWRI6aYW52pKda5aZbJ0HKfggJpCqnOaVmjNGvkVwcmdCFWWatrmtc6D6lcUyLlmgO42r/Wf7vquEtelevsLaer6wudEoqjJXNcjPm+L452nMZGc9MCJ+ucupSWSphd1zUkVjv7po5VNkskr+1/5YYxzhFr31jniNPEKRSD3zrb1E7zOC2c7HXum0Z1ZC8UJ1LmvUYd5VinU6ntJOqHGgnTYyu1ozabDTGnBSI+juHWHrtGnIwxhEQRTbKFbTDFRF/FW0IMVUTBkuLY5p+sP6GfyjzRTpVeE1qASPYGLaHegmZpSeE2IeFdxmSHzUVV8XR9zdXGko57Lon8yF/7q0w//vd4Me8xOfHip+5zcXPEhojpDWNfPKbegYtFla+tp1IFBOdKRbiUS31GkyZyLc5tKah+eZYU4SOAHpgOex7u7vGFJ9f88KsH0uYB+2nH5cZjusQhPeF6f+L57gLjTK0XaZmMFEovfWsp93eHTN21u/b1aXehime1VXRGnKfbcsClhTSRUsDkhDOFl20o/y4/YLMtPGnAJTDZYfAcvSfff443kueVsOGRf55pGJhyoRh0phi41hvoDNnPQgapqs59lGiNpmRouoe8d4u+ZmphSm7TMyRi65zDDwVlCTlxXCVBS9OOqaBd52g0mjIp1yWvi+NlAGeENuaw1pONW3y/3bOp1YkyZGs5TCO2Gq/76xv+8x/6WzgyXTUQrQVcpZgAOUdyjgsDSuodwdK40YaxNoiGYWhOlMwlnSMjRkeW3I48R411LlCjsQ19QVxqLko2831il1LjWoxDzidUsoagqXmwpmkJLdCS6LwnhdzyyIostceaGeHCzLkRgtTBjCLN1D5TpZmL1PiC/lkEjGswwCycAPmcHHsxJ61dILNaDlzGRfIlYpxKIedV/kYTwjAZTII0BwvWEcqMqY5F+ZzJEcvS4Ja/9dzXc14XOF3T4dYOoKbyee+LTHbKSsEut3/nWPKIvLHSm5VKvFzza8rVWthAWowVWWDpSGiUK+S5oLQ+pnZoZCxK7tLS4RmGoR23jQemrkF5LVHSP2clOkwtKFxzHhO5rYuYl6Ix5X5D2bNTLrX9UqjrPUEt+h3H6Zaj8rR9TcZF0+PWtD5Nw9PjKGMxhop+rZgFsoZjLTTejpkTOaYFbVT6WztU0jQK7WoulmUWYoBl3UBNAddUcH2Pgkbp4zfVUEMRQOoKW0LGrpQUqEI0puRTpmxwfsCajgf37pPGE1e9ZXrtZV778R/js0PPi5dbrnae8XRgOh3oTKHwlWcudKas2QX902jJc4ozYzOh7u2d6/G2q2irI9WC6Z6MNR4uP8kbN5HPv/0+kx8Ivi/FpsPEtD/iYub5ew8qG0A9s5KUT3h28ozu2kdvT9uz79qz1+7EJp7RdviT/9Iir0En0LaFZRKjObHxHW6s9ZRcJNqaX5I6TPbY5DgOR3z02BOkfsvU93x+s+N1s+FHwyf5cv/tnLqBNOybEp+vNLB+M9Q8DVspHo6gnCEdBf2gZGkxfDTVZJ2XodEnMQ50hFznamjnUs7bRB00F1/6cTXTdYRTHNYQQqERqqjqlCI5xBItj7Mkd0pF8SmkWIzJGFpkOFUjOaVEqEZRSokYxva+kXwaZ/ljf+KPc7KZ0WamGOm6gTRV9M3YlgSeY2oCCXiH98Wp0X0LNARGKFcpTE0OXEeg1/ls2cxqbtoAk/4UY3udVyVjt37N22UBUT3GGvGQWleaFqYfIOV8mWHYtv7X9EAZ8zKmswGukciFapu5rYaWc6FmSW2yQt0yTHGuPQVzArt8fy3trPtV93O56YgjMk5lnnTDlmxmwzBRvx9DM+C1NLd2cnLOzXibnVJPQtVqSjVHhbSQP5c6XcMwNJGIYRgaMqLXpO5D7z0OQ4dtKoS6rpMEOMSRJMp1qcK7hoWzBzCp+l1d1zXUZEF7DBlXRWy6ritqayg0tHZxb5Y0PlkPi9w0WxykdU4hqa6jijg5b8BaMio/Ly3RPTH2u353a9xvITRhbKIU2onVaGijM/tNy89aB9L0/cn5hmFoa2WNsto0NSTwdDqRsFg/5yDFbMgxYilI+lq8RvddycOpNY/MLEfeDTO6B+C6gXEqoje988057pxve7GzFkiEVBFoMwddRNBC5jGAddA73+6zc77REztbRDHipidUGfHeW8ixOveqhl3K+G7gyc2JlC292dD7jnH/Dr9je+L6C/+Cn/3Tf4rfO+3BnPBdLbJrobeG3ji6El8s+4cF70WSvuZ4GYt3GZcz1sTaX5mx7/Ahs009BkvAcPLlPjc2McTEuH2Bv/v4gl965XVC3/PQeW5ixg8bBlNEJXZVhfdUg2K/Eafp3PP7w3xet3OU/g967St99xvVvtK9f9C9fiOuYd13d2ITz167Q6Se8fZBdD0Aj4VkyXii8UR6knEkY4nyY8HRVQpU5mgN177jNbZ8YXS8bxy5T1g/G0AS4WuIQleLO0oez4rGcS6hXa5/TTuTpjnza1WvddPHXSdQrz//tMTsc8c89yPUwHWewTlKjTbC15HvW8IMzInNQn+KMfLo0SP+47/0HzEejkynkel0wqQ5V6DUUUpMMeL7DuMsIcWFAS/GmBjcDWXK+azRd44WKO+v5558Z+2U6Lkp/9Zjr4ur6nw6PT5riepmgLOMyM0ttei9oHXOmUKfyZFQHVXtmOt8HGl6XNZjtI7eyz3rvlnT5OT+healKXA65yOlRMqzTLWgfvpza6RlHZXUeUbH43FBgdTKb/qedL0soWlKHbBFHlQqaK2r+Zg5xIYmCVoix5NEeTGk5VrlvsWRXzvreo3GnMnqmowxjYKn503LcVntA3p+zOPJYn7Ij0ZyYSmmss7t0qIkGt3V6J7O+1s7QWvUT6jIQkkTJyooRc8PMuTWOT7rftRo63puyu91sej1dcp4ynfkuiX3aL2f6aDW+jmg1/faSF4EzcyssKhRLB0kEebBZrNZOKl6LSzWRTa4mLEx4I2lo+SqmmTxpiMHMMnw/s0TrrYbumniogfvRl7YGabPf55/9oM/RLd/wugjOFptp/XerpkVMvf059br0GLpsqGzjmATwQSsi/gQsVMEv+G63/HE97z0zjvscyJ5T6yUwWwLnT45Q3ClRtSz0vQe/kHz+YO+v56T38jrvcMU7tpX2+4QqWe0Hf7kv7TYUM4ly0JRDorJk9kWKonNRHsCEwodLVtsdlgDeRwxuy1f6B/wst3xj/PHeLPb8v72fjNe++GSYRjKw6EiU93QY+uDtNWN8l0zwnTewzm1rTXVY5lEPj+EtLrWOkdDUIB18VHN/5dj31KGqn22RqSaw5QUhSaqGi2h5BMlZ3BFNYE41VyOONOIplhoL5ZCZ2qOR0U1QgjkWAzmmAqFhimSFFJ1ChP3X3yBf+t/+++wu7rk7fce4sTYSsvcHR3BXudStWi2Mt5DCPR+RvY00rc2pLKxt4wxaVoBTiMvMiebUIXKczhJEdoz9D05z36/n6X0lRMF65pdMyJzLoIvnzu3pYmh3uhidp4v+pwm14h6Rf5sVwRJUioFSDVCsEBLztDh1nO5GVqpODG5FjqWYqTjODY5bGeWst0a6VnkDTELXjRNEDsb9lpkQFDt4/HIdrvFWsvxeGyCDYKuaSU9nTulHQ7JnxnHke12RgnFoYuxoLjOaqcpzciamWXxxVAXUQOZDzqQYK3Fm7kWkIh2CCK1cITDMsig0a+2B5EX+45cV1MwV1PoMM75VjJOcl0yb0tu1LJorJ6Tkp8HhRanKWvaGVsuuHkNS6FmfZ/6vXV+39rJ9GSmqRbQ7oaz1EZjDNNpbP0taKVQHud1mUgh4L0tSJasVecX/RxSobvptWeMaYiNE3VDClrTdR1TVMi6nWvbJeo6yuW51ubGNMu9NxRR7UFd1zGNkSmW65W1kq1j99yOhy+/ylU/0McDvY90X/w1fukv/kX6R++xnd5nc89yZTq6ei2eTO8s1piKSNU+r8IS3hlMpUZ7Y+ltoYILImUzOLMh+cSJEU+hv/ZxR7A9jy6f4xcePuJz7z7ii2HHmD1jStjdPTBFTMLZkhXpkefeUiDlq2kfFZE619Yos15vXwmRWl/Hb/RaPsr1rlHjj9Jfun29+n99rj/3/X/n69ovd+2jtzuxiWe0iQG1Rgx0s4C3lhAzyUGyjpwjXSrV022u0dcMk+lAkGhMAACAAElEQVSY+gve8Ff8WLzi5bTl85cfZ9/tSIPnyo0l8tzPTlO/GbC+oFBd1830HGdLzo8yKM9Hhu1iIz0X0RcDXGhda2WxD9pYF5S0VSRsfT3leJz9frYlHQUAZ0ufhgAGXN+RUySSMOpBEatThTVVba8+yJ3FGHBAyIFsq2FjiyhICoVmklwuIh0hYa2hGzzvv/4Wf/nPfi9/8A//IfoH98s1G1VU1hZFsEjGdp44TkXpaRX5FPqWTkCPlZ6mpap137U+XEXnxUgDbilgrdEG7cSJqIWuzaRpnmJsS7R5HelfK3cVZ2QeZzFKpYaONE0zXc85/cAMykFZOGL1GP1QjfYYFueT859Op0X/aGdUy2ULWjM7IRCzAeuLMdZ1pBjIzJLPOeemFif3I7RMWCJmYwh4XxL6RYY7pURQ9ZW0lLy+V0EtpY8ELTmHgGsHoeu6Ur/L+6aGKIiX7F3WWugtBKFszWuuqDDaRf+cTqdC1wuhBXI00iUFVI0pa2Co80PeF8EdmX/rsdd7wdP2lZwz1lTDPS5pqK7WUoJZwELvU845pnh7z1qr05VjL3MVZYzWe7wY/WtxFjmuzI/1mGnnvq0hcqV9As2hmVUypa+1YiPQ1un63O3YKvCkr6mctzgPctwUIrGOLxRFROs8YMlxqudxt4I0pd/KcXxXkFGZb5KvqPc1m0sh3CkmRmJBvbwnGlOqE1iPsfDyr3+Z7/gdn2L/8G0+a048/MVf4Ce/78/xWTOxv3mbjz13wZXzhAy+lrlwlBp2zmScsXgJjphcwDVraj4tOErxetP25rK/5AQpRjqfMJTrvnZwsD0/9/aBf/DSe8TdBTfDANHRux6DI06JofNNNCK5Wmz3dnnJ35S2Zox8tY7JBzkVH8bR+KjXq9Hmu3bXvpp2R+17Rtt6M3n6ZpFIJpEq3cmQsTnjE7iccKnQyUbbcdxe8JrZ8Wre8CYbJtczpgQp4+yAsyXiKkICmsJnvbtFHdGGtFbQ03VzgAUSoCPfa8EJWCqXrdtCdlg5cbp9FK61pvWs6RhrhToxbrWzllgaY+ufp72n80UE7cg5s+kHHj96xA/+9b9BVxP5S0L20glpNKxqeGvjUPff6XRaFE9dR6m1EISm0mipap1Pta7Dos+5Fr2AJfL4NIRS5oIec30d8nmZU/q7i8KpZikYsXbqP0h8QP9bo2k650vmhDYO1uIncs0abV1TwvQxhP4mwhsiQy5GrTaO5bjTNC1yyUTqWRxocSzXfSJOLdAcltPp1BTOpH/1eMk9Sv9P08ThcGgO1zRNHI9Huq5jt9u17+l+WSDDq+iv3uskZ0vn5azX8Rpx0WOjjyVOr0bWzn1O59bJda9RU02Fk75fCzqsKYJyfO1waBpnU/lbOUXnmswNjW5Ka/lDlR64zqM6R3nWY3Ludb0PrOtn6e8+jcaokTYZT52ztRaS0OOq17usPemrvu8btW89Puf6O6HER7wDV+hxkVyflfCZz3yK/ZPHPLftefOXfokv//hP8KKB3iU+9ekX6L2lDxmfm/xMKYkhTpQ1VXjEtDypJc1vbV5ZsnVEW4OQFPRqMobTdstxu+XX3nqX4O8R/SWnAH2/ASxMicvNFo/BZcp1PGM6fOtn8Vfj4HwjCVIfxVa4a3ftg9odte8ZbULtk6aN1vYAzyOWSLCGaHfYbOgzbMIJUmYyhmQdh82OL28f8HoY+LH0Al+++jTXFNpS37mi0jbscF2HH6p8sat5PDU/CrcsdIlxC2djnR91TmnsadxnMcRjjByPx4XYgLQP4jBr2pEcTxutiEEalcHiLJMYjajNNNZIc6X1ua7UACImTCiy7EJrijkR9cN7Gksxx3ruWPNJUipqXDFGQix5IylE0mkqdMFxKvVnquFgreVkDf/7P/HHcZ0n2JKMH+3yYdW7olonlB8xOMQIEkN+u92SY2hGr0S6nYrqt7Gy7haCoZ0wrZS12WwacirXoKOShXozLsbkgzjpa9RAzq/RynOO9Pp1Y9wtI0+usxlyOdUaWWGRM5JEXr72Q7bFYV47QtqJ105ak+AWelvODbWRWjfaEZYUB53flnPmcDi0z2qhjzUFRehkzdFW4gu6L43zC6dCxD1u5XGkua/k3rQz2xA2v1RhFAdGO14hBDozHyOpcdYBBaFoaURJo5ptXll361q1AyE5X5AWzqR8Z+HUGjBmuW+FEPD1HDnE5jxJeYc1jW4dkAgpNidV9qS1amTptPPU03W+ket8W5/6XBqx0c66Xtd6nsh1C2VSxGdACUNIXSY/F87W8uHaOc05lkAPiZhNQxGrDk+71hgzOoVnsT+YJUU9T2MRyzCuiUdoal/M4qzMFD4oVOz2HKkBp5ADtjI0pmQweLI19M5iyPSdgRQIN4/5dgeHz3+Bn/6zf4ZPmMDm+B62P+Ks4d5ouJ8tk0v4oeYXWprqoDPgneRMgaslBiwyT8tfhlQRK0MycMLShchz24F3p4nTdsvPPJn4tXeveTM9xynf5xgTZmfo8fhskJK9jkz2FAfRFeXc9BERqXMO/EdFY859/qMgO+eCK99M7ZwTpgOaT3vGPa2d67un9eOd2MSz1+6ofd9Eba2e5GxXEChryBQqmo1FlnbKsN/eY+y2vN7f46fCjpcnw+d3z7HfPSgGnp3YmZq8OgyYzmO7hO8L79/3PcbZIottDaZWGczF87ilvLdugoZoA1NTjTSF5HCY8xB07tU66rtu60jwucKVUGH8zMLBkJaZYf6Yq4Szs7P2ej2P8Q4bZ8U3YysHv6r6lQelmZErJ1LW5XXIOFzLxaEruVZmMJg0R3RTSnzs6gF/5Xu/j//NH/13yL2j60qe2xiLqmDvO8IUiHYWaMg5L+TKxUF48uQJvXdtvMQwWyM+0zS1cdUCCHJdWjK9OUoqP+1pD2hBRMRh1hF0XUj4HH1IJ/2v6UcyjwQNlXGWe5HvS7FRLcceptjye7R8tPRNMmXs/NC3OmNr+igsH6RCM1rnAOrzagO7UNwcOSoUKIVGL9R1qiTPZp0/iIrkFwehyKu3tZIK/dRS5uB6bPX1S9FvbQDo8dPoXgqzYa8pknJ8GZOQlWQ1Mx14imFhrDe1xHrd4kjq/K2g9pM1ctjy2irqoJ0+nWfZ5lZd+Wt6j56P0veynjUipB0zrSYaY2yooOSjGWNavaqybyjnUiEqzemtSPMUQ5Pxl710MQZqXLR4iF5LMo6n02mmg1YRkBxnOmaOpf5VnExzkrVinyCmZW0FnC+/Ma7NecyyIPI0TXgz1/Zre4KzuJqfV+aDmR3QPAfFknIsbcsXi01VtczD2EQybC7PnG7oSabMBY8HDCYmpuORy97A9YHOwKfsgb/9f/2/s3nrHf6Vexe8/uoruBc6dsbRJUPvHJN3WEJV5yv0vM7NCn6dE2RbKrllXA28lFrvpTBz4fUZnM1cDB3EnvfZ8HY38NKjAz/25iMe0TH1PV2yXO42jHmPNxFrHCKwk0ytZVhWU6GJ85XbOrDy9WhPcy4+yue/FdpXQxH8MA7UXXt22x2175uorSOszhiIFmKlPRmDdTACo3Gcdldcb694mQ1fylc87B4wDQOBiWQjGEdwFrzH+IRx1bCoP2vqk6gslefDEmnSieE6Yrumh61pVU9T4vuwTUfA1+jJOZqdXItE45sDlQq6BMV/kmvXqNuC9mefTuGTvzWio3McWvX6Wosr13NiixFjvePx+4948ugxf/X7vx+TM9uhULik/pXJGW+L1K6myjzt3iUXSaL8ugbS2qiT65f+kvuXY4tBp8da56Ws89sWdEh1PBmz9dhpup8+vvNlfssPJrWfXLPH4DY9TTsamlKqnQNNpzt3/+fuZd3W+Yz6uIu8LyxTzLc+b5n7bRiGhtJqZTdNHWrnMK4JV8g5ncnteOKEiYMpwgU6QKHHx2YKehuLip8o+Mlr+hp0Lt0aUWnzC1qdG6EJe+9Lnh/5FqK8Dsxog0voWutzdHZZN8w6inS5ScQ0lbmh5sp6P4BZIl3+1k6JfFZTLPW+pymM2mGTPhXnVY/3B+XyibO8fn29n5zL/dJ0Tvmc7zf0mx2+3yxUWb0tdZDOU9FYrH2t+rdeF+t8NGNMC4oBbd9azI9VncBzgRQd7FnnPwpSJsihDs7I/mRTxmPoraXPmXQ8sSOzzZn9536Ze9fvcW+64e1XvsBnPvGAPgWGZOhzJluYHK3+m6M8c52x+Ppau+cYMCnWvOTaB5x7nmVsDW7suw1fvD7xq289ZrSXdNvniSFjO4iEWk8qY0wmmkRymWgKGhVyIiYIH9EHeRaclvXz6Vm4pq/VfcFvzEG8c6K+OdsdIvVN1G4t1OToKDU5pkqRSDkR+y2jG/hi6nlz9PycueBz/bdBn3BbGNyx1ChxF2TX0Q+ZfhOxdsLbq6bMZyulhVpwFbXI13lN55rOC9A5NGIQtNo30HJDNKd+nc/zNFqghsWFUiX/1pFwHREPORV6T15uXo2mZCu90JYE4xwiOSWcnaOu2tHy3hNDwlQKSsyqhox3mFjpXNmRjTIGbJGATqkUkrTWkEJ5mEcTefTOe/zlv/iX+J//kf8Fl88/oKs1VESZbIqRzG3DTBAb5xzb7ZbxeLiFCmrHcJoK1UcjQdqA15F6OfY6t2jtPJXjL8dPouYaDen7vtWY0fl165yktXKc/t3moEmkyALdWIyRotCJo6bPsU7YX/frOj9mjUjJeXRuh1C9mnFuS1/GtKyPJucwZ5wLYFEDrCG7WSMms8Q1ypjvcoloa+Nbo8lyXUJBNSqnTt7T4z9sN4y51FVLaS6CrfOMWs0t4273k+QWGpp8us1LKqbUplqrB8qa6xSduHymoD45JSJxEQDRRr70n+8dKc5rVFORY4z0vW/jN8ZEzqaJncSo54tHivPG6cg0Ta2ekxbg0Gupcz0wy/wv+84TY2oFiHUu1/F4vLXvSr9o0QrdX21+u5kSeNjvMcZwudsSp1MLMMQYcYMnmVnoI1a+nu0qLTYnOmu42R+42A5MY2h92vuuIUtlTx9INSdsUX9uWuaUmVwEd0Io1Z/kWlg5+G1/SE8vCSK07BSnAsb6Kns/TtzfeNKTJwwEvvTrn+Od7/0P+Gw38f7xXS7vXRLef4uP9z30hslbord01tIZ8Hl+xjhri8NkazHq1XPQUujFtOLRqT06bcqk6xuu+8gvnOCHX7thtJeM3RWcDBcbT3AjU5y4MB5sJplI9kKJrGs+z+qALn9lTOobhUitA6xfCZFaU5W/mZuek5q+/WHaOUTqW8XB/K3Q7hCpZ7Ylspl/IGEpVc8l8TUZMNaCcbU0iiEkSxw2HDcXvBk7Xp0c79orpm5gomy8vatRee/KBt11zWmy3i3rRCnkpUXB4dbfa3WqdR6JjqZKa5SdFYKwTtrW763bOh9qnVu1/q48wL337YEsr7kzAgqddXTGNlnzNZVQO3rnzilGis530cnI+mft0Hnr6L3n0cP3+YG//jdIoRiQnXNFpIKMFBXVFLjOebwtKlmiEijGvTaaxEGS+zBmRhX0/a3zJTS6qKPv6zFcR9XX0XgZs3Xi+NrBkc+GKZGTevjiSJH2WszFiZIE8DX6CbNBa1EKeTXPoqvrQj/gS0I4he6ZafLY0s45UnpOnhPSKLkWc+HjeRsuf2fMIsKunT4t6tKcn5Sw6JwTWw25+dhdNyzyxPpabFvPueLYm7bm2+88F6sOsThN0zRhUsYb29AGoCFY3izXiI5Cy/wutX1yS5rXfaRRSnlNI07asM45M6UyP1NduzFkYhA57O7WmFmMWjvF2A1hXCDpmbiQuRdnoFBLhXoZiXEi50hKoeR6xSLgk1IgpTLXvHXtx5i8ECkQEoCQtFJKTHG8hTzqPU/GYI1a5ZhazaO2tmPC26JG6sySKh1SEWWQ/B0p22DzvIbXQhc5CxLZLZw5fW0lIDa1cdL75hoJBUsy5Tpa7qCb6YXWFlW/KZyIKTGlWQxniiOJWIrhdrYh09lQAlPGQTZ0vWM6nXiwccTXvsT7P/uTfNwkdibxmU++gDGZq6vLUvzc2jKvTZE4d2hUqdSx0/TpztU8Teuw1hdHq45xNolo6xwGyI6weZ6xf8Cvv/0+U79j9J5TjEXuPidymLishcfXLpLB3drbPkr7ehvnd07AbwxV+lZwKH8rtjuxiWe0Hf/EdxIcRAPJZPoIfTT4ZIkUAYLRASnQ2w2EIgt87Hpe293ndQb+yfgc7/Qv8O7uU1hfkAA7dPiuI1vDsNuWB5svNUOMd1iljrZOjF84U1HlBaCUzFbR+3VbF59cP4B104appsnI98dxbJFracYY0grRWtefOkeHkYdle1+inhnyipIjaFpSNBqgREFTanS7vHY+KjWKlInVoE9pLnIaY2wOWwojcarvUwxc03n+rX/3j7K9vOCYAnhXKH7VMbLZkUIgJ0NfnQSgjKmDcTo2o7KghP3KASoJ5OeazqlJKREwZ51H7YRZEqYa3tlUyo2bBR/EkCPNqNe5XK/mDMUlcpCtKWIglbYmhlhvTEPYNA1xGIZFsdc0LQVR9N+aZqiRzFT7W863UJI0s2iArjclc0D6yDLnYq3l/mfj9XQrWruuDyTGrKnCL3Lu0+m0kEp3znGajs0olXUjiIlWZ0tYOrdSUKvrO4zHRqcaw22BA+lvjSRJW0uS33LgzJLiq78n/aPFQtYGxxLxmsUYnMlzPpDVx7VkO5ddEIdBELJ2nbgWYNBIZKxy3b6b54zDLOaDbnL8Mk9mQRfJE5V8SpF4B/DGL+ahdvLb3qjQMT2P5Tp04eS293rJz7stJGMxxLGsHXGkE0uhk5BTYUJY25xPQfGMzU14BsBTC/y6WZL9NI1t3ssacm7OE21jmWr+Zj3WMUzEoafPBqap1O3rHDEXtoDPBp8MaeuZUsJ3l4RDwGNI+7e58pHn3/51fuLf/7/xO7LDx5ta7qKUEbHGMDhLR6HJd9ZgTab3rq0BZ0ttrM45cpzwtY9CikTfs8HRxwmTE6EzHF0mY9j4ATtB6p/j71/vePmNt3g7w+N+4JANrh+wxrBNsK1siVPNST3nTD9t7n+j2ofNg3oW21cKzj5r51r39Z3YxLPX7qh9z2rLPbaWwMhYooGDoxQoqsauBXLqcMDkE6N1vH75PP90uuCV2PHS9h7TtiP7G6wdSiS1ikpAMVJwVdq8L9HezFwHSD7zNDGJhkw4FTn9CrelKVNitKwpYcCtKKgUv1wb12IoSIsx4teiHIpCo19bGGR5tenJywZCdXzWx2oceDHsxUAPKmFaRWSNdyRK9DlVmXpT884AcnWGcyoGXFePO00TISe2/cAP/NX/lD/0R/6XXDy4x83xQHaWgORjWBKUwqcxFA6/sxhrOB72DJuu1DCpRpmgHrvdrhjHYyCl2xu/OKIt38J7TE44N4uINAXAnIk1id17V1KvcyaK0Ae3HeicbxvFgsIYYxb1q7RhmTFY5fiknOidhzQ7sM0BqhRTcSZOpxODH9ocWtPPZE4553ASiWd2xCd1jqI+526JXuj5tHg9xYaGQCIljdhUiq76/DlHaokKGsBwPO4rcuPJOar79/g8O0zaqNaBhZwz1tlWc0yuPSuUQM4tuSlSW2lt4IvTIJ9bO1Hr13QNKrlXoURqWpjsCTrHUTsSMp9kzGMVbDDK6Bfq3fz5uf9FgW4cx7aXyL2I/HYTa1AIuPTtNE0NOdNlHwRRK3MBYv1e6wuZr2rurXOpdF5ju2fLnHOZb6ugCdVZ6p7lnJlEYdMs5dJLf6WGlopkvqv9LIIVru8W8Ra9Z5u8FL8xFb2KdZ/WDl5TEExFpEHnLZagxVyCwVpbkPYIXRaqpSHnhO8s1vWQMp21PDwGhmED79+wIeI7w6e3noe/8iv85Pd9L99173lef/2LvHi1pStCpfSmSJv3xhTWh81VoW8OJBhbRC+sUc+VWmTaYehDwnYw9ZkiOgH3zUCg4+C25Mstv/DWY3721YccQ+TU75hwbHZbxlS+Ex2cOG94f6tQ4O7aXftWa3fUvme0FdUwi0mu5NXQEemYrCPW6K1N4G1RwIqd5zRseM0MfJEtbw4POFzcY+x7cldknHFL4Qh5YGnpXd3ORUK1cbD+rI7aavnhNcVqTfHQCn06V0bTv3SdGzHe5brXCcj6muA8//gjPagq3Snb+bvtp9K9JNeqOFTVKMn5LL6TqsgE9UfolMbOP5quZ21JdL65vubmyTU/9Dd+gHA4sX9yTa70vRxrzpez+L4jUYz9kGJz5iQXSvpXItUNYVNon6bc6b4VpFLT9mRc15SztSqgnj96rHQhWf2edhj0ezBHy2U8pI80ernm7GtDXhTlIjOdrYSbbUvmzlWeO8ZYxEhUH7akdmcX9Dtt+Gmaqfx7jSqdQ2L1WlyLnKxFW9YCBro/9Pf0ccSB0o7pes1qARe95vQ59HVogRlxMNZUPI1ya1VDfRxtbOt5tw62aOdJO1+Ftpfaz2JPsB7juubwkC0p0miA1njClIghk8siXfTnWjRnLcQjZ425IHvZOIzrsL7HuI6YDWNITSzGqjEV1UJvbFnTU1jMV6ccOj32Qr/OtlLz6nyWwt3yujguWlVxjWRIX1pbSl+IE6zX0byuSu6RzJOGFsbl/NNzUDuEMjd0XtetbVetjeKUZTwZExM2GbzxTMeJaYyVbmiIMXO5u+R4M3I5bHGnA93+EY9/+Rf58R/4Aa6ePOatL32RT3z8Yzhblffq0vfzFoAz9cdWESdT6KDO5Fv7jvRXbwtFNNb/nHNYOgyek93y9mT5Fw8fcew7zOUlp5wwviNFGpUwGUjWEM1SeXH9bLtrd+2uPTvtDpF6RtvkEl20uAwkS8SRXSbahI8BnxNDhOQ8j7oNr3RXvGF6fuQw8MWLj7PvLzDbHdaMbB30VAWlqphlnMUP/ZwrtXISdIR4XehRWssF0Qahesg8bePXTtH6YWHOfF8bWmunTBtUGrXQ9yJNR2vXjl9eGagakTLW4WyhnpiS2Y9NtlD1ciZWJyabgjR574mmODfGFLlaxMD2rvSXCHjkXKl9pUqIq0hVzuXYxhp8rgUgU2J/PLB/933+kz//F/lj/8d/jyfjkWwMobpsucrU55zAFAnh6Xhg6Htyng1uofZp1CzGjPe3KVY6z0eiycYuRQu00yQJ5yEEbIrNuey6jsTSUYsp0tfaNfq8giBJJD/nzCjKdc5iRNVrClg353LItWgxBe1oaMrdOeN8TTU9jiO7YTMjqc6SauFb4yxJJc5r+XSNKujr0YId2nBdOyUiNX/OeViPj6ANWspbO03WWqZ4m8a3roklapRUGp04PG19slyH+jxaMnxNZ9TlD3R+oP6MUDH1d9doj3bYRHJ7HfzQSLDMRVIkMwdexpAw1i/GSeaOFkuY57zF+1lSvyB64y0pf6vqHp3LexSEra85kwBBUVVNKtvAek9rtMs0F+TWc30doJJr17mNgkJqlVN9PO0A674LoSjM6VIWU4q3mAcl76s6wNlCtoRpwtgZxW5CIdWJGscRZ7tb87YF0GIZ375Sl1NKmBQhWRyW6DwX9+4TqtPoXREFv37rMS9+7HmOj97gO/zE+7/0i/zsf/J9fJuNuNO7vPjcDv/4CZvetly1vjlPuUidm0znwBhNaxdqblEhtM6WuSXjY2IpdUEuezCOR9lyMlt+7r09v/zm27zebbgZNuQI/cVlERcJic5Lolwi2nL8dbtzpO7aXXs2250j9Yy2YCawkLOlywmXykPC5szGODpjCDnyKEy8fO95fjQ/zytx4M3nPo2xF1xYRw4JXI/teobdrj08t5cXzXGSYrtC34ir6PY6ItycG1RNKFWsV+hPsDSKNM1KjrGua6QpIZKLIYbUOgdjmay8RJjWBoJWqBND53Q6tSKTOWfsGrUyxbiLOWE6X+7XWWreMNZ7pjS2vJgxhkVE3wFZKaGJihq5OErVZsLpa84Zuprv1HnSVGoKlX41hGniYrMlxMjhyTXf86f/DP/uH/9jJGs4hQlrHY/212w2uxZ9TikxSuFSP6MOxQgsaOBms6HrOvb741lEbo1+AC13bBGdB0iRVKPHztgiQ+1cK7Q5xdTQitqTjaYlhX2FErZuicymKteNYcJXw3U6jbNxHSLb7Zbj8djmpKZ/asdmioVSFFP5d8wJ7zzG2EbXNMaUvCpf6+WEItSQ6/ywnV9QYRdOpDqnLvyb0tQch/L5sSGzQj0ThTjdv/r6ZVzKukjkDMMw57ylJI5N4nQKzYHVao6yTmQtdV1XxAeqIye5ZylVh8qqXCelhChrXUtWawrXfN+p1cISRE8EE0KIXFxcLJw3TeFbO03r9b/f77l//z4Ah5vrls+mEVOsqzXBSi5njpLvZvB+diQkj67ve/ZV4U6U+mRPWVA/RdHQShkKCTDR9hXvPb3zxClgYqG4ZgNZl4sQhyOWudANm4WTs0YmJX+JSt+MoewXx+OB7XaLc/N6ClOsrzm8Koar+7oElHJZv8Yw1j1Siucu512ZY957jscDfd/X/XpWHzQmtX08xZlFwMoJL7TiI4PvFvenUTjZt07hiKMwMQKJbB2xPkMShhhO7HaG/eM3+ES64Ye/93t4/PM/x+/aZmw+YZ/z+Jy4ypBCwHQVyU5FuGnwhbpXnCpzy/GHIhcvY+7r+2MM9NsepsDWbEnZ8N5oeXT/AZ9/95p/8qU3iP0lYXhAMh0lbdXTJYOzHmfKOo6moInaU9XPuLUoz28W1W/NVNFr82udP/W1ON5vVk6XzhvW47cOCn+Qk/y0ANpde3baHbXvmW2CMCSSCVgixIkeS4yZMRqmfkO4uMer0fOGveCd4QF7V9R+uhwZgAGPc32ji5lKBbHWLnKbnkYdWG86y9wWqWAfb22oa9rR+mEkTaNOGjlYo0rnUKaPuqloqqAubqkRLt0Pmt7UovZ5STEzxtyimZ3rt/V7ayfwFv1QjrlCSURd0JkS8f2eP/P/JsfEbtjgraWzrl1fow2tlLXW4y1qcHqctFz9ejzk3xpZWlPxNJ1vTcfUiff6mGv0ZakUNqNf0hfyWR3RFiRLj59Q6nQNKaA5m2ua2ILu1vlb9Brdr2u5fj1XtBG/Nnp03o+mw2qly3VbU8n0vJDz/f/Z+9MnW5LsPhD7HV8i4t7MfO9VVS8AAdBIDKGRKOmDZKYP+hskmZYZbCQBLqKJNImyEU0j6ov0USbTUEOK2LduYiMAEkvDCEnGGSMxXACQICGQaKLBXtCNXqtrf/Xey8x7I8Ldjz64H48TnpGvqrqru7Oqr5elVb6b90Z4+HbPOb/f+Z2W6tq+X9MrW/rVlhCEXKedi3a+Wzqifl9bb0zWnEahJFdG56vp8+A2o1GfAZo22o5RexbpcRakRDuVeo1vta1z8zaEUysuyvsEnboNWW8V+7aM6NvGRKOxsgeEwtue0U9D+bWaZotctXQ/vQ5uOxPkmnpO5e/6d/0e2bMAEBEzCmwzZRFksliFMzgcr3A4PsF+6DFeP8Q9n2BffgnHz3wGf/z+ORyNMJhhKMIWlUJHWclQxtIZZKVG4tWe2mp6nTIzYA1mJDAROFkwdcDuHj718Ak+9urrSGcPQPv7mKdck42QawLaUlrXcqpS6oa1kuf22vtaOVDt+j+1L7+dnKN3fjs5Une0DakY7pYRfIAxMwYkdIFwsOd4rX+AP7r3Dfi9/v341+kePtE9gxf3z+Da9ugN4Ywszq3D4Bys7wFrwNbAD312oEpuh+RN6YjjVmsNf53M3HXdjVyIp7XWadui2+kvYP3FLu9/oyjOVtPXE+pU23SuC+fQNQyVLztVSDeiCEVkEj2Md7WIcY4uK2PK3pQ5FzWq/AWeZZHFkPbld3LLj/UO/TDkZHRr4fsOYZxw0Q348e/7QYxPrjBeHdD7Lte8YsZ8HBEOY0VuWgNJDCwZa0Er9DgL0jBNU31NrqERRMm9auerFUvo+0XgQdaCzGWts1PQKJ1nJKptQk/y3oOsWRn5Itss8zsMw8qIleeOMVYxAY0ctXlBgpbAKll8Z+vcCjVWG8siRKCf3ykqlzyzGIh6HLuuW63LLYNamqbHasTnafsLWKi6VelRrUldhqDdx5Iv095jC63WDpe+RuuYy1hpR0rmWVP69PO254heJ+M45ucjgkGqBjEAkHWrM0U74jKOwFK4Wta0CERsnYEynlvjrp0fXcRXOyccF0dH5lAjm61zo9eanLnawZUmSqZCx9NrbSWV3jhtei/pdTHPc5XLz89Y6N6k1DdDgJgT7dhqYZCtc17WoUba2meqTpYhkHFIlsAGsMyYLi/xDQ8u8P6zPabXX8S3nifQp38Pv/m3/gv8D3YeePgFkA9wnnE/EQZjEL2F7Tv0Xn48OtfDSHERIkACV8SrH5lX51xGwUp5icSMQA7jcA+P/H18fPT4zS+8jk/PDldmh8vZYtfv4JnhuRTbNQyYiGikzIk4U7d/j90VR6pd76f25lobSD21d347OVJ3tHWhq5Gp2QBcjIIpGIzdOZ4MF/gMneGjxw6v9/cR+wHJAOQI5DuQ94DzIG9BjmsOj8jsAljlRQE3DbCtDd++92lJsC103b5XG0LawRCjQUdx38g5e6OmjQbtKLU/LYJmbY4cIi51ayrtrGQmc/ld6Dl1jAgLsmQWlMmWH4P8I3V35MfSWmii/hQjPoGzVL13OF4fcLi+xi/83M/DW4snjx5lwwwEJM60wpg2x6OdTzEQQggrh2Ar4m6JQRxzDRUDEEcQxyIlDHCcEedxNb/6GlsIoF4zOjIt/59TzAIavFAjpO6NyNe3hq7OrdFG5NY9NCKzhYjAUEWxIhbaGgPVIdM0rNZ5qs+PiMQ5s8M6AiMClDIzjHL9oq3cKP0Mtd8cau0cMsUwo7T+2dhjGk1rBSxuQ1c14nQbmiH91MiPjFmLWrV5atrY3kLFttBoeU3GWhyziqQgrZ49o8pFOa8pXtuqN2pE6rYzUK/pFt3Te0n/jRg1cGJKnTKinHtjb3luGTP9HO2Y6Naik22gY4sJoNHWLQbAFkKdOAC0FEbO96BSyNes1kqbx9dSnlomgKwljZbXszommMTY+Q77zmN89Bjp+hLP9D2On/gofvdDv4jz+RIvf/5T+Kb3PYcehAFAB5Pz45wrBdDXa8NYm8U5ylFRnVfw6seZRpyF87WTcbi0PV5KjI+/+jpmt4ffPUCIWdkzIQtmZIeMESkhWUYkKXWSVXoTbX/fvRVK2Fejfa3v/05sJwfq3ddOOVJ3tPlxh2RGJBMRXEJkggkGye7wgj3H55jwT6+A17tvwvXZOXgIcBjR2R7BXuBoB7gOYB9guwkWZ9m467tKRdDUIACbiNRthqkUr40xIoJX0dLb6BC6tV+MrZGkaRVVjcvclFF+s61F025wplXEXiMTi8GBQsIoTRykYuAb7Ri0fdMKTIlBICROGcFKDBTDzxmLBMr5LMxAydvIBSYJaZqz9DCAKRVVqMgwkfHaSy/jAz/yY/iL/9u/ApBFYqB3HuQKMtJw7lvjBVii8jIH2lhdi0pEeLsgPYI0TdNUo+CtoxTV/Mn1Y4wALbLWWoVRXtOGslxDrw1mhlFiCTrKrREOoTatFOzMUgtKhC3mlK+RDRrACWrYrUUIkGLJGzKVpnY+7FbqhMBCG1vGfu0ktBRLQWKcXdeQ0flGkqgv6J2mza2kscUh4ADnM+VX0IGau6IM2iwGskaktCNqV3OK1T30nhW0U55fmqbTyZzqvCoZC50XpamgWw6MjJt2pIiW/uXrrEVziFDWksM4SpHqrsxTpk5b68EckNI2XVc7YUAuCh2rjP8iVpOQyyLAOIAJXbegqtClAFQQKaWEOQQYt76vdvQqLdA7pBiz2huVZwMjEeD6Lv+eEqyzOeeSCGSWYrfaSXEu53AxKwSoyL5rERUG4/pwib7vKz1zN5zh+jrXGeu6tZCFzKUgoVOYVzm1+XdaykDId4I6ryoqbXPQyZQNev3Ky9gNHmeWcGY9PvE7/wYv/sT34U8MBq9dv4SLBxeYH7+K97u8n0Jvwd7nvKQUyxzkc5wN8vcayvoiCxjApCweoc9PCfRVZyoyhgCEocO/eeUlfPbxiD86OnD/HqRgcd53IGsReEJHDKKYKYoi7kOhqEQaUFGLtLz9Pdrug69Fa79H9dl+ak9vp7F697WTI3VH27V5Hd7sMUQHvo6g8x0e+oTnz87xz8ceX+A9Xtp9M9LQgTzgkoO3Bt7tYLtsQFNn4ayD7SysG3J9JWZYt06QF7oY6ait4u+3tZqYGdGgIjEGOUFd009a/r8Ya2Ik6d9XtZmUka8NL1F7GsexfqHLe3SUsxryiiqySPPG1fMZ70BSP8oU8QdrYFTNoyxrzEvNlcTglIUUUsrFWp0pAhox89uNMWBrc/K3oXztck02JifBly9wNjI2pQOJQGzggkGYExgM47PBQ55AUsiVskRuwIzdbocpzLh6+BB/9wd/CH/pL/+v0e/PwJ1BSCknyrNFbzyYiuT8HJA4YC7jCsqKgiboRH4GEZBSdmqmaSoJ5QZzlFoume5mnAfFkvsxxzIHOZE/54OUa2JNbWOy4AgQJxAnTCXRvy+UQ3Ba6jgFxvF4zEZzWUPe+7z2kPOZOMQa1Zf16KzFpAxGaXGeQAD6YYApRUoJmR7YFfGJ6TgjEWOaiphImV9EoDcdnPFIKeLesEeIWayDQ6GDuuKAGANvfK3TQ2SBmMtdRSa4rgNQKE1kwQi5H8XBE/olgFrbZ7fb4XA4gAPgbakBR1Sc7vJ8Rf7bdx0Mmbp3xBAXumZfBDyMMeAYq2DMsoczqTUWJ8X7Hmme4M0i1pJM3nsGFn3XlzWUJb51rbF5nqtAi9RuIwbGwxNYk5Gr3jsYlx3E4/EIADCuw67z4CLEIGv0+uoKzjns9/ss5ECEYIC86QgJ2Rj25d7OOfA84uz8HCEEXF/n9ea6XC9MzoY5TlmZkhKAvIfknJmmqa7fPE7lTEuLgEhKQEgRu36hRM4p4fr6iH0/KIofY0q5mO0cp6qW5wyDy5yEsMjth5BrW8l+NNHCmCzKY2FBCeApAQlwNkudUwKsJzAYIcwY7B5Z2ZNy8CYlOONxPF7DW8KwK3XGQsQ0RTj0BW3P3x8Mwm44y3us1Dy7urqq1NS8voAYZxzmGdZ4hDksuZcFkeOYYI3DFCfMBJiY4C3BWodxngFDCGAYWOxcB0tFtn63R0wW8XrCsD8Hx2t01w8xfu7TePmHfxDfaq/hDhO+5WJAbxK6nUciCwMDb0o+UprRG8pqrJTDV4YMLPKZl1GoAAZj8lkUwiWgY0IgwnU8YndxDhwPGIzHkynh8plvxe++8hi//ZmXMXU7HIYzwBk4NvAU4TigJ0YwDmxsPl+5BOSSRqDenPDAFkL7pba3eh0d2GiRsbaPLcujDYS0n3naMz+tPe16W9fYetYvBy267f6ajXEbitgGZm7rxwnNupvtRO27q21vMB6OSOOMs36PJ4Ew7u/hszB42Q246u8j+D3YCT2hgzM9jHEwpSZGft3BmByNSyo3oOXKt5u7TYDW6IQ4Vymlir5oh6lN0m7zNVqn7LYfzd3XzllbW6ftWwLXH1GcutE0/U76svrz0w92Y4raE+caIN7cVCiUf+s6TkL3g8k0QJkFoV6yimTXfghtqsm1ErqZMblYpSeDeJzwIz/wQ0AKYM6Ur7lI9MqUG2NqrlKlkzX91Spr8ppeD2IUibKiIDotVaZN7m+FL1JKQFrnrmytD3GaNb0JWHLa5FqBF7pem7yu184NZKxI2xss0W8DgvdL7prcI6MzBR0tNbyyNDODUs4hAZZ/U2LEOIM5goizs4xFWCIVZzfGTNKznV+tI73GZc3r8ajIsKLpwZpVUEOcCEGhgJxLI0jd1l5qc4PyOJfACmWEMKRUFCgtvOthnMNxmkAbZQjanK+K/JbghbeLoSX5RPKM1lrEeS3fLblCgljV6LjzIOtAZOt8jeNYAyre+0p1W9TmFiNHX1+Qu5YKKWuBC7Jlra1012wUJVildlcLC3uPRJm6JTWeNHUvr4d4Y83exgwoB3utZVfHlQxSyOsaAMhwfaY5jFXVUq8polzUWfIHu86h7/vVXC1G4VoAqF2Lq3myWCH8rWG52tecn8cAAOWyHEveKuC6HofDAfNxhHMGnQMeDB3Sy1/Eb3/ol/EtFugpwlhGh1wnyhiDZBjRFeSt0uuo1onKlOp830rhs8UILkgRU1m7lFG6w+EA3/U4hoDu/nN4hS0+8col7P4B7P4CMxdnPtcwyWuCk6LtFfSpKPK2P2+2fS3QjducqFP70lr7vXlq76x2QqTuaEuhxzAQiCMepQkvPftN+Aw6/MY44IX+HKn3sH7M8Trfw3gHYy1c1xVEKgsUGGNgSyKs5A/Il53k+miKl5Yu1xQqYP3lXVGehsqz+UWvXtdGcvuFKr/L/6WvgoRohTP5Ata1UaTfCTflWNsckEzhWJr0NBXakrU5Yhq5Ec9QZ1wyhDQvBSwTATQv9C+jDFQUhAFmcRJT2i4AzJRzm3SOTc3jKM9jSt6TscgojHHoDeHqeMD5xQV+9Pt/EN/7l/8SbOdx3vWITJgLLW+p52IVUhJXBWT1PWV96MT7ahiWSL8gJXpN5bVTatK4dd2fha6T5eBDCJWC10bu5HPOueoA1jlQjlKlB8b5TeUQyPrR0UDtNEp+j0iR65y9ZX8EoETlcYsTIp/Nif8d5iki1X+7KpqhHUAZD13XR9aVOLit/LA86TzPcA11NsW0cpp0P9vcHr1vdB6LfNFn2mXZq5ypquBMizLWYIxzceTXtadq/0PICmziTId1rTpmxvXhAO89+r7P1yFCKIiTdiz2+32ll4nIAjbmXlMH5SxpjfrbxGwOh8PKgW/LMuQ5CTBYyx0DuURApShLuQWVs7hSezRSq2pZO7p0g34GOQsF+Su7oXzOwFqqDh0AjMcI582yPylfr+/7ugestRjO7+XcneIMXR0O2J9f5DNCHFXGjTw+EYLRz5XRYim67ZWDta6NZUHojIVzFmkKICYYM+CYInzyOWgx5zOKdoxnDcNgwpyucf/JI4TPfx7/7kd/GM88eYTXnryM8/fs4ODgnckIFxXkiQnOEAyZHMuyOQiW0WADMlzmsMwHMpLvkwFszjccTcivjwnn7hwHcwG+3+P3Xn6Ef//ya3h+JozdHiExzi7uY5QSC7YEytT33m3Bxrfa2u+2N0Ot1/f8UpwhvW90H552jy/3Od/Nrc0hPrV3Vjs5Une0Df0eV9ePMDuLly6ew29MHT4eBnzuPd+Ko+tgEHFmJiTuQc7C+cV5cn2O0oq8uTgOwDoKCCx1leT32xLJKw2wMRa1jPOWQdZyqHXCs85rkNYaoG29GO30acqTNkJ9qadTD6eYVn2oh77keTRjH8HwlBEgijm6Dy5oQ/GpwpSNdTaL4lxKqVL1UIzD6hQYwHUeKSnZXJsjyfK1J+4aM8N2HWKJ6gtlSSfjJwAm5cTpEBdH42zY4frxE/T7HX7pZ38e3/PnvxeIESGVPhREYj4EJDAsZ6NLI1Gi6CbKd1dXV6svaa3yJmp/wzCsBCqgniV/sZcoe1rXCJN50Ua6PItGtIBMqZI518aIGHGiuJZSrPW5MnWM4QqKKnlWzrlat0cLFIhyoHbijXG1n3pN66ACAJDNRiqVNcX5Q+W9DCZTc5BizEhh13WYVY0dnccFoKInmhoDLMVdGUq4oXzW8YKOemNLMdZUaXKikKcdEmttRW20Uyfv0/lZWqxF182StXFxcYHLy8tauFZQPqEIy/2l4CoRwYohzrTKaROjMMSATuqiFUoiUa7xlVLCbrer50AIsaIY8jyyjqU+luT9HA6HTCUtDoUEBuT6GvmS59QolczFNB3RuZu5lZIfaa3FVAIOg7tJZQaAeYqIKdaABSes6M+ts53X7VJvTcZS9oFmCVjrEEuAIQbZA129v3Ok8tNKrqjrsN/bugaR8vz5rkOcp9V5KutEo3WXl5dwvqx/LGizOFy5flQORIBnOHhY2JwPbBxsoWXyHGFgsB/2mNIR4/ER9hTw3uuH+I0f/X64V17Bf5sSjvwE7pkOgy370gA+rz4444rqHmVqJAiGcyF0QZkySb2gYZy1yE0CumQxUwJbBtsZSEDfdbhmh5fNOT7+4iP8yxcf4+j2iBdnmAKjH/Y4HjMtl5AypdoAgfmGoMjb1d6qAd6+/0tBQt7oM62DdZvD9bVobxeN7+1orfOrv+NO7e6300zd0RYRcE0Oj02P582Az80eT/r7OLoB7HsY72FcdpiMtbUw6G0/Wq0OuCkn3DpGOoLcRp1WUXBe6n2IEaiRo7a18PUWFU7nQNUEZ4Wo3TBWcPNg0w5Xa4SuqIq4SaNgzsnabKgqGwKo9aJyvsBixLOhqiSn6S/1vfo5C7VPPi//B5CT0rE4kS19zzRzKYqBIpEOZHrPfthhvD7g8WsP8cEf/XGkaQaEckPItK/OZq03TrDGwxoPSmt5bclRWTlwjTyxdozbH01BvE0ZTqM/YmRpoYh2jrWDfUNVD9sRPe08t5TVFt26bd22r2sK2ta+EJSvlduWOTAFLWbmqtymx0iQAx3l1+jWFpK0Go9yTY4JYZpXe7KtC6QV5lrFtrbemn5mTeMVY1+uIw4MUZb/lzWvywLouddzo9FPjRa2iJHe9y2Fbuv5pE/G5HwxcZyqI9zsOz1nOi9rGIaFRlyurYt76+e6cd40a4uKels9l40HwSJF1D7r8ZFrbF27bTpANo4jYmCg5PjleV2Qp+rAew+yHqkUygYAjmsksFVTbWndek9Kv/V99LzpwI3sjZgYU4hITIgprxmh/TljYDvC4IGrj30U5gufwzf3Fq+88nncf7ADXV3DF6q1JQNTBCQybU/UUrP0eD5TC+2RDIhQ1T/195QciyJLTkQIZHB0HT756hN88pXHOLozTN0eh8QwtgezhYOFS6gUcJE0f7sdibcT2fpS3vs0OtoJkXpzrf3u3Cr3cGp3t50QqTvaPjte4/i+P47PR4/fOl7gs+fPYfJ7dBGwSLC2gx8GYMiKYs77bGh3hX5VnAApxJt4TW8DFuNDb1pJcBdUQNoqp6U0iSzr2iua+iSvCWIgX5rayJR+aMOgzbHSh4t23MSI10aMpujU/5dn1LRFec5QKI7SP93vxLlWVKbtM2LzHqK1AWxceV5y4BLFN9bA0SKtLBQ3ICNRFiX3C9noZTHmipgFCHDsagQ/CWWQCJYZiTLiQsw5ed8YTOOI890e4zTh8OQSP/EjP4a/8Ff/Cs6GHnMImMKsajA5cIkAgxMCLxF3UeHr+76iEjKulbpTkCBZR61kubeUkRDj6py1SKTMrV5ben7l3jo3T+5X0Q3mmi8zzmmp3VXQkFgi+2FaivWKbLlWCxRDWp4tvxaFtVfWIpBSWBmqRFlAxPquzuduGHA8HjGOI7z3+ZrzDKIl8ICk5LZDBEouy1yeV3KbNBKknStXEBYgCyoYFGpfn+daUDXru4qiyD4VVFH2j3OuilvIfhEUUKjAcv+z3QA2hBgKMluMbWeyoZrCXGX6Qwy5+GjZM9M0wRIhzjPIZUqylA2oQYfiREgfiQxiiDeQ7PbsstZiCougjRj9QmOT+8uaETqgiDdoJ1buIep0WjBHI6r5ubjKmMe40NaMdVVlsR/2eZ6nwzIvhT56PB7RdUMd96wWuCiWtmfpch7mDLXMssy/5zGbqkMg+1z2FJGp8z6Oh7LeLZgj5kilRpsDyjqRNSh7N6hAh+y/cRzrOMk+GoYBMZXvhrSuEbXKAWSG2w+IM2Gas5oprMXEEfM84t6wwzyNOF4esOst3psizBc+h3/5gb+Lb3Uz6PUXcf7sHmM44n37ewAsAuUctSX3Ka/NTO1jmCI0YbB8vxjO4ook1EpkDYir+YAH/RnifEBvz/HyPMI9+yx+95UR/+LzDzH5e5j8A8xgWGfg2MEmYCALRw5AQiQCI+UA3VOciS12xtbf3+h9b6Z9OQ7dlvN2W+BUv0ejLF9Jh/LNtDc71rcF1r6S7eRwvrPaCZG6oy0+eA6fCwafPAAv+XuYh3tI5DAQY2cMevIgEmU0W4vDGpPrDd1Wc6SVEAfWB0YbuW4j1DpSKwaKjsS30dyW2reFTLS0la0Il+bU6+imRsE0nbBFD/R1Wophi6K0aJk0fU0tPqDv195XI3stN/5mdPp2xZ4txEfPB6lxXxXzBCHNAR/4kR9DmGZYIpzt9ri8vLxB0xSDTY+hGK2t5LyMtVCoZG70NXVejx5TPWZi1OucFZ37JvfSctx6PFt1SHGoAFSRBTE8pb+S/0ZNHpFe99Kn2+gVLeogr+k8Fm3w6rnVBr5ez61IRjsf8n6NUrTPrvMV5X6+UJn0axox0sGBthiu/Fsc68PhUMdXHDtxPjRK0+67rbW89Wwtctw61xoF2goMtWPYBkf0OaGDP+IotmeRzr1sqY16rrcoTPoslSDAWJwoPT6aFqedc73e21zAp0kobxmA4qC1QasWHdTIn4y3Xr8t3Vr2lz7fdcHn24rsthTZEDMLgKwBWwcYQkLEblecMZPwzP097ncE9+JL+Be/8Iv45vMzOJMdJotcS86QgwHnEn9k4Or/swqp1FXLSHC7MNd15qQNF3tMYUbf73A8AnT2HrwSHT726utIZw+A3TmmGEGwGfHjhelgOWUHG8J8OJlcp3Zq77Z2QqTuaPs37r34+NHhFb/Hy/feg4ktLnqHc2S0gp1F6gbAMchbmPKlZ1xRmzK0NuiUEa+NtJYuI1+KW/Sn9otZiwDo/Br9OUGsdDS7de7k/a0x0n55bxlmrREgzys5D8yMoURKjTI2Y4ywIHifa62s+oGbeVNEBd0TR6LQTUJa0I/6eZO/k8V4ISziHIFDTTgWxAlR7qsoQCU52hiDaBkm5YR7q8aJmVe1V8jkL22Ric91gRjHacLOWvz8Bz6I/+V3fifc0OPZi/tg52BBVXVO8qKYGeM4VsSnVVDTxp2mP7UGfG7ZsQlFsEHWgc7jCPMEIl4ZqrJOtEMixrxGDbQMLwBETuCw0MFc5+GMRZgmpLA4RuM4wnUethh8wBoFE8Ne1tFWE9ECbQhrCplGopZipQtVNcYIbmigiKmgC2sHXhuwOo9pnQu4qKUhcZXlZ0LOQUpxFUCQzwmKMI4jzs/P63xXEZWCOJydnaHrOhwOh021OelrzevxDhNHEK8prDJencuoTgqLQyJ7NDb5anpNtYV0Zf1L0w6ePIM+YzTSJWfYPM8ZQWkKN7cOmb6OPHu+pgVxLOenrWucrKv3jIJqmjz+nenq/bpuqDlYi0O7pt3pM7P9vT0v9Xty/+3KgUvJVueRmTGHEdZ6UMkRk3GP0UJkeZwBUIpuG+dX4637IOtzmqYiuZ7roi19WRxLZsDZDod4jY47eN8BCQhxRu89eL5Ex0AXJ9D1EfTC5/Av/l8/iPccj+DDi3Dv62FgcBYYHRzirkNnU2ZtVFofwRJgrBRBT6ClbFVG/ghAKZCO+nqW/Q9xhOkGXCWL9My34PdeeYSPvPQCPoUOk3egOeJsOEfgAEOiBJhAIMSVqrmBKajUqZ3aqb172smRuqPtvwnfhOOOkDqP5Bl738MZhzll3rfpDfw+IXJR5ysGqLU5X0Y7TIJYiCOjI5ptbkcb9d/KRRBDU/4uRrF+n9BAhJ+v0bE2eq4T38U4bA1k/X4xALMQgFkZ1nKvNlnT2vylqA3PjixABJ5zvScxbkHZ8DMl74hjWo1ZfV+h5dTXkBX/KAGwhBSkuGt2koQfRpmzk1ObmXNxXxAoZREJ5kIT0vlphmFVEVRR7Uuca1PJZ1Kh7EleCjHDpggeZzx5fIn/z4c+hP/0u74j08ZiwhQjkLLRdH5+jqvj1Wqet1ACjVhIMV7tVKxQJ1Oi+WVutTAEM8N1AwAporrkuWjHW6NPGomR3BRtEJM1CFwUDwX5mYpRFjM9kiiLC2ypO27y01WkWqwv5w0YETEVahsvggDaudQiLRVVMPkeXQ1kFGrjHJA43TD2ZfyFRiVjL/fQY+KcQwoRCQVNiglzDJhRqHYKldOIGxFht9tVJ0g7WeJQj+NYKHIeCDNiiOi9B3HEeByLVDaDkeCsQ+Ly7LRIc69Rj+XcGXbZiYlcHDsyK8cLxmCcxtp/HaRZIbNERVghrhxNccC14IHkAMlaqzXKsAiIHI/Hiua1qLqslzwHuagrEWVKsEIKK+qIIgdellLiNfqf52VR0UxpCTrpXEO9JrJTVs4RWmq15aFLiNURA/p+V9akFNclkMnnEsfscBsiJBgYWkQh8tkS6/NbVZdNF+pe15EqThrWdNSbAbo8jh0cLAMuMkxKoBAxj9c4szPOjIE9XMG++iI+9mM/gP94l3C4fA0XO2AXpoxGkYMxhLkjeGZ0jFwXyhgYMAgJSFlUg8jCGQNQgC3SMCSOPpc6b8hr1hLjwjs8jAlhd4HfeuEhfueL17iy9+DPHiDwhP7c4vr6EfZ+B2sAynzBUs8sYY19mbckbf6VbF9petqpndrXSzvhzHe0vd6/D5d2j9l6eDOhM0URrtuBdwPQGbANMI6q81RCcKvrPI3at+VIbVGc2uttqZdJNFVTOcRQ0XSZ1pHSzltL+dqirmz1va3votXyNNVoi4aj6S7GmCVMqd9Py7NLE8N+i4rYvq/SAJvriLhEKwxSUb0mOX9FmzRrcRBxllGUGo13ubBqMZ53ziOME15/5VX83Q98MNfkCYsUulDNZHw1jUo7FxrB1PV1WmGI1vnSVCDtbIih2yasa0qpzutpxSvae0lfdC0bnQMn/anFlpWj2NLC2lw93fTf63oliwSDyNkYlR/5N4zLP6qfmkZY1yawDoI0wYyWYtv+zXufc6+Ks90V9KDdezLvQs+6jca6RXXVtM8231Hvy5aKKuu9nkm8Vg7VaJA+r/Qe1ZS/FpVqn0H+pmX59TjN81zPKa2Op8+J26iUch0dZNJnrQSJ9LjndbaM+xY1uhWs0RTX26h9LTLVnqFtgEz3vfaL13W6ZNza98s1BK2WAsXtft5aC5vfBTHBpqwwjpBgmeCNheMEEwJ2zuILn/ok/u0/+2/wvsMVXnzh03jPH3sAj4CLAJwlwHoD7vLcOMr3t4ZgizPlKP8Q5eASMxcnStGmS46b1OTKTmkCjkcwCI+mEZ96+BDXdgfy95CCQS/InM9OLZDAhpFs/gk2IZqEaIBooGpIndqpndq7pZ0QqTvakgnY+R2ybU8wxgPGYDj3SJbBnMsG+n7IktbypVWMEnEK5EtO5+oAWSji+voawO3FErVh2bYt8QZpcq+2LlGrxKeNE228SGsNNy2dKzV2hC4m73fOgVNxzhIjpoV6Jcp3FelwJieGOwsG4IvEMbBW/cvR9NKXYujKdY7ztOQEzMU4cBYo9LLMlydwkVNPyRTqICNyQOIspRtjxMxhmT/vkOZQVPkMKOU6LomycwRDsEOHOM0gR+XvAewIsAwOARYGhhnRA4cQcfHMA1xeXwGHI376+38If+Yvfi/2Z+eg8x7HacTRBMBmehUxASmBUwKRg7G5yKc4djONkPo1IU6Vnui9B6cE5pRzBmAwHiOISsQduf85+dsicco1g/oczR58noMnl5fw3heZcpMRvTDCeod5muE6DyTg+uoJ9vs9QoiwlOfHkUPnuuKoAFOYi2BCAooc85wSUkywVVRioeQFEYAggynEKsgh63Sajuj7XPyaquGIIqIAICQkZlhK8DajIYiAs6aKfFxfXyMQobMuU49AuU9KUU+jexKsEOEHEU5ICYiR8jnhHBgGx3nOc1bWkut62BjBVBzUEGEcIYWcM+dK/wHGFAOM8ZiLgIXIhsvv3hpcPbnEsN/BGY85BDjXw/YGoeSowDDGOSIywRsDbzKt1ZKpwgsJgHEmI2YpwiTAuQ6GGK7rV3TgfHYAgOR1Leilc6Y6RMYyDGUxBHEMtePT931FnZg5I5dFkAfGYJon2M7D+FxsOKVMw4pk0DlT0bppnLDrOxA5pBDQe8J0vK5oa1X1AyFRgmGDeSpI+STrKcG7foW6ZlpfhBQShskiHM7nr+kQAhIzAIKzDgRgHic4VwIBMcFaX+pRjfC+wxhGJDbod4VGiAW5BQjzlAt3u3I2zuMxr3VLea0V4Y6QLEICQBZzitjv9zgcDtjtsxDNeJwBGDATxjGjhDCESBkP6gYP5pipnoMFJQKnhMEYECVcHg5I3TnYecSrCd5Z9B64f3wMfPQj+OL3/z/xzZ2F5cf4hvsdrh+/gv3QYTK5fIMhAkJAB8rrqvD1iFJB9ksJApPzp4gjJsvwbEEzYGMewwMl7O7tcH35BM/1Hk+uCZfv/1P47ZdexydefAWfTxbX5wZsAoxJ6DnBMWPwHch4JGRxCZQavJZb9bWn13h6syjRVhDlrV53K3ByW/DyzfTvjT77ZvvydrzvSx3DNuCsA4stE+dpfWuDFm1/dTBI5y2+0bieUMS72U6O1B1tgzNZic+YLJXceZAtXxrOgsjnelFFaMJijVzoiHnXOAg6t6nS1FTTsrXA7Qeklih+2ga/Da2R62jkoS3s2L5X1xcax7Emvm+9dyvPREe3gwgVFHGDrRytNhdFlOEkp0IjJ1rFzmKJ2GcN34wQkMnUm6iQkFmhAfXg5QhbDCgkRgQQxhHOu6oCOE1TTlyIAAhgNqBYKCnMNdcmGYdoEgyy0ERKCePVNX7tlz6E7/7eP4dxPALIhu4s9Lu5qCx2HZgJ0ziV+baY5wlwNwUoJA9siZoTKFo4t6YHOpWsr8UTNP3n4uICQKZWCSrQ7fc4XF1nmtnheENdz1qbVfEaR0TUxDQyYm12goSCpNex5EYRUZF/9zBmKY7qfQ/mm8InSGukxJT8M+KSn2GAGAMsbDa8FHVNIy4650hfT2ognZ2d4fr6Gikl7PfnDX1whnPL/g2cEOMM4zyoKEEKVdUXNDNMI+Y5wTiL3neYy3PqsdDPKU5k5JwfGDk7rNngLgivs7DkSv7dQgvT+6yqUjoHpoWWK0V4dbHkvLYWOthC95yX+k4hgmiCdcMKIdEokVBxJcDkiopmmGZc7M8AANeHvMacdbgeJ0REBKydWqAgcXGuynvAomRazytjYaxBCIwYJpC1iLx87WqjTK4xTVNel/1wg02gUSeh08m9xAHLr+fcvv3+vKJGWqKeORdpzteyIBg4cjC9WX1XCIqs0aQQUq0tVxE9NqqfksPH4MRZPQ+EwAaGE8JU0KmyPxhAP+yRrmekOKE/65CmS7wvHfEb3/dD8C9+Ad92rwMfH8P5jFYRshNsrYchRmdyAMsTlRzUMrZF6ryioSnT+LIkuYFjAltGQgIMsCOH+fKIi/09XHLE6+c7fOTFa/zGJ15A6gbQvQdInOv3ETJNsKqmkin5VQXB+woIr7Wo56l9+U07Ufo1/Z2sg8a3tZalc5uD277nNI/v/HbCme9oq9QdmylbgnpIkrf8eyvRWJr+8tPUj9ZB2spFaulVW62lyd3WWurb1t9bdcCtH90//RxP65u+XksJat+nP6vHVRu3Wq1ra2y2olUt5Ua/vpU7pvvQ0mnafm39bFEBpd5VFYyICV98/nl84Md/AleXl6CQkKb5Rg5SlW0f+kXmvEjst2MMYL1m2NQ1uEUHrc/l1kpo7RqQ8RBHRlPeNHWzDSQAi3PXKrdpp0nvExnn1mhuKVt6/nVOXzv2+t9y75ayp9eU/LtdO5qC1Ra/1usWgJJt55VDpH/0OG+tx/b6+ll0WQTdt9vOE72/JKdLnGfnXEWe9HjK/du6dvoMWOUrNvdrx7/9jGmceRk36ePxeMQ0TSu0W49Ne7bo8dNzKP2TPaDl2LfqjN12bmlnStOA22fW89PSoKVfW/fQ+1NT87YKrWs6ZLt2V2OScmFzj6xkxyEizgmd93DGw7ABEmUUK0TsjMFF38GFA+67hPjZz8J+8XncO454/PorIEdFmS/XfbJkspPEqAg3EWWlPhAsuOYjieNGRLWek4uKPmkjEgVYkzA4j6vDjKm/wKceH/DxF15G6nZItsd4DBi6Mzh2MHBVqS+bUl9dc+o2tsipvbmmx2/LBpCmg3JPsznkvVu/v5n3n9o7t50QqbvafC6yK8V2XZfrRLFZOPvGlBpHjViDGM7yhXY8Hldcd/mSrOpaKi9ARyyftsm1Spk2Qrdaa2xIk89o6d9W/a29jqb2Cc2pbVto1FZrD9I2ilSjmCq5fRzHiqK0OTRcnsUaA8SEOC80ADIGZFCoOUVIQo2zFu7Q904p5cg/gG4YEIuiGoAFKTAJJMY3JSCVPBtTkEfkqPM0jgAYBgZ918Ez4/rxE/zaL/wSvuvPfDeeeeZZvHz5CPM4oe92YCoS95yQEmO4OENKQAgTkKhQ9/KDM+dCmpwIRAacKKtYmUUePaZUlAnLuFlTktuXnB1Zt+M4ViNbjN7r4wFnu32uydP3eVyIEFIuujOXzycsBqFzDldXVzcKr2r0TAcPBF2QWkOCjmzRNnR+X/6dbjjSW7lEM6JCgxOMd1UMZqHnzqt9I0Zt13W4urrC2dlZocmFG4EFyW/TDhWTqUgV1DVXZwAtjo48o84h1DSXOS5Oj6a+1LkWhxE3nRgt+KLRHY32tvl1IQSAxYmBUv9chG1EnCWoWmU6N2dWe0crKYqYhtT8uri4WDmbmdbJlc4s9ZtyH23dt8Zl9DYPTRFsSIuKqIFBmCZ4hapr57tdg7EJ1GwFDKJSQZU10Pc9DocDrLW4vr7O6GPfrRyeTP2+WXJBKJUy5i39SBBJUBZ6SXFhCsQo+0JyRxk8T4CxAAjOeJDzOB6zWp9nYECeN+t3oPAIXTrg3tVrGJ//LH7/Z38af9okXF2/hm5IuNc50DzDFWfIEbKTZhi+5D5lh6rsO2T5VMOZ+mcAGCqcOwa6aMCWEWwEYwZSgrUOl8GC7j2L33rhdfz2y09wjXPQxQWmKWDYX+BwWeibhkGUSrFpAn8lIKiN76z2++kutzfbx7f7fa098mYoie15rj/TBkhu65v+3Bs5uVs20am9M9sJkbqjzVibaXtuHb2VH13tvo0gt45Li27oSCOwyAk/LYm/bW1U/bb3yHWkbb1fR2zbJP4WmdB92nKibrt/i8q1UV6NFrRNR8tl/MX41ApipjhH9VmLcl4iZDl66YvJToSIT7QRYmtM/SwM1WsRyRf2G9SUsktdKblfBK/QpopSTQGPX3uIn/qJD2K8us6FU7FE4HRf5xRvoCVbiInOudOG2Eqqu4nu6fFtr6fHWgzoOYaVYSlrR64pxqAUE22/4BaK37qga0ulkuvr59brU4sDbImpaGdbJ/G3n28RPj3GegxEqVDECjTq0j6HvsYWYtCKbUgBXnlGLYYAYKHQNWicnic9l/p+OjijhU00YiN7SV9L1/NqBTjaOdLrTCOPer7lOq3oiXbiW6VKPTet09oK5KyLNC/7TDukGqHV43MbiqbPMumrpj3K+8VRF4qkXnPyvLpvW6hve1/ZR/oMzMEiD060+ozk/6zP3fzcEQQYA2MdQsxKdsa66rynMCPwiMEnPP6Dj+AT//V/jYvjJZ5//g/x3vc9wD4x+jlW4QhLBh3ZnFNX/k2MBY0irmiVBSqSJTWdDBGirImCXhkiHGLEwXd4LQKffHiFgz1H3O1xYEYqNErvFiSszh89PffpK9FOiNSX156GSOnXtuyn29pbRaTeyvtO7e62kyN1R5sfetihy0iUdyDvsjHsXTVsZYNr41M7I2IwSCRV50cJZUWMI4lAtmpi8gUshoAYW62jpo1GMfJ0a6OurbMkRkHXdSuDGcCKhqUNEE3zkr7pSOrTIkMSRdU1sLaMT51jIfcUg1YM9Jq7BUVTVNFeGMqOkbdgtzhIrvNVZa8aXRsKfr7vCtLC9TXjHJgICdl8IZtl8NmsjXbtcEMc7+JogXONLZuA4+UVfvhvfx/C5QFnvgeVPJIyGACAq6urki9h4X2PLBNsYEyWbZbfjXFFBIFhnEXkjKoZZ7MUdwxZeryoEsrYSv5KjXqXJrlpzFzHLoSABOAwjjVfjGwWw9BqbJJLp/NzJEdGJw5P07Qq0Cr5V7J3tOS0UNHEUBdjWZqmjIUQauBD9o3rPJiyMLL1OdeICQgpIqRYBSk0OqvRW8kny32dwBwBJFhLsDYbr+N4AHMs/16vY3HANNKknRU5N6TvMg76XNA0sLZOk+yftii4oMjyHOJgiHOo52gcx+oEy/xIAEPWhA4q6Wc6Ozurcy/jN89zleeW/qUQYZBV2lKI4JjQOY/pOFblNplLTZGWZ9W5acMwwDiPyEACwThff6zvMMcEJgPjPI7HYx3veZ5xeXlZHSA5u/R608+qiwbLHMiaEESvPeNkb7VBD/ldI1DaIZN76s/LeMgeDyEhhCWX6nC4gjGA9xbjfATtPai3mJBwpITJGqDvQYODHzrM84jD8Qmm65fxzPwE+MQf4P/3kz+G7lP/AfvpVTz3x85xPT3EM95jP83oidATYXAW3hl4EnU+hifAIP/flTzRzhQJ9FIYt65NEB7HY1bRnBMG2gNmwOHBc/idqyv86sc/gU9PDtf2AkdnEHoCd4SIGc4mWMwwZgKZGWxmkJWT+CvbbnOC36hp+u1tdPbbHIS3eq93StsKQt5G2W0/c1vT+2or6Lj12TeDXL0bx//d1E7UvjvayC2IFFkLsgZDMS4DL3kdLf0DwIqaI+/Txo+OLEokmohqpLttOjJ7G0IlSf/AurCpfO5pVEHJRdB5CzppW5wdYDl0WmlsfR+hY+n3t+iYdo7a3+X6Tzu82gi5zkWRz7c5DMxZRTC/34JDzEVhqUiIz6GOXV0H0gdCVroyyBzCuC4IypwjqpnixIgmG4YggnUOhhgJhGSWeamiA8WxiNOMX/x7P48//xf/AlzXYUxZjWoshWx3XQ/iXOxVRAWAdYFUcTq6rsMwDDiMxxUSoBGZViJZ1mnroEii/BZS2nVdladfAgdYOQ9nZ2crARP5vDhMLZKmo4/aQBdDX+Zf3i80QIOleLDsLXHotLOlnX5N5RSqqrxf1zoSypWW6hYjWO4vzyUOiIyJMUDnupUoR0VQmUEiA21yLanIixCNFgDRnyPrVka3RmLE+YyxOCoK0dLngjgNWmhE0y9vnDelqLOubxRjWq0dAKu6dXqs2j2uX5dx0cEYZsZ+v0eM2WHVxaCTPEdZvxmtNZvIuqZar4rgljnVFGU566ZpQje41VjKmHRdV8/bruvqGpRzSNfW0uePnIvLeqWaD2YYuY5Ymuu5pgsEy/81bRPISo5yhldjFDFTmClhCjOCydRSY3JtN2sJzhDidIneBvQm4BlzxL/+L38A/otfxLftLcL0CGYIOAPQkQG6DskY+II0OTAcDAxlNT5T6gAaS7Clfp4xmfpJBIS4UN7zOZxw/tw9PHl0iX3X4zo5XDuP33t1wj/57EuYu3O4i2dhggHTDENZebRU6coqrEAW+TGca4ThdiGCU3v3N43et4j/Fjvn1N497YRI3dVmDcjZFRWEmSvSoTfsbTSNlqan3y+/62vftslvc0Z0a+khT7vObZ9tW5uAfluUSF9HjFSNvm3xmtvPb9HUntY3DfNrw1v+tkW5ui2JvKX5bM3TVl/b+2z9u31NC1AkZIdIDNp5nvHFz30eH/zRH8fx8gq7vsc8TivFNo1OtmvuaZSy9lm2IqNbifDaIbptrto1FlTeiDaS27lp84B0LSc9t4JetcEBaVu0Wo3YtOu4pZBurQPdV0EhtsazpSFu1beiYrxq9cmtnC+5rhbgkPFpAyx6f7UIx22iMXof6/u2KIogKe3reo3o19v9p/N5tuhsT9ubGhGa5xlxXlB6TeNs1+jWOnzauabPZ71/2s9qIRP5jF6n+v1bgR09Jy09UZeFEAepFa1p966eE72Ot9alvnb+PwMc4QzBE+CJMFhgj4Txc58CP/95nB+ucfnqi3BIsCB0cPBwiNYi2nb+ADIMIyVCrNz/Jh1yS+wmzhP63YCRgbh/gMfY46MvvY443EPsznAIE/rBw3JGsByrvZ35gYUBYGD4ZCB/vbd2v2/RBk9UzHdnOyFSd7S5zqMb+lWUfIoBne3WKMQGQrT1BSdGkc4J0V+cOjrfti2ucNu0UdAaO9JuMyyGYVhx/ltO/9YXuu6PNs7aSLBGPraeSa6nqYetgbXVa20oy300HUejU0KNI5PFFcgYJOZcLDetHV79zKl8VoQkyBpQqXHEhoBSNNImJfZBqX5GcrKMMbAMBGPyNZnB1mDo9hUBGToPFwJ65xGOI37+p38W3/2X/jz6s11GwAB0ZLMwRKHqaSRJmkTbxfjWlCKNlLZOvhivmtaoaXbOOSTvc44YcjFjZkYCg0qyWSIANkeGu65biZgI0iHzJX0zxtRoeusoyX21PLpe71rYxVqLeYz1d/38sraXNbGmvQlqJXWzYoww5fkOhwPOzs6qsIiMcc1V4gDrFnpsCAHGGsRUkC6zTQcS6fEsh76gpJrWpQ1noVsK2hXSomCokQpxyMUREjrVjT2BdSBHovmCKg3DsKJUppRgaUGmtWNc/8/y7yXnS+9pQWpk7npTRB+AgvImeLPUxAspj3837OpzppRwOBzgCyXXmrJOI0B2OYP02SPzL2vaFFRJOzh6XQJZSGZW1EFNI9ZIfZhD/bsgSEKLbR214/G4cnASR/W9QLi6uoIf/Mrh1I6tXDOvb0aMXPdOPg8TrFuclc5lCitiPpam6xGJEobBIU1H7BBgnjxBevl5fPrv/hj+44FwePIE+97j/jCA45QFKgwhdB6GgB0XcZSSPmqKc0WGQGxgrEFKc8mDysEiAsH3QsctuWjWYk8Jj8CY7z3Ab7/4BJ987RqfDxcw+/tIc8DubI+rwxOcOQfDLjuChsBkASIwsvAJ3kW28Vv53r7L7c30+e1+Vm1nbAUE3+r13y1z8fXQTo7UHW3VQHGL9O9+yF+Q2uEIG1S8ltaho5E6gqrV37QB07bWYZEo+219TmIINp+/LRrTRli1ESqf7/se4zjW52spevp5dSFgec4212QrYqwj+Jq6Z2+hM+oop6ZMVWOtcdbkMyklGCIMwwAOEWHKBp4Y0c57xDTn4rW39HOFXFiTnb2UHRgveV+6n0iVgpSNOWS1u3xBwFrEcYRJjJQi+DjiF3727+G7/sx3ozvfIwZGoKIGiISU1sjFglblceidQ+CEQBEolDfJi+Gi3gd5jpQVvlqpae3UTtOErhswz+OK5tkVByPPWxkbJhwOh1q4VuhMOrIvqoAtmtYiHJp6p6P1UkcHQM156b2ruVatfLSO/keVZ5eY0e93OB6PuUCsdQgh13oSJ65FyowxGMcRRITzPtcJilzEN9jAu7JXKNWcIO1MSv0gmFzoGdYBJIiYhVGKhtoByQ5UBEezcnRbVBLAigLJnOWqjcn5gXl/J7jihMxxHUSRz8cYMaeIzrpcNDvktaSdmlobS+0/LoqZkVOlCLcofFajzPLcOd+UEDjhbLfD9XUurmu8g0FWoZPxqxRNXgoxMzOQEkLKTq4pKCaQ1zVAsF7UHwMScc1d1UiQztmTZ5J7ivCH/LvS/aypNMOWlijOmy3U8KV2lsM8z+j7Ho8fP0YIAc/cu5/HigEi4Q8v5+cwDJUSOAwDHl9eoRv2sKU4MqcI7zzIcO2rMYTO+iKOY+Apr3czH+HiAefTEb/7D38FX/iXv4H/8fwQuD8gmGs8e3YPdDVi33kcO4dkCd46eCKYFGAl/zSnfcJU5XECm1zPiRhZIh0ZNQop5kBLlx0uMPD6k4Dpfd+Aj778CP/6i09w9Oc4uHugyWLfdTg8eYKLezuYiVHE04GyXkCiWFrWFQNAyh7jqX1dti1qn2ZvAE9Hqk/tndtO1L472oyISnCW8/Vdh5hSLt4KAESY1Jdr66joqKhGtcTg8N5XypAkYovRqdWuAKwcp5ZyklLKybyU2ePTOCLNIau/3aB2LAhGG1HWIhbt+8XwbYUetOSyjpzqnJdW1VCeq6UOtXkTGgnhEEEpo0eiaschonc+G3nlde1wAsgOQ3GaZHxQItJSVyWlVEUSIrgKiRhysORykUzk4qaWspCDcx2875ES6vNWOpfNgg5kSyHnIp0fIoOcB8NUeWYimw1nk6WLre+zSqT3SNOI4+PH+JkPfADT5SW8IVhHeO3ydQSK6J2FcwbWG8xxwmG8RowzvCE4AuI05uRvzj/eWFBixGkGYspKWyAgJhCnWmBzHo+Yx2N1mqtDwlTEKQxgLMg6GOcxzxGpPI+FhWGDFCKIgd53iHNA53Ie2n7YwRmbi6SCsOsHhGnG+f4M+2GHOAekEBHnAKRs/DtjgRTBMRtwSFlhrPcOzhAMcsFRb3MOSN/v4H1fx1f6Z0xxkJgyCjkHpDkXkY3TXNfUfBzzePke1vo6z5Lcb63HNAVY6+Fch3EOIOvguwG+G2B9l+XfyeSIOQyYlnyrEEKJqqMIIxhY38P6HqFI26cwgeOMeTwAALphB7IO4xyQaDHqdWvRybrnfK59x5TrhbEhGJ+d7MN4zCIkxsBbg85ZAAkhTJjTnOXzHYEcwXUWZAHnDKbpiJQCiBanN6WEFPO+MSYjtzbXG4ABrXLvarkImwsWiwCK6zyujgeYIuwzxzJWMWEej4jzBI4BSAuSc5wCxjmfwZ0zII4gjrDEII7gOAMpwBkAKTs4c2JEBsg6wNiSP2SybLf6vAjvaFqtnEu5KHI5l21GXoyzMG4pX7HvByCmvNZSAjmbn6s4xsfjEft+wL2z83rdYb8Dk0Fk1P9772GQ6k+IE8zQwQwdoiUEcFH1nDDOUxVSefLkCdgAEzGuUsBccpMYI7ybYV/9NC7/6T/Cn8YEeIDnI54522GmGWkAJl8KLKcRJhzB0xWIGc7kHCtrUJEpQoIF53E3DjAd7Ay4wHAxYkwT0BlczQd4bzEYg/Dcf4R/+8UZH/7CJY7cI9kB8AR0AHPA/WGAn7O8uVDtueRigSPAMZ9dXIQmvsZO1NMEI95suy1V4GvRWtbC292Xt/tZW8pwy1h5q/e4S3Nxak9vJ0Tqjrau0DMMrcUigDW82/c9jsfjSoFO1NY0itQiONLayLskL0uTL2+dL6EdEWZGVNQlocZUZ0JdZ2Xwq76JY9Q6XfqLYZXbo+SNxbGStiUBL9FeIlrRueSZav6ZchY1fVLXHNIR46pqJ/eNi2qhvNYefp3N15rDkhBeUTLDSwI7FzENAKwU1jQ6oYvNMi9yvHXuqrIj4PsO87hEpKOoNULnlgAoUfg0MeY5IISI//ev/Cq+4898N9haWAPsdz3SpOa15AlUZzAlde9FRVEjQKv8suJwMi9y3sb5leGYsNSWknWohSLkmimlqp6oo4LyGVkz3nuM44iu63B9fQ0RbtCiFHput/LDtKhKpZ8pQQZx5Ns1GeKi5Kf3VEupkjUrzrIuXKvplPm9a+RVgiJZEc+sDPLVWWAIkXNdHZS1J00HYLquA4yrZwXzUj9KK9vdKDgcEwwj00FjBEofvLGgXl2vyNmL+MKcFircFGZYTjDMGdHYoNCsjBcWcRYG0006MitarTynqCpq+qI35ZziRQRG1p1Gd+QsIOvq9fSaqSh0UZ+EWcZM+h5jBDeoHLAUV5azWa8XyZkFM9gYeJsRXaR1XbSaz6bKLcg+0XLwxjvEcS702Vwrq+s6zOMRKSxzen11hB0GTFeXeQyszYxitoVal2CMhTl3mBKAmXFGDhgC5uOM9xyvgS98Br/1Iz+EP3W/A8YDrCF0xLBEMIZBhgDL6Iyc/QQDB58VRzKCLXlSyIEpMgwSKVACYld4hQDOfIfpMOH+cB9X0YCZ8DsvP8FvfuolpL4D3XuAMZWzjDJlWKjRIJuDAeCbNL4TAvUVa1s5jKd2anexnRCpO9x0PkCLCIlxoNWc5HXtdOh8k60Ed/3+p0U8tpwvnUTfJjdvfV7/tHRDXTBVP6f+dzsGt/VPJ2XrxO62wOTWeOix1dfVzl9bv0VaO+5PG1ONtrXCGNqo1j/t9bQjqJEAMdK1UEn73jaHrMqiK2Qh550wPvWHn8SP/dAPY7y6xjPn97LR0jhEq3UhKnqN46znrl0jrUhCm3ivjVLtZN923TZw0L5XnOrD4VB/b9Xe2nWqP9sGA1onUdPNtpBRvee2AgZ6TWzRD7fEAHRpAU0b29onmiYon89KjGt6q37Wlh7c1ghrxSNaoQc9l7puVHsWbaHrut+tGt3WXmz3dfsMLZKt0Xv9Hl3QV+/dVrxiS6GzzQHUY6Hpe5tCJeZmzbMbAYONuZE1p9dmez7pz2zRMvUaBNZKitZaeGvhmGBTLojrYSCb3hgHCwtLlNFUtgiHGTQdYeYj6Poh4uc/i9/8ub+PB+OEy8eP4HtX0KWMMrkMAOXaT+UnU0MX0Qo5g4wxK2XI/JmMEEXHmB0jUkI8jDhzHShY2P0DXPs9Pv7Ci0i7Htz1OIYAFIQ+0wYJyRBiUQU8tVM7tVO7rZ0QqTva9JclcNMYkTZNU5YsLonZ+gtfriP/30ID5Npa9as1SiWRWfdDK7m5UsNEJLzlfbf1oTVCtezwinrTGEbaUNR1sNox08ZQa7TI+9ucKd1aPrOu5yMRYhEGkGumkvfTjmtrJGuZY22o6fHPxgEqOiU/zAyrEIBs7CwiIckkuJKQT9r4VNQqIAdVyRhYIrBJ2WhLKed5xBmGsUouf/9z70GYA37ugz+F/+Q7vx39bgfuhloDS2hG4zhiRoJjZEOEE2JaRB1aDrn0b+1ErUUJqpEIvpGg3xrDMq8iJx9CqDlGKaWVLD6Qc5v2+z2OxyPmecZut1vtj8VpTisHVDsuggzm9bGuLSRoWis+4fyarqWRtdZJ2HLktNMmghHyN1nfIpAh/dDniXbaNcrFnItHW6JM+XO2rDNeCT8455AUQqfXtjil8rwVAW32dYvwMqnisSFkKm1RRvPW5UVbkBa9NuW5NVItKOvKSbNrFCsxr/JPZcyur6/rfpdnIV4LlsiZoGXGjTFZ3KBxfvX5IOdSipnCzNBOC4FcB4MyNxGA2XaWNOLpeQnuJFPOD5fP1ClOWSLcGLAxVeYe0g/OpTRAGcFEoRgbyvstodTfchbjDKSUEePedzAgwHpQApgTKBEiMp0538aB2MIlA39mcBGvcfb4FcQXn8fvfPBHcfbFF3DPBMAmnBsDy5ne6QnoTUROe0qwBqVgLkBgdEQgcgBl+XYPk9HHXL0LKKXmYBJmm5Dz1IB7/QMcDxHp7Fn81mdfwWcePcJnMIDu3ccUIobdBQJnKr2hXFw4WSAwwxkD4q9fCeunfUd+JdtW0O3rbexP7Z3RTo7UHW2iZAdghTq1UfX9fn8jf6ilvrStNULFKJfWOlz6mvM8V6O05ufEWHNavKqjwhv31Eagfp7D4bDKW9IGk1BZtBiBNlh1ZFuMFm3QiIS0JFlL0wZla8TqcTDeYSqfs93iFBznaaF5WZupR8o4bcc+IxOo6Jj0TQwy6RMAGGNvsEakn3pNiHOUYqqOFkXKhpOmAHFEv98hTiUR3ClhDOZSHQXZUYslJ6wUJXVMCHNESiP+4T/4ZXz39/w5GOcROCHFhDjNSK4oWXFW9dOOsq5F1EbShWJUjc+K+i15cCEEMBGMsVV5TJwzTberxYpVTozQoYSCNY5jFsPo+1qXSQRWdH0ijSLlfJyb1D5jTN2nWfzB1to+ei6lyRobx7Ea65riJ2Mkjo+mXYkRLgIUQis11lbhi/1+vwoWyLrX19aoi6w9UV47OzvDdDzUGjkyP/PhGtZ3db+LgwGg0uCcc1XgA8Aq/7JVYGRexD8kVzNGVRzcmpVIhIwZsDieOpDTOhurMwc3jS9Zo+M4Yr/fg2gR1JDCtppa6a2pxYllzDTCW3MvCat1KOOj1ShlXOt7UgQnXZSYME5FUMXkvugC0foZ5bqaasox1QACURbQqCIcTbDBerPQk63FdDyiG/pax0xofeO4UBvnmECOC106YpwCyFmcX9zDk0PZmzajRylG2BRgXMTu+iE+9Yu/gE//1m/gW9yE3QMDGmd8S3eOeHkA7zwcAI8si27A+Uw1pgRXAAvAEsNak50pTsXpQab0lW8cUQ7sZgaRA5HBi8cIuniADz+8xm++8hhHu8Nxfw6wQT/scbia0FmPnc/X5XIu5vnKNMevV0fqa9X0Wj+N/and5XZypO5oOx6Pq2rygCiXdau6JsfjsX5By2va4G7/3dLrqqBCQ9mRz4nBrvn5lQok6E5jXMgXv9wPQHUu5MtfGyTTNOH8/BwppZrvJc8j/dF5ShLhBxZjr803aPOaxEiTz2gUSOd3tHQYIKM3mnbYogM6X0tLfMuzyphlueJ59TntFGg5epmDGBNMUeUjAg7H4zIe1NTi8Q4xFMnnmGqxZqGqhBQROcF6hxRCRqEMFUofcv6Ky7QchAiIylwIMEQ4HrI63Qd//CfwPX/lrwIlWT9GoHc7eKWWSGlx1PUalr5L3l8IIdeUUQa/9x5FEWPJEaGl0Kqeg5ZWFmMWmhBjX2T0Zc0JeiuqZeM4ropVy3hpymUqSoeSP9iiDTL+0zRXI7wtsKqRJI1saal/TRNjLGv0cDjUdaLXkhRTvbi4qHvHe19VOLXyYUs71OtSjPp5nuG6vo7HFBZHJ4s5ZIM6xYA50upcubq6qnOo0SEkrrXIvHOwBbUxIFAR/eCY4PsuizrMM1KIML4DUXagKpJlqJ6JOq+xdaw0Euhc3o9R5VU659C7vMZkDuUc1fuSKKvvdfvd6h7tORFCyDmXvqtrWAdztNPPzIjzBCRb+yrzM0vR2C6XvZD13halFiczpZQDHSY7SvM4rc47JiDEvOeJUa/l7JLbZ/2Sm+qLmArHCOaM9Mhcuq7HeHWFlBj7rkOcZ8wcAG/BxuB6mjGFGfM84t7FOeY4g+eAOI/oQoJ9+WV85t/8K3zjzmFvZ8AE7HYdaIroyWAECo2v/L8I1VjKioDGOzjjQCmAS04fUV47ZdPClP17OByw3++AQ8DZ2R7XCZjPzvAaMz7y8DVc93tEtwcbD0tZaGfX9aVuVUblEuW8vtTQMu9ye6tOxtb72/IEb+a6bcDwS3F2tqjZb0Tb/Uq0rxX6dmrv7HZypO5o08niAFbojI6CivGii9BqCmDL19fIizTtHLVJ/GK06EizGMZy71Qi/9qADCFU6ozO1dD5H/KMFXXYQMk0EiZG3ypBWuU2AKgGum5awVDnS8n920h92zYZ8vJcEjVvRC/a8ZN+3JbHIQaVjOMcphv5M0BGKmX8p2mCcQ6k57czWXXOEAwvyEJIOcpK1pQCLCURQZ6QAMM2P6zljAAVBGCeJljnMBBlqep5xs//1M/gu77nz+Jst8PIEb1xOIzH5UtP0RtlniTKHRWC6ZyD4QTmgooaW2ohudXaSUAdG1kfmi4mYy31mDQNtI1qisMrjvyWgy7jlvvtVvOmaaH6/bp/0ie9BivC4hbEQosJiIMVQgAXo9p7j2EYKlLSFseVZ5a9KeiNFvfQe0aPn3Z0tYOlz4jIyNp/xsDbnNx/mCOM86vcIPl/13U36hVJP9vcsdVccqh9tdbicHWVHR7lPLJyXNpzUebSOQdjlzNkLA6SpvbVPcmLAIlG2bQjJUibnv9hGKrzq/etOFI6ACXrTDvSWZUvC6jUM8FYeLPUo2ulzuW807RDQdYk6FCRcFrOGkEpiVFVImeh1IIR5kWEx1qLFFJWvsOyb1JBeGuNOE4IYLAzYLIlIynBe4u+28PwCJcSeh9xNj3ExctP8Ps/8aP47z6zw/WTlwCXgyf71IG9RSRTlPhycV1bZM2rdLwrAhAcUIDvPIfIVGAAJXiS1+D5Pgvr7N0Znowe136H3310wMdee4Q/nAxo/wAxEDwcHGdtS1vUNw0nJBSRHwIMG5xq7X7lW/u9u/U9fGqndlfbyZG6o00jUsBCGdGoCoBVPRxdDFQ+s5WrpEUsdO7EbUni2nDTjpkYcKIsqI0HZkZQRVvFcNNOj0RZhb4iBklKaWU01ii9yluRL3+NQrWURU0f04hTpa0omp829p9Gi9TtRhJ546DqHJpqqG7kqbVUwJznYGGsrbkjABCmMq/FEYQhmFKXp9LzirOU859UMr2zQAAgY2MtnEooN8YAZBBDrjDJxoBtzs2yXR5nU4wbw4zHr7yGX/ulD+F/8j/7n+K5b3w/Pv/F53H2zH1YURgUZ59TzaHS4h96rAmEGPO8+j6v4WNRVdR0KFFa3Mo7kzlulQ3b/D+9lnUgQu6hEQmNLOok/bZg9OKkL4GC1snT9wgbhYrFuZf3yNpqabUauUopVYRN+sHMK0RKPqPzdlo6rabFHadCI6MFkXOGgBQwF+eMERHjIlIh95f3yx5mZiDIvCzIxziNxeEpqoXgWgfLWrfKO+OY60KRMSC3Pp/kPJR5l7kTtNGYjJjKZ2TcdL9FwVGjwK3DNYd5hXDLtfSZIk2jgLJOgMXhY4713EpxqvePxaljsjBOHPK4iSCu0MuEmq8mxbpJU17L+eCY4EjtBcoBsBqASBE8HeGtW+rmpQAiW9kIMA5gxnGesyCEtTAo53II8CnCOyA8fgRvGM95xj/7vr8J98Ir+LYYMLgjjGM4AvpEGIxDKCjvkBKcSXAk+4lhKGWnyWWsKnFE0iqMnIvuls6BUdDvcUbf73BlzvAC9vjU65f4jc+9BFw8g+Q7pAnofY8OscinJ5ABGBYzSV4pAbAnJ+qr1PR5Daxp7F/NdkKfTu1LaXcbq/46bi0n+EbyPS+1knS0VyNTba7QVq6AvkebJK1/tLGlaVr6d32tlk6kD0VtRG8hZa1Tpw2g24xoTYu67dnapFWNEuhnebOHaTsuOo9GDCjd/62xB7Ayxlrql/7RAhza6G8NxFYVTl7T12jfQ0QgtyA71KjLAdn4ouIwdtbhC5/7HH71Vz6EJ48f48HFvSp9f4Maqdawzmdq53Nrrelx0nPUXru9jl5HW7kzrdhDm7+lr6/7pdd/e59WKVHPlR5neZZ2X2pnWpcD0AV+b1vDmorYOpLaCdBj1eYFCkWtBkiaHCtpFjdV9do5aNfBbQqWW2PT5j3Wsd5QtNSIkjyDXid67PR6b0U8ZB+215e+63ZbzupWUEocJXHwwjSv1vJt53p77utnkD4AqCiVdsr1WtSU19vGXo8JKK32nz5P9HgRlRK1kkcJgFKECxHP7Ho82A04PP88+heex/l4BUoHpOM1HnQ9dsmgIwsyDmxsDgjZXFg396kEbASeQlE0v+Vcaf/tbYfjYcK8G/DRhw/x0VdexWT3SDSgox3Oh32pJZdzrARBT5YRTUIwQKT8c8JFvnqtPZ9O7dTeKe2ESN3RJpSMth6IRqU0kqOdnq2oqv7y11/Gqy9RYKW4pZ01bZgI/aRSYZSKHBvF+1fFIXWuiHypC7VO51fpPAft2OnaWLrPmmrY5n/paDuwVqI7Ho/1WpKDINcH3hiN0hSuGv1VDo/k57T9oMYI1WMqDpjO/2iREW1gWjJIDX2MRTiEeGVgZtoc1bkkykWCASBZU2pXAeQdYBlRqFTMYE4gsnCwSNOEGBmdt7CdxZOHr+Pv/eRP4899759F1zsEZAGKoNZs5ICQFmpoXn8JMWZazRQCnMlo5FzWtghALIYyK0dZnIJlXkWieJ7jShJZo1C6iDNRjtDPKdbXdF2wSsEzFswLujTPcxVYkDmRMXYu5/u1SJSmkzIt+1boW5rWWg1WKnLkM9c1LnlR07SInIRxhvXL+pLcGi3Wop0xWScaGVzJsyes+lydCOPgTDZ253kGlXwnQUq00I3k9njvc0FdTdFsVPeIslJgS0nWDndf9tI4jjCCVPFSW0nGTK67Uhkt9OIwx7WDIhTQEBFZHEcgBZXrSFnJUp5Rrj+OI4ZhWKHy/W5ASliNhc4HHccxOxzeAxzR7QbEKWIsjhAXtUqoc2Do3CrQIwiqUGP7vgeXM7BSaL1DSktwZYoh5/64hQLOBWX2No9Toizs0A07cIwgs6C+FkCKAca4jFAB2HV9LkwNguGMxFomDM7g3BP8a4/w6PnP45/+wN/B/+jwCPsH57g8PsH793vQOOGcOgRHmLzJlDpQRaIMSRAuV9u1BkgpK+lZlzl/nqnmQSarnFkGLFu8doiwF8/gw68+xm+/9Cqu7QA6fxZTsBisQ3hynQsPG2QHyjDIMtgAiQmABGsMiA0MJ5xwiq9sa52nkyN1au+kdkKk7mjTEWtduFMMETGqxEnSkU9pYvTJNeQzOsdA5z7pfCtgcSrEWNDGvjbcYkqlYn1WESNniwjBUmBSnkfTuzR6pvutxSrkvi0io9Ek7QRpFSu5vla70q/pMZFCoDr/Rl9PnKIVpVHUuiSKnBjeWDgyCOOE3nkMvgOHCMRUDfeILL1svMsS4s7mQra2OKKcVlH6EALiHNA5n5PGQXDGghLDwsKwAaWcE2XIwcAiJYDYwJJD5/pKmxSjXUuJr1APyjkLbCxS+bGug3UdmKlczwOGQRyRwoTp8hI/+4EPIE0jxsM1jDeYKCCahN508CYbbSLXHuMMRoQzBEulL2Qxx6XQcwoziDOtzKDkMRAQ5wkpzjmSzAlIEWEaMY0HpDij64oKnsmS2jDZIWJmxGkGYkJnHcI4IRW5fg4xJ7Zbmw1vaxBSROCUi8EWlT+Za1l/GglgZiAm7Loe3ixCGsYtfbHeVdqbXnuydlsaLqnPxqIyN89zVlRMuZZO1w3gCBhYzGPA4eoIYpPnnHN9nzivnSY5K1q1SyJC5ww6t86dIuvguh5kPebICAnZiQIhTHM2YJXSX9/3YJNztyIiro5XuB6vMacZYxgROCCW/8YwYpqOFdmQfvq+h+s6RGaM84TICa7rqmqhHjv5TA0QeFf3kSA23jqMhyOm4wiOCSlEIMWKSjhLAMecB8YRYTpiGg9FjZHg+wEhMULK4xE55w65rs9jQxaRl/Oy5oiBwTGAOKFzxWl1HY7jjHGO6IYdumGR3TdIMMjv1WefnPviIPalYLvrHSIi5jTDeAPm/FzEKe+bskeMdwic4PquBrtSSuAQQSHBJiCMAdZ4TGNAisDQ9QjTjPlwhEkRHQCXEuJ4hO8srqcZ3f4CITnERIAnPHz8MtJLn8F/+If/AP89nuB7i2k84qwbcIiMyXkcnUEkgy4RBjC6lOfAElYImWHARIJjhk05F4zhgAD4yHCccDxeY+IZkQO8Mzg3FvTeb8Xz9jn8/mef4BB3gDnHZAxiR2CbsBscfCpBKedzDmQ5Q20y6gdvyYnSubjtd9ddbC1rZQuNfTOtZU58KU0CmnI9Le70Rvd9p7UttsmpvbPbCZG6o62lMAH5y1M7HTr/p6WASKKxiBJI1F23lZKUQqz0gaajoTphGkB1LjSNZJqySIKx9kZf5Z7ATRqQvCb/lusCC3KmaTBbdERdS2vJSeCai9VSbjQtUD+jvE8n5WtEsEXpqtPFWBl3LY2tLZ6saTdtLpgUnNTRVmk5UkxVXYoUiqDXTos8SlRdDGeNUABARKoKfkKlIuR6N0gJNlmg5GGwcaCQFfJSmHEME37hp34W/4s/+52wnODAuHd2jstXL0HWwFgDa102omNEnAM88udnXmppaYU7+ZIXB3+aj/k5kypoDCBxWJDFMIKTrQVNHd2kN2oDQqsuGrusuwgGRF66zI+eP60Mp5FQeb2zi8qlLcGFnMuW0JVnk3Uoe0ajsnNaPifr16BI+TslphFnGEMlnybCWgPvpU+5jo4xFkRutV8lB7Gl77Z7QO+tWNCK/fkFwmHEmGZ0u6FSAmGoystLUIcL8qNR43avy/913pnOuyqbHq6MtQiVtMaIjIkWMtF7QiNhzpmsXImUpbMZJYcIBdFhOBigM5imAOPW9Zv0mSb9ZUbNDRRHpS81w7wlxDgjhBEMV1Akrufzbc8ja02fhfrZ5mkpIi1otg4yiVrfHEMWiUgLxc+CYMrcEIAYAtj3GdVixjRHWO+qoiNRzr9MBLx2+Rg704OuL/HsvsfV1WM8Nx1w/Pxn8K9+5PuBV1/E2UUHSyUnlQjW2HKaMAwZOJNyXSiTJeZzf1PJdTKw1lQVv4w4G1AETNHEITCe3Z9hnANMv8eYgNfnhH/76hP8wYuv46VgQef3cMwRPiQymDlmMQsUpyyvvhtn7JfS9Jzp76YWaTkZzqd2au+udnKk7mjbSrTUyeba2Be6n6bQab6/pru1X/5bUREdpW7zFaQPOnIozoUuPKkNQ7lmy70HFhEN/Zp+LjFytyJU+lr6Xm3OkTaoZFzaOlRbjpqmP2kDUBuccm8iggOtDGT5nESRnXOwtDy3fo42ByxRVkiTdzGh0tWYGQkJlLKCFWdmHkAGJjFgDIzKm4mcYE1ZM6JeFgLIZqlzbXxVRUjO8sPMDM46yBAtxPxMRVWud5inCXMIeO2ll/FLP/cL+Pbv/A48eM+z+OJnPoez+w9Atj7F4rynXMA2U+zy9YGFKifrTBvhBLtyNrJIRQTBwpDNAxEJzq+l6mUtxZQQijiLCHw45zDFUGTTswy30P6APOYM3FjzMvfiOIkKXAgh53XwIhqSaZiZApVSQsQiImCMqRRXXUy3k/UXF3VLQWymKAVrl/wcbeRL4ESck3me0Q0ZlRQk9gaahttzA9t8qHme4YqzlFQe1hyVlHepn7Qr6Lnel1o4RkuEa7ENjQi3jkVb2kDPs8yJlhxvAwv5cw65PpjLzjgIxjnElJCYUFW1meGKIIIeJ422L+eCAXO60c8QApwptFYCYtoWtGnPQU2L1mOmjXE9RnoN6DMuK6S6G2fwKmfRGPiuA3OE8Xl9jCGg73dFQr2I+yBhDjOsG9Axg69fxfTogD9xZvBP/uZ/gfNXXsG3pRlPaEYyjJ46GEPoDcHZBFuK61owvGH4QuczJGp8me6HQqskEGAyuk4M9BwQeiBSAjiCrxN6t8Nl6nHtd/jw1UP8s899HnE4R9if45gYtt+DyeaivtYgItcXMyT6fG9Pk2BVm4fXzvO7tW0948lpPLWvh3ai9t3RtgX/thQ4+ULVCc7a0dL5Vfr9b2RA3SY0oT+nRQ40+tJS8uT9W8nd8p5WWOJpjkzbzy16ArBO3NfP1ybl6/+/0ZedNkJax03nI+k+txHILSi/7d/T7v+09bH1vva9bUJ7m3C+9f+tHwAZ9TElz8xaDF2Pl59/Ab/4838fr7/4Mp67f2+tEqbylYzJkW0AmBXdVNBE3YcQQo2It9SZViyidXTacdVrotLviiPQytRvOfhyDaHX6jw7vSfEWdNOfatC2O41vY61w9jO6W3IbLvPtXy6fk3nTG7txXbfakpgu27asWlRP+mvnnfthGg0u1U4bNfubWt/a0zas2arr3rs5fySdbi1J27bm/qs0vtrKwCzJZqjx639m37ttn3cXqPdq7p/up9a8KWKdNDyTGxy2YTInBEdALkCmEWYIsgY2DjiPTuPJ//hIxgevgLz6BWMD1/C+++f4bn9GbxJ8KXSgiPAmgRXNCScoaLMV8aGMhJIhm/scwAFnWKAY+1JvzvDlIDYnePSeHzslceY+h0m32EkYNidwVpfalRlhI6F9vs2t615lbnf+v3UTu3U3h3thEjd0bZF7dPRWfnyE968GHViGGojTtPQ9JdTm3OkjbFWNlq+AGqkV1HhatTVOXSqhg8UIiOGgFYB08ZX6/jIs0hkV56rNYi7rsrcl68AAIAASURBVKvJ99qo1jVhRDZ7y0GQ+8h4tA6VHm9NldNGXKXugTELdcaaigx0fc6LCYXm1V5fOxErFT2Z50LlAxYaH5ABGDRjRsVhCTHCKgN4CiOsdzlHhBm+7xCmGUwEqxxXIOe7MC1S0ORslaDmIkxhvANCRIolN64gknvXYb68xi/+zM/he//yXwJ2+YgxDCRKOBwOGXGxDjEAAbwad3FIZP5kbLTUvaw3WTca0em6DqPK4SPKBtR1Sc6X/Jk5RcDmnLXeLyICxuTXxJEKIWTjrTRNw5Q9V51xyvOuaaJD12OOoTpt0l+95sVxk7wXQX3kmUIIGLql5pnIUQvSpfMc53nGMAzV+dRj2aLUco0tVKSl/Um/ZG+lMSNOfugXAYyCMMrc9H2PqJ5b+q1RYhHdWO2jRomzPmtZJ0KF006JnhNgCe7IGhCkTs5GfSZsvVfmdZ5nkEJ29J7XKPc4jrC+hzML7U72U9d1QMr0RzaEEJd6WbJWZC3pZ5fzQOZCI1NyfWvWJQz0XMr7U0qYFJVXUN7pcFyQ85RKbTyuDpWxHnOMsK4DMTBNIywB+90OF2nAdHyI91LE/LFP4Lf/9vfhffExnnvuHFevTujMOc6uZ4wWsJRlzftC7fNSyg4xo08MmOSKcp+BJQk2FPqhSJ4jZaQ8MhABYzu8eIwYnnkfPvxowkdeeBlf4AtcDzuMAbi/v8Dx8ojOAn0RHYEpVGUifCXiyFqgRe+dkwN1aqf27m3Epx1+J9t//o9/ZfP1LfRG8jCAJR9G3tO2rdwi/V4xRqUWS2vU1Cj1Bg/8BuKl7qspeDrSrf/e0k7WVByzQhyOx2M1PPX1tbGto8Bo+qIdI31d/bnWyLwtMl7v3/RB5mMrT0ob0pqqVA3ztDgysTiUK9nplI0/65dcIiSFUKY1qghKq2KuphTZlOtUJzYuEWtRoKO0FglhZnCYkeaQVf2mbAwnkWQuhrPb9fgr/8e/DrYGqajzwci4EiwZGAYiFnREnG4dNFhoXouipBjlWvFR9oFGB8XRNsbk/A5l3GoDOsaIzvmVcSzrNaWFmqkNf1kDlc5jFwqpwZKXpRXpmLnkoa3FT7TU+DzPNV+jpXDFGLMYhogOeLcKkuh9vEK2cDs1bguh1ihaK65ijIEXZwXLWk9Qe6qor1lFH5OmlT8BrOpeyX2FDqjzx66uruC9R9/3FaHkjT1nrV+dI3LPGwETWp+H0q/j8YjdbreiW2qqss4v1E6NKBtq5T5iCU5wHZeYFqVEuVaL6AvttEXlW7SQeH12afRKn50hLY5oLEV4O6vVRJFFYCgHN4gIyXjEUFQmjwecDx0MMcbjFebxgD/ZO/zT/8f/He6ll/At00N09hpsgTMChkS4CIS4CyCT88+cJRhO8M7kvY8FuTMwJZ+xQd6xyKJHDph5wnP+DGkmjP05Xji7j4+8+BJ+55UDgj/D48kj7XowgA4OHUyuoYWsxicS5yBCojfnSL1dlLV2n70T220sjy91TL6WrQ0ufyn9b+2DL7W9lTX2Qz/9j76q43Rqb9xO1L472p5GAdtCTfTvt1HothwefYhoyk7Lx2/pfFkxrigrlR9XlLwMoyIowNrY0I7FFvVtKzds69m2qDbViN0Qr2jfo8eypQfJ+26jDerPa6cs51fkgpigLLgBIiTmGgV9GmVHX6958Eq1qZ+3uditGJ8xxmrIbtH+YkPtEmOe7IJaacRODG7nsrKg/LDZoBQaKoIS+Xl1weWf/uAHEI4HeLII0wQDC6IFCY1Y5+BJ/3Q0Xkvzt1S4LSqpN7auw1rjSFGW2vUgSEaCyiUsqniSK6UpaJqCqNetpsAlMCKrxHOlDCj3lfEThEDLoDMvynwVeSkqhHoepT8agdLzqIVaNLVQ31NTE1vjos2r1H/Twgu3GYeaGrhFGWzVA+W6gmJpmq+siTqnvF47OnhxG7V3a/+2uSwttU6vM92n1lFrxVu2aIpa7KZtbS6UdqJamXq5xhZFVAcW9FxN01SDELJ+tTDFjedkwFlbVDIBCiNMnNHzjPs7wuETH8fZS6+ie+1VcJoBR/AEDDDwxiJ1FlahShZb3zlFkRNZPIJQnKfi3BGtz1xOQDIeyfU40IBPPnyCj7/8GI/hMLsdEtsiWQ4QF0eWMilxNRf46rQTre/uttbGeivz09KXt/bzqX39tBO17462p0V89Be10N+0jHL7fv1lWms8qaizvof8rlX4hDqljZm2Tk+bFJ6vxzVRX9ODNKWmdfw2HQnVdP4CsIgTaAdA1KuqslWp+6MdQ31fbbzosWqjwFtzpNGPNkJ+PB7hnMMwDCskRRtgoogl16vUIjUOVcnPGESbx1TsiykGJMq8f+Iskw3kyHeeAdSaKwys5iyBM3Ji8puJKc+ZGpeljhDBCOUrJnQAQhF7YOSDJMYIChGuOGjzPOP1F17G3/+pn8W3f+d34L3vfS+eHEfJKkcCgbHIzQv9S+4vaMAwDLXPOp9JU1fFwJ6mCV2RWmcuzpBziEUEIDuCwBjymMcUgbDsjZwBUpxgFOn/UjtJ5lNk5DUN1nuPUZyQtIxdnAO8sYgi3FGQEPlc65TKc3VWCWYkzjlmCj0TVcJ5nmEsKuIISggxI3EWiwiNrLU6RgXRE9ENrQbXqnS2joUxBojF6dSUV15yomohVeYbztZclPzEuBfEUCMqQovVDosgdnofa6lxEaxISsVyS4mzItAb52Vbl0+fB9rp0EiV3Md6W9dCRb3KHEoAKRHgu31d87KWteMo+XV6nESGXZ5LnsGpsW1pw7pMhrOL2iop0RqZb7lXSimjN9aCrEWaE7w16ByBD1foHPCAZhw++RH87gc/gP+WBR7jEufewSGhT4TOENgSRmdwDgciwBmb1fLIgGzug8BNRAYucWbbFWcKzJn1YIpuH2UBGN9ZXFKPK9vho1cz/vEffhb22ffhcgKmR9d47v77gHgEUcr3M0Big1D2CxMBsEjMb9qb+nKRFr2+Ts7Um29vFxJ4W/tSnShgLTKk7YC3oy+n9s5rJ0TqHdBaB2UrItoiNVsHQyvNKq19bxuVbqkiT7uejoy2+Q86oV9fUz+DNvy22m1R5vZ5tHO1STvcQK+2aHtbFB7dX/l/G6nW19wao1rHpYmI63vr39uou1B/xPGSyP5tiN5W9G3rve1zy+9bQgOrhHazUL2E7kVE6I3DFz7zWfz9n/05vP7aw2wg8fp+Md5EGXU+Tyvj3iJB7RjpKP5tz67pZrqu2taeaz+j91410GkbzWgNckrbRlW7dto10K6fLUT5NgRE5OHb/dLmQD4teNOuYy3S8kafb/dfK4Kgx3FrPlvkcWtMWkSr7Uubc9WeE/paer8D2ETPW3EJua84a7qGn+6DRn/0c2hp9laRcOuc0PNyG8rdRsk14qWpgBoNrp+FLQINDG8Ix8tLnPcOF32HV//oD/Hv/uGvgl/5Ah49/Bwu9hb3O4sdJ3hKIItcZ842daGMyWg07GqOt9b61r51IPAhIHU9HoPwsVdfg714D47RovPnONvfK/mNXH0kBpAs159IqD9fjXZCpN4ZbYsB9FY+c5rbr+92cqTuaGu/NLXaVWsotAauNrikiSHYKpxtKTzpiKvkIWk5b+YswTyGbChIkdEIrupsKSV0fY+u61bKfi2lSEdzpAbMltCGfg5t0IjzINeXnBntlGmDQjtXhExdgTK+NT1I6FLa6G4pXtrI1+iUMQZnZ2c1mqzzJgDUqLX0qU2031Lj0gqMIQR0u2EVZdfXsjYXBvbGVoTLqmi3/IgzRpQL11rv4DoP64tTJrQ95UxpqpFQ/shZ+N0A67KcNLnsOJ/1Pe7vzzFdH/CzH/xJmBBARcyBOIENw5ich6Fz8iRa75zD4eoKrBDXlLJoRYyMvt8hRsY8RzATvO+rY2m8ywIgJdqulec0tUwc/ooOcFohBMwM7/uKzArCKegBESGFCMOp5p1M04TjMde9Os7TKg8PSDBmCSDkfuU6QxqdEQQN1qwUAvUcd0OPGJYSAc522O/OkSLqHo4hFzvlmOsmyZ50zuFwOFRhCFnH+rm0UIzeO/JM8h6p3aTPHaEyyl7Sxn0VqCj7M2Ft/HddV88K+bcOYkhf5H0i+KCbHi9dp03O1xASOPMlkWAwhQQmCxiHyIQ5cpX9jnPOJ5T9lvcUsghL6UecRxyPRxwOhxuBARlvZ7uay9i5/HxyPrRnsQhkHA6HujalBlhXihPLuaPz9uTeel4CJxznqYoC5b0LHOcj5jSjGzIC5roiNhICKKHmy573Bvb1l/Hy7/0O/qu//Tdx/w8/jv/onocbZpghYB8C7ieDwQLcA6YnDAawVHIh63MBhspZC6WwabLojWVR5wOYUj0nPBMMO3D/LD7xeMQ/+6PP4jPJ4InpkcwZPCxcZBhblP+IkYxyoCwhGJQcKSCRwVfL9D05U3ezbSLtb7IJzVyLD53a1287iU3c0fZ/+icfuvGaNvZ1VFirckmhTaGL1C/9hksvv+sI5hYtUH7XjslWboTOhdBOoBZU0P8GFjRIR2fFSdHGapsrIZ/dyrESZ0Qoc8xc6WKVFsUMZy1M5Jq4z4ZqrSFmVqIIDEtmNSa35UpphO626JYeay3prWk9Ysi086Kdzkrn1FRKQXsS53pSae1Q54T4xUkWatYKdQnZuJXCuwCQSl+E1gcAmLO4hDZu47Q4nSkUhyjNQFwS3AMx/vd//f+A0WU64mQBn2wxnAiRGyU766ps8RjHShlLUSKCdrWeUgJgeOVctzTNFrEVEQm9rlaBCojxP1fjFUiVTmeKBDyX2lpRaSsnKMVH4wBKmA+XABZnWqOddQ2nnI9WKYqKlmutrYVv9/1Qgwda/VGexRgDjgHzeKgFvcdxxLA/B1O+ZuS1AqVGQzQKp2lsvb+p+NnuP2MMxjlmN0XtdamlRlyUAckiQBz+HAzxJXcvhazQ56xBYJPrPamgkpx3WpwhUc6Tm+cZY1FrFHorgCrEos8Qkf22SrxDztY4r+t2tSUl6t42NynKOidKXvOUC97q+8KU4JZfzkmjhH403XYlyJEWh18XDW8FSCbnkUKEJwOTIqwlXM4j4EoB9imgNw4TR/SmB6JFDAbdzuB4/Tr+lD/iH/1f/8+4eP1VfGsYQYgwBnCWco0sEHxJp/SlJpTzBpalb9mhIiIYS7XgeM5dykItu8DwnOXPo0m4RsQw7OGTBV0HzPtn8V9dD/jwZz6P0HV43PWY/JDHImVnaw/G7DtE88Z0qTeLQHw5FLOt9305JtdXmu725bQ327c3GpOvBcpzG9PlrTzrljPVKvzq924h+W+mncQm7l47udF3tGnaSOsw6E0vxoM4MS0a1VLN2nvcJragmxjLmi7Vtq3DTytR6VyDtmDkllzsbXQsjc7o/slnWqqRdsSedr86xhvP1j63pozd5szpZ2jpK1tj/TTKof5MW3xTR931mDMAqDpPCZzFFPLNsiAGmsRu9awtyil9EXEK42y9lrEWxlqQUwhV+ZH5Fgfx6uoKP/czP4vD5VXOR1JLstL6sMxJlPmh7ZyiVhBExqBdA9M0rXJsxCG6rf6QRiC146qN6OUeOc9Dj/8WzbOlmGkntG3ee3hjgZiAmMUvHGWRlypcgSVHSO8zyd8SR0EQiHbda7S2lj8gznV+iGGQQJwdIWcAX4xmS7zaj+21t/aCvF877S19b2vcKoKV+MYc62vq/SWOpYgqaGpca7y0cy3PIc8lEWf9ty1nXJ8TrWHUBlsYazqlzJPkQ0k/WxRNo6TtWdQGDNp5JgbSNGI+XMOThUkGzhhQBBAYlixSSPDW4+ow4hhn9HuL8OQh3uctLv/o08DVE8yHK8wImbZHZU0S1dpPWz+WsoqljI2IThjkIJUlA8sZLZpcQjAJkQDHFmCHYDu87jxecwafefllXHNCcg6hnNaJctAhWUJ0N2tE3RVH49S+/tqWzSb/PmEY7552Epu4o+02h6WN3BhjcDweV1+2bT6NjnbL5+QeYky179FNG39tbkfb3xZd0kaoNhwEBXijXJ22H4JsaadKP5N+Zu1YCn2r6zoQEY6HA3ZdkU+35kZEgUSpgZfn18IW7dhscf23xkmLXmjEbUtpsM2dal+31mLWYhsoCuxpcQipOEnGGaQQkDjnMDmloMWlFhSISjI2kEjlfwErgQeJpJu+0BumbMzDGhgutErOydyWHOJYavYAuL8/x0vPfxG/9ssfwn/y7f8pzp65j1khZ7kUk4XxZT2FiGOYYZBl0pcaM+JUrfcCM4HIrYxyGXehksncDMOAaZpuIJeyvurcqinQjhTBwjlT6Z+D74oi4iLYYIpoREaq8jWGfl/XJCeAytxZY9fGLy2S59I/uVeLZgllq9YIKtL11loEZAP5cDiAiLA/v1dFJ/q+h7cE5jXK2+45CULEGNH3fVWA0yiVjIt2zrIhvS5inUJZL7ScaZlcl0CU6ZYcCyJrXBU5sW5AKnXHtKqjjENF6fZ7PHnypI6ZMaYirHLe6LMPyNS3eZ7haH1ejuMIA8IUwwoFExEdHdgIhepc1S6x0Ct1q0qK6l4kSOscgJSyk6OEPvSz6qLOiQ2M68Ax4jAu90+cUGQlsqDL4YDBuJzzRA5X19fwfQciBhLQGYcpjHh0dYX3vv/9iPMB0+MX8G0OeP0P/j1++yd/BH/SMY40gYyBdx4OBO8yjc7XYrsEY7Lani05VkSZtmdqgCQr6kGcViQ4BkYfwAbwYNhkMHTneMwdrqjHR2LAH33mC3geZzgOe0xzgD07A5GFI8qCKyAESsiCFWuH9stxpu6SI3aX+vJO6tvX6lnboMuWbXabrfD1NJ7v9HZypN5BrUVAtEMkUUwdgdXOjY6m6utpWpkYbW1rHait9+k+tEn+bZ/ldy1nrZ9HJ3Jrx0VTerQin9SVYeZVUVM9ZrqPVBCZbMisETlxPLJ+HVbXaiWQ5VnFkGyRqK2mI9EtBUdT9zR6pqPMrbqa9Bflmq7ki1TDESX6ZQ2iKAGbrIZFMi7IXJwIzkgTMxCQJdNBmXaHtXM/E4Ekeb5zWUSh0KoIKDk5CRQB6ruMrDDDMuNst8fD51/ET/3oT+B7/uJfwPl7nkMA19o+IMJUVPWyBHMWs+hoMVpjkLXoVs4s8xpBlXGqxXUVaiPKdShjJEiGDiwwM+Ypv54diCPmeUE4vPEwlJ3NFh3w3iOkJqDBCbNSGhQnqF3/wFIUWAckZP/JXtC5TNJfQaQWx8YjxoDd2QVijDgcDtjv9/AK9dB5Y7o/EvDQwQRxFGqtJEVJlTW7oC/5mdvcpjxXBbG2BMIimd85C1eK5uZzzBVIkhDnUPspTl57Ll09eoQHF/dARLi+vi50QnXfxCvVRX2GyfOJ8qftPHauW+V3tsiW9KVdN/J3HfjI9yjYsKoVZhS62AZqZO0MQ6axSd81oqlp0S0DgZnR9Q4DdTAArq8PsF2PGQzre8QYECKDYXD/uefw6kufxwNn8Cdpwm/++A/jtf/wB/hWnvCNZxbH3qLzgKeUy10Yhi0Fdr0BrCE4ymp53hpYlrObVG21hS5bZclJjBEGsQGTw+sz47XhHJ++POCff/4hDn7APAxAtOiMz+siLWcpESEZhk1ygr87ajed2ju3tSI3W2jxaW2+89uJ2ndH2xa177a2RTt7M5uzzWN6Wrstf+rNPoP0TRtZLYLztOu2hkLr/GgJZ3m9VcDSTp2WdX6zB5qm7mzRJLf63P7oaPcWLXCLmtmiXDqKtTXfW2PZOqYmh41vzKfuq6YOyphqKldU8yriFCuFrlJ3SoxuyT9z1gKFqvarv/TLOZcrcXbsUqmfhJv9b51QcSLaZ9RqcpoC2Koa6kKzes204yD31kiL/hGHTa9D7VysftIaqdUIyRY1rKV/6fWRUsLxeFwpY4ozIIIEWtzkeDxinmcMw7ASZdF7pl1vlY5VxluXLtDrTo9riwrfRt2tDhCWvbxVmLalmMr9tBMDLMGV+/fv4/r6GpeXl/Der5BGPXbtuSEokg5cWGtr3p6mDrYOk/53uwf1a1pgZ6X62JytrXhMu8b0deVaWsCmbdY7JJOL7Y4pwDqHgFyPTvJByTDm+YhvvH8f7/UWjz72H/Dyv/89vMcl7OyMhy89j44YNI5w4CwaQQwCw6I4VAYLzQ/bSoyb6oyUYBPgooFlB4aDufcsPv3wEh97/hUkfw/kzzEGoOsGEFlgTrCM+kNAUQQ9mTWndndaexacHKd3XzuJTdzR9jd+/VdvfGFuSRhLe5oTog1v7VToROY2b6M1qNqIcpvrsNWXtj7TbdHBlvcv19BGbEvdE8PWWovr6+tqROiaUTqCvrXMbVHs06pX2hCp/VW/a0OoVVFsaVnyN019eiNHNylnozVWgSV5VRCJLTqmxXo+YqkNFVMCp5SLvILAIWaejaI9BYTaDxGr0AiXdjbq76XPMcZFZCLGks8zZ7oSM3jK9ChCoVrKHHUef+2v/2eAIUxImGPMyJRdjGkLAqdQa91MY0ZNum6oY5sj9R5TGFdOlqbGCZ3UF8RDO0euoVLJ6wY3nds8x9qx55o7xLQ4SodxqrkvcyzXDYuQilxTHJst1U3pi65dVPun1O5EvKTruhXdV/oi1DcAVfBBU/dExAJA7fOWAztNE3y/1PaSz4uxr9X4yHqkMNU+TNOUi7RaW6h8RXgl3qzDBgCk6mlpaptW+tTUQ2bOtcLSeuzEqAcyfU7TOUUdkTmLzOhx6Pc7cIir+ZG+tPe1tKwNTYO9kRNa1Pokd2nrufM95pVwSCvUY4wB01p0R6t+aoTbDgbH6wN2fY8wAyER5hTR7weMhyu8Z7+DiwGPLl/Bnx4GjJ/8JH77B/42/hhfIYUr7NyMfUoY2OCMHIIHyBbElAzIZJl0Y5e6dc4aeOXUWFJ5h6xqGFKmAu7YwVGPg+lx6Hf41w8v8S+/+BjB7zHRBY4pIe0dOjg4JnQwhaKcxSnYEBIlJHpnOFJb35lv9jv967W1tDjgjW2ftt3Fcb2tny3tn4hOYhN3sL0zTpyvw7aVe9NS5bYOkpbK1nJ0gZtREX0w6eRm+dttlEJ9vfbfbR911Harn+11NCXmNoU+bfRqZUJNLWxV0drnk1SodiwQU1WW2qoZs8V9lnlrKYnaANJy7VsOZTs2eg62IlvaUatGmyEETrVQb70uUBO9mXLRXpTf5QeaekWLoc60jbA5LXih8q5qQrlGWmxGrshkqp7MzdXlJX7mgz+J8XBEHGfM4wjiHF2WHxk7GUuRbt+iMYnR2QoRtHtA19TRxU+1k+q9ByMi8boAq/iv7Ze6Nrbb+kht0Wotq9+uCY1UaGpdG9lvawzp9acdX43IMTPILk6A5CelMK3es4Xq6QCKPFcIoTqoOidopQbZlAfQRZizQxGBtKhJMpnqRN0mzCLjrcdf9ny7r27bv+01W1rylmDOlniFPtv0/XX9NX2vmh/qbKXTMvNqzWvFxnbPa6RwC6lrzw6mEoQpAYcQAuYwwSCh7xwQZ5jpGu/xhCd/+FH8i1/+B/CPXkc3HzEUuX4RjzHGlPwngikBhEzzM7DkqoCEIZvRZRbxkqzchxSryE3RpgEzAaaDsQNGs8PB7fCHrz7BE7YIbgdOBpZsPpM5gYpqJtH6DL17JvKpvd1Niys9rVTKO73p76jW9jm1u9VOOVJ3tGmnpTViWrRDv6Y/31KM5H0t/WSL3qIdD7kGgJVzI++Tvuh7A9isFbXVbjNqWllfHZ2Rv4/jiP1+v0rCb9GiaZrqc66Sw0s9I0umilDEGOHIAM5kEYaU4PzNYplEtJKdl5wKPX7t+KeUasL/yplrHD2NEuomuSvSxLHQBWrlenPI6A1BRfKR80zkPdVgLllhzAyOseZDaURHRp2oRF/kC4wBS5K47xBRosJc5pQZwZbnK9dPIJhSlJNn4L7d47UXXsLP/9TP4Hv/8l/CM/fv4/HxugpfGCOCEbkm15o2t4xlfo3grFs5UTJP2tkSWl/f9zgejxWt0mss74u5/m5tdkUBXUckI1NEBsxzvoZKdJecPb1mfVOHrObjaJEGltpDub4PEsPI3DOAIhCinUQZE0Ha9D6dQqry59C1ojiuRFSIgJASiLlIFQCGTBEvSLlelllqj8lY6D3aom06pzLLiU9lPSxGUBV/MEDkjLTUenAJILIwxaOWWnMirqGdmYoENSi2OMuCbmo0iSjnCGqaYK13xwmxoNrt2TlNU61jdXV1BdDNfFR9voqK4OU4FiEWda4XJ4rMOvos/ZymaUVNrWdRiCvHqv1eqEIchwPOdjukMeKsGxBB2N97Lx6+8jx23oKOV/jmweHxH/w+fvunfxr95RM84AP6mWE7A4LPpSIsYSaHzkRYQ7DGlrVTkCiuVaBgyhhkCqBSAZV+cqqRLOcHXNKAye7w7x9P+PQXHuIL2OHY97icGOddD2cBhwOsyUIviRizEVVPOW/o5E29i5sEIYClNttXmlT11UC1tq53cp7eOe3kSN3RpmlGADaN6/bfLf1NG+hbiJZ+j3YwWudli3e/hZjo62rnrE1KlyivGHZtHgiwGP/t7zqybIzBMAzVEJY8EDGe5cDV9BhxcLLxUcYpJgRBdIxZ9YcIiwR3c6Bqg2lLGl7Pw5ajK6/pL4YtY+gGnadE/tt7VqOMaGXAd12XDS4sxm9EKfbKWQEvgkEJMFyQESz2SL6n6ndRQSMyYJNzmkAAU8lxWpIVgJJfEpFzKWIqKmsiHGINXDJwvcXLz7+An/jhH8W3f+d34OzZByBTpIwVbUnT3PLa9NVQz4YwIzWUS61k2Yp3SD6RODRyn2XtzTlqXu7hSq5QSttf3kTZ/ahUWKA68saVXB2yYE4wxoE5OwkimlH3G9/MtRLnbyVAAUZIsarpEREOh0MNKGyhpr4KkmSVNVmLKQYYu84j0wUnhT7pvKlOnI6WagpbdV6mCd7m/VgdGUGPkzozOIFMOSeMqxLhItqR52opwaDPFwmgCNISweidr/NrTHYEW+RUy+GjyOsbWupgAcDxOCGmCJJMLgJccd4MZbU/pHz/eTxWtFT6LXMmezaqfnBSSqnMZS1k5zWWc1vWrvRVBzdk/ENCpdfKPImTasiAwbCc849SiCBE9Nbjlc9+Bu+9fwaOB9wzwP/3gz8B/O6/xB+3AY8ev4aze+foOMIRwbFDsg7RWIzeoIszLCe46kgV9IxMpWxmxGmGlAYgFMeJDAyr7yQA82HGy+fn+NTlY/z6519BGO4huWdgkkXfdwidAVLAEDNclyiCnQGkdhcXxU42sOCTL/Uubq0N9G5t8t11W2mJU7s77UTtu6NtC+FpqXpbkub63xoNaul2mgbUUvq2EoI1zUcborqPW9dtW5urJZ9tqWstJault2hK1jDkPJlxHDEMQ3WItCOgn09Tn/ThtDgZZWzNOhdpi8an6YItcqjzyTQ60sL1LdIov7dfGC2lQee4tWiZRK81mqhpPk9DB11R9GvXmO4jqVpRlZ8D1NpVgnzJ31ZRc7sW7JD/D8OAyydP8Mu/+EugmECxqNClhJASjocJKQKcaIO2Gcrv8cZ4apqfzIu1thq6gmpoJ0vvn5YauKJmaRocAcZ1N0QpWoph5JRrepGe1+y0hTChVOiqhnSdl6KWt9oLdHsCMytjPMtPo6IECw1PXgXmEG88b4yx1PUyYLI5/wt2Nb4h5JwjcW6RSn2gpji3RuHaIEBMXHL5toUs9D5pkZk8XwwgIaVcPLc9+yQnioiQCJhiqGtW6pa1cw4sTpp23kII6KzDruszipS4ok2CXMn79NkWQsA0TTeon3W9KMBRnnOFmjX70JbabWTzGRXihMQBxqL+WJfzlowzmMIIGMIYIqYY8Ox7nkOcr9DPB1z90Sfw0r/7N3iPSdhxwLe871mQiZhiQdopl4iwJiNpq7PAZKEKqTFmKefgWYN6DjhQpSxGDghUUH0ysKbHvHuA569GfPq1Rzi6AcdkcEgpBzmIgTDjfLfL47Ra5KauR71mTu3d2dpg2LuZ2ifPe2p3v53EJu5o+xu//qsrQ1AMeu3E3PZai0IB69wRnV8hbStPSRuk7Rf6bXk+2vHaiqC092lzvrRx0SJVraJa249KZ2lWtBgoSb1Hf24rl2zLkW2fs/176whqeo28r3XG2vHW8yT5D8fjsdIY2oRzqM/r11slxjZPxCiZcJGGjjGC57CiSGpEB4AqAFuQCizUJacS7EV0AjEb1lmyPGThCeT6UChG/hQL9XIOiHOhg3YOf/Wv/e8QB4fJMJIhmNkgzYJSFNpXnDKVsDxfN/RI8801qYVUlsVoV+ugpWIZYzB0HnE6ILHUgsp/74ZdFr0IS8kB4ri659a8sCEklkh8KbZbUDtnighIimDjsvy8ytXZyvMS0Qf9mjiHwIK4cUw1uik0wLavKQVwMZzr9cgW6mf+Xe5BBQmI01zRT2LAmyIzT7lQ8whUhKKuw1IjyhSTOBHAWGp/idiDdoa89/C2q/ePcS5jI7RRkWwH0szwrs+UtiLskbA8c4wRxjsgphtnnOwxvW5ErEXUBUMI6JyHI1MRcGMMgsrXaQMhkm/XCgi1gaPVOgzrM1c76PL6MYWsjhkTwjzCFPSUjBIJYsJhvsa9/X0Ydri6PMJ4h/M+4hum13D5sd/H7//g38E3PH6Is3MP63IOlDVAbw2csfAEeEHtAHQu16Sy5T7ZgcoFm0VIwlqLmQ08E3qOOVhgGAeTEBPj3O/hRsKxv8A/Pg748Gc+j9Dt8NgPODDBdj08W3hmDIlzWYRh7cR/ue02avzb1b4atLC3o2+3UcvuUn/frmd92jNvtdvGprWfWlGs9rx+q325bfxPYhN3r50QqTvcdHR4i5r3ZqMxbYRXft+KcsrftmSHdUQfWNTQNCqiN79GbFpnpT1o2lorLX1HIr1bBsqWI9M2HQGXSLv+TOvkbF13yylsc8zacd7K/7oNDWsRqXYeWkOqpRLqMWmd6K3naJ0+QWqESqbv2X6mvVaL3ggqxRqhIgI5mxGpopVMSp1Q5LWZGYfDAT/3Mz+Lq8dP4K2DA1UD2HiHOeWoOtNaCj1M8yZSuyAwa2der08p2qwRvRgjQGa1JvQY6L2oxSP0XLTiBLetu7oXeL1mW8GDdj1pNHTruW9DrKRfmr6nEbD2nNBrVu8hvaeqoqPQOTfWnOzzdj3rvddK6beRaPnRIit5Xm+Kf8ja0oIX+hn1+7WzqZHwdj+tKcKLky5ruN3v7Vy0deLae8r4aIGSFi0DkBEdEBxKAVzOjo5hAiXAwsCRw8XuHq6uDphigHcWPgakl17CKx/+CD78j38dXUp47j3P5LVPZpEvL6RGoUNmwYilSHX73dQ2iyxtPrucKwlDsClT8EZyeOQdHnYen3n5FVwnIFmLUBQW2WThnGQI0RKieXvRh/Z76BRTPrW30ra+E3U7raevn3bKkbqjra01JK01utovgtZR0QZWS2lrr6cNa2mCSOhIrbxHFwbVNWk0NbBFkracKDFExIDYQnKmaboxBvKe9nmcaXK66KYoxpZDpw0yTd1q6UlyHUFqNJ1nC4nSaFBbhFjGRY93i2zpcb4hArFhvLQOdivSkftPNUqu5c9BBOtclcpmAFYZocZaWOeQCiKQk/eX52yN5iRIlzEALBAyFYotl7xwRtdn9IBikSBPCQjAi194Hr/2yx/C/+q7vgP3n30Gj+YR1kuOWB6LmCIoWRhj4X2metoNSqo4h1o+27il6KvMo7xHjN3DNGJXxEZCKsVESz6VtRadM4gxgGNeC33f17/Lvlg5/gTMYYY1vjpBcS4S2iCkgk6FeYYpVD6Zv5a6SbRImss+s9Zit9vVvCz5XfaEoGctPVfGa7c7w/X1JfrdGZwv60D2J4v6IyGVOmB+19e1EeeQi/32QxZ5GUfA+Yo86fUoaJL3Phdvhls5M/K77JeMhMaKRi17QaibnKW3idB3uypfbry7ca5VtHvj3K1zUp5JRFrmea5Oe9/3SCFiihFdURacS+6fzq/TRZ9bpFPnnMn52qolypzJeEkOn/R/nnOekgQurO2zMqdxAOWi1TLX05zw3IP34vryCfZ8wHPOwr34Rfz6T3wA37TzOAfh6vEjnO37XEi3KPJlRMrAgeGtqcp7ZHIupKu/m5rLSFJ4lwiWI6JljD7BE2CTQWf3MOTxaneODz96HZ/64mfxPN/DcdhjmiPsmYezLgcwTC4UHBABmHrePc1IfVp0v31N7/XbAlNfTns3oDnvhvblzMNta6cNktzGUnk7+3Jqd7OdHKl3SGsPe40Ute+T1iIS8sUBYBX1BbCK7G5FULUxt8r3UJHVFpXaOkxadEtTaoCbRVK3aHy6b1s5PDccCap/vEHl0qiPFnKQv4miWtuXdny106X7rx2v2/6ur1/7rEQ+xMDXtajqPDTKje1z6bWyWhvq9ZQWURDmtQz+behXlkImIGSRCSICzwwu1J86F4ZyIn1KWea59M0EAlJCIoK1AIeIhEzLTAA67zEMA177wgv4hQ/8FL7rz/4ZmHv3lrwTl+lLhh1STGBOcMahs4SEdQBCnFBNd0spIYFuPKM4yGK09v0O8zzdqANmaclh0kiBOPxbAQrmLMYhNcIocXUOgJwbk4gyla5RV2z3TPu7dgSllprs667ritreTeRjmqaqUHc8jrCWYH2/zuvitPqcRo+JCByz0W+7oqJFWe1OxtTSug6dQYMoGULiJT9LnF29F3WdrAWpWuY5hIAUKQcIkG7kIY7jWCmIMUakGOtab89SPdf69yp0Ms21r4mW9+t6c3rPbaE1+uxsnW19tur9rAMo9XMx54YROcBZFAFAkHEgByBGgIH9gwtcP3yIHU/4Y8cnePkjH8a//ekP4NtMAL36CgYKuLh3jsQBXbm/I0JHFoYATzZLnFN2oIiQ6YOmjB+Qc5nQRuk5f54ZhhyYLK7hcYUdPvJkxj///EOE/gxjvwMSoSMPYzrEEOEtgSwBSGBnsn7N2xjkr4gz1pL1p3Zqb6a1jtMW9frkNH19tBO17462LUqMFioQye234z5banPa+NtCZXS0X1qLimk56ZaWskVPat+jnTZNcWnRthYJa/uxZcxsoXyasqQjw/p+LeVIxqYa5+pHo106+Vzu9VbWAbCdX7Z1rS36V/t3/T5N7dNz0IqB3JZ/d9s9ktxD/UlTmVaGfRH2IGuqYhsBiHPAPE34tQ/9KlKYb80baVFJPe9aNVLPqxjm+nWtkiaIQeuUytrUaMIwDJU+po1/cUj0T0stbNejHqct5Fj3tRWIAVAdKUHGtAJoez1NcRUxBEHBJB/utjmWz2ukbxiGZf0Z2tyLep3JeGk0V/IBpU+64LJ+n94HbbHcVlxGv7a1Ttr9oGmtGqkWR3Xr/TpQpdfm1vhpdEoXP5a53xLqkM9N07QgqTYHNZgICYwAxsyMkLiK5RgDhBTQm4QHzuDwmU/hhQ//O3zTeQcK17h31uHB+Q48jnC80PlsKXabqX1QBZS51HCSc/GW84wIiXLRYc8WNlkwHMJwjnF3hs+8+hjUPwPu7mEMQOf3ILLAHHHe7+FAsJyyfHqR37/tDP9Smv7++EqgUaf27mhbZ5i0k6N0asBJbOLOtr/x67+6VKUvBpl8Ueu8IfkS14pWWqWvNZp1RFcMvjb/Y4t6p43OUGoUyXUBrGhM+rrAzei8UNy0PHlrqG5B5Vuvbd3HMlZGMLlilDRjvBUxEoNG025EFbDtX4tutRRGaZo66JyrtLAWQdJzIQhK6yy26Blv5Mm1iJQ2FKoxy4sRLUk52ijUCIJG6Gq+DpQaHS+GODFW74vEuR4X5/+jOBNhmpdk/yI+kOYAhAikTOU0pR9zWSdpP+Av/tX/DfrdgDEGJDCMd5VayKWIcuBwY/y3clWs71YJwtLvvu8xzzOmacLFxcWK5hkLOqVriNVcJiURL46F3jcyXs6tUUQZsxCW9dN1S+0xub/skypfDoCsWxn8eq1peprcQ9QKBTm7kSNi1iqZKSzOlL6/qOu1az5yVlqT+08h5WKsKp/Q27LHilBEBMPYvq577bRIX/Layvfqum6FXOf+qfprSrVPClK36oZsCBwWJFwQYBnXFZJYKKcaITLGoD1R9PkofWvRJJkDqUEljq5GAGs+KN+e31qfxUbAEmJiTIlAcBivD7j/4B44zEAY0VmHq/F1/Hd8h/DZT+O3/tZ/iWfNjLPwCIOb4ZBwEQzO4ZAcQLbU6LEEZ4pjxQmdK8gZJVi7Fi7yVrEOVBHvFCe4RNiZHR4nh3h2jt95csTHX32C53mHI51hnBk469HBwDGhQ1ZcdQREk8CGkUwqaPYJOXqjtmXSvVm641b7WjsLLa35ndDeasD0rbST2MTdaydq3x1trYGnv5Q1IqJrtuj3amMWWBvXW0nrOkLcOiv6M4DKMWhoLPL+2xAQuYauJ9M6fZoOs1Vjaus1/SyiQqedlcDbScpb+VXSX6H09X2/cgwrvUdFyvV8tXSRts8aodM5D60zqGlFepw0WtB1HdLGl2HrlG7J1cvr+Z43k/21gIHOGVlQuACLxZmvIgPI1DUxKC0RkkHOwyIGg0BkYKzLansh1po3jgwC5bXhkJ1IE1MWLogR58bi537iA/izf/57sLt3H6ZzuDyOIL84ec75nHDfoD7zPNe5ZM5y1VzmURABGeOrqyvs93t0XYfr6+ua55Il8S0MLXPTuUIFTAwy3Qox1oGCxRjIz2tAufZNSmAYEBk4tyAqizoir6hues3LfLWUr5XqYAkCpBDrc+gC1e26sGbJ7yEiDPszHK4u89+KxDjHGZxyn4LKbZxjqNQr6dcwDNVhmqapqDsWx00oflgcMl3/qj0LvfOYw4g5jMg1uHihsilnjbAIi4gjZdxS70jGp1e1rQQFaymBRARLZU5Vf5jWqGGLqK2l+dPKYdMBDkGyRdq+Xp+51miSM7mqbBZxlWmaMrUXDDIOnbMw5PDg/ByH60ucOYIBI81X+O8PjF/5v/1fMLz2Ov6H5x6vffazuHjgwLaoERKB2MLbBNhM3XOGYAkAJ3SdQ+I8pr3zII4gofllUu5y7mfJQBASuq4HosXs7uGRPcNnL4/4zedfx2PyCK6DZYf94DFzgiuFe4EEECNSLu5NKOIWvEa3T+3d3XRgD1jT3U/t1O5SO+HZd7Rp1abbaEtiLLRNJ1W3OVUS3ZV6JjoafZsKYKs0pml42lG4rZ9bjsrWe7ag8zdqbS6BoDgtjeu2z7ZUPd0v/T49Fvpw1+PSOn9b93ujpqP/rTOsnTWdY/G0sbmNFqjnTM8rWQPjLIyziJwQUlzXhjKLMcPUKIlJXg8BMJSvhUXpy5RaMrYkrFsysMZUGlHpNCBIQrmO9Ofy8RMcXn+Mn//JnwFxROeWYrxSE2mLOqiDAHoNtuIdmqIlY8bMmGMuetrmi2m5cxnHlsqnEcZKF0tlzE2z1g3VAkC6D7pv4qBKX/T9ttZ7S6FcUDF3w9HP/yYkrOmx1lo4s0aFq2NPZuW4ee8xp4g5xerEzPOMcRw369nJ2LXiOvq5dW5ofcYGdRSnKkZeBQLGcbyVAi1OlHaw9NjKv8Wp7axDZ91qLc0pInAubq2ppFsU2PZc26ILa4fpaVThep6kXG+NAJjISNOMq0ePc57TNIGOR/RgHD7+Edx7/BAX0xVe+fwf4Zve9xw6EAY2GQEyDslnlbwbtN0i298+izOEzlk4Q0CKQFrPLxIjBUYii0eux8cePcHvv/gyRreH3T/AkQlwHoE4S6uj1AIzjGgSks2U3whGYqr1vk7t6W2LAv9m3/dmP/vVbF9JdOfUTu3taCdE6o42MQa0MaNRCeHqt0bi1pe1VsUTQ2wxnG5SADWioj8L4AZi1VIH9bXaWkxiyMn7xUDRNW30F7E+yFvqobymn19eozJ2YhSRe3oUSztRYmhqw0poXPJ33Wede9EmLktUv3VmNSLXigbIvSX/RUekW6XA1qFr50S3G3XAVK5I1dvGWtJdK4vp5PuUEliUxGKuB1X7hLhyBnPqf6HdkUES3WRLYGPAoFqnJ4QAchaGcxFfDhGBy2uG8MB1eO311zE+ucKPfN8P4H/+7d+O933TN+NqPgIAep/Rl8hLnSEt6d6uvQSqFFM9p13X4Xg81pyfwrhDUvOZ91Hef4YAB1OFP7b2nBZlCfO0QjJd59UeLgaOcZCcEO0oSXBF1tTxOK6McbmH7O1xHMHMGLp+hUBpNLTuHWSqaGSGKfv5yZMnWcWNlvOCGItgBhFsQU70ybMYYgZEawnvMI03ECljFlRNn206VyikGQDDGFsVK425GZTRSpdd161UCnWQCXFZ40LDbM9RTVWV9yWCogreLIKtc6gkuCNBL3FgdR6WLjegncjYFEjWe7Dm5jmPxBExUS6YzAxjEnow5scP8ezFgE99/OP4t9//d/DHecL1k4e4d3aGR699Ee8/O0cXHNgZjJ3D7BxcAixUwIAY3lskjnBeUOoIh6LU13wHQPXXsMVAFk9ch995/Br+xQuPMPcXGOkCnByGfY+jTeA54AEMYBiJIkIRmChly3IB7jIvHu+s9uVQ6t6t7c2OiewpYZe0ysGndmp3pZ0QqTvadKQZWCt1rSKYQP2R1srotshRq94l199yyNqoVCvxrd/T/rRowFYu0G2fvw292npNP0+mWS15DhG3JxK3ydz6dz1mNdeqHOyt49c+m3ZQ2z7rvj8twqYNN+mrGFHasdpqq7ls5k07FxVVLIahzvmQ+2knUjvLi6G5Vsdr565+7RWESe4lyFMi1NpSsAt6Ym15TT3D9fUB+/0eKSUcrw/4tV/5VYBzTpUBwVrCnCJSChXJ0Gu+Gq9isGLJXdKFrUVSvO97TNME6wj+KaIWoJvOkp5byXlZ9vPt9duATPsLISCkiJAiyBp43yPGLBkvCB1gco0tY4uCXSx5aPJsWRVQCi5rJ1Dk2RdqaS6izByBtC7AHEJA5GKok83rRI2bDmyEEODIwBUjW6TP695coUNZwgBsCk1s2UOtiIUOrmzRe/Tz1bwok+XopRBulWlvUDm9N7uuq3vDWgvfd+j7foUsaoqr1FzKeVm5oHIqeX55exYaZ8oOqDGAtTcj/dzsI72GWuaAFq6ZwoxpnDFPEcy5Tpv1DuP1Fd6zH/DS7/0uPvdb/wzf2Bnc88Cf+GPfiM4BD+7dKxLnBMe5DpWh5Wx2JitTWlOQosQVOWZmJEuInAMqENqyJbCRcWAY43AYHuCqv8DHX3wNo99hdjtMicBksspfCDjfZYGS1IhWEGX6qz5nT+3rq+l1fxIEObW72k5iE3e0/ef/+FduCAu0SE8MIX8ZKlltWLPkzRiF1ITbje+WItMa/W00VyMW8pmWFqcj88AanWkdDM19vk1uu+1n65DoiP0q6lzuLa+LEzSOY3USNHLQcrK1Ea7vvYWW6fw1TR3T/dxSYpP+6b5vtdb5IiBLAuv3GEIQqqNdngklYV7QMF/yQ5i55qXEGKsBrJ9L318QCYSl+KqmMcVGUS2Vmj/EZW4VbarSf+YAJK7iHlBrKE7zonYYZlARyZhjyEp/ncdf+c/+GtgQRs6Oh2G75AOFJVcuhbgU9jUGyRQKY/m3yPCL0S/y4L1f8sAEedTzrwMDW/mHgq547wGTc/a8sctcWLesd0Elux4hrRFgvb7EaevtQjFs52r5PdP19H6WPLcsob/sIVtXVglEMIEKnW0utDlQwlD2VlvbqFW8S1yUO8mpdbEgZtb67ACHQ5l7UxyaocmRMBjHKzifxzHMcja6Ot55TAxcZzGO4yp/T6N6zrksmGHWwSOZXxHi8N4jTmN2hCiBsDhwIdyUnO/9gjiv8pga52+KOb8SbJQjpwtaFySaQ85xKvtGzgcZT2MMDtMBw36H48TYn10gcUB48jKe64B7n/4o/tXf+pt4H4AhvIbeZUeoQy7k6w2ht3JfhrUGxgK9y0RbijMGZ6uYDEq/UimO6xNhSAxLhNkAo0vgROhh0DuPR6PDr0/P4HMvvoRHvsMrTEhdDzgPYmDHQF/WbvT9is55W6Cpfb2lLN/WtoJ2XyvT5zaq59eyfa3pc292LL5S/Xva899G8/9atZPYxN1rJxf/jrbbaotsOSpi9FW618b1tNEv/24pdG0kXVob3Zf+3ZYfpe/X5npsoUq3HV5Py53S/dB0N40mbdEWt6iSrdPWOo369Ra50+9rx2RL8v02CkOL6my1LXqj7kdFIJs1Y2mhfWlnTktEA6jUJD0et3Hm2/yjTAPaRibFedU0qnofER4gVEU5V6THrbUw3lUUkEu+lOt8vWbvPD74Iz8GzBEdDP7/7P35syVJdt8Hfo67R8S9773MrK0bOyCJA1IjamTzw/whI4qiRFEUKRLCUNQyYzMjmz9gFpMoSgIFNBpAN4BGYxMIChRNMpNICqIECuKCfekGGr0vtVdWVWa+5d6IcPf5wePEPddf3MysqqyqV9X3pD3L9+4S4VtEnOPf7/me03bFqm33FOv6OAkPCKWu1fRTI7waTFlamcqgK3qhTrgVFdExsJsBFg3Wttq5sxRSO3/6mX6zhTQWNbQ0QhrpGl8EH9JIcAXtUcTIoqYWPbHiBPYeYIP8fbRmX8zFUl6VnnbSrfZydnSsLP1M8zCBPVSznv+lHWcrCFGLy+jreq0vqY3qhokNxFQ8pGmaeT1Jyns/HiENI43zpcbXGDk5Odmj8erxuq6jndaZFt7V82l/tf8qWW5R7aZpaJqGti2Il37XBrk5jrsNqBAQ3yC+wYUV+EBEWIdT4mUqdc2u3mC9eZPv3V4Sfvu3+Qc/8Df455464/zeKzReaJwvSnxeaLyj9a7UDfOyNy/lvhj3ignba98nYRXLWuzbxDYMiOs5jY5V9AztHV73t/mCP+FzL7/KGzFz/2qkbU8IBJrkCRManKef+v546B64RCt/HFu6Zx7taEc72pOwYyB1g81Su2YVqiqomJEUgTHvJ5pLNj8LVJIlWwpe9Nw1RVBfO4SiWCfM/m2dTiuY8Di7YovUqod81rbbOqz2MzZ3xvbROoZ1Qrh1hnf0qEcn6C7lgNn6Pw+jO9oxU8fTCm1EdkiKyKR0lXbzVYtVqNUU0nn9HOiL5kJc+znQbpESuCjVr14tM8XK7weelqql14N1uhvnuTg/594bb/Izn/opXMzce/0NvFwvuhzJc7J6MufV8dT+K0p3qAZQHUwureOl66Beg4pC2gDHUuVs0FMHYzoWM0KBA1eKncbC/dv7yQZptcjrofVY8pEgZtkLbtpQZK6XaL32WPV1UCMIVq7dijlYGp+9XmzgJwvrzF4Tlha4hKBbmmUdwOpnZ8Qq71T17NhZap8NJAvt0c3/Jxzim/nvIRbhEntfsQIX1zaLUOplQxbHECfVSB+IKZMySHZ4CUhOdDJwFjdcfP4P+I2//bd5ZnPF61//Kt/x0WfxTgp7VtxegOwnARhHQZY8srcRp2jV3t9kQpzk2WUkuRFkJCCE0NE3p7waPZ957R590xBOz9jGSOMaXBR8hpAngRm3uzcsrZ+lTZxH3WOP9ni2dO2/X/awOX+c5+o3ix03AG6mHcUmbqjVwZJ1PuadbApNxIXrdDabN6WXXo1K1SjRIQjbnrtuox7n0HeXPmODF1tPqXZ+l8akRrK0gGhNy7OfWWqPddjUmbHtsap59c68FWKw/bFBkZ0nOy5LCJwiiTZYXnpo2DyfnDNjjFOuDKSci0ywOvky5c9NO776HYtC2N+1HdkUvK0D4XluKPWGmPNg9tE5XX8AcUrKn9HCODm+gOypxU1rwxd0IJtCszmXOjLOwcgAuTh9kuGk6chXl9x76VU+/aOf5C//le9nHCOTiPKMEGj+15wP5opQQR1cKAoFBVGwdEsrd28RYEv/tHk8dr73ity6/cBYETDnHDKNw3q9LqqJRnSkrvtW57DZe4YN8IpwRodzJgcmBIahL4G3391j4pj35i9PY42R4u77Hi/MyJD2q742y7jq+tmNydXVlQlCpnUx16/yc+Ck41z6HimgZ+n7OElx65js+h/xzW49qciIUuxs4GVpxrV6o1L0NpuhBB9+/x5mAywrTW+vF+2vrn0NlLPeh/J+SYldgDfVCRTHmHJRzsQxxFhyi1TtMSe2GdYnHc3FPT5y9Qavf/b3+cynf5JvDZ5w7yWevXPK9t5dTk47WlfQ6UagQYpIivfTPkjGeSHHTNu0QClN0AZ9kuSJR1zajSv3l1B6g4hwGQJDe8ZvvXrF5+/e44tb6FdCHiJnz34LYx/pfFNyqphuH24q3M3+xtehZ8A7QaTsdfJWv3+0o73X9iia4dFujh0DqRtqqspkd48tLWuJkqa71lrkUXdbm6ZhGMfHelDVhSf18+oI2PNaRS2rMKeoiHWgrfyyc47tdkvbttfyr2qn1rZVC6HGGNlut6zX62s74jpu2r4aOVqi5imlrc77qh0rddqs01O32SIKmuRe526p1ciYDSgOUSxrRyLGSDOtE3XU7PsigjdIYE091PbPgUAlna0OvFU1m4Oiyd0WXYf9VANqok1ailXOE32qaWZJ6hACLgTCVJcpO5nXX7yK87F9CLiUyFPRz5wSsS9tGfqek27FGCPnb97jEz/8I3zfX/2r+FQU6HJTqIApJfoxgnc0TSD2peCurS21Wq3o+36mas3OtaFsWdRI17fOTc6ZruvmoFg/o+jDMAxkgabpEMnX1KhKjSU3UcE2u7pQ01pujBJl27bEcWBMu8AtjiMglCU0Fb9tO7I4Gt+y3V7ttUfXqFZIipOj7n1BYzLQTDlkOY6kSSlPnMxroc7hspRR5xxjLOMp7JQG1+u1CYBkbmvOmbZRNcpyvZycnJRcoKstMZagT+9xBcEKe+s0xsSw6fdEJnRt6zU4/y9ujhjHcWS77Xf0Vu9ZtR05l3vOtr/Cye46Abd3fy2BzrTJIbt7o0yfH8ZxWhsjOZV7VE47NGsYdohb34+kNNL4TAgNoyopToFzHgacZLwXko/0l6/x3f05//iTP8LlVz7P97hLunHL7WdXrIEzWZGdJ1CQpwaPk8wqNDgoOXK+IE8uOBylyLb3UzBcSl+DbrzgOB97nmo72CbWZ2teuLzkjdt3+OLd+/zKV95kaO/AyTOMbRHbGDLlPpXzVKsskSUTteoB11Vel+xRkvKHrGYaPIo6WG8M1hTTRwV51urn2ztxhh+HGv+4bXsvAsmbHLS+33lZb6d9N3Ecj3ak9t1YU2esliq3gUVdB0W/Z80GTEs33PrnUG7QIXRMP2t3kW0ABDvKkr0xLKlS2YfdIbPtWMrdsvRB+/ml4+h41qIKtVm60CGKSR2k6lwsta0+dk3ne9S6sKiUDUSXKGn1eWrksjZLZbSomjrrNYKox6yRuyUKIbAXjNVzam3pu/M6N23R9gbvi8PW9/zQf/mDSIZV29I1DZcPzidVNbe3Tmv0yAbViraMZgPiUE6gzf3SdlrlNysbr8exEuWWvleLtth5X6Kq2o0VizbZcVWn3tLRbD/sBkPO14VUlgJ0G4xdmx92KK0N3PS1WnhGA8P6fV0vWoPqUdeElbq357conr3m6/uWjr+9VlJKs4S8HtMqD1qqpl1Ts6qfUQas+2aPuTQfKe3WjAaAl+cPOFuvuHV2gsSB8fwNnmoSvP4Kl1/+Et+1XtHR00gu6K4HL0IDO2qfTEV4ySCFbLtHWdX3DlgWWJ2u2GwHvG+5uIzI6XN86fVzPvfafdLZHeT0FtthJxRi18g+udeR5PHdkCVk6XHsnTj0h2ixb/W8Ryf4aEf7cNoxkLqhtl6v9wQn6ppEe04dzD97TvbExpC0u5nX6ni1WYrakiNrnSJ1Hg4hMtZZt7LDVj2vzlnSvtXOur42F8ds23l3vqZUaVvrpH97fNsfG4Qs5WBpnzVR3VK2apSndhAtffBJPFTrOlciQsq5qOWxH6zp/LvMYsB5KOegDqRmYYdpl19EcE2Y5crnQr1O9gJ+H8JMKxQpn1GKVbvqducRU+9MpnycVUfT7VAhN+VQ4R2uCfi2oelaVus1TO83XVuQyqblxz/+o4wXG9yYaJ2HMdKKJ/YDw2a7l7dU7zLrvNtaXYpQqXNc59GoM77ZbPbqEdn13XXdjFjVQe9ezlNK1z6jGyc6P3rtWZTMBm/aF1sEt75+r1l211DRhJEil93PUt6gfkfXZr1BoK/tURllV2RY29i2LSGEuQaUBrX1Oey8KQpeI3z2XmCpdzsEaydnbhFyu/lja8lZNHKmQ07BVX2/0s/rPNXU5Gv3cXNtlv6V9mowNlxdcLZqePOVb/DgtRe45Ue+121o/+h3+B9/6D/jXzhpSM9/lVtkVi4TgisKeU1L8L5Q+gRa52hcofgFKRRCRy55UpM24fyaSqK7Is0vkhEX6Tfn+K7lvrvFxem38nv3PL/6/DlfHlbcDysuxsRq3dLkTEuRUhcPuDjflFTu3PPuBxi1ANA7CcIetTlXb0zqed8pGnW0ox3tZtoxkLqhViuK2QBJX2/bFvGORN6jr8EUQBkHpja7a2p/6t12PdejECPbznrX3gYfNj/Kohk1fbHetVWzTiGwt4tfv19/tg6m6r4f2u20aIvuPtdO96EHpH1wL1HzYJ+CeCg/qp4zPXbMqQQift9BqGXR6wD5kLiEdSDtnF+bg/KFWQjCfq4eExtM+SaUOlKAbwLipzVnashkZ2qQ+R2qY9urx3PBzzWwJBQnetj2bB5c8Ld+8RcZ+4HharvrjxFgsfRXnQdFgZXKqMplS+d+GDJZX8s2l8aOs/3uLP8OBLf/4yUjOeJI8+9eltecvRfo9VWjyEvIo6IeY+La5kRw+zmWdYBWI7tLqnzznFU0Xw1K9Vru+34vR6pWl9TX7fvarqWARM9l0UENgFyGxvkispAyxFIqQDcgvOyrceo9pxaZsZteSyieBmTKIqipxnU9q3qNeck0XkjjwLNP32LtYXP+Bpd/+If85i/+Ire2l7zx4jf49ueepUnQJiEkR3ae0cm1PFlgrqOm8vfOTzLvep+ZP1vVwsvQknHBs1mteS16/ujVBwz+Ds3J08SxFKDKeaSl5FF5yYiUQdU8xUKbdXOtqMexQ/ekd9NsvuzDUP+bYvX6OSJhy0HucZyO9qTsGEjdUBuGksNhd29r1GNJtjsa+hDsHFyLZC19V83uHFsajCbhW+lsq3q22WzmHKY6aLI3L3teq5xV96N2zGHfaapVvOxxls55iNZoVe5qR6zeVaxlpm0AuBQwWceyfugvBXePMs3H0Fo3S313hyh7yOKDRNtgaZZ6Lv3b7q6nlEgCMe/TFu1as1S52fGZ/u+6bg6sa1RM1bvsa03TzHLnVrraeV8K+QKhawldS3JScqpEkJx57cWX+fEf+THOTk6QmHFA1zR0EzpQ0xC1v03TzGiFOs1WvrqmjSl64pyj67p5zLS/9VrXY+hashsQlj5ZO4x2fVkBChdafNPNSnsxl5pP+rsKOliZ8qWAPbEvVmGRr5rud0jJcokeXCNSFt3Re5zdnNDxn+9p1SaRnS9b+sAWGV5ak/r+XDIh7d8L7bWt59b7w3a7nd/XtaFzOgeqk3KiqijiAhdXW662A+IbuvUpt28/tXc/WEKkaoS05Kgl1l3LuvVc3rvLnZOGuy98hX/6Yz/Cd73wAid3X+Zbn73F+b1XOUue27HhVuxwvqVvO1zwtM4RnBCcp/GCczu6X3CTYl8G71wpxOvc3obcfE3mzFNN4GLb83tv3OO//8KX+Vo8Y3DPkbZnnK5OWa1aot/S5cyKhJOI8wk8jCGSfNmMcXgc735gUt/j38p993ERqUedt95IO9rRjvbhsGMgdUNNH87zzqnZWdUHmxY6lbyfM+S8J3vHkCJDioSu3XP+gfm46rAAezQuG3DZQGfJqbEOvq0fA8wJ30q52W63e8fSz+hutG2nzT2pkSA9t/5fIy117ph+TneK1ZmzTqzuDNdS5rY9GgTUVLjaOa0pWvXnasRAkbs6kLEPby2iq1SjQrdypDHOBZdjjIhzjGTyRLeLTMfOFFW+OAXbUJT/vGfMCVcVM7YOns2T6kJTKEAGLfC+FLfNTsjeEaY6OY1rCBIIEkoRUTyNbxHxpDHj8CSKup94j+9aQtvguobkBdc1pci0F7xr8KElNB0yUZYITeEMiSdIwPuGIQ2s112pc3P/Pp/+4R/Bb/tCMWo9rvOkZne96Dhtx2EecxkTMiboeyRHxn6Dl524hAsNY8pkcWyHxPnlFTkO5DiUGk/TWu7HiAsNOE/C45qWcUyEbkXXrXEuEEILuNJ+15AjbPrEiDAiJOcR35X6QaGB0JB9IMtUVDbHHUKVxtJOMi5FWicM2w0xDvO62m1CeMDhXUcTOtrQkMaBdePYXl1ydXFO412R3s6OIQrJNVwNiVIIt3w/hJam6XZ0X0n4MFH2YmaMhSKI82TZoagFTUyMKSIu4HxHzGVsu/WKRKYfh4K455FVG/CUNRymy3qII0McS2A/FVgex1KDSX8kJ1Zt6Zsj0zVFLlzpqVo6oo8jQ4ozfVRCkTRvmo44ytxfkR09UhGmceyRPBDIrILHpYhjZN0VSl0eeuJ2w/n5fVIIMIlpREZGiQxh5CpdsYlXOHqcjwwBQmhpQ0cUzxWR8+09PpLOcZ/9Nb7y1/7ffDeXdPk+3/HMKU3seerObWIr5A5cm1inDXfSFUES2TuyB0IiB8DnQuMj0eZIICNdwwgwFdZNAlsisXU4SdxqW8a+4bXTP8FvXj7FP/zSG7w4dpw3Qt8OxC7S5Eg7Rs5yIIeG5FvEhRJg4nApIFkzseIsdvJWbAlNeBxU4VGfOYR0vVPU4lHfXXr/EMJff+/t2qPYFE/CahruoQ3cd9uO6NPR3k07BlI31JZuqkuv63vWWZ+dd5HZWbbv1wGZPb6ew+6GKx3GBjd1gGC54Jb6UN+kbfL1ElfdIiOW9lffAGtUpUaGDt0w9WauDpCl31jU4GF896Xxt+Omv9eUwUM7kku7pRb5WKoxs9Qn234VZUgL+VvXcluc7P9dzYelfj1qR1dpe0nKTz2vS+vEBT/nSuWciXm/9pXSgLI53jwS/jo9VfsZQsCLY9z2/OjHfpg8jKShBPpWwc6itipNDkVC3nuPsLsGFI2Y2+8C6HnJ14Lyec1oPad4WBnMzkHZmChqcDkLMaeJvulJCXLeqcPVlF/dWHHOQUxIul77zW5aFOdmQp9SKkGZURqc14GOvyv6b7V4h80hTCmR8kgJPGRv7dVocdmASXtrzOYC2u+4iq5c57wMurkk+0I3qvKnKJvduNFxUDRd741WQt7esyxatCc0kjIpFcW9nEs70liK20IixoKIlVy03eZRWXfggkMc5JjI46QWuN0ybHrWbUfaXHIqwvalF/in/+1/w79w+4w2j5OgRC5IEpksiegAl2kdrCUVqXGVcHdFoU+EHa0vg+R0fa4p+ajbbU9oWi62PeH2U7wSA5979QI5uYNbn9KnCC6RXZyP5xMkcdO9oKwxlbI42jefHfPDjvZhtWMgdUPtkIKXfa0ORmZ53IoDbFXKaorfksBCXSyyzumwDgjs0Is6b2DJebPULquQdkiMYY+2Vjn7SzQ1Rb+WRDlqlM/2r6Y02vGoHV/rhNY5IDbQsHNYB411noQ9vv28bUtdGFnHTh1Yi3KpjLit71MHSlpnylpN/bIoXR2ALam2XdsAqII0S6GrRTzscaxogEjJhaqDDXSMm/Izi0C07Syl3nUd26sNt0/P+MTHf5TNxSV+zDx1ckZwu5pQzjkGq7wWPEz5V+I8XdfN4xJC4PLyclaT06At5cPrtVZBtHNb569l2BNjqfOY6qC6vg8oJdHKfS+ZBoU2F0rpgkpX1PVj26djoWOlAaauT5t31rbtnsCFvRZ1LFWxz66JOkm/9CuDuJmmp2p/Sjvuum66n8W949gx0RyseqNF+1/nsDVNQ9/3e2IjS5s19v5Rq7xZNLcNDWFIhDHiYyZEh4tCyI5AAz1IhE5a4qVSqh0n20v+ZIbuM5/ll//6D3DntTcZzt+kCY7WCY33NE4ITVGwDE7wvtS/8rPQRKHstc4TnMeLmzdSshMcnnWE4DLiExs/lkBrM3DHn/Egd5yfPMU/efOcv/sHf8A3thvu47jfD6xOTsnOgwjRC2PjGMJ7I6/9KNTmaO+v1fm1Rzvah82OdaRuqNWUOvvwrmlf1lnXB3ftzFlFPZvYDNeDstrJqFX2NNiyDpNS+Kxc9iGqgh5D6XWWXmhvtDYgs3W1bBvreltWVau+advE+9VqtYd21ShLHXzU8vN1IvmMaJgArN65Bq4Fo9r/2RmvAjH9zpLaYU0DtAGkdWydtj0VIk1KiTjEWRWNlMsuuOyCnHpM6qDVtt9OcwgBUp4VFb33JZ88g8MhStOcHPTQNgzDdm5/dhmZAhJvAtaUEpKF5BJi8gCzDTQAlxzOBYaUSBOl8WS95o27r9OdnfBLP/3z/Ft/8S/QRkAc55srmm4SbUmpoLfO0UzBRz9Gsgb6skMl1uv1HBDECbVpZKrDlnfFc32Y1vjUx8Z7UpqKDk99G4eyhocUyRNFczv0e4GEc47NZjMHnjrvYxyLwtqEtOScCc5fK0WgCmk2iFmtVmy3W7bb7dSvzMlqRd9vSDnN/Yx5tyYKdTSQUybGcVbP7PuepikB9zBu5+ssVXXVbG6YtXozoabAOudKX6etP50LVcsr54hgcs5EZBYL0c/qmFxdXdF16/nYWptOr8PNZgNwrVadftbeB+z1v0TJtdduGwIBRx5Gci6CK84JV3GcRC4cnW9x0tK1DWwfcBKE5y5e51c+/jHiS8/zfwyecO/edKyC0gUy3gk+C23wiCs1oyQlYi613XyaAkYrKKH3MCmIVJOE3MBIYog9wbWsV2vu9Q2v+FM+/8qb/MYb9zjnjHznFsOY6VYnXF71tF2HE0eWTHIgFHT0ptqTpso9aTvEPvkg2QetvUc72tuxIyL1ATHr2MM+UrK3m72A0thdZ+vQLx1jyWE+1JYluqGl4iyhR7C/Y10HMPbc1gmpgyMb4Ng8ozqotG2w0u81LXGJzmfbtIRaWbPHWwok7ffrPtcBkX5+iU5oA151zuqcKz1WTcNU2toeBU5KWd2ZMqWUPF8oQPq3/V2d8odRJ7UNS+s251xEIRQpcVJoa14Lfu4CscQ+emXV/JwrhVPte5rzYus6Ady+dYu46bm8/4BPfeLHSf1AjjvkLsZYhCHcJCdPkWcuKoOemHeITwlW9mtZKc0v5v2Njhx3Aa1FZub1wj5SF8ngdwiGRWyXkMslVNCqES4hm3UQYOdxaSOi3mhZkvU/tBlh/15CYe3mh722lsoJAEZAY5rvFJG8k1WfAzhzrlplsB43u3GhQi52Y6MW+rGbKLXiqdqS+uV8ryCWNe8ciCc7PxW8DSWHLsF26Ik50ZE52W559TO/y/0vf45nQ2S4f5c7rSNuLmhE5kBa/4ciLqPXjUqfqwKkQ0ohXikiMFnHAUgaZFHoeWRPnx2bsOJrD6742r1LrvyacXXCJkNo1kCgdQ0hTUqH+t2jHe1oR/smsGMgdYNNnQilosG+iIKld1llObjunOtDfcnxWVKfs9Q4i2DVOVDzbrFRILOv253xWtDBIlQWTdHv2wDBFsu07+lnazqNPY+iOLZfloaj71kHTMUzLM1HnXurDGZpaHa3345nLeqhx1MkrXaYl6iTqlpXI2V7TnsV3O0dN++CE+2bbR/A5upqbo9tr46DDWiWAk51PFVpsmmaucaUSKk9lZ3s6k9N9DxVxHPOMcRpHYVSN6pt2yJGMQWCeIcEP6v5iZQaUs57xO2ktBUmK9S8Qudar1bkfuT8zXt8/Ad+kIDQiSdPeUQ5FzTM+4milBKbocc3LS40uNDMa2ocR9I4kOO4c+YRxAdc2KkMxhjn90mRfnNF44PJn8mzSl0i0666XU5Y3i+IbJFXXWtac0kRH52DmsJq8+10Pq+urua+qAhMXZNqu92SUmKz2cwojQYcbdvuUfSgIKGbzWYR2bYbI4ok2cK+NsBf2pjI4sD5WbzDor6Nd3RNwMvuerGI1ZwzVyHLSm9UBFHXfdu281jrOTTIsveTOterLvWg87BerwsiJ8JVHuhJRC9cEbmMI1dxJPuyoZAZ8F0mx/t8tL/g7Btf5jc+9Qm+q+npNne5c8eT4jkfWZ/QidA6KTLjU12oNniCl/K3l0mpz9EgNAhhCr5II5Jz+REhB8d53jIMA8PlllvhDvfHhouz5/jNzZb/5Wsv89WxoXd3GGhxvsNLwCe45RvWeNbZ0WQhZNlDox5FvTtE7a7tSdL3luiZ75c9br+WqKX1Mepn5+P0/63aktLkw87xXoxd/Ux/L875diilS58/UlQ/2HYMpG6w2V3bQzejGkk5ZDVff+nYdQ6PtmEJobHtW9x1XdjFXqLOadtqoYUlsxQ32zb7QFjKQ7KOobbFFuusx2IJ2VNn6WHts5Lwh/Io7DntDb+mNC31Yynn7HHXUY1a1uiXDZBrSt/jOhx2vGqkcwk5UbOJ/HvoEjzyQW37V6OPfnKcAbxRW3QIcRz5of/ib0BMBIQcE/12uycwoPlP9hx1rtKhua2DIDsWuuFRo7J2s6Le8LDCC3a92ULXDxun+vpVNFMDMA2u7TkttdDmztnr0K4rPb/mE1lEqO/7vXwtez3aUgZ2bS7lXy3de2pRmkNjUTt+Vu68XnP2flWv3TpPtUbg6x/LAhhSP6lQTqgnRTEwO/BeWK8bIJGHLeu0oX/xa/wPn/4UH22ELg84BvCJ7ErxXIcUBUIpBXMd+vtOSGLx2pX961+tWZ+w7UfadsW2z7RPfwuvRuFzr71JOrsD69sMY1EvJE/y6JQfn1MR+pj+tkIjj7p31M+Oo71zW9pce5LHtnYT5uy9DITfryD8vQgSj/bW7ZgjdUNNHR3ND+q6bvEiqgMUdYZqO3Sxa/FR2KlTqQNjd99117kOTCzyAtfro9icnZr+YhEXTQBfEsvQz9bUIe1XHfTU+UvaPusYWSTGmh0Lm8tllbt0F/7QXNj/6yDC/q5jb51Hiz7aPtixfJTV+Vl7gSAQDeUrpbSjBjUtfdohEkzrQJybC/CmihI5nXEeM2BPOMKuyRwt1W/3/urkZMrVSqzX6+KkT2jNmMe9daDIUcmHKsiVPW6SkuvjVPhBBJcSbejYbrfz+uqHgZP1LX7iR36Mf/Pf/gu0XUtoV4DMuVKzgy0mny1O18aEGgUHKeWSR2SuvYSUXCgN9icVt+AKEkVMpSCxTIp8TiDv1zWr15XSELW8gC0qq/MMkG1u5Xyc62qQKrygIh0xDqRxpOuKtPsc+FSqksMw4HxgGPaFWnQ9rdfrPWqbBl0WdV5SqtyjTk4Ir73mrUpgCIExOdK4E8NIYz8JURxGw/Ypy7sASovl6pjqWrGFgeectimos6jyUv0qOzbzD6XMALkUUk8pImTWbSBuzrn/5pY7kln1Pf7Fz/MPf+QTPLvZcvbma5w+5RGfkSBIFrIPBMmIeLwryJNIodaJlLppfiqYHYQJeZqAYIqoicz/yngMcWR96yn6URhOnuZ3Xt/wey+9zBeTo29aZCvcXp/Sx34CmzNOEplEclbIxuMp1Ny3Y4cc83rT7/1EkW6qvRdBTZ0PbNko77XZe8dxPRzt/bBjIHWDzT74D+1EXJMHPhAgwH6Qo9+tkRyrlmWpgvY9PUadD1Xv+KpDrsUy65tdHXDocWuKh75ma1xZ6oylxM3FNkX2kA79nh0b68gpbc7mGOkY1QjNIdPPqBiAVTxbmr+6cC3sCozW0sw17alGlep5tn1zrtTugYybCvOqIpvLkDFOpl9GPfS487gYhEfY5dd473FTMOKbIqCQcsLlkvs0oy1umt+YcFNuVMxFYAIoohIIPnvStHuumRzzGpRMIJBcRdF0wjZOr4ngu7YEj6EU8dW2nL9xD982/MxP/hR//i/9Rby0bKfgtgvNTPUbcxHL0PpQAMFJqRuVzQaClLXnJe8C8nGq7ySyh3Bp4d4hRTBUviEVKuCqaedrSIMQi6DMwVXbzPLm8/WZriMRyP61rYHKYZTaX3OMZoobOg5uT/Vypray23TQmmdd180UQpvXWF+zGjDW9wEV8chSKJcyBS762a7xbJOb8+rqEgz2+LtraDceer+w172O6Waz4eTkZG7PZrNhvV5foyLbXC97P9B7aNM0eNfQb7e00gIZH8p9R/JA3l5xe9XSXJxz+eXP85VP/yB/PDRcXb3OWZO5jZ/ockJ2nrFtaVLE54T3QuMdIhk/sWadOJwreUt4pu/m+TpyAuVqlfLZLJxIw/3kSGe3+Ucvv8Gvv3jOhV/RrJ9mTLA6W3FxteGk9ThJIJkswuDKMRFL+/aLUueHNvrq994LStihdnyQbel59bj9etwxqT/3fo7b+4FmPs6YvNPjLZn6Fke7WXak9t1gswHPoeBIbUkW2doS1Uxft5+x5wT2KHD1e0s3bOv814HCIaqBzSU4hPZoH2t6m0V91PmxeRdLSFz9sK5RrTqAsc7rw6D1uo91QFiPVV0DSMd7ifO9NHYPo3HV71nHUgMMO276uu2znetDfdDPWGdU3z9Eido7jpO9tTtU81/TxjTnqm6Tc26vHtacrxL8LJDhNPdpQmdOT0+J/cD5/Qf81E/8ZAkE1fVLJSCxa7oOQuZ5dAWZsrkyFgGZc8tkEpcwc21pbHZN1OIpdh3UpREeRu+tA6SakmjXhb2G6rVfH9OucXsci3Ta71r6Xb0Js3RNLYnn2OPX96V5A8IEpfZ7NriZUcIFZ9OqTepc1/mmFlVbQotrNEo/q+wCPxVRlwwuluLJZ21HGnrSZsOr33ie3/qV/5lnh4H7L36N7/r2jxAaaHJmFYUuBRoCcRIlCeJ24hLiJrrfRCXNy9RXYKYG6ud9AjeUet2vX2748ptvctV0SHtKGoXOt5AFaR2QgEIxjC6Vn6C/Q/Iy1Y56e3boGbDEVjjavr0XwUT9nLwpc3GT2vJu2JHadzPtiEjdUDtE0auDgL7vWa1We6IG6oipE6DJ//UNxsr41tSyJan0pd3C2hGs0abaobHSzfZ79gah9Y9u3bpFzpntdjvThSzapP3SOjJWmr0OPJbq4RzK8bCOnp5rSUyjtiUaoh3jgt6YHKnJWfbTHGUKUqH0rVpc4NAaUaqXFRoYhmH+fkFJPG5ybLRuT8qZTKbxHielloztO/qQ1PEcI7gpMLGBs5bH9UZ0xBcnMzRNkZ12gqSMD4E0jHtoYp8gi8M3njQWYYwZmSLhmdDR3OPEFPRMiZhBxJHJOAkQEykVRTRJCRcjjSuUuBQjbozlmI1ju7niZN1x2W+5fPN1fuKHf4jv/6v/LpebgbOnbnM5XNE0axgSmcxgcp6c85CFFIvsdOOLPHczXXMzHbbtSCQkO1wTZhRmu92SnewJY0BxbnGOPI5kiRO1MCKqMJgHHWqIkIadk26vcymTQyIjCWIcZgEFK8BQxEdWDMMwSZg3pFyyXMrc7zYkbJ5Tdo4xRnxTHiFDHBHnZ/XHOfjoh1l0wIvDOc1R26GcOWeaVkrOjXOkFBnjLnCVDE1o6fsNSKKd0EwnEGO5Nja9omChrGVxZQ1M17NH73FC8AGIhKYj5ylwz7n0QTKQ8ZIRySQcTbOmHwfarlw3V9sNrTDRMSc59X4LIc0BUrkXTOPvIALeu6lmkyNeFnqeD4FNGhgevMH3tAPyjT/in/5n/wnfddaxGu5x6/aazf3XODnpQDxJMkEiDZnVmGiKzvlUZ60U/vVhQvayCaKd4AYIydFmB87xIG1Z3fKM2w23vXC5dTy4/T185t7IZ77xNV5ubvHABXzTIhLo0oiLkTWQvCM5XyiEE18wR/ucKDlb+S06tXubJg95/0nYEpLxpJGGJ22Pw4ioKab2u/UG4cPG5HHH7mFtfNJBzZIv8nbn553M9XuBPj3p8x7t3bNjIHVDrRZDqKlv+roqZ6nDrgpg9Q7pkh0ST9CgrE5uf9gNoN6trWWEded2V7NmPwm7Vu4CrgVNGoRpQKV1kFT2WKQUC9U8Dg2o7O/WauVAO941hc7mTj2MD17nedjXYozF8QFSTAhFVW52TmGudWPr1ehxbJBr21HnuGkQbYPjJbEP7d9oKElWfdCbPrpcnMH6+7PTzn69sZJYX/I/9oPuSXlvGhfJJQDMwh71jWjoUYYyaUUaxHu6EAp1KiVizogP5HEsjS3RBOSMn7CmNOVYIcLJyapQz7wQcmC82vLzP/0z/Mv/6p8u1L1+pDkRxtEhweHIbPu+qOU1Dd674iTHRBoi4vdRS52bzWYA4qRi6MljUU5MU5+9u34bFhGIiXGYijA7R4y7tZFzJqZY6FPTdVOr0tljNY2flfl0HPX3OZhpmqlm1P7a1zVhESsNhLU9mk9kEaK5RplBrfTa1L/LMRL9sKGk5enmg99DtEvO0pTHlXeS5Lqu9bov9b6uFz+2n9fXN31PG3ZoUwgBnIpQlAWUJdL3CfE7VsB6vd67FwC03jGmtKN4TK8HCQTvS85ZTEXjofGMklg3DW1O+M0lz41X/E8/+oO4l5/nT5w1uO19QnBFZr/EPeilUJDNTCN5yoESJEecK0GNn4LBgn4W8h6x5E9FHxkoY3a6anlwsWF1suYNEpdPPc1n72/45T/4Ks3tW2x8h2+6qdDulG9ILtlVomu25FaR4MOLA3x47GHMkA+KLTE+jna099OO1L4PgD2MsneI8nVoV+pRx34YXe9hZs9p6T3W2VG6lTpgqsa1hJbZIMeqk6nTuCSXW+++1VQ0256aQnhozJYoiw+j1D1q3g7RpCwyaJ1UeyzroNe0Insc+39dt6cenzpQrgPix53zum/22HXAbt9batuh15bm2m442PPt1cpa+BsnSNgpyKm4xvNf/wY/86mfYnN+QRcaxqvtQUrpHFAb56TOQzqkflnLfNem14lVtrN/z9cBmSXKWT1OilyHELi6upoRXmAvOLXXp45NrdCnZtfgnB+V94sI13mKS+3abDZ746PiF5Z+qOiuLadQH9uWeqh/LH24DvbqulhLKpl2HGyOl70vBUOR8wkkTTQ78TsqH551d0bf91xennMiiZPNBfL8Nwiv3mW96Tl/8y4nq3Wh7DlF8srvDrm2lv2E8jkx6qxan0z18xJkSSSfGZpEDInt9oqm6diMkM6e5fMPrvjdrz9PuHOLq5RJzk1Fup1ehCQnFOApPfRe+EG1JYr3h8GO/Tja0d49OyJSN9Qs9F7XeLKOg6XMKc2rrmVyCMavcw/s61Zs4lqeCtdvaIpEWLGGs7OzPenjJedad8LrHK+lIGe73c70JFUcA+ZaOhYNsHksS7v02sal3J/a6VV6HOxkm5e4ykv5UXbMluZhqZ/qKFkkzzrTGpBq/61zbimVdvdxSTGxLlCslLTZYT9AKaz7shesjjuVM3GyUwhMk1pZ0uPlSQ0w7dMDdf3ZOdFjpzz3fRxHckxsx5HW1BjT9icpiVE+F22yTEEAaUFSwkdPisNe4d6cM81pg4+Zn/nkT/J93//vkJJwkeNEtSsFeuexd+BwSFPQrobd5oCiazHGWVp8ptTxaJR3t94amlBQZ1wgxUg/9NeC6Tr3p57rrutmROrk5ITNZkPTNPOamZUWZV8gQammdo6XAqhxHK+JwdR9sUHl/j2q/L3dboljmZOuW88BkCLRFp219EQ9x07cprkWXGrNLZt/1rYtGhDotVZf51Epo6Zf2nabD+fFkRNlrWUh5QmpdYHYR8gQXCCLcHn/io7EnUY4feWrDC98nd/66U/xz+eB8wcPaJ2nkyLC0vhynnbKhRLJBBG8bkwxoUQiBPEIGZ9n8fFdQJUyOIg+Ef0AGc5u3eaNbcewus0/ev4Bv373Pptwwug7cB5xLTlCaBxOMlkyyYHgcHvZfu+OvRPq2bttN7lth9r7YQl8byoi9UFbE0d7cnZEpG6o2cCihuOXnH77+uPaEkpggy/Y7fg/jtlgxe7a14GKpfqoA2PbZAMCG4SoY2qLii7tHKoTq8ndh3K8DvHHl3YibV7Vo1QRD51jaU71c3bc69yqelzUEaxRLH2/Fgyo1RaXgtZ63jXH53HXjx2na1L4tvaXd4XOKEVoAtM/KxKyeD79rgZdbqJ0iZSCvTlfQ2Pm9kznmnPiQqFSStitI0dxVtMwcnHvPp/+8Z+ElCY56f015KbvDykS2RdeONR+G+jXYgyH1pOdazvPNkDey8GTffEOe0573ekGSa1OWSte7qFflfBJXdvKrqMavbJrQwNevU51I6WmEisyZc9Z3wdsn+y9op5/HRcNdPU79npWWq2939ZKfJZuaK/dUiZgmjeBJI4kjjEmhpimpLaJ3rvqyFeXrDcbzr/8BX7z7/533BouuPfS1/nWO6c0RE5CM687DYZEMt72i1zqRiH4SXDCy05AYs5Xy+W6ETIhZ5pcpNA3KbFtOu5G4UuvXXIlZ4yrE65SJvuWnD2NBEIq1F6PXJPaP9oHxx51v/kg2BGROtpNtGMgdUOtdo6WaFQqJmGdY4sy1DkNNneq3nmtnQ5LT6od8jqQ0+Oo2V1qS8erna6aDqX9AuZdfG3rrHxmvq8iE5a+U49Xrf6lf19cXMznq8fQvm7PZ6lLtVKazYPSnXGlDtXjVTvldcBZFxi1KJjOx2azORhwLjmlds7t9/T8dfFYdWKt6ElNN7PzXYuFxFhqJdnHtqrlaWCTyOTgZll07bulbNXrUtuF20ms74IlR8ylxhTT3zjBNWFGnmwfm1U3CxKoQ08sgRND5PVXXuUTP/RxtpdXnDZdkUKf8nuCm9qo7ZadBLa9HmyfQgh0XTe/b4Ni/X2+Rl3Jq3GhIYsjIYwpg/M03Wp+TY+tY6b90GtPi+NaFKjv+3l9KmImUnIJaxqfHnu73V67RhUVaprmWh6kriv9vK7v9XpN3/cMwzAHNXpv6rqOpmlYr9fza1by3aJ9dX6gDTZtwWB7fdrv2rpROhe6tmzQCOyJbCgaqWtTj3m5uYK2wa1WbABZdciqI3lhcEXcZDNcMuYrZLzPH2896699kV/9sR/i5MUvsxrf5KmnAnF8wEfWJ7jLDY1AJ0LrhMYJbQgE5wgOJCe8g9YJnXe0HoRUgivJc1FeKJsWfYp04uFy4I6csnZnXK1v87sPNvzyF7/Oy+mE0T3FmFa03SkQaHCss3DmGk4l0OJoJiwq58MOub123yo9rg7GDz3/npTVmxNLbXlUHz9ISI9VhT3UL9v/t6MS93bGpD7XofY9jEVzaAPnYed8kvTND+qaONo7tyO174ba0kW4RBuz4gT1zqkNrmzhXRG5Vo/gUEBjpX9rcQj7uc1mAzA7ZQ+7Eaotnc86Tdpemy+ln10K5vRvu+Ou7dVj6kNT68BYOqQWPK3NBjR6DqXBAbPzZdEAFXzQ82u7rota7FT0VPTBqu3ZgqBL+Uz2NUvzqsfaFltWp1AdTp0zdbD1u9mc63FyvdRsHk9mHyHYTnTE8qUibGA/rxTVmkoK4N2u3lDbtqQQ2F5t9ubHBodlN59SV0npfhRqn6REyuMsfOFSJqnwBcwFsC8vLvivf+6/4i/9pb/EOjTksWfdtFxsrggGncgThdCuk3EcWa1WbDab+fpo25Y4pplapgWP6wCsbdtr694eV9edzq291i29V4P5JXqtrkfNUVqtVvTjbq3qteG9nwMyu1HQtu1cG8q2xwbCaQrUALbb7SxAo+Nb7l87IQq9bmPc0VVrmXTr9Kp4jQaQIjIJZuzWXK3OOd/rZF8cRO8Bl5eXnKxKf/vNVcF3TFBgN1/0e13XcDX05Cxk8QWpjBGfM04icXvBM7c7zt98jW9Lkf/54z+Ee/EF/uRZA5v7ELakkEjZEYYGJ0KUIo3uyAQcPhclQSdaC2q61iVSCi5PNFbRy2squivCerWiv9iwau9wvmnZth2/8dIlv/yV14jdbfz6DtILwZcgzTHVCxNwudTm0kvRZUf6kPqI9v5ZM0E+DLZ0X7X2qPv8+21L9GXLpIDHlwi3/sSHAa072vtnR0TqA2w2N0b/rqmA9m8bXMHyjs4S/e3QcR9G5anFEuo2P+r3+oZfF7m0vy+hdfVueP3dukbOw3ambP9qql2NWNn36nFcsn1HfHe+OuA61PcacbN9tnNj+2wfREvHXJqTus313/VcLO3KWWqWHaN6Xg7N8VJOUC0ksbQW7HGXkC7nXAmoJoRJAwk3iVG8/PyL/MQnf5zN+QXrpmV7tUFSLnLwky3NVz0f9fjUga+2U4+na8ruIh9ai/V1YimitQhHHWweyrNyJsCrkWQ7dzbYsRsG1qHRIFk3Herro97Iqdfu0vrXTQdLt6vVTuvP1+21fbFFgmsEu57Del5S2n1/FwAnhITPieASaXPOs11g+MrnGV/+Ot3VfS5ee5m1dzQuz6IS+CLdHsSua5BJkr20fyexvjc2kq5djwBjP9CenNITGE6e5vW84nMv3mPobjGENVf9lm61q3XmJSMug8uFhjsVxSZ/+F2Gm5Z78yTs0HPkg2iH+vFOg94PU8B8tPfWjojUDbUlZKSuLTU7fJPDUz8ArENX1ySqnQn93CG4XP/W41oqnW2H7nwfqsBtHbZ696+m1VnnNJqdbdu+2nG1TmGdB2RpaZbOpkiURZGsWefSBmnaHqVEleT1fRqgzQNbmlObh+Gm+bVtqdXdLOJYzxMcDqr1GHYnXalRilporoqd66UAV0Rm+fKcpzoyLAf2zu12/e26yFXf53lMeS+gAXa/C7gpZ0aR2G69Ik4S4Tln0ji1e9Q8KlfqRznNFTEonoA0gEvklIgpkyOQE9kJgqNzgs+Rizfu8fOf/hn+re/7S5ycnvBge8UwDLRSclFy5to4K+1U6WNKZ9Pclb7flr+nPC2d75giwyS6YIPOGrXSMbX14pRqZ9dpCAFHvhbY6BrT9dn3PVmuB0VWil83ZLQvFt1Wytt6vZ6pgKcnJ7MoypKoTBkbx2ZCtWpq8e6e4adrcz9QsEIY+nrMy8jRtU0fQyNV9DfGcUIKS//armXodwi0zUGsVRVDKnTLzjfkGMkIp20g9ZE2XuKHDQ+++Ie88ukf5U80jqt4zlnnWLuI5DDlNQXGVQNkOka883hRlupEt3YClNclC7giBDEVsNohyW5CpBBOxPEgQnrqGf7XF+/zpdcv+Gq6DWdPM8TI+nTFg6s3OQvdTuhFYHQQZSTv7bm6D7XU+aHn4YfBlp631uqN1JtmNSJV+ytvJZi66ejb0T449uHfXvqAmt0tr3dw7e507ZioM687q0rhyjnPjpbu4tb5EIeCEm1PnXBtd3it86j0rCWrHfPaydHftSiv9kOpTjU9B64ja7aeklWhqwNJpbPV1IDaaoqVHQ9buLhGpNTBtTLvRc+4UGMiu/o9lvZXVMu6eR5rRMKuj0OoYB0IabBoZbm1/+rEK2VsaX6SVIHUAsqin5sDTtmNleazDePIYIQsLFqi/V1CtESEfsqjUSqkc44c99f/TI30DvG7OQghlFypJuDCfk6RBF8UBae5aderUjhYIMZM03pchnGz5Wd/8qd48MbrhJQ4W63JMe0pW6pTrtdiCKEoGaZcPtsPcxASQtirv2SVL4dYisEmHGOCIWZCu0J8Qz8mYp4yYqbrervdzuvPyoQ759hsNoxjms+r6yGEsKd+Zzch9Bhz8eYpCG6mAstt23J6ejrPj16fes2t2o6zk1P6qe6Wzo8GI957VqsVAMMwFedNu+uovs5r1K0WfanXpbbDbtZoXpQd73Ec2Ww2c76UvmbzL0sR3X1kvg2lPlMcRtI44MiQphyllHFDosWRNuecusjZ5T3+6c/+FP/bJ36EZ199iZOre6zZ8tRTJwxXF6yTY50CXS5rMPuCSPnpenKTtLpkimLfhBxFB1F2RZiFTPaQPESVS89wf5O4153x26+8zj9+5S5fwbNZ3yFlV1Qct/c5u70iuzzJnGdygORzCaZcKudyRUjjw7p3XyOQbydH6Cba4yJSH4Tgou6HPtffSumOpT4fEamjvV07BlI31PSBblESKyRgKS36eSuxDPsOld29qcUNrMNhKYDWyVoSV7A0IZtbo39bdS3bTpv8rn1QJ0bf02DColA6HnWuh00s1+MOw7CnCKaBmTpI2+12ztXQoEQDQFX3sg5bHYgtBS729Vpdbx6racc4FQgDcY4xxjk/SsdRCxDvHOGd+qAVi9D1MSM9Zl6tPHMtYV0HaLBAEZva60MgNA0SPH0c6c0ayzkTUyLlImeecmZIkSTX8/RyLsVxg/cFARrHkp9kaGIyqZu5JoB3c6HilDPtas04JnIWTlantK7FS6DxLcE1iHicb+b8I91UEO8ZU9zVjvKOmBNkh7iShZKk/O58Q0ylMGyQMKMgzkPcbri6d49P/+iPMVyc0wjkHBkY6fPAsN0Qh54QHCmNbLdXpDQSHOQ40AiMmysarZOU8p64wTAMRMrctMFBGpEckRz3fvdS1Nq8ZJpuTT8mxDeEdkUWDy4U2e0sJQDrWoY4zsIVV9uCPGVxjKkUMRYfSMgcZDvnWK1Wc7s0z0rXzHYsAaGiWZvNBi+ONjTkmIh9CVjGFIvCocCYIr4JDHFk02+5uLoswW7blHkTh2/aIr3tHS74UieLzBCLQAWx5OjkMeOyQ5Lg8TSugViQSL0e9u4faVJldB4vjrEfiMPAdogkduUGAFbtDvUUmQpIu4BMAXgaB3IcII2M/YbgwJHYysDgYRCIOU/S8Vu2/X22z38B/vGv8i+lke7Ek8YNp11DHgdOTk7IAXIeaFzihMg6J1wTCL6Zr+MuNDTOk2MJzL1kRidEF3B4mjERyPTjFjxERk5Cyzo5hme+hz94M/KZl88ZpIHQQBPJfiSNl5xJwF32uJTJzpdrCY/LDhdl+sm4mJEUHxuRehit+WGffxTt/GG2JIp0yGrE/520vWaEPEzdtf55kvao4z/snEsbqofG2Pb1SQScNV34UTTxOgXgrQa/S7TwJzXGR/vmsiO17wabOvZKY7KS1DVNy97E1QFYykVZyllRh7xGp2aqkdnBtbQ1YKaGaVK6RRosAqIqc0vUuXo33LYP9kUpbBssFc2aDUg0KNJATQMcPc6hXCGLENlxsmNplQ9tkGWVCnU+YCdgoN9XszWw6t17/Z61Omh7nJu41ulRJ1lr6uj6qgVEatn0+dzsArEaKV0U2DCUKKsut9lsdpsCFWXVCI4Vit1SnsxEpXMZoq7tubLNvvR+0zQMura8Q8jFSRVHmsQV8hQ0EiN4hxt385Ad+JiIQyaOA3HM/K2f/a/41//8nyOcdGSBrm1I20jUTQxykcFOiTHGWZbae18CzmkdjONIIs/jMkxIlbDbZVX0SClye8IycaBrPIWpNuIFSCPOl9ckAzHRdd2e+pw6eYoKafCpCGnf9zOS2nXdjF5qezSAnhFAEca+bF60vqy1cZto2uaao6HntDvJ3u/TEfWa1eOHEIibXf2s2km19wFL7dV7Yd/3cz8klT6OkwhJCY76IoTBTsAH4OpyS1g7+stzVs0kQJEiXnb3yCyeMUf86gT6RP/GfU7PGh68+TLfRc/lFz/Hr37sY/zxU48fL/AyFdmVTPBKlc14hCAQciJPiJM4kCQTfTaDpCmPKSPiWEsgZSFLQtaBnCN3woqrTU/X3uL1MUNo+LXXrvhfv/giqV3BnacZUgZpyCJkMoLDkxlVwx1HznpFfbCcxMcJoN5NW8rvez/6/16c40nlk91E5OtoR3tcOyJSN9RqeotFI2raXW1LOyyK/uix1VmoEQlr9c2ybo/NM1I7RDl8FNxe7+w8bIfoUQ+qpRpMNjiwbV6iFtZjUdMd6/yjmn5UB4D160v9qftlP29zMZaoF4/z4D70vv3+kgCADSLrdWfHpQ6C63yh+rM2qHqcNtr1v3Se+px7KCD714RzBe2oj7VUf8i5kvivaASU4OSF55/nxz/xSS4vLliHlrEf9taAoiLaz1zlJti+dl03B6BLmx16vda7v3qsWgJ8aX71urCf17Wl37X03ZnCNinzKV22aZo5CF+6burrxKLi9ZzbjQndyKkDpL1jka9dU3Y81ZaogfV1tHRd2/Wp86eS+C7vNmWg1GXK4gqy44QojqHPdK7ltPVwdc5H1p7XP/v7fOa//7t8R2jYXF5MRZylsEgVjZ/qQM2S+iJToJYpOWHT/y5PILGOWyIAISVyjiRJZEmM256Tds2YIK5v8boE/ujl14jtmhg6LvsRpEEkIBJAGpLzpAmJqtfP0R7PDj0/j/bW7IjuHO2DZkdE6oZaXWxSX1vKbaoDAHXK7Ouax2FRhP0dYb/olByiBNrcH3U4rCS4Hl8DtkPoUd1O/du20TqeVsL80PHU6dNj6Q76Ev2uDlSXAijrlFln1DqBeh77+b7vZ6UyHb/62BbBqh1MG4Rah9D2w6ILtRiJNW2Lfs/Kw+tY1XlStZNb15XStlhH1bZFpMhfK+Jm64opyjYMA4lC3Us50ThPJM07/ooi+QwjOxQ2p4g4ISFlox4psuZUFEUgDSO+aZAq4JUxId7h0z4FUb9Hzrg07cyLQBPopnl85tYdyPDf/Owv8Gf//J9jfXbK2LhyvpSIlH4OMYIDjyPGhA9+DoqS7NaKrut2QoGvrq720B6dnxjjjEzZ8gBKZa0V85byB2zeZH1N2DVS5xbqNa7nUtRM14xMwYakCWFTat50bqUK2+tKgytdexZB1vvJHiqfEzFmc4/TNbhTy4tj3KuLFmOc19veZkDOpDgWJQemMgRxJEbZ65Mj0bYF0dvGLd36lJgTIg7npSCiLnPWrYmXD7jjIs8NV1x89kt89qc+ydPbLR/NPTSBxgshC21wJXgqmg603hGcm5HLotAXcUS8D5OwRAmmgjhEylr3wxaXM71LDHnEZVi5Nf1GyE9/K//klbt88fXX+bq7Q7pzm00/sj65RXaemBTZyuTpWnJS6LfWblJA8Dg5PE8aLXlcq5+fh877brdn6fhPOjipNwafFCJlNzRu0ro71N6jHQ2OgdSNNU3qhuIoXV1dkVLa0VNkV3ulRjLUUat3bWH/BmiDMRskaaBiAwB1cKyztlqt5vyJOldKqWSqIKbUviU1P0sTs46+tlfNez/XvNFE8CWky6rp2aBsKfis6XF2LJZqaC1R+2oFRHVUrSKYjskScqXH0M/qd60i2KMQqcc1dSKtk2nbadfSEg1vac1ZamO9ZhqT6wdMeSO7IrQ2AAUK8jO1MwuzglguMoE7kQ+hFM6VnYKgSKkb1axXu7yyDKFtdk6+RYO8I8hOES8Oxam2KpgjlAT8mIqwhY55SmwfbGh94G9++mf5M//Gn6W5cxsf9gPAIY50TYtHGBgmKhUloX8KKrdXm3LdCHOQpDRQrdFk161FlnWDwgY6GsTrNWORL2DeANHgRdePvd9o3ajLy0tWq9VMLdQ5HseR1of5PpVSIsXp+vK7TQ6LPtpcRm2/vVfYz9oi1Dpf65P1LBhRr397DbTrFf1mV9tK163eD7rQ4MQx5J1qYYyx5D5N5+qHNAf8MomEdN0anyLOB+IQAXX+Eo1zxMsHtC5ye3Of3/3JT/Lq7/wWHx3vc/tWx3h1wT/bPc3l+TnjmaMVj0jGTYGaF0/ji2qlm1T6JEecOLwknGSyavBJnql+vUR8cLTeEUePk4ZX+kz71LP83huX/ObL1YiBXgAAgABJREFUl1z4W1ytTwGhPT2l32zoQksjDnGAlGsNiTgJ10pkfNAQgsdF6d+N89b5WR9Wq8f4Sa6T9zoAPtrR3qkdqX031GqHu23ba7uq9Q6vpVFZCWQ9jqXO1HVh9JwWhbC71kt0IBvsqEqWnkvlj/W4dcHb2rGyzvghBcHtdkvXdXRddy1XzAZUdYBTIz0Po4/Zh4GlAVqnVoM4zSepkTIdU0UTtO9qGijWAatVWrQS31r0tHaW94rnmp12S4+y56gDH9te6/jWuVE2AK7zympJeSuwoeuipqJp/3Vsxhjn4CLGuK8Q6PepWFkocuHeMeZUxCM0v0l2uW2lSGpHaEu7Yy596seRYQpAnHOzymAIgTDl88SUdgIahuY3O/kT7evW2RkXD865fHDOz3zqpxi2W7YXV3PwOQwDkktw1Mdxdz16B05ounam/ymdyyHkuBN40HZqXpu9hkIIbK8uZ9U4yQlSZNhuJlW5TI4jjd+v16VzoJsyOkfaP13ffd+zXq+vXWca/Np7hN5n9HrQTQN7L9HrQdeTnlv7Y5Htuohwzpn75w8KjS4nxhQZ4siYIokMTvBNKIIissvvtPca7dtu/eZJOGJE8m6z6Grb03QruvXJPA4+iOlr6dMYS05VmoQnAgPduOHyK1/m+d/6db5tHThbO8a8oT1pGK42dOJLfaipqG7jhTY0eCmqfMF7QnB4LzTBTQhRxCO0vuQx7RAjIbcOWTXEPnLa3KJpz1h/9Dt53Qd+98WXuI8n+fU0/5mURrrG40l0DhpJeCIeHYP9Daz3SrXO3r+WapBZyu3ShlJ9LL1vPYrubM/xVtXeaqtzjN8vq5HmdyMQrunT7/QcS7T+x+3Hu9XHJ2H2efqwn6N9sO2ISN1ws4GOFSWwjrTuLqsDYp0cdd4OHbc+ngY1FjGAfbpcLZMN7CFNdV6NOjGwC+AsWmSdLhuI1LuiNhipg5w6T8kmq9fBpv3fttm23VLYlupGWWlz5xzr9XpWNdM2L5lNltfjWKqTtqEOivV1G4haUQu1JaRS10RNzTx0A7e1terA1qJIluqozqtdV/WD0bZ1V7cnFulxM88C+Lbh6uqqKNh1bQlK0n7BWddOc++mOk5aM7TaJY1T7aHIro5VP44E/YyWlUrFGbfjU8Y7IZT6RC5P1whh3uCIMbK9vOK//rlf4E//2X+NJgsB4db6lIury7JWh5FxpkDu15oi7tZL4zyrpmWU3QNW6XYXFxfzfcCKudS5QHadNE1Trle3Q7FSSqzXa66urvaUKzUAtPOnn9f7wg7ZSbR+n0KsY7vdbst6I9N07SzNbq9pLTugfem6bo/6qYF2HQzZNazIe70J0w8DjfN79zGHvQ9Ox81pUkQUUi7jvz49I0zHne9dTZnrMUeyCI0IrROCb+gfvMGt9Zq4eZNnuES+9iK//mM/zD9/pyMO95BuYCVwmgLSFAVKz0ijCL6UulBepjpROeEoWJfL4GVCFDNILoF2UXyZrskGLrYbnlrd5v7YcCEtv3d3wx++dpcvpoZw9jQMgpsCJkeacrI8jkSi0PsSGUehpr4fZu/TjwqSnlSQYu+TSyJARzvak7CldIGjfbjsGEjdULOwuf7e9/3seNi/LTK03W5n2Wd1bOraPPVOnC0uqQGTRU1qR986RfUu9xLiVSMS9c5iXYNpKRlcd6/r/Iqajmgl120R4jpIsce3Y17Xn6rRF0uLso6rIgiKltkcJGt1rSnbP9t3m+dm22nHoA6k6sDvUEL+o2gviixZpUM7RvqZemxqtcjpC4tt8DZ4Mse2cz6v9aQBt2eI45SDpAV3S+FclwFKYd2madgq5ZQdguhyxoVpDV/FIrFt2hR9xuUMASTuHOnWh0LvA6IIkjMDAyll2tWkhjcMvPbCS/zCT/8s/+qf+TM88y3P8cLzL3L2zFM454kZnBNc8OCnazbv5qoo8CXidA1pfpG9JlRVr94McBSxAaUteslFKh3wktnGSE67emV6Piv+YNe8vX5hl19pC/euTk/mOZ+L+sYp6J6KKqdcEB5b285ejxoc2aCppoxaNMkG9nZdatCvx/Hek+JuzTrn9krISgakBMezGmdO+KbblT1ANxqKqp13Du+aIsW+ueKk8cgkYR7Sltsy8sv/6f8P/+pd/qW2weeBu/fvs77VscITImyD4Jyw9o5GPEgmOIebiu16KWISGiz57PFudw8igZOCZk49gasNZ+2KezTc7e7wtQdbfuWrL5FO7zC0DeModE1DlwfE5UkJsCC7vZTVkyUhU82y95Ok8rhOZr0p9nbNlpT4sDu4S2P1Ye/zTbBvlvX1zW5Hat8Nt4chJzW9yjojtXOtZi9o68DrezVKVdMUDj28ajqG/Wyd8F4jTUt5Q0u7ODUU/rD6D7VT9rAA6lC/ag64fndJrr3u28OsLhy45BjYgKXOSbIoozqXGvzUtLz683UbDq25Q+OxFJDb/Dn791KeW41S1WiabZ8VRrCfn8fLfs8t1xyxf+9RGoO/9nl7DksLtf/PKn66Dtyu+PKqbXn5hRf5xb/5N7n76ms898wziOmv934SEtgPfrVQrh1zK4Nv5enrtbJ0A7f9T6kIFHjZFy/R+bHUy7rP9e92zeumiaX/1nOkAVotcGPXvvalRgTsWpr7Yea0vmdYiqHNIbPnqIutxjjs0clqJNg5V+qZMcnwTxTJmApdsm0CTR65ve54/Stf5ul7b9Def4P7b7zE1b3X+ejt26yzK0V2J1U8vMdj19n+fUz7qJ9Zujbs76dNRx4jzdktPv/GPT770iv0zRljWCOpFD2Waa07/HytJOeJ4hjFEQlESj2198veD0fzSKs62nth9bW79HO0D7YdA6kPkNlkcSj1WCxK5VypUq87z33fz+8voTw1EmKRH5uvAzsRBv1dj1EHEjaXRBEeRQRs3pDN71In3DpI2lb7u6XBWefH8uq1H1Ypru7fw3jsisSsVqtrzp+l1anzbJ1059w85of49jZPRHfSbd+1jVrHx45TLQyhY625JYog2fwQ6/DaYOJQsUg9nq4fVY+zTqoWPLaS2LXYhm1HLZ+u7dLgr54H/csG9DlnhjgFG1Oh3mBQLYfW2pmKGU8FnRU10bG3wgx5cir1R0RKfakpX8pPv+v58I4cyo9rG1zbFLXBqfiwQ1h3K/qLK37hZ36OtB3wMZNjLLk0KbEdetIwTgja7rrWnxAC5H0lR6WMznlX5podUylQHMlTvleRsA6hJQlsxwHvGtanJ/N6svM/DMO01npUajvnfXRYhSc2mw1933NycjKvYa0JpcWuU0pc9du9oE2vQ70f6DxYRU+lL9rASz8Th5F+U+iCrglEMhebKzZDj2tCoXY6oV2vCF0Lcf8+pdfufB2R2Q6lXpj+ZKdqp5PcuCTSpLzo21KkOcZEzgUx6jcXjJfnnA0bXvvd3+Tv/ud/nW999SW+q0uksOG527doLrfcSYGVa8mNELzQeY/zgnclJ64gXUxFlssD2U/nn/MDU8JLQZGyN+I7GYa4ojv7dn7rxbv8xquv81JzQt+dcdHDWXdGf3HFMGwR8SCe5Bqya0nOM7pAdI4ogSiBJDcjmHqUc7nErHg7ZoVYlqT3j3a0d2qPu6aP9sG2YyB1Q83uuAJ7AY3N39A6L/XutSp6KR1oaedfE6/rYGiJLnYoH2cpsVfbZnMULL2nFizoum528Kz8sg2SlLpjnSwbOFmkqM65Wgqe6r7WQVcdgC2JJmgyvCbGX9tVNkGPpZHY7+7lcUxIwTAMc3BiC+fqGKpDatuu68Uq79kfPY6lQ9UIpBXH0HO0bbuHTg7DwGaz2VNVqwUm5oDKueLUxiKJDcxCDiou4bwnT1LU+iMpF0U458ljnGXXXRNIsi/Dv/INMiZcyrShKTV6JJR8kuwIrsFLwFHknsUFfGgBh3iHeA/OkWWi3U1OuQYmoW1IWYiljG9xNMUjLoB4vG/wrkF8Q5aEI7G5PKe/OOeTH/sY4+aKsd/Sx54tA82qYyUtPjkcHnAMMTGmTB+LtDdTLR8Vnmh8IDhP40MJGCnCBF4czgUSjtB0+NAivsGFln5MxAQpCy40ewiXKm5KTqzahjZ4gi+1jVIcGIctpFjEB8aBHBPBeYJrkOyIsRSPVSRNr6vt0LMderr1iiQwTAIbuilg171em3qtJaEENXptpoxkaHxg1bRlLeRc0BfnOVufcLpak4ZxDkxjP0AsbQ5OishGisSpTTEnNv0W3wQGEhdjgq4jhRJApDyy3Vwyxp7EwJi3ZEkQYRwzV1cJ79bE7VTTyY1cfeVzfPG/+2/4PznBddC6yJlvuNxuSF2g945RIq0kWon43E/3gTTnRJFGvAhhDqiKEEY/1ToLWSBFaDK5g03e4Bzc9g1vdM/yBbnF7714zuBPoVkTg0O6wJgHbnUdT0lbEEndLJBSuyrkXH7I+JxwOSHvW5bU7plSb+7VTASLHNYI91sVx7DPBiuo9KT68H7YUv3Cx0VBPohoybvdziV/5K2O06PEJg6t9aN9MOyYI3VDbSl/R4MkzX1SPr91kuugSb9rHWabNA5cCzAsNcYGPZY69jgKRzYfSB9WS2IMWpdGnap6DJYQMHXkVcnPKutZ+WQ9pia36+563UZbA8r23eaPqVlxjtoptOiLlT3X79Uo16G5ryXa7e92l0vreOl6WBKRqClW9mFg26JzO9cJWuB36+tWvMKigLp2+r6HnGlwJEtv0+OKlBwgkSLywL4M/3a73VszpQ2COIeTIj8uKZPyTlFynGoJBb+TL48a/Do352vBRAvMFCQq714TKeITgiNPAV/TNMSc8E7IeaK4UZzfmDM+TcIkbUHy0hgZ+oFtP/ALn/5Z/vW//BfAeXIeWTUtcRyAkg9TEpkgS94FSYCEdp5L3QzRta3oEEC76oyj5EpRVgp1scm78Rxinmua6abELPAwFDXKtm1NgA6g60QRJZnRP0WgdN2ozRs+wbMKfm+dWaERvR8pcvng8qIUwdV7z1DW8qpp53vEsO1xwc990OtMNyN0A8KLkCfaXs5lDZ2fn8/rM6VEtzqh7zekYSRIqem0vbzirFuz6be4xhOmfcZtHDltVuQ44ocr/EnmW/OG+PUv8Y9+9IcJb77Oei2ERmZFvlYRJ1+O7SXTuimPU+9fkvEORMqZ3BxEuUnuH7LPDK7kv4XkGC63nJ7cJuF4sU/8/mXP733hBV6n48qtuNwMuHVLklIXKudEpuip62U8Bx+7O9oj7+U31Wqk+50q770Tq8Uy3q8gZIkqfrS3b/WcHsf1aLUdA6kbakt5JRZFUCdfnXQNirROj/2e/q4OsCJWVj7boi21fLj+/iiRgtrqPAjbnjow0XZZ0YhaPAH2gzOVVK4pffXOZJ2cbsfGKhFa5EyPpb/bnA392xY2XUrSr4NDq2q3dEO2u1tWSr4W+bAPyjonyvbNzpMKZdQKjfZzOrZWqc+uDTuHiiDadtfCAU5KXRxSnmXG94LDlGChL1ZoQhGNPKFV8zxAQbnMznRMCT/RoTR4c94TuH5uKMGVqv4xqf5lVwQozGgW+TSmArpx+n4TiqgCkJmOHTNpElxom4YMvP7Kq/zCT/8s/+c/9S/zLd/1HXzj+ec5uf30LBigghLafg3qPK7Iwptd0NPT02t0XTs/Nm9O0eZ5beOKAIXsiuumCTGya37Uec07tTz7o8fT79SFgJW2q9+1a0hpqhoYaptjjKyalr7vGVzaoZnAVb8tiObUbsc+gqvHt0FSEYNRuuzuWraqgt433OrW9JtLYso0vsWlQHAdbXCE0DDmxDCOhNDi40AjF+SLC77jTPj7/8l/TPv8C/zJznHe9IyMNNLgBYJ4WinFbUMWvGSCTIEVDmQsQRSCTNcF1b3aIbQp0reJmCMhZ2SbOQ1rHowNm+6Uzw73+Xtf+BLdM9/CvdgjPrA6WTHmUthXJBOzlCDdyRw4vVuO/jsRNHinYgg1lfSdHOtJjMH76XDXgdTbGcej7Zsd03djLX0QkL+jHbYjte8DZJZuBszoyuNKt9ZO+KHPL0HLbwfurz+7JIJQ0zgOISFLohGW3mEDnDoA0AByv4bMYUlS+wCq83sO0SUO9XFpPB927sfJD6jHxKqZvZUH4VKfYB8BhJ1UOTCPo+1THdzPCNICP9wKOdRJ9vXOcj3Otme1cIC+lnLGVYhkrVpZj/9b/VkSYpjbO4kSeO/xzrHuVrzy/Iv84s//AvdfvctzTz09n1vrZdmx1tc2Qz8HJJa6ate9XZ+2LfZ49eZHXTYA2KNp1tefDf6tqIPNu9MgpqbA1Ll5NpixqKsNvut+7IlhhOsIWI2W1tev/l3XcYM0qRvuij/7JhBzQpgoXlOulZeibHfWOj562jF8+Quc3n+dcH6Xq7sv8dQq8JFbZzQ4GnFFtkGKwIcGTDPa6Ayi7HRtL1/jjjTJoZf+nN66w4hjbE65nxyfffVN3J2nOc8CqzXON8SY9+if2Ze+2bn5oFC23oo9qbypd2L1xuXRPhz2sOf10Y4GR0Tqxlr9ULAIytXV1ZznAMw7zLp7b8Ul9Lu16pal9tV5UrZArBUQeKu1Nh6H2qdojjp4KqhhEQ9Lh7Ptsf1Rs9LdVsZd8300cb9t21myXN+zY2AVzSzCZSXWbTvqQE/znWCf2medVCukYOfdOrDWea0pmNp2pVm1bcvV1dWeKIceU9eFjnXf99dyAizVykrfd123l6um7Vtam9YBBgqVb6Iz1ZRCpc51Ux5WHMfy2Wl8Y4USxnGcd9VFpvwql+k327lNQ98zjlNOly90JjfRGvdoZiIk0fo805hKRpCZ4qc0v9A2JVBPpkDwMJbaUikjbnJSXUF3XIbN5RVxmv+nTs7Im56f/8lP86/+uT+L3LlT8sNyZlB0aKIqOnE4gUZ2Yi3n5+d7185qtWKz2RTkSa4jlTWSDCA+4NjVilIJ/7LO04wYrZqzUuNsHPaCJJFCJ8w5F5GbcZgDFL2mdD3ZJH573dofXa9Kuw0hcHp6WmiH/YA4U+agKWu2nURrapl2u6Z3gX4J4mLar12nhZqbpqHfbkoR35wZBZzzbGLCZcibQqNerzsa8SQi7v6rvP65P+A3P/YD/LOrRHPqGC8vcMnR3N0Sbq0mJDbTOo9z0ExIVHDgfVHpK0y7iSI739siIg7JphZeLrlfkh1kz4uXA+3TH+H33xj47Iuv8jxnvNm0SFjRZI9kz4lvplzDQhdNWhYg7+6hN5H69XYRqTowXBKvea/78W6jF4+yelPqnSJSx+Dh3UekjvbBtmMgdUNNHR2bp6O/KyIAO+fc1m9aooAt8bcttc86OFZcQM+9FEzZoGVp11zbuiQwoQGCLbipwYdIEZ2wgV69s14jQjbo0SDJUs4sRUxFE2ydGh1z/Y4dB7V6h9sGM0u74LVgSI24HBLuqOfE7rZaZak6oNEA0dbS0nNpe/W8KiJRP3BrUQKlXOpxarNttsID85yVD+2NjZrNmbGBoj2fzl/OmTDRE+e1SSbHUjA1pTSJRxip7pzBCc2qm2sbeaWoipTATAQJZf5ccnM9JxTRipE8piKG4Eo+V2lcQdxkFLIvVYoCgTxGYk5zPlKaUJmxjwzbnk/92Cf5/v/7/w1xgSFFOucQMimOpc4qeULVSqHfvu9ZrVZ760DvDU3TIN7t3RP0erSoTZn3XI5tREkSSpXM8zUHJfhsGkV/NJ9pBBJNExiGLaFp99ajBuC1DL+uT7uxYRU1oSDrOSb6uJ3X1FxQuGunz0ZivxNK0XuT3SCwypHMEuOyl/en9NbsBFxiSIkkmRGQnMiSaZzQNg637WklMg5XfLS/4ld/6Mc4uXeX72kCK78lucitszN88pyGjkgR6Gh8IEyAbMl7ShNKlEsRYCDHOCG2af+epteSZHoiT/s1PgXejJ4Hzz7HH7z0Cr9xd8PYnnG5DQS3BkpuVisOH0sQB4konkgiCyTZp1m/G7bkYD6uM/92ndM6KKxR+SXEv6aMPynEYYlJ8U7s7VIwl/LFHjY3S314O/1+PymVjzsmb6dNS+O0tMl9U/p6tPfejtS+G2pLOUl2V90m5tf0KGs1UlLfAOqaUcBeUGJpO3VgYM9fBwb1+ZcChUdR2GxehnUSLYJVBwI2+LO5FDWNbEmQ42EOxqEH0VKAU3/mUFv1/Xre7ev2cxqU2kDZ5m/VdXPs/NigtS7Ya89lqV82CD20hpb6e22dsav5ZGueeQSXp9wxiqKf8x5xbv7O3k+FyuWciWQk7BT9hhSJZIYUGdIUTDqZc7Tsj0XkRAraZP+fAztDKswiZDMeFoXbo/lpUOc9QYOqCfX56Z/4FP3lFS7B2PfFyTb9Gk3NNeucLeVfWHEYmy+niKqlSNo1Vtees0HsPlrc7NYSkUzcG7f6fqTHt9fYkjNrrwkodZOIu7+zlPyx+nP1/cfeH5ZouBYhtgi1SBEKma+dKRBfn65LoEjmbN0Rr+7TpkvS177K+qVX4aWXCD6TAzTiWOVSF2oIMkmZO4IUJNaLqXPnpCThUSh7fgqw6nHJ4shz0CNkacjNmr4948tvnPNHdx9wXxqG9oRMwIlMqNWu0HDJINSf6fVvcjvk7B9pW2/PHvUcONrRvpnsiEjdULOBUr3Lv+Rs1475El1Mj6uv2b/t9+r6Grqbq+/b4Mk+fJacaKskVyNKD8vp2Ww2M0XNts0WAK2pbOosbbdbmqaZkQ7Ny9B+LwWbtWiDDSDqnBJFtCy1z6JSavVrNi+kztuxDqml8tVja4OAvu/Zbres1+u9cyn1ySKaejz7e507o6iEFY2wSoO2LUtOxyIyN31Mnbm5b5mC+rAL8tTJtcfac4iroEE/J86RpuOGad6dc3v1qJzmomi7KAHcECOYeS2IVJ7bnXWOpVCsRHOAoNC9XKEJxhgJApEJqRVBcmaUEWIqanMCLiVef/FFfunnfp4/9af/Fb7tO7+dV++9QcoF/ctS1PzseqjznezvaZpLu2bs/CnldxjHedts/twkjJGyBvky0c4K6mSP54MgSRHBiPNFKVORMLtW6vWh86dzpnXW7HqMMU1jGMhTIKroURKQ4PGyv2FgrxcV2NhtuJTrpNEgNzTzfWy9XtNfbSAPrE7WOBcYtz2MI5ttz3c+9wyvffWLZAfffdrw4POf4R//8I/xf2gaLv3A2N/ndLWmS0IngRSE3js6ekRAHEXcQTLOC4LsKH0USqfTa588q0lmTJCPcKs54c0UGPyKz1z0/P3Pf5XmmW/hPDri/Q1PnT2LxAFxU1AmmSRC78d5jU9PE26SvZ/0saVn5rt57g8rVa5muBzq14e1/0c7mrWbdYc92jWr0YD696XdXrX6JmYfHDU6Y79nVfOsQ2d/ls5fB1E2wLG73ofaa20JvbI72fo9pfnYBHfbz6UdeWAvIKvH5mFzUbfJ7ngfmruHzY2lO8L+jukS7a6ud6KOo3Via2fBOrr2nEu/2xywQ+NxaIzqvh56sNbrpA4il9ZoPT9LiJ3dBLCoy9Lx6v7W87d4PdjvW1TH/L631hXVE8huh7CeNB0vP/8Cf+vnf4G7r75GnupsHRpr7ZtVMqzX/SEU8ZCqoy1mPQdlVSBUrxnbFu2LfkbphlY5z67XPUGO2rlK1zdZbH7gITT30DW7tA61TZYK7RFkLOqPXhykTCNw+eY9nj474ZnTNXe/9EV+57/9O7Tnr3H/zRc4Wzs+enbCavqseJnRx/01lvd+37UrXVuHi+3OjnEzkpqWN2Lic6/exd16jsvkWYUzTk9u00+qiypGgctEl4hC+XG7nydth67Pm2pLbIxrY37D+3CT7GHP/aMd7ZvNjoHUDTfr2Nr8B/29luW2aJKWqXEmALE/etztdnuNomMdME1KV/lifXBqXauaNqeOXu3AHMo5WjLNMbGOXU2hUtEN6zjane6azmNlorUvh1C9Q4GOvmaT3G3tK2tLY65jZvtmx0KPZR1k2Mm0Wwnqpmk4OTlhGIZ5DvVYMca9+VGEzh7DnlfbYdfVUhC/RIus+6trtabRZEo+TAgBJsczy/U6YTWNsA5WLboxTOiTbbMidNo/FRLZC46klB713iN6HaVcCs9OAYH3fi7Sq+fVfjXel/ydKXcqTAWUnXOlsKz+BI8PgdA0hRgXI50PnLYrNucX/NynPk2Lo3HTdZsyQ4yI5FKTyATHFm2a8xJzIg49cejnwr2aMxVCKPWXUqRr/F4gVt1lgBIoaj6R935Gs4rwRybFMsdau0rnWQUc9O8cE21oWLUdOUegFNhNYyTnghaNY8/YD6Xw7lRPKTQ7VNK2VXP8VCRDi1UvbTQAuLYh4RhiOdYQR8Y8IsGTpKzR22enrLsVYz8Qrwaa7GmdMG6ueKoTnh2u2Hz+D/iVH/4Yz375y3zXKpP9BSn0tJsNt1OmlURsEjSl2G4IfvoJ+CYQGoefKaVg86EcvtDyRJC9mRB8FkL2NKcf5fMPtvwvX/oaXx7hfgqMrGnwSEyISzg/ieH4PAdNo4PR7wKqJPDN7ubWKP/SPf1oj2+18NEhavvRjvbNYJKPWwk30v6jX/7bwDKNau8BMFFgJJvXJ+qUBkree4a8L4xQJ6TXORQ2eLE5U+rEasBW59lYsw+u7XZ7DZmyVDkb6FjJZXusruu4uLiYv685Q/X4qKNp85dqhTqLftj+146r3eE/dKnYwELbU+fyWKdPz6v1dB6V9Ky/az+0TerE9n0PsEezssIPdixtMKTiG/aY9VjaXByr5qi/jyaQsX2zwbZSK20RV2t2zOrx0v65Kf+kHqt6DnPOjCa4J+dCrUOK8znJXY8pkhuPZEj9FHDGiTbnhDjR3VLOkKf1n3fBYp7Oq4EDQO5Hsgkmc87kMe4EDqYcoJiGIkoxTIhC1/Dv/V//Qy4l4prARhJhKHTILJDcQs2xqbZS691OSCFGsjh80+FCqXGGC8Q00Dghpyngz7rREPbGUsQzpmFeP7qm7FqbhWMmKXJF0kSEsR9weQpOgZwjod2vX2YFaOzxUxxLybGUcKFF/O5cuBJUecl7827vY5au2gOdL4V50ziQiKQuEPNIjokmlvpO58PArZM7EKHvR05utVyd3+W5y1f4h//x/4fvBp5+9SW8SzQeGleoeo0kOg8BoXXg3DSGoSsBoZQYWgUmAqXQrncAjpwbfM4ICZFMlkTyQhPWZc77TLr1HH/vXsPvfvUbjG3L/bZjG7oy50CThXVO9KEh+SdHUXsnSfmPOp69xz4pq2mjT/LYS6jVo9rysP6/03a8lba82319p+eyfsMSffy9btNbtZrJsfTsfBLjtNT/H/70//B+d/9olR0RqRtq1qE/RB2D/VyjGOO1wo72/zrnRv+3QdMS9aqmQNndf/sQO9Q+W9B1KUdIz6H/6+5ynYul6IoNcGqpZdu3Gm2p+2ptKfixn7NKcnYc9D07TzXlagndqoUf6rbUSNnD6HS2jRZJsn229Cg7/rUoxxL17WHHq4OwOgivEa0lq3MBbb+X8upsbo3OiW3H0vlFpFDtvAN3YH2xj7pZlGMJkZzbqG852QlrTOfDOyT48jOdW8ddg4jz83N+6id+ks3FZXGkh31UUtuaBPCmhhWyF4TadTCO456Ef13AVotJ23G0c2DH325KLF0TOod2HsYYGeK4d83WY2fXUMr7UuZ2fQJ7kueKJte0zXltjnESdCiCED45QgIXBZ8dkhw5C6ftCZvNhu3Qs2o98f7rPJMi63sPuJMzz3/xC+QccU5mQZAl4Zqazlevq936cZTsJ0g+M4bM6EsOmE+u1IEKHW+2Da/7wFdffZXLnEghME75U0kcaaLtjZ4ZLb2p9m47wUuMgqN9MOxRgdISO+Gm2FLqwfs1Tkd7/+0oNnFDzTpI6vgu5QjkcUIK3G4HP8ZYijDG3S6wykLrcZeCJaXkwc65tY6pdVwtne4QWmM/Y+lVukNt5a+VSjVTp3Sn2uw0Xl1dsV6v9yiJNTKmSJWlGygiYgMfFbOwfVLHWcfBSjnbAEmdQx0rO0/WMa3RKeuQPooO8bgPEEUKLO3Mjq1FhiwVwzrINqiwAdcSDUbHwSJR1vG1/bJUUTvGta1Wq5mythQEzShWhUDoMW0uX9d1REMvFJ3/lElpVyi47TrGnGahBad1xjZbUoww5TS1UpCclBL4IiAxLSbcwsM0lgI++DQFyuSyWyXCmPMkOODJqdDXmNr+xquv8Uv/1d/kT/3pf4WPfOe388b9B+Ac4j05Fd3AnUBBOZ5QOFsZpTgGvIMxFWGOnDOeRBZh2PbkiToXR5UllxnN9N7TdWtGgz7XdFOdk77vSWOZ02a9o/S1YUKadN0TSDhyysSo9d8Cm34Kipyw6cs6CqrEiSv1lsIOXQ0ibLfjXuC3hGzOQiQyksZIjCNuiATxxJSnumJFzEOyY9xmTk5OGPsr5OJV/tncs/3ql/nlH/oBvnflyE/fQsYtnS/j2gaHFyG4hCfineCdyuoXgQkmSflSO8qR4xScTq+7nBEyF00kukhACAnWueP+ELg6PeU3N/f43Oe/wKvcYbM6oR9G/Olpmd+JJpgyDCI4lxGWlT5vir2XTua77dTeRDuUC31TrfYXHre9N2luLctlieHzJO1hG+lHuxl2DKRuuNWUO7i+O55ixLtd0cl5x5iiDhVTwmW55pjWtWZgP39myVm1qMBSG63VF39d1NbWkdFddA1iaiRCC7OmlGaa4Gq1mr9j21KjGfVxdAzs+4/K17Kojf5tc6P2dtfTrriwRaYs3c6q0i1R2h73gWELK2vwZ5E/PZatPWaPbYOumpZ3aLfXtt8idTVNQwPOWomvNj1GHURp0K390r9tf5b65JybA5Tdi4VvNZ897q6DQZXjJql0kL0gU1+TXKi0eaL55WqNDzESxATxKeOawCgjOYGXMFEJi+ofqbThZL0GEe5+40V++hM/wb/5F/8CzdN3wO3yD1zYtSfGUqsoxkgaTUHfqZ5VjgNBWkTzz9JIMpsou+trfzNA56sWq7CbGrrZod8bhgHJ4MXNgbAPuw2DYdjOmw42h86uh5wzQ4QYE15pajlBzkysyTnfy95/bHv3UCoPcUikGGmzw0kh2TkpOVJjiqQUadcrLu7f5U6A70gX/NqnPsHzv/Xr/PEAp+eR4BJnT58xbHucE4KHIJkgQsAhLuNnhCqXmlHOFdxJQPL0GjKVHStBsEgkSCrBFQ7E8yC3vOpO+MKrF/wvL91l250QuxVET+sanAu4PCU7TShUdOBFyDdno/6avdsBztI9/mgfDKuf1Uvvw5Ovz/WkTO89trTIu3We47q+2XYMc2+oLQUvtXBBjRTVzv2hi692ii1KUh97L4l7CiI0CV3PcWgnphYHqFG1OsDQJPIlVMMiQUotrIUR1CzNzOZi2eNaNGrpYb9UW8siafW422Tmeq7qhPhDNDY9Vo1C1Up99RjbHDaboG/Hvj7fIYGHmtqm56iPVzsu9bEPBf1LViu8HUI6LUpn22frjdl8nKVcPG3XkCL9OMzB70wRrdqv19NS22skFIpc+jxWsk8FdRO1UBX8nHNE3RgQ4ezklMZ5fulv/iIq3j7nDqa8d82o1ajnUnCZcwbZrUeLPGphX5s7uTT+dlOlbdv5czaAWUIebfBmj1fPiQbntjD3nPNm5qDun71eFRkbc6HLZT8lMHnHmHJ5nYx4wXtHlsidk5Y7Xth+7at89Tf/Md/zzAmnHXg3sAqO/vwCT6lz5SmBkZ9U+JzJS3UaaOcS3NS1m+Z2CmTJ+ARN9rjsSQTG7pSXrga+9OobpPYWrrvFdoS2XSHiYUgFvULwmbl+VCmgfFip9WhH+7DYTQuktE3vFu3wuEnwwbGj2MQNtf/n//hL11CF+kaSUpoT8O0O8l6NHRFShe7AzgFXZ8o63HW+z8NECJZesw6uBhnqGHVdN7fd9sPmDFlKmDpYGmzZoE5vYksKXrUDXgcwNgi1r1u63ZJYQ30O62jawNMqKtaBVB2sWWqenndpXGv0yjqvdtxt32qFxzope8kpPZQbZMfUopo6X1YAoM7DsohGvYaX1Au1jTrvANGo1VkBkMfhq7vMteBW0ZV5fOMUaKTdOKcYScS5rWnciUxY8Yn5/en3OCkm5pxnee9hGJCUSUNfis+mBENRV9TreND6XScr/u3v/z581zIyIZ3kHaVSHA5IFTtUXEG76k0BH8z6zW6aw6ZaP56Yx2vXo11Pul7jsEMZ9b1xHGcKsQZY9abLHv24umbmz02y3nZuS40tNx/T0kB1LodhKOt95cixBB5tbsnJ4bqG+xf3iWnkW56+w7i5ZNs/4H/fBq6++AX+0Q/8db4tv0njBhrpOU2elXhOaYkuTcGvECYUKDimoKqs2eDcXi6VN5GUZCahCc2fi6x9S07CA2nh5A6//toD/smL9xiaMx74UzYRWHlaAiELLY7WeSDN7UmSSPLwvdD6fm83purrxt5HHuW03lQa4U2wt0NbezftEOLzVr7/sD6+3eM96hhLz93Hbd/btfdi7pb68lbOdRSbuHl2RKRuqC3JT1uzeTxBrtOq0kRV0sKjtfNukYMlYYP6wq5RidpqZKPOF6q/b/tkxQNsEGF3tWsUSNt9aCfcogC2jUvCBpZSpse3DqIdm0P9t5/R8dYd8nqMtE+LyEHV9/q7Fn06hATWQeXSmC71qUYflo53KG/Lvm7fr8UfLEpU1yir0dD6+4ceNnUQuGSRItagNZ3q88YY53pAs9e7W/y74+tnKIhT3a+SG2ReR3Zy6uwC//kneELbIM7NVMGcM/3Vhp/5yZ+iv7wiIMSJQre3lk3/Z2Q4u33aqC/B1dIc6u+WamuVIe0c29pQMKn1pf1ro+namfK3dG9RxNGeXwtHW1GKIab9+1Uu4hEalNXCKDWq3oYdFdEFT3TQx57QeNZdi8SBMFzxkQbuf/nz/MNf+kWaB/cIQ08rGTxI42eJfhGhcULjBS8lT6qQBQUv5QfAUQrjOgr1Uz/jEHKSIjQhQkqZJA2EFVtZc+46vnT3PufZM4YORkfIDj+p/jnJiMvA/vX+Vty8Rzlv9fVzDJQ+uFbfK9/pXnl9rCex934oiK/P+7CN5KMd7abYMUfqhpoNiqwDsheciBSHJggSpxvO5JhkJunknNlurmhDs3ecus6P1m3RHJTaIe77/hqFyFrt/NavzZSqSfTAomA2UXMpR0OltxXdqHdVVazCBlV1UGepQ5pro5+zwhK2XdZJ08/b+lhLc2YRGO2rdUx1HNThtNQle+6aZmfPoeN0qH5V/fCxOUZLeWFLwXqN1tXzac9Rf06/r4iPbdd2u90bExFZXFvWobfXg3XAa2rrwyznTIai3AfgMn3fl/w8pjF3rohBOGDYIZiJSKzGxzcBUiYSySlPNagcMWcEQXwgu0xmus4yND7Q+ADjwMhIBMaUkEmqXLIjTL/77cCDV1/nv/3FX+JP/et/hqefusP9zeXsoJdrO5EzBN+SEWIcCiqSM6RxQj8CkjLbsd9R6Fyzd23pWPZ9T7sqwiyK+KhEv6UD2rlWpK8gTUVsYkgRpIx1irvr0YpV1DL+3fq0yNxTcgsll3a1wYjtGDVDFZpp23ZWKNRrKAyJW64lkdkOAwlo2g4/9MTLK/x25Ds9vP7bv8k/+bmfYnVxzrN5w2kcWcWG5Bq8CyTx9OIIlOK7QemqOdEEX0pMTACrAxotvEue0pj0etndx5EyX/d9w1Vzwmfv9Xz5ha/zfF7Rdyu220RYBZxAIxEnCcGTJNPLdF8tDFTeyj6ovZ8tbdgsbYTZ998Pe6c790cr9k7z09QnsD/vRFjh0Ibdo9r/YZn7D0s/jrazYyB1Q20JLajr7WDoSeqkjDHOCfWaoN40DVr2sX5ALokEHHKs7feXrKam1Q69vQFb+XNL+aqLysJ+orlSA7UmkYoR1ONTI151cHjo4bLkUCh1qG5fbbWCXNu2e2O2JPt8aDwtBc6eUxUIleKkQcihttvz1o7UkvKiDW6XUKolZFSPZVWM6rVb527VeUz1sWsE1U0BUK0oV7fl4O7mpJhm517FS2ZExtIZlZ465TGVgAqwiJkpJiwCLmUyCXEqcg2RopjnEJzmCbGrVyVTkV5xDhqdg0SH57TruPvCS3z6kz/Bv/Hn/02as5NZNXAOuJMzfSgCHP3QzwFQuT48jewodk50LnZ5ZXptpRyv1WHTMZmD3GGkEVdqbBnbbrfl824XKCf8VIsLUirjlMWXH3PP8HoPm8Z26MsmhHhtM6Q0kpC9vMg6B1FECH0s9L9EUe7zjvtvvs5zpy0w8tEQ+Lsf/xj8/q/x3X7kwZt3eeaZW9z2HT5GfPSMvmV0jq0kOgGfU0GHnMO7hsYJSJpz2RxxrhN1/fqQXRCWQMTxshO++OAev/KNu2zdmhDuIHR0p4G+gXHsWZU6yaUOljcy+9kh4pHscDk9FjJl68DVmx71Jpi9To/M/w+e1XP2pMQKntRaWEKjHvdZfAxCjnYT7Ujtu6FWCyjM1B12tJm6hk92+6iHzUOwx7A0m0O5PPX5bUL/w2ofPYprb9XQLEpSCwPUTpwVirAojj1mHTjYvmi7LRK35DzU+WV6Pu2/zWV62JzV41uPqW1H7RQuBRhKrbICHRb5eytWz8ujApO6BtWh89n3l+TzVVDESqbr2NbUvlqafaltj/p9sd+mrVb5r+QOXT+PnbsZDWXSnzbrS7wrjq4rDm/JYZnO63fv55zLdepkVrMTkbk+lLYtrELxulPk8t4DfuHnfr6IDJhLL0kpelvGN+8Fsna95uk83jUzGqXrXnO39Hqy42+l5q2YQ6LQhpUuaSmSOZdi4EEgiNu7jtQa70tAmNJMjYvDtuQfTZsjbdsWtcAJeckTymfnDu8YyUSXwAOoKEcm5lyEJZxHxLHuVgwXDzgh8Y3f+jXO/+izfGvwrB1817c8h0gu+WkuEMQRRGik5EN5b5QkXS7KgmLvgTvkyWXwqfy4Sdkx+0x2eSoG7enXT/Hiec9X7t5j6E4ZfMsmJZquLd0YB26tV1Mgagutuzm/7UlaPT+PQ2M+2s21J0W/U6vTDJ6UzPfjtvG4Fo920+0oNnFD7f/1D/7OnsNvBR/qB5+9sWmiNzCjVbVT9Li7Oro0auWtJblPi2gtUb4edhN+GDJjzQoPaF9tW5d2t+ocLSs6YWmDdf6U9slKsdvAxwYBOkb1mFg6pm1vTY+yY/MwfrutEaV5Jfq6pRTqMZfyHpYombaf+nmbs1LnlR0KmJd2Ggvla0edrGXf62Cr7/tZSa7+nDrZdk6X1k3dDh1NzenRQPwaSjeJQnhkFi7AO0bJuJjJw1iEA2a0KTOmWGTTYVdvKu3mXCyNdjp+7k2h3Ck4yTmTx7gLkuNQQLGYGIcBJ57sA3/5r3w/q2ee5t72kquh51bXQdovhjyOI37KJ1IBiJx3uUUxRrqum/tYy9+rMl99zdlNhjExiyrMGxxxLIVwvS8IUoYtpU02j7NrWpiEPUq9q4goAOvKug5tt9feIe5KC3gRXOMY08BFHMBn1q5hPZbxur+54OmPfAuXVwOdrAleaN2WZ4dXufdHn+V3f/A/5ztee53Tp06YYtgS+LlM4zydB08JyFrnaHwptusdcyDd+JL/puvHS0aywydYpUh2mdFnHuQBCYE7J7cZ723Zrs74B5crfv/rLzA0LffbNZcpE7oTmpxpsrCKBdUbVqtH3hOXzF6LT5oe92F1am8ClfG97leN9BxiG9wke7vztPT5JaGmd2JWMOfdlEM/ik3cPDsiUjfUlhCJ2jk+9FPnC9U1k/T7j2tLO5Q19a0uRLuEJBx6+FpH7WG7XTbgqnna6kgeuoHVn18qqlujR/VOnPahRtM0yHxcWxrDpc/Yc9qAx45DHdDUSKJ+Zin3Yemh9KjP1e1Vx13rl9Xry24C2PGs+6XrRSXwHxb8LY3To9AyK9BxiL40I4OyHxzWqGnkugT3Ur/t+nbOzdSsbI4vlvLod0gzYgQxpMz3+fk5P/NTn2bsN0U9cAq8EkV2PUtJ8NJ8rhk5TflaQGxps9oWpc1qABZj3KuhVq/H+rqbRTtEQNyMyFkqqQ3+U0qMMTKmZUGW2krgJviUJtTH0SToaPB4hiGSkxBWK+JmxF0NrHxGck++uMcbv/0Z/vC//x85HSJnH7kNKuQggneOIA6ZhCJkQsrmzQ7StbkGZnEJgOSEGDJXTaL3qagtRgijkGm4CA0XYcVXX32dy+TIYUXE411HloYsDUkaom+I8vYfzU86yFnaIDnaB9/qjdoPky3RxN9tezu+1dE+HHbMkbqhVtcG0teWnN76e7UgRE1lq2ls1pYelJYyZM+rDr2t+aKfyznPOSjDMFyrI1O32SIqtmq4taZp5lwpYM6PsnboJqbjWasHWoENqzRm0aKl3C+LcOkY1eNZO/d1vlidN1bnGy3ls1kKoEWl7Dgu7RovrQFtz5Jwg6JIKgxg+1TnUNVS1jZo0vm3Ih914KH5PHreQ9RJRassgrcUOF/bWYW99TWvpRRJKU/1eAAnpHEap+DxeFzOxJxIIvjgixx6jOSJJijYnMUJdaGgX3Mb7Zy4cr7kEs6gMvN6EcEDzpV8pbSdEKGc6Xzg6sE5P/HxH+Mv/bvfz0efeobX7r8+FWgtuVUpJdpVRxqLrHrXdeXctpaV7ArtiuxqQdm8vr7v53Vtx1r72nghpZFNvxN62aFY/UxhnLTq9oJoPbab5htxBZUy67ymvnogpoHGexo86aqndYG2PSNKYhxGnAREAuIaztoTBMfmtec5XTu6r36JX/2h/5J/5nRFk3pev/8mHzm7Q+sE7zKdF4II5ETri3CIF2i8IxMRKZLzJcBiUuzbX/NjiPQukSURYqSJjlur26Tc8Oqm4Q83W7780gu8mO+wXXX0vRDObtH6QMqFNpjJTCTLt73LueREvtMA6HE2f94q0+HtfPem2IelD0u0/pvS13eyZuv+vBcbAMdA6pvXjoHUDbWlnXv9vaZ+1dQ5dUJUWvjy8pKmafbQl7dysVvxButwawBl1QCB2TG2NDpt65ItUcWWTJW69Pyr1Wovfwc46Fxb1UDnHOv1eqY21cifpf7ZACFVFCo7FkvO/yLSZKSbx6kt6Dl0flneBW7bdk8JUPNaarocC9/X9VDnx2h/lupb1X1cUkS0DrS1PSfYBGr2+xYlss6zPVddr6peJ4ce8nsPUkMLrOdvjx6aMspJ0zbOyGU7KRAmwYcw51NJzIiOk3dlfnEkUgmytO2mL+QpR1AERmgqZbwIpJiQ6JDgi7BDjNw67cgCF2/c45N/42P8a//Gn2X9kacZpy4MqQhFRApFTXwZ+6urK3zTzoFQ3/fzBoJd39vttqgYTuqVsAuoLHXVriURIceRlMSIczvECU6kjMI0jpIhOI8LO1ptTAlynoOGXX6cu7aGw6olpZFxSLS+ndKUPCShJ+Obom63SsLr91/BDRv+xVPh5d/8df7RT/4Y33smyPY1/HDO995+ikQGXwrtBkk0k9Jg5/0kO15ofzkzBVKTqAgySZyXPpILYuVSAoFMIkgA53lAYAxn/OHlyD/4xutc+jVXpx05Opq2BOtpiLTOF3qjQPbsgvu3YW+Fvv24x3vY9Xa0D6bZ58bj0us/KFb7Tu9FcPOkRD2O9sGzI7XvhtrDqH2PovjVjuIhfvQ7MUv/qSl1dT5STTVcOtZSjtLSmFiBjSXK2KF+2XGpRThqlMoGZ7ZmjX3P0hAf5mAsBTT6+14x2OpzD6Os2bo/tWrZobF72A7dEsq5pKpnP2PHWudFJfTrIMw63Uvruqad1oGqfd3SAGt6aU05q80WGa7HTdtT93dJpbFQ1x5e02opz60eA/u3W0CM4lSIV3ypMXVxcUFwHlJme7Xhv/vbf6dQ/NJunFXh0p5nmGpQWWEZG1SHEPZk/fWatWiUFQJRpFJRrbZt52DabmRo4Kpjv7RWbZvqa/3ahlFTxCWGnPBNIDsh5oLdOOeISrEbt9w5O+Fbnz7lG7/9G3ztn/4jvq0R0nCf1dpzdtIRxrHkReVC73OUgLjUiCqvATNtb+k+uzfngM+ZZsysoiekANLA7afZnpzxhy/fZWhuMzYnbGMR0xARGAfOVh2BjCfiJOIYKzGLt27vB7XpaB8ss/e9D/MaedTz9Enah3kcj3bYjmITN9T+o1/+2/PvNoejNluHSR0giwbkXFS5NPdEk8e997MohQ0iapEBa4dypep2WmTDfq/mYtvPa7ut81XvmKksM7AnXFAfz0qi1+NxqO3Waided/GVTrckD750fH1Nd/XDhGQceoDt1c/KeRH5qttp6YgWSajFP5Zy7JYQt1pZUMdQ+2JzZ+ocvLoPS/3KVf8Pra+lROAlKuUSUlu/5nTdRdPf4GdExE3f6/ueZpIEj8OuLlHM+/l/Khrh8nQuDboxwYIRttBjae6gn76XxzgjNTZAjEadMY8RiWmi6m2LHHuMbCfK5dA1/F/+w3+f0DaMFERtM5R+aDtCCIxjIrTNfI0p8mQ3JcZxZLVa7dFgbRCs944YI172A2Gl3bqplpQGdF3Tzrl9iiinlGa0rKzdSB6KjH/M0xpw1T0NxwUb8JlTWrrYEEe4t70ktJ5u3SHDliY4+ou7PHN5Tnj1Zf7pD/4XfPeqpb18BcIGL/BUFG6NjtwK0oQ5H6qd6HzBy4wI+SA4N92PprwlL3mSPd/RNl1OOIEQhVY67tHQn5zwTy42fO6VezyfVwz+NtuYcOtAk4SA0GQVrxCii1PR6EQSh3Ad6b0p9l7QvSxboD7Ho+7hR3t79ih38CaM95La7U1o55MSm3gYHTHnzMd/+u++53072sPtSO27ofa4u0U1jUkdb3X4rdNvAxFbeNdafb66QO6jOMd1cr46+Ifq0lhqmQ18lvjG9vtLcun6o8hI7YxrgKVqhofywezuu319abxrxMI68bb4rgYAjdudu5nmaG4jShOCpdG1dKyaTmmdXT2nflZzYer21Wutnv86AKupgzYA7vt+jz5qaWM2MLeUyaVg1M5v3VbbtpqCubT2LO2yFEPd7+d8vOn1OVcrplkQAie4WDhefd+TnRQ0RJGguEMms0WDZTp+KvLnKvggIkicgiYnBJnUElNFRcHjJJNyX6S/RWjctKkgQifCMPY8szrlp3/0k/zl7/93GOOANH4qBqsPc+3/vmqn3g/0WtE1bkVYbL6i3eAQyUhO06bADs11YVfMt23bcq0hxDGSpr6HEHBht2lSzse1WkjaDouKBSd4ilreJg4kEc5un7IdtmwevM5zJytku+Fb/Ia/9wN/jecut/yxYUu8uos7y6yzo82O1nuGxtE4mRT5CgXTe4/khIif8uoygsNRloifUSqZ3iv5X0IRDWnE4aThSk54vTnj65c9/9s33uS+a9i0azyBVdeQ84ZGBCc7xCs6IU0olDBJp7//Puv7atdQ4KMdjeXnld1gexj75d1u13GdfnPakdp3w+1RF6bd5X9Uzoh1OG2wUOc/6Wcetjtlz1fD5Xb3vkZGlqyu7VTnZFlUygZMh0QJ1B4G4x+ihdV5Xdo+22crnW6pSYfoYsBBCpN+z974H6VcaGXo7XkfN4dhiQJn59POmwZGVomxpuhZNbZr+UmPYUtr6VC7698tKgf7dLJ6jC2VzAbS87wpOiPMQeFeX/wk+pIS2Qkasdg1mWv611QvCrf/+0zD9DtKn33de09wDufCXIdKgi/1qci44PAhsLm8on9wwS/89M/SeM+dW7evXW92fVnarQ1WNdfNBqB2k0MFQ6y4i5ulwWV/bYSWLB59vJSA8vqcJikS8kvrfYkC2vlAk4U0jDOt9erqkjZ4ztqOdP6AVYy0L73Ac9sNvPYyJy5z1jZ0SeiSp82e7Dyj97tguczijIQh0zjLjoJpKX4ATiYRDZmU/ygUw0vgwfqEL11u+OyrdxnCCc36KWIUvC8KiA1hRrKS8yQnJOfIrrQN8eR3oNr3XtjDqI7vxnmO9t7YezWvb9dqX8c+Xx9W5/K9sKXN33frHEe7WXZEpG6ovRVEao8SNt1EVFRBnSUboMB+Hoo1i/RY59M6rg9rU527osdc6ovNQ7IO++NImC8lxy5R8qz6ntLRDqkC6jFsfSmLoNgAq+5jfQwoqNBms9k7dy1kcAhxW7Ka6mKDP93ttztyOqZL+Vd2DRyiz9TBrc3L0hwPXSP6twZcttaVDfSW1uoSPXSJ2mfR1VokRD+3o4td3xyox1elxzUICCGQdGdzovj1fY+XnRhHNu0UvV4owc1ccDdnxAhpiFGCnMcseBw6BkbcY+KUOZEiRgEMURA3EseIwxe0KyYkeGQTSZueV77xAj/5I5/gz/7FP8/6zi22cRIimRzyJZpoHaxYxU+7vnUtzaiuK2qGWqFrHkPZjXXf98RhYH1ystfvcRwZ++0cmIrIrFpozebDlQDO0w4jOUXGAbrQkIMjZxivzlmlgTsp8ZXf+R1e+Phf43uf6nhl+wZDc4pcnPPtt++QgmPwjty0+CknqSjNF3qdeA9R19WkVOoEkTgJh8ik0lhqjSH7NNYNmQet5zfu3+V//tpd8uoOOdwmj55bTQtByNMciiuhWQ4OSHvok0xFd33+cElSv1VbQqSOmQhHqzd7a6bM+5XzdRSb+Oa1m73tdbS3tKtv7ZDkuf19affpUB7U4+RG1X9bh3npWLbtSyIS9U+NpBzaMatpg7bf2r5D/bZ0RLguRKGOpQaYtnZOPSYWhZrRHjJJioM2ZoMkud2PddjrcbVIYt0u2waLuDwKuTs0fur4wvUdvzq4rGXJa9TKttOOxyF71APJvm8RF21HfT7v/Vz/KbJDsUqdpmnuzTWyh1QK81wt1ukSFtf00mulUtH0/oRwFfSD3dzLri5Uqo6V3USnJJNSBlfKDHRdx4M33uRv/fwv4LPgM3OeFk4Qz7W1M45joRxOQYLmftm508/qRoAq/jEX2L0uHCE54iiFdjkw/3PO2jgpDYqrBL8TYx4Z80gSCA5iHGZKZNO0BAnEYaTznlMPV9/4Mvd+/7f5Y2dnxAf3+c5veY6m9Xz0uY/QiMOLJ4jDSSY4wXlwbqL1CTPdrmgNpoI25brAdZrbtz+5DZv10wxnz/KFu/fYdiek7oweR3JFx5Fx5PRkXa4t7Jpx1c/RrB134Y/2MLO+gfVz3q+2HO2bz45iEzfU/h9//7/eo4wpxWYJZahRE6kcQv3fez87Qpa2VOcC1ZQg2w6bF2Md6UN0rro9byUxtKYjqTiGfqdGTvSzS0FfzaXWQqNL6MahXK6lXDRLmayVzzQg0xylOr+rpsPVY31Iva42O8Z2rejfNXqnx9H6QSpEoiimPaY9h7Zd/67H6FBA/agHW60yt7TDaAMiK0qylCemY2nPr2tZ5yKlRCNuj5JmETN9PbtSgBcoKNB0njSMpDEWmXG9Vgw1dB4Lnb+8G49+3JZ5mhCpPH1nDnRiKlS4VPKYxnEE+/5UiDfGSIoDkqayB8NUc6rxfN+//++SGk9sHJf9ljY0JM2fkzIGnmns9D6AIxILWmZyI23+ga5NL4Gi3F/6VwRtyvvDuJ372jarPcqsHk/rWw3DgOsaBjxuTPicEMmMHnCZmEsemo+Zq3HL+uSUcXC0uaPzjst7L/NtT61xX/1d/vFf+//yx5qW1dV9/MTEbF2h4LXel3wmV9T/nAMfEoEiGuLJrEKDz3lCp3QtZpApb9PFEly5kueWE3TdmpTgavUUf//eim+88iqvIdwLLZcpE1ZrJMM6QzfVyhpDexAFXrp+3i/n7Emc/5sRSTqUf1q//7D34Pqz7O2OoUX/7Xkf1c530u+32//H7Y8dk3er7Y/Th0d97nHP+bBnu/3fOccPf/p/eMf9PdqTteP21w21pd38pmn2xAas2TwiLYKqdC8169RrUFJT9vSGG2PcK7Rrc0+U3mVRnNqWEKO3+iCog6WarmXRnqVAqP58rfJmz2PH3Qpj1PlH9vsW8bLOuj1O0zRz+618dI2KHRqfum11sKDBtRUKqNG9utZWjSSN48gwDLPYgn3QPSxIXgrulvJx6hyw2pqm2ROeWKIi2jmEXc7ZUtC1tHY0v8fmgNW1kWwfl9BKbaMtID33X3Y5VNo+pYY+Su7c/njvccHP/+sc+WmOQwilWPD0uw8B14R5DFNK3Do55cd/9BOwHfBj5qxdkYdd4Kn9cE0oRYmdQPCMOc0BhAZHS2tQx9EK1ujfSsXz3s+S6PVGig1mY4zEfiAkcMOADJGQHDJCHjIyZFz0rMMJt+48Rz9kTsfMLTaE8R7/uzW4P/wMv/bX/wZ/8qmneOPNl6HJNAG6pghLBF9yuXzIOJcILhGCmwoFF2W+4NxcOLjMV0Yk4zN0Q8RLZAyJIRS06kRaTt0Z53nFvfUdfu3Nc37/Gy/w6nZgoCElx7pZ06RSB6zkwLk5h+5h19CHzZY2nY72aKufYW/1e/bvm2ZLtM13epwPs30z3Cc+yHbMkbqhZtEJ67Qt5TQpyrTn2LG/Y/Mwml5907Uqf/p9dY7UCa0dzqUEd93BftTD4NDrS+20jukSSgL7+WHaFjuOsBMlOBQM2HwR/bwtRGqdgro99pj1nFnqoD1+TYWr89uWgkV7fEvZUqTJjv/Sd7UvOqcWgaxFB+zYHJrDd7rD+Kigux5je94a1VtCEW0gJiKkmPbOVc/JXt/yLqdqPqeTIl1u57eZkF6VWncOUiIXAb39a030/6Ic6ExbkpYmCB7G/TIHbsqvcYCyNud7BPDm628wSObnf/bn+Nf+/J/jwb1LTs5OyUjJmXICWdgOPYlM25SAb0yZnMvxr66uZuW+JSc4pUyMu02dsslTZP7d3rqRPQEXu9kzI7IZAiXnqijk+YKg+emcQ2bsI1cxIgSaAOniHp0bufjyF/i1v/O3eebygvv37/HtH30a319ByqQ0FjEPlS2fxD6cd5ATIomgioNOtTILfc8Aivg8IVMul8YmQZIH39A3p9wdM39w9w2G9mlCaLnYjjRhRU4OF8q5vDCLk9Rr/abbO9l9v4lO/AfJ3sn4vdeI5ltNQ3i77ao3QZ/kGnurfXhS9igf6Gg3246B1A21JQff1keydZSsc2+FFNRBXspf0ZyHpWBKd9z1M1aYoXb2Ff16N3jJ1lmuaxxZ59eiE7Bz9g+pgek4KVpnb8YW1dGAYrvd7gUmGrjaINIiQGrW+QX2xBds/2w+lgY2Szt2NT2j/r4e3zqu6mBrrtMSRdEiLXVB3Xo+lhBBi7DZdWCDMvt3bUt1vizt0Y7No8RG7JqwwVQtMBJCIEmkn5A4gM1mQxc6MiUXKedpnNN0TCMLLlNuUaH07eTqZ/pb3m1CJEBMIFJQH+Z8KR2RLIKb5i2OZg0HcGmS9BUhTH1MIjgCeRhJWrxXx2wYuP/ya/z0j3yS7/v3/gqDY84Rk5TnANA1oSBRKeNCwJHYbrczymmRaB3HUkcq7Kkfdl0Hs7JdnhFx73ZiF7pObM7eDkkbSwAmjpgyfT+Qg5s2cCBI5lYI4GG8uMs/1wy8+tu/xW986pN8JEA8f4GPfuRprl59mbOnbiGh1IZqHDSTzHjjp0BKpmA0Z/ykzOdyRnJBqBxuDnKFRHSZQImhyEJOjjeSsPUtn3kw8NlXXuVr7oRNaMlZaFZnBNcQx0TIgogDyYgvAbBw/dr+sAYcS+Upjvb4dmiz7mG2tNl006x+vj1uG+0z4K34HI9Lz7updpPn8mjHQOrGmnWSU0pzoUzrUKokMezylyyVT29Qfd/vBQ2wX39Bd5QtRadtd4U062BLv6fv1Y5yXdsHmB3QGgkSkfk1i6rYPCzt1xJdQb+vNCp1mFVZDuDi4mJ2vEMoNCh15tQxVOlnO5Y6Fjo2VgjD0rGUBgk7B18pTMMwzONoKZGWymaPoY6lLZZq582KW7Rtu4ca6jgrhVORKYtK2uCipjyq8wzMaoN6vHEc6bruWts0EKudbm2zHcslpAfYKxJd7zbWipE2R3AWTGAfGa3plxbR3aO+TuOln9NrzLYt56JNF3TTAsE7Tz/2JX/HOoduqkmV8hyIaW+c94wqIx5kD11Cg/thZNS5aMuaIyVkjGSXSb3JmzP0QijKd5mIF2F7ccGq6xhjZHN+wSd+6ON833/wV+mHnqvNhmc/8lESMI6JPpcMMJFJkU52dE8rFW8pgSJCcA05R7bb7XwdzXPpma8xYYeS2/G3gVo/DtAIjW9JYyblTPKFspgoaI5IZrt9E1LPRzb3+Xsf/0G2n/tDvrfLhNTDt54gsedbVmtiymRf8tla1xKcJ5BpGw8kEokmeGJ0yKQ96MXhZcplk4jKoUcnbN3ISWjoeke3PuGlIXL36Wf54t1zfuXLLxHbM+LJU/Rtg2RoaJAstI0KnyRwQnLTNVDVDHvUM+BJPU9qSvHjfOdRtkSRrqmg74a9W2jLEgti6Rx2A89uQtVteqtoXv2eHT9L31fqrT6Ha+rwW+lr/doSBfxJ2xJ9+1FjU8/HW6U7Ps5YvJcB11tZu0sb3ke7OXbMkbrBZnf5Lb2mLhZrKW/1e/DwRMYlx3rpM/ZYSwiJPc+SI6s3/aW21FLs1gG3gWOdL6OOWU3HskGQOoQ1Ja8OiLRWjrbH9qNWHdRx3hUUdXsBrO1Tncu1pAJo+3mI367v6blq2p9+1gYuFlnTNlmEZ2kN2BpS9nt18dxDidB2fJcQwaU5rH/q81vqYp1rtnT8JavpmPW6qce9dgaXxrj+qc9XB5BzvlOFltXoZu241O/V614maqD+Hqa8PCdFjS+OIx/7wR/EI9w6OyMOI1cXFxBTkfHWeSfvXaO2bUu73PUmih1XzQ+0c6ivWwrynLsmMOaRLBDFcdVv2Q4bTk9PcB7G4YpGtjzdZHjpBcJrr/A9T93CuwFxQxGXEF2rgveuyLRLxk0KfIqYucppchNrr16fOWciEVkF+nGkDWuuLkfC7Wf5whsP+MPX75HPnsat7zAOeo37vWOrtP20koi8PzvL7yXN6+jsvbtm79Gag/ukrKahHyoTcrT3x46I7s20YyB1g80qzClVRhGJene+LjS6lBdUm3WUbHCh79VOax1Q1GiILYpaO7/DMOyp7tnA8FAeUL0zZj9TO/X6OeucDsMwozw22KmpaHZcYR9VsjtV9sfSJ21AZdurCI1F6JZycPT4tTDDoZ26OmCtAyGLIigSqDRDbW/9eUsLtAifpSVaBMq2ZQlxeligUwcsVpBDx+cQlaXeKHhcZSu71ubvOQdSpOb1hykoQWR+37P7seedAxstmKvtEK4FPpZSi+2jEXfIYoQ3zDHwU2DStchUwLdt21mAwopQ0HjWpydFSn1ytGI/cBo6fuYnPkWHw42J1gXGYaDxoaj+xYjkqW6WESupNzJ0DqwKoq43q/Knv6uQif6vNOAYI33f73KmpmspS5Elf+rWGcE57t99Cddf0cUt35YvaL/yGX7n4z/MnyAS734DaUekFW4lz8q1jG1H9kLjPKvQ0LhSryuIm2XOgzh8LqqNfq4PlQp1T/aDZJwwxohr1pynls3qOX7zlSt+9cV7fCkG7oc15zGw7tY0OdPkjGOKzFxEVH1QCw/H65tg70XgUW9MvRvnXLpnfxDt0IbKTTD7rLaCNk+KNvlBnbOjHe39tGMgdUOt5pbDvmqbRaqW8l7g0buQS8jH45g956MeOjZP61BAZ5157ZOlTFjErQ706qBtCY1ZaqcNlizSs5R3c8hZt+1VR0Ufckrjq4OiGpHR4OZQAq2dfz2+pQjWgYUNbPT8VpLbvr5kNeK4VANMKXVL7X4nFJMlemQd8KodCkgPmSIt2qa6ULA9xxI90Z7XrqnI7kfrQakDziRuoK/bdWtpgTEnkkqsi6lL5czGgf1drqNUGhiKc3NNKpzgJ3rZg/v3uXjzPj/zqU9DTDy4d6/Q2bheq61eRzUqrv2o10udp6iBuUUadY7rayxosJopeUUpkfstpz4Qxp50eUH6ypf4tV/4Odr7b3D5+qt857d+lCYLXRLa7EE80XtS3B1XpORpiRRhEMmT4AZTMEtR57N9KIIUIK7kUK19S8Jx2ax5Qzx/+Mpd+uYEf/IUY5S5plaTM4GMV/TLZXCyExVJQn5MWt8H2T7I/XpcNsfj2qOQ67dzPLtpaqnNT8Lsc12v3w+DLT1/j2052pOyY47UDTUNPmBfZKK+0emusAYUbdtey/N4FCfbBm01hc3WJtJ22bwYuzum39XXrXO6VEeqRlxs35Zyg2okQsfGIjk6ZlZcYBiGvUKt2kbbZ4sYaW7R0s6tdQoPOZo1r7x21pdunvq+zqPmOdWUv4c9jG1AZ5Eo7buV7baiGnZO7bjW46THsIHZUl0pO2+PckwsQqSO9pJwSD3uNtiy7x+yev1ZEZUltG9v7heO7ZwrhX2rubHCIaV/OyXELNP8oGiHQybkEpjXbkGqynmSJKQK3nV9O+fw2ZNlWv/CnDsRNK9PkUkJDMPA3Zdf4ZM/+mP8e//hf0CfFDUtKE1eELDp+35GyRRZcs5B3s2ZiEw5lWXtqkiNrj0bvNoNBM3xG7Y9oXEE10Iq+V5Dv+Hpdcvdr3+ZZ07WnD//df7gr/0nfO+tjlf7N6Fr2L72Gh9drcp10wZi2+IQ2gRBSp0uLwHvwOeM5EKsC+IZc8Q7ZkU/8hQ4IWTJcyHhgNCNnvt4fv/+m3zutfs8707Zyhlj71k1LY3zxLGnyxmh5LOpsETvBlx25CQ4/Lwm6vX/biMfS/TpJ21Lm3k3DdF5nD7Ye8BNNHsvtJuOT6r/R7u5dlPX5De7HQOpG2p2d9zu5FoFPg2wYH+XQ50si+qoM1eLHNTBmb5ua07ZnfsZVZo+6zPklAovyhU9Ko+A88Tpml8SjbBohgYQ2u8l2fJa8a2mGdkcJe89l5eXi7RGPb+lqNWCBfUc2PGs6w8BewHtUmCo59XP2j5YB3ymOU39WcoFqmXJVRjAzpv9zDAMnJycXEN4tDhz/b4VFLD5YzU1cDU5sHo+/b5+XtePzoelOtr5ssGhzs0hpa+cCh0rCYzDgMvQaNDud8WHx0rxb5yU+VRtLzuhdZ48FbJlQny89wwaCAWPIIz9gPcF6VG1RjuHe3lOaZLPllK8V/vXuMmBJoN35OzJrhTCzd7vHGxdF+MIsqPoZu9mafScM+ICbhRyyOTRkYaRLEXmO6WED0KkFPFFHC4LEsu9QmJke3nBx/7Lv8H3/9W/QkaIknHBM+YRl3MpiptLwOdzIo0DEkdyKkEdOIaccBHadqopFUdIkcYLjWu42m4BoTu7xfn5OY139MOG9XpNZiTlRJw2LEiR2HvS6ZqYHflyy9kqsLl4nX/mLONf+iK/+5/+x/yL65EwXPHddzo6cTS4SS490TDi4iTF7hNNcPipxLDH4UhlHkUQoYhN0OOio00elxzbAL0XxibS5MRJ2/Da3Svct/5z/NaL9/hfv/wNhtUJlydrove47FhLoiGBT+S2Q7UY9Yp1yU1Kikyyf3P942toc21L6Hhtb8WxqlH1OgfOUpkfdY56k6nePHoSZu/T9v5S9+Vx2vuoTZ6leXhYUGHvefr3k7ZH9a3O5T1kh6icjzq+HZMlH+Ktjvuj2lgf40kGdY97nbwXgeTjtsXm4i7R6o92c+xI7buhVufpWLEE64DXnwGuoUew//Cw+UIz1WhyfuuLtxaImBGETFXAUvaStgHs7aI+h7ap7tNbhbo1sLR5G7prXqNhNZXPjl19c7PjVedQLe3u1siNzuGjnBT7HfswqcUQDj2oa/qbRQBssvCSeIdtYz0+14IY48jYY9am7yuV045VTc+062mJInjtmpiQHD/lvOzNUcrz2vNmbq0j5iY5c/1cGnd0vyDummNYOnSdmmNpo7WTYuewpiTO4yCyd23U7+/1fao9dG2kXaUW6HZUQEv3mzcAZCfsIBSU9uMf++GCwoSSlxRjyWG012nOeZZu3/VneqBX4jYWAZZpLQxpF2jbPLyycZDmHLCm69hu+pKj1Xo2F/e5HRzhtVf41V/8ef7YWYfPA/9/9v4+uK7yTvB9f3tvSTZbMoGM7ODpHLXMvTpHU6I7SF2j07kl3LgrJaqEq1Anp+Uqp3gx5mTa4LE7N66xqhLMgYZCnqI6seMm04mNgTt4yro3g6jYqoM6NzZG92SiaSQ6QY0GTbDQJBHICm/W3tiWtNf9Y+lZevbSenv2i/aW/P1UuUD7Za3nba29fut5WRLP2EvExyx7XtPiHKSKmEhlPCPx2IK9wIRlr9oXF/sBujFxnVNiS0u1Z2IZZ25UZWWlzM9lJFZRIakrV2VD7Rfk9wsV8s7MrMRqbpJY9Qa5ai0GZHG1gEVG4lZGMotBfmZx6KAdVK1NhR4C52c1927BHD1iS9zXILT/8kWPVJlyX6i7gwH9NdUz5dVD4B5Spgcx7uW+lcALO4/X3XfGnP8u/nMvouAe4pbP3Ty1zLK796qqqsrp+dJ7d/Q8qu/pn9VPWvqFuL50u3sulZ5+fRiTmkyvX2j65VUfnqEPo9PnKek9UXovnXtOVEWFPYxLLemu92y5e5v08tN7o7zqW19NT+/5VO+rAFZ9Vh92qdezO5Dy+vF0L2O+WGue83j04yIh3qsLZjIZJ/jyCqAty152Ox6L2ctvqyGS8aUlJryeO5YdLGnDguJagFWREGtuaeERcZVxXA2v1BYnsUTLv8ScgEYvEytuPwBY/R2L2Yt5ey3jH7cSUrkYLGbmRK5dm5Oamho5+R9+KF33fl0qKiulIh6Tdcl1cu3ataX2qvVor1u3TuKqZ65ysbd27qqzQp+1MC+iLVhRsa5KPvvsilRVVciVK1ekpqZGLl++LJVVCVnILAawiUqRWKUszMflxowllrUgEp+VL1YuyOw7/03+67N/JxsXrsrHn12SDRuqpNKKS1U8JpVxe65TIm73gasl5WMxsYOphApl4pKwYhLXgsxY3JKYFZeYVSnzFQsyL5bMxRakYmFB5LMr8i9u+JykFipkYX2VvP3pVXljalym5mNytSopcwsZSW64Sa4u2L12mURc5mKWxDOr7yLH3TNjcqHmPn78ej3yTZ8+JLmQQ9hWq1Ll331TqFj5KkY7Wq30m8z67y7KD4FUmVLPiFIHj3oWlNc4d72HQF+cQX/+kX6BrB4wq4ZeuZe61oeZ6b0XnnfsA2S0fXotU67S5bWEq99iCG7u4EcPdNQqgWrOhh506M+z8rqQ0F/Tn6OjhrapuWh+AZX+PZUer4n2Kq/uOUH6EtnuC371o+Y8HFXr7td7MvUl492f1+tCf2aQHrDp86HUPvT39aGR+gqBerCiB1AqsNKHRno9O8qvfc1bmaxlqvXPq/8uLCzIgqv3bX7xWHLvp2KdPbdwLpM9r8lZrdCyFwvQ5wHqq9GJLC04Eo/HZcHprV1Mk4jMX7NX24xVJKRCltIYWwyorEzGeYiuXsZqXlY8HpeF2IKIGoZoWVnD/OLxmMwv/h1fyEgmnpHMvPa8uVhMEpYlFbEqmZ+bE0ssZ87TJ7//UNatXy8vnzotDzy4SyprkpK6clViicXncy3MiyX2sL+Ylb34Sywzb69oqC1nfvXaNYnFYrJu3Tpt9cf4YjlVybwlUrFuvSQqKsSK2eW3IDERS2R9xTqZS/1e1sXnZdO1T+S//IcfSOUHH8iX1ifk099flmuVcVmXsJczr4jHpFIS9hwny+5VSsTsB/Dawa9IRdxeXCJuicTjMbsXMKYWllALTdjDj634gljxq1JpxeWGZFJmr2Tkk+RN8t9nPpH/3+9+L5+uS0rmxg1ydS4j62+olvRn16SislJiYg8JzcRFJB4v+vCOQl/E+vWm5pKWYl3g6b9b+Q5tjLq/Yu8jqmLvN5f6LmYgpd8ohI2yWB0Y2lem3EP5vO5GqAsb/XN6r4fX86bUZ/QLdf09d4+H16o9lrU41yMec/65Vy+z4t5D6hR3r1quQ/vc3d4qze6lm90X9+6eOv01r7/1YX1eFyB+z4ZyP0fHi9fQPr9FFNz16fVd90W5Hsyqi2idey6UX94WtLlHen68hvlUVFRkzedzL22utwO/8fvueojFYlltTrU79f+ZWPYiEu7vu1+byyxIJpZ9I0Fk8flL2vA7/QaFHhz63aFVK/fF7O4R5/OZmDj7VP+8ethidiKyhuupld/s//d+/pYklpZjd6/mp5ZDj6nXMpbcULVOrl65IrMffSLP/fC4LFy55gTFVjwm81bGSacVXz7fz2kDmQVZmLu2VJ+xhCxYMZmfy0hV5eIDnCsSMj+XkURFlSxkRMSKi1hxiWViYi1kxMrMixWfk0q5Kh++9Su5Mj4mG67Myu/e/7Vs3HSTVFuZxTlPi8dtQgWf9jDPisWV9tTrcWc1QlVu3sNjKiQmFZa9WqDEYzIXi8lnlVXyzu8/kf8284mkKqtlriopn2UsSVSsl0wmLhWSkErLHmKqhjivRvn0SHkNyy40r/MwVp7X9IBi7qdY7Wm1ijoXDqVDIFWm3MPF9Atg/SJJf1aRfhHtvpjUv1NRUZH17B61Df2uvfsizT3fSp+TpII5feiXfuHptQS4EovFnFXy9P3q+dQDA/17fr1J7of36nfS9XJwB3bqLrqaz6GWGXcPQ9TnFbmHWOrLPesLTKgAVj1PR/XE6Q9o1Z/Lo3qw3K/pF/36Q0/1oFB/dpYKrPVhdXrZufOnB5iqztzzffT/1+tbbV//QfSaK+QuF2dYnrYQinsYpPsiWO9BU9tWPbBeY8v1AMt9DLnbnGoPiUTCWfVObVvtVx1DqvwqKioknkjYQYtlyVxmwe5BWwxssoaxxmOSEUsyYjlziJyhlq6HLYuIzC/2mFkxsZc0TyQktjhHSeIxiVck7F4jLZhKVFbYry+mLZaIS6Kq0gluKxMVEpeYJCvXybpEhcxfuSrPHv2+xBYsWV9RKVUJ+3PJmuqlZdxjIhlZPAZiIlUVCcnMz2UNeU1UVklmcbEZy7LkypXPJJPJyLVr1yQjllj2Ghtywzp7v9bcFVlfYcnC1Y9k43xK4hf/m/z8P3xf6iQtyWuXZMPnK+WTzy7J56vWSZVl9zZVJuKLK/JZUpWokIrKhFTEY1IRE6mIicQkI3GxJGHZq/DFY/Yy5jHnobz28vMLmYxUzIkkZq/JTVIjswsVcrnmc/KPV6/JP0xNy3+X9ZJa/3m5llgv8cQ6qYhXSoUVkw2JSllvxSWpAqqMLC6pHo1XQJfrPNF8Ahn9ho9poOIZyBeYe7tR96H/NgWVjdd8wqj5Kkae3UPvo3LPw/TarkkacrmZ6ffPhP5bYTLc313XxQzuC8H02CnXfGAJgdQqoQcD6m91wSwiWQtFeM2v8jrJuC+q/Q5Yd3e714Hv14uh9wp57dvdU6P/mJiUjd9dVf0CWc+nHtxF2Z97NUG9TPRnZenLeLuDQ5VXdTGrlpPWy8TvYcF+deP1nCeVJhXYiYiz4pxqR3qePYfHaYuM+O3DlDvAUmXqXvAirC2625G+bXfw5f6e8/m4/yIn7nR6tSf9fb868vyutniF+4LBfTGr2qY7yAtq6+7jdFkgm8i+oeIE2BlLrIWMvPjcSUnPpmRdZZUk162Xjz76yDev7os+d4CeWXwI7UJmbvGYWLCH22Yycu3KZxJbuCbrKhKSmbsiN60Tsd7/rbzxkzPyrzZ/QSricxKPW5IQSypj6vi1h+bFLXsRibjERBZfk1hG4qqcYvYyD+4gOavMYovH64IlN9Z8Tq5+JpK54XNyaSEm//zhxzK34XOSSdbItYyIvbWEPYxQ7H/2yoZLf1vW6uyVWstMzlOlvljVz4m5/Aaudn6jLnL5frlbLQEfomOOVBlzn1y8hsep+Qj65F+vce/u5zeJLAUH+oWRX5Ck5gep7817nOjV4hILGfvxovp8HDXny50GtT11V8n0Qt29sIa7d8arHN09a2o7+hhtfRlxfRvqu6os9N48lV+v52qp71ZVVTnfm5ubc76r0qxeU3f4VcAcdGfUXaZZc20k+06fagt+AYIKtPRheXr5Bv3Iew0/dQfxXu1TlZU+303v4XLqYHFe0eIbzucWtDoQ1zh7dwCgLCwsSMYn8LEWezJiGXvpcn0OlX486b1cWcv5a/NlMvGYxC2t51Ts4X0SXxwaVhWX+WtzEk/EJW6JZBYD2MrKSmcpdrUgSHxx0Yl5a2l+X0wL+hYsS2IZkVhFQhILWjnbD5gSK65uZtjPT4ovLK6at2AP44tlMnKDJOTUj07KX973dalYXyXVNyRlwcrIfGZBqioqJSExmbt6TRIxS+bnMxJLaENF4wmpiMWc4YGVlQlZmL8qMUlIRUWlxMQ+NmR+TtYnRCpFZC71iXxuXUISv35bXn/me9KwYYNUXflQYlWWVFgiGzJxSUhCrlVVSGWFPUQvLnb92D1TdiClepzisZgkLHsVRrtO7YDLXmFPWxVTMhKPz0mssko+uZIR68Zb5O3ZqzIyNSW/zlTJ1cp1kpnLyOduqJHMwjWpsOyVAuOxxeXyY0uLi1hWTOKSkVW43sSa5BU4B92YUZ8rhwta99DyKNbixbhp76j7/8u5PLzStpoCQSxHIFXG3MPVqqqqnGFh8Xhcqqqq5NriBG+9Z8o9rM89n8V90EbpRtcvvr3mTakLdX2Okh6Y6MMN9eGAanii2obpeHivnhI9cFB5dz/7x72CnLtHRH8Isv59FfToCzG4gzD1ea+86PNt1q9f7wSx+gp4Kj3uhSe8Fqtwz1NQgY7+DLBr167JunXrJJ1OO0NE3Q++1bel70/lTw8g1WeC2qu7d8erjajyEFlaiMK97L9efplMxllARO1fX2lQT7ceYCdU/cwvtYH5+fnFRQ+WFqmOLe4jbi2tpOc+Prye6eV+oLX7YsiKiRNMZWIimXkVcNlzbJxnoC1oNxLi9gN7M4mExLTeSvvZTgl7yW4RkUz24hPW4sIL1mI5J1S9ZDIispjWREKsWEasTEasirj9XCqxJDa/IFc+nZXKdVXy8qnTsuuv/ne5GhfJZJbawLy4ehUlI5blGloUr3BWx8tc+0ziCe0Zb7GYbKheL5/9/gOJxS2pqYpJ6r+/LZdePC6NybhUXvlQauIZSSwkpCKTkapYpSzEEzKXqJCKREaqYhmpEDtgS8RFEmIHSHaAFZfYYllLzO4xkoy1OL9MmycnGYnFRarXVcoHCwuSuelmGf4wLa+/96Fcq7xR1ic/J1YmI+tvWC/XPvtEklWVEo/bvV9WLCbXYpazsuKStbvUeTkL+p3Qz+1BQ97KIYhSadAXNoraK+V143S18QqATOfs+W2n3KzWOoI/hvaVOf3E4O518bqgdXcXu4f2eX1GfS6o10M/qXud4N29Pyq40wMW96qC7jlOXr1nYdz79RuG6DW0z50nPVj0Gn7oLseKioqsHib3hbQ7OFOfcwcn+nApr9Xsgk687mF3ejr1YYLuB/X6DUPTe8bc86fC0hI098Prb695CV717w6s3O3SHUR65U2vX3ddOseFVu/6Yi/6fvUeuWW9nvGYZ5rd5aMWg3D3FLrbnPqOu/fXKwD2Gsan/9PnyjlDChPL54Yk198gV9Kfyezly3LyxHOSnk3Zq9+5H6kgVtacNnd7XFiwh/GpeYDxxV66eFxkbu6aVFXEpTIek4vj4zI2NCQ3fXxZPv7wA7GqLPnw0rRsmI9LTaZSYvEKyVQkFoO9xfwnli+wEhcRNU0pHrfnLDnzKxcXmhDteVExS+TqlbRYlQn5ZGFO/tvvP5QrldUSq7pRrGtxqY5VSWXGfrBvfHH4YCaWkYX44r8Ka/H/RRbi6tlRKAfuthGmnC669VEDueZ9Lci1R2o1YGjf2kOPVJlyL2PutXLL3Nxc1rOA1MWy/v/6EC33fCh3r4f6rppY756/I7K0Ipt6X31XpVWlqaqqyveBrYpzsZjQ7vhb9sQDSzwu3DPLX1NLkavnJs3NzTkP/nRfFKv06UPs1PZUutXfqkz1XiZ3utV7qkdBD1yqFhciUK/HrcVelETCnnSvlUlMRNYtpqcqbgfG1+bm7CWWtd4v98N1RUQ+++wzSSaTTh5UXhOuHhXVS5VV7h4XGyoPXs/eUnWsL/TgVafuYEP9U2Ws0qYHd6pN6fOl3O1dD2j1uWiqLtX29GGo9gV0TOKJhMxlMiKq5NUxITGJxZd67qqqquRaZkGsjL2Iw9zcnMSspXahr1gXy9grJ8QXj6vPri0+UylmP4i2qsJuQ/rPfEJisi6WkHhicZXEhQWnnuetxWdZWSILGbsnKxaPS0WF6l2yFsswIRUVdq9i6tqs1CSrZX5uThbUENy5OUk4K/YlxFrIyLX5OVmILS67XpkQa2FBEonFBVWseYlJTCoq45K5Ni/J5Hq5OndNUjO/l//P8y/IjnvvkxuqayQ9f00WxJJ1yfWycPWKHbFIXKzF+XiJynUSX7AkY81JPF5hz11KWBKfq5REpkJSC3NSmaySy/MfS731qVS9/7688d3D8sXKSlm/8In8yw3rJDb3mdxc+y9kzhLJxCyRCkvWxy1JxjOyfjFgqpCMVCy2k4pYpcRk8SaEtRgkS0bm4wnJSIVYFQlJiCXW5Uuy8eakPS/RWifTc5Ui/+KLMvpxSkYnfysfVNRIan2lxBKLS6kv9mYlYxUi8UpZiNvzstTxGpt398hm34QxletwH6/PeP1WFLrXolwu/sLyEuUGUKHkO2Qr3zQG3SBzz8Hyq79c0lCMsjWZMxU2EsIvjWG9lOqfPrTeZBGMfHn9TpfLcYdsBFJlqrKy0glU3Etvq4NZD2hU0KQ/RFYFOFevXl32cFb3MC61OEEikXAeJKtflOrfca8UqLarXySrNIlEOxH6LWignxjVHBH9h0Bfxl3v9dHzr6dXH6535coVsSxLbrjhhqweCJUG9V/3/DC1P71c9HRnMksT30UWl0de/NOyLLH0B7dq5aCekRSzloauzc/PO4uKeP0YVFVVZfWaeZW/msujD7nUA62gHxl3Xahy0POtr1qoz+9SZaTSo9LinnOlzwtTQ1XdP1j6vCl9oRCvHxdV/yp9avVDtRKj3pOr91Kp4D+RSMjc4ufUHER3nr0kJOYshe1uP1nHscSc50upenD3fMViljPUMLZYxvFY9rDaeDwu1dXVEovHJSGLK3EuDvVTNx0yC/OScfUeWTH74b7xxSDTudGSWRBrXUxkYUHWVd4gCwsLkv50VvpO/7/lf9vRJVXr10vl+nXy2ZW0JOJqfpplLz0ejztDE6viFbKwYD8K4er8NVlflZRrV6/KjTesk2upj2Tz1Vm58MO/k/Uz0/LHN94g8SspiScyUmmp84lIPBG3hzHGZXEY34JUipoDZQ+JFMuSWGKpDSfE7mlKxBYklklILLEglogkrAXZcNMG+Sx1WSrX3yCfWRUiN2+SsY+vyLlfvSsVNTfKfOU6qahcJwsxrXdQ7KF8Swdp3Dk+/ZqB+0KuFHfL/QKoKMJufmF1W+09IPkM98tlW+7f91Lk1X3jFuWHM2SZ0ocs6cGKyPLna7ifyaQ/J0pkeY+DyPIlU4PuWLrv+LgvsvUhVUE/url217vzq6fbPddJ/3+vixm9zPz2p77rHtqnD0/0qh+vMtL36d5+UHmEnTT1uW9e+3OnS//bq6y8ysCrTvyCLvdwTXePk4j3qnNevaVh+3cHrlnzkVzlpr/uXjwkLD1eQ9eilo/+X30VRPf+/Ybo+b3nno+nbgzo77mXjldl77fUszPUMW733FmLS6xXVFRI3BL57f/4jTz//PPyWTot1vyCXLty1dmuuwdRL/OExGRhXqSyer1czaQltjArm9bFpfI3v5PEb6fkhlRKPnj/N3Jt7jNJxOwl1RMSs3vT1LLl6nlQljhz3bzOa/rr8cVgKmGpf/Ny7UpaYuvWSTojUrHh8/KbDy/LWxOTUrnhc3Jlcf5YzIpLIhPXnkFltvDNar5AdZdjLvlH+VsLbTSKQrfbcjgOCKTKFz1SZUqf++S+KPV6KKg+h0S/0y8iWctt60O83NvSL3i9ni3k9zBS1TOjz4nQe5jCTt7uyfr60DC/AE9fXl0vL32Ynd774jWXqqqqKisI1Hvf1LZVvvUeIr9gVO3XfUGfdcG++C+2eKdb/1wmZl8EWjGRhQV7FTV3QOw11M09F0p/X+3fPWxOtSd3uerfc9KlBeqqHPS6cudd/+cOOt1D/tx16/VMG/We+yHV7t5CVc96PbrTrA/zdK8iqZen6gFUx5A+jyromHW3S30IrJortGBlJFG51GMnsZg9xFC0OViWFuxlFtuIduNgwanbpWGpmUxGMtbiELO4vTB3rCIhcdXTo9pbxpKFWEwy867holZCpELEilliZSyJSVySyaRUrr9BqhKV0tfbK/9b11/KzTfeKFfmr0hcRBKLPedq6OlCJiOxjCUVFVUSiyWkWhLy4e//h1TF5+WLsbh8+OabcvG5F+V/TcTkk/SnkvncOvn8v7hRrI9TUpVYHOYZi9lLnsfii8+FspyH32YFlJIRa/G1Cj3AkpjErQWpkIxIbM5e6ry6Wj5ZSIjc8Dn55VRKhv7H7+XyDTdKumKdiMREEuukcmExyLTiEk9k7F6nWNx+ALJEE6VHKt8hYFHTEJYOL143wq6Xi2+/vEYtu3K+yHWfN8s9vUH5cPObTxY2JC7qsNBC98jmWu767xHKCz1SZUy/a+7uddLpc07cd+vV/+vLNevzn9T7On1VNf0C131hrl98Bl3wK34/yNaCvcJWfHFojmQs51/MEuc9vwcs6sGe3nPn7rFwP6NJnyem9255DWvzmnemLvr1B/m6F6zQ69KV6KWlvPWyjy0GVIvz1dSQyaDhCe67x/oiEer/1et6gBk06VUvg6AHduo9Gn49l6rNqHLUAy/9/72eg+aVV/27XunyWpRFlaf+Hb2d6HnQj6egdrusHcdjTv3p/x+vrJB4ZYVkYmIvM+4KUIN6ALyCdb/eKn0BlQXLsmf0LD6wV8+jLAYssUTc6b1OqIcJx8QJ8lQ7rKyslKtXrkj6k8vS+9J/ksy1OZGMJZn5xZUrY+I8rFdERJwHEItUxONyQ2ZBPp8Qef+f/qtM/mJQ/mVlTC7/dlK++PmbZO7arHyW+kQq4ovPfpKYxGMxqUgkpCImEl8MANWaeE4ZLK6cF7csiav6iWUkJhmxf9ayy/GaFZMriWq5dC0u78zMyuVEtczdkJTPLJFMVZWIxKUikbDnu4m2YmQ8+kXPWgg4mAi/9l0PdZpPsFKobeXLbyQOyg89UmVKXwUuHo87S2W7l4X2GlKl96LoF5pqGJCILLsb7zUczuuBm34/rqonQN0dV71S6nvui0c9sFPbVYGg30qE+vON9GWz9R4nxb2imjs4cl/EqrTr3Bfe7nk1Xj1e+nLc+gNwnfqxMsvKRi93y77FntXT5L6TqHMHzl6r84WtAOW1Ip4eTKj06nOtvFYxdOdD9fpdu3ZNKioqnIVA3FReVfoty8pqq+62rbd59xA9vXdRva63SRXwqgVJ/Nq8Xr56XYql9zQufT6TyTgP29WPB/1vp41ow/G8yk6VsUrjUn0ulYUqxwXLXmxDX65/bm5O4hWLwxIXMhKLx2UhM2cv6mJZkpmbl3hlhSQy2RfLVevXLT5PypJMZcIO9BcyMjd3VaoSdgBmLczL/+vkc3L/X/3v8tlnn8m6ykr58NNP7LlkYkllRUIy8wsiMTut1z7+VL5083p5b2hQLv74P8r6y59IVSYjN3x+ncx+9qHUfu4GicUyUmFp86FiIpXxmMRiFfbfEpNERUzidjfdUg+lXVh2PUnGXv48HpPPrllSVVkhklmQRIXIXCwm89W18uZvLst7H1+Wd+eScqX6RlmIxUSSIguWvUCImuNmxS2xYgv2c6FiGRFr+VL/XqIOk831gijwxkyB92WSllz3lUt+ir3dQvQgeu2/WHmNmib1vvtmlzuNpb5YDwtk8ulZivq6m/r90H9zvJ7LWeiy81pZ1uv3E6VHrawi7nkk7oBKvZbP9iPfffcZJuD1w+GVB30IlKWGe6n953lCd5dLUFr0AE1//pZ+Est1KVqnjLTX4tbiohKLQ/j0sspEmBflTn++VnpyvLvXTx82WSj6A37dQwiLabFas/7f8ngvE8t+3ev7fsMt3bJ68ewPZi+BL/YQOUsbpppJ2POArJgl8Yy1uBy7ukCIS0wWFseYWiKWyPp16+xVDefmJGaJzM/PyZmXX5E/vv1Lsvl/Wic33HCDzFt2f5T+UNqYZcnGZJX8f//+iCz891H5X+bSElu4JlZlXFKJuFQkLFkfy0hC1NLszuOz1Absf/Y6eYv/b4sv3nCIqZX01AN4JSNVlTdIZUVcMtaczFfE5ZrE5Fe/+0SG/sfH8om1TuK3bJHZK1ekKmZJpR7IxjKSWXwmlf23LD5nDGtRqYMGrA7uG2JeD7QvhpUIvlEYBFKriNe8oUJfhEblnl/j7ob2u/DT5+ZkXAGU1zjuYtKH9am/1XyWqPO7TPfnxQncPHqGCrnvoKF3K8XdXoqRBn0Y30rlMVOE5hqlHejDEe0vLR9+q3rKsuYXWer77gUwYiKWveqkJfby6/oKlPZnLXnnnXckFovJH/7f/u9y9epncm3umlRWrXdlICMf/v4DmRwbk4YKkcr5BYnFRKy4JZlEXDKL+447PbiLc8ViogVQIiIZWex/CiwnlTanBzuTkfkFS+akUi7+j99KfN0mWVeZlE/m5xcfubDgrMCXUQFTLCNW1r5xPVipG0lYfbxuzNJOoItZ18OAWQAAAAAoIEYtAAAAAIAhAikAAAAAMEQgBQAAAACGCKQAAAAAwBCBFAAAAAAYIpACAAAAAEMEUgAAAABgiEAKAAAAAAwRSAEAAACAIQIpAAAAADBEIAUAAAAAhgikAAAAAMAQgRQAAAAAGCKQAgAAAABDBFIAAAAAYIhACgAAAAAMEUgBAAAAgCECKQAAAAAwRCAFAAAAAIYIpAAAAADAEIEUAAAAABgikAIAAAAAQwRSAAAAAGCIQAoAAAAADBFIAQAAAIAhAikAAAAAMEQgBQAAAACGCKQAAAAAwBCBFAAAAAAYIpACAAAAAEMEUgAAAABgiEAKAAAAAAwRSAEAAACAIQIpAAAAADBEIAUAAAAAhgikAAAAAMAQgRQAAAAAGCKQAgAAAABDBFIAAAAAYIhACgAAAAAMEUgBAAAAgCECKQAAAAAwVFHqBMDM2OhI4Pu1G2+R2k2bS51MAAAAYE0jkCpTM9NTMni+XyYvjks6NSuTE+NG329p3SqNTc3S2NR83QVWRw93+76372BP2aWpc8duqatvKMh+Tp08IjPTU0Xfz0oqx/oslXRqVgbOnpbhoddlZnpKGpuapW5Lg7Td2XHdHecAAJQagVSZmrn0vgyc6c35+8NDF2R46IKIiDQ2Na/ai+hchPXalVuaBs/1y85d+/Pex8z0lAye6/d9P52aLXUx5KQc67MU0qlZOXq4O+umytjoiIyNjsjguX554pkXJFldU+pkAgBw3WCO1HVgbHREjh7udgIrlJfBc/2+vUgmBs7mHnij/A2e6/ftmVY9VQAAYOUQSF0n0qlZOX7sKeMhglgZ+QZBYb1RWP3GRocD36f+AQBYWQRS15njx54qdRLgId9eqcHzXESvRpMT49LXe6IgNzhW69BNAABWK+ZIXWdmpqdkcmL8upkvtZoMnO3Naa5UOjVLb8QqMjx0wZnbpILnxqaW0O/VbWkInC/GMQ0AwMoikFql1GplyeoaqatvkMmJcZmZnpKBM72hd7eHhy5w0VWGBs/1S2fXbuMFAwbP9dMbsQoMnuuXvt4TOddV+907fOs6WV0jOx/Mf8ESAAAQHUP7Vim1tLkKiOrqG6Sldat0P3FM2rd3BX538iLzpMpVLgsGMKxvdZi5NJVXwJusrpEnnnlB2rYtLXVeu2mztG3rkO7Hj3FzBACAFUaP1BrU2bXbec6MF5aTLl+D5/ql/e4dkXulCrXiH1aHZHVNQZbKBwAA+aNHao1qab2j1ElADkyXsWZuFAAAQGkQSAFlJuqcp7HREZazBwAAKBGG9q1RQfMlos6lmJwYl7G3RiSdvuzMq5qcGJd0alZqN22W2o23SN2WBqmrb5DGppbQ4WheQwprN97izPfQ9zs8dCFrLlfdlgZJJjdI27YO48UYoubVL3hRC3qsFNUr1dm1O/BzA2cK/wDWlajzuvqGrO/NTE/J4Pl+mbw4LnVb7HJuu7NjWbswzUch6nN46IJMTozL5MVxJ2h15iVuscugsak5UjqCgmO/eYvubQcNy/VKRzkcc/q2vepFtQeTdgUAQDkgkFqjgnoq1MWqF3VRGzTHSn1uZnrKuVBLVtdI27aOwIv/o4e7l73W2NTsrEBoPzT4Sc+LP/XawNnTsnPXfmlp3VqwskqnZqXn0F7f9zu7dhclkKrdtFnq6htkeOjCsvfUCn5+9LLXtbRu9dxekJWu8/btXc53+npPyMCZpYcR63kKCyT9FKI+B8/1y8DZXs/yUGkcGx2RgTO90tjULJ07vLfZd/pEpDmJfb0nPF9/9sVXQ8vT77N+n1+pY25sdEROnTwSOodPnav0NKjFc8IWzgEAoJQY2rdGjb1ldudaxL6QOXTgARk402u8gEE6NSsDZ3oDL/T89iliX0z1PLY39KLTvvB7qqALZgTNM1LBQjHMTE/51kXYs6EGzvZ6vh7UO+KlFHWuej3cQVSh5FOfqn1FCQD0Muw5tHfVzFdbiWOur/eEHD3cnfNCKOpBxQAAlDMCqTUoaO5MsrrG985yIXpdxkZHjC8oh4cuyKnnol+4ihR2WFvQ8uHFGkqoBA1f8wuW/IKsuvoGmblkduFaijpXD6MNCqKiPKDWTz71efzYk8Y9ekpf74lVs4JiMY+5UyePFCVABgCg3BBIrTGTE+Ny/NiTvu8H3Y0PCrJMmF6Injp5xHjRhEIttDA8dCHwYrL97h157yOMXzAzMz3lGaD4reqXS92Vqs6D2mi+6ci1Pvt6ow3D85NOzcqpk0eKkq9CK9Yx19d7YtX0zAEAkC8CqTUinZqVvt4T0nNor++k9rr6htB5J6ZDw7yMjY4Y3enO9SGlufYcZG/jdd/3it0bJSIyNjocGMi4e6WChvw13tYsM9PvG6ehHOs81zTlWp8z01MF6UXJpUe2FIpxzBWqDAEAWC1YbGKVcs9LCbuT3tjULA/t/U7odltatzp31RubmqWxqcVZTUtdhM5MT0lf73OBF1XDQ6/nNFG8rr5BGm9rdrYRvPiBedCQ/f2pwDy0370yE91bWu/wnQ+ieqVUT+Lw0AXPi2C1cEU6dTmH/Ze2zgsln/r0G0bpfHd7l7OS4Mz0lBw/9pRv78zY6EjR5tUVQ6GOubAyrN20Wdru7HAWu5m8OC4zl6ZWReAJAIAXAqlVKuoQpNpNm6X97q7IF3bJ6hp5aO+3A5cgrt20WR7a+205dbLG9yLIdK6OiMjOXfuz0tl+9w45erjb94I1l6BBFzaXJp/lt6OavDgutV2bnQt0L/qFuV+goB7AnEtPQynrXA0trKtvcMogl+2I5F6fYQt7dHbtzgoQazdtln0He6Tnsb2edaa3V7U6nkjw4hr7DvYUpGfQVKGOubAyrKtvkH0He7Lal8ovgRQAYLViaN8a19J6h/EFWkvr1khD2oKGpJlOum/fvjzYC1thbeZSfj1SQRdwK9WjoPKgAiEvY6PD2v97B9BqcYZc542Vos5ZCoLbAACAAElEQVST1TWy72CPczHf2NQcupx6kFzrM6gXq3bTZs9eNjsA9K6zmempnIfOraRCHnNhw2wf2vttng0FAFhzCKTWuIEzvXLowANy9HB3WV/ctd3pffEW9syrXA2e6/ctj8am5hV7AK/KQ/vdO3wvNNOpWWelO7/0lqI3I1+FfD5XPvUZFHwGBbi5brNcFPKYC+ohb2nduiK9uwAArDQCqevE2OiI9Dy2t2wv8PwutIoV0AT1XrRvL/5KfW5hPQFjo8NZPVOlTm8hFLLXL5/6VM+18hK0DHuyeoPve/kOO10JhTzmAh8AvkI3JQAAWGkEUteRmempsu+ZWgmTE+O+F3519Q0l690J6pUae2vE84K/dtPmVdkbVUj51mcxgoByvWFRLEG9w0E9XAAArGYsNrFKPfviq1l/q6E1Y6PDgcOc0qlZGTh72mgeij2sbFjSqdmsC6bVGJClU7PSd9p7hbxkdY107shtfk4hqF4prwUJ/C7Mi7Wy4Gqp82LXZ9C8nqAgK58HCq82YUNsazfeUuokAgBQFARSa4S6697Y1CwtrVsDe54GzvQ6Szn7Uc/DKcSzmsrJoQP3e5ZLXX2D7Hxwf8mHIbXfvSMwENbVbtpc0OFxq7HO863PsNUvH77vrlJnseyFLfrC/CgAwFpFILUG1dU3SPvdO3yfTSRiLxXt1SuVTs3K8WNPRl5efbXxC1A6dxRu4YN8BPVKufktFpBLmazWOi/3+gQAAGsXc6TWqLAHo3o9WHNmekoOHbi/IBfUq+0u9NHD3ZGCl5XQfnf44hFhi1NEtVbrPGp9FmvYGUEcAABrH4HUGhY0yd5rXsPxY0+FDilTk/fDltxejc+M6es9IadOHil1MiIFSW3bOgpSxmu5zqPUZ7GCv3IrCwAAUHgM7btOuRcvGDzXH/I8na2yc9f+ZReIa20OyeC5fmm/u6vkvSvtd3cFL+kdodcqSl7Xep3nU5+1mzYHPkfKTzK5wfg7qxlBIwDgekUgBRGRwAUGWlq3ykN7v13qJBbEsy++ujic7QHfz/jNH1tJaiEJr2CqUL1Ra6HOi1mftRtvKXk7WA3ChjFOTowz1BEAsCYxtG8NC1pNyz1EK2iOTCFXhisHdk/DVt/3o66aV2x+S5sXasnztVLnq6U+r1eUPQBgrSKQWqMmJ8ZDn+9yPQsaspVOzQYOq1spXsubt23rKPmww3KUT3369ZZcbw/VzUfwoxSGS508AACKgkBqjQoLBOq25D/UZjXfaW5p3Rp48Td4vvSBlMjy3qegnpeVUK51nk99+h0L6dTsij1TK526vCL7KZag1Q+Hh173fY+bPQCA1YxAag0aPNcfHkgZzFnwu6Mc9Jyq1SDoOUwz01Nl8WDa2k2bZeeu/dK+vUs6u3YHrppXSKuxznOtz6AyXameydXe+xV0Yyao7Pt6nyt10gEAyBmB1Crlnt+i7p4fPdwduuRzsrpGGptalr3mZ+BMb9aF3sz0lBw/9lRZDH/LR9iiDeWSv7ZtHdLZtTv02WCm1lqd51qf7mNBNzY6Eul5VJMT43k9h2zsrdX3MGRdUBmKiJw6eSSr/NOpWTl18khZ3KwAACBXrNq3Sh093J3zd9vv3rHsgrOuviFw8YGeQ3tFxL74LtfhXaaS1TXS0rrV9wJ7bHREZqan1uycpLVW57nWp/qef6/JCZm5NCUtrVuzeq8mJ8Zl8uK4jI2OyPDQBef5X7msqDg5MS59vSekrr5B0qlZmbk0JTPT76+KlRNF7F69oHaiAqdTJ49I7abNDOkDAKwJBFLXmcamZs+ejcamlsCLamU1XFCbCHte08DZXtm5a3+pk1kUa7HOc63Ptm0dgb0jUYbLplOzMnD2tO+S6bUbgwNy7x6t1RFIidhlGKVXjiAKALBWMLTvOpKsrpGH9n7H871c76Sv9ufs1G7aHDpHZjUFEibWYp3nWp+NTc0FWfI9aGGFXBZ4WU1BR/vdO3heFADgukIgdZ2oq2+QfQd7fC+ck9U1su9gj9E21SIIXtucvLh6Js+HXUAPnD1d6iQWxVqt81zrs7Nrd96BwMz0lG/PVV19g/Ew0aBnwZWbZHWN7Hxwv1FwnqyuKcjDpQEAKAUCqTUuWV0j7du7pPuJY6EXiWHBlr7Nh/Z+27lg9ZpoHmXIWLkIWzo7qJdhtVuLdZ5rfarAMp9gqnbT5sCep86uB422t9qewaTaU5QyLER5AwBQSsyRKlO1G2+RltatOT9YV02Mb2ndanTHt7GpWZ545gUZOHtaxt4ayVq5rbGpWRqbWpYNCWtpvcPzOTiTE+Or5iKp7c4O36W9VS9DIYZ+laO1WOe51qe6uB84e9poWGftps3SdmdH6HDJltatsnPXbOjKmiot5VCWpurqG6T7iWMyeK5fxkZHlp3D6uobpPG2ZmfRm9XU6wYAgC5mWZZV6kQg3Mz0lHPBkU5ddi5YJyfGpXbjZucO/Gq9+ALKjXqkgFrtTw8w1XFWt6VBWlq3Gh9zaqU/tW1FbVMFsNfDsLeH77vL8/VkdY0884Mflzp5AAD4IpACAJREOjUrB/Z8zfO9xqZm4zl8AACsJOZIAQBKImjJ+WT1hlInDwCAQARSAICS0IdLutVuuqXUyQMAIBCBFACgYIaHLkRapGNyYjzwIcfM9QQAlDtW7QMAFExf73MyM/2U78qhkxPjMjx0ITCIEvFeYh8AgHLCYhMAgIKYmZ6SQwceyHs7La1b5aG93y51dgAACMTQPgBAQRTqocxr9ZltAIC1hUAKAFAQQYtHRNW+vUsam5pLnRUAAEIRSAEACiLfHqm2bR3S2bW71NkAACASAikAQEHUbsx9yfL27V2yc9f+UmcBAIDIWGwCAFAwalW+men3Ax+4KyLS2NQsjU0t0tJ6h9Ru2lzqpAMAYIRACgBQNDPTUzJz6f2s1+rqG7KWRAcAYDUikAIAAAAAQ8yRAgAAAABDBFIAAAAAYIhACgAAAAAMEUgBAAAAgCECKQAAAAAwRCAFAAAAAIYIpAAAAADAEIEUAAAAABgikAIAAAAAQwRSAAAAAGCIQAoAAAAADBFIAQAAAIAhAikAAAAAMEQgBQAAAACGCKQAAAAAwBCBFAAAAAAYIpACAAAAAEMEUgAAAABgiEAKAAAAAAwRSJWxvt4TMjM9Zfy9gTO9cmDP10K/29d7QsZGR0qdzcjpLWW6JyfG5ejhbpmcGC9FEZWMad2sRX29J0qdBAAAUIYIpMrU2OiIDJ7rl2T1BuPvptOXJZ2alXR61nnNKwAYONMrY6PDpc6qZ3qDlCLd6dSsjI2OSDoVLY1rhWndrLRiBLbubY69NUIwBQAAliGQKlMDZ05L27YOSVbXGH+3s2u3PPODH0tdfYOI2HfUew7tLXWWIqcX5aOc66YY7dprm+3bu2TgTO91F0QDAIBgBFJlaHJiXMZGR6Ttzo6ct5FLAFZKqy2915PrvW5aWrdK7abNMniuv9RJAQAAZaSi1AnAcsNDF6R202ap3bRZREROnTwiyeoa6eza7Xymr/eE1NU3SEvrVue1o4e7pXPHbpm8OC7DQxdk38Ee6es9IQNnekVE5OH77hIRkWdffDVrf6dOHpHhoQtSV98gbds6srapGzzXLwNne2VmespJT9u2jqw0DZ7rl3RqVlpat8rOXfuzLsL192s3bZZ9/+5p5wJVpVd9bvLiuDPEqv3uHdK+vcuoDMO2cfRwt+zctV8GzvbK2OiI1G68ZVne+3pPyPDQ6zIzPeXURZB0anbxOxcknZqVtm0d0tm1O1IZhJVf1PQGlb/XNh7a+x0ZGx122kjjbc1Z7cxdN2F58KqHYuTXr10H1cHY6IjT06u2MzM9JadOHpH27TuyysF9rDQ2NcvY6LBxOwQAAGsXPVJlaGb6fWlpvcP5O1ldk3U3PJ2alYEzvTI89Lrz2tjoyOIF52aZuTTlLMbQdmeHE+zsO9iTdUEsIs6FY2fXbpm59L6cOnnEcwiTuuBsbGqWfQd7ZOeu/VkXz+qiuLNrt+zctV/GRofl1Mkjy95v29Yh+w72SNudHc78Lz29SkvrVnlo73ekpXVrzotuBG1jbHREeh6zh3C1390l6dRsVt7VhXpL6x2y72BPVn34OX7sSZm8OC6dXbvlob3flsmL41lza4LKIKz8oqQ36Pv6NpLVNdJ+d5dMToxLz2N7F/O5Veq2NMjAmd6stuaum6A8uBUzv37tOqgOGpuaF/f9nLMftc3GpubAY8U+rt43boMAAGDtokeqDNk9ILc4f9fVN0g6NSuTE+NSV98gY6PDUrtpswwPXRCRb4uIyORF+z33MKzaTZud19SFpK5tW4fs3LXf+axamc79WXUR2dK6ddl7KrBr397lXIiqnoF0ar8TCKreAb+0KHqPSF19gwye65fJifFIvUIm21C9IF55HzzXL+3bu7K2o4JOL2o4ZvcTx5z5RDPT7y/Wkc2vDKKUX1B66+obIn1fbUPtf+bSlAyc6ZUnnnneKZfBc/0yc8k/aDWpx2Llt7Gp2bNdR6mD9u075Ojhbhk81y+1mzbL2OiIEzAFHSt1Wxpkpncqcu8kAABY++iRKkOTE+NSu3HpYq2xqUVE7NXDROy79aqHRF0kTk6MS+NtzYZ7yp7/ov7fq/dHXZiqoVju9OrpFBEnferi1r7r3yKmVJpyWb0wbBt+ec8lvapu9EUZ6rY0OGUTtM2w8gtLb9Tvu7eh6IFBUGBkUi7FzG+udaDypwLlwXP9zt9hnMCMXikAALCIHqkyoy769IvbZHWN1NVnX5Tv3LVfJi+OLwZVW2VsdFh2tu7Pa99LF4vLL1aT1TXO6mWTE+Oyc9f+wAtQlf6x0eGcAiilECulRdmGnvdcehzS6csisjS3xl0OprLLb3k5h6U37PvlxiS/fqLWwc5d++XQgQdkcmJcnnjm+UjpU4FcOnW51EUFAADKBIFUmdF7onSNtzUvBjFdkk5dlsamZpm8OC4DZ+3J82rCfjF1du2WxqYWOXXyiBw93C0P7f12UfY5cKZXBs/35/UQ2EJsw1RdfYN07tid/4aQM9M6MH0+FkugAwAAhaF9Zcbvzrfq1Rk81+8ELy2td0g6NSvDQxdWrNehsalZuh8/5sw78qMuOE17o8ZG7YeftrTeIc/84MfyzA9+bJzGQmwjFzOXppyhYvq/XORafoX6/korVHqj1EFf73POXL++09EetOvVUwwAAK5vBFJlyj23pbGpWZLVNc6iEiL2RV1dfYOMvTUidVtW7oGpyeoaabyt2VnNrXajvTBG9qp4w85nVXrVa0HUZ9SS1X7PMEomN+S9DT8qP5MXxyN/p7GpxQlqvQSVQVj5RU1vrt+PyqQei5lfP2F1YO9nRIaHLkjbto7FJc9Hlq0Y6YWeKAAA4EYgVYb0yfK6xqYWmZwYzxpO13hb8+JKZi2h25uZtlcdy+WiMJ2adS4406lZmZl+Pyuga2xqloGzvZJOzTqrstXVNzgrCaoJ/vo8L69hd2poo1rUQl8+3CtNXky24fn9xfwMnu938hP2MNbGpmZn9TyVr7HREed7QWUQVn5R05vr96Myqcdi5ldxt2v1fb86EBEZOHN6WW+V3ivld6yoHuJClicAAFjdCKTKUN2WBs/ekLr6BqdnSlFBVdAQssamFklW18ihAw/IoQMPROpRcJucGJejh7vl4fvukgN7vmYvOPHg0uIWD+39jiSTNXJgz9fkwJ6vLb72bef9nbv2S119g/Qc2isP33eXHD/2pOcKaG3bOqSuvkFOnTzibKeldWvWxXpjU7P09Z6QA3u+5hlMRdlGmM4duyWduuzkp3bTLdLSujVwsQFVHocOPKDlcWmfQWUQVn5h8v1+VFHrsdj5FfFu10F1MHiu31moRWnfvkMmJ8adYMvvWJmcGM+pdxMAAKxdMcuyrFInAtkGz/VLX++JZXN77Lv3l5fN01DPEgoyMz0lM5fe93zWlAn7ob+3+M4Vyff9KHlSz9QK206UcgmiP7vLpMzGRkeyhjSalEHU8gnadz7fL8Z+iplfv3YdVgem2+w5tFcab2vOeq4YAAC4vhFIlaF0alYO7Pma7Ny133lgKYDSmJmekkMHHpB9B3tWxVLyAABgZTC0rwypZzYFTZoHsDIGz/c787oAAAAUAqky1XZnR+QVxQAUz+C5funserDUyQAAAGWGoX1lTK1wBqB0OA4BAIAXAikAAAAAMMTQPgAAAAAwRCAFAAAAAIYIpAAAAADAEIEUAAAAABgikAIAAAAAQwRSAAAAAGCIQAoAAAAADBFIAQAAAIAhAikAAAAAMEQgBQAAAACGCKQAAAAAwBCBFAAAAAAYIpACAAAAAEMEUgAAAABgiEAKAAAAAAwRSAEAAACAIQIpAAAAADBEIAUAAAAAhgikAAAAAMAQgRQAAAAAGCKQAgAAAABDBFIAAAAAYIhACgAAAAAMEUgBAAAAgCECKQAAAAAwRCAFAAAAAIYIpAAAAADAEIEUAAAAABgikAIAAAAAQwRSAAAAAGCIQAoAAAAADBFIAQAAAIAhAikAAAAAMEQgBQAAAACGCKQAAAAAwBCBFAAAAAAYIpACAAAAAEMEUgAAAABgiEAKAAAAAAwRSAEAAACAIQIpAAAAADBEIAUAAAAAhgikAAAAAMAQgRQAAAAAGCKQAgAAAABDBFIAAAAAYIhACgAAAAAMEUgBAAAAgCECKQAAAAAwRCAFAAAAAIYIpAAAAADAEIEUAAAAABgikAIAAAAAQwRSAAAAAGCIQAoAAAAADBFIAQAAAIAhAikAAAAAMEQgBQAAAACGCKQAAAAAwBCBFAAAAAAYIpACAAAAAEMEUgAAAABgiEAKAAAAAAwRSAEAAACAIQIpAAAAADBEIAUAAAAAhgikAAAAAMAQgRQAAAAAGCKQAgAAAABDBFIAAAAAYIhACgAAAAAMEUgBAAAAgCECKQAAAAAwRCAFAAAAAIYIpAAAAADAEIEUAAAAABgikAIAAAAAQwRSAAAAAGCIQAoAAAAADBFIAQAAAIAhAikAAAAAMEQgBQAAAACGCKQAAAAAwBCBFAAAAAAYIpACAAAAAEMEUgAAAABgiEAKAAAAAAwRSAEAAACAIQIpAAAAADBEIAUAAAAAhgikAAAAAMAQgRQAAAAAGCKQAgAAAABDBFIAAAAAYIhACgAAAAAMEUgBAAAAgCECKQAAAAAwRCAFAAAAAIYIpAAAAADAEIEUAAAAABgikAIAAAAAQwRSAAAAAGCIQAoAAAAADBFIAQAAAIAhAikAAAAAMEQgBQAAAACGCKQAAAAAwBCBFAAAAAAYIpACAAAAAEMEUgAAAABgiEAKAAAAAAwRSAEAAACAIQIpAAAAADBEIAUAAAAAhgikAAAAAMAQgRQAAAAAGCKQAgAAAABDBFIAAAAAYIhACgAAAAAMEUgBAAAAgCECKQAAAAAwRCAFAAAAAIYIpAAAAADAEIEUAAAAABgikAIAAAAAQwRSAAAAAGCIQAoAAAAADBFIAQAAAIAhAikAAAAAMEQgBQAAAACGCKQAAAAAwBCBFAAAAAAYIpACAAAAAEMEUgAAAABgiEAKAAAAAAwRSAEAAACAIQIpAAAAADBEIAUAAAAAhgikAAAAAMAQgRQAAAAAGCKQAgAAAABDBFIAAAAAYIhACgAAAAAMEUgBAAAAgCECKQAAAAAwRCAFAAAAAIYIpAAAAADAEIEUAAAAABgikAIAAAAAQwRSAAAAAGCIQAoAAAAADBFIAQAAAIAhAikAAAAAMEQgBQAAAACGCKQAAAAAwBCBFAAAAAAYIpACAAAAAEMEUgAAAABgiEAKAAAAAAwRSAEAAACAIQIpAAAAADBEIAUAAAAAhgikAAAAAMAQgRQAAAAAGCKQAgAAAABDBFIAAAAAYIhACgAAAAAMEUgBAAAAgCECKQAAAAAwRCAFAAAAAIYIpAAAAADAEIEUAAAAABgikAIAAAAAQwRSAAAAAGCIQAoAAAAADBFIAQAAAIAhAikAAAAAMEQgBQAAAACGCKQAAAAAwBCBFAAAAAAYIpACAAAAAEMEUgAAAABgiEAKAAAAAAwRSAEAAACAIQIpAAAAADBEIAUAAAAAhgikAAAAAMAQgRQAAAAAGCKQAgAAAABDBFIAAAAAYIhACgAAAAAMEUgBAAAAgCECKQAAAAAwRCAFAAAAAIYIpAAAAADAEIEUAAAAABgikAIAAAAAQwRSAAAAAGCIQAoAAAAADBFIAQAAAIAhAikAAAAAMEQgBQAAAACGCKQAAAAAwBCBFAAAAAAYIpACAAAAAEMEUgAAAABgiEAKAAAAAAwRSAEAAACAIQIpAAAAADBEIAUAAAAAhgikAAAAAMAQgRQAAAAAGCKQAgAAAABDBFIAAAAAYIhACgAAAAAMEUgBAAAAgCECKQAAAAAwRCAFAAAAAIYIpAAAAADAEIEUAAAAABgikAIAAAAAQwRSAAAAAGCIQAoAAAAADBFIAQAAAIAhAikAAAAAMEQgBQAAAACGCKQAAAAAwBCBFAAAAAAYIpACAAAAAEMEUgAAAABgiEAKAAAAAAwRSAEAAACAIQIpAAAAADBEIAUAAAAAhgikAAAAAMAQgRQAAAAAGCKQAgAAAABDBFIAAAAAYIhACgAAAAAMEUgBAAAAgCECKQAAAAAwRCAFAAAAAIYIpAAAAADAEIEUAAAAABgikAIAAAAAQwRSAAAAAGCIQAoAAAAADBFIAQAAAIAhAikAAAAAMEQgBQAAAACGCKQAAAAAwBCBFAAAAAAYIpACAAAAAEMEUgAAAABgiEAKAAAAAAwRSAEAAACAIQIpAAAAADBEIAUAAAAAhgikAAAAAMAQgRQAAAAAGCKQAgAAAABDBFIAAAAAYIhACgAAAAAMEUgBAAAAgCECKQAAAAAwRCAFAAAAAIYIpAAAAADAEIEUAAAAABgikAIAAAAAQwRSAAAAAGCIQAoAAAAADBFIAQAAAIAhAikAAAAAMEQgBQAAAACGCKQAAAAAwBCBFAAAAAAYIpACAAAAAEMEUgAAAABgiEAKAAAAAAwRSAEAAACAIQIpAAAAADBEIAUAAAAAhgikAAAAAMAQgRQAAAAAGCKQAgAAAABDBFIAAAAAYIhACgAAAAAMEUgBAAAAgCECKQAAAAAwRCAFAAAAAIYIpAAAAADAEIEUAAAAABgikAIAAAAAQwRSAAAAAGCIQAoAAAAADBFIAQAAAIAhAikAAAAAMEQgBQAAAACGCKQAAAAAwBCBFAAAAAAYIpACAAAAAEMEUgAAAABgiEAKAAAAAAwRSAEAAACAIQIpAAAAADBEIAUAAAAAhgikAAAAAMAQgRQAAAAAGCKQAgAAAABDBFIAAAAAYIhACgAAAAAMEUgBAAAAgCECKQAAAAAwRCAFAAAAAIYIpAAAAADAEIEUAAAAABgikAIAAAAAQwRSAAAAAGCIQAoAAAAADBFIAQAAAIAhAikAAAAAMEQgBQAAAACGCKQAAAAAwBCBFAAAAAAYIpACAAAAAEMEUgAAAABgiEAKAAAAAAwRSAEAAACAIQIpAAAAADBEIAUAAAAAhgikAAAAAMAQgRQAAAAAGCKQAgAAAABDBFIAAAAAYIhACgAAAAAMEUgBAAAAgCECKQAAAAAwRCAFAAAAAIYIpAAAAADAEIEUAAAAABgikAIAAAAAQwRSAAAAAGCIQAoAAAAADBFIAQAAAIAhAikAAAAAMEQgBQAAAACGCKQAAAAAwBCBFAAAAAAYIpACAAAAAEMEUgAAAABgiEAKAAAAAAwRSAEAAACAIQIpAAAAADBEIAUAAAAAhgikAAAAAMAQgRQAAAAAGCKQAgAAAABDBFIAAAAAYIhACgAAAAAMEUgBAAAAgCECKQAAAAAwRCAFAAAAAIYIpAAAAADAEIEUAAAAABgikAIAAAAAQwRSAAAAAGCIQAoAAAAADBFIAQAAAIAhAikAAAAAMEQgBQAAAACGCKQAAAAAwBCBFAAAAAAYIpACAAAAAEMEUgAAAABgiEAKAAAAAAwRSAEAAACAIQIpAAAAADBEIAUAAAAAhgikAAAAAMAQgRQAAAAAGCKQAgAAAABDBFIAAAAAYIhACgAAAAAMEUgBAAAAgCECKQAAAAAwRCAFAAAAAIYIpAAAAADAEIEUAAAAABgikAIAAAAAQwRSAAAAAGCIQAoAAAAADBFIAQAAAIAhAikAAAAAMEQgBQAAAACGCKQAAAAAwBCBFAAAAAAYIpACAAAAAEMEUgAAAABgiEAKAAAAAAwRSAEAAACAIQIpAAAAADBEIAUAAAAAhgikAAAAAMAQgRQAAAAAGCKQAgAAAABDBFIAAAAAYIhACgAAAAAMEUgBAAAAgCECKQAAAAAwRCAFAAAAAIYIpAAAAADAEIEUAAAAABgikAIAAAAAQwRSAAAAAGCIQAoAAAAADBFIAQAAAIAhAikAAAAAMEQgBQAAAACGCKQAAAAAwBCBFAAAAAAYIpACAAAAAEMEUgAAAABgiEAKAAAAAAwRSAEAAACAIQIpAAAAADBEIAUAAAAAhgikAAAAAMAQgRQAAAAAGCKQAgAAAABDBFIAAAAAYIhACgAAAAAMEUgBAAAAgCECKQAAAAAwRCAFAAAAAIYIpAAAAADAEIEUAAAAABgikAIAAAAAQwRSAAAAAGCIQAoAAAAADBFIAQAAAIAhAikAAAAAMEQgBQAAAACGCKQAAAAAwBCBFAAAAAAYIpACAAAAAEMEUgAAAABgiEAKAAAAAAwRSAEAAACAIQIpAAAAADBEIAUAAAAAhgikAAAAAMAQgRQAAAAAGCKQAgAAAABDBFIAAAAAYIhACgAAAAAMEUgBAAAAgCECKQAAAAAwRCAFAAAAAIYIpAAAAADAEIEUAAAAABgikAIAAAAAQwRSAAAAAGCIQAoAAAAADBFIAQAAAIAhAikAAAAAMEQgBQAAAACGCKQAAAAAwBCBFAAAAAAYIpACAAAAAEMEUgAAAABgiEAKAAAAAAwRSAEAAACAIQIpAAAAADBEIAUAAAAAhgikAAAAAMAQgRQAAABQZn74wx/KD3/4w1InAwEIpAAAAIAy8sMf/lD+zb/5N/Luu++WOikIQCAFAAAAlAkVRN16662lTgpCEEgBAAAAZaC7u1u6u7vl7//+7wmkVgECKQAAAKAMHDx4UP7hH/5BvvGNb5Q6KYiAQAoAAAAoAzfffLP8yZ/8SamTgYgIpAAAAADAEIEUAAAAABgikAIAAAAAQwRSAAAAAGCIQAoAAAAADBFIAQAAAIChilInAAAAAIDtpz/9qYiIfPTRR/LRRx/JT3/6U5ZFL1Mxy7KsUicCAAAAgEgsFlv22le+8hX5h3/4h1InDS70SAEAAABlgj6O1YM5UgAAAABgiEAKAAAAAAwRSAEAAACAIQIpAAAAADBEIAUAAAAAhgikAAAAAMAQgRQAAAAAGCKQAgAAAABDBFIAAAAAYIhACgAAAAAMEUgBAAAAgCECKQAAAAAwRCAFAAAAAIYIpAAAAADAUEWpEwBvb174u1InYU2zREQSllRdjcnHFUn5ZEuDfFj5BUlkROYS8xK3uMeAbHGplC/P/LOs+09H5F/OzkomnpD5+IJUWPMi1jqxYgulTiKQl4RY8nZNnbzw7scyW1kp8bmrMhe7QRbiliTkisQsLhmAUnr2xf+z1EmAC1eLAAAAAGCIQAoAAAAADBFIAQAAAIAhAikAAAAAMEQgBQAAAACGCKQAAAAAwBCBFAAAAAAYIpACAAAAAEMxy7KsUicCAAAAAFYTeqQAAAAAwBCBFAAAAAAYIpACAAAAAEMEUgAAAABgiEAKAAAAAAwRSAEAAACAIQIpAAAAADBEIAUAAAAAhgikAAAAAMAQgRQAAAAAGCKQAgAAAABDBFIAAAAAYIhACgAAAAAMEUgBAAAAgCECKQAAAAAwRCAFAAAAAIYIpAAAAADAEIEUAAAAABgikAIAAAAAQwRSAAAAAGCIQAoAAAAADBFIAQAAAIAhAikAAAAAMEQgBQAAAACGCKQAAAAAwBCBFAAAAAAYIpACAAAAAEMEUgAAAABgiEAKAAAAAAwRSAEAAACAIQIpAAAAADBEIAUAAAAAhgikAAAAAMAQgRQAAAAAGCKQAgAAAABDBFIAAAAAYIhACgAAAAAMEUgBAAAAgCECKQAAAAAwRCAFAAAAAIYIpAAAAADAEIEUAAAAABgikAIAAAAAQwRSAAAAAGCIQAoAAAAADBFIAQAAAIAhAikAAAAAMEQgBQAAAACGCKQAAAAAwBCBFAAAAAAYIpACAAAAAEMEUgAAAABgiEAKAAAAAAwRSAEAAACAIQIpAAAAADBEIAUAAAAAhgikAAAAAMAQgRQAAAAAGCKQAgAAAABDBFIAAAAAYIhACgAAAAAMEUgBAAAAgCECKQAAAAAwRCAFAAAAAIYIpAAAAADAEIEUAAAAABgikAIAAAAAQwRSAAAAAGCIQAoAAAAADBFIAQAAAIAhAikAAAAAMEQgBQAAAACGCKQAAAAAwBCBFAAAAAAYIpACAAAAAEMEUgAAAABgiEAKAAAAAAwRSAEAAACAIQIpAAAAADBEIAUAAAAAhgikAAAAAMAQgRQAAAAAGCKQAgAAAABDBFIAAAAAYIhACgAAAAAMEUgBAAAAgCECKQAAAAAwRCAFAAAAAIYIpAAAAADAEIEUAAAAABgikAIAAAAAQwRSAAAAAGCIQAoAAAAADBFIAQAAAIAhAikAAAAAMEQgBQAAAACGCKQAAAAAwBCBFAAAAAAYIpACAAAAAEMEUgAAAABgiEAKAAAAAAwRSAEAAACAIQIpAAAAADBEIAUAAAAAhgikAAAAAMAQgRQAAAAAGCKQAgAAAABDBFIAAAAAYIhACgAAAAAMEUgBAAAAgCECKQAAAAAwRCAFAAAAAIYIpAAAAADAEIEUAAAAABgikAIAAAAAQwRSAAAAAGCIQAoAAAAADBFIAQAAAIAhAikAAAAAMEQgBQAAAACGCKQAAAAAwBCBFAAAAAAYIpACAAAAAEMEUgAAAABgiEAKAAAAAAwRSAEAAACAIQIpAAAAADBEIAUAAAAAhgikAAAAAMAQgRQAAAAAGCKQAgAAAABDBFIAAAAAYIhACgAAAAAMEUgBAAAAgCECKQAAAAAwRCAFAAAAAIYIpAAAAADAEIEUAAAAABgikAIAAAAAQwRSAAAAAGCIQAoAAAAADFWUOgHw8O/vWfr/1Mf2v031IvW3i9Q3i7R2ljqF4c4/LzL0ssjEm4vpXkVpF7HL/O/uFxk9L9J0p8i/e6XUKQIAAEAZiVmWZZU6EXC5/3PB77d2ijxwRKT6plKndLnUx3YgOPGm9/t3PiCy60ipUxluqM8OpJRdR+y0AwAAAMLQvtXJfZFvKvWx3WN0cr9/wJOroCBKxN5v72PFLqH8bbk9++/623PZCgAAANYoAqly9+9eEXnhE5Fn/il7WNzoeftfLs5+1w6izj9vB1WFcv757CCq6/GltDfdmf25Qu63GDbW22Xf9bidfgIpAAAAaAikVouN9SKPvJB9QX/+ZKlTlW303NL/3/mAyN1/nZ12NRRR9YiVu6Y77TxsrC91SgAAAFBmWGxitWm6c6nXZ6hP5BHtvdHz9nupj+y/vRZ3+Pf3iExPLP3d+5gd4NTfbve+RN2Ol6E+LZ3bst+rvslOu/rM6Dl7m+e0YHDbruygRR8CqL93/nn7e6oc7nxAZPs3vb/b+hf2f8+dFInFRCQmkrwx2v70tKmy0QWlI/Wx3fPn9f3R83b+q29eCjbV9qYv+u8PAAAAZYNAarVp/QuRs9/Lfm3iTTtA8hou9/xNIo+/thQwuIcD6kPxTLbj5t7uJo/P1TdnB1sb67OH+W3asrSgw6WJpXxW37QUWKghibrzz9v7f+afll7Ty0jfxw0bRD67HG1/+jbcgU1YOqpvyt5v07al4Y3nTy6Vw50PLPXUqaCMYYQAAABlj6F9q437Ijvswjv1cXbPism2c92O37b011Tg9a87tdfOLX9f/8zo+ezgRQ9CLk14L2Jx9nvZgeH/+rXo+/MTNR36vDC/fen/r4Ja/XsAAAAoSwRSq50KEroet+chvfCJ/U8fMqZfrLvfU4tZqOckRd1OoehDAPXtXxxZ/hl9Ttjdf20vSa4/38lvtcCmO+08dT1utj8/UdNR37z02qWJpf/qgZ0KsPS0698DAABAWSKQWivufCB7HpMeDJgscV6o7UTV2pm9CIXahwpyqm9aSo8+LPDub9r/9erlcnvkBXsbd/+12f78RE2H3rN00bUf92f1snUvvQ4AAICywxyp1SaoV+jShH2Rn/poqQdExHyoWKG2E9WdDyzNRxo9bwczar9+w+z0hxFX3xS8nLr7wcW57C/Ktt3pqL996bVLE/Y/1fN191/babg0YQdRapGJjfWsEggAALAKEEitdvW32xfqf3e/f5AV9ZlN+WzHHayMnl8eePl9X19AY/RcdiDhN8zu/s+Fp8FPLvvzE5YOfaXCi28ula0+fE+tkqg+DwAAgLLH0L7VRh8CVn2T/e/sd7UL9NvtuUD6nJ2oAUY+23EvLuEVNE3o85DuzP6uvqqg+lyUYXZBaQj6XCH2FyUdWUMjR+weKLUflYbpi0tL0m9hfhQAAMBqQI/UaqOvnKeW7tZXkNv7Qu5Dw/LdTtOdS4HYf315eVCizy1yBz2tnUu9RCpY9Btm13RndoCXC5P9BeU3LB16wOjeT9OddpmrYX/uzwMAAKBs0SO1mpzcnz1nST1s1qv3R/9cEHVxn/o4v+2IZPe+DPVlB2Z+aff621mswTXMTgVfo+ejD1f0E2V/fkzSoc95UvtRvU5qf+p15kcBAACsGgRS5e7kfvshuQe+tPzZRV5D2U7ut59jdPieaNvvfcze/vP789uOSpMeCJzcb88hcqe9tXN52utvz37Na5id3lujp3fiTe9nSAWJsj8/pulw9zKpv/1eBwAAQNljaF+504d9KU132vOXlNbOpWFzo+ezezi8epQ2bcn+W61cZ7odt+qb7CGB//6e7J4a/bv1t4s8cMT7+61/ETzMbtsuOyBLfWync8i10EPTNrNgJGx/fkzTsaV5KZDUe52qb7LLQ6WB+VEAAACrBj1Sq8nG+qWHv+oLPzzygr2ctnptY739mW277L/VQgbKnQ8s//y/7jTfjpf620Uef21571T97fa2H3/Nf9EKv+dX6fnXA0hd2BLouezPj2k69KAqqBeKHikAAIBVI2ZZllXqRMBD6mOR9Mf2f6OuRue1DdXboZ5pVMrtFLJszj9vP+dKxO5h+9edK5+uckkHAAAAVhyBFAAAAAAYYmgfAAAAABgikAIAAAAAQwRSAAAAAGCIQAoAAAAADBFIAQAAAIAhAikAAAAAMEQgBQAAAACGCKQAAAAAwBCBFAAAAAAYIpACAAAAAEMEUgAAAABgiEAKAAAAAAwRSAEAAACAIQIpAAAAADBEIAUAAAAAhgikAAAAAMAQgRQAAAAAGCKQAgAAAABDBFIAAAAAYIhACgAAAAAMEUgBAAAAgCECKQAAAAAwRCAFAAAAAIYIpAAAAADAEIHUKtTXe0JmpqdKmoZ0albGRkdKXRRrEmWLYhgbHZF0anZF9lUO56jrKd1RcW5BmNV8DJR7+17NZQt/BFJl5uH77gr8NzY6IgNnemXm0vslTefkxLgcPdxt/J1SpXU1MS3bdGpWDuz52qrLp25sdGRZWz96uFsGz/UXbB+ruXwK4ejh7hUrg3I4R5Uq3XoZl9uxmct5252nlU5vEK/zRs+hvdLXe2LFbhpE5dcWyqVtKKU4dgtVBrm272Klz/291XpeRDACqTLz7IuvOv/at3dJY1Nz1muNTc2lTmLOjh976rra70pJVtdIY1OL1G7cXOqk5E218+4njkljU4v09Z6Qvt4TBdn2Wm8HKA96O1srx2a5n7v180bbtg4Ze2ukYOeNQvFrC5yXyr8Mck1fuecLhUEgtcqNjY6UdVe2MjM9VZIu7Xz26zUUqlyHDrRt6yh1Egqqrr5B2rd3SfvdO2R46PXI39PrZmx0xKl7v3ZgUsd+7Wg1tZNCcJdxlHyq8jDpJVDbVd/Vy9/rtVzTH7QN03R7tTP3sWlafqUeCrSazt119Q3Stq1D2rd35dybXcy8uttCvr9P+v+Xup3kqlTtq9jpC/vearl2Q7iKUicAuRkbHZbjx56UuvoGmbn0vqRTl+Whvd9Z1mM1PHRB+nqfk5npKUlW10jbtg7p7NptvL++3hMyeK5f0qlZ58dKNzM9JX29z8nkxLjMTE9J7abN0tn1oLS0bs3qbn/4vrtERGTfwR5pbGoO/J5K/8CZXqeLvHbTZmlpvSMrD355DNpvFEcPdy/7vNrmsy++Gil9Uco/rGxzSWuUcgsTVjcroW5Lg8z0Lv0YDZzplcHz/b7lefRwt3Q/cUyOHu6WuvoGqdvSIC2tW33bQZQ6HjzXL329J6R242ZJp2edH8faTZvliWeej7QNJag95NPWTdvK2OiI7/fD6v3o4W7ZuWu/9PWeCD3/iNjByNHD3VK3pcGoR13tZ+BsrySTNTI5MS7t27sWy+H1rNf0PERJv7uNeJWhX7pNzzfu9hG1/MLaXRRRzi25nLtrN94Sem7I59yY77k7Wb1BktU1Wa8F7e/h++6S7ieOyfFjTznlrN53byfsHBSUb70tBOUxbB9+7divnk+dPJLzb0uUtKi2NnCmd7H8a6T97h3Svr0r52uDsDqL2r7D5JM+P37fE1n5azesAAtl6+XTx60jPQeXvb7n3nbrR99/0krNXnZee+m571lPP/pI1ude/9lZ6+lHH7EuffA7y7Is672L71hPP/qI9fLp48bp0Lfz9lvD1tOPPmLtubfd+Uxq9rL1+s/OOml69SenrW/91Ved999+azjr81G+997Fd6w997Zbb7817Hz2jV+85vwdJY9++41C37dXPsLSF6X8o5StaVqjlFsUYXVaSH719OpPTluPfuv+wLJ69Sens8rhSM9B5zNh2w+rY/X/7118x3n/R99/0vrR95+MvA0lqD0Uoq2HcZeNV/lFqXe1naDzj8pLavay9fSjj1gvPfc94zahznPKG794zdpzb3vWtt74xWvL2mTU9LvbSJR053K+cbePKOUXpd2FiXpuyeXcHfadQpwbo5y7vT7jta2w/e25tz3r/Usf/M7z2Ao7B4Xl290WvNIf5TyntyO9HevnS+XSB79b1paC6GmMmhavz6n95XptEFZnhfrtzDV9YfzOBSt57YaVwdC+VaptW0fWnTJ190TX13tCdj64X2o32WOy1XAp0yEPg+f6pX17l7OdxqZmabwt++6JumOi0tS+vUvSqdnQSZpB30sma5zPqP+2tG7NunNTqDzmIix9UdIWpWwLna7I28mxTgthcmJcBs70ysDZ09J+d5dTVp07dmeVVfv2Lhk8n13Xbds6nM/kS92hrKtvyNr+2Oiw8baC2sNKtXW9bBqbmqVtW8ey8otS7+3bd4Sef1Sa67Y0yM5d+3Mqf/0Os+rt0Hs9Wlq3LktblPSHtRG/dBfqfBNWfoVod1HPLbkc52HfKcS50YR7sQmvnouw/ellVbtps31suNITdg4qxLk36nlOtQm9Hbdt65CZ6amsuhs832/3WGltqdBp8Wpran+5/o6E1VmhfjtX+nduJa/dsDIY2rdGTU6MSzo1Kz2H9hZkO+7hXI1NLU43vog9DGbg7GmZvDiedRIKm1sQ9L26evtCRg1daGndKi2tW52TUKHymKvaTZt90xclbVHLtpDpMpFrneZDDYMQEaf+1Q9NOjW77IKkpXWrMxxH/egkqzcULD32cJnLMjkx7lwYjI0OGy8eENYewuqsUG3dXTZ1WxqWjeMvVL33nT4hkxPjzpCWYtLTFiX9QW3EL90reb7Jt92ZnFtyqe+w7+R7bjSlhtCOjY7I0cPdWcFF1P15HRt6GUQ9B+Vz7jU5z3mlWQUFg+f6nZsAw0OvOzejTERNy9LnWjy3k0v7CquzQv52luJ3Lkq5l+q6BuYIpNYo9eP7zA9+bHwB7bWdMD2P7ZXGpmbZuWvpLop+UZzr99q2dUhL61YZGx125gx0du2Wtm0dBctjPoLSF5a2XO4QFipdUeRap/lwzylyl1U6NbuidV1Xb8+fUT9qdfUNkqyuMQ4OorTVUrR1rwvzQtV73RZ73kbf6ROy72DPitVbvun3S/dKnm/ybXcm55ZcyivKd/I5N+ZK9bKeOnnEmUeWa725yzDqOSifc28hznN2oPOkM29vZnoqp3mtUdOi9zx5yaV9reSxVorfuXLJOwqDoX1rWLK6RoaHLhRkW+7tpFOXnf9XKwbpJ6Ioq9xE/Z4aHrHvYI90du3OWta2kHmMwiR9UdMWVLb5CCq3MLnWaTElq2uWDW0aHrogyeqagg3l88rn8NAF6eza7SyvHCUo8GsnYe2h2G3d3bbGRoezyq6Q9d7SutUZXrVSS1EXIv1B6V7J800u7c5rG7rl9W9eXibfyffcmIvOrt2STl3O6pmIsj932Xh9Puo5KJ9zb77nucamZklWb5DhoQsyPHRh2VAyEyZp8SqvfI7HKHWW729nOf7ORc07ygeB1BrWtq1j2ZO0x0ZHjA9QNTZXdXVPToxnjdVdGnpiL+U5Mz217PkJ7s+ooXth39OXdU2nZmXm0lTWcIawPHrtN6raTZuzysqr7ILSF6X8w8o2V2HlFiZK3ay0tm0dMnCmN6usBs70Gt3pdbeDqHUcdCESZRsq/UHtId+2HoW7rQ2c6ZWW1jt8yynfek9W18jOB/fL8NCFFRnfX6j0+6W7mOcbt7B2FybKuSWXc/fGxQvOsDLO99zoVZanTh4JfeCqGt42cPa0k/co+3OXzfDQ68vOLVHOQSbnXq885nOec9J5Z4eTv3yePRk1LWqlQfU5tfR3rtcGUeqsEL+d+aTPdNsm54JCXbthZTC0bw1Td1UPHXgg6/X27V1GXf2dXbvl1MkjcmDP10TEvnB8aO+3nWEnyeoaZ2lX9X5n14P2ghHapNv27V3OZzq7djvLFgd9b2x0OOvOotp31Dz67TeKh/Z+W44fe8rp5q+rb5CdD+7PGrsclL4o5R9WtrkKK7cwUep0pXV27ZY+OeGUlcmSsH7tIEodt7RulVMnj8ipk0eWlWddfUOkbah9ivi3h3zbepQyaNvWIT2P7fVdUrcY9a6GqakFHIo5pLWQ6fdKdy7nm1yFtbswUc4tuZ67o5RxvudGr/2mU7ORLkg7u3bL8NDrMnD2tJPesP3VbWmQQwcekNqNt8jMpfclmVw+lDLKOcjk3OtXtrme55S2bR1y6MD9kqzekNfjKqKmZd/Bnqy2JiKyc9d+57O5XhsE1VkhfjvzuXaJsu1czwWFunbDyohZlmWVOhEoLnVXrJgXMMVOf9hFUDHz6J7ga5q+UpX/Ss8nWsl8iUhB8+ZXx329JySdms16nox67oiIZF0ghbUTPf1+7WGl2nrUtMJbsY9pk3ZXzgp9bsz3nOa3v4fvu8t5PtbMpfdFRAJ7csLOQYU49+Z7nus5tFcab2suyLOHoqZFf9ZZoaz26xfyvvYxtO86kKyuWdUHYpQfkmLmMexHISx9pSr/tRhEqXwVOm9+dWwPfctedat202bnYdJRtuGVfr/2sFJtnSAqP8U+pk3aXTkr9Lkx3+M+bH+qjMOGw4WdgwpxfsrnPKeWQG+70/wBtfmkpXbT5oKfW1b79Qt5X/sIpADAh3vSbzo1u/jE+RNGcxYAE7Q75CqdmpW+3ueksamZGybACmBoHwD4mJmekoGzvTI8dMEZ3qKWWGasOoqFdreyjh7uls4du1f93f+jh7tlbHREGpua5aG931mzoxKAckIgBQAAAACGGNoHAAAAAIYIpAAAAADAEIEUAAAAABgikAIAAAAAQwRSZWpyYlwOHXhAHr7vLjl+7KlI3+nrPZH1jBH33yi8x1/6rUx8cLXUySh7lFPpfJxakNd+9WlJ05BP/ZdD+tey1XhsrsY056NUv+Xp1KyMjY6UOvtrytjoiLMSJ9YGAqkydfRwt7S03iFPPPO8tG/vivSdgTO9zlPZvf4utHRqVg7s+ZpMToyvSJmMjY7Iw/fd5fu+/p76rP6v59Be6es94ZzEwrYXxZFX3pf3pqP9oL/5bjrSa8V066435ZWffxT59UKJUk4fpxbk1l1vFq1Mir39ck3bP72bkr/4m9yP0UK0jaD6D9t+LukvVR3ns19VDq/96lP5fNcbWf9a/u1b8s0fvicfpxYKnmaTc1iQz3e9IbfuejMwjbfuelM+3/VG2aRZr69SnR/cv1Puf2OjI5F+y4vxezw5MS5HD3fn9L1SK4c0eDl6uLts04bcEEiVIXXHorNrt9Ru2ly2z7ZIVtdIY1OL1G4s34f+Pfviq/Lsi69K9xPHpG1bh4y9NSJ9vSdKkpYHv/tupNeKRV2s3vPlmyO9vtJuqk7In/3xjVL/hXWrcvtrMW3FbhvF2v5KHleF2K9XOXzY+yfyYe+fyPD3b5P999wi//RuWr75w/dKkq+obqqp8A2KX/jpTNm1b72+SnUMqt+oZ198Vdq3d0ljU3PWa41NzZG2U06/x1FH0az1NOD6QCAFx+TE+LLhA5MT48vunsxMTzmvtW3ryHpPHwYwNjoSOCxgJYcq1NU3SNu2Dmnf3iWD5/qLso/XfvWp7xCkiQ+uLhuK4vWa+/1C6vsvH8n9X9kY+fWgfOr/b5rOoHJ64Cu1WZ/zurv95rvpnO8a69svJK+0mg5JK1ba8kmru22oz6jP63Xv9VoY07YXRdhxVSz57DeoHOq/sE7u/0qt7L/nFuOeQfexGqU9qnr0OvaCepNuqk7IPX96s7zw00ue77/w00vypVuTeaXfr3yD0uzHq77cx6Bp+a1Euwv6XXX/HpfCzPRUyacUrEQaTK51sLZVlDoByDZ4rt/pMVHDzp598VURsYfqDZ7vl5npKUlW10jbtg7p7NpttP2gbQye65dkdU3WNo8e7pbajZul+4ljzmunTh6Rui0NUlffIEcPd8u+gz3OXbOjh7tl56790td7QurqG2Tm0vuSTl2Wh/Z+x/mMymPtxs2STs86J7zaTZvliWeeL2r5Jqs3RH7a+/FjT8nM9FRW3r2c/+Vl2fW378qXbq2W96avysez83Ly/3mr/Nkf3Sgi9oX/V//mHRFZuhB55qE6efI//TbrtZcfbZC/+Jtx+VnPv5IHv/uu86N8/1dq5bGvf1Fuqk44+3zl5x/JkVfedwKK+i+sk3v+9GZ57Ot/ILu++66898FV+VnPv3I+/3FqQV75+UdZr3m9PvHBVXn81G/ln95Ny8QHV6X+C+vksZ1/kHWnXKXxq3/zjnzp1mq5/dakPPb1PxARe+7CkVfsISg3VSdkf+ctsv+eWyKVk9r2y482yJ/90Y3yvb4PsratfPVv3pHHvv5Fuf3WpLzy84/k8VP2fImbqhNy/1c2Lvu8Tt++4pfmoDKOsl01JO3D3j/J+qzf/ry24RYlv4+/9Ft54aeX5OPUgtx+a3LZBXrUtHq1mb/4m3H57jf+UI688r7cVJ2QN99NO/X7yn/5KOu1oHoIapNh6Q9qo17HmsprWNuOUt9+5e+3349nF0K36VcObjfVJLLOAVGP1e9+4w/l8Zd+E3jc6Wmxj+tkYDv0q8/7v1Lr5Pd2LWh6czGN+++5RV746UzkPASda8LSHHSs+NWX+9iIWn4v/HRGHn/pN1L/hXXycWrBOXfXf2GdDH//NqNy9DM2OizHjz3p+7sqIst+j4eHLsjAmV7nxmftps3S0nqH73VDX+8JGTzXL+nUrHPzUTczPSV9vc85N11rN22Wzq4HpaV1q4hkDwVU1y/7DvZI7cZbAr/nJSztw0MXpK/3uWXXMn5p8OvZ6+s9IQNnekXE7tVrv3uHtG/vCs1rlGudIEcPd8vY6IjvtZxf/lCGLJSdt98atvbc25712sunj1tPP/qIdemD3zmfefrRR6xXf3La+cyee9utt98a9v07bBuv/+ys9fSjj2Sl4+lHH7H23NvufCc1ezlru177PNJz0ErNXnZee+m57znbVXl77+I7zvs/+v6T1o++/2RO5aLT3/P67HsX37GefvQR6+XTxyNt70fffzKrPLzc/Jf/aD3wt7+2Ppqdd17767+fsLYd/Oesz53/5SfWzX/5j6Gv3fyX/2htO/jP1sX3r1iWZVkX379ibTv4z9b/8R9/43xm5Ncp6+a//Efr/C8/sSzLsj6anbf6/q8Pnb8f+NtfL9v/9/qmlr3m9fpHs/PW8/9wycnP9/qmrC0PjCxLY+cT7zhpVP6P//ibrLSf/+Un1sivU0blpOfr+X+4tGzfff/Xh9aWB0acdOr7G/l1allZedWX2n5QmsPKOGy7fvUbVkZ+21flEZZfr+1vO/jPWemImlavNqPqUa+Pm//yH62//vuJZXUUVj5e24+S/rA26pWXsO9Fqe+w8nfvN2obcpeDV/pHfp2yOp94J6uuTY7VoONOpfGj2Xlr28F/zqpLN69ydb/3wN/+etk2/vrvJ6y//vuJZXkLy4PfuSYszVGOFb/zr14/UcpPbUcdx6oM9OMkqpdPH7eO9Bxc9vqee9utH33/Sd/fVf1z6vf4vYvvZP2dmr1svfGL17J+r9379ro+0H8jU7OXrdd/dtZJx6s/OW1966++mrUdr9/VKN/ThaVdXauotJr+tgflWV2bhKU57FrHj/pe0LVcWP5QXhjat0oMnuuXzh32nCkRkcamZnuY2vnow9TCttHY1CyTE+PaYgzD0nhbszQ2Ncvw0OvOa/ZYbP87Lu3bd2T1+rS0bnXuKqk7O/q8r7ZtHTI2OlyUcnMvNmFyV+ehvd8O7Y0SsYeD6HeKOxfvjOdq/z23OOP07WE9G7OGy6h9fa66wvn7ni/f7NwhPfnNW5fd3X7l5x95zkNxv27fuV3Kz/57bpGPUwvL8vPAV2qXzSV44aeXstL+Z390Y9ZdadNy0nsKlPO/+lTu+fLNclN1Qh5/6Tfyt9/4Q2d/t9+aXLzjfUmi8ktzWBnnKqyMgkTJr9f2c02zX5vRhz+p9zu1z93z5Zs920yU7UdJf9Q26hb0vSj1bdreorYhv3LWF5v48+63l/XGRC2Hv+78QqTjzu51Scp3v/GHzmvuhS/c6fLS+ac3yys//8gZZqd63LyGLkbJg9e5JijNudRVkLDym/jgmtR/Yd2yc91rvyzsSpNt2zp8f1e9JJP2Z9V3ktU10tK61fe3e/Bcv7Rv78q6Pmi8LfuzqmdEbbN9e5ekU7OhiyeYfi8s7X29J2Tng/udtNbVN+Q0bN8rz+raJEqag651wupS32fbto6sa7lC5Q8rg6F9q4AKbtwnwJbWrc7wM3XA5buNuvoGGR66IG3bOmR46HXp7HpQkskNMjx0Qdq3d8nY6Ig0NrXknJe6LQ2STl2WyYlx54Q1NjpctAmyaljk2OiIPUxxU+kn4oa5qSaR9feXbk1mjf2v/8I6+e43/tAZ7tL55Zud4MLLxAdX5c130/KfH/2fQ1//OLUgR/rsoTmfpOadC4ZPUvOBaXzz3bR8nFqQP/vj/AKNrH0sXniq4Onj1IK88NMZefnRBmd/f979ds7bD0qzaRnnu7+o3w3Kr/qM+6L8zj/e4AwljMqvzZhwt5mw7UdNf9Q26hb0vdsXL8b96juX9halDQWVsz7M8s1303Lklfflz7vflv/86P8sN1Unci4HL4+/9Ft58920vPxo9sJGX7q1Ous1NfQtyD1fvlkeP/XbxeCpVl75+UdOoOGeYxQlD+5zTViaC3FuMPGlW5Py8ex81nDG87+8XPKFNWo3bZadu/bL0cPdUlffIC2tW6Wldavn0HZ1feAeatfY1OIMexOxVwYcOHtaJi+OZwUVYct5m34vKO0qrT2H9uZVPkvXRN7XM7nmNYpk9Yasv+u2NDhTHAqVP6wcAqlVQAUc6dRs5Pk9uW6j8bZmZ4GJdOqytLRuXRwrfMJ5pkTbnblPaK2rb5DOrt3OSaKuvkGS1TWy72BPXmUUdnJTd31OnTxS9HlYhebVY3H/V2rlni/fLK/98lN5fnF8/mNf/6Lc77FgwQs/nfEMArxe//Put+XP/miDfPcbdc6FQJTlilUa8wk0vHR++Wb5i78Zl8e+/kXngky/o//uydtz3mdYmk3KuBD7i/LdoPxG7dmKwq/NFHP7UdOfaxsN+15QfUcpfy9hbShqOd9+a1JOfvNW+XzXG/LaL+0bC7mWg5cv3ZqUL92alMdf+q3850ernfTcVJ1Y1oMWpYdTLTpx/1dqF//rvZBGPnnwS3OudZUru6fwi07gdvutSflcdUVeNyEKpW1bh7S0bpWx0WFnbnJn1+5lc5+irgzc89heaWxqlp27lnpLojxCJJfvhaX9mR/8OOfrIT3PftvINa+50G8kq3Tlmz+sHIb2rRLJ6pplw9+Ghy5Isromci9LlG3U1TfI5MVxGR664NydUj1VA2dPy8z0lLS03pFXXoaHLkhn125nWfJ9B3sinTBUb5rX6jhjo8Oh5dDZtVvSqctZd9jK0cez2StP+a3UpXpsXn60QR77+hfl8Zd+4/m5V/7LR9L5pzeHvq5WxfquNiTGdBWqQj+L6s/+yF6O+JWffyR9P/9I7vnT7GGIhdhf0DailrGXiQ+uFbSMoubX/Rl3e4qSVr82UyhB2w9Kf65tNOr3guo71/YWtM1cyvmmmkRBjlVd55dvlse+/kUREaM27uf+r9TKm++mnQfneg1dzDcPQWku1Lkhqr6ffySPff0P5MPeP5Gf9fwrefnRhhUJ4qJQw+L2HeyRzq7dgY//GB66kPV3OnXZ+f+x0RGZmZ7KCiyirIyX6/eC0p6srlmW1lx5bSefNEehl6u9v+zrl0LmD8VHILVKtG3rkIEzvU7Py+TEuAyc6TVa7jTKNtQY3+Gh17OGATbeZs+Tqt20Oe/hcWqlmlw0NjVL3+nsp7wPnuuXUyePSPvdwQ8uVmOeB86ezurBUkuXqn+qC//UySM5PYzQy5durRaR7OWjvV4TEXleW9VKRC2NvHxZXnXRoVaJuqnG7mD+5g/fcx5g+srPP5KPZ+c9nx3lft2dnokPrho9F+fP/uhGOfLK+04+CrUMtVoJ7LVffZpVDvd/ZaM8/tJvsvbx2q8+zbqA0svCNM1Ry1jEHsbVp+33tV99mvV3LmXk3keU/O6/5xZ5/qczzvbffDe9rD2FpdWvzRRK0PbD0h+ljUY51ry+F1TfUcrfa79B2zQp5zffTcuu777r9BDle6x6uak6IX/7jT+UV37+UdbKerqwYX1K/RfWyT1fvlmOvPK+b49bIfLgl+Yox4rf+TcXr/3qU7mp2n+ATyF/S0yogEDEHrUxc2lq2bAyRc3B0a8P9Dk5S0Px7RuZM9NTns9qcn9u4+L1Qtj3TNLetq1D+nqzrwPGRkec4MOdBr8RK41NzVnXRGrZ9Kh5zZW7nAfO9GbdoA7LH8oLQ/vKkNdiDp1du6VPTsiBPV9zPmO6HGbUbahFJ/Tx0i2tW2XgTK+0b++KvD8/La1b5dTJI3Lq5BHntdpNm+Whvd8OHWKw72CP9PWekEMHHsgqL6/hCn5lMDz0ugycPe2MjXb/wDU2Ncu+gz2STs0WZDy0yOIy14tLXIuIPPb1P5D999yy7DURe2hIy799S/5w0zp5b9peuve7rmEi5395WY68kn0h/9w3bxUR+4JAzTE4/6tPPYfVeL1+U3VCHvv6HzjpUUsRv/lu2pkwH+TlRxvkmz98T27d9abzmn63OVf3/OnN8vhLv3V6pxRVXi3/9q2sz++/5xbn4lQvC9M0Ry1jEZHnvnmrPPjdd51hSbffmpS//cYfyp93fxp5f27ufUTJ72Nf/4Os7as06+kIS6tfmymUoO2HpT9KG/U71sK+F1TfUcrfa7/28ufe2wwrZ/cQtz/7oxud4WL5Hqt+1DA1tYiDe7ilycIlatEJtTy+W6Hy4JXmKMeKV33l6p4v3yzf/OF7WQ9MVnV9+63Jgv6WmBgbHc4agaF+Z710du2WUyePONcH6rNqGL76nVW/l2o58MmJ8awbo8nqGmnf3uV8rrNrd6TvmaRdXbPo1wEidjCo5lK50+B17bLvYE9WnkVEdu7a71wXmaY5CnXd1fPYXt+lzcPyh/ISsyzLKnUiEJ06GedzMBdiG7lSc606u3Y7+1fPaxAR35O8Vx5mLk1FHtudazmtdBl9vusNefnRBieIEvG/ePk4teB5p9fv9ZWiP0NlJag7/V5zbKKWhV+aTctYPQunEGUUtG+//JqImtbrSZT2Ylr+pT4er2eFOlaCPP7Sb+Xj1HzWs/7U87FE7FVUS/FbopRy38VOe6GuA/RnWa6ksIXCVuI6B/kjkMKKevi+uzwfjjd4rl8Gz/VHWm68XLzw05mCP8n+yCvvy1f/HzfL/7SRC1wAKHd+5+y33kvLryY+k//zb/4XblgAaxhD+7Ci1CRKFUjZKwEOOyvyrCZq6eJC+/XUVfn95dzH6wMAVkZFIiY/H5t1ztnzC5Z8NDsv7/z2itx6y7q85l4BKH/0SGFFzUxPycDZXhkeuuAMMVRLkzP2VxaX+v6Dog5FAQAUxsQHV+XIK+9nPYT4z/7oRnlgcel7AGsbgRQAAAAAGGL5cwAAAAAwRCAFAAAAAIYIpAAAAADAEIEUAAAAABgikAIAAAAAQwRSq9TY6IizfPhqZj9HaiTSZycnxuXQgQfk4fvukuPHnip10guur/eE84R1XH/WyjF9vTE5h10PorTjtXCuWwt5WCuoC5QSD+RdpY4e7pZ9B3ucB9sGmZwYl7r6hkjbTadm5dCB+2XfwZ7I38nH5MS4HD3cLc+++GqkPLdt65C2OzsknV5dF5wP33dX4Pv7DvbIwJleaWxqkdpNm0ud3LIxOTEuPYf2Svv2Ls8HNg+e65dTJ49EPhaCPp9OzUpf7wnnGWd19Q2y88H9WcdBlM/kyuSYLkfu88xKn0tKme+wc5j7+Xm1mzZLZ9eDns/OM2nThw48IG13dkj79i7P7fT1npBnfvDjnPOWSx1GacfFPtcVuu15/YYWMw9joyNy9HB31mu1mzZLS+sd0n73DklW1+SdflPp1KycOnlEhocuiIhIsrpG2rZ1eJ6XC5kWfjtR7gikrgPHjz0lTzzzfKTPJqtr7BPSxvI6Iam7nKYn7XKhX2T19Z6QyYvjsu9gT6mTVdbSqVk59dwRz4sGFdBE7QmI8nl1V/OJZ14QEZGBs6eXHTtRPnO9cpdDuZ5LSuHUySNSt6VBHtr7Hamrb9DaTYNz8WfapkVEWlrvkMHz/b6BVNu2jrzSvVrrsNDpLtUxrn43JifGZXjoggye65fBc/3yxDMvGAVThUj/8WNPSrJ6g+w72CO1G2/JuRfWNC38dqLcMbRvjZuZnjLu8nb/+OonzLHRkbIZxuJOl0k+1XfVsBz9u16vlSJvuZZzPuVSTvvr6z0hjbc1e969HDh7WtKpWXlo77cjbSvK52emp6R9u323N1ldI51du5cdP1E+U8686spvKNbkxLhMToxH2q5fGeRyIV+q800x97vvYI90du2WxqZmp93U1TfI4Pl+5zOmbVpEpO3ODpmZnlpWT+o1rx6vqPlX9ZlvMFYqhfodi3J8F7ud1tU3SGfXbnnimRekduNmGTh7OvJ3C3V+GhsdkbZtHdLY1Cy1mzbbo0MM28ZKnCtXy2/nSv9Oo3jokSpTA2d6ZfB8v8xMTwV2oR893C1joyOen1FDTkSWusfV3aS+3udkcmJcZqanlg0zcQ/NOHq4W3bu2i99vSekrr5BZi69L+nUZXlo73eWDd8YHrogfb3P+aa7r/eEDJ7rd4ZFRTkRqyEqej6effFVOXq4W7qfOCZHD3dLXX2D1G1pcPYVVn4qTwNneyWZrJHJiXHnru7w0OtZr61kL9jY6LAcP/ZkYDmHlXFQuYR918vM9FRoeynk/lSdT14cd7brZjq8Jcrnk9UbZGx02ClrdVzpw0WifMZL1ONZlaffMT08dEEGzvQ6F85quE/U8vaqq8mL41l1pn9WXfAHtQG/80xjU/Oyc0mUcohyvgkrB9M2HHW/Irmdw7zbW40kkxuM2qhb7abNUlffIMNDF7JuOAwPve68Z5J/r+PYXYdRthXWjr2EtV3TOs/nd0wJatsihTlfm7aZ9u1dcurkEWcbuR6bUetRl05dDk2jX37DyjJf5fbbWYrfTZSIhbLz8unj1tOPPmJd+uB3lmVZ1ttvDVtPP/qI9epPTjuf2XNvu3Wk52DgZ9Tre+5tz3otNXvZev1nZ63U7GXLsizr1Z+ctr71V1/N2vbbbw0v25f6vGVZ1kvPfc96+tFHsrb7+s/OZqX7vYvvWE8/+oj18unjgflyp8+LVz7cZWBafj/6/pPO32/84jVrz73t1kvPfS/rNb1cClm/R3oOLntdpSmonMPKOKhconzXS5T2Usj9vXfxHevRb93vfO9Iz8HA77jbaxi/z1/64HfWt/7qq9ZLz33Pev1nZ61Hv3W/9cYvXjP+jFd9h7VHr3J0f+69i+9kpT01e9l64xevOX/n2jZe/9nZZe1ctX1V52FtwOv4dJe1aTn4HQdh5eAlLP1R9huUhyjnMHc72nNv+7Jjxqvcwrz6k9PWo9+6P+u1R791f1a9m+TfnSZ3WkzPB37nX32bYW03lzrP9XfMLahtF+J8bbJPlXd3WeRybEZpE7qXTx+3vvVXX7Xe+MVrWXnWheU3KF9RrKbfzpX+3UTpMLSvDA2e65fOHbudu9yNTc3Svr0raxiIiD10Qf9M27aOZZ/xou5wqLuf7du7JJ2aDRzGo4YzKepul66v94TsfHC/k6a6+gY73ef6nXy1b+/KSnPjbfndjdLLIJfy0/Oj/1f9f1i5FJpeL17lHFbGQeUS9btuUdpLofan5kW139214hOH7TvcWxfvBp6w22dTi/Fn3KK2R3c5uo/pZLLGqQ/135bWrc4d11zbhmrzahK5iN3T1tK6NWtfpueMfMoh6HwTVg5eoqY/7DxXiHNYOjUrx489JZ1duwvSxtu2dThDNEXEuQPedufS+S1q/r2O41zK0vS3Kazt5lLnXqL8jpmWfSHO1ybcvZa5Hpum3+vs2i3td++Qvt7n5NCB+51RIrpi5Hel66JQv2Ur+buJ0mJoX5mZnBiXdGp22Q9ES+tWOX7sKaeLWMQeZqSr29IQaZxtOjUrA2dPy+TF8awDO5+ll1W6ew7tDXzfPWygsalFBs705rxfdxmYlF9U5bIkdVgZRymXKN/1yn9YeynU/gbOnpa6LbkPl8rHqZNHJJ2adRaSOHXyiDP8wuQzXuUQtT0GHdO1mzbLzl37naEgLa1bnWAnn7ahLkpV8JROzcrguf6sCd35njMKeVwGlYOfQpzzCnUO6+s9IXVbGjwXiMiFqr/hoQvS2NTsDPPTyzNq/t1tI9eyNPltitJ2c6nzUsvnnBvEXY65tu1cvte+vcu5qO/rPSHp1Kzs3LW/qPkthFL8dq7k7yZKi0CqzKgx7enUrPl4+YgrFPU8tlcam5pl566lux5hS4xGTfczP/hxSX/c8im/cpdPGefz3VzaS677Uxek7rtvY6MjMnCmN9Iy+bmYnBiXwXP9Wel9aO+35dCBB5zVz6J8xq8ccm2P7mO6bVvHYtAz7FzMdHbtdvad6/HX0rrVmRM1PHRBajdtzgp68j1nFPq4DCsHt0Kc8wqxjPapk0eKsupYY1OzDJy1j53hodel/e7sIK2Q5/xcthX02xT1XGFa56VWrN/E4aHXs7afa93m0ybatnVI3ZYG6Tm0Vzq7dkuyuqZsrgG8lOK3cyV/N1FaDO0rQ8nqGhkbHc56bXjowrJJ7e6Jn2Ojw6F3ddXqMPrBXajVYpLVNVnDg7y4348yebVY5bcaRSnjQn43n/aSy/6effHVZf/UELBiBVEiS3cJlw2bSdbIzKWpyJ/xK4eo7THKMa16INRKcGqITT5tQ63ENTx0QYaHLkhL6x1aGgpzzij0celXDm6FPufleg47dfKIiIh0P3Gs4BdJbds6JJ26LIPn7IU89F6zQuY/6rZMf5uitt2odV4u8jkmvaRTszJ4vt8ZMpZr3RaiTajgWK/rQue3kFbyt3OlfzdRWgRSZahtW4cMnOl1LtwmJ8Zl4EzvsjtvauUo/TP6BZDI0h0ONX5+4+JBrf6emZ6S48eeKli63U8YHxsdcU4KakiAnuZijPuNWn7FpIZ8FSNvQWVc6O+6249Je8knrfk6dfKI0UWWWpZaXeyKiLNCmJprEuUzfuUQtT2GHdP6Mrnp1KzMXJpyhofkW95td3bIwNlee5ljLT9R2oD7M17Dgwp5XAaVg1s+bdgt13OY6olSQyj1f4XS0rpVTp08smzIWyHzH3VbUX6bdFHarkmdF1KUtp1PvqJQ7aznsb2STNY4K7jlemyatonJifGstmqvSHdi2RDSsPz6lWWxfi8LVRem312tv5vIDUP7ylBn127pkxNyYM/XRMT7CeLqtZ7H9gYukamWS1Unqc6u3c6StiLiLMk5OTGe911Ste9DBx7Ier19e5e0tG6Vzq7dcurkESdftZs2y0N7vx1x3HJN5InFUcqv2NKp2aLMrQor40J/Vz3zJpf2kk9a8zV4rt8Zux/VvoM9cuq5I87wC9U+9QuFKJ/xKoco7THKMT02Opw1H0ftvxDl3dJ6h7OARva8rfA24HWecc8BKuRxGVQObvm0Ya+6ND2HjY2OOMGW18VioXpaG5uaZfBc/7LzZCHzH7UtRPltcperSHDbNanzQorStvPJVxB9KJg9N+yOrGXy8zk2TdrE5MXxrBtIInZ7cw9RDcuvX1qK9XtZqLow/e5q/d1EbmKWZVmlTgS8+Q0lcstlAYVip3vm0lRB5hTkmw6R8PIr1r6Lud98ynil62el9zc5MS49h/aW3Thzk/YYdEyHta1yOf4KUQ5h2ymn+sVypr9NYW13tdZ5uR+TUfMwOTEudfUNoXVgmt+VrNfV8tu5FtrM9YJACsCa4l5NCgAAoBgIpAAAAADAEItNAAAAAIAhAikAAAAAMEQgBQAAAACGCKQAAAAAwBCBFAAAAAAYIpACAAAAAEMEUgAAAABgiEAKwJo0Njoi6dRs4Gf6ek/IzPRUqZOas3RqVsZGR0qdDPhYbe1rNR8z5ZouAGsbgVQZGzzXLw/fd1fghVKUz5TC5MR41t/p1Kwc2PO1Za8DYXJtO0cPd4d+Z+BMr8xcer/UWczZ5MS4HD3cHemzYeeKvt4TcmDP1+Th++6SQwcekOGhCyuS/nJS6PNUKdtXLnkpx2Pm4fvuCvyn2nOx01VubbVc07TaDJzplZ5De0M/p46nsGCda53rD4FUGUqnZuXUySMycLY3r8+U0vFjT2X9nayukcamFqnduLnUScMqQ9vJT5RzxeC5fhk81y87d+2XZ198Vdru7JDjx54q+h1+93mi1NZSW1sreXn2xVedf+3bu6SxqTnrtcam5hVJR7m11XJN02qSTs3KwNnT0rljd+hnk9U10ratQ06dPBL6ubVw3CE6AqkyNHD2tKRTs/LQ3m/n9Zli0O9mj42OeN7dnpme8rwAa9vWYbwtr6EmuQ5nKuS23HlQ29Hz7fXaSoqSX/f/55NWv2FBkxPjke/O+aXH3XbWkijHQT6inU96pbNrt7S0bhURkfbtXdK+vUsGz/cXLd9+5wmT7+ejHNpaMY+Zlc5LOSn0cZRLW41ybs23/Uf5fiHP8UFpyUexz4F+Bs/1S119Q+RgvP3uHTI5MR6avuv1uLteVZQ6AViu/e4dkqyuyfszXvp6T8jAGfvOdLK6Rtrv3iHt27uc9wfO9Mrg+X6ZmZ5y7sB0di3drTl6uFt27tovfb0npK6+QWYuvS/p1GV5aO93pLGpOWuo0cP33SUiIvsO9khjU7McPdzt/H+UbanP6N8RWRrO9OyLr0ZOd9RtDQ9dkIEzvc5FTO2mzdLSeseybbnLY+BsrySTNTI5Me6U5/DQ61mvubcxPHRB+nqf803zzPSU9PU+J5MT4zIzPSW1mzZLZ9eDzsVuWFqj5Pfo4W7pfuKYHD3cLXX1DVK3pcH5flj63AbOnM76vl5GnV277ToOyZNfetx5CduOe/9joyOR8hCWb9P2ESWtUY4D/fgdPNcv6dSs1NU3RPrBDjtXqAsyr7KbvBh8MR90PgnKd9B5IqzdDZ7rl77eE1K7cbOk07PORVztps3yxDPPL7bFaOeDKG0tKJ8m7dBLMY8Z9V4ux00hjxn1vulxk4ux0WE5fuzJwOPI9Lzm11ZrN96Sc71EacNB6Qw6ftzyOccH1dvD990l3U8cy+q5Vt/XzzdRj8Wwc2BYGzKtV/UddQ49dfKI5zlVfz1ZXSMtrVtlbHQ4MPjSj7ti/GagzFgoa3vubbfefms4789YlmW9fPq49fSjj1iXPvidZVmW9fZbw9Z7F98JfP/pRx+xXv3J6ax9Hek5aKVmLzuvvfTc96ynH33E+fvtt4atPfe2h6Yzyra88ubefpR0R9nWexffyfpMavay9cYvXgss2z33tls/+v6Tzt9v/OI1a8+97dZLz30v67Vv/dVXs773+s/OZqX5vYvvWE8/+oj18unjzmdSs5et13921imfV39y2tlOlLRGKTtVByodJulze/1nZ5flU+Vd5SEoT0HpceclbDte2/Jrz/p2g/KdS/swyXPQcWBZ/u3c61jzE6VNhL0elB79fBKWb6/th7U79R19Pz/6/pNZx6DJ+SBKWwvKZ5S6DWofxTxmvPZvuq18jxn1dy7HjV+bO9Jz0PM9dS4OOo5yOa+pcnC31VzrJUobjpLOsOMzLB351tuee9uzvn/pg98tS6PpsehXd2FpyaVeU7OXrT33tjvfefUnp61Hv3V/1mcuffC7ZXUV1Ab1/KjzRDF+M1BeGNp3HRk81y/t27ukdpM9drexqVnq6huy3u/csTvrfa/hPe3bs+9wqzvMuSjEtqKmO0wyaadDpUfdfQrr9tfvYKk7Rvqdo5bWrZJOzWblq6/3hOx8cL+T5rr6BjvN55bSrO6qqfS0b+9ytpNrWv3Sr9Jhkj43vadMGRsdkZbWrVnp9MtTUHqW1VWE7bi31djULG3bOgLbRVC+cy3zKGmNchx4Hb+Nt63M/BAvYeeTqHUUtfxFxLk7q++nbVuHjI0OZ6Ur6vkgSlsLymcuedSt5DGTy7byPWZEcj+v5kLPmypf0/NuVLnWS5Q2XMh0+qWjEPWmHxe1mzbbbUVLo8mxGHQODEtLLuWl9xCpMpqZnsqqv8Hz9tA/va7q6hsiH9/F/M1A+WBo33VicmJc0qlZaWxqCXk/+wBvad3qdN1H+aEuXb7yT3ftps2yc9d+ZwhES+vWrAuafKm5ECrNYSsFqYmwkxfHs06ialhXodKarN7gWaZRVjLK3o4a9jDiBI+D5/pl38GeSHnyS49p2QTlrW5Lg+94/rB859o+oqY1iEqbe2hHY1OLM+RsJYWdT3LJd5R2V7elQdKpyzI5Me5c3IyNDjsTu03PB2FtLSyf+dbtSh4zuW4rn2NGpPjn1ahyPa8VsixVeUZpw4VKp1c6ClVvXm3F/TtX7N/mQpWXCl7Uojsi9vD89ru7XJ/bEPn4LuVvBlYOgdR1Qr+DGvR+OjW74j9whchXodLdtq3DGQOtxrF3du0u6ORRleZnfvDjwDT3PLZXGpuaZeeupTttajx8MdMaNX1eWlq3OvM7hocuSO2mzVk/pGF5iirX7QStpBQl37mUeSHyrN8RLTR9/ox+YZNOXfa90Ak7n+SS7yjlX1dvz+9QF0119Q2SrK5xAo9Cnw/C8lmIul2pYybXbeV7zIiszHk1TD7ntUKVpUpHlDZcqHTmUxam9ebuuRFZud/mQpSXHeQ9KZ1du535SfnOSyrVbwZWDkP7rjNBz4ZJVtdkDS9Qn09W15RVb5T77mg+6fa606ruEu872COdXbulr/dEwfOQrK4JrAu1upJ+Ii1EWqOurhSWPj+NTc1Su2mzDA9dkOGhC9LSeodxnsKYbCeduuz67nBgm4iSb5MyL1SeFXfa3PnLVe2mzctWopqcGA8dguJXVrnmO0r5Dw9dkM6u3fLsi69K9xPHZN/BHtdd8sKfx7zSVKi6XYljxmRbxThm1OeKfV6NkoZCPB8t33qJ0oaL/Ry3QtSbu624t1foY9EvLbmUl34DSX8tWb3BORbdQ0VVnk3TXsrfDBQfgdR1pLGpWQbO9Drdw+7lU9u2dWS9PzkxLgNneo3vGi4NV1haGjxX6gJDGRsdWXbCjJruKNvSl4dNp2Zl5tJU5GEzJtq2dUhf74ms8tfT4y7DmempZc8MCUtrlPzmmr7A797ZIQNne2VsdETa7lyqgyh5isJkO2qFO5GldqFfqJrm27R9FCrPIuKM+dfzk+uciWXbvrtLBs72OnkbHrogg+f6A+/GBp1PouTb6zwRpd2p1eSC6rAQ57GwfBaybot9zJhsq9DHjPrb77g5dfJI5IdK5yvX85q77DYuXuDmWi9R2nBYOvP9nc233kRk2flneOj1rOOskMdiUFpyrVc70Mu+gdR2Z4fzXa8bSfqQzHzT7aWQxzxWBkP7riP7DvbIqZNH5MCerzmv7dy1X9oWfxQ6u3ZLn5xw3o+6hKhbsrpG2rd3OT+OnV27s5ZYN/HQ3m/L8WNPOd3adfUNsvPB/VnjoaOmO8q2xkaHs+ac1G7aXJRndam0HTrwQNbr7du7nDHUailmlY7OrgfthSYWf4DD0holv7mmL0hL6x3S13vCudOuRMlTFFG3o9pBz2N7Iy+JG5Zv0/ZRqDyrtOnHr9p3IeZStG3rkJlLU06+VbqDeqSCzidR8u11nojS7lpat8qpk0eyHoypykINmyrEeSw0n4vbLETdFvuYibqtYhwzIsHnqnRqdsXmfuR6XvNrq7nWS5Q2HJbOfH9n8603EXtO1KEDD0jtxltk5tL7kkzWZM3vK+SxGJSWXOu1bVuH5wJFhw7cL8nqDZ7fHXtrxCgQLOVvBlZGzLIsq9SJwMrSn1nhRf2oldNBG2ViatR0h21rJeeJqTtUuc6BiZLWfBYKyTd95cK0DILyvdrmEZrIJW9h55Nc0+FV/n29JySdms16Vo165oqIZF2gFPo8Vox8lrNCHjPqfa+6KMXxVMrzmmkbLnY6c623h++7y3me1syl90VEfG+8FOpYDGsrpuU1PHRBTp08Ik8880LWdnsO7ZXG25qXBXxjoyNy/NiTyz6fb7qxujG07zpUu2lz6Jj3cjvooy7tGyXdUZbWXinJ6pq8fiQLkd9ipq9c5DKm3S/f5XZsFFIueQs7n+SaDq/yt4eZZa96pRZn8Jo7Wci6KkY+y1khjxn1vsnrxVTK85ppGy52OnOtN3fag3qvC3Ushm3DtLxaWrdK7cbNMnD2tPOaWgJdH2Kr9J0+4TlvKt90Y3UjkAIArAruSeXp1KwMD12Qvt4TK7oCHJAr2nB52Xewx3m8QTo1K329zy0bYqve69yxO+chwli7GNoHAFgVZqanZOBsrwwPXXCGC6mHxua7TDGwEtZKGz56uFs6d+xeEyMWVH7GRkeksalZHtr7HXqREBmBFAAAAAAYYmgfAAAAABgikAIAAAAAQwRSAAAAAGCIQAoAAAAADBFIAQAAAIAhAqkyNDY64iyLCnhJp2ZlbHSk1MkoC329J5Y9yHI1bLvc01EueS+UcjmvFisdnBMKh7IEEBWBVBk6erhbJifGfd9Pp2blwJ6vBX4G5aeQ9TY5MS5HD3cXfLvufRQj7YU2cKZXZi69X/A8F3rbuaahVOnQ91ns+l+JdhV2Xi0Gr3IrVjr0c0LY50qlHM8ffumMUpYrze84XC3l6mU1px0QIZBalZLVNdLY1CK1GzfnvzGsmGLVW7G2e/zYU0XfR7nR83w9p8Gt2PVfjnkuhHI8bkpZ1mu1nleKX3tazeW6mtMOiBBIrVpt2zqy/taHIYyNjuQ8LMG9nVyH9hRqO0Hy3WahysxEserNvd18zUxPLSvffNMepb4mJ8aXfW5yYnzZXcuZ6SnPO5n5lKFXngu17ajHQ1ga8k1HPkzbWNT2ESXPYftxD5Vb6aFZQfVb6GMzH/mWdSn27Ve26nVV1/q2vV5b6bwWi7s9FapOTX6zC/W7Vcr2CBRKRakTAH9HD3fL2OiIJKtrpG1bh3R27c56b9/BHmlsanb+3rlrv/T1npC6+gaZufS+pFOX5aG933E+I2KfuPp6n3MuWGs3bZbOrgelpXWrs53uJ47J0cPdUlffIHVbGiSdmpW6+oZlJ/BTJ494vu63HZX+4aEL0tf7nMxMT3nmbXjoggyc6XUulGs3bZaW1juks2u3PHzfXdL9xDE5fuwp5wSsvp+srnG2MXCmVwbP9/vuI2qZBaUlSl68yiWXeuvrPSGD5/p968K9XfWdgTO9ImLfyWy/e4e0b+8KbQf6sJaH77tLRET2HezJOe2D5/qlr/eE1G7cLOn0rFNvtZs2yxPPPJ+Vj8Fz/ZKsrlnW1ms3bpbuJ45lt70tDVJX3yAiImOjw3L82JOB6QiqK788R9122PaDjgfFLw1qP/nm0U9QOwlrY2F5DmsfYXnW9+N3HHqlS2332Rdf9cyH33k17Hj3K6ug+vVKX1g6otRl2DnBLaiso5wvdWG/Iyb7DsunX9mq9jVwtleSyRqZnBh32u3w0OtZr0U5BqKUZVBaC/nbFLW9Rz1+ouw3yjlK/2yUc3/QPk3SDpQ1C2Vnz73t1pGeg9alD35nWZZlvf3WsPX0o49Yr/7kdNZn3n5reNl3UrOXnddeeu571tOPPpK17dTsZev1n511PvfqT05b3/qrr/ruW33m0W/dn7WdSx/8ztpzb7v13sV3IuVBef1nZ62nH33Eef29i+9YTz/6iPXy6ePO33reUrOXrTd+8Zrz955727O+f+mD32V937Is6+XTx7M+41V+UcosLC1hefErF9N688vPnnvbfbfr9R29rsLawdtvDWdtP9e0q+3o+/7R95+0fvT9Jz3LR5Wp/n2VV5WX1OzlrLTsubfd+tH3nwxMR5S68stz2LajbN/veHDzSkMh8+gW1E686lv/O2qew8rOL89KlHOCnq6gugw6r4btJ6ys/OrX77gJOj+FlW2Uc0LU9hX1fKkLO39E3XeUNutXtuqYUN74xWvWnnvbrZee+17Wa2HpilqWUdp7IX6bTNt72PETdb9Rz1H6Z3P53dL3GSXtQLljaF+ZatvWIbWb7HHQjU3N0ratQwbP9wd+p337jqw7X6p3QafuCqnPtW/vknRqNutz+r7V3+6hVIPn++27Vos9AmF5UPp6T8jOB/c7r9fVN0j79i4ZPGfnLZmscdKp/tvSujXrLlX79i7n+7WbNttlc26pbAbP9Uvnjt1Z5de+vcuz/ILKLCwtYXmJKqzeBs/1Z+W5salZGm8Lvmvn9R29rqK0g0KkXd2t1vfdtq1DxkaHPben7rKqoVpjo8PSeFvz4p3r153X7LkCzVnbDEpHPnUVtu2o2/c6HkwUI49h7SRIlP1FOSeFiXJOMClDv/Nq2H7CysqkfsPO72Flm8s5wY/J+dKpkwKdP6K2Wb+y1XuOVG+Y3ivW0ro1NF1RyzJae8//t6mQ7d20jk3acJTfLdN2BaxGDO37/7P3f6FtpGnD/3kNzJGk8JsDx4xPtM6BwOBmdyxYLwtub/tgFXAMj/ZpUMDQmSQO7JO0id8fE8aGdKdpk9DOS+AZZ/zrORg77m4YgwXD6GFsQ3QwzrjNwvhl5Fm2xYj2Qdw6GPfYhndeIulUe6C+y1WSquouqfTH8fcDIbYs3XXdf1Sqq+quW10qELxk+T18JeLLXOJSsSDpzXXJvz6wfMCY7zGo3rb60Nzd3pLJWzMiUpk6EbuWcNxWdTnqAHnh0bTta3p6+2Ty1owxvSA6PCrR4VHLDrte26j41TaqP3Siw6PGlAvdDwqnWHTq4ge1neopMwODUWOKkd1rBgajtuXqjAM/VPrmjeQPDyzT8OxuvldJV2ZvR0bGxiWz97XEE7clELgkmb0diU0kJJfdd6ybXXu0qq90y68et52Iod5rvLRlM9trlM4+QZfTflXn/e7UVl761ykOt7ZtZJ9gp9H9pR/7Dy9jqNn3jl1cum3Z6Hu8kc8mP8e7l+360c6NbBM470ikzgm/Vn1a+GRaBgaHZPLW2Zk1NT/ZSWUH+FjiiSljXrzdfHg76kD62W9+7/ihMDI2LtHhUcllM8b9NfHElO28dfNZYfVzqVho+IPHSyxudWmW7tWBeq9xiqvRcdBILPHElHEAEu6PSCAYMu4/qmfgnSFjgYlS8Y1Eh0d/uCdjxbiJfOQ9/Rv4dcddM3VsZfmtikFnnHRLnb3uE3RV71fdttOquprjaGfbNrq/9GP/0U3vm1bF2uhnk5/j3e/PxG7dJtApTO3rUqXiG8vvuWym6TM4aiUe84ef7lWugcEhCQQrVwXU1YLGzgiHJLO3o/W86PCo3J9dkHhiSlLJFdu2qS4vEAzVTB3L7O1IIBhqqA3tYtGtix+qt1PdBjqvUZoZB43GHk9MyedfvZS5+SW5P7vgOHbC/RHJvz6QzN6OkayrK1XpzfUfkvh3PcXQ6r5q51jwO4ZG4253nZ32CdXsxrPOftVpO37V1y0OnbZtZJ9g165e9pd+7j+64X2j6mtWry11YvXzs8nLeHfj92dit24T6AQSqS6lVhASqVwmT28kPR88VjubWlVZqvT0+MjTdziMvDcuuey+ZPZ2Gp6vPTI2LqnkiuWDV5Vp/l39vVQsyOnJkWXKQfX8+cze15YzdSNj45LeSNa0XyNn85xi0amLH9Q8fHN93O7tUStxqdeYl5nVGQfVz2lmyp9amUyXmmuf2fvaMs4G3qncJ6Wmv3ih01fN1NmvsdDuGJzGSTfV2el92NPbV7P/sIvBbb/qtJ1m2sprHG5t28g+wa6tve4vG/0csdt2O/ahTnTbUidWvz6b3D4D3dq1Xux+fSbq0tmmXexrq4td+YXIQD1M7etC6p6khU+mPS1jrFOuWj5VRIwla/OHB1oHuiNj4/Lowc8lELzkeVqfourw6MFNy+OxiYRRZi6bscxP7+ntkzvTD43fw1ci8ujBTem5/FM5PfleAgHrVLF4YkpSsiIP7r5vac9G2s8pFp26+CGemJK11UWjPioGp/n692cXLK8REZm8NSMjvX1a4yAQDBnLOpvr2ojo8KisrS7K2upiTTvaTa1Ri05U3zie3kjWXZpbpw1FnPuqmTr7NRbqxaBb30ZicBon3VRnp/fhnemHsrz0xJhaFu6PyOTtmZr3h85+1Wk7zbSV1zjc2raRfYJdW3vdXzb6OWK3bad6toNuW+rE6tdnk9tnoFu7Vr9//PxM9NKubtu0i71ULPh+vy7QKj8ql8vlTgcBe912U+bCo2kZeGeo6R2wOstmdyBtN7f63o2rcn92wfigEhHbq2NqR9zsHG23ed5udekk8430naDuazJ/l4r6DhoRsT04aJVW91U3jIVGYmhmnLSrzm7vQy/7Sqfn6myn0bbyGnM7x5Nf+8tGt93p902zsfr92dSK+4s60ceNbJN7q3CecEWqy3VTEqWWQPfj4DcQDEk4GHH8u1u7uLWNXztit3Lc6tJJnR4/6Y1kzT1RPb19MjA45HmZeD+0uq+6YSw0EkMz46RdddbZJ/hRXz+300wcKpZ2jadOHrh2w/vGr1j9+mxqRX90oo8bvZcaOC+4RwpaSsWCpJIvZGBwqOMH5zg/qm/QLhULktnbkVRypaXz8wEAAFqNK1Jw9fzp3A/f3TMkd6Y/6mgsldUDOVt1Xsx9uiTpzaQ8uPu+McVDLZvcrnsgAKDV+GwCLibukQIAAAAAj5jaBwAAAAAekUgBAAAAgEckUgAAAADgEYkUAAAAAHhEIgUAAAAAHpFIAQAAAIBHJFIAAAAA4BGJFAAAAAB4RCIFAAAAAB6RSAEAAACARyRSAAAAAOARiRQAAAAAeEQiBQAAAAAekUgBAAAAgEckUgAAAADgEYkUAAAAAHhEIgUAAAAAHv240wHARfaVyN4fRE4ORY4PRXr7RYI/ERkcExl8T+Ryf+u2/d//7eznX/5Xp1sCAAAA6Bo/KpfL5U4HARvJT0Q2f2X/91/+VyWZapWf/29nP3/5vzrdGgAAAEDXYGpft3JLokRam0QBAAAAsMXUvm50cmhNoi73i9xarCROxX+JHP6t8j8AAACAjiCR6kYb/3n2c/AnIp/+ufK/+p0rUQAAAEBHkUh1o+yrs5/fu3mWROk4ORTZS4kcv668rn+oknhVl5F99cOVrf9Z+b1/SGQ4rr+dV1+IbK9WyhCpXDUbjp8tggEAAAC8xUikus3h3yrJkDI4pv/aV1+IrM7UPh78icjNxUqic/i3ymp89aYGfvGTytUvt5UA623HPB2RRAoAAABvORab6DbVCY5uUnL4t/pJlCrzi5nK//0/c9729qr7tszP6f+ZyLX/dhanl8QPAAAAOKe4InVeZF+JZLdrH098Wvl/03Rf1XC8cgWq9C+RpZ+fLU7x6otK0pP4VCTwk7OpfOYVAs3TCu2o6Xzq/i2l+C9v0xABAACAc4orUudFdruS7FT/U/ZSZz8nPq0kNJf7RcZuWcsQqdx3Zb4fynwVSSVJOlRyppBEAQAA4ILgitR5MThWSVxODmuXP69Ofsz3OJl/Nj9PLUpR/J9V92S95x7LcPwscVudqSRo793i3igAAABcGCRS3S77qpKgqH8itV/W67Q4RK/pb8V/Vf79Hz+3n8Kn8/1UiU9FXv/tLAHbS1X+qWmDAAAAwFuOqX3dpvqqjs5UOy9T6jb/8yyJ6v9ZJfH55X95K+tyf+XeqPduVpX9K+sUQwAAAOAtRSLVjcz3L22v6l0lMjMnX69NP1/ut97TNP2ldcU9L4I/Ebm1WEmozCsBmhe9AAAAAN5SJFLdyLz4w8nh2dLlImf3SdW85r2zn/f+cPbz/zD9fOVn9ZOyeuVVs0vm+n9mvaLlZbEKAAAA4JziHqlu9N7NypUolZSoe5DUtLt6Sc3g2NmUPfMUO3OS9N4t69S71ZlKIqQzHe+//1slWUt8evb8wfcqMZnvt2LBCQAAAFwAJFLd6pf/JfLJ/8OaCFUnUOYpde/drFyJUslX9VWm925WkhzzinvZV2dJ0OX+2tcEf3K2zcO/Vf4lPq1M37O78sQX8gIAAOACYGpft1Jfdpv41JowiVSSIXV/kvn5v/yvyj1P5lX8+n9Wee6txcrvH/5wX5S6unW5v/I69X1Tx4dnr/3wy7Oygj+pbNduaqFIJVGrXoACAAAAeAv9qFwulzsdBLpA8V9nV5n6f+a8et/JYWURi8P9s8f6h6yLZAAAAABvMRIpAAAAAPCIqX0AAAAA4BGJFAAAAAB4RCIFAAAAAB6RSAEAAACARyRSAAAAAOARiRQAAAAAeEQiBQAAAAAekUgBAAAAgEckUgAAAADgEYkUAAAAAHhEIgUAAAAAHpFIAQAAAIBHJFIAAAAA4BGJFAAAAAB4RCIFAAAAAB6RSAEAAACARyRSAAAAAOARiRQAAAAAeEQiBQAAAAAekUgBAAAAgEckUgAAAADgEYkUzr1SsSC57L7t31PJFTk9Pup0mF2JtukebuMY/shl96VULHQ6jLe+7udh33IeYgTQ3UikLrjd7S25d+NqSw7gctl9uXfjas2/50/npFQsyIO770v+8KDp7eQPD+T50znbv6c3knJ68n1L27EbNNKmF6VtnDQzFls1jv0st3obbwudutRrx+dP53xth3a0qV/b8LvuTs7DvsWPGKvbs1XvXQDdiUTqgioVC7K2uijpzWTLt/X5Vy8t/+7PLkggGJKBwaj0XO7rdFO8NWjTxjTTbq1q81aVu7z0xNfyOkmnLu14T7SjTd+mfnvbVPcN+2HgYiGRuqDSm+tSKhbkzvTDjsUwMjZu+d18VSyX3W/ZVbJGy80fHtRMA8kfHtSceTw9PurY2cjqNj0P/Op39To1Rc7cV/UeM2um3Vo1jv3uy9Pjo4anMVXXqVXToXTbrl5d7GJspB3rTYGrN/WymTbV1Y5teG0b88+641u1n93Uwmbev15jtivHLcZqdn3TzD6hm/oagLsfdzoAdEbs2nUJBEMdjeH50zm5P7sgA4NDxu+Tt2YklVyRcH9ETk++l1LxjdyZ/sh4jkhlXvvu9paUigUJ90e0DpRy2YwsLz12LFekMtVj99WWnB4fSSAYkpGxcYknpkSkMg0yEAwZv6uYey73ydz8kvHY2uqihK9EJNwfqYkjs7cj6Y2kkWj19PZJdPhdo0yn7Zvrn96oXEkMBEMSu3ZdYhOJum16enwkqeQLIwns6e2TeOK2RIdHtfsps7cjqeQL25ic4tGpk26/65aT3kxKIBCS/OGBEUdm72vLY9VtWt1uOvVq9Tj2EpNbP5unDd67cVVExChbZ8w9fzonc/NL8vzpnIT7IxK+Eql5jk67+TEW7OpiF2O9dlTbymX3beOofo3a7udfvXRtU7f3jNt+oHqbjfabHae6u40l3fFtVioWKv1yJWL7nEbfvzr7OJ3xaxejXV869U0j+4Td7S1JJVek53KflEoFI6Hq6e2T+WdfaPUrgA4o48K7+0Gs/PdvMr6X+/dvMuW7H8S0t3v3g1h5cWG2XCy8MR773YtflT/7+EPj9z+sL5c/+/jD8sk//2Fs47OPP3Tdzm9//dixXKeyX/5xvVwul8tf/2nT8hrzttVrioU3tu353etvLX8rFt6U//qXPxu/u23f7jnfvf7Wtk2LhTflr/+0adT95R/Xy7/4j3/X7ntVZ7W9715/W/7s4w/Lf1hf1opHp07N9Ht1Ob/99WPj97/+5c/lux/Eyr978SvLY+b627WDW72cXuvXOPYSk1s/q+dXv0902tVcJ/U8O04x+jUW7OpiF6Nd/7jFUf2+qLfNeo+5vWfc9gPVmum3ajp119ln6PSRqmOx8Kb82ccfWt6HdrE18v7VGftuY8MuRre+tPuM87pPUOWY9zG//fVjS3sA6E5M7UPLVS82kUqu2D43NmG9UhYdHrVMk9vd3pLYREJ6eivzzwcGh2TgnSFxMzI27liuKjt+fcpSdmwiIbuvtozf84cHxrSPXDYjA+8M/XAG+mvjscoc+dqYAoHK9lUcgWBIosOjljOSTtu3q3+9K1/GNn84g6q2GZtISKlY0J56mEquyOTtGWN74f5IJabtLa14dOqk2+865Ziv6qgz0uYz09HhUa36e23naq0Yx04xNdrPuu2q2lY9r5EY/RoLTnRirH7ewOCQjIyN161zI9zeM277AR1e+s1r3XXGkpc+SiVXJHwlIpO3ZrRiM5dp/l/9XB2L7th3Ght2Mbr1pRdObaaupJn3MSNj45LLZjxvB0B7MbUPLaemwjRLJTHV09IGBqPGVKJmy64+mIkOj8ry0hPLB11mb0dGxsYls/e1xBO3JRC4JJm9HYlNJCSX3ZeBwWjdbfT09snkrRljekl0eFSiw6MSCIa0tl8qFX54TlR0lYoFSW+uS/71geXgQuceABXTwqNplzaLuvzduU396hsvnOrvVq9mNTKO3WJqpJ+9tmsgeEmrXvVibEUf1uMWo93zwlcivtyb4neWgxMAAIAASURBVPaeEXHeD3jZRqNt6Vb3ZvYZ1VLrK5I/PJD7swtNt62ZORbdeO3Ghl2MOn3pl/CViJSKbyR/eGAkU7lshgUrgHOARArnhpcrAo2WXSoWHA9oBt4ZMhaYKBXfSHR49Ic5+ivGjcoj79nfszUyNi7R4VHJZTPGnPh4Yso4E+u0ffPVB10Ln0zLwOCQTN46O6uq5vPrtsmz3/zecZtu8bq1qV9945dG2rmR8v2MqZF+9rtdnWJsdx965dcBq+57xm0/oLMNv9qyuu7N7DNqYr1SuR8ptb5irNbqt2bjtYtRty/9EO6v3LOlkrZwf0QCwZDvCSgA/zG1D+dOZm/H8nup+MaXcgPBUM1UiszejgSCIcvUjvzrA8ns7RhXFNSVqvTmupweH0l0+F3X7USHR+X+7ILEE1PGVEed7dervx21OpX5AMPrWfdAMOS6Pae/69bJj77xm247+1W+zjiuF1Mz/dyKdrVrt070oZ3qts5lM64xeGlTnbFjtx/Q3UajbelUdz/2GWbR4VFjUQcv9dPlR7xOMer2pR8yezsST0zJ51+9lLn5pZYlngD8RSIFW2uri45fdNsJan66mraRPzxoaL56PSNj45LeSFrKTm8ka+bt5w8PJLP3tWVqzcA7lfukenr7HA9kzEvvlooFOT05Mqac6GxfrdalnuO0NPLZFJF947lev49mZGxcUskVyzZy2X3j4MItHp06+dU3fvLSzo1oZBzbxaTbz9XPKxULvrerU7v5ua16dfGiuu3TG0nLCZCe3j7LAbR5zOu0qdN7Rv1utx9odb851d2PfUa1QDAkk7dnJLO349u+2q5tGo3XLka3vmx2HJqpVRQBnC9M7YOtUrHQ1AdDK8QTU7K2uigP7r4vIpUDnjvTD32Zxx5PTElKVoyy7ZYUVotOVN8End5I1l0e2yyXzVjug1Hx627//uyCpf4iIpO3ZmSkTvKmlmpXybBaFjh/eKD9ga22/ejBTcvjsYmEcTbdKR7dNvWrb/zipZ0b0cg4to3ph3Zw6+dAMCSxiYTxvHhiyvd2dWo3P7dVry5eXjsyNi4Ln0zbLh1+Z/qhLC89MaaIhfsjMnl7pqZ/7NpUxP49I+K8H9Cpa6Nt6VZ3P/YZ9aipa2pRB7+mafsZb70Y3fqyXt+4fQbYiQ6PytrqoqytLhqPqXHRymntAJrzo3K5XO50EOhO3Xo/QzvqLdK6e2Tc2lVn++bvGGlXm5yeHNl+oLvF41ebtrpvvNarE1oRk9/t6hRju/vQLU6ndmxmEQy394wf+9dm2tKvBT4uAre+bJa6xzaemDL6Un0/lojYJtkAOo9ECgAAoEPu3bha90ujd7e3ZHd7y/KF7wC6C/dIAQAAdEj1ohalYkEyezuSSq607D5QAP7gihQAAECHnB4fSXozKZm9HWO6pvqy5OrvmwPQXUikAAAAAMAjpvYBAAAAgEckUgAAAADgEYkUAAAAAHhEIgUAAAAAHpFIAQAAAIBHJFIAAAAA4BGJFAAAAAB4RCIFAAAAAB6RSAEAAACARyRSAAAAAOARiRQAAAAAeEQiBQAAAAAekUgBAAAAgEckUjiXUskVOT0+cnxOqViQXHa/06E2pZE66LSNH6857877+Ghln3XDeOhUDN1Q91bUox31ymX3pVQsdLrqXRPHRXXe962AFyRSF9Tp8ZGsrS7Kg7vvy70bV+XRg5uS2dvxdRu57L7cu3HV8u/Rg5uytrro6UOuVCzIg7vvS/7wwHgsvZGU05PvHV+XPzyQ50/n2tuwPmukDrpt4/U1XmI+D8xtW2+MdXs9W9lnfpZ9nmKo3m4j46LR+jarOtbq9mtHez5/Otf290W9PmplHJ1833d6n+Mlzm787LV7P5+XdkV3IpG6oNZWFyUQDMmd6Y/k2W9+L9Hhd2V56UlLzlh+/tVL+fyrlzL/7AuJXUtI/vWBrK0uar8+EAzJwGBUei73dbrZ3hrLS0/OZdmt0sgYO4/17Oa6dEMM1Vq57/G7vhd1P9nuendynHbje+Q8sRsrtCuaQSJ1Qd2fXZB4YkoGBockEAxJPDEl4f6I7L7aatk2e3r7ZGRsXGITCcvVr3rTMKqnBoyMjXe6yYxYzfGZE896j3Wj0+Mjxxhz2f2Gp2W4la1bhl1c5p/9bmcvY8yPeprlDw9qyssfHtScKT09Pqp79rSVfdZM2bp91soYmuV131Nd53px64yfRsZEq/aTOvvodrAbT+36fPD7fd+Obdu1WTd/lrVyu9VjpZN9irfDjzsdALpHIBiSQOBSG7ZzSQLBkPH786dzcn92QQYGh4zH1NSAz796afucaqnkiuxub0mpWJBwf8T1w/X0+EhSyRfGAUtPb5/EE7clOjxq+5rnT+dk8taMpDeTEgiEJH94ILGJhIiIZPa+tjwWT0xZXpveSMruqy05PT6SQDAkI2PjNc/RrUNmb0dSyReOZdVjnnJx78ZVEakk1SIiuWxGlpceS7g/Iqcn30up+EbuTH9kaXOnNrMr26nPlHs3rsrc/JLlqqiqkxorz5/Oydz8kjx/Oifh/oiEr0SMOuu0h1vb1htjqeSKpDeSIlJ5f8SuXZeBd4Zs65nZ25H0RtI4sO3p7ZPo8LuufbO7vWWc0DDH03O5T+bml4zH1lYXJXwlIuH+iHafObVNs+PBrd2d+syvMdnI+6Fev6r3cbXqcaFT58lbM5JKrtSNW/d90siY0NlP2nEauzr76Oo2y2X367aP23vEqW/sxpNdvZ3i8DpunPpNZ99u5vWzx2nbjb4Hm/ksq6bzueUWp85ngIje56juWG7mMwswlIFyuXzyz3+U734QK5/88x++lfn3bzLlux/ELI999/rb8uLCbPkP68vGY3c/iJX//k3G8bXVz6n+/Q/ry+XPPv7QiP/v32TKn338Yc32zYqFN+Wv/7RZLhbelMvlcvnlH9fLv/iPf3es090PYuXf/vqx8ftf//Ln8t0PYuXfvfiV5bHqcuzie/nHdc91+PpPm5bnfff62/JnH39otGm99nTrF1Uv1Rblcrn8uxe/Kn/28Yee2qxe2TrufhCz1Onkn/+w1Ek9Z3FhtmaMurWHbtvqjKnvXn9rW8/vXn9rKaNYeFP+61/+7NgX1XUwt6OKT22/WHhjKV+nz3TaptHxoFO2XZ9Va2ZM6sRh5tSv9caB+XcvdXaKW+d90uiYqPdzvd/N3Mauzj66Xn9X7+fctqPTN/XGU726OsXRyLixq7POvr1aI5899bbdzHuw0c+yajr7Vt043T4DdNra61hu9DMLUJjaBykVC7K89ETiiSnp6fV/nrl5sYmFR9N1z0o3a3d7S2ITCSP+gcEhGXjH+aySOpulznbFJhJSKhZcbzw1n21TZxDNZxKjw6M15exub0n8+pQlvthEwjKVUrcOqeSKTN6eMZ4X7o9UytpublqmuS1UParbotE202Guu5oGWl2nkbHxmjGq0x6NjI96r1FXguoJBEJGG6n/o8OjWmc31dlRNX0ql83IwDtDP5xx/tp4rDLH/6w8tz5rZqz4VXa9PtOlMya91tFrvzayrdjEdde43TQ6JhrRzNitZu7vgcGhyvv4h/2c23Z0+kZ3PDnF4aUv3ejs22va26f9aLPvwUY+y+rV323fqv++cf4M0GlrP8cyoIOpfahMQbkSsZ3a0izz1I/84YGkN5Ky8Gha7s8uWA42GqUONqqnRQwMRo0pIvWUigVJb65L/vWB5cPCr2VzVTkqvuodeXR41JjGUCoVtOqgylp4NO1LjI3UqVVtFghap5WGr0Rqyq1+jk57NDI+zvosqh1/T2+fTN6aMabQRIdHJTo8qjXGe3r7JNwfkczejoyMjUtm72uJJ25LIHBJMns7EptISC677ymeVo4VL2VX91mn4jA/30s7NrqtZrViTDhtq9GxW63e+1hN1XLajm7f6I4npzj86kudfXu9BMaP/Wg734N2censW5uJ0/wZoNvWfo5lQAeJ1AW3troo+dcHxj0JrRbuj8id6Ydy78ZVyWUzjvcjeSmzEQufTMvA4JBM3jo7U6bmSftdZ5HKh5Hdzly3Dup5z37z+458MLSrzXTbRKc9Ghkf6jVe23hkbFyiw6OSy2Zkd3tLUskViSemtG6GH3hnyFhMoFR8I9Hh0R/upVgxbv4eeU//pvpWjpVOj8NG42i0XztVZ7/HhJNmxq6T6hXS3LbTqrY1x+FXX+rs2+vxYz/aDe9Bv/bROuV7aetWjWWgHqb2XWBqCfK5+aWO7IidzpI1sopO9fdglYpvbJ+rViQyf5C1cuWeQDAkuWymJt5AMGQ5Y6lTh0Aw5Pt3fulodZtV11W3jrrt4WV8eI2hOp7o8KixMmYquaL1unB/RPKvDySzt2OcYFBXJdKb63J6fCTR4Xc9x9KqsdKpcehHHI3G3e46t2JMuNVPd+zavfer31e5bKbmqozTdvxqX7c4/OpL3X37WRz+7Ue75T3otm/VjdPtM8BLWze6Hwa8IpG6oNSVqMpZm33LP/Nz/P5SvfzhgSwvPbHM6+/p7atZDt3rh4Oab22eBuA01/1s1bNKfU+Pj1r6XRIjY+OS3kha4ktvJC1nyHTrMDI2LqnkiuXD10ubVddddzqJTps1WraI1NQ1s/e11hlEnfbwOj5ExFiNS73GvEyuXT3NSwaXigU5PTnSnlaj7qPJ7H1tmb4y8E7lnhg1bcULnbZptM+aHYdmzYwbr3E49Wu76qxb31aMCTtOY9fLPrr6fZbeSFqSPaftNNM3XuNopC/r9ZvOvt2pDN3PHrtt+/UebJTOvlU3TrfPAN229rIfbmbfA4gwte9CymX3jR1WvURJ3dNUKhZ82alUT1kYGByyTCW8M/1QlpeeGM8L90dk8vaMp/nr8cSUrK0uyoO774tI5YP/zvRD2zLUssKq/mr52fzhQUuuzsUTU5KSFSO+esu26tZBvebRg5uWx2MTCa2pkoFgSGITCaPuugt/6LRZvbJ1770LX4nIowc3pefyT+X05HsJBEJaU0512sPr+BCpLINrfo2IyOStGRnp7bOtZy6bsdx3pbajSy0wUH3Dd3oj2dA9jDpt0+h4aHYcmjUaQyNxOPVru+rs5X3i95iw4zR2dffRar+28Mm07fLUTttppm+8xtFIX9brN519e3UZjXz22G3bax38prNv1Y3T7TNAt6297Ieb+cwCRER+VC6Xy50OAt3J67zvZtndmPs2UYmpH+2qzrQ1eo9YN7l346rcn10wPkBFxPMqS61qD/ON8rpxdNuNza0cK90yDr3G4bVfu7HOfnMbu1720U7P1dmOSGN94zVmv/rSz317I9s+D+PRKU4vnwE6bd2N+2G8nUikAHSc+hBliVoAuHj4DMB5xT1SAAAAAOARiRSAjhsYHGIaBgBcUHwG4Lxiah8AAAAAeMQVKQAAAADwiEQKAAAAADwikQIAAAAAj0ikAAAAAMAjEikAAAAA8IhEChdSLrtvfDu6k1RyRU6PjzodLgAAALoMiRRaKr2RlIVH0y3dRqlYkAd335f84YH2a54/ndN6fnojKacn37c07vOaqHlpbwAAgLcNiRRaplQsSHpzXeLXp1q6nUAwJAODUem53NfpKnuOe2RsXNZWFzsdSkOWl550OgQAAICOIZFCy+xub0m4PyIDg0MiYj+dLn94oH11I5fdt/ysruaMjI13uroNiV27LvnDA0u9vLJrE53nNrrd0+Ojc3slDQAAwA8/7nQAeHtl9nYsCU56Y13CVyIST1ivUD1/OifxxJQEAiFJJV9I/vBATo+PpKe3T+KJ2xIdHrU8d25+SZ4/nZNwf8Qo7/nTObk/u2AkbafHR65lqfJy2X3j6lB1bPXqlEq+kNPjI9fXrK0uSrg/UpPkmR8PBEMSHR6VXDZjxF4tvZGU3Vdbttu0a5N6nj+dk8lbM5JKrki4PyKnJ99LqfhG7kx/ZNm+0zbzhwfy/OmciIjcu3FVRMTS9gAAABcBiRRaolQsSP7wwHJwHR0elVRyxXKQn9nbMf4mIjIwOCSTt2YkEAxJeiMpa6uLNclPan1F5j5dkp5e+6l8geAl17LSG+syeWtGenr7JJfdl9T6iqQDSYlNJOqWubu9JbvbW3L/l59JT2+f5A8PZO3FoqRkpW7i0nO5T9KbSUsidXp8JLvbWzI3v2SKNST51/WvyKWSK5L7Zt/Ypl2cOm1ibvP5Z19KIBgSkUpil1pfMWJy22a4PyJ3pj+S50/n5POvXrZmAAEAAHQ5pvahJdRUPfOBvUpiVPIkUpleFh0elUAwZFz5UAf4sYmEkZCZjYyNuyYMOmWZyxkYHJKRsXHZfbVlW2YquSKTt2eM14T7IxKbSMjudv3XjIyNy+nxkWWbu68q0x3D/RHjsXB/xHZq4+72lsSvT1nijE0kauLUaRMlNnHdaBfVL5YYNbcJAABwkXFFCm1zNo2tkjyVioXKFZ7ZBRE5W5wi//rAkvRU31cVCF5y3ZZOWdXlhK9EbO/7yR9WyvGyAqFK5na3t2Ty1oyIiGT2vpbYtUTV8y7Z3jtWKhZqpsxFh0dleemJMWVRt010eNkmAADARUYihbaKDo8a90Rl9nakp7fPOGhf+GTamI6nDtbVPTheNVKW06p/6grSs9/83nI1R6e+y0uPJZ6YMu7Xqp6q6LbNUrHgaZvN6MQ2AQAAziOm9qElzIs+VD/e09snmb0dyeztSHT4XRE5W23OnPg0uiqcblml4puq12Vc7rsKWaYl6rZDIHjJqK95uqE5DrvtBoIhyWUzlscyezsSCIZadmWoE9sEAAA4b0ik0DKVA/La5bVH3huX9GZSctl9GXmvshCDuhKinn96fNTw9xTplrW7vWVMqcsfHkh6I2kkdvWMjI1LKrliScpy2X3X5GrkvXHjefVWtssfHljumareZnojWRNnK5d719lmdRur566tLhor+gEAALzNmNqHlhkZG6+7iEJ0+F1JJVeMq1MilaRLLWMuIsZy5fnDA89TzHTKUvcvLXwyrbWUuYgYf3v04Kbl8dhEwnG63sjYuDx68HMJBC/VfV7um33bxCiemJKUrMiDu+9b4nZbpr0ZOtsMBEMSm0gYbRxPTBkLetS73wsAAOBt86NyuVzudBB4O2X2dmRtddGy1HY38rqAQqlYkNOTI9urSPUsPJqWgXeGahKgXHZflpceu7aRSk7a2Y6NbJN7qwAAwEXB1D60THR49IfvUlrvdCiOvN73EwiGPCVRagl0NY3RLLW+Uve+qXrbbHeC0sg2SaIAAMBFwRUptFS9L+a9SErFgqytLkqp+MZY5p22AQAAOP9IpIAWef50TnLZfRkYHJI70x9xtQYAAOAtQiIFAAAAAB5xjxQAAAAAeEQiBQAAAAAekUgBAAAAgEckUgAAAADgEYkUAAAAAHhEIgUAAAAAHpFIAQAAAIBHJFIAAAAA4BGJFAAAAAB4RCIFAAAAAB6RSAEAAACARyRSAAAAAOARiRQAAAAAeEQiBQAAAAAekUgBAAAAgEckUgAAAADgEYkUAAAAAHhEIgUAAAAAHpFIAQAAAIBHJFIAAAAA4BGJFAAAAAB4RCIFAAAAAB6RSAEAAACARyRSAAAAAOARiRQAAAAAeEQiBQAAAAAekUgBAAAAgEckUgAAAADgEYkUAAAAAHhEIgUAAAAAHpFIAQAAAIBHJFIAAAAA4BGJFAAAAAB4RCIFAAAAAB6RSAEAAACARyRSAAAAAOARiRQAAAAAeEQiBQAAAAAekUgBAAAAgEckUgAAAADgEYkUAAAAAHhEIgUAAAAAHv240wHARvFfIpv/KXL4N5HjQ5He/srjg2Miw3GRy/2dj+//+LlI9pXI4Hsiv/wv69+zr0RerVaeF/yJyE/6RPL/P5Hcbv3ndzpeAAAAwAMSqW50cijy9N8q/5sfE6kkAsevRW4tdjbG7KvKP/Xzqy9E3rtZ+X0vVUlanF5rfn6n4wUAAAA8YmpfN1qdsSZR1QbHOh2hyJWfWX/vN/3+P/5Q+/zI/83++X4q/quSJK3OVK7m6cQLAAAAeMQVqW5zcnh25UREJPGpyLX/Vnn8+FAku12Z2tdpl/sr0+MO/1Y71XAvdfbzL/+rMi2x+K/Kv3rP99Pmf4ps/qry8/D/Sy9eAAAAwCMSqW5zfGj9/dp/q/x/ub/yb/C9Tkd4ZvA993jU3y9X/d6t8QIAAAAaSKS6TfWUM7U4gp3kJ5X/x25Vrvhsr1auXvX/rPJYvSsvr76oPE9NfXvvpsjE/27/3D3TVD1zuWrbIpUrZ4d/sz4mIvLf/63y/y//q/b5XraVfVUpv/g/f/jbUO2Vuf/+b9ZENPlJZaGL/p9Vtue2/ZPDytW049c/vG6o0vbBn9S29+BYpVy1IIiIyHu3amOqbuvL/ZXnDI6R1AEAAJxjPyqXy+VOB4Eq9/5PlaRIpHIQ/+GX9gfdP//fKv+/d1Pkf6TOXqde++mfrQnS6kzl4L7a5X6RZ/9f62N2z1XTDdW2RUS+/F+VZEclTtW+/F+1z9fZ1v/z/y3y/1m31suufubyzdQqfU7bV/dV1dvGzcWzBEmVMRyvJG3m+7BEKouAqEUs7MoUqbRfvWQOAAAA5wKLTXQj82pyxX9VkpPkJ/WTCeXVF5W/m5MmdYVKUavVmbejrracHFqv2Lz6on5iI+L/lRSnbY1M2r+uun6NOvybfcJT/JfIFzO1bb+Xqk2iRKxX1Myx9f+skjyptuuGBUMAAADQMBKpbpT4tHZp7s1fVRIqp9X8Ep9WriqZX2teuOKV6cD+2n+rXD0xf5+SOTGoTgI+/65S9odf2q94N/he7ZWeL/9X7WPV3LaV+LTysypL3TdWXb/qv/3yvyqPuX1n1OZ/nv08HD/bvqqnWgmw2rX/VinffGXJnHCp9lRXzhKfVmL5/Dum9QEAAJxzJFLd6taiNSkQcb5yInL2/LFb1tco5tX0rv3vlf/NSZE5KTG/7tZiJRlQ9/f4zW1b7920btd8NafeVSGvzO2S+PRs++Z2zG7Xvk4lUOZ+qhdPdSJmvucKAAAA5xKJVDdTVzDM0/Wyr2oXdKim8x1J5oP56gN7c0KlW16jdLd1cli5Kpf8xHplrdkrO9WJj7mtzT83krCZk7/VmcqXFFfXFwAAAOcSq/Z1u8H3KtPC/vu/nR3M76WaX6ig3sIMKqFq55fVum2r+C/nBMTpvjEdTt8n1Wv6WyPbSXwq8vpvZ9Mx91KVfyw0AQAAcO5xReo8CP5EZPrLs99PDp3vlWqUSmraOfXMbVub/3mWRKn7pcz3PDUbayvrerm/kgTXu9/NPJ0QAAAA5w5XpM6L6isngZ/YP9dt+phaDlzXXqo190bpbMt8b9H0l85XkPxw+LezhPL1384eb3S7wZ9U7vsau1WZ3qeuKm7+Z/vaFAAAAL7jilQ32kvVJkObvzr7OfgT5ysp5vt5zPcQqQQh+8p9qpp5yt3/MC3pXfxX89Ppmt2W7tU41Q5u8ZrbyLx8uTmWKz+TpvT/zH6FRAAAAJw7XJHqRubvLQr+pHL1yZw8VE8VU159UXmueTlv8wp3g++dHcB/MVNZUlyk8tjeH6z37fT/zHpP1uv/S+Weoewr65fO+sFpW2arM5Xn6k6LS35SWW1PfamxncGxs22Zp91Z2vyWeKbKGXyvEoO5Pix/DgAAcK6RSHWbvZT1Ckr1VZn+n50tXV6temn04E+sCc/YrbMv7t1LiexVLTgxOHZ2gJ/4tHLgr5IJ831Zr/f9TaSctnW5/+zn7KuzZMT8uFnvFevv2Vfu90G9d7OSSKpkrrrc9242lvhs/qf9lSe+kBcAAOBcY2pftxl8r7KqW/WB++X+yuO//C+9BRIu99c+93K//WpxwZ9YE7bgT0Rm/6uSRKgyVGI2YZPINcppW7P/Vam3elzVS33H0/Ghtaz3btY+//8ad9/+L3/YjvleqP6fVa6+3Vr0Xqfiv+ynIA6+528iCgAAgLb7UblcLnc6CDTBvIz5p3+uXIHp/5nzFRT1BbHF/1n5vfdKJdk4T18UW/zX2dWe/p91Z+wnh5UFKw73zx7rH2KRCQAAgLcAidR5Z06kvvxfnY4GAAAAuBCY2gcAAAAAHpFIAQAAAIBHJFIAAAAA4BH3SAEAAACAR1yRAgAAAACPSKQAAAAAwCMSKQAAAADwiEQKAAAAADwikQIAAAAAj0ikAAAAAMAjEikAAAAA8IhECgAAAAA8IpECAAAAAI9IpAAAAADAIxIpAAAAAPCIRAoAAAAAPCKRAgAAAACPSKQAAAAAwCMSKQAAAADwiEQKAAAAADwikQIAAAAAj0ikAAAAAMAjEikAAAAA8IhECm2RPzyQ0+OjTocBAAAA+IJE6oLb3d6SezeuSi6737JtlIoFWXg0Lanki05XFwAAAPAFidQFVSoWZG11UdKbyZZvK7O3I9HhUcns7XBVCgAAAG8FEqkLKr25LqViQe5MP2z5tna3t2RgcEgGBodk99WW7fNIsgAAAHBe/LjTAaAzYteuSyAYavl28ocHcnpyJNHhURERSW8mJZ6Ysjxnd3tLUskV6bncJ6VSwUioenr7ZP7ZFyJSuaqVSr6Q0+MjCQRDMjI2XlMOAAAA0C4kUhdUO5IokUqSFB0eNZKfVHJFctl9GRgcEhGRXHZf1lYXZW5+ScL9ERERWV56IiJiXC3b3d6S3e0tuf/Lz6Snt0/yhwey9mJRUrJCMgUAAICOYGofWqZULBj3RynqXinl9PhIenr7jCRKRGRkbFxy2Yzxeyq5IpO3Z6Snt09ERML9EYlNJGR3e0sjCgAAAMB/XJFCy2T2dqRULMjzp3M1f4snpiQQDEn4SkRKxTeSPzwwkqlcNiM9lytJU/7wwFj1DwAAAOgWJFJomd3tLYlNJGRgMGp5fG110fhbuD8i8cSUkSiF+yMSCIbk/uyC8buIyLPf/L5t0xEBAAAANyRSaInT4yPJHx7InemHxpQ8JTr8ruy+qiRSIpUrV/HElPF7tUAwJJm9HRkZG+90tQAAAAAR4R4pOFhbXaw7LU/H7qvKIhPVSZSIyMh740aiJVJZcMLpapNapMK8PHouu2+51woAAABoJ65IwVapWJBSsdDQawOBSxKbGK37t57ePpm8NWOUHR0elbXVRVlbXbQ85870Q2Pqn4jIowc3LeXEJhKWhSwAAACAdvlRuVwudzoIdKdSsdDy+5JSyRUpFQvG4hMilWmBqeQLERHLFwaXigU5PTmyrPAHAAAAdAJT+2CrHYs7pDeSxvdMKT29fTIwOGSZyqfiIYkCAABANyCRQkephSQU9d1TqeQKi0sAAACgazG1Dx11enwk6c2k8Z1TIiIDg0MyMjbO/U8AAADoWiRSAAAAAOARU/sAAAAAwCMSKQAAAADwiEQKAAAAADwikQIAAAAAj0ikAAAAAMAjEikAAAAA8IhECgAAAAA8IpECAAAAAI9IpAAAAADAIxIpAAAAAPCIRAoAAAAAPCKRAgAAAACPSKQAAAAAwCMSKXSVXHZfSsVCp8PoCvnDA3n04Kbcu3FVlpee+FIm7ds+qeSKnB4fdToMAADQIiRSF9Tp8ZGsrS7Kg7vvy70bV+XRg5uS2dvxrfxSsSAP7r4v+cMDT697/nTO82t0tKLMVnv+dE6iw+/K/LMvJDaRsPyt3e2b3kjKwqNp3+rWbf3RaHs6SW8k5fTke0v5JFYAALw9SKQuqLXVRQkEQ3Jn+iN59pvfS3T4XVleeuLbgV4gGJKBwaj0XO7rdFVFRHy7otMu6spRPDElPb19Eu6PWP7ezvYtFQuS3lyX+PUp38rstv5odXsGgiEZGRuXtdXFTlcVAAD4hETqgro/uyDxxJQMDA5JIBiSeGJKwv0R2X215ds27kw/lEAw1OmqyunxUdMJYjdeSWhX++5ub0m4PyIDg0O+lNdsfzTbF7nsvuVnVd7I2Lgv9bMTu3Zd8ocHlu0DAIDz68edDgDdIxAMSSBwybfynj+dk/j1KcvVlPRGUnZfbcnp8ZFxlj6emKr72lx23/E5irqSNje/VPO3/OGBPH86JyIi925cFZFKEpnZ25Fwf6Tm4HltddF4/N6NqzI3v2S5UqdiMScwmb0dSSVfuNZJtw12t7cklVyxxPz5Vy871r6ZvZ26SUYquSLpjaSIVMZO7Np1iU0k5PT4SFLJF5I/PJDT4yPp6e2TeOK2RIdHbftDJWlObanapedyn5RKBaNPenr7ZP7ZF9pt8PzpnMzNL8nzp3MS7o9I+EpE4okpef50zhJLo3W0EwiGJDo8KrlsxrekFAAAdA6JFESkcpY/l92XyVszvpVZvbBBKrkiuW/25f4vP5Oe3j7JZfcltb4i6UDScg9QemNdJm/NOD5HV7g/InemP5LnT+csyUj+9YGkN5OWBOH0+Eh2t7csCdnai0Uj3tPjI1leelKZ5mY6uN/d3jKekz88kLUXi5KSlbrJiU4bjIyNS09vX03MnWjfUrEg+cODmgN/ta35Z18Y5ajkMhC8JAODQzJ5a0YCwZCkN5Kytroo0eFR2/5wa8uBwaisrS7K3PySkTiq6YF3ph96boPU+orMfbokPb32U/karaOTQDAk+dfddX8YAABoDFP7IKViQZaXnhj347TK7vaWxK+fbWNgcEhiE4ma6YQqkVDPGRkbd5xyeGf6Yd2rUU5Gxsbl9PjIsrjA7qvKFDbzFZ7YRMKIpae3rxLL9lksqeSKTN6eMZ4T7o9U6rRdP17dNuiW9lXtUz0udre3LG0zMDhktJu6CqSSjthEwkjInDi1pbrqY+6bkbFxyWUzTbeBU3v6Xcdwf6TrFtoAAACN4YoUJJVckfCVSENXfHTlDw+kVCzUXNmIDo8aU+fUAWsgaJ1eGL4S8f0eJXUgvLu9ZVyFy+x9LbFriarn1cairgKpOumuZuelDbq5fc+2Fa37d7U4Rf71gSW5cFp23a0tK+3+RvKHB0Yyk8tmLItDNNMG7aij2i7LzwMA8HYgkbrg1lYXJf/6QO7PLrR0O+rgt1QseF4goVUrqVUOsB9LPDFl3OviNjXLfEVE/fzsN7/XqlMzbdDKsr22r/mqTD0Ln0wb095U4qLuh3Ir06kt44kpI9EK90ckEAxZxq2f7duKOgIAgLcLU/suMLUU89z8UltWfwsEQzVTsTJ7OxIIhixXYkrFN5bn5LKZlkw5rKxYeEkyezvGggrV7VAdS/V3bQWCIU/fv6XbBt3SvurqTr0rVvXqrVbBMycYule73Noys7cj8cSUfP7VS5mbX5L7sws1/eV3+/pdx1LxTUunzwIAgPYhkbqg1JWoyipi+5Z/5ueoFdb8MDI2LumNpGVqXHojWbMi3O72Vs1zosPvOtbFKc6zqWCVupmnVo28Ny657L5k9nbqrqRWfa9TZu9rS7wjY+OSSq5YDqRVec20QTe1byU5sS7ZPTA4ZNmWWtK8uq3VAh06/eHWlubFHpptAx3N1NGOeWoiAAA435jadwHlsvtGglAvAVGrqZWKBV/v54gnpiQlK/Lg7vsiInWXplaPLXwyrb2cuFucgWBIYhMJo67xxJRlhbxHD34ugeClutP6wlci8ujBTem5/FM5PfleAgHrdDIV16MHNy2vi00k6pan0wbqca9LZLeqfUfGxmsWSLg/uyBrq4vGtkREJm/NGGWptlbLgucPD0wr3tXvD7e2jA6PytrqouVLbXt6++TO9EMjOdFtXx3N1NFO7pv9ln9fFQAAaI8flcvlcqeDQHdq9l6Tezeu1nwvjypXRFzL1l18odk4Fx5Ny8A7QzUH2yp+lUSJiG1yUyoW5PTkSPtqg24bdEP7ZvZ2ZG11UeaffVlTpvm7nPxSry1TyRUpFQuW7/BS3+UkYl0C3a/29buOuey+LC89rtuOAADg/GFqH2y16mAvEAxpla174NpMnGoJ9JH37K8S9PT2ycDgkOMVokAw5GnKlm4bNMLv9o0Oj0rP5T5Jb67XLcPve37qtWVl+uGopV6qX+rdn+Rn+/pVx9T6St378AAAwPlEIgVfqSsB6r4Wr9PT2h1rKvlCBgaHzs0CAJ1q38qVr2jzBTWoeiGKUrEgmb0dSSVXzsVUuVKxIPHrUw1NMQQAAN2Je6Tgq9OTI1m4W1miupsPGp8/nZNcdl8GBofkzvRHdZ9TWdWvu64edKp9G7lny09zny5JejMpD+6+bySTavlxtyXru0Gn2w8AAPiPe6QAAAAAwCOm9gEAAACARyRSAAAAAOARiRQAAAAAeEQiBQAAAAAekUgBAAAAgEckUgAAAADgEYkUAAAAAHhEIgUAAAAAHpFIAQAAAIBHJFIAAAAA4BGJFAAAAAB4RCIFAAAAAB6RSAEAAACARyRSAAAAAOARiRRQRyq5IqfHR50Og3qj4xgTAADURyJ1QWX2duT50zm5d+Oq3LtxVZaXnkj+8KDTYTWlVCzIg7vv19SjkXqlN5JyevJ9p6t07urd6Bhq19hLbyRl4dG0b+V123vGbiw0wzwmVPkkVgAAkEhdSKViQXa3tyQ6PCpz80sy/+wLCQRDsvZisdOhNSUQDMnAYFR6LvdZHl9eetLp0C5MvRvdZjtiLRULkt5cl/j1qY7Xt1XsxoKf5Y+Mjcva6vneVwAA4AcSqQsoEAzJ/dkFGRkbl3B/RHp6+2Ty1ozkDw98PZOdy+6LSOUANpfdt5zFrvdYI2Wrn1U5I2PjluedHh915Ox5q+rezfVudJt2r8tl96VULFgeU23XiN3tLQn3R2RgcKij9TW/vhm6Y8FvsWvXJX940HA/AADwtvhxpwNAd1AHYeH+iG9lPn86J5O3ZiS9mZRAICT5wwOJTSRERCSz97XlsXji7CrB6fGRpJIvJH94IKfHR9LT2yfxxG2JDo9ayp6bX5LnT+ck3B+R8JWIxBNT8vzpnNyfXZCBwSHJHx7I86dzIiJy78ZVERG5P7sgPZd/6lq+k+WlJ3J6fCRz80ttr3sz9R4YHNJqWyeZvR1JbySNhLunt0+iw+9KdHi0oW06xWquk6Ke//lXLx3jMbepOfZ6SUYquSLpjaSIVE4yxK5dl9hEouG41bZSyRdyenxkXMVRMe1ub0kquSI9l/ukVCoY772e3j6Zf/aFEVd6Iym7r7bqlqE7Fpqpo51AMCTR4VHJZTO+JaUAAJxLZVx4f/3Ln8ufffxh+Q/ry76We/eDWPm3v35s2c7dD2Ll3734leWxX/zHv1teVyy8KX/9p81ysfCmXC6Xyy//uF7znLsfxMqLC7Plk3/+o+bxv3+TMX7/+zeZ8t0PYg2Vby7H7Le/flz+7OMPO1L3ZuqtW75dvb97/a3l78XCm/Jf//Jn4/dGt2n3unqxmJ/rFk91DHc/iNW02x/Wl8ufffyh8fjfv8mUv3v9bVNxf/2nTUuZ373+1nh/qdeobajxZB4rdnF99vGH5Zd/XPc8Fpqpo10//GF9uby4MFsGAOAiY2rfBaYWm1heeiLhKxEZec//KUHmKwDqLLf5bHd0eFRKxYJlSqE6+x4IhkREJDaRqHmOKrun1/u9ILrl27kz/dDxalSr695ovZuteyAQMspQ/0eHR12vSjTb3n7EY75iZba7vSWxiYTx+MDgkHFVttG4U8kVmbw9Y5QZ7o9IbCIhu9tbxlUf85XfkbFxyWUzNXHFr09Z4opNJGT31ZbleTpjoRV1DPdHum6hDQAA2o2pfRfY/dkFEalMJ9t9tSULn0zL/LMvjYOqdjLfC6MWBci/PrAc1FXfLxMIXmp4Wzrld2vdG613s3VX99KpqWTR4VGJDo+6jpdWtXej8Sj5w0o8A4NR3+JWZdqtDBi+EpFS8Y3kDw+MZCaXzVgWhziLy5oQRodHjWmlKilyGwutqKPabqfeLwAAdAsSKfxwX8SU5L7ZN85ed9LCJ9MyMDgkk7fOzuqr+1DOQ/ndHFuz5Y+MjRv3x6h7feKJKccFDlpZp0biUcxXZfyKW5X57De/ty03npgyEq1wf8RY/KW6jFKx0PRJjVbUEQAAVJBIwaITV6PM1Opjk6ab7v1cfa7V5XdzbH6Vr6bQRYdHjeTFLnHxu071XqsTj7q6Y76ao2T2dmoWV2gm7kAwZLuwhdpePDHleMIiEAxJLpuxxJXZ25FAMNTQtE6/61gqvml4eikAAG8L7pG6gE6PjyxLS5eKBUklV+T05MgynWhtddFYmaxdzqY77RuxNvNdPdXlXf7h4K+Z8lvVLn7WvbqsUrHgS/nmZbZLxYKcnhwZ08sa3Wa914lUrpRm9nYs2zb/7hZPtUpyYl2ye2BwSNIbSWObaknzZuIeGRuvvJ9MSYk59lx23/WExcjYuCWu/OGBpDeSDS1t3kwd7ZinJgIAcFFxReqCSq2vWG4W7+ntqywNbjrLXCoW2n4fRCAYMpZwVnHFE7clf3jQ0NWyQDAksYmEUV48MdV0+a1qFz/rXq/eaqn1ZsrPZTPGMtqqjDvTD5vapt3r7kw/lOWlJ8ZUs3B/RCZvz1juP3KKp9rI2HjNAgn3ZxdkbXVRHtx933hs8taMsdR4I3GrJcofPbhp2VZsImFcOVtbXbR8qa2KWyUn8cSUpGTFiKve8ue6mqmj7Tj4Zr/l31cFAEC3+1G5XC53Ogh0RuX7aS7ZHjT5cY/G2+iit0u7619vOl4j8WT2dmRtdbHugirm73Lys51OT44sV25SyRUpFQsST0wZMajvchKRmiRQJex+tLdfdcxl92V56XHHFqYBAKBbMLXvAuvp7XM8EOIgqb6L3i7trr/bgb9uPNHhUem53CfpzfW62/D7np9AMFQz/S29kaxZWbCnt8/44uJ6ZfjV3n7VMbW+YlkyHQCAi4qpfQAujPuzCx39/iO1EIW6F7FULEgumzFWG+x2pWJB4tenXL87DACAi4CpfQDQJqfHR5LeTEpmb8eYtjcwOGQs4w4AAM4PEikAAAAA8Ih7pAAAAADAIxIpAAAAAPCIRAoAAAAAPCKRAgAAAACPSKQAAAAAwCMSKQAAAADwiEQKAAAAADwikQIAAAAAj0ikAAAAAMAjEikAAAAA8IhECgAAAAA8IpECAAAAAI9IpAAAAADAIxIpdJVSsSC57H6nw8A5lEquyOnxUafDAAAAFwSJFCR/eCD3blyVVHLF13Jz2X25d+Nqzb/nT+ccY3H6e6vbQSkVC/Lg7vuWx9otvZGUhUfTLalfN/C7jdMbSTk9+d5SNokVAABolR93OgB0VqlYkLUXixIIhlq2jc+/etnpampZXnoi88++EBGRQDAkA4NR6bnc15FYSsWCpDfX5c70Ry2pXzdoZRsHgiEZGRuXtdVFuT+70OmqAgCAtxBXpC64VHJFBt4ZknB/pNOh2Mpl96VULFge83sK4OnxUc3Vi5Gx8YZiNf/caIy721sS7o/IwOBQy+rn9fXNqG4XVV4jbawrdu265A8PmCoKAABagitSF9ju9pbkXx/I3PxSx6bTpZIrsru9JaViQcL9kboH1s+fzsn92QVLUqGmAJqvdqWSK5LeSIpI5YpE7Np1iU0k5PT4SFLJF5I/PJDT4yPp6e2TeOK2RIdHLWWJiNy7cVVERO7PLtTdbnojKbuvtuT0+Mi46hFPTFlinbw1I6nkioT7I3J68r2Uim/kzvRHnpKizN5OTVvY1U9EHOtoV7+BwSHJ7O1IKvnCtj6721uSSq5Iz+U+KZUKRgLU09tnXN1yaxPVLmqchfsjEr4SkXhiqm4bN9qP1QLBkESHRyWXzfiWkAIAACgkUhdU/vBA0ptJuf/LzzoWQyq5Irlv9mXu0yXp6e2TXHZfUuuN3aelypp/9oVRlpquGAhekoHBIZm8NSOBYEjSG0lZW100DsDD/RG5M/1RTWJmt437v/zMEm86kDQSGpFKEjT/7Etj+2uri5JaX5G5+SWtupSKBckfHtQkF3b1c6ujXf12t7dkd3vLqE/+8EDWXixKSlYknpiSXHZf1lYXZW5+ybhiubz0RERE7kw/9NQmIlJpgx/6uhX9WE8gGJL86+66NwwAALwdmNp3Aan7omLXEo4HtX6pXmxCLWqxu70lsYmzGAYGh2TgncauHNQrSx38q6sk6oA8NpEwkhWv24hfn7JsIzaRkN1XW5bnxSauW5IcdVVIl3quuW+c6tdoHVPJFZm8PWOUGe6PVOqzXamPuupj3s7I2LjkshnPbaJe6zbe/O7HcH+k6xbZAAAAbweuSF1A6c11CV+JtPT+FLN6V3nyhwdSKhZqriYMDEaNaV26VFkDg9G6f1cLN+RfH1gOvKvvu9LbhjXRiw6PyvLSEyPpaAW3+jVSR1Wm06qA4SsRKRXfSP7wwEhmctmMsTiE1zYJBC81Vc9G+jEQvOSpnwEAAHSRSF1AKlFRVx6UXHZf0hvJtqyy5+fiFuYrFvUsfDJtTAlTB/bqXiGv2ygVCy1d4bCR+jVSR1Xms9/83rbccH/lPiaVbIX7IxIIhoxV8Pxuk3b0IwAAgF9IpC6geonS86dzxgIA7ZTZ27FclSoV32i9rt4qctVliZytEDdpWva70RXoAsGQ5LIZyzYyezsSCIZ8vRqlrvBUX9GpV79m6hgIhuoualHdpvHEVM39Tq1sEz/7sVR805bpqwAA4OLhHinYWltd9GU1P7UMuPqnpmSp+3HU1Kv84UHNVTKRyr1Cmb0dS3nm30UqyUd6I2mUpZb7PpuStm88rhZMMKt+Xr3pYCNj45Zt5A8PJL2RbMkUyUqCcrZst1396sVer4716jcyNi6p5IolIalu2+pFLVrdJs32YzXztEQAAAA/cUUKtkrFgi/3l1QnYwODQ3J/dkHiiSlZW12UB3ffF5FKwnRn+mHNfTt3ph/K8tITYxpXuD8ik7dnLM+7P7tgKUtEZPLWjLEUt4pBLZmdPzyoWvUuJLGJhPG8elfm4okpScmKsQ27pb79MDI2blkkwbZ+vX0SCIZc61ivfiruRw9uWrYdm0gYV4Siw6Oytrooa6uLxt9VP6mpf362SbP9WC33zX7b7gUEAAAXy4/K5XK500GgO3XifiAnOgs6mL/nqJXtIiItbZvM3o6srS5allFvVf1KxYKcnhzVXLlJJVekVCxIPDFlxKC+y0nkbAn0VrSJH/XMZfdleelxTRsCAAD4gal9sNVtB586B9U9vX0tvycmEAy1vG2iw6PSc7lP0pvrLa9fIBiqO/0tvZGU6PCopa49vX0yMDhUc3+S323iRz1T6yuW5dIBAAD8xNQ+oEvdn13o6HcgqcUo1OIXpWJBctmMpJIrbV+UxKtSsSDx61M1S7MDAAD4hal9AOo6PT6S9GZSMns7xtS9gcEhGRkbr7t6IAAAwEVCIgUAAAAAHnGPFAAAAAB4RCIFAAAAAB6RSAEAAACARyRSAAAAAOARiRQAAAAAeEQiBQAAAAAekUgBAAAAgEckUgAAAADgEYkUAAAAAHhEIgUAAAAAHpFIAQAAAIBHJFIAAAAA4BGJFAAAAAB4RCKFtioVC5LL7nt+Xf7wQB49uCn3blyV5aUnvsWTSq7I6fFRx8voZo32WbfH181jCs2jHwAArUYidUGdHh/JvRtXa/61+oA5f3ggz5/OeX7d86dzEh1+V+affSGxiYRv8aQ3knJ68n1NjM2W8Tap7rNSsSAP7r5f005O7Wb3mlbEp6tTYyqX3ZflpSfGe+7Rg5uu7ZLeSMrCo2lf26ybtGJ8qH5QZZNUAQD8RiJ1QakDvfuzC5Z/4f5Ip0OrkcvuS6lYkHhiSnp6+1oeo59XJ95GgWBIBgaj0nO5z/K4U7vZvaZTOj2mwv0RuT+7IPPPvpDo8LuObVcqFiS9uS7x61Mti6fTWjk+AsGQjIyNy9rqYqerCQB4y5BIXWDh/ogMDA5Z/gWCoU6H5Rt1sGzmNg3s9PioqTPXuex+V0yDM8eQy+77fjZ+ZGzc8rtOu1W/pjrGbmg3N36MqYHBIYlNJGRgcEh6evsknpiS0+Mj26sxu9tbxnvVD82O8WbHkt3YrB4ffopduy75w4NzMcYAAOfHjzsdADrj9PioLUlTKrkiu9tbUioWJNwfqXuwlNnbkVTyhRHTyNi4xBOVs++721uSSq6IiMi9G1dFROTzr17K6fGRpJIvJH94IKfHRz8ckN6W6PCoUe7zp3Nyf3bBcgCqpoF9/tXLmjjMU8TUtu7PLsju9pacHh/J3PySbT1z2YwsLz2WcH/kh+lEb+TO9EeWbbvFnNnbkfRG0jig7untk+jwu0Zb1Gvb9EZSRCpn3WPXrhtT1J4/nZO5+SV5/nROwv0RCV+JGOU4tbdun5nb1q7dqg/8q/vj+dM5mbw1I6nkimO7NTKmnOrZDWPK/Hp1cG93VSyzt1NTR6e+d6qHWzw678Wey31SKhWMBKint0/mn31hxJbeSMruqy3b8WU3Nuu1rV09dfrKLBAMSXR4VHLZjG8JKQAAJFIX1OnJkXGzvToQcTpob0QquSK5b/Zl7tMl6entk1x2X1LrK5bn7G5vye72ltz/5WfS09sn+cMDWXuxKClZkXhiSkbGxqWnt6/mQDUQvCQDg0MyeWtGAsGQpDeSsra6aHsgpSPcH5E70x/VbGt3e8u9PY+/l/lnXxrJ6drqoqTWVyzJl1PM+cMDWV56YhxIVq5yZCQQvOTYtvPPvjDatjoxTq2vGG2v2946fabbbjoyezuu7eZ1TOnUs9Nj6mzcHMny0mPbe7RKxYLkDw9qkgunvneqh1M8Tm02MBiVtdVFmZtfMhI+NT3wzvTDmthUGap/0oGkpY71xqZdX9erZyN9FQiGJP+6u+4NAwCcb0ztu6DiiSm5M/2RTN6akWe/+b3EriUsZ+r9sLu9JbGJhHGwNDA4JAPvWM8Gp5IrMnl7xnhOuD8isYmEa/KiznSrA6vYRMI46PTbnemHjlejRMQSi4gYyZFuzIFAyHiO+j86PGp79rxe21Zf0VBJqJf21ukzP8Umrru2m1u968XXyLhq55gSqSRJy0tPJDo8ansCw3x10qkNzH3faD2c2kydbDFvZ2RsXHLZTE3/xK9PWWKLTSRk95W13euNzWpO9WykjuH+SNctsgEAON+4InWBmQ/SR8bG5fTkqHIg5MNVqfzhgZSKhZozxAODUWOqjnpOI6uRqRvw868PLAdQ1fevdBOnmMP9EZm8NWNMd4oOj0p0eLTu9EvVbgODUcftVV/NcmtvnT7rJN34Gh1X7R5Tu9tb0tPbJ5O3Zjy3gVPfN1IPtzYLX4lIqfhG8ocHRjKTy2Ysi0OcxWZNbKPDo7K89MRIxkTE9kqrbj0bqWMgeKmr9w8AgPOHRAoGPw+YdVZBU8959pvfe75fa+GTaWNqjzo4U/d8dCu3mEfGxo37ONTVQTW9sV67eW2zZtq7G+iurNdoPds9pk5PjjwvsKDT943UQ6fN4okpI9EK90ckEAzJ/dmFmjJKxULT48utnufx/Q8AePswtQ+GUvGN63QbrzJ7OzXbMAsEQzXPcaNW+jIfROmuJNap75LRjVlN6bs/u2Dcs2THa7up8t1e59ZnnaYTn9dx1YkxNXlrxnXhA/X36m3Y1a2Zeri1WWZvR+KJKfn8q5cyN78k92cXahKdQDBUM90vs7cjgWCooX1LvXgarWMr9m8AgIuNROqCyuztWO4XUKt1jbx3doZ8bXWxoS86VdT9FWo6Tf7woOYelZGxcUklVywHQrnsvuMB3dnUospqZ5Ub9mu/F6ent89Sjlu59couFQtNt4NuzOaloEvFgpyeHNlOgRoYHJL0RtJoW90lrd3aW6fPdNutFXTj8zqu2j2mREQWHk1r3ZNYSU7Olu126nudetjF49Zm9RY0qdfu5tjyhweS3kg2tLS5XT11+6qaeVoiAAB+YGrfBaVWiVOql1AWqRxgNXNAHE9Mydrqojy4+76IVA5C70w/tNyHoe7HevTgpuW1sYmEcS9M5cs6z87cB4IhY7lkVW48cbuyaIPpQO/O9ENZXnpiTPkJ90dk8vaM470zgWBIYhMJo+x4YqrpdtCNOZfNWKZWqvaq5/7sgqVtRSpXOEZczri7tbdOn+m2m91KdM3Qjc+tnp0eU7GJhJyeHMnpsfsVkpGxcctJD6e+16mHXTxubRYdHpW11UXLF9uq9lcJSjwxJSlZMWKrt/y5Ltt6/lCeW19Vy32z39LvqgIAXDw/KpfL5U4Hgc5QVz3sztL6ca+DX7E0w3yTe6OxtbMdvGzL/F0+XrfTqvbuJq2qZ7NjSsWm09eZvR1ZW120LBOvYhDx3veNtFkquSKlYkHiiSkjBvVdTiJSk/CrEw9+vG/8qGcuuy/LS49r2hAAgGaQSAFAl1t4NC0D7wz5+j1vXty7cbXulyyr755y+3qATut0+wEA3k5M7QOALnd/dqGj34GkFqJQiZT6wmi1smQ3KxULEr8+5bqwBwAAXnFFCgDg6PT4SNKbScns7RjT9gYGh4wl+wEAuIhIpAAAAADAI5Y/BwAAAACPSKQAAAAAwCMSKQAAAADwiEQKAAAAADwikQIAAAAAj0ikAAAAAMAjEikAAAAA8IhECgAAAAA8IpECAAAAAI9IpAAAAADAIxIpAAAAAPCIRAoAAAAAPCKRAgAAAACPSKTQMqnkipweH3U6DNrgLYiROkMXfQsAaBcSqQsulVyRRw9uyr0bV+XejauSy+77VnZ6IymnJ993uopSKhbkwd33JX940PZtd0sbnJcY29VXnapzLrsvy0tPjPfbowc3Xeua3kjKwqNp32LoxPvAid99bu5bVTaJFQCgFUikLrDnT+fk9Ph7uf/Lz+Tzr17K/LMvJNwf6XRYvgsEQzIwGJWey32dDgUuLkJfhfsjcn92QeaffSHR4XdleemJ7XNLxYKkN9clfn3Kt+07ba8TWtnngWBIRsbGZW11sdPVBAC8hUikLqjd7S0pFQtyZ/qh9PRWDmB6evskEAy1ZHu57H5TV7ty2X0pFQuWx0rFgnaZI2PjNeXpxubX2exm26AdOt1PIt3RV83U3ynWgcEhiU0kZGBwSHp6+ySemJLT4yPbqzG721sS7o/IwOCQL/GdHh811UbNtm91+6jyqvvcT7Fr1yV/eND17z0AwPnz404HgM7Y3d5q6cGLkstmZHnpsYT7I3J68r2Uim/kzvRHlgPD9EZSdl9tyenxkXEGOZ6wnoF//nRO7s8uWF6XPzyQ50/n5POvXoqISGZvR9IbSeOgtKe3T6LD70o8MVXz+udP52Ty1oykkiu2se1ub0kquSI9l/ukVCoYB309vX0y/+wLEamc3T89PpK5+aWG2+D0+EhSyReSPzyQ0+OjHw6wb0t0eNQow6lu1XTKa6SfdPqq2X6qV4ZffeXGrW467aoTq7XdKwf3dleCM3s7Ne/TVHJF0htJEalccYlduy6xiYRrfKofRETu3bgqImK0c2ZvR1LJF7Z112lf3ffx3PySPH86J+H+iISvROq+P5upZ7VAMCTR4VHJZTO+JaQAAIiQSF1Y+cMD6entk+WlJ5LZ25GBwSEZGIxKbCLh63ZOj7+X+WdfGle61lYXJbW+YiQeqeSK5L7Zl/u//Ex6evskl92X1PqKpANJT7HkDw9keemJcTBWuQqSkUDwku1rMns7trHlsvuytrooc/NLxkGumhJ1Z/qhr20QCF6SgcEhmbw1I4FgSNIbSVlbXbQcAHupm1t5jcToV1810k/t6Cuduum2q1Os1jY/kuWlx7ZtVyoWJH94UJNc5L7Zl/lnXxhxqu24xRfuj8id6Y8sSa1IJUna3d4y6p4/PJC1F4uSkhWJJ6a02tfL2Eitr8jcp0vGlXCn/miknvUEgiHJv+6ue8MAAOcfU/susNT6ioyMjcvnX72U2MT1H85Kr/i6jZGxcct0wejwqGUa0+72lsSvTxkHVWrq0+6rLU/bCQTUQdbZ/9HhUccz0LGJ67axqTPd5isFI2PjkstmLGXcmX7oeDVKpw3U2Xv1nNhEwjiIbqRubuU1EqNffdVIP/nVV0506qbbrk6xKqViQZaXnkh0eLTuVUURsVyxM8cZm0hY4lT1bqTfRSpJy+TtGaPMcH+kUvftLe329TI2RsbGHZOoVtQz3B/pukU2AADnH1ekLjDz/VEDg0MyMjYuqeSK7YGd3/KHB1IqFmoOoqPDo8aUObcDLqWnt08mb80YU4aiw6MSHR5t+J6v8JWIlIpvJH94YBzA5bKZltwQrxYUyL8+sBwQqnuNvNbNrbxG+NVXfveTSPN9pVs3P9t1d3vLaAvvfRCt+/dG4lNlOq0K6Na+XseG29XHVtQzELzU1PgHAKAeEqkLrPrAVx0stos6KCsVC74scjEyNm7cC6Hu6Ygnphq6FyzcX7l3Qx1ghvsjEgiG5P7sgu/tsPDJtDFVSfWJuoelkbrplNdIe4j401d+9pOKrZm+0q2bn+16enLkub7mKzJ+xafKfPab39uW69a+fr+PW1FPAABagUTqgurp7ZPM3o7lvoJS8Y32FSC/BIIhyWUzNQsrBIIh11jqrSCmpopFh0eNg/RGD9AzezsST0z5ft+YmVq5bNK0IILdymg6dfNSnleN9lWr+0nF0UxfudXN73bVuRJlXozE3L7V71uR5vo9EAzVXdTCS/s28z522qZf9ezEvg0A8PbjHqkLKnYtYax8JVI5QElvJCU6/K7xnLXVRWOVr1YZGRuX9EbSuBKWPzyQ9Eay5qBOJX5KLrtv+V09pg6qSsWCnJ4cuU4jcmK+wd1Os210NlWqsnpbZQGC2u/50a2bbnmN0OmrTvSTKrOZqyFudfO7XRceTWvdj1hJUM6W7R4YHLLEqZYz142v+nmlYsGY0mtOSKr7za19dd/HupqtZzXztEQAAPzCFakLSh3gmO+NqF6uuFQstHyqXzwxJSlZkQd33xeRsxvJq+/TujP9UJaXnhhTeML9EZm8PWOJP5fNGMsli1QO6r2usGcWHR6VtdVFy5d5qjLN05maaaNAMGQs/6zKjyduS/7wwHLgqls33fJa1Ved6Cfdvmqmbn636+nJkZweu18hGRkbtyyScH92QdZWF404RSpXt1SsbvEFgiGJTSSM58UTU0YdHz24adl2bCJhXBFya1/d97GuZutZLffNflu+7gEAcLH8qFwulzsdBDrL7t4Gv+550I1BRFy357aogV8xp5IrUioWJJ6YMspT318jcrbsc7vbqF3bcotDxLmv2tVPIvp95Vfd/GpDnW1k9nZkbXXRspy6qp+I+DpdTV0drE48vbSv3+3nRz1z2X1ZXnpc04YAADSLqX2wPbho50FHIBjS2p7bAZVfMVemOVpXk+vp7ZOBwSHLFKh2t1E30OmrdvWTiH5f+VU3P+huIzo8Kj2X+yS9uW55vKe3z/d7fgLBUN2rd17a1+/286Oe6mseuuX9AwB4e5BIAXWoG/CVUrFgfM8WU4S6y9veV5UvL442X1CDznP7looFiV+fattXOgAALham9gF1nB4fSXozKZm9HWO6kvqureqVxNBZ9FVr0b4AANRHIgUAAAAAHjG1DwAAAAA8IpECAAAAAI9IpAAAAADAIxIpAAAAAPCIRAoAAAAAPCKRAgAAAACPSKQAAAAAwCMSKQAAAADwiEQKAAAAADwikQIAAAAAj0ikAAAAAMAjEikAAAAA8IhECgAAAAA8IpECAAAAAI9IpNA2qeSKnB4fdTqMcxfb28CpfWn7txv9CwB4W/240wGg/XLZfXn+dM72759/9bIl201vJGVgMCo9vX2dboJzFdvbwKl9O9X2uey+7G5vSWZvR0REenr75M70Qwn3Rxzrkdnbkbn5JV9iyB8eOG6v3UrFgjx68HO5P7vgW1yqfwPBS/Lowc9l7tMl3mcAgLcCidQFFO6PyP3ZhZrHd7e3pFR80+nwgLYJ90dkZGxcei7/VHZfbcny0hOZf/ZF3eeWigVJb67LnemPfNu+0/Y6IRAMVZLay/4nOoFgSEbGxmVtdbHu/gcAgPOGqX0XUOVgaajmXy6bkejwaKfD8yyX3bf8bP690fKaLcOrZqY+Vdffz2lUfrdtO7nFPjA4JLGJhAwMDklPb5/EE1Nyenwk+cODuuXtbm9JuD8iA4NDvsR3enzUVF81289242ZkbNyX+tUTu3Zd8ocH52ocAQBghytSEJHKQWIgeKmlB1H1pDeSsvtqS06Pj4wz1vHElPH30+MjSSVfSP7wQE6Pj3444L1tSfieP52TyVszkkquSLg/Iqcn30up+EbuTH9kHPQuLz2R0+MjxylZuWxGlpce25ahE0tmb0fSG0njYLynt0+iw+9a6qTcu3FV5uaXjNhExKh/IBiylJlKvrBto+dP52RufkmeP52TcH9EwlciEk9Mucbi1va6bavTLt06Lqz9Xzm4t5vSltnbqXl/pJIrkt5IikjlBEXs2nWJTSRcY8wfHhjTa+/duCoiIvdnF4y4nPp8d3tLUskV6bncJ6VSwRg7Pb19xtUt3b6tN26eP52zxOJUT699HwiGJDo8KrlsxreEFACATiGRgoiIpDeTEruWaOs2U8kVyX2zL/d/+Zn09PZJLrsvqfUVSQeSxsFoIHhJBgaHZPLWjASCIUlvJGVtdbHmQC2ztyPzz740EpC11UVJra94upfl9Ph7xzLcYskfHsjy0hPjILRULEgum5FA8JLtNtdeLBr1Pz0+kuWlJ5LeXLccNO9ubxnPyR8eyNqLRUnJiuXAOLW+Yrn3xC0WnbbXbVvdPurmcVFp+8c1dVdKxYLkDw9qkovcN/sy/+wLI05zAuwUY7g/InemP5LnT+dq7kl06vOBwaisrS7K3PySkfAtLz0REZE70w899231uHHqj3r1bKTvA8GQ5F8fCAAA5x1T+2DcG9XuaX2721sSvz5lHMSpqVa7r7aM56iz6erALTaRMA5qzWIT1y0Hseqsv3Jn+qFrUmXeTr0y3GIJBELG89T/0eFRxzPvsYmEUf+e3j4ZGRuX3e2z+qeSKzJ5e8Z4Trg/Umkj03NU7OaDYbdYdNpet211+6gbx4VIJUlaXnoi0eHRulcORcRyVc8cp7n/BgaHLFezGm0Xpz5XV33M2xkZG5dcNuOp/ezGjV1/2NWzkTqG+yMNjw0AALoJV6RgTFkyH3C2Wv7wQErFQk2SER0eNaa69fT2GTf4518fWA7QSsVC29vJLZae3j6ZvDVjTJWKDo9KdHjUsV2rr1aFr0SM8lQbLTyado2tuhynWHTb3q928aIT42J3e8toL+9xRn1tF7c+r4yPN5bV/nLZjLE4hNe+dbpaqlPPRuoYCF7qyPsXAAC/kUhdcOomfC8HkX5QB4GlYsEx0Vj4ZNqYOqQOANU9Je2mE8vI2LhxD4i6lyWemNK+98x8pUH9/Ow3v28oyXWLxa3t/WwXXZ0YF6cnR57vDTRfkfEzRp0+jyemjEQr3B+RQDBkrIKn235+1bOb3p8AALQbU/suuPTGutb0nlYIBEOWKUkilatjgWDIuBfj9PjIcpDWqS/29BKLmkZ3f3ZB4okpSSVXbMutXm5efaeRuazqx7y2cb1Y3Nq+Fe3iJeZ2jovJWzOuCx+YF9aojsvvdnHr88zejsQTU/L5Vy9lbn5J7s8uVN2b5U/futWz0TqWim/4HikAwFuBROoCOz0+klx233aRibXVRccv7m3WyNi4pDeSlqls6Y2kcXXgbOrSvhGvurHeq2brohuLeRnpUrEgpydHjtOnqu91yux9bbk6MjI2LqnkiuUANZfd10qunGJxa3u/28WLdo4LEZGFR9OOya5SSVDOlu0eGByyxGlezlwnxurnqHLc+rx6UQuv7eeVXT0b7Ydu+xJiAAAaxdS+Cyy9mTS+Q6eeUrHQ0nsZ4okpScmKPLj7voic3biubvgPBEPGcswiYiytnD888Dxtqdm66MaSy2aMZaLV89RqavWEr0Tk0YOb0nP5p3J68r0EAiHLl5Wqtnj04KbldbGJhOviIE6xuLW93+3iRTvHhUhlat/psfsVkpGxccsiCfdnF2RtddGIU6RydWukt08rxkAwJLGJhPGceGJKYhMJ1z6PDo/K2uqirK0u1vRtuD/iW9+61vOHMr32Q+6b/bZ/zQIAAK3wo3K5XO50EOhOft1nobMdEWnpttpVFy/bunfjqtyfXTCSKBGxnWKmrih5PZPvFks72r5R7YpNt78yezuytrpoWU5dRCzf4+R3XNV9nkquSKlYsHzXmPouJxGxJO1+t58f9cxl92V56XFNGwIAcB4xtQ+22nWgEwiGWr6tdh60ed1WT2+fDAwOOd6nEwiGGpoO5RZLO9q+Ue2KTXcb0eFR6bncJ+nNdcvjPb19Lbnnp16fpzeSNStBqvFTfX+S3+3nRz1T6yttXyEUAIBWYWofAGi6P7vQ0e9AUgtRqKRbfdGyWpGxm5WKBYlfn3Jd2AMAgPOCqX1Ahzx/Oifx61PceA9tp8dHkt5MSmZvx5i6NzA4ZCx1DwAA2odECgAAAAA84h4pAAAAAPCIRAoAAAAAPCKRAgAAAACPSKQAAAAAwCMSKQAAAADwiEQKAAAAADwikQIAAAAAj0ikAAAAAMAjEikAAAAA8IhECgAAAAA8IpECAAAAAI9IpAAAAADAIxIpAAAAAPCIRAoAgHMmlVyR0+OjTocBABcaidQFVSoWZG11UR7cfV/u3bgqC4+mJX940OmwGtaK2Lu5PS5afTutVCzIg7vv+95G5vJatQ3d7XdaeiMpC4+m38q6ifjfv+mNpJyefG8pm8QKANqLROqCUmcz5599Kc9+83sZeGdIlpeedDqshrUi9m5uj4tW304LBEMyMBiVnst9vpZrbvNWbUN3+51UKhYkvbku8etTb13dlFb2byAYkpGxcVlbXex0NQHgQiGRuqBOj48kNnFdAsGQBIIhiSem5PT4qKvOaOay+5afzb9X18XvuDvVFjp1Ps/1VfUpFQuSy+5btlnvsWZfp15bKhYsj6nXVJevfq7X7iNj4762Rb02b3Qbuu8Vt+17jd8vu9tbEu6PyMDgkC/ldbpu1f2hyvN7DJnFrl2X/OGBVt8DAPzxo3K5XO50EGi/5aUn0tP7U4knKmeAc9l9WV56LM9+83tft5NKrkh6IykilbOmsWvXJTaREJHK1JTdV1tyenxknFFV8YiI3LtxVSZvzUgquSLh/oicnnwvpeIbuTP9kXHAlT88kOdP5ywHyvdnF6Tn8k8llXwh+cMDOT0+kp7ePoknbkt0eNQ1voF3huqWubtdiXVufqmh+vpRZ7v6DgwOyenxkWudvdTX7qDWjz5NbyYlEAhJ/vDAeG1m72vLY368Tr22uj657L48fzonn3/1Unus1SvHqS2c+sOuH58/navZhlub6sZvVm/77/xsWP7PQ//3moP9tdVFCfdHZGRsXO7duCpz80uyvPTEkhzEE1MSCIaM12T2diSVfOEYs9nCo2kZGRu3bNvvth0YHHKNa3d7S1LJFem53CelUsGoY09vn8w/+8JTf8zNL8nzp3MS7o9I+EpE4okpT2PI7f1cr6y11UXjxBgAoA3KuJBO/vmP8i/+49/Lv3vxq/LXf9osf/yLn5f/+pc/+7qNP6wvlz/7+MPyyT//US6Xy+W/f5Mpf/f6W9u/ffbxh+WXf1w3Xn/3g1h5cWG2XCy8MR773YtflT/7+EPLdv7+TaZ894OY5bFi4U356z9tGq99+cf18i/+49+146tX5m9//bhm27rl+VnnerHp1NlrfVvVp7/99WPj97/+5c/lux/Eyr978SvLY9V91ejr1Gv//k3GcczotHt1OW797dYf9dpcZxvVbaobf7Xq7b/843r541/83PKck3/+o3z3g5hRr7sfxCzxnPzzH+XPPv6w/If1ZeM1X/9p0/Kc715/W/Mcs2LhTfnuBzHj+a1qW7e41GvM2/ntrx9bxp3X/jDXyesYcqtjvXH9h/Xl8uLCbBkA0B5M7bugenr7JDo8+sMZ2hUZGBySgcGor9vY3d6S2ERCenor9wQMDA5JuD9i/C1+fcryt9hEQnZfbVnKUNMPFXXG2Y06U6xeG5tISKlYsLzWKb567kw/dLwa5VZep+vstb6t6lPzVQd1dt181Sw6PFrTV828TpfXdndrT50xqNPeOm3aSPzVRsbG5fT4yPoeeVWZcmeul7nOPb19MjI2LrvbZ/GkkisyeXvGeE64P1KJeXur7nbV9tTzW9W2bnGpqz7m7YyMjUsum2moP0bGxi11sutfu3o2Usdwf6TrFtkAgLfZjzsdADpjbXVRSsWCzD/70vj9+dM5x0TBi/zhgZSKhbrJ2dnfrFOOosOjxpQhtwMQN+rm9fzrA8vBh5ru4xSf3/Xthjr7Ud9292n1fU2tfp1fbWGOw2kM6m+jdWPGTB24725vyeStGRGpTJuMXUtUPe+S5ffwlUjN+6qZ1fda0bY6cVXq8UbyhwdGMpPLZozFIbz2R3U7ea1nI+MnELzUlvEPAKggkbqA8ocHsru9Jc9+83vjbOed6Yfy6MFN2d3e8uWGaPNZVbu/lYqFun/3w8In0zIwOCSTt87OQN+7cVUrPr/r2w119qO+ne7TbqLTnm5jUHcb7WzTSlLwWOKJKePenOr7Cu3iNP9s3rd41Yq21Ykr3F+5j0klW+H+iASCIbk/u2Apw6/+cKtns+MHANB6TO27gNQZy+oP8EAgJKcn/q7cltnbqft4IBiyTJlRzw0EQ02fZVerZJkPQOxW4bKLz+/6dkud/ahvJ/rUb36tOGfXFl7GoJN2t+nA4JAEgpcks7cjmb0dy9QypVR849gGgWDI0zhTV3iq28fvttWJK7O3I/HElHz+1UuZm1+S+7MLlvq3oj/qxdRoHUvFN133XgOAtxmJ1AVUOVgKWb5zJL2RlPzhgYy8d3Y1Sk33a2Y76Y2kkbiZlyQeGRu3/C1/eCDpjWRDV8POpuFUlv29/MOBhPr99Pio7nfKOMVXXab6AmOn9nAqz88614ut+rF6dfZa3072qZ96evssB6u57L4vCaWX9qzXHzpt3so2tdv+yHvjRhvVW/Gv+l6nzN7XlnhGxsaN76nTbfNKgnK2bHcr2lYnrlx23/Fqk9/9YVdPnTrWY56WCABoPab2XVD3Zxdk7cWiMVWkp7dP7kw/tJzNLBULTc23vz+7IGuri/Lg7vvGY5O3ZmSkt0/iiSlJyYrxN50lku0EgiGJTSSMJCeemJJ4Ysr4XS0bnD88sBwkOcVXr0y39nAqT5XhR53rxaaW/Xaqs9f6mpdtb3ef+unO9ENZXnpimeY4eXumqft4dNrTrT/qtXm1VrapXZ+PjI3Lowc/l0DwUt1pfeErEXn04Kb0XP6pnJ58L4HA2fQ3cz0ePbhpeV1sImE7TXBkbNyySEIr2lYnrujwqKytLlpOMql9o5r652d/2NbzhzLd9mHVct/sd/zEBQBcJHyPFGz5dS+A+btY6m1DxL97lfyOr5H2cCuv03XWrW+jZXS6fk4xt2Lakx/t6abdbbrwaFoG3hmy/U4ulUSJiO33jZWKBTk9OdK6QpLZ25G11UWZf/alpY6taFu7uFLJFSkVC5bvxFLf5SRSScjNZYj41x9+1FN9F2B1GwIAWocrUrDl14ex08FBN3zg6x686MbqVl6n6+zHQWm392mr6t3Ocs3a2aZqCXRz4lCvzjrjPBzUm2YWHR6V9EZS0pvrluStFW1rF1d6I1lzT1RPb58MDA7VTGf0uz/8qGdqfaXuPW0AgNYhkQIAiEjlSksq+UIGBofavmjB/dmFjn4HklqMQl1hKxULkstmJJVc6fj0VDelYkHi16dsrw4CAFqDqX0AAHn+dE5y2X0ZGBySO9Mf1b2y8fzpnMSvT72VCxqcHh9JejMpmb0dY+rewOCQjIyNuy4BDwC4mEikAAAAAMAjlj8HAAAAAI9IpAAAAADAIxIpAAAAAPCIRAoAAAAAPCKRAgAAAACPSKQAAAAAwCMSKQAAAADwiEQKAAAAADwikQIAAAAAj0ikAAAAAMAjEikAAAAA8IhECgAAAAA8IpECAAAAAI9IpHDhpJIrcnp81DXloPu1uq/zhwfy6MFNuXfjqiwvPel0deEz9hUA8HYikbqgSsWCrK0uyr0bV+Xejavy6MFNyR8edDqslqiuV3ojKacn3zddrl/l2MXZSa2KpZvq6CVOv/u62vOncxIdflfmn30hsYlEp6vvKr2RlIVH076V123jolQsyIO77/sWl3n8qLJJrADg/CORuqBSyRXJvz6Q+7ML8uw3v5fYtYQ8fzrXdQc0fjgvZ/i7Kc5WxdJNdeyWOHPZfSkVCxJPTElPb5+E+yOdrr6jUrEg6c11iV+f8q3MbhsXgWBIBgaj0nO5ryVlj4yNy9rqYqerCQBoEonUBXR6fCS721tyZ/qhDAwOGR/ssWvXJbO349t2ctl9EakceOWy+5YzsPUea6Rs9bP59+q6Om3D6bXt5BanX3TarVWx6JTLmOmc6vaxa4Pd7S0J90dkYHDIl+02O96aHat29R4ZG/elfvXErl2X/OHBWzmOAOAi+XGnA0D7qSkmPb3Ws63hKxFJra+I+DSz6PnTOZm8NSPpzaQEAiHJHx4Y05Yye19bHosnrGe30xtJ2X21JafHR0aiZ36OKjuVXJFwf0ROT76XUvGN3Jn+yDjAyx8eyPOncyIicu/GVRERuT+7ICIiuWxGlpce275WpHKW/PT4SObml9zb9PhIUskXkj88kNPjI+np7ZN44rZEh0eN52T2diS9kTSu+vX09kl0+F2JDo/WjdPuQDWVXJH0RlJEKme3Y9euG+3abLvZtdnA4JBWHe1icyr3bRoz1dxi2t3eklRyxbK9z796aSljbXVRwv2RmgP76sczezuSSr6ouy2dvnv+dE7m5pfk+dM5CfdHJHwlUtPGajvVsTiNSadtO40Lp/qY267ncp+USgUjAerp7ZP5Z19otb9TvZ8/nasZo3b11Glfs0AwJNHhUcllM74lpACADijjwjn55z/Kdz+IlU/++Q/L43//JlO++0HMt+3c/SBW/u2vHxu///Uvfy7f/SBW/t2LX1ke+8V//LvldX9YXy5/9vGHRnx//yZT/uzjD8sv/7huKXtxYbZcLLwxHvvdi1+VP/v4Q9c6qbjcXvvbXz+ueay6nL9/kymXy+VysfCm/PWfNo0yX/5x3VKv715/W/P8v/7lz8bvum1fr22+e/2tr+1mF4tbHZ1i063jeR8zXmPSaZeXf1wvf/yLn1seU+9h1b5f/2nTsq3vXn9b/uzjD8t/WF/W6jtz+1TvF6rHQPW+w63f3bZdr/5u9VGvMW/nt79+bBk7uu1vV2/z+9Wtnm51rC5Llbe4MFsGAJxfTO27gHp6+6Snt0/Sm0njsVx2X9Ib675vy3zmWp2dNZ+ljQ6PSqlYsNybtbu9JfHrU8YVs4HBIYlNJGT31Zal7NjEdQkEQ5aydO/xGhkbd33tnemHWlejRM7ue1BlxiYSlnoFAiHjeer/6PCo57PRu9tbEptIWNpG3VPT6nZzq6NTbF6c5zFT3Vc6Mels9/T4yFrfV5Xpdap9U8kVmbw9Y2wr3B+pbGt7S6vvzNuqvlJtZr6aaq6nU7/rbtvMrT7qqo95OyNj45LLZhpqf7d6u9WzkTqG+yNv5T2pAHCRMLXvgpr7dElSyRVjOs3A4JAMDEZbujKZk1KxICKVA7VSsVCTYESHR42pdm4HPJ2KP725LvnXB5YDKFWvnt4+mbw1Y0wfig6PSnR41HJg7uasbaIOf2tduznV0Sm2VrZ5u+rulZ8xqYP03e0tmbw1IyKVaY6xawnLtpxW0XMbn2fbutRgPe37XXfb1WU61Sd8JSKl4hvJHx4YyUwumzEWh/Da/m71dqun1zqqbTr9HQDQ/UikLqhAMCSTt2aMAzORyv0EnV4xTG2/VCx4SjI6beGTaRkYHJLJW2dn0VWSqoyMjRv3Raj7O+KJKe2b2s1nvzvRbk51dIqt1bpxzPgdUyUBeCzxxJRxH466Sqe29ew3v7fdls74bKaeTnX0um2d+oT7K/cxqWQr3B+RQDBk3M/md/u71bNV7QsA6G5M7YNh99VWV9z4HAiGLFN0RCo3uAeCoa68GqVW+jIfRNmtJKam9N2fXZB4YspYaMALu5UVW9luunX0c9VHL7pxzPgZU2V1zUuS2dsxFnswH9QHgiHbtvcyPnXiqPd6v7ftVB/zNuOJKfn8q5cyN78k92cXatrE7zFRL6ZG61gqvunK/RkAQB+J1AVlnlKSPzyQ5aUn0nP5p5arI2uri8aKWu00MjYu6Y2kZepWeiPZ0HLEZ9N+zpbV1qVb/+ptnB4f1f1eHPPSyqViQU5PjowpRbpxDgwOWdrGvHS0X+1WLxadOjrF1mxfuOmWMdOqmERERt4bl1x2XzJ7OzUnPEbGxiWVXLG0t3qu7vjUVUlQzpbtdup3nW3Xa2+n+ph/d7ra5Hf729Wz0fY1T0sEAJxPTO27oMzLDqtluGPXZizPKRULHZnDH09MSUpW5MHd90VEbJct1hEIhiQ2kTDq6qUM3foHgiFjuWTVnvHEbckfHlgO9HLZjLF0snrenemHtnGq5aPN7s8uyNrqotE2IiKTt2ZkpLfPt3azi8Wtjk6xealjI7plzDQSU+XLX92vBI+MjcujBz+XQPBSzbLaqsxHD25aHo9NJCQ6PKo1PnWNjI1bFklw6ned90a99narj0hluuPa6qLli23Ve0pN/fNrTDjW84cyvbZv7pv9ln5XFQCg9X5ULpfLnQ4CneF2w3un7zlRSUynYmhF/f0q0/ydOfW2IdK5dnOKrdU6XfdWx7TwaFoG3hmyTQbUlc5WXunI7O3I2uqizD/70lKnVvS7XX1SyRUpFQsST0wZMajvchIR4wSFKkPEvzHhRz1z2X1ZXnpc04YAgPOFqX0XmNuBQKc/4APBUEdjaMW2/SpTLWFvt41OtptTbK3W6bq3Mia1BPrIe/ZXMQLBUMuni0WHR6Xncp+kN61fl9CKfrerT3ojWbPqZU9vn/HF0dVl+Dkm/Khnan2l5j43AMD5w9Q+AOhypWJBUskXMjA41BULFNyfXejodyCpxSjUlMhSsSC5bMZYCbOblYoFiV+f6oqFfQAAzWFqHwB0sedP5ySX3ZeBwSG5M/0RVzGkcnUuvZmUzN6OMXVvYHDI+IoBAADagUQKAAAAADziHikAAAAA8IhECgAAAAA8IpECAAAAAI9IpAAAAADAIxIpAAAAAPCIRAoAAAAAPCKRAgAAAACPSKQAAAAAwCMSKQAAAADwiEQKAAAAADwikQIAAAAAj0ikAAAAAMAjEikAAAAA8IhECm1VKhYkl93vdBg18ocH8ujBTbl346osLz3pdDg1UskVOT0+6tjroaebxncjY/ptGidvU126Ge0M4CIjkbrgdre35N6Nq7YHf6nkijy4+77cu3FVHj24KZm9naa2lz88kOdP5zpd7RrPn85JdPhdmX/2hcQmEp0Op0Z6IymnJ9937PXV8ocHnW6SlsfTSJndNL51xnR1Hf0eJ53USF3SG0lZeDTtWwzd9j4pFQvy4O77vsZlbmdVPokVgIuCROqCKhULsra6KOnNpO1zdre3ZHd7SyZvzcjnX72UkffGZXnpyVv3IZnL7kupWJB4Ykp6evsk3B/pdEhdr9uu2rUinm6roxe6Y/o819FvpWJB0pvrEr8+5VuZ3da+gWBIBgaj0nO5r2Xlj4yNy9rqYqerCgBtQSJ1QaU316VULMid6YcOz0lKPDEl0eFRERGJTSQkNpGQ3VdbnQ6/Y/KHBzWJZP7woOYM7+nxUUvPRqspZKVioe1tcHp81JZk2nyVNJfdt71q2op42lXHTnKro1Obe3Fe3jO721sS7o/IwOCQL9trdgw1O/6q3z+qvJGxcV/qZyd27brkDw+6ZoorALTSjzsdADojdu26BIIh27+rgwCVRJnlX+sf7KSSK7K7vSWlYkHC/ZGaD/HT4yNJJV8YB1s9vX0ST9w2tru2ulj3dXaPV0tvJGX31ZacHh8ZZ0vjibMzzrvbW5JKroiIyL0bV0VE5POvXtqWt7u9JYFgyFLG86dz0nO5T+bml6zxXYlIuD8imb0dSSVf2MYgIlrPUUrFgjx/OifhK2cHfepKoTkGJ27tntnbkfRG0jiw7entk+jwuxIdHjWmrqn2uj+7YHvwmUquSHqjctUzEAxJ7Np1Y5qZW988fzonk7dmJJVckXB/RE5PvpdS8Y3cmf7I2J55Kp05np7LP3Wsn1NsdmXWq2OnxrdT2+mMabs6iojkshlZXnps2+Zex2wj7xnd8nVjqPeeqZbZ26nb3nbjxKlv3caQU9yq/3ou90mpVDASoJ7ePpl/9oXWGFBtPDe/VKl3f0TCVyIST0zJ86dzNeO5kTraCQRDEh0elVw241tSCgBdq4wL7+4HsfLfv8lYHvv7N5ny3Q9iNc+1e7yeP6wvlz/7+MPyyT//Ybz2s48/tLy+WHhT/vpPm+Vi4U25XC6XX/5xvfyL//h34+8v/7he/vgXP7eUe/LPf5TvfhArf/f624a2//KP6w3X6es/bZY/+/hDy2tVndR2ioU3Rpuq56u/fff62/JnH39Y/sP6ck2ZTs9R5RULb8qfffxh+XcvfmWJ67e/fmyJy62Pndr9u9ffWp5fLLwp//UvfzZ+122veu2v+kynb+5+ECsvLswaMZbL5fLvXvyqpp714nEbV06x6daxU+Nbp+104q/3nLsfxMq//fVj1zbXGbPVzzVv1+k9o1u+23Pc3jPV48Ucj844cetbuz5wilu9xtz3v/314/Jvf/3Y8xhQ75/qOlXvC5qpY73yVJmLC7NlAHjbMbUPLbO7vSWxiYT09Fbm4w8MDsnAO9YzlOpMqro6FptISKlYMK6EjIyN10z52X1VmYLjdi/T7vaWxK9PWbbf7NTEgcEhyR8eGNODctmMDLwzJAODQ5LZ+9p4rHIvwpCkkisyeXvGiCHcH6nEsH0Wg85zzM8NX4nI5K0Zy+N3ph9qX41ya/dAIGQ8R/0fHR71fHa5Xv+rPtPtm9iE9cqpOtvfTP3cYmumfu0Y360Y12bmeO3a3MuY9fqe0S1fNwa794yZ+cqrWx+rfnHrWztOcaurPua+Hxkbl1w209AYGBkbr6lTtVbUMdwf6bqFNgCgFZjah5ZQB07VU0AGBqPGFBKRsxu8868PLB/Q6qBLfZCrRS9ERDJ7X0vsWkJr+9UH/9HhUWManNsBRj3qIEdNA8rsfS3xxG0JBC5JZm9HYhMJyWX3ZWAwasTgtAqYznOU1PqK5A8PjClYzXBq93B/5aBTTQmKDo9KdHjUcSqofftH29Y3uvVzis1r/do9vtvRdrp1113dzst7Rrd83Riaec+4jRO3vm0k7vCViJSKbyR/eGAkM7lsxrI4hJcxEAheansd1XY7cf8mALQbiRTqUh/S1QdmpeIbrQM13bP7C59My8DgkEzeOjtDq+4pUCoHCI8lnpgy5uo7zdE3b79ULHhKALTa5p0h42b5UvGNRIdHf7iXYMW4oX3kvXEjhme/+b1tDDrPMZ57pXKfQ2p9Re7PLjRVL7d2HxkbN+5zUPdsxBNT2jeqm89ot7NvdOrnFJuuTo3vdrSdbt11xqyi+57RLV83hmbeM27jRKdvG4k7npgyEq1wf0QCwZAlEfRzDLSijgBwkTC1D7Z6evtqVl7KHx54muJV/b1TpeIb42e1kpT5Q7reSlUDg0MSCFbOXquz2joHEIFgqGZKTGZvRwLBUFNn7cP9Ecm/PpDM3o5xwKvOuqc31384EH7XiMHtu7d0niNSOeBWN5OrxQQaodvuakrf/dkFiSemGtqmXb1a1Tde6tfsd6LVK6Md47uVbadLd8wqXt4zuuXrPEf3PWM+cVSt3jZ0+7aRuDN7OxJPTMnnX72Uufmlugmg32PA7zrqnnADgPOORAq2YtcSkt5MGh+emb0d2d3esqw45vTlo2rev5rikT88sNy/cDZ1pZKsnR4f2X7vysh745LL7ktmb0c7kRsZG5f0RtKy/fRGsunlf9U9I5m9ry2xDLxTueejp7fPOIgYGRuXVHLFcgCi6mGO0+05SiAYksnbM0ZfKG59YabT7ublkkvFgpyeHBnThKpfbzeFZ2BwyNL+5uWg/eyb6ngu/9D2TvVzik23jp0a3361nW4/2sWgO2ZFvL1ndMvXjcHuPVOtkpxYTxzZjROdvrVrX7e4c9l91xNFfr5/mqmjHfPURAB4mzG1D7ZGxsbl9ORIHj24KSJiLGGsDoRKxYLjwVc8MSVrq4vy4O77IlI5A31n+qExbUWVpxIAtbRu/vCg5kBiZGxcHj34uQSCl1yn9Zm3n5IVY/t2yyObb3LXpW6gN8cSHR6V9EbSWN5bxSAiRhsqsYmE8Vqd55iF+yPGFSK1XLRbX1TX163dc9mM5V4f1Xfq9bGJhPH6eGLKUmfl/uyCpf9FRCZvzchIb5923+jWpzoet/o5xaZbx06Nb5220xnT9eqoy+uYFdF/z+iW7yWGeu+ZaiNj4zULJNiOkx/a26lv7caQW9zR4VFZW120fKmtGlsqbj/fP83U0U7um/2Wf18VAHSDH5XL5XKng0B3s5uL3+77NBYeTcvAO0OeDxbMN/Z3irqq43SWVuc5Tq/1u35+lWn+Hpx62xDpXN84xdZuXsd3p9tOxdDomPWrfL9iyOztyNrqosw/+7KmTVsxTurFre4ZiyemjBjUdzmJSM0XqPs5BvyqYy67L8tLj+u2IwC8bbgiBVd2H4bt/JBUS0RXH0g43fisvoTUa5w6ZXoVCIYkHIw0/Ryn1/rNrzKdDsw6faDVDQmUiP34dtLptlMxNDpm/SrfrxjU1bH05npNMtuKcVIv7vRGsuaeqJ7ePhkYHKo7LdHPMeBXHVPrK9r3sQLAeUciha5XKhYklXwhA4NDNR/2jSY2TlpRJmDHaXyjve7PLnT0+4/UQhTm6dO5bMZYNbPblYoFiV+f8jxVGgDOK6b2oas9fzr3w3fMDMmd6Y84y4m3CuMbZqfHR5LeTEpmb8eYtjcwOGR8HQEAoLuQSAEAAACARyx/DgAAAAAekUgBAAAAgEckUgAAAADgEYkUAAAAAHhEIgUAAAAAHpFIAQAAAIBHJFIAAAAA4BGJFAAAAAB4RCIFAAAAAB6RSAEAAACARyRSAAAAAOARiRQAAAAAeEQiBQAAAAAekUiho0rFguSy+50Oo2NSyRU5PT7qdBgXwkUfaxcd/Q8A8BuJ1AW3u70l925cdTzA0HlOo/KHB/L86Vxb65w/PLD8XioW5MHd92seb4f0RlJOT75vaf06qRWxNFpmp8daJ8dZJ7fdLZrt//RGUhYeTXe6Gk3zOhbU8znhAwC1SKQuqFKxIGuri5LeTDb1nPNoeemJ5fdAMCQDg1HpudzX6dBaUr+3LZZuqp+XWDs5zt62Md5upWJB0pvrEr8+1elQmuZ1LASCIRkZG5e11cVOhw4AXYdE6oJKb65LqViQO9MPm3qO33LZfSkVC5bH6k3JMf+ey+5rny09PT6q+9yRsfGGYjX/3A3Thuzq5zedurciFj/L1BlrjY4zu1gbGWf14mhkrFVvuxvHbzvaoRG721sS7o/IwOCQp1i8jDH1uHnM1HusmfZS5Xgdh7Fr1yV/eHAuxggAtNOPOx0AOiN27boEgqGmn+NVKrkiu9tbUioWJNwfqflAf/50Tu7PLlgOWNSUnM+/eml53tz8kjx/Oifh/oiEr0QknpiS0+MjSSVfSP7wQE6Pj6Snt0/iidsSHR61TO25d+OqiIixrXrbTW8kZffVlpweHxlnZeOJKUsMk7dmJJVckXB/RE5PvpdS8Y3cmf7IKGd56YmcHh/J3PySVvs4xa9k9nYkvZE0pub09PZJdPhdiQ6P2tavXj+kNypXGgPBkMSuXZfYRMK3uju1tU4d68U38M6Qdv38Gmt248ytr+zq38g40x1rbqq33UiZdmNPxZvZ25FU8oVjXZzGnh/vOd3+d6tL9XPrjR+3WHTH2OStGUlvJiUQCEn+8MBoj8ze15bH7GKza3O78VsvLqd+CQRDEh0elVw2oz3eAOAiIJG6oHQSpFYkUblv9mXu0yXp6e2TXHZfUusrjZe3vmKUdRbzJRkYHJLJWzMSCIYkvZGUtdVFiQ6PSrg/InemP6pJypxivf/LzyyxpgNJS8KR2duR+WdfGm21trpYiUszcaptc/v4RSoHYctLT4yDoMoZ64wEgpe066fqNv/sC6Nu5r72o+5OsbjV0S6+RvrPj7FWb5z5NdZ027oVY81rmU5jT6Ry1WZ3e8uoS/7wQNZeLEpKVowDe6ex5+d7zq3/3epiVioWJH94UDeB8KtPctlKm6gyl5eeyMjYuOWxtdXFmkRKq81txm+9cWi3TxCpfB7kX1/ce+wAoB6m9qFtdre3JDaRMD7QBwaHZOCdxs9ujoyN1zm4rZyRVQcBsYmEcSDkNdb49SlLrLGJhOy+2rI8LzZhvWqnrkYod6Yfejqocos/EAgZz1P/R4dHPZ0lrtcP4f6I73VvtI5u8TVax0bHWr1xplMP3Th12rqZ9nbipUy3sZdKrsjk7RmjLuH+SKUu22d1cepbP8edW/97eR+Zr1i1qk/MV7vUCQXzFdro8GjdsaXT5nbj1629qt9z4f7IhV6sBADq4YoU2iJ/eCClYsFycCAiMjAYNaaTeGV39ji9uS751weWA4/q+xR0Yq0+qIoOjxpT9dwOTBrlFn9Pb59M3poxpupEh0clOjyqffXwrG7RjtXdqY5u8Xmpo19jrd44c6uHlzg7Mc4a4TT2VF2cVrVz6ls/20Kn/5t9H3WKeWzptLmI/fitLsftPRcIXvK0HwWAi4BECm3h9YpCoxY+mTamW6kDL3WPitdYS8VC2w+sdOIfGRs37lfY3d6SVLIyjUfnBnJVN7t6taPuTnV0i0/HeRlrnRxnjXIbe89+83vXsVXv7362hW7/N/M+6gaqnk5t7qWc8zIGAaCbMLUPbZXZ27H8Xiq+cX2N7opValUq84Fto6tdBYIhyWUzNbEHgqGWXSXwEr+ainR/dkHiiSlJJb3d/1PdD+2qu24dneJrtI7dONY6Mc6aZTf2AsGQVr/ZPcfvttDpf533kbpK5tdqkX6uZKnb5o20V7VS8U3XjkkA6BQSKTRsbXXR0xdcqrn7anpI/vDAMpdfpDLlxvyBnsvuax8oqDOraone0+Ojmu8cqn6O3VSVkbFxSW8kLbGmN5Kez1Z7aSOd+NXf1cFYqViQ05MjY/qOTv0GBocsdateptuvuteLRaeOTvHp9t95GWt+tbXIDwsdeEyovXIaeyNj45JKrljGUnWbOvWtn22h0/9OdalWSfK8L/3dzBjTodPmOtz2CaoN23W1FwDOC6b2oWGlYsHTnPl4YkrWVhflwd33RaRykHFn+qFljv+d6YeyvPTEMtVr8vaM630AIpWDHbW0ryo/nrgt+cMDy03lsYmE8Zx4YqpmdTT1eEpWjFjtlnL2s4104hcRyWUzlnt9VDvq1u/+7IKlH0REJm/NyMgPZ5v9qrtdLG51dIrPS/9141irF6cfbS1SWTBg8taM59d54TT2VMyPHty0vCY2kTDuV3LqWz/bQqf/nepSbWRsvKGFFpoZY7r1dGtzHW77BBGR3Df752baIwC0y4/K5XK500HgfGrlvR3dcqO9SoIarWer2siPctUZZ7t2brbuzXKLz8/tdHqsNdvW+cMDWXg03fT9MrqxOm1DXd1xunrh1LftHHe67yO1/Lh5qXMvWj3GdNpcN06R2n7JZfdleelxw/UHgLcViRQAnHOp5IqUioWWX5G6yBYeTcvAO0MNXSE77y5y3QHACYkUAAAunL6Y9212UesNADpIpAAAAADAI1btAwAAAACPSKQAAAAAwCMSKQAAAADwiEQKAAAAADwikQIAAAAAj0ikAAAAAMAjEikAAAAA8IhECgAAAAA8IpECAAAAAI9IpAAAAADAIxIpAAAAAPCIRAoAAAAAPCKRAgAAAACPSKQAAAAAwCMSKQAAAADwiEQKgEUuuy+lYqHTYdSVPzyQRw9uyr0bV2V56Umnw7mQznMflIoFyWX3W/6abpVKrsjp8VGnw0AL6YzXTryHOz32Or19vL1IpC643e0tuXfjat0d7+nxkaytLsqDu+/LvRtX5dGDm5LZ2+l0yG1RKhbkwd33JX940OlQ2u7507murffzp3MSHX5X5p99IbGJREdjaUUbdWu7m3VTH3iVPzyQ50/nWv4aO+3er1RvJ72RlNOT77sqxm7yNtRdZ7y24z3cbWPPvP1W9/N5Hj/wjkTqgioVC7K2uijpzaTtc9ZWFyUQDMmd6Y/k2W9+L9Hhd2V56cmFOKsTCIZkYDAqPZf7Oh0KfqCulMUTU9LT2yfh/khH42nFmdxuv8LTbX1w3rR7v9LIeLrI+76LUPd2vYe7eey1ejvdvh+Hv0ikLqj05rqUigW5M/3Q9jn3ZxcknpiSgcEhCQRDEk9MSbg/IruvttoSo7pKpqYqmBO4eo/V00zSNzI27qlM81W9XHa/oelAumXUm35XPaXDj/ZrRnUs5yEB123/0+Mj3+vjd5mNltWKfrMrs9NjtJn66L7/qutcvV/xut/QbQ+38eS0Lbt9Xzt0437frR3NP/s1DbRV5foZk127nIex53U7nfxsQHf7cacDQGfErl2XQDDk+XWBYEgCgUvaz08lVyS9kTReG7t2XWITCTk9PpJU8oXkDw/k9PhIenr7JJ64LdHhUeO1z5/OyeStGUlvJiUQCEn+8MCYhpDZ+9ryWDwxZbzu3o2rMje/ZLl6NjI2LvHElFFn3e3fn12QgcEhEalMg0wlV6Tncp+USgWj7J7ePpl/9oURbyq5IuH+iJyefC+l4hu5M/2RUYaKaW5+qW576ZRRLzaRsykdn3/1sqn2M28jl92XQDBktF+1zN6OpJIv5PT4qOZ5z5/Oydz8kjx/Oifh/oiEr0TqliFSmXax+2qrbjnmtlf9KyJGPXXHnM52dNrfPHVGxXJ/dkF6Lv/UdUzZxTfwzlDdMkvFN5LeSBpTRXp6+yQ6/K5tO+qM/Ub7zakPdNq1XpnNjFGnOpjbend7S0rFgoT7I1oHTzqv0X3/2dXZ/Frd97zb/sfMboyKiOSyGVleeuxp/5LZ2/E0Dt+W/b5Om+v2n5mXdnAr18sYb+Y97DSmz8PYq1bvPey2X2z0s8FuHOAtUcaFd/eDWPnv32Rcn3fyz3+U734QK5/88x9a5f5hfbn82ccfGs//+zeZ8nevvy2Xy+VysfCm/PWfNsvFwptyuVwuv/zjevkX//HvNXH99tePjd//+pc/l+9+ECv/7sWvLI/Ve515uyf//Ef5s48/LP9hfdl4ju72Vbv8/ZtM+e4HMSP+crlc/u2vH1viu/tBrLy4MGuUWS6Xy7978avyZx9/aHmN+fd6feFWhl2fqRj9aL/FhVlLv3328Yfll39ctzzv6z9tWtr5u9ffWtq5uhwv46Te9qrrp1uW6jOd7ei2f71YdMaUU3zVZX73+ltLPxcLb8p//cufHd+rOmO/mX6rV28v7VpdZqNj1K0OTnE5jSHd1+i+/+zqbH6tzpjT2f/o9JVqby/7F6/j8G3Z7+u2ue4+w0w3DrdyGxnjjb6HzTG57dO7cezVe9+Zf9fdLzby2YC3G1P7oKVULMjy0hNjXrWO3e0tiU0kjOcPDA4Z87HV2R51pjA2kZBSsVBzk6b57Jo6W2c+axcdHq37OvN2e3r7ZGRsXHa3z6Yk6m5fh2XwNwAAgABJREFUUWcNzfPJR8bGJZfNVG3XeqUvOjxqKfPO9EPbq1G6ZXjRaPuNjI1b+m1kbLxmSmcquSKTt2eM54X7IxKbSFja2VyOnd3tLYlfn7JsLzaRaGgKqdOY091Oo+2vM6ac4qspLxAyylX/R4dHXc9uuo19v/rNa//ZldnIGNWpQ722HnjHue0aeY0T3XZ0G3O6+x/dmLyMb6/j8G3Z73tpc6/7DN043Mr1a7x62Qd72TfUe22nxp4bnX2Kn5/NeHswtQ9aUskVCV+JaK/wkz88kFKxIAOD0bp/LxULkt5cl/zrA8sHSKPLble/LhC0Tj8MX4lYnuN1+5XXv5H84YGxY85lM2/NTck67Wee9636d+HRtGO51eVUOxsn1g/G6PCoMUVH90Pbacz5uR2nNnQaU27viWo9vX0yeWvGmEYTHR6V6PCo65Rcp7HvV7810q66ZTq1r24d1HOqp1UODEaNaT9+vMZNs3VWOrn/8TIO36b9fivb3I928Gu8et03+jWmdfg59nTawG2/CNRDIgVXa6uLkn99YMxz1mE+A1nPwifTMjA4JJO3zs4AqTnFrVB9Vsrr9sP9lbngakcb7o9IIBjy1CbnWfXBg2rPZ7/5fUP32lWXUyoWmirHXFa9cvzcjh23MeX2nqhnZGxcosOjkstmjPsb4okpTzdKm8e+X/3Wzna126ZTHRpZiaybVyDs9P5Hdxy+Tfv9Vra5H+3g13jtxHvYC7/Gnk4b+LVfxMVCIgVHa6uLIiKu09HsZPZ2as6YqdV+Jk03SPu9yk2p+KYmjma3n9nbkXhiqmu/O8fPNqxuv1w2U3PFJhAMSWZvp+lVlgLBkOSyGcs4yeztSCAYaugqUb0x14rtWNtHf0zZxefUPupMrDqQcGpzp7GvyvOj39rRrk7b1KlDdVtXt41frxHxfx9WL65O7n+8jMO3Zb/fijb3ux0aHa9mnXgPe42vmbGnuw0/94u4OLhHCrbUlajK2aB9yz/1d6cv/hsYHJL0RtKYrqCWBT2bJrFvPO739y6Y5zWLVFZ7UjvIRrevVrBrtk39+HLPnt6+moMEP78sWa0CJVKZ9pDeSEp0+F3Lc0bGxmu+Lb6ROEbGxi3jRG2vkQ80uzHn93aqx9DlHw423MaUU3zVZVYv9VwqFuT05Mh1ao3T2Pez31rRf1626VYHdX+DOa7qtqmm+5pWv//q8br/qTeemtm27jh8m/b7fuzzq/nZDo2M8Xr8fg9329jTbQM/9ot+1h3nA1ekUFcuu2/skOsd+H/+1UspFQuOO4n7swuytrooD+6+bzw2eWvGWFJUlauWfs0fHvj2oRW+EpFHD25Kz+WfyunJ9xIInE3JUN+J5XX70eFRWVtdNK7SqdfemX6oPc3Crc103Zl+KMtLT4zpIOH+iEzenvFljre6EXrhk2nHpXDV748e3LQ8HptIeDojGE9MSUpWjHFit73Klyg630htO+Z6+7S3o9tGsYmEMYbiiSmtMeUUX70yS6U3lvsd1Hhz4jT2m+23en3gZ7vq0qlDPDFlaWvVdk7vEd3XtPL9Z8fr/qfeeGpULpvRHodv037fj31+vX7xqx0aGePteA933djTuKrm1+dZvbp36ywW+ONH5XK53OkgcD7pzqk2f/dGO9y7cdX4Xp/Tk+9FRJr+HodUcsX4Nvjq7yQREdeDW69tpsuPRRKaLV+dJWx2zr5KMP1oH6cx5+d2WhFfvXh1Y/Uy9v3qN3N5Iu1tV7/r4FWr33+KX/ufZnjdd533/X43tHm7dcO+0S6udo29Tu9TcP5wRQoN092xdWqOdU9vn2/bTm8k5f7sgqXOPb19xpc26vL7A6rVbatTfiAYknCw+Q8dP9vGKe5uOEjw0m+NxKsz9v3qt2bi9GObftbBq3bt2/za/zTDa/+e9/1+N7R5u3XDvtGPuJrp/07vU3D+cI8UoEHdiKqUioUfvgV9hZtTAbQU+5/2o80B6OCKFN46A4NDvp9Zm/t0SdKbSXlw931j+oNavraRFYKAVmjF2Efnsf9x5/fYp80B6OAeKQAAAADwiKl9AAAAAOARiRQAAAAAeEQiBQAAAAAekUgBAAAAgEckUgAAAADgEYkUAAAAAHhEIgUAAAAAHpFIAQAAAIBHJFIAAAAA4BGJFAAAAAB4RCIFAAAAAB6RSAEAAACARyRSAAAAAOARiRS6TqlYkFx2v9NhdJVcdl9KxUKnw6iRPzyQRw9uyr0bV2V56Yn267qxj1PJFTk9Pup0GF3Nrd86OU4bHYt+68Q4YuzSDp2mu0/vlvcp4BcSqQtud3tL7t24WncHmNnbkedP5+TejavGTi9/eNDymPKHB/L86Vynm6arPH8615a2bySu6PC7Mv/sC4lNJLRf1+k+rteW6Y2knJ5837Ly3wZu/dbJcVpvLLY6llaPI13mbZaKBXlw9/2W1L3bx3Ur2r6b6tzNfaq7T2/0MwPoViRSF1SpWJC11UVJbyZt/767vSXR4VGZm1+S+WdfSCAYkrUXi50OHV1CXX2IJ6akp7dPwv2RToekrdVnQjnT2l52Y/Ei9nMgGJKBwaj0XO67EPVttW6qcytiaWf9zvNnBmCHROqCSm+uS6lYkDvTD+v+PRAMyf3ZBRkZG5dwf0R6evtk8taM5A8PGjqDdZ6nW5iv1uWy+7bTF+pNa6qe7qB+Vo+b26XeY62uy3nul0adHh+51tupn/0ov/r58J/XflB03yOtHkfNGBkbb6rO9WLWqW/+8KDmOfU+M06Pj7rqSo+dRseQV361f7fWz0vdvcTT6c9TQETkx50OAJ0Ru3ZdAsGQp9eoHZLuWaR7N67K3PySLC89MV47MjYu8cSUZdup5Irsbm9JqViQcH+k7kHA6fGRpJIvjA/qnt4+iSduS3R4VNZWF+u+zvx4Zm9H0htJ48O7p7dPosPvSjwxZcQ3N79Utx7Pn87J5K0ZSSVXJNwfkdOT76VUfCN3pj+SgcEhy/Puzy5YHlPTHT7/6qWlrPRmUgKBkOQPD4zpDZm9ry2PxRNTdWPJZfclEAwZbVkts7cjqeQLOT0+qnne86dzMje/JM+fzkm4PyLhK5G6ZYhUpsnsvtqqW87u9pakkitGP4uIUcd63Pq4lf1rZp5+ouI291kum5Hlpce2/ewUp075Xt4bbttSfW1Xb7c2cRonXt6bdu8Zu3Gq05+6Y8NuLKoxXq8f3Oqt8x5pdhzptn91X6Q3KjMIAsGQxK5dt50aVb0v0qmz0z5Od1zvbm9JIBiqKbvncp9l/7q2uijhK5HKtlz6V/e9XU8z76Ho8KhWnXX6xmlf2mz769SxXnwD7ww51s9tzHjdN9h9Zji933TbrdHPUy/jBLBVxoV394NY+e/fZByf89e//Ln82ccflv+wvuyp3M8+/rB88s9/lMvlcvnkn/+oKeMP68uW5/z9m0z5s48/LN/9IGYpq1h4U/76T5vlYuFNuVwul1/+cb38i//4d+Pnj3/xc8vzT/75j/LdD2Ll715/W/7u9beWOhYLb8p//cufjd9/++vH5c8+/tCxHosLs8a2y+Vy+XcvflXzmnrt+PdvMpa63P0gVv7trx9b2vXuB7Hy7178yvKYqlt1DNXt9PKP65bnff2nTUt7fvf6W0ubV5djx65fzNurrpvXssyvbWX/VrOLW/WNUz87xemlXXTeG27bcqq3W5u4jRPdfqtXL7dx6taf1Rpt83qP6dRb9z3SzDjSicOsXl+Y26p632P+3UudnWLWGddqW+bXqDGjtl8svKkZm3b96/W9Xd0OzbyHdOvs1jc6+9Jm2t+tjk7x2ZXpNmYa2TfYbc/u/abbbo18nnptQ8AJU/vgSC02sbz0RMJXIjLynrcpI7GJhPT0Vubq9/T2ycjYuOxubxl/393esjxnYHBIBt6pPeOnzkaps/WxiYSUigXJHx7IyNh4zVSR3VdblbNb/REJBEJGGer/6PCocebtzvRD26tRZ/WwXsGLDo82PDXFfOZOnfEyn/mKDo8adat+nbmdRsbGZffVluU5qeSKTN6eMZ4X7o9IbCJhaXNzOXZ2t7ckfn3Ksr3YRKJmezp0+riV/eu1b5z62SlOr9zeG27bcqq3W5vojBPd92a9NnQap279Wc3PNtepd3UdGuE2jnTjcOoL3ZkButvyYx+nrp6oKc65bEYG3hn64Urg18Zjlfu4KmPJqX+bfW838x7S5dY3uvvSRtvfrY6NjB23MdPovsFOvfebbrs1+nnqpQ0BJ0ztg6P7swsiUrn0vftqSxY+mZb5Z19qTwsMBC9Zfg9fiRgfsuoDt/ry+cBg1JiGoJSKBUlvrkv+9YFlB1cqFiTQHzIOQidvzYhI5bJ+7FrlEr+6v0tNHYgOj0p0eNTz1MZ2q77fql5bmud/q/ZceDTtqU+qqXKqDyaiw6PGVDTdg0zdPj4v/esUp1dO7w2dbTnV2+lvOuPEy3tTp17mcaoOWuz6s1Vtrvv+qFcHP3mJw/z8gcFoy7fVLLWAQGZv54cpt19LPHFbAoFLktnbkdhEQnLZfUtdnPo33B9p6r3dzHvIj77xc1/aSB0bGTtuY6aZfYOd6vdbK9rNaX/h534dFw+JFLRU5gxPSe6bfeNsVCPMZ8K8rNiz8Mm0DAwOyeSts7Nkap61iNrBPpZ4YsqY52ze0Y+MjUt0eFRy2YwxVzuemPJ8U3Y3qV6VS7Xns9/8vqkkQpVTKhaaTkZ0+/i89K9bnH62lc62nOrt1iZO48TP1bTqrR7n1p+taHO/3h/N8hqHen4jMXeizgPvDBkLTJSKbyQ6PPrDPSgrxgIA5pkNbv3bzHu72fdQs33j5760kTo2Mna64X3SjnYza+V+HW8/pvbBMy87tlLxjeX3zN5OzXOqH6t+jVp5x7yTq16JZ2BwSALByllPdTa0Ok41beP+7ILEE1PGja+t5OeKQbXtkqk5KxcIhuq2sVeBYEhy2YzlsczejnG1wyunPj4v/asTpxdO7w0v23Kqt93fdMeJ23tTp171xqlOf7aizf16fzSrkTgajbvddQ73RyT/+kAyeztGcqyuVKU3139Imt8VEf3+beS97dd7SIdT+/q9L22kjl77X2fMNLJv8BpDq9qtkTYE7JBIoa7T4yPLct6lYqHyrfEnR8bl9rXVRdcv4Kueh5/Z+9pypk/NuzZP96t+jTo7pZY6PT0+qvvdFyPvjUsuuy+ZvZ2aKQHmZVBLxYKcnhwZ0wl06qGjp7ev5mDYzwOY6nZKbySNAxKjDcbGK/1k+iBoJI6RsXFJbyRrttfIFR63Pm51/1ar3p7u9A3dOHXLd3pv6G7Lqd5Of9MZJzrvTbt6uY1Tt/702uY6ry0VC769P+zK1+U1joHBIcv70cuy1X7VWbe+6t6ezN7Xln4deKdyn1RPb5/l3htzmfX618t72yneRt5DOnV26xu/9qX1YtGpo1N8dvVzGzON7hu88PMzyEu7etnHACJM7YOD1PqK5WbLnt4+uT+7YHwIlooF14OH8JWIPHpwU3ou/1ROT76XQCBk3HclIhJPTMna6qI8uPu+sY070w8t87PVcroq2VFLk+YPDyxnsUfGxuXRg59LIHipZppQLpuxzN9W29Gth4470w9leemJZVrF5O0ZX+5PUPeVLHwy7bhcsvr90YOblsdjEwlPS7nGE1OSkhWjX+ptz3zDuFtZTn3c6v6t15axiYSxvXhiSmuqqm6cuuU7vTd0t+VUb6e/6YwTnfdmvTbSGadu/dlIm1ePxXr94Nf7o5lxpNv+ZvdnFyx9ISIyeWtGRjTOzPtVZy/1VYtOVN/0n95IWl6j079e3tvV8Tb7HtKps1vf6OxLm2l/tzo6xedUptOYaWTfoOqgu5CHX+2m06464wSw86NyuVzudBDoXpWDoUt1dyhu85fv3bhaSbx+OFAUkYZWUvNi4dG0DLwzVHdnaxev3/Ow/biBuNny1ZnVZu91UQlmt3ygNNK/3cjP94ZTvd3axK9xUo/OOHXqz1ZqZb1bGYe6QtDI/qVb6tyIVr+3/SjfrW86vS9tZOx0w5jpdLsBbrgiBUdOO13dHZt5KkcrqSWVna5ENFMPXa2uq075gWBIwsHmP/y66cOr0f7tZn68N5zq7dYmfo0Tu7o5cevPVmplvVsZRzNjpVvq3Gjs3V6+W990ev/UyNjphjHT6XYD3HCPFN4KlXu4XsjA4FBbkja0F/37dqE/AQBvA65IoWUqK3O1/mzS86dzP3w3yZDcmf6o09WGz97G/m3Xe6MbvY39CQC4mLhHCgAAAAA8YmofAAAAAHhEIgUAAAAAHpFIAQAAAIBHJFIAAAAA4BGJFAAAAAB4RCIFAPj/s/fHsW1l+YHv+aukk4clZUwmQ2tL+wA+eQIFXKgGL+JgNbOASihhMzQgC3hKCqEBAeUul4wgdgnW7rYRK6gqV9pTRskzfpiWW1P1ZlqyquslWohBoTmIJGxxeloVWfNHaxBqFq+4TbSQWM0/Wm6Zb7oDk8S+yczj/sE61/eSl7znkJciJX0/QKEs8vLcc37n3Ev+eM89BAAAhkikcCqVigW5df11yR3sd7oqJxYxBAAAqI9ECqdSINgjkcGohM73dboqJxYxBAAAqI9ECscif3To+ng2s+f4d73t3F5XKhZqHs8d7FtXUEbGxo3r6VZuqVhw1PM4qf2qOtjj4/aYG92YuqkXw0ZlVvdpp2IHAADQTi+Vy+VypyuB0+nGlYsyd3dRlhbvWR+8R8bGZTI+LYFgj2Obh/fnJNw/IOELAzIZn7bKSO9uSzLxSPJHhxII9livf3h/rmZbEZFb11+Xyfi0jIyNy40rF+Xm7XmJDA5Zz6fWE7LzxWZNefY6V78mm9mTh/fn5KNPP7fqlFpPWAlbqLdPosOv1tTFLplYltR6QkQqV3pily5LbCIu+aNDSSYeSe5gX/JHhxLq7ZPJ+FsSHR616jN1dVZSGwkJBHokd7AvsYn4V/V47Hisuh1esRcRrf3b47GztSnJxLKEzvdJqVSwyg719sndB5846pxMLEu4f0Dyz55Kqfhcrs2864grAADASfa1TlcAp9vqowW5+YcfSqi3T/JHh7K0eE9SG2uOD/3JtWWZ++aihHqdU8h2tjZlZ2vTen3uYF9WHy1IUpYlOjwqycRyTdIlIlYSUC2ZWJbsl3tWednMniTXliUVSFjJiZfcwb4sLd6zkovKVaG0BILn6r5G7ffug0+s/apkJhA8J5HBIZm6OiuBYI+k1hOyurLgaEM2s2clKendbVlavCcjY+OOx1ZXFmoSOZ3Y6+zfXo/VlQWZu7so4f4BERFZWrwnIiLXZt5xbJve3Za7D75rtXN1ZaHSz3cX/R9kAAAAHcDUPrRVbCJuJUih3j4ZGRuXna1NxzYjY+M1SZRIJQGZemvWei7cPyCxibjsbG1aH/RV8iRS+aAfHR51XHGx29nalMnL01Z5kcGhSnlfbIquQEAlQC/+Hx0ebXilZWdr0xGHyOCQlYioq2KqvNhEXErFgmOBB/v0OtVue6ITHR6teY1u7HX2r6grVqruqm7ZTNql3y87+iE6PMqiFQAA4FThihTaqvpKTfjCQM09SG5Xc3IH+1IqFmT+zkydcisJjEqeSsVC5erV7XnX7VV51QlPdHjUmv7mlsxVC/X2ydTVWWsqYnR4tGHy9mK/UdfnS8WCpDbWJPdk35HAuN3/5cUrrm6xN9l/5fXPJXewbyVT2UyaxSgAAMCZRCKFY2W/mqGz3YOPP6ubpESHR+Xh/TmZjE9LendbQr19da8MqfJKxULd8nSNjI1/lcSlrXuG1H1Z9fZbb5/z789YU+tUInfjykW/w+6oS7P7D/dX7klTyW24f0ACwZ66ySsAAMBpRiKFtioVnzv+tk/F8xII9kh6d7vuynGRwSEJ9fZJendb0rvbEh1+1bO8bCbtmBaX3t2WQLCn4dUotxXq1BWx6PColUw1WiWwUj/nfUdqxb2pr+51qrevdsW+mf2nd7dlMj6tfU8ZAADAacU9Umir6nty0ruPtZclHxkbl2Ri2fHhPpvZcyQEI6+NS2ojIdnMnoy8Nu5ZXmo9YU1byx3sS2o94aiPSszq7U89pupUKhYk/+yw4WITkcEhx37zR4eSPzq0TY/bsx5XizccR+yb2b99oQwAAICzjCtSaKvwhQG5c+tNCZ1/WfLPnkogoD8VTK0ud+fWm47HYxNx26ILr0oysWxdnfIqLynLcuv66yIirsufX5t5R5YW71nT28L9AzL11qzjXq1sJm0tZS5SSb6qV62zu3l7XlZXFqz9iohMXZ11LOWuypmMvyW5g31fkhWv2AeCPcb7jw6PyurKgqyuLNS0X3faJgAAwGnA70ihbdRvEKkP8iLS1O8Iqas+fn1QV1eGGiUrXotPNHOvlf03l9rNr9jbJRPLUioWHL9FpX6HSkQaJpMAAACnDVek0Hah3r6WkodAsEfCQf+udugkQF71beaK0XEkUG779Gu/qfWE3Lw972i7WuCjehohAADAacc9UgC0qMU/lFKxIOndbc+FNgAAAE4jrkihbSKDQyxM0CHtiP3cNxcltZGQW9dft6ZHqqXTq1ckBAAAOO24RwoAAAAADDG1DwAAAAAMkUgBAAAAgCESKQAAAAAwRCIFAAAAAIZIpAAAAADAEIkUAAAAABgikQIAAAAAQyRSAAAAAGCIRAoAAAAADJFIAQAAAIAhEikAAAAAMEQiBQAAAACGSKQAAAAAwBCJFAAAAAAYIpECAAAAAEMkUgAAAABgiEQKAAAAAAyRSAEAAACAIRIpAAAAADBEIgUAAAAAhkikAAAAAMAQiRQAAAAAGCKRAgAAAABDJFIAAAAAYIhECgAAAAAMkUgBAAAAgCESKQAAAAAwRCIFAAAAAIZIpAAAAADAEIkUAAAAABgikQIAAAAAQyRSAAAAAGCIRAoAAAAADJFIAQAAAIAhEikAAAAAMEQiBQAAAACGSKQAAAAAwBCJFAAAAAAYIpECAAAAAEMkUgAAAABgiEQKAAAAAAyRSAEAAACAIRIpAAAAADBEIgUAAAAAhkikAAAAAMAQiRQAAAAAGCKRAgAAAABDJFIAAAAAYIhECgAAAAAMkUgBAAAAgCESKQAAAAAwRCIFAAAAAIZIpAAAAADAEIkUAAAAABgikQIAAAAAQyRSAAAAAGCIRAoAAAAADJFIAQAAAIAhEikAAAAAMEQiBQAAAACGSKQAAAAAwBCJFAAAAAAYIpECAAAAAEMkUgAAAABgiEQKAAAAAAyRSAEAAACAIRIpAAAAADBEIgUAAAAAhkikAAAAAMAQiRQAAAAAGCKRAgAAAABDJFIAAAAAYIhECgAAAAAMkUgBAAAAgCESKQAAAAAwRCIFAAAAAIZIpAAAAADAEIkUAAAAABgikQIAAAAAQyRSAAAAAGCIRAoAAAAADJFIAQAAAIAhEikAAAAAMEQiBQAAAACGSKQAAAAAwBCJFAAAAAAYIpECAAAAAEMkUgAAAABgiEQKAAAAAAyRSAEAAACAIRIpAAAAADBEIgUAAAAAhkikAAAAAMAQiRQAAAAAGCKRAgAAAABDJFIAAAAAYIhECgAAAAAMkUgBAAAAgCESKQAAAAAwRCIFAAAAAIZIpAAAAADAEIkUAAAAABgikQIAAAAAQyRSAAAAAGCIRAoAAAAADJFIAQAAAIAhEikAAAAAMEQiBQAAAACGSKQAAAAAwBCJFAAAAAAYIpECAAAAAEMkUgAAAABgiEQKAAAAAAyRSAEAAACAIRIpAAAAADBEIgUAAAAAhkikAAAAAMAQiRQAAAAAGCKRAgAAAABDJFIAAAAAYIhECgAAAAAMkUgBAAAAgCESKQAAAAAwRCIFAAAAAIZIpAAAAADAEIkUAAAAABgikQIAAAAAQyRSAAAAAGCIRAoAAAAADJFIAQAAAIAhEikAAAAAMEQiBQAAAACGSKQAAAAAwBCJFAAAAAAYIpECAAAAAEMkUgAAAABgiEQKAAAAAAyRSAEAAACAIRIpAAAAADBEIgUAAAAAhkikAAAAAMAQiRQAAAAAGCKRAgAAAABDJFIAAAAAYIhECgAAAAAMkUgBAAAAgCESKQAAAAAwRCIFAAAAAIZIpAAAAADAEIkUAAAAABgikQIAAAAAQyRSAAAAAGCIRAoAAAAADJFIAQAAAIAhEikAAAAAMEQiBQAAAACGSKQAAAAAwBCJFAAAAAAYIpECAAAAusD3v/99icfj8uu//uvy0ksvSTwel5///OedrhbqIJECAAAAusDPf/5z+ft//+9LIpGQRCIh3//+92Vubq7T1UIdL5XL5XKnKwEAAADAaW5uTu7fvy98XO9OXJECAAAAAEMkUgAAAABgiEQKAAAA6EJ//dd/Lb/3e7/X6WqgDhIpAAAAoMv89V//tfzZn/2Z/PZv/3anq4I6SKQAAACALvOv//W/FhEhkepirNoHAAAAdJlf//Vfl9/7vd+Tf/Wv/lWnq4I6uCIFAAAAdJH79+/Lz3/+c7l9+3anq4IGuCIFAAAAdImf//zn8hu/8Rvy+7//+zI/P9/p6qABEikAAACgS8Tjcfn+978vf/VXfyV/9+/+3U5XBw2QSAEAAABd4Pvf/778k3/yTySRSDiSqH/4D/8hSVUXIpECAAAAusCv//qvy89//vOax//tv/23rN7XhUikAAAAAMAQq/YBAAAAgCESKQAAAAAwRCIFAAAAAIZIpAAAAADAEIkUAAAAABgikQIAAAAAQyRSAAAAAGCIRAoAAAAADJFIAQAAAIAhEikAAAAAMEQiBQAAAACGSKQAAAAAwBCJFAAAAAAYIpECAAAAAENf63QF4O4/bv/LTlfhVCuLiPxyWX71f3tJfvG1gPzNhQH5T7/yf5Rf/t9F/vaX/4v8UpnvGOD0S/Ir8n/N/3/lv/l/Lcj/qVCQ//2Xfln+yy/9V/la+b+IlP8bKb/0XztdRaAlvyxl+VFPWL7717+Qwq/8ivzS3/5v8rcv/R/kv/5SWX5Z/n/yUpmPDEAnffTp/7vTVUAVPi0CAAAAgCESKQAAAAAwRCIFAAAAAIZIpAAAAADAEIkUAAAAABgikQIAAAAAQyRSAAAAAGCIRAoAAAAADL1ULpfLna4EAAAAAJwkXJECAAAAAEMkUgAAAABgiEQKAAAAAAyRSAEAAACAIRIpAAAAADBEIgUAAAAAhkikAAAAAMAQiRQAAAAAGCKRAgAAAABDJFIAAAAAYIhECgAAAAAMkUgBAAAAgCESKQAAAAAwRCIFAAAAAIZIpAAAAADAEIkUAAAAABgikQIAAAAAQyRSAAAAAGCIRAoAAAAADJFIAQAAAIAhEikAAAAAMEQiBQAAAACGSKQAAAAAwBCJFAAAAAAYIpECAAAAAEMkUgAAAABgiEQKAAAAAAyRSAEAAACAIRIpAAAAADBEIgUAAAAAhkikAAAAAMAQiRQAAAAAGCKRAgAAAABDJFIAAAAAYIhECgAAAAAMkUgBAAAAgCESKQAAAAAwRCIFAAAAAIZIpAAAAADAEIkUAAAAABgikQIAAAAAQyRSwBmUzexJqVjodDVq5A725c6tN+XGlYuytHiv09U5k05yH5SKBclm9hpu49fY79Y4JRPLkj867HQ10EY647wT47PTY6/T+8fZRCJ1xu1sbcqNKxe1Tso3rlyUZGK501XWUioW5Nb11yV3sN/pqnSlh/fnujI2D+/PSXT4Vbn74BOJTcQ7Wpd2xKcbY16tm/rAVO5gXx7en/Nsnx/90C1xqm5Laj0h+WdP625/ls+Np6XtuuO83eOz28aeff/t3NdJHz/wF4nUGVUqFmR1ZUFSGwm9bR8tSCDY0+lqawsEeyQyGJXQ+b5OVwWa1JWCyfi0hHr7JNw/0NH6tONb3G66cuGm2/qgW3VTnEzH1Fk+N56Vth/X+OzmsdfOfXX7eRzHi0TqjEptrEmpWJBrM+94bptMLEvklaGWTsb1Lrfbr4RlM3val+XrTc/JHexb3xaNjI0b19OtXJ1pFKb7sP/brWydeqh/q8ftsXN7zG/N9l0n6cRepDJe/W6P32W2UpbffVevvE6P0W7kZ+y9xlS9Md7MudHv9rcyJlqJWb22675H+fVe0K5y/axTozifhLFnui+dPmnHewNOtq91ugLojNily1pXmHa2NiX3ZF/m7i56TiWoduPKRZm7uyhLi/esE8/I2LhMxqetfT+8P2eVHe4fkPCFAZmMT1tlpHe3JZl4JPmjQwkEe6zXp9bXarZV5U3GpyXcPyAP78/JzdvzEhkcsp5PrSdk54vNmvLsr69+jZpG8dGnn1t1Sq0nrIQt1Nsn0eFXrXJUe+fuLrrG5eH9OZm6OivJxLKE+wck/+yplIrP5drMu9Z+deqhykltJCQQ6JHcwb41hSO9+9jxWHWc7HXJZvZcY9Eo/jp9V61R7He2Nq1pozeuXBQRsdpZLZlYltR65UpqINgjsUuXrXbr9K9X7O3TZlRdbt6el9D5lyWZeCS5g33JHx1KqLdPJuNvSXR41LN+kVeGXMssFZ83HEvNHFNe/Vav70Ln++r2gU5c3cZCq2PUqx3JxLLsbG1KqViQcP+A0QenZse+11htNlY67bWrN05FRLKZtCwtfqB9fvE6p5kcg/mjw4bHSbNjQnfs6+zf3nbVn6HzfVIqFayyQ719cvfBJ1rnDDe6cdAp12ScNxqfrYzNkzD2qrnty+u82KhP6rW70TjAGVDGmXf9jVj5R1+max7/yZMfl9/7xtfLz37203K5XC4vzN8uf29tyajcD99723r9s5/9tPzhe287yrj+Rqy8MH/b2sbu8Q82HK//yZMfW69//ION8jf+4Hcd2//lD/+i/I0/+N1ysfDctV3fW1tylPejL9PlD997u/z5n681jMWPvkyXr78Rs+pg36ZYeF7+yx/+heM13/n2B+UP33u7YVwW5m9b9SyXy+U/ffQtx2u86qG2+c63P3C0//obsfKfPvpWTUzq1aFRLBrF36vvqunEvrp9uuX85MmPjfrXK/b16lIsPC8//sGG9drP/3ytJraN6lddps5Ycus3r2PKq98a9Z1bu03iWl1eK2PUqx316uU1hvwY+/XGaiux0um3am71UDHXPb+YjsNGY1y9vtFx0uyY0Bn7uvtXbVPxs9f/O9/+wFE/3XNGNZ166JTbzDj3+zjW3Uenx171+6b9b5PzYqP667xP4Wxhah9cqfuiYpfiEuptfo5xbOLF60O9fTIyNi47W5uObUbGxl33kUwsy9Rbs9Zz4f4BiU3EZWdr0/pWL727bW2fzexJdHi07pW2na1Nmbw8bZUXGRyqlPfFpugKBCplq30Egj0SHR51fCN1beadulejXsTFeUUwOjza1A2s9m8mVUzsV0iiw6NSKhZcy7bHPTI4VOkbWywaxd+r79oRe1WOfUxFBl9MOdXdR7OxV99gqtfGJuI1sW1Uv5ryNMaSG69jSqff2tF39cprdox6tcMt1pFX9L4Z9mPs+x2rZvdZr326Y9x0HHqNcZ3jpNkxofN+orN/RV0pstd/ZGxcspl01X7Nzxk69dApt5VxXl1OK8exrk6OvUZ0jy+/3ptxdjC1D65SG5Wpc63OZw4Ezzn+Dl8YqLn3p3obkcrUgVKxIPN3ZuqUWznhquSpVCzIztamNb2gXnnVJ+jo8Kg1VUTnzSPU2ydTV2etqQ/R4dGGyVu3cLufzK1v1LQWr/jXK8ONX7F/UU60bfvwimFqY01yT/YdH4hUbBvVz02zY6nRMaXbb27lNI65d1x1yvOKb/V+67VDPV89rTIyGLWm/ZjG0HTs+xmrZvfpB5NxqDPGvY4TE17vFW7vJyb7r7z+ueQO9q0P5NlM2pcFCvyIQ6vjvLqc4ziOTfg99rza34njC6cfiRRcqZN09bc12cyepNYTde9f8aL77ZHa7sHHn9X9YBkdHrXuiUrvbkuot6/uN1mqvFKx0HLSMzI2/lUSl7bmo0/Gpzt6A7cf7B8edOKvy6/Yq3LcyvCzf+uZf39GIoNDMnX1xbeaap68V/3q8WMs2Y8pP/vtuOLaaL9+tcOLH2O/lVgdd3ur6Y5DnTHudZz4ye39xGT/4f7KPUDqA3a4f0ACwZ66X8iZ8CMOfq2216njWIefY8+r/Z06vnC6MbUPrj769POa/9RUAJMkqlR87vjbPhXPSyDY03D7yOCQhHr7JL27LendbYkOv+pZXvWUjfTutgSCPQ2vVrit0KOuiN28PS+T8elj+X0tv1cKqu6bbCbtiINX/E00G3s39erk5z6qqRWs7B+K6vWHacxMx5LXMeVnv7U7rl779WpH9fPVsamnXWO/lVj53W/N1F13HNarp8lx0gyvsd/M/tO72zIZn5aPPv1c5u4uys3b8y1/2PY7Ds2Oc7tOHce6dWt17Onso5PHF04vEik0bXVlwXMlv+orWundx9rfto+Mjdf8Unk2s+c4GY68Ni6pjYRkM3sy8tq4Z3mp9YRjGlRqPeGoj0rM6u1PPabqVCoWJP/s0DEdQicuXnTq0Sq1CpQ9FvZkVCf+unRiryMyOOQox74UrV/7EBHbNJ/K8rfnv/qgof7OHx26/pZIo/pVl1m91LPbWKrXb3bVx5Sf/eZ3XE3326gd6v4Ge7107ydq19hvJVbN7NNtTDXDZByajPF6x0mzvMZ+M/tXKzf6yc84tDLO7fw+jrtt7Om034/zol/txunB1D40rVQseJ5EwhcG5M6tNyV0/mXJP3sqgYD+tAm1LOmdW286Ho9NxG03KL9a+Z2rr65OeZWXlGW5df11EXlxM7B9+dNrM+/I0uI9awpGuH9Apt6adcytzmbSjvnpod4+x+9x6cTFi049WqHaPv/+TN2lYHXir0sn9pUfUGx8E/XN2/OyurJglSMiMnV1VkZ6+7T2YRKf2ETcSogn49PWct4iYi1lnDvYd3wIa1Q/tzJLpecNx5Ibr2OqlX5z6wM/42rCqx2T8WlHrFXsvO/ra33s1xurrcSqmX5zG1PN8Dqn2XmNcZ3jpFleY7+Z/UeHR2V1ZUFWVxZq2t/s1Do/49DMOD+O47jbxp5OHEVafz9za3e95ddxNrxULpfLna4ETiav+dY3rly0fn8n/+ypiEhTv7egvqXya764SnIa1d1rcYJGbfdzHrofiyS0ug8/468Te906i4hrvf3aR7vq51Zf3bqaHFOdOG7awe922LVr7LcSq3a212u/JvU1GeN+8Ov9xC6ZWJZSseD4LSr1+08iovWD9SdNN5wf3ep0XGOvU8cXTi+uSKFpuie+UG9fS2+2gWCPhIP+nfR06q1zP0OrcdFxHB9SdNrqV/z9ik2jOnfDBwSTfmumvjrHVCeOm3bwux127YphK7FqZ3v9rHOn7qtp9f3ELrWeqLknSi1a1Mz0uZOgG86Prdapmz5PANwjBQAAzpzqBQhKxYKkd7clmVg+8auwAjgeXJFC20QGh7ry2y/gpOKYwlnVjrE/981FSW0k5Nb1160pb2rJctP7QAGcTdwjBQAAAACGmNoHAAAAAIZIpAAAAADAEIkUAAAAABgikQIAAAAAQyRSAAAAAGCIRAoAAAAADJFIoa1S6wmZvzPT6Wq0rFQsyK3rr0vuYF972/zRYaerDQAAgDYhkULblIoFSW2syeTl6U5XpWWBYI9EBqMSOt+nte3I2Lisrix0utoAAABoExIptM3O1qaE+wckMjhkPZbN7Dn+bf/b/rj6lXmlVCzUvNb+uP3qj9tjJqr3o8oZGRvXLiN26bLkDvZd2wcAAICT75f/+I//+I87XQmcTn/2Jx/LPxr5bQlfGLAeu3PrTfk7v/b35OE/m5P80aH88N//O9n43v8s4Qu/KaHePmubyCtR628Rkb/az8jD+3Ny6XfecJTz3X/9z+WvfpyRZOKR/O3f/mfJZvbkz/70f3I8FhmMOuqV3t2Wj//F+/Jnf/KxbKWSUioVHNvcufWm/IOhfyz/9I9+X/JHh/I3f/OfJDIYda1XMrEsD+//kWx8709kK5UUkZfkN35zUH7lV39V8s+eyt/84n+t2T8AAABOvq91ugI4nUrFguQO9h1Xo5T07rbcffBdCQR7RERkdWVBkmvLMnd30Wgf2cye3H3wiVXm0uI9GRkbdzy2urIgk/EXUwt3tjZlZ2tTbv7hhxLq7ZPcwb6sPlqQpCw7tkuuLcvcNxcdSVO1ZGJZsl9W6hDq7ZNsZs9qk0hlil/uifc9VQAAADh5mNqHtlCLMrglIrGJy46EIzo8qrWIQzX7VLvo8Kjj/+rfKqFTkollmXpr1qpXuH9AYhNx2dnarCm7URIlUknKYhNxa7vI4JCE+19cfQv3DzTVLgAAAHQ/rkjh1FP3W+UO9qVULGitIhgInmv4vCqr0bS9QPBczb1eAAAAOB1IpHBmqKtFDz7+zHFFrJWyWi0HAAAAJxNT+9AW6t4ov35Lya9yAsEeSe9u+9bORmWVis89pwcCAADgZCKRQtsEgj1NLf8d6u1zJCjZzJ5vyc/I2LgkE8uOxKzZ8iODQ5JaT1jT9/JHh45ycwf7jnumAAAAcHowtQ9tMzI23tRiC9dm3pGlxXty48pFEalMo5t6a1br3iYvamW+O7fedDwem4g7FqrQcfP2vKyuLMit669bj01dnZWRr65CZb/cM/rtKQAAAJwcL5XL5XKnK4HTSS0/bl/q3ET+6LBtU+NKxYLknx36csVIXYWy1zWb2ZOlxQ+abjsAAAC6G1P70DbR4VEJne+T1MZaU69v5/1FgWCPb9PuQr19NXVNri3LyNg4SRQAAMApxRUptFWjH+Y9rc5imwEAAM4aEikAAAAAMMTUPgAAAAAwRCIFAAAAAIZIpAAAAADAEIkUAAAAABgikQIAAAAAQyRSAAAAAGCIRAoAAAAADJFIAQAAAIAhEikAAAAAMEQiBQAAAACGSKQAAAAAwBCJFAAAAAAYIpECAAAAAEMkUgAAAABgiEQKwKmSO9iXO7felBtXLsrS4j3t1yUTy5I/Oux09eET+hOoxXEB+ItE6ozb2dqUG1cuSjazV/Nc/uhQbly5WPOf27bdInew3+kqdK2zEpuH9+ckOvyq3H3wicQm4tqxSK0nJP/saaer75tSsSC3rr9+Zvq9mh/9WR27sx5THccdo9R6QubvzPhWXrf1rd/xtB8XqmwSK6B5JFJnVKlYkNWVBUltJOpuo062N2/PO/4L9w90uvp1mVyBOGvOQmyymT0pFQsyGZ+WUG9f3bF6FmIRCPZIZDAqofN9na7KiVU9Toipt+OMUalYkNTGmkxenvatzG47N7QznoFgj4yMjcvqykKnmwmcWCRSZ1RqY01KxYJcm3mn4Xbh/gGJDA45/gsEe4z31+o3XuoDsl2pWHBcHcsfHbblmzW1D7U/+z7cHjtuxMaMTiyymT3fr7w22qd9XyYxc+t7kcq36rmDfRkZGzeup854aqZMezl+jhPd2Kn9uMXLTb1xUh3T6v03itNxHQt+xLuVutYbd/XKNImh3c7WpvUe5YdWz5N+vM/Z/63Ka+Y41hW7dFlyB/tdPdME6GZf63QF0BmxS5c9E6L80WFTSZNy48pFmbu7KEuL9xxvCJPxaUe5qfWE7Hyxae1PbWP38P6c3Lw973jDzB3sy8P7c/LRp59b/1b7FRFr+2RiWVLrlStvgWCPxC5ddkz58tr/w/tzMnV1VlIbCQkEeiR3sG+9Pr372PFYdb3Tu9uSTDyqW7aKzdzdxbpx1Klfs7ERkYbx6WRsTGOxs7UpycSyo50fffq54/Veschm0rK0+IGE+wck/+yplIrP5drMu47YmtRb9xh4eH9O5u4uysP7cxLuH5DwhQGrzEb7S62vOba1lzcZn5bVlYWasdHqeLLHIbWesKYchXr7JDr8qmssmh0n+aNDSSYeSe5gX/JHhxLq7ZPJ+FsSHR7Vip1SKhYqz18Y0OrLRuOkOj6qbcnEct1xo8Zm6HyflEoFayyEevvk7oNPXMdOo+PSKy7Nxlt3vOrs3x4jr/brxNBNene7JsloNm6N+tzrmNfpX933Obex7HZM1munzjFjFwj2SHR4VLKZtG8JKXCmlHHmXX8jVv7Rl+max7+3tlT+xh/8bvm9b3y9fP2NWPm9b3y9/L21JaNyP3zv7fKzn/20XC6Xy89+9tPyh++97Sjje2tLjm1+9GW6/OF7b5c///M1zzr+6Mt0+fobsbp/1yv/J09+bLT/62/Eyt/59gfW33/5w78oX38jVv7TR99yPPaNP/hdx74f/2DDUfZPnvy4pv3f+fYH5Q/fe7tuDHXr10xsvOLT6dg0E4t67WwUm+q2FAvPrcf+9NG3HP1jWm+dY0BttzB/29pOd3+Pf7BRE1sV72Lhec3Y8Gs8/eTJjx3bFQvPy3/5w79wPY+0Mk6Kheflxz/YsPrk8z9fq9mmXuxU/YqF5+UP33vbsS+d2DYaJ/Z2qv3XGzeqHPt55zvf/sARj2pe5y2vuDQbb93xqrN/FSOd9nvF0I0a3/Z+bzVubn2uO04atc/kfa7RWNZpp0nf2MtbmL9dBmCOqX2oazI+Lddm3pWpq7Py4OPPJHYp7vjWX0dsIi6h3src7lBvn4yMjcvO1qb1/M7Wpkxenra2iQwOSWwiLjtfbGrvo5GdrU1HHSKDQ477ZnT3b//WU32zZ/+GLzo8KqViwXFDcDKxLFNvzVplh/sHKmXb2n9t5p2GV6M6GZ9Ox+a4Y6HaYv/mXX1T3Uq9vY4B+77Vdrr7U3FO725br8lm9iQ6POp6NdmvGAYClbLVPtS32o2+0W5mnKhv7tV+YhPxmm3qxc4ew/CFAZm6OmsUWxOxict1x426KmA/74yMjUs2k65bntd5SycuzcRbleU1XnX7xaT9jWLoxn4l1M+4VfMaJzrtMznuGo1lnXY208Zw/0DXLbIBnBRM7UND9g9GI2Pjkn92WHlTiOvd3BsInnP8Hb4wYN2jkDvYl1KxUPPhKzo8ak0t8XpDaeRF+VGP5/3bf3XbWllNqpPx6bbYtDsWJnUw7dNGx0Cj7XT292Jazp71wXhna1Nu3p5vawxDvX0ydXXWmoIUHR6tm7yZssdGLSaQe7Lv+DBYHb/q2CnJtWXJHezXxMOP41NXpb+fS+5g3/qwm82k6y4e4HXeMomLabzdYuk2Xk32b9r+ZrUjbjrjxKt9psddvbGs285mxkYgeK6psQOARAqGIoNRa152M+zf2ql/l4oFXz6A1dtXvbLbuX9V9oOPP2u67E7Gp9ti0+5YtKvejcrxa3/R4VHrnqj07raEevtcrwz5HcORsXHr3gp1pXoyPu3rjfHz789IZHBIpq6+uCKg7l/RiuGFyn0mybVluXl73mq3X32pVYf+yn0u6sN4uH9AAsEe12TXXrdG9Wo1Lqb1b2X/pu1vtZ5+xk1nnHi1z+/jzqudxzk2ALBqHwyVis+NvvkvFZ87/rZPQRKpvBlUT/FI725LINjjuR/dFZKq9+nX/r0Egj0N961bRjP1M1k9ql4duy027axPO+vtdQy0ur/I4JCEevskvbst6d1tiQ6/6nsM640ndUXs5u15mYxPG0379aJWLbN/IDRdFS06PGpdPa+umx/Hp6707rZMxqflo08/l7m7i46krtFr2hWXRrzGazP7b6b9XtSXBdX79jtuOuPEq33tOHe51anZNpq+rwN4gUQKdaV3tx3zptXKRSOvVb5xXl1ZsFY5qqd6bn1697HjG+uRsXFJrScc075S64mab7XVB0Ulm9mreSN5Ma3ixdK/kcEhR/nVy9vq7r8ZI2PjNb8iX11vrxjq1K/Z2IhIw/h0OjbNxEJHvVi0q95ex4Af+xt5bVxSGwnJZvas47PZGOqMJ/W4qlepWJD8s0PPaUkmqvspf3TY1G/8BII9MvXWrKR3tx194RXbVsaJW6xMEodGx6VfcanHa7w2s3/T9uuqJCgvlu1uNW5ufa5zDHq1z+9zab12Njs27NMSAZhhah/qyh3sO07C1UvJlooFzw8X4QsDcufWmxI6/7Lknz2VQMA5pWMyPi1JWZZb11+39uG2LOy1mXdkafGeNUUh3D8gU2/NOuauB4I9EpuIW4nJZHxabt6el9WVBat8EZGpq7My8tW3b7r7b4Yq486tNx2Pxybi1k3fXjHUqV+zsYlNxBvGp9OxaSYWlR+vbLyEb71YtKveXseAH/uLDr8qycSydXWqUXl+jCeRyn0g9mm+od4+z9+lMxEI9lhLP6vyJ+NvSe5g3/hDuZp+pRaeUH83im0r46RadHhUVlcWHD98quLl9gG20XHpZ1xcY+UxXpvZv2n7dY2MjTu+7Gs1bm59rnMMerXP73Np3XZ+Vabp2Mh+udfW36oCTrOXyuVyudOVQPdS3zS7vdl5zfm+ceWi3Lw9b70hi0jdD7kqmdD5batmpiDYf9ejlf0fdwxN6tfKgguN4tOp2LQSi3bTrbfJMeB3nLzKE2l9PHXynjW/+B3basnEspSKBcdvManf+hGRhsmn13nLb36NV7/a7yW9uy2rKwty98F3a37nyu+41RsnJu3z+9zlRzuzmT1ZWvygJoYA9DC1Dw0Fgj11P2DonnTVze+N3pADwR6t8pp9wwj19jV8re7+m+FHDHXq18qbaaP4dCo2rcSi3UzrrXMM+B0nr/L8GE+d7ge/YtHOaU2p9UTNioZqPHjdv+J13mqXVserX+33Eh0eldD5PkltrLU9bvXGiUn7/D53+dHO5Npyzc8+ANBHIgUAQJtUL1ZQKha+ut90+UxMp2p3+2/enm+45PlJb187lYoFmbw87ct0beCsYmof2ubh/TmZvDzNTaw4szgGkD86lNRGQtK7245FXtTy8d2kHeP1JLWf9gEwRSIFAAAAAIaY2gcAAAAAhkikAAAAAMAQiRQAAAAAGCKRAgAAAABDJFIAAAAAYIhECgAAAAAMkUgBAAAAgCESKQAAAAAwRCIFAAAAAIZIpAAAAADAEIkUAAAAABgikQIAAAAAQyRSAAAAAGCIRApA2yUTy5I/Oux0NYAzqVuOv1KxINnMXqerAQC+IZE643a2NuXGlYsN39ySiWW5c+tNuXHloue2aF3uYL/TVfBdaj0h+WdPO10N33Wqr0rFgty6/rrx/qu3b7acTjgJdezW9rZy/Pk5RnIH+/Lw/lxbyrbvo91S6wmZvzPT9v20m0n81bbdkJAD3YRE6owqFQuyurIgqY1Ew+0e3p+T/NFTufmHH8pHn34udx98IuH+gU5X/1RbWrzX6SpAU6f6KhDskchgVELn+1qqb7PldMJZOy66pb3tHCPtKLvdcSsVC5LaWJPJy9Nt3c9xMIl/INgjI2Pjsrqy0OlqA12FROqMSm2sSalYkGsz79TdZmdr09om1Fs50YZ6+yQQ7PGtHurqlpryYf+2y+0xNzrfkGUze1IqFmoezx3sa3+Dab8S51Uvk22r29Kpb/yOqy+6qb5eZat/u12F1emrdo67kbFxozbVq69pObrx0W1HK3Vvp1KxUHefbv3azLS1ejFptr2txLiR6jHSTP/rlt2KVsaJbux2tjYl3D8gkcEho1jojJnjPKc1cx6JXbosuYN9ZqUANr/8x3/8x3/c6Urg+IX7f1P+0chvy9/5tb8nG9/7E/lHI79tJUvK6sqCjIyNS/hC81eg0rvb8vG/eF/+7E8+lq1UUkqlgkQGo9bzd269KX/n1/6efPdf/3P5qx9nJJl4JH/7t/9Zspk9+bM//Z8cj9lfd+PKRfkHQ/9Y/scPviEb3/sT2fjen8jf/OI/yW/85ivyK7/6qzX1WF1ZkPyzQ0cZIiL/9I9+X/r+2/9OwhcGJH90KKsrDyWZeCR/9icfyw///b+Tv/Nrvy59/+1/Z9X1Hwz9Y/mnf/T7kj86lL/5m/9UU569XW7bNtpH7mBf/scP/p/yt3/7n602/cZvvmL1S6NYLi3ek9R6ouGbYif7wm2MpdYT8t1//c/r1md1ZUH+5hf/qWb8qceXFu81VV+TWDz8Z3OSPzqUH/77fycb3/ufJXzhNyXU2+fZV7rjLhDsaTjmGo2lO7felMgrUWufzY6t6nJ0+sYrPn4dEyLSsO5e/diMUrEgH/+LO7K6siBbqaRVn3/6R78vl37nDast1TH7q/2MPLw/Z23j1a56MQkEzzV9HqgXY/vx53VcuZ3vq9ur2//JxLIsLd6TZOKR/C97P5RQb5/8L//xh1aM3MpOJpbl4f0/ko3v/YlspZIi8pL8xm8OtjTGdce0zvn9z/7kY/lHI79txUk3FjpjptlzsNe4MDmPNOqDX/nVX5X8s6fyN7/4X1s+zoBTo4wz7/obsfKPvkzXffw73/6gfP2NWHlh/nb58z9f0y738Q82yh++93b52c9+Wi6Xy+WfPPlx+cP33i5/b23JsY/vfPsD6++//OFflK+/ESv/6aNvOR77xh/8bk3d7GU/+9lPa8qurkt1GarcYuF5uVwul4uF5+XHP9iw/v78z9ccr1ExUPv0iqnbtl77+NGX6fL1N2LGsfzOtz8of/je213bF9Vj7HtrS47X/OjLdPnD9952jK/P/3yt/N43vu7Y17Of/bR8/Y1Y+SdPftx0fXVjsTB/2+qncrlc/tNH33LEuF5fVe+r0bjzGg+NxlJ1TJsdW830jU583PbTzDFRr+46/dgM1X5VHzWe7ft3O2dW17GVvm32PKAzVryOq3p9Z2+vTv/XG0fV7bKX7fYae52aHeMmY7rR+b1YeF6+/kbMsY3usaAzZo7jnOZ1HvHqg++tLZUX5m+XAVQwtQ8NJdeWZWRsXD769HOJTVyW9O62JBPLeq9NLMvUW7PWN13h/gGJTcRlZ2vTsZ39Kkp0eNTxf/XvUrFQMxUqNhF3TDkcGRuvKbu63PTutvVYNrMn0eFRa6qimgOu/o5NxGv2OzI2Xvcb92pu2+rso5lYXpt5R+buLp6IvhCpTI+ZvDxtvSYyOFSpzxebjrrkjw4d+9r5ojKtRt2n10x9dWMRm7jsmMYaHR41vpHda9zpjgedcdfs2Gqmb5qNz3EeE83a2dqU2ETcqk+ot08irwwZl+Nn35q02as8neNKh1f/qzjax5FXHN1eY69Ts2NFd0x7xU7tp3obP84V9jrYy7H/X/272XOazljz6oNw/8CZW/gFaORrna4Aupv9/qjI4JCMjI1LMrEsk/HGN9rmDvalVCz4urJR9fzyQPCc4+/whQHX+1Eq2/ZIdHjU+hBbKhZkZ2tTbt6ed5Sf2liT3JN9xxuVvczqfTbitq3OPvyOZbf1haqPusdAiQ6PytLiPckfHVr34qmEbOrqrIiIpHcfS+xSvOn6tiMWjXiNO93xoDPumhlbzfZN8/Ho3DHx8P6c496Ojz79vG659g+uIiKRwaik1hOe+2imXbrnFN02e5Xn53HlVVeTOL4Ye/WnjLUyVnTGtMn5vdOaOad5tU+nDwLBc0bnFOC0I5FCQ9UfmkK9fVonUfUN1oOPP/N1cQqdfdYTHR6Vh/fnZDI+Lend7co3zbY31/n3ZyQyOCRTV198s3fjykVf69jMPlqNZbf1hXquVCx41qfyYecDmYxPS+5gX/JHhzUfzro9Fo3GnZ9jzo+yTPrGL8d1TExenvY8d/m5Iqnf5xM/x67fx1W9ujbzmkZta2WsHOeYPk5+jgudPgDgxNQ+1KVu5rYrFZ9rfyMdCPbUvN5PpeJzx99e+4oMDlltSu9uS3T4Ves5tYqR/Q3a71XCWtlHq7Hstr4IBHskm0nXvCYQ7HGMr8jgkASC56w+s0/r6dZYVKs37vwcc36Wpds3fjjOY0KttKb+a6T297aeixd7vdt1PvFr7LbjuHLj9v5h+hql1bHix5hW48av9wa/yvH7nNaoLJPPAMBZQCKFumKX4pJMPLI+VGQze5JaT1gfBFdXFhw/rlhNTQOs/oDh1wm/ev53evexY365W/1GXhuX1EZCspk9GXntxbbqmzg19Sd/dGj0eyResdDdR/U26ht0r1h2e1+41Se1nnBMT6m36uDIa+NWXb0+AOvwKxb1+sp1ny7jrtUx16guJmPLLT66fdMq3Ri41b1dYzoyOFQz/Sy9+9jxd/WXTNX7bbVvmz0PmPD7uKqm7tGxjyOv+9dU7NVr7MuZt3r+9GtMV5Iy8+W/vcZMK/wcF436QMWO35IEXmBqH+pSbzL2udcjY+PW/VGlYqHhh0e13Z1bbzoej03EfZlGEr4wIHduvSmh8y9L/tlTCQR6au55qq5fdPhVSSaWrasESiDYI5PxaSsZCfX2yWT8Lckd7Gt9U+sVC919BII9EpuIW9tMxqclNhH3jGW394VbfZKyLLeuv2612z627EbGxuXOra9LIHjOl7r6FYt6feXGbdy1Ouaq69Ls2Gqlb1qlGwO3urdrTF+beVce3p+T+TszEgj2SP7ZU8fV68o278jS4j1rWlm4f0Cm3pq1zpWt9m2z5wETfh9X1Sbj07K6smCNo1Bvn1ybeafhvTw3b887XiMiMnV1Vka+umeylfOnX2N6ZGy8qcUWvMZMq7EW8WdcNOoDEZHsl3tt+VIFOKleKpfL5U5XAt3PbX657pzzUrEg+WeHvn6LdePKRbl5e9764C4iNd+qHuec+OPaV71YdntfNKqPiPec/Pk7MxJ5ZcjXD/PtiMVpots3ndaOfrQvZKDG9cP7czULVLS6+Ean29yO48oP6gqI37H1Y0ynd7dldWVB7j74blPltHPM+HksuPVBNrMnS4sfNN124DTiihS0uJ00dU+kgWCPhIPt+bAa6u2r+6Z0nCf649pXvVh2e180qo8XtVTztZl3fK1vO2NxGpyUD0rt6MdAsMfxZYD6gqBap+4V8aPN7Tqu/NCuuPoxpqPDo5JaT0hqY62pBLSdY8bPY8GtnurnUE7KuQE4DiRSALpWqViQZOJRzVRMAM3juGrNzdvzZ+63lErFgkxenm7L/XTASUYihROpsuoU34p1g3b1hfrdn8jgkFybebfTzcQZVn2F6iTjuGrdaRoPtBloDfdIAQAAAIAhlj8HAAAAAEMkUgAAAABgiEQKAAAAAAyRSAEAAACAIRIpAAAAADBEIgUAAAAAhkikAAAAAMAQiRQAAAAAGCKRAgAAAABDJFIAAAAAYIhECgAAAAAMkUgBAAAAgCESKQAAAAAwRCIFnCClYkGymb1OVwOnHOOssWRiWfJHhy1vcxzoSwBoHxKpM25na1NuXLlY80abzezJjSsX6/53FpWKBbl1/XXJHex3rPzcwb48vD/X6VCgCd0wfnQxzl5wi2dqPSH5Z08bvk5nm3ra1ZftGoPtGtN2qfWEzN+Zaft+2s2kD9S23ZCQA3D3tU5XAJ1RKhYkmViu+01luH9Abt6er3l8Z2tTSsXnna5+RwSCPRIZjErofN+JLB+dxfg5mZYW78ndB58c6z7b1ZftKrfdMSoVC5LaWJNrM++2bR/HxaQPAsEeGRkbl9WVBdf3YwCdxxWpMyq1sSalYkGuzbzj+nzlZD9U8182k5bo8Oix1NGe5GUze75PT2n0LV/1vtW2I2PjbW2zafn5o0PXbzbtdW43P/opm9mTUrHgeKx6SpL6t3rc3j63x1ppg0453T5+2n38VMeiHePwOPvcLT75o0PP8tsV23b1pd9jUCdGbkyOuZ2tTQn3D0hkcEg7HjrnFHtZx3leMemD2KXLkjvYZ3om0KW4InVGxS5dlkCwx+g1O1ubEgieM3oTSCaWJbWeEJFKcha7dFliE3ERqUzV2PliU/JHh9Y3b5Pxaeu1D+/PydTVWUkmliXcPyD5Z0+lVHwu12betd5QRUTSu9uSWk9YH+RCvX0SHX7VUZZy48pFmbu7KEuL9xxvapPxaUc8Ht6fk7m7i/Lw/pyE+wckfGFAJuPT8vD+nNy8Pe/Yf6M2pne3JZl4VLeN1arLTyaWv7oKWJBw/4Br7FWcVIKb3t2W1ZUFmfvmooiI1da5u4td209ucVVTkj769HPHflIbCQkEeiR3sG+L82PHY24xbtQX9fr7JI8f3X7RHWdedfEah81opc9bHbf2KXFqOrO977KZtCwtfuAZWxGR1ZUF17jWe7ydfWkyBvNHh5JMPJLcwb7kjw4l1Nsnk/G3rD5uFCOd+Oscc2os2duhEw+dc0qrY0znmGj1PBAI9kh0eFSymbTr2ALQWSRSZ5RpEiUiktpISOxSXHv7ZGJZsl/uyd0Hn0iot0+ymT1rv+q5m3/4ofVccm1ZUoGE9SYmUnmjuvvgu9brVlcWJLm2bCUFuYN9WVq8Z70pVb5BTEsgeK5uvVYfLVj7zR8dytLiPUltrNW8SSbXlmXum4sS6q0/BaNRG3e2NmVna9PaV+5gX1YfLUhSlht+GK4uW9VBxciu8sFmWlZXFiQyGLViNHV1tmG9T0I/uclm9qwpROndbVlavCcjY+OOx1ZXFmriq9MXOv19ksaPTr/ojjOvuvgxDv3scz/Gbbh/QK7NvFvzwVvJHz31jK0SOt8nqY2EIxnIHx3KztZmwy842tGX1RqNwUDwnEQGh2Tq6qwEgj2SWk/I6sqClUjVi5Fu/HWOkVKxILmD/ZokQice7Rxjusdnq+eBSj/0SO5J++9DA2COqX3Qou6NMpnWt7O1KbGJuPUGEhkcknD/gPXc5OVpx3OxibjsfLHpKCM24bxyFh0edUwhCgTUG/6L/0eHRxt+c2evU6i3T0bGxmVna7Nmu5Gxcc8PgY3amEwsy9RbLz5IhvsHKm102Zdu2ZFXats1MjYukcGorK4sWB9k7f10beadhh8uurWf3Ng/iKo22tsaHR61PnjZ6fSFTn9X2noyxo9Ov9SrQ/U4041fo3HYrGb63K9x61Uv3deOjI3XTH/c+aIyXU3193H1ZbVGY1BdZVH7jU3EXY8vtzJ14q9zjNivYPvVd279Yy/H/n/17+p26x6frZ4HVNnHsaAHAHNckYIWNbVC90pW7mBfSsWC9e20+3PON/jo8Kg1ZUr3W+xQb59MXZ21pk5Eh0clOjzasJ7VV0HCFwZq5tK7bddMG5tdZUq9vvqDaGQwak3/sJu6Oivz71f2ZTKVqpv7qRX2/tTtC92rYydh/OjSGWcmddEdhw/vzznu+XC74mNK9YGf49YvKiHZ2dqUqauzIlKZNmZyhd+L6TnDGauo6/NqkYfck31HIuE23mvL9I6/6RXpTqseYzrHRCvnAXsZjWIOoHNIpOBJ3cyrPgDosH+jWe+5UrHgywfpkbFxaw75ztamJBOVqRW693LpfiPcTBsffPxZU200rVP+2YsbvvPPDiUc1Hv9SeqnZrXaF7rlN/u6dowfP+tuUhfdcTh5ebptHwz9Hrd+qSQSH8hkfNq658jPhXuaGYeNxqCIyPz7M9bUPpX8eP38RbfG309+Hp9efQCguzG1D55S62va056qpXe3XR8PBHskm0nXbBsI9jS1HzVV7ObteZmMT0syUf++gOrl2+vV0Y82+l2229LzpWJBlhbvyWR8Wibj07K0eM/4Q2o39pOfqw760RfKSRo/zdahuo06dTEZh2oFNvWf3/wet36IDA5JIHhO0rvbxlf4TeicM7xeI/JilTl7EqV7TPoZfzU+/DgfdOs5RcWnnlLxecfGLYDGSKTQUP7oULKZPdcpKKsrCw1/tFOt3KQ+TNmXyR0ZG3c8lzvYl9R6oqmrE/ZlZUvFguSfHVrTKdzqWD2HPb37uOmrIl5tTCaWHW/e2cye9YbpFT81394eI7f7Y5KJZQmdf1liE/HKPPvzLzsSlJPQT6HePscHCXuc/ODVFya6Zfz4RWec6dTFaxweJ7/GrbpaYF8iu6V6vTZuxa0dCaTuOcOu3hisbrtaWEUnRn6eN0RUYma2/PdJOqc0Og+o+DV75RtAezG1Dw2lNhISGRxy/TasVCw0/GBx8/a8rK4syK3rr1uPTV2dlZGvVvhKyrL1nM7SzvVkM2nHPQCh3j7r97Hc6hi+MCB3br0pofMvS/7ZUwkEepr+sUOvNoqI3Ln1puM1sYm4dfNyo/ipVdBU2apd9nn56ttt+/0o6j6VyOCQ1n66oZ+uzbwjS4v3rGlD4f4BmXpr1rd7hLz6wkS3jB+/6Iwzr7rojMPj5Ne4DQR7JDYRt76ImIxPO1adMzUyNi53bn1dAsFzbYmJTl9WqzsGv4qXarta+jx3sF+zolx1jPw8b6i4mS62cJLOKY3OAyIi2S/32j4FGkBzXiqXy+VOVwInk+4cePXNWr1kTKT1+eH16lL9+I0rF+Xm7XnrQ7CI+PLNsFcb888Oa75RPK57CE5CP9nr0M4pLPX6Qlc3jZ9O6Ka66NZXpLvuP5m/MyORV4aaTirapdEYbJZf8VfLj9uXOzdpVzefU6rrKuLsg2xmT5YWP2iq7QDajytSaJruSb3Rm5hfbwz1yqn3eKi3z9c3V682ut10f1xviiehn3Tq4Nf+dRfi8Kpnp8dPJ3RTXXTr203UEujqSmw3acex51f8o8OjklpPuP5eWyfaVd1Gv44Jt7om15bbdj8dgNaRSAEA0GalYkGSiUd1p0qjsZu358/cbymVigWZvDzdlvvpAPiDRApnSmXlLL7ZQ3MYP2iG+t2syOCQXJt5t9PVOZECwZ4zl1CcxTYDJw33SAEAAACAIZY/BwAAAABDJFIAAAAAYIhECgAAAAAMkUgBAAAAgCESKQAAAAAwRCIFAAAAAIZIpAAAAADAEIkUAAAAABgikQIAAAAAQyRSAAAAAGCIRAoAAAAADJFIAQAAAIAhEikAAAAAMEQiBQAAAACGSKSANskd7MudW2/KjSsXZWnxXlNllIoFyWb2Ot0UHINmxstZGx9nrb2mkollyR8d+rZdO9GXAE4DEqkzbmdrU25cuej6hlYqFmR1ZUFuXX9dbly5KPN3ZiR3sN/pKp8YD+/PSXT4Vbn74BOJTcQdz5WKBbl1/XXPeOYO9uXh/blONwXHwD5eRv9vE6dmfOiOdR0nob3HqTqmqfWE5J899Xyd7nbV2tmXfpZdLz7tkFpPyPydmbbvp91M4q+27XQyDnQDEqkzSiVJqY1E3W3Ut5Z3H3xXHnz8mUReGWr6yspZk83sSalYkMn4tIR6+yTcP+B4PhDskchgVELn+zpdVXSB6vHym//n//7UjA/Gevsc9/m4nX3ZjrLbHZ9SsSCpjTWZvDzd1v0cB5P4B4I9MjI2LqsrC52uNtBxJFJnVGpjTUrFglybeafuNvmjQ4lNXJZAsEcCwR6ZjE9L/ujw2L6Fsl8ly2b2umYaiF/1GhkbN35N/ujQ9RvDbGbvRPWLShzsqqf6qH+rx+3tc3uslTa0M3bNxquZ8dHO+rSiui3HVYd2HS/HOTbrxcbrXNyuuLazL/0c8628V+meH3a2NiXcPyCRwSGjeHTr+c8k/rFLlyV3sN8178tAp3yt0xVAZ8QuVRKkRgLBc5LNpK03iWxmTwLBHgn16n9jmEwsS2o98VV5PRK7dNma5pZaT8jOF5uSPzq0vuGajL/4Zu/h/TmZujorycSyhPsHJP/sqZSKz+XazLuON6707rak1hPWB6ZQb59Eh191lOVXnXTqtbO1KcnEsoiI3LhyUUREPvr085p6PLw/Jzdvzzvakkwsy87WppSKBQn3D7i+san9R4dHrfavrizI3DcXRaTyLWz+6FDm7i52rF+8+sSt7Wqqj4qV2k9qIyGBQI/kDvatOqZ3Hzseq+6j9O62JBOPGrZh7u6iPLw/J+H+AQlfGOi68dLs+NBpu85x1ajdXvvwGusmdfBqr1d9vI6XZrQyNv04vuzT4tSYuXl7XkREspm0LC1+0DCuyurKgmtc6z3e7r6sN+bdxmH+6FCSiUeSO9iX/NGhhHr7ZDL+lkSHR+vGR5Wr0wc654f07nZNO3Ti0e7zn84x4dY+k/gHgj0SHR51fEYAziISqTPKK4kSEZmMvyXz789Yb3ypjYRMXZ3V3kcysSzZL/fk7oNPJNTbZyVi9udu/uGH1nPJtWVJBRKO+4nSu9ty98F3rdetrixIcm3ZShJyB/uytHjPOvlXvqlLSyB4rm118qrXyNi4hHr7HG+KJvGa++aiY/92lQ8L07K6siCRwai176mrs9oJbrv7xbRPGslmKvVU+1xavCcjY+OOx1ZXFhwfJHa2NmVna9NqQ+5gX1YfLUhSlh3bJdeWrVi3M1Z+jRed8aHbdq/jqlG7dffhRbcOjdqrU59Wjxc/x6Zf571w/4Bcm3nXdczkj542fK1d6HyfpDYSjmQgf3QoO1ubDb+IaVdfVms0DgPBcxIZHJKpq7MSCPZIaj0hqysLEh0ebRgf3T7wOj+UigXJHey7JhFe8WjnGBPRO0ZbPf9V+qBHck+4bxpnG1P7UFflKsLoV99sLUtkcMj6MKJjZ2tTYhNx60QdGRyy7hXa2dqUycvTjudiE3HZ+WLTUYaaWqiobxuVQEC9qb74f3R4tO43ZH7USadezXCrW+SV2naMjI1LZDAqqysL1gdE9W27iMi1mXcavmG3u19M+6QR+wc81UZ7W6PDo9YHGiWZWJapt158UA73D1TasLVZU7bXh+luGi8640O37V71adRu3X14aaYObseDV328jpdmNTM2/TrvedVL97UjY+M10x93vqhMV6u+r/M4+rJao3GorrKo/cYm4jXxrlemTh94nR/sV9tN46GrmTEmoneMtnr+U+WyABXOOq5Ioa7VlQUpFQty98F3rb/VlAAvuYN9KRULronXi+ecb6TR4VFrWprut8Wh3j6ZujprTVGIDo9KdHjU9YrbcdWpGWr/1R/wIoNRa1qF3dTVWZl/v7JSlMkUpeOIgUmf+EXdb6DaoLOKltcVsm4aLzrjw6Ttrba73auU6R4PuvXRPV4e3p9z3PNhckW5nuqx2alzjBuVjOxsbVqzDdK7jyV2Kd5iyS+YntuqX1fvyzu10EPuyb4jmai+98i9TO8+aOYKeqfY26x7TLRy/rOX0SjewFlAIgVXuYN92dnalAcff2Z9AL42847cufWm7Gxtet6Uav/WsN5zpWLBlw/XI2Pj1lxtdb/JZHy6po7HWSdTJt/+iojkn724kTr/7FDCQb3XH1cMdPukXXG0j9tWy+qG8aIzPvxqu067/Yhvq+01qY/u8TJ5ebptHww7fY6pp5JEfCCT8WnrfiM/rthVt7vZ19WL1fz7M9bUPpX8qPuhvMrstj7w03GcBwC8wNQ+uFIfJqpPooFAj+Sf6a8UlN7ddn08EOyRbCZds63pYhb28qLDo3Lz9rxMxqetm/c7WadmVNetVHxes02pWJClxXvW/R9Li/eMP/wdRwxM+kREfFs5LxDsqdu+ZnTTePEaH362vVG7/YxvK+3VqY/J8aJWYFP/+a0bzjHVIoNDEgiek/TutrV4Qjs+POv0pc7rRF6sNGdPonTPH371gRoffp23/Fw59DjOAyKVPuzUuAW6BYkUXFXeXHscvxOhVmEbea1yVUFN9WtURmo9YX1osS9HOzI27ngud7AvqfVEU1cs7Mu3looFyT87tKYtVNfxuOrkxiteag67ff9u950kE8sSOv+yxCbilfnr5192JCnd0C+N+kSkMv3P/gadzez59sY/MjZu/QZaq+V3crxU0xkffrXdq91+xbfV9urUx+t4OU5+jhl1xcC+THbT9Xpt3IpZOxJI3b6sVm8cVrc9f3RY85tR9eLjZx9UkjLz5b/bef5TbWz3eUDFrtkrjsBpwdQ+1HXz9rysPlqwpkuEevvk2sw71jdQpWKh4Zv3zdvzsrqyILeuv249NnV1Vka+WnkuKcvWczpLKNeTzaQdc+1VPd3qeFx1qvy4ofMDiVe81Opiav+qHfa57upbY/t9Hur+j8jgkHXzcaf7pVGfiFSmiS4t3rPGVrh/QKbemvXl3htV1zu33nQ8HpuIG09Z6uR4cWuX1/jwq+1e7fYrvq2216vNIuJ5vBwnv8dMbCJufWnSTBnKyNi43Ln1dQkEz7UlJrp9Wa3uOPwqZqrtaunz3MG+Y5Gb6viopcL96oORsfGmFlto5/lPtVWkvecBEZHsl3ttn64NdLuXyuVyudOVwMmkO89cfYPlNgWg3hRCv+pS7/HjqFOz8Tqu/bQ7Bjr1aOcN9upKmB/fmHZivHRD273a7Vd8u6nNx1VXke4aM/N3ZiTyylBLCVm7NBqHzfKjD9Ty4/alzk3b1c6pce08D2Qze7K0+EHTbQdOCxIpAADOsPzRody59ab1e0HQ180JKO0G2o9ECgCAM6pULHz1UxfP5ebt+U5X58Rp9MO8p9VZbDNQD4kUAABnkPrdrMjgkFybeZcpWgBgiEQKAAAAAAyx/DkAAAAAGCKRAgAAAABDJFIAAAAAYIhECgAAAAAMkUgBAAAAgCESKQAAAAAwRCIFAAAAAIZIpAAAAADAEIkUAAAAABgikQIAAAAAQyRSAAAAAGCIRAoAAAAADJFIAQAAAIAhEimcGtnMnpSKhU5X49Qgns1LJpYlf3TY6Wocm1KxINnMXktldEvM/GgLAOBsIJE643a2NuXGlYuuHxxKxYKsrizIjSsX5caVi3Ln1puSO9jvdJWtut26/rqjPg/vz7W9fundbXl4f86KydLiva6JSSs6Fc9qJzW+1XVMrSck/+xpx+txnPt9eH9Oe3u38dZKzNzK86MtfpZbvY92S60nZP7OTNv3024mfaC27YaEHMDZQCJ1RqkkKbWRqLtNMrEsuSf7cvP2vDz4+DOJXYp35MO1m0CwRyKDUQmd7zvWmO1sbUp0eFTm7i7K3QefSCDYI6uPFjodjpZ1Ip7VTnJ8lxbvdboKXVUPL36Pt3aN33aV2+5+KhULktpYk8nL023dz3Ew6YNAsEdGxsZldaX7zxkATgcSqTMqtbEmpWJBrs284/p8/uhQdrY25drMOxIZHLLeoGKXLkt6d9u3erhNH6ueWlP9b/Vt48jYeNvi47bPQLBHbt6el5GxcQn3D0iot0+mrs5K7mDfkVyq16p22L8ddXvsOGPZiXjW21813fi6ld2uWFfX3e3Kbf7osOE+6r2ulVi58apHt/F7vNnL0+m3TtWz2X4yGRs7W5sS7h+QyOCQdjxMzx/tOOb8ODfFLl2W3ME+0zMBHIuvdboC6IzYpcsSCPbUfV5NsQn1Or8FDF8YkOTaskhcbz/p3W1JJh5ZicjI2LhMxl98S/rw/pzcvD1vveGLvJha89Gnn1vbzN1dlIf35yTcPyDhCwMyGZ92fa3aPpvZc92fSGXKy84Xm3Xr1GifNXH66o0+3D/geO3U1VlJbSQkEOiR3MG+xCbiX8XjseMxe5lLi/ckf3Qoc3cXm4qnTiw7EU/dWLqOQ5f4VtetmVibjIOpq7OSTCxLuH9A8s+eSqn4XK7NvCuRwSHHNLAbVy6KiMjN2/MiIpLNpGVp8QPX19VTL1b5o0NJJh5J7mBf8keHEurtk8n4WxIdHnX0c3U9IoNDnsdgM5KJZdnZ2pRSsSDh/gHXD7peda433kREVlcWXMut93h1eV79ZtIWt3omE8uSWq9czQ8EeyR26bLEJuIt9ZOfx1F6d9vRDp14mJw/mj3mdN4PdM9N9fogEOyR6PCoZDPphscaAPiBROqMapREiYiEzr8sImJ9GLDTndq3s7UpO1ubcvMPP5RQb5/kDvZl9dGCJGXZ+INccm1Z5r65WFOXaqn1NZm6Oiuh3j7JZvYkubYsqUDCeqNPJpYl++WeVSe3bXT3md7dltR67etEKt+m3n3wibXd0uI9GRkbdzy2urJgFIeTHE/d/enGt9VYm4yD9O623H3wXeuYWV1ZqLTn7qKE+wfk2sy7NR82RUTyR0/rvs60bwLBcxIZHJKpq7MSCPZIaj0hqysL1gf0evXwc8xUx07VUcWumledGwmd75PURsKRDKir5F7x0+k307a4tf/ug0+s16h9NNtPfh5HpWJBcgf7NUmETjx0NXPM6Y5FnTY26oNKP/RI7knnp6ADOP2Y2gdXod4+CfX2Oe6hymb2JLW+pl1GMrEsU2/NWm+I4f4BiU3EZWdr07g+I2PjWh/C7dtFBodkZGxcdr54sb+drU2ZvDzt2CY2EXds47VPtRjC0uI9CV8YkJHXxl1fq6gPUfYPkNHhUesDj3Jt5p2GH2pOcjx196cb31ZjbTIOYhPOq7fR4VGtLxNGxsabfl11rNS396q82ES8pk1u/Bwz9tjFJuKO2EVeqf3mv9k6qxjkjw6dffZFZbpavauT1XT6TbctXq9RdWq2zX4eR2pf1ds1O47r9Y+9HPv/1b+r2607FnXa2KgPVNndcC8vgNOPK1Koa+6bi5JMLFtTUCKDQxIZjGqtrJU72JdSseDbqlGB4LmmtgtfGLCmh6k6VX9TGx0etabVVV8FcKOmbuWPDmXni02Zf3/G8U2vCd3lxU96PHX353d87VSsTcfBcXOLlVo8IPdk3/EBtdH4MR0zagqnUn2FzV5m9VWlyGDUmmbVSp1fxKCSkOxsbcrU1VkRqUwbi13SnFOswaQt1a+JDEZdn2+ln/w+jrpB9TGnMxa92ujVB6oMfroBwHEgkUJdgWCPTF2dtT7IiFTuK9H5Rlht8+Djz1r+ANwK+0pPqk6lYsGXOlXuf5iW7Jd71jek7XIW4lmzrzbFt931bof592esKWPqQ7X6gsOrnbpjZvLytOeHT92rQc3W2a6SSHwgk/Fp654jnWmBukzaUv2aevFspZ9O0ng05ef5y6sPAOA4MbUPRna+2NS+gTcQ7Glqhb9WVh4rFZ87/s5m0lVXmXokm0k7tknvbksg2NPSVYjjeFNvJp6truLWqXi6td1Px1VvP6jVy+wfznX71WTMqFXe1H+NVJdZO06ar7NSWS30nKR3t63FE9pxnHm1Rec1rbbZz/Go+s6PFRz9XAWy2feDehqVVSo+77rjGMDpRCKFuuzfTucO9mVp8Z6Ezr9szY9fXVlo+COcI2PjkkwsO96Ms5k9xxtgqLfP8Xf186bU6luqzqn1hESHX3XUKbWeqNlGZ3nd/NGhY4ngUrFQad+zQ19Wh2o1nn7Hst3xPO74VsfSr3qrb8jty0L7qbr8/NGh6+8QudVD5xg0pe5rsceu+j4X3Tp7GXlt3KpvO1Zg02lLNbXCnnqNWs681X7yazyKqMTMbPnvdpw/7Pwci/X6QMkd7Dd1xREATDG1D3XZl+oN9fZJdPhViV16Mc2vVCw0/NCoVmK6c+tNx+Oxibg1RefazDuytHjPmv4S7h+Qqbdmm7oXSN1XMf/+TN3ldSfj05KUZbl1/XXHa3RXMEuuLTtuYg719snN2/O+fPvZajz9jOVxxfM441sdS7/qHQj2SGwibh0rrS4t7la+WgJaxWQy/pbkDvZrViqrrofOMdhM7FZXFqzYhXr75NrMO45xpltnLyNj43Ln1tclEDzn67Q+k7ZUu3l73vEaEZGpq7PW+Gm2n/w8jkbGxo0XW/D7/OEWaxF/xmLdPvjqPJH9cq+tvzMIAMpL5XK53OlKoHs1uvFed05/qViQ/LPDht8Q+n2Dv1d5KmFpZqpQJak45/s0I7/i2Y7FEtoZT7d9tSO+7a53N9M5BrvV/J0Zibwy5HuC2ip1BcTPY82v8aiWH29mkZZ2L7bi51h064NsZk+WFj/wZYEaAPBCIgUA6Er5o0O5c+tN6/eCoK9bE1DaDeA0IZECAHSdUrEgqysLUio+t5bEh756P8x7mp3FNgPoLBIpAEBXUb9pFRkckmsz7zJFCwDQlUikAAAAAMAQy58DAAAAgCESKQAAAAAwRCIFAAAAAIZIpAAAAADAEIkUAAAAABgikQIAAAAAQyRSAAAAAGCIRAoAAAAADJFIAQAAAIAhEikAAAAAMEQiBQAAAACGSKQAAAAAwBCJFAAAAAAYIpECmpRMLEv+6LDT1ZBSsSDZzF6nq2Ekm9mTUrHQ6Wq4yh3sy51bb8qNKxdlafFep6tTo1vGHZrTDf13Es8ZANCNSKTOqPzRoayuLMit66/LjSsX5c6tNyW9u12zXTKx7LnNWZVaT0j+2dNOV0NyB/vy8P5cp6th5OH9Ockd7He6GnXrFh1+Ve4++ERiE/FOV6dGt4y7s8TPsdps/5WKBbl1/XVf6lJ9zvCzbPs+2i21npD5OzNt30+7mcZfbd/phBwAidSZtbqyIIFgj1ybeVcefPyZRIdflaXFe44T887WpuxsbcrU1Vn56NPPZeS18ZptgNNEXSmbjE9LqLdPwv0Dna4SukA3XJkMBHskMhiV0Pm+E1F2u2NWKhYktbEmk5en27qf42Aa/0CwR0bGxmV1ZaHTVQfOPBKpM+rm7XmZjE9LZHBIAsEemYxPS7h/QHa+2LS2SW0kZDI+LdHhURERiU3EJTYRd2xjwj6VJJvZc51aUr1NK0mbKktNY7GX5faYm9OYNOr0g3quevpd9ZQgP2LsZ1u6ob/8ikk3tKUblIqFurHQGaM6Go2j/NGhcV+0a1yOjI033E8r0/Wqy25FMzGr16Z65exsbUq4f0Aig0NG8ej0ea1e+0zjH7t0WXIH+0zRBDrsa52uALpHINgjgcA5EXnxRqiSKLvck+ambDy8PydTV2clmViWcP+A5J89lVLxuVybedd6M3x4f07m7i7Kw/tzEu4fkPCFAZmM1//GMb27LcnEI8kfHVrf0qnt1f5SGwkJBHokd7BvTdVK7z52PGbfx40rF2Xu7qLj6psqNxDsadjG1HpCdr7YdK3P6sqChPsHat4wqx9v1CaRynTLna1NKRULruWpes/dXWy6H9R2N2/POx5TU4I++vTzlmJs30c2s+faTt0+NhkvjfpnZ2tTkollawyIiNXO4xh3rYy94xh3Os+n1hPW9KRQb59Eh19t2B+NlIoFWVr8wPqgGOrtk8n4W7K0eM8x/rzGqEjlfJZMPJLcwb7kjw6tstT5rd44sk+BU2NC7c+PcanbN0p1e3WPZa9zRr1YJhPLklpPiEjl/SF26bLEJuIN49koZl5j1SR26d1t1/jovMe0+7zWzNgwib/6Ozo8KtlM2vEaAMeLRAoiUvmgkc3sydTV2crfX83hr/7wFhmMWif2ZqR3t+Xug+9a5a6uLEhybdnxoT+5tixz31yUUG/jaQ5q6uHNP/xQQr19kjvYl9VHC5KUZetNK5vZk7sPPrH2vbR4T0bGxh2Pra4s1LwZrj5asMrNHx3K0uK9yjSSBh8Kk4llyX65Z70um9mT5NqypAIJiU3EJXS+T1IbCcebf/7oUHa2Nq32e7VJ7UPFR+2jHf2gq9kYp9bXZOrqrGusTPpYd7x49c/I2LiEevtqPoQf57hrZuwdx7jzej53sC9Li/esD4KVb+3TEgieMx5P1vjYWJNSsSAPPv5MAsEeKxbNCATPSWRwSKauzkog2COp9YSsriw4vihyG0fh/gG5NvNuzZjwa1zq9I0Xr2O52XOGet3dB59Yr1P7aBTPejHTGauN+sKuVCxI7mDfNYHw69zW7DHs19hoFH8lEOxp+otNAP5gah+++ub3nnVfSDvFJi473gzUN5h26gOtl2RiWabemrW2DfcPVKYebm06yrLvy/5/9W/1puysZ9wqN9TbJyNj445y3exsbcrk5RcxjAwOOaZCjoyNS/7o0LGvnS8q01PUvThebdrZ2nTULTI4JJFXnB8mrs284/mhQacfdDUbY3s/RwaHKjGumjaq28c648Wrf3S1c9xV+sZs7B3HuPN6PhBQH7Bf/D86PNrSN+VqrKsyQ719NWNdl7oqoMqKTcRr4q87jkzGgFd5On3jxetY1jlnNIq//XWqTjrxrFemzjHoFTv7VU/TeOhq9hj2a2w0ir8S7h/o2kV7gLOCK1KoTIO4MNA1K5TpfIudO9iXUrHg24pN1XPmq+sQvjDQcLluVZ/qD47R4VFrmpb9Q7G68pfefSyxS3GtNqnnq6dbtnqV8LjoxNh+34FuH5uMF6/+0S2nXeOuXlzqjb3jHHeN2hzq7ZOpq7PWdKXo8KhEh0ddpyOq6ZyK29U/v8e6Wpgg92Tf8eHXHlfdq2d+jkuVkNTrm1Y1G8cX4yradDzrl+l9DLZyJfO42dvs19jwir+9nG79GQngrCCROuNWVxYk92Rfbt6edzyu3uyqP2CWis/bftVKh/pmTk37Oa79eT1fKhYa1qfyoeEDazqU/T60425Tt6lescrPeOj2j245x9lHjcbecY47r+dHxsatezbU/WaT8ema+1gmL097fvjze7XE+fdnrKlo6vyl7t8x5fcYaNQ3rWo2jvYrT26aiadfx2A382tseMUfQPdgat8ZppZOnbu76HrCVvOy7erNS++EQLCnbb9rVSo+d/yts59AsEeymXTN6wLBHsf0jEDwnKR3t62bpe2x12lT9fPVdW0nP1eSq653NpOuSdL97GOd/tEtp52/p2Y69o5j3Om2WU3pU6uCqsU77NRKa+q/RqqnLemM9eoxqlZGs3/ob3Uc+zkGvPrGD82eM9za2Eo8/ToG7V/0+cHP85qfY8OrnG75YhM4y0ikzih1JaryDfKe4z8ldikuqY2E9SaT3t2Wna1N69vS1ZWFY/0h2Or9jYyNSzKx7HgTzGb2fHkTq74nJb372HN52pGxcUmtJ6xv23MH+5JaT9S8buS1caue1R8kvdqk5trb91FdV7/6JdTb54ilX7G1x7g6VtHhV43iYUK3f3TKade4U3Gx8xp7xzHudNpsX8q5VCxI/tlhS1O0IoNDNdPP0ruPHX/rjFH17b46t5kuWlH9+lKx4PsYaNQ3rdI5Z7hR8VevUyu56sTTLWYi/h2DIiopM1/6u93nNb/GRr342+UO9vmtO6DDmNp3BmUze9YbqdsHbnXPwsjYuOSfHcqdW2+KiFi/N6Xe6EvFwrHOz67en1oBSdVPiU3EW54aE74wIHduvSmh8y9L/tlTCQR6aqY/VpuMT0tSluXW9deteLkt6T0yNi53bn1dAsFzNfX0atNkfFpWVxasfYR6++TazDuOOfl+9cu1mXdkafGeNWUn3D8gU2/N+nJ/kIrN/PszdZdB1omHCZ3+qfww5pBnOX7VyY3p2DuucefV5mwm7Uh81Nhsllr5bf7OTGXVvmdPaxJtnTGqzlvqXKeW6s4d7Gtd+QkEeyQ2EbdePxmf9n0MNOqbVumcM9zcvD3veJ2IyNTVWWtsNYqnW8zUUuE6Y1U3Zs0stNDO85pqq0jrY6Nu/G1XoLJf7vn6+18AzL1ULpfLna4Eulu9Oe3HPde9UT3yzw59+2buxpWLcvP2vPVBVkSMviVWSUyj2MzfmZHIK0N1P0C00ia/+0V3IYZ2lu9nH+v0j245fo47kdbG3nGMO53n/Rx79oUMVEzcltVu9xhtVD+/xoBX33SKugriZ3z9OAbV8uP2pc5N29XOMePX2KgX/2xmT5YWP2i6/QD8wRUpeKp3kj7uk3ejeoSD/k9vCPX2NfVG6xUXtdxxo2/rW2mT3/3S7g+oOuX72cd+xadd407FxDTuxzHudJ73U/UVQpVcusWrE/waAzp90yntiK1fi3Sk1hOev+93nO2qbqMfY6NePZNry225nw6AGRIp4BiVigVJJh5JZHCIm4RxbBh33Yu+ad7N2/Nn8neUSsWCTF6e7pqFn4CzjEQKqFJZRcv/b/nU7+dEBofk2sy7nW4mulA7xt5pGnc697CdJKepbzrhtI0H2g2cPNwjBQAAAACGWP4cAAAAAAyRSAEAAACAIRIpAAAAADBEIgUAAAAAhkikAAAAAMAQiRQAAAAAGCKRAgAAAABDJFIAAAAAYIhECgAAAAAMkUgBAAAAgCESKQAAAAAwRCIFAAAAAIZIpAAAAADAEIkUcAZlM3tSKhY8t0smliV/dNjp6gIAAHQdEqkzKn90KKsrC3Lr+uty48pFuXPrTUnvbrtuu7O1KTeuXJRsZk+7/GRiWR7en6t5vFQsyJ1bb0pqPXHsbc4d7J/o8uspFQty6/rrRvt/eH9Oa/vUekLyz552pF0AAADdjETqjFpdWZBAsEeuzbwrDz7+TKLDr8rS4j3H1YdSsSCrKwuS2jBPemKXLkvuYF92tjYdj6c21irPT8SPvc1Li/dOdPn1BII9EhmMSuh8X0f2DwAAcBaRSJ1RN2/Py2R8WiKDQxII9shkfFrC/QOy88WLxCe1sSalYkGuzbxjXH4g2CMjY+OOJKxULMjO1qbELvmbRLlNUysVC44raPmjQ88pavWe96v8etPpcgf72leT7PvMZvasfY6MjfsaUwAAADRGIgVLINgjgcA56+/YpctybeYdCfcPNFVe7NJlKRWfW1elUhtrEu4fcHzoX1q8J/N3ZhqWk1pPyJ1bb8qNKxfl1vXXJZlYdjzvNk0td7BvTS3MHezL/PuVfdy4ctExTfHGlYuSO9iXO7fetPaxurLgSHhaKd/ZjjXrilxN/Z/sS/7oUJYW71n1cJtuqepy6/rrklpfsxLf6jrqlKVeVy+u9aR3txv2BwAAwFnwtU5XAN0hf3Qo2cyeTF2dtR4LBHtaKlNd6UptJCQ6PCo7W5tybeZdozKSiWXJfrknN//wQwn19kk2syfJtWVJBRLa0wPD/QNybeZdeXh/Tj769POa51cfLVjlqwQktbEmk/FpX8pXosOjkkwsO8pVyU10eFRERCKDQzJ1dVYCwR5JrSdkdWXBes6KydqyzH1zUUK99afyBYLnPMtKra/J1NVZo7jubG3KztamFa/cwb6sPlqQpCxrxwsAAOA04IoUpFQsyNLiPZmMTzf8cN4MdfXp4f05CfcPSGRwyPH8tZl3ZO7uYt3X72xtyuTlF/WKDA5JbCLumILYqthE3Co/1NsnI2PjNfd2+UElMfYrQ9nMnkSHRytXA7+aDqkS2NhEXErFQs3VsJGxcc9+0inLXk5kcKjSbo+4JhPLMvXWrPW6cP9ApT/aEC8AAIBuxhUpSDKxLOELA21bACJ2KS6rKwty98EnRq/LHexLqVioSb6iw6PWwhh+JH6B4DnH3+ELA1pLg5vvp0eiw6NW8qTuGbt5e15EKgltamNNck/2HUlPdV2q6+tGpyy3dje6z0v1h9dUTAAAgLOAROqMW11ZkNyTfevDfDvYr/aYUPdmlYqFlqcZNrPfdogOj8rD+3MyGZ+W9O62hHr7rERx/v0ZazqeitWNKxeb2k8zZXmt+qfi8uDjz461PwAAALoRU/vOsNWVBRERmbu72LUfjAPBHslm0o7H0rvbEgj2NEzMTH5EtlR8XlO+l2Z/pDYyOCSh3j5J725LendbosOvisiLFfjsiU+z+9Atq7rd2Uxaa8qgTnwAAABOOxKpM0pdiVJTzez/mZTh9qO7pvVoVMbI2Lik1hPWlLTcwb6k1hOOlf9UYqJkM3s1H/bV1RTVPvsUt+r7e9K7j30tv6ZNr1WWhc9m9mTktXHX16tFL5qhW9bO1mZNXFVi16g/kollR2LmFg8AAIDTjql9Z1A2s2clD25JTKOV5+xKxULL9xJ5lTEZn5akLMut66+LyItFFOwrxF2beUeWFu9ZU9fC/QMy9das416eQLBHYhNxq72T8WnrnrDwhQG5c+tNCZ1/WfLPnkog0OOY6thq+dWiw69KMrFsXZ1Sr5+MT1uvD/X2yWT8Lckd7BtfLdQpS8Vx/v0ZyR8dusa1Xn+IiNy59abj8dhEvGZ1QQAAgNPspXK5XO50JXAy+XHvkm4ZKtlqtG0zi0/cuHJRbt6et5IoEalZ3KKV8k+CZtpVKhYk/+ywrfeTAQAAdDOuSKFpftxXpVuGznatJDmh3j7P15/GJKrZdgWCPRIOkkQBAICzi3ukAAAAAMAQiRTOtMjgUNeuWAgAAIDuxT1SAAAAAGCIK1IAAAAAYIhECgAAAAAMkUgBAAAAgCESKQAAAAAwRCIFAAAAAIZIpAAAAADAEIkUAAAAABgikQIAAAAAQyRSAAAAAGCIRAoAAAAADJFIAQAAAIAhEikAAAAAMEQiBQAAAACGSKQAAAAAwBCJFAAAAAAYIpECAAAAAEMkUgAAAABgiEQKAAAAAAyRSAEAAACAIRIpAAAAADBEIgUAAAAAhkikAAAAAMAQiRQAAAAAGCKRAgAAAABDJFIAAAAAYIhECgAAAAAMkUgBAAAAgCESKQAAAAAwRCIFAAAAAIZIpAAAAADAEIkUAAAAABgikQIAAAAAQyRSAAAAAGCIRAoAAAAADJFIAQAAAIAhEikAAAAAMEQiBQAAAACGSKQAAAAAwBCJFAAAAAAYIpECAAAAAEMkUgAAAABgiEQKAAAAAAx9rdMVgIfiL0T+5dcr/x7+HZHX3ux0jTov8f6Lf8e/2enaAAAA4Awikep2mS8q/4lUkioSKZGNb734N4kUAAAAOoCpfd0us/Xi3wf/UeTZQadrBAAAAJx5JFLdTl2Nqvc3AAAAgGNHItXN7Feggr9W+b/9ChUAAACAjuAeqW62+70X//6/TIp88Un9K1JqAYaxq5V7qbZWKklY/29VHjvf39q2w79T+f/WSiWps2/37EBkNyly9KTyXP+QyOBrL5I/JfNFJTks/rzyd/+QyPBk/fZ/8YkzBqp+dsVffBWXrxLMwTGRS//34+ohAAAAnFEkUt1MJU39v/UiKSn+ovL44GvObdUCDMVfiPyHZOX/qowvPhH55l+8SHya2Vak8pzadvh3RM5/9djKbG3dg78m8uZCJVE6+I8i/+x/ePFau09+zbk/ZWW2UnZ1PIJ/1/nYP/sfKuU7tvk1FuUAAABAWzG1r1sVf/EiQejtr1y9URpN71PJjj0xUVedWtl241vORKj/tyr1c0uiVDmfzFb+3/9bjdtZvb8vPqlNopTqBNKeRCn2q1gAAABAG5BIdav/kHzxbzVVTvFacCL+TZEH/x/nVZl6rzHZdvA1kbe/+2LJ8Y1/8eK54UmRj35SKUslTmrandrP298V+e7fVP6zT7+r3p89ser/rRflvv3d2qQs/s1KefZl0N2ufAEAAAA+IpHqVk/2Xvxb3W+kkgivZdBVkmK/n8jtyo3ptm9/t5IwqdfsJl88F/9mpY7n+51lqatnr73pvB9qcKz+/ux/X114Ua7b/VSqLvbErF79AQAAAJ9wj1S3clyR+q3K/wdfe5EkZL7wvg+o0ZS6Zra1Lx5RnazYpwfa/23fTi1KUfy5MxFsdLXNpA0AAADAMSGR6kYH//HF9LTz/S9WzrMnH5mtzi6oUL04hF2v7bniLyr//cuv158yWH3vFQAAANDlSKS6kX2xhGcHzpXzrG2SIm93sI7VS5s3svEvnCsQDv9O5f//7H+oLcukXAAAAKBDuEeqG3ktJqHY71FqpRzTbd3Yp/A9sf37fL9zBb6Z71buZ6pefa/ZNgIAAAAdQCLVbezLngd/7cUqd+o/+4ILB3uNy7InN16Ji8m2btvZr6L9B9u/L/yW+yp6jRbLsE/vs5elpgkCAAAAHcbUvm5jX2TCLaEZHHtxlWY36Vz2W/niE5HArzmXJ7evktfstm51UVeyNr71ol72JOm1q86rSiuzlUSp0ZUm9RtVqo1P/vvKfVeZLyqr+AEAAAAdRiLVbezLntt/hFexJ1fPDir/VS/8UP0jucFfq78whcm21V57s3IlSiU91VeZXnuzUt/hyReJU+aLF8nX+X73K1Pxb1a2Uc+pdlbHBwAAAOgQpvZ1G68rUuf7nYmT1z1E5/tF/vDf6C3iYLKtSGW7P/w3lXue7HXq/63KlSN19ejtr+6LUuWq/ajfmzo6qC339r+pJGLqNSrBm/h/+BVpAACIpkvVAACAAElEQVQAoGkvlcvlcqcrAR98/e+8+Pc3/6JyRaf/t9yTMZNt28l+P1j/b7FiHwAAAE4MEqnTwp4cffdv/NsWAAAAQA2m9gEAAACAIRIpAAAAADBEIgUAAAAAhrhHCgAAAAAMcUUKAAAAAAyRSAEAAACAIRIpAAAAADBEIgUAAAAAhkikAAAAAMAQiRQAAAAAGCKRAgAAAABDJFIAAAAAYIhECgAAAAAMkUgBAAAAgCESKQAAAAAwRCIFAAAAAIZIpAAAAADAEIkUAAAAABgikQIAAAAAQyRSAAAAAGCIRAoAAAAADJFIAQAAAIAhEikAAAAAMEQihVOvVCxIqVjodDUAAABwinyt0xVArWxmTx7en7P+DvcPSPjCgIT7B2RkbLzT1TtRSsWC3Lr+uoiIzN1dlHD/QKerBAAAgFOAROoEyB3sS+5gX0RE8s8OZTI+3ekqnRiBYI+EevukVHwugUBPp6sDAACAU4JEqst99OnnUioWJLWxJqn1hKTWE1Yilc3sSSDYI+H+Aclm9iSbScvIa+MS6u0TEZH80aGkdx9LqfRcAoFzEh1+1XrOTe5gv+aKjc4+UhsJyR8dSiB4TkK9L0vs0mUJBHtqyknvbju2U+V41dO+DxGxrs5Fh0e1np+6OisiIoHguZo2pXe3JXewL9HhUderVfmjQ8k/e1rzeGRwyDWGlTY+lZGx8ZoYAAAA4PQgkToBAsEemYxPS2o9ISKVRCAyOCQP789Z0/1WVxZERCQyGJVQb5/kDvbl4f05x71BqY01uTbzrpUE3LhyUQLBHrl5e16WFu9ZiUhsIm4la432UT0FUUnvPpa5by5aiUR6d1uWFu/VbBe7dNmznqViQebfn3E8n83sSXR4VKLDo57PqzaIiNy8PW/FLdTbJ6HzL0s2s1fZ53rC0W4RkWRi2Yp5tY8+/dz18dWVhco9WaXnXDkEAAA4xVhs4oSwf6C3Xw3JHezL6sqChPsHJDI4ZCUvq48qH+hjE3H56NPPJTYRr1zZWl9zlFsqFmT+zowEAj3WFZnUekJ2tja99/FVYjUyNi4fffq53H3wiYT7B766QvRiP8nEIxERqy43b8/L1NVZCQR7POuZO9i3kqQHH38mdx98IlNXZ617xbyeryd/dCilYkGmrs5aCZe9zdnMnqTWExLq7ZMHH38mN2/Pi4hYf9ejYsi9WAAAAKcbV6S63K3rr0vofJ91j1RsIl6zTfWVFPs9VbFLl0VErCta6gpMvderqzA7W5uOZMRtH+oKlno81NtnXbnKfrknEndup+oSGRwSGRzSqqdK3ErFgqyuLEh0+FVHvbyebyQ2EbeuXKV3t6VULFjTG0vF55U2nX9ZAsEeK3mtJGDP607bUwkXAAAATjcSqS5XKhYkV9yXQLBHRsbGXaeLRQajNa9R1Ip1dmpqoNvr1ZUUleDo7MOeVKh7m9Tr621nUs9rM+/K0uIHkt7dlvTutoR6H8m1mXesuno9X4+6Z8peL1UnexzUvWFq20b3mQEAAOBsIJHqcvXuxWnEnhi4XcEKnX+5wWvPae3DXkapWKh7hcaezFRvp1vPyOCQPPj4M9nZ2pRkYlnyR4ey+mhB5u4uaj3fjFBvn0zGpyWZWLbusVL3kwEAAAAkUqeQPXmxr14nUrnCUn1FJX90KGKbuiYinlddQr191op7O1ubViKk7jNS+wwEe6ypd/bt0rvbjnrVq2f+6FBKpYK14EX4woDM35l5sRy8x/OtyGbSEurtk2sz79TEtR5W7QMAADgbSKROKXU1ZWnxnoR6H0no/MvWwgzVV7lSGwkr2UkmlkVEJDr8quc+YpfisrqyIMnEsqR3t0WkkgAFgj2OK0wjY+OSWk9IMrEsO19UEq380aF89OmoZz3zz55aV4Qig0PWUuTW8usez7dC1WP10YKVFIUvDNRdKl2EVfsAAADOChKpUyo2EZdQ78uSWk9YCz6oxSCqhc6/7FiePNw/YC3+0Igqa2dr07oCFB0eldhE3JFoqIQivfvYuuKlrj551TN0/mVrMQj7AhSTl6e1nm9W/ujQ+u0s+9WtbGZPck/2607xU69h1T4AAIDT7aVyuVzudCXQGTeuXBSRykpzlR+ePZTQ+T7tVe9Os4f35ySb2bN+e0rE+XtYzdy7BgAAgNODK1IQESF5qqKubqkpfaViQfJH/k0bBAAAwMlGIgW4iE3EJbWekPk7M47H7YtPAAAA4OwikQJcTManrXuvlMhg1PH7WwAAADi7uEcKAAAAAAz9UqcrAAAAAAAnDYkUAAAAABgikQIAAAAAQyRSAAAAAGCIRAoAAAAADJFIAQAAAIAhEikAAAAAMEQiBQAAAACGSKQAAAAAwBCJFAAAAAAYIpECAAAAAEMkUgAAAABgiEQKAAAAAAyRSAE+unHloty4clGymb1jeZ2uZGJZkollyR8dWo+VigUpFQsdjddxcGs7AABAq77W6Qrg9Mpm9uTh/Tnr71Bvn4T7ByTcPyDR4Vcl1NvX6SqeGan1hIiIRAajEurtk1KxILeuvy4iInN3FyXcP+DbvvJHh5J/9lQig0OdbrZr2wEAAPzAFSkcm/zRoaR3tyWZWJY7t96Una3NTlfpzAoEeyTU2yeBYI8EAj2+lp3aSDgSaAAAgNOIK1I4Fh99+rmIiOQO9iW5tizZzJ6srixI+ELlClU2syeBYI/172wmLSOvjVtXEPJHh5LaSEj+6FACwXMS6n1ZYpcuSyBYPwnIHex7XmlptE0l8XsspdJzCQTOuV5FS60nJJtJS6i3T0bGxrXj4fW6ZGJZRMQRA7fHmmmzMnV1VkREAsFz1mPZzJ6kd7cdcVb7KxULsrO1KdlM2npduH9ARsbGHf3QaHqiTkyrNaqTKtN0bOjG1z4ud7Y2Jf/sUKLDo1aM3R6z11u9Nr27LbmDfdft7PUXEeuYiA6Pao8nAABw/Eikzjj1AS90vk+iw6MNP3z6Idw/INdm3pX592ckf3QoO1ubMnV1Vh7en7M+lK+uLIjIi6lY1VMEX9T9scx9c9Gq840rFyUQ7JGbt+dlafGe9cE0NhGXyfi09jYilYTk4f05xz1EqY01uTbzrjVlLZlYtqaNSWZP+wqbzuvcpqO5PabbHjcqpjdvz0tkcEjSu9uytHivZrvYpctWTFSy8aIPKuPn2sw7UioWZGnxA6sON65cdJSvE9PaPm5cJ92x0Wx8H96fk1Bvn4TOv2wliKn1hIyMjUvuyb7kDvatx6pjXu+19u1KxYLMvz/jiEk2syfR4VESKQAAuhxT+86w1ZUFWVq8J6n1hKyuLMidW1+3Phi2UyDYI9HhV0Wk8kFZyR3sV65S9Q9IZHDI+hCsEquRsXH56NPP5e6DTyTcP/DVN/lrjrJLxYLM35mRQKDH+uY/tZ5wJCs626w+WpBSsSCxibh89OnnEpuIS6lYkNT6i/2p7dU2XolLq6+rR6c9OpKJR4563bw9L1NXZ61+iAwOSWwiLnN3Fx31Tu9uS6lYkPyzQ0dCEBkccvajRkxN62QyNpqVP6q0a+rqrJXcqNi6Pab7WpHKmFcxe/DxZ3L3wScydXXW6OomAADoDBKpM2pna7Pmg5+aunWcqleNUx/Ub96el3D/gOQO9q0rHOqDu306XPbL2mlkqoy5u4sSm4hb7dXdJnfw4kqDuvKh9q2uLGQze1bd1TaqnEaafZ0XnTY3Yo+zqldkcKjmA/1kfNpK1uzPqSmFk5dfJIU3b887+tErpqZ1amZstBLfkbFxazqk22OlYsG1LW7bqVhUf2GQO9iXkbHxrlmoAwAA1MfUvjMq/8x9Kej07rbjw+JxiwxGHX/bEy37NC019crtCpq9DPWhv3q7RtvY96lWtrOr/rBsr5dKGnQ0+zqvuNVrcyP14myXO9iX1HrCcRWxmfLrxbQ6efCqUzNjo1nqPjL7ftwe032tve7XZt6VpcUPJL27LendbQn1PpJrM+/4upIiAADwH4kUOkJdLfC6DyR0/mXr36ViwfgeLvtCCrrb2PfhdrUodP5lKZXcf3+pXoLqVrbJ60x+A0mnzdXsH9rd4lwqFqz7m2ITcYkMRiUyOGTdB+VdJ++Ymtap1bHRbHz9FhkckgcffyY7W5vW712tPlqQubuLHasTAADwxtS+M2rkNfd7MI7j3oxkYtm6WqDulaon1NtnXWGwT1VT/3ZLxOwfitW/q1eGa7SN/QN8uH9AJuPT1n/R4VHr97Cq62KftleP6etU3dK7jxuWq9PmRgLBHisRscdZXX2y38sTu3RZIoNDnlMH7W3SialpnZoZG83Gt13yR4fWsTAyNi43b89b8QYAAN2NK1JnVKi3T+buLsrqo4UX965orPTWrBtXLkqot8/xgT82Edf6sBu7FJfVlQVJJpYdH+wDwR7XqxupjYQEgj1SKhasVeaqEzavbSbj05JMLMvS4j0J9T6S0PmXrWRCLeUem4hbC3Wo1etUmQ3bo/E6FSu1jVpKu17ZOm32MjI2Lqn1hCQTy7LzRSUZyR8dykefOpfsnn9/xlqJrrpO9u3u3Pq6hM73SeSVIStp8oqpSZ2aGRvNxrdd8s+eWqsORgaHJP/sqVU/AADQ3UikzrBw/8CxTh+q/M5Pj0QGo0Y31KurZDtbm7YrWaMSm4i73kcSOv+yY8nscP+AtViB7jaxibiEel+W1HrCWtSg+jefYpcuS+7JvmQze5I72JfJ+LTknx1K7sl+w2lmOq+7NvOO9XtbuYN9mbo6+9ViBmnXsnXa7OXFKnyPrYRXJbqBYI9MXZ11/N6RWvI8vbtt1Ultl0wsV1byk0MJnR/XjqlJnZoZG4ppfNsldP5liQ6PWsmcSCWhsi/aAQAAutNL5XK53OlKAH6w/25R/uhQ8s8OJXTe+UFdZ5uT5LS1BwAA4KTgihROJZ1E4rQlG6etPQAAAN2MxSYAAAAAwBCJFAAAAAAY4h4pAAAAADDEFSkAAAAAMEQiBQAAAACGSKQAAAAAwBCJFAAAAAAYIpECAAAAAEP8IC9OlWRiWURERl4bl1Bvn5SKBRERCQR7uqZOnXLjykUREbl5e14ig0NdGy8AAICTgEQKbbeztSk7W5uSO9gXEZFQb59Eh1+V2KXLTX9gzx8dSv7ZUyshUFLrCRERiQxGJRA8J7euvy4iInN3FyXcP9CR9tvr1MlEyqtu3RIvAACAk4BECm1TKhbk4f05K4FS8keHklpPSHr3scx9c7GpZCq1kZCdrU356NPP624TCPZ8dZXluQQCXGHxQrwAAAD0kUihbVIba1YSNRmflthEXEQqV6hWVxYqCdXGmkzGp0XEfQpcvWlx2cyeVh2mrs6KiEggeM7xeP7oUNK7j6VUei6BwDmJDr9aU34g2CPh/gHJZvYkm0lbdajUOyH5o0MREQlfGJBw/4BEh0cb1iXcPyA7W5uSf3Yo0eHRmis+pWJBdrY2JZtJW3UO9w/IyNi4lWza65Xe3Zbcwb5rWSKVq03ZTFpCvX0yMjbedLxM9qmuFFarvnIIAABw0pFInXHqg3HofJ9Eh0d9vTdmZ2tTRERGxsatJEr9nTvYl52tTUnvPrYSKbcpcNWPlYoFWVr8wEpi3O77sXt4f67m+dzBvjy8P2fdDyRSSfquzbxrbfPw/pyVxKyuLFh1CATPyfz7M47XZjN7Eh0e9UykkollKyap9YTEJuJW21W9VOJY3T/XZt6x6hXq7ZPQ+ZetZNKtrGRi2YqdZPas/Xpxi1dT+6zS6MohAADAScSqfWfY6sqCLC3ek9R6QlZXFuTOra/XTMNrVu5g30o23K5cqA/p+aNDo33mnx06kpjI4JBEBoeMEsDVRwtSKhYkNhGXjz79XGITcSkVC5JaX6tpw+rKgoT7B6x92Nv14OPP5O6DT2Tq6qzWFZ/ck32ZujprJVzVyU1kcEhiE3GZu7soH336uZWkpHe3HW3OH1Vi0Kgs9bdqoz3haYbXPrOZPUmtJyTU2ycPPv5Mbt6eFxGx/gYAADhtSKTOKLUAhJ2aWuYH+z02bgss2KeO2ZMEL+H+AZm8/CIpuHl7Xm7entdeGCF3sG8lbrFLl0VErCTDbbqgSmzUPuxJ2+rKguQO9mVkbFxr6lpsIi4jY+PW9LlSsVCTRE7Gp6222JOz6u0alZXN7FkxVW20XxFsVqN9lorPRUQkdP5lCQR7HImyeg4AAOA0YWrfGZV/duj6eHp32/qg3Ap78uT1Qfo4l9q2J21qhTq7bGbPkRRFBqM121ybeVeWFj+Q9O62pHe3JdT7SK7NvOOZzKnk0d5ee31yB/tfLcKx7dkOr7LcYhvuH2jpimOjfaq25w72rXvK1LbdtlIhAACAH0ik0DZqYQZ1D5Gd+qAtInUTEHUflJ/sSYDbVZrQ+Zc9y4gMDsmDjz+Tna1NSSaWJX90KKuPFmTu7mLT9VIrHKoph5HBqEQGh6x7wJptoyOez/yPpxW33j6ZjE9LMrFs3WcVCPZYU/wAAABOGxKpM2rktXHXhQF0V3fTERkckp2jQ9nZ2pTI4JCVTKmFJurtL390KDI4JOndx577KBULRle07Elb9Up7uYN9z6sn+aNDKZUK1kIU4QsDMn9npuV7y+z3Xqnf12p2mqW9jTtbmzIyNu6Y7tcuaoVAtTAGv0MFAABOMxKpMyrU2ydzdxdl9dHCi3uGqlZha9VkfFpyTyr3JC0t3hORe47nw/0Djv2pK1irKwuS3t22lt2uTgDsH9Dv3Pq6hM73SeSVIe26qysnS4v3JNT7SELnX7YSGa/V5fLPnlpXXCKDQ9ZS361OX7O3af79GWuFPLf264hNxK1FRNTKf82WpUvFcPXRgpXchi8M1F0qHQAA4CQjkTrDwv0DLU1H86KmdqU21iT75Z6VsIV6+yQ6/Kp15UW5NvOOJNeWJZupbDt1dVZKxYJkM2nHdoFgj0xdnZVkYllKxYLk5VBC5/WvpMUm4hLqfVlS6wnJHexL/uhQ+7eWQudflujwqJXoiVQSKvsCGM3GaurqrOP3qa7NvCOlYkHSu9vG95HFLl2W3JN9K5aT8WnJPzuU3JP9ttyTlj86tH5zy351LpvZk9yTfab4AQCAU+elcrlc7nQlAJxsD+/PSTaz5/j9qfTu9ldXIvkdKQAAcPqw/DmAlqmrc+pqV6lYkPyRP9MeAQAAuhFXpAC0LJlYdl28RC0+wT1SAADgtCGRAuCL3MG+4zew1BLuAAAApxGJFAAAAAAY4h4pAAAAADBEIgUAAAAAhkikAAAAAMAQiRQAAAAAGCKRAgAAAABDJFIAAAAAYIhECgAAAAAMkUgBAAAAgCESKQAAAAAwRCIFAAAAAIZIpAAAAADAEIkUAAAAABgikQIAAAAAQyRSAAAAAGCIRApdp1QsSDaz1+lq4IzLZvakVCz4Xm4ysSz5o8OOtcvt+PKjTl7Hbbviedp0cnz4uW+dsjp5rvfad6ePUz90ug1+7b/bxxLONhIptE02syc3rlx0/Pfw/pzsbG02fF3uYF8e3p/rdPW7TqlYkFvXX5fcwX6nq3IqeMXx4f25tsQ6tZ6Q/LOnHW139fHlR528jtt2xfMkc4tHJ8eHn/vWKauT53qvfXf6OG22Td3UBr/23+1jCWcbiRTa7qNPP5ePPv1c5u4uSmQwKsnEsiQTy52u1okTCPZIZDAqofN9na7KqbC0eK/TVcAZxxiEnxhPwPEjkcKxCfcPSGwiLrFLlyW9+7jT1fFFvekG9ikG2cye9vSGetOfcgf7kjvYl5Gx8abq6VZuJ6dCVMdHpx7NvKae/NFhV0zbaaUdfsbjpGpmXOv0eytjQ/fY1xmD9fq12fOLaTu6fUx10zGQO9iv6Qd13rbLHx0aXZn1azw1ig/jCWje1zpdAZw94QsDkk+8OFEnE8uys7UppWJBwv0DrslC/uhQkolH1ptVqLdPJuNvSXR4VFZXFlxfZ388vbstqfWE9QYW6u2T6PCrMhmfNq7/jSsXZe7uoiwt3rPecEbGxmUyPi2BYI+IVKYxzd1dlIf35yTcPyDhCwPWvtK725JMPJL80aEEgj3Wa0VEUutrjm2Vh/fnZDI+LasrC3Lz9rxEBoes51LrCdn5YtO1PPvrq1+npkJ89OnnVr1MYpRMLEtqPSEilatlsUuXJTYRb9hX9vpMXZ2VZGJZwv0Dkn/2VErF53Jt5l1HHavboPuaRjGxTwG5ceWiiEhNbKr3m83s1Y2tV5+6yWbSsrT4Qd12+BlDnePLjVebmi23UTx1juXqsrzGtepnr2NWZxud2DQ69qvrWG8Meo2PZs8v6vlGx7nXvhWd80410zHjdRyYnBOaHa+6bd7Z2pRAsMcRg4f35yR0vk/m7i46x/KFAQn3D2j1VyvjSbc/mx1POu8ZOvs/jrGkU9dm6gFIGWiTH32ZLl9/I1bz+Od/vlZ+7xtfL5fL5fL31pbKH773dvnZz35qvebD996ueV2x8Lz8+Acb5WLhuVXGN/7gd2vKU5797Kfl62/Eyj958uPyT578uHz9jVj5R1+mrbL+8od/Yf1t6vobMUedn/3sp+UP33u7/L21Jcc2C/O3rW2Uxz/YcLz2J09+7Hjt4x9sWO1S/vKHf1H+xh/8brlYeO5oR6P4ff7nazV1rm6vvX9MY+S23588+bFnX1XHR21TLpfLf/roW+UP33u7Ydx1XqMTk3pj021/XrH16lO3cr/z7Q8atsOvGOoeX9Xjw6tNuuWaxtPrWHYrs9G4tm+nc8x6baMTm3rHfrV6Y1BnfDR7fvE6znX23aj/7X2pe65qNGa8joNWzwle49XkXKtib+9ftQ/1mupzuM65o5XxpNufzYwnnfcMnf0fx1jSqavueylQjal9ODa5g31JrScktbEmsUtxEal8ixebiEuot3LfT2RwSCKv1F4ZUN8OqW+GYxNxKRUL1nS36ukSO19sVr5Z6x+QQKDHKkP9Pzo8WvcKhA57nUO9fTIyNl6ziMbI2Li1jZJMLMvUW7PW42q6o3qt+qY1vbttvSab2ZPo8GjNt+IqfpOXpx3xi03EZeeLxgt61MTXMEZu/aa+YW3UV84YXna0KTo86jnlRec1fsWkug8jg0OVfq4qx6tP65XbqB1+xVD3+Krm1aZmy/WKp9ex3AqdY1ZnG53+djv2TXiNj3r78KqbznGus+9mjrFmxozOcaB7TmhmvJq0OTI4JLmDfWuqaTaTlsgrQxIZHLKmsmcz6a/udR3S6q9Gfa1Lpz/r7aNR/XTfM7z2fxxjSaeufr5v4Gxhah/aTk01EKmciKeuzlon01Kx4JiuJCISGYxaU8aUUrEgqY01yT3Zd7yRlooFCfT3WB94pq7OiohIevexlayFevtk6uqsNW0hOjxaNzHRFQiec/wdvjBQc69G9TaqvfN3ZhqUWznBq+SpVCzIztamNU3DrbzqN67o8Kg1PUn3zdckRi/2G3Utq1FftZufMan0R20/2+8f0OnTZvgRQ5Pjy+119drUbLk68VQfnOsdy61o5pit3ka3v6vLaYdmzi9+nAubOcaaHTOdPA6aaXO4f0DSu9tfTSd/LJPxtyQQOCfp3W2JTcQlm9mzzpsm545uHE8naSx51dXv9w2cLSRSaDv7vQp2Jt8wz78/I5HBIZm6+uLbMXuCVjnhfSCT8WlrPr39RDsyNv5VgpKWna1NSSaWZTI+3fTiDc20RW3z4OPPGr7ZRIdHrXui0rvbEurtc70ypMorFQstJYWmMbJfeWqmr9rJ75hUq14xUbdPTfkRw2av4LSrTW7cVqD0Opb9YnLMdiI2zbbHq26tngubOcaaHYudPA6aaXPklSFrgYlS8blEh0e/us9r2VoEZeS1cUeZ3TiWdOt3ksZSo7q2+30DpxtT+9Bx9mlsIiKl4nPH32oVIfubafWqQpHBIQkEK9/8qW8Eq0+I6mrPzdvzMhmfbmkJ9uo6VrehnkCwx3PbyOCQhHr7rLZEh19tWF42k66pSyDY4/kNmtvKTCYxcmuHTl+1WysxqVY7FtM1Zej0qQm/Y+h1fNWLoVebmilXJ546x3Ij9WKlc8zqbON3f/tJt26tngubPcZMxkw3HAembQ73D0juyf5X5+1K8q+uVKU21r76UuBVR5ndOpZ063cSxpJOXf1838DZQiKFjlLzrdVUjdzBfs38cPVtkVo6NX906Pp7GSOvjUs2syfp3e2aKzj2JV1LxYLknx3WnS6xurLg+WZQXcf07mOtb+FGxsZrfqVd1bm6LamNhOMbzHrlpdYTjvil1hM1dVGJWaN9msQoMjjk2K9aele3r9pJJybV9aw3Vah6bKbWEzWJrW6f6vIzhjrHV70YNmpTs+XqxFOk8bFspzOu7fu2cztmdbbxq791x6AJnbqZHOeN9qNz3rEzHTPdcByYtllNWU/vPnaM28grlfukQr19jg/lfp47OjGeTspY0qlrM/UARJjahw5TS3rfuv66iFQ+GF2beccxL1stKauWd1VL4OYO9h3fVI+MjcudW1+XQPBczVSgbCbtmD+t9uPGfn9GPeELA3Ln1psSOv+y5J89lUCgx/U+Jrf2iojcufWm4/HYRNxR5+jwq5JMLFtXpxqVl5RlK371lmy9NvOOLC3es6bFhPsHZOqtWUecTWJ08/a8o99ERKauzlr79uqrdtKJSSDYI7GJuFXPyfi0xCac9+Go182/P9NwOVzdPtWlO951Y+F1fNV7XaM2NVOubjxFGh/LdjrjWtE5ZnW28au/dcagKZ26mRznjfajc96pfo3JmOmG46CZNqtFJ5zn81FJrSdq+tfPc4fbeGqVV/1OylgS8R73zdQDEBF5qVwulztdCcAv83dmJPLKkOvJT2f+c+5gX+bvzDScF37jykW5eXve+rAlIsYrAKpvxPyYv6/KExHP9nndNGs6R1x9w9eNUx90Y6LbTq82+t2n3aBdbdKJZ6Nj2bQ8nWPW9Lju5v72qptf94L4eYydFO1oczePJa/6naSxpFPXszim0RquSOHUUMsm1/tGTOfEaHJPRvU0DROBYI+Eg/69aeqe9L3qa/rm0Y0JVLNtabWdfvdpN2hXm3Tu32t0LJuWZ9/Oa1vd47qb+9urbn4dG2fxw2Y72tzNY8mrfidpLOns4yyOabSGRAqnQqlYkGTikedUOC9cxgc6y69jGQCAdiORwon38P7cV7/PMSTXZt5t+/4qq4rxrRXgt3YdyzrHLMc1AMAU90gBAAAAgCGWPwcAAAAAQyRSAAAAAGCIRAoAAAAADJFIAQAAAIAhEinAQ6lYkGxmr+7z2cye9SN+3SyZWLZ+QNft73buq9udtPqe9XadRWexLzvdZrdzvx918npPAXBykEjh1Mod7PtWzsP7c3Wff3h/ruG+SsWC3Lr+um/1aVZqPSH5Z0/r/t1KfLz21e1OWn3dtLMfOj12W61PtxyDrbTR3pcnsT3N6PRx6Xbu96NOXu8prTor4wPoBiRSOLWWFu91ugoiUvml9MhgVELnT+ePi3ZLnM+6dvZDt/WxaX1O4jHYqI0nsT04PowP4PiQSKEj7NMaspk936dv5I8Ou2oazMjYeMP2n9RpHjpxbrZ97R4jXvuunq5ZPR1H/Vs9bq+f22ON2tZq/7ezH47rWNKNSbP1sR+DnTr+dMaVbhurzyk6+7b/u1192q79tNJPJ+18qztOGmnlPcekz0zrqlN2K2Omk+8bOJu+1ukK4HRLJpYltZ4Qkcq3ZLFLlyU2EZeH9+dk7u6iPLw/J+H+AQlfGJDJ+LT1uvTutiQTjyR/dCiBYI+MjI1bz+ePDiWZeCS5g33JHx1KqLdPJuNvSXR4VESc0yZuXLkoIiI3b89LZHCoYbn2Ou9sbUqpWJBw/4D2B5aH9+ckm9lzLffh/TmrDurvqauzkkwsS7h/QPLPnkqp+FyuzbxrbZPe3ZbUesKanhHq7ZPo8Ks19VW84tKM1HpCdr7YdI1XoziLiGQzaVla/KBu+7z62WuM6I41r3bU60t7W+zt/ejTzx19mNpISCDQI7mDfWt/6d3Hjseq9+Vn/7faD43GjVfZfvaBTkzq1Sd0/mXPsW/vU519mfSBzvGiO67qtVFnjDZ7PJm00+s808q53U0r49dkbKnx28y536tNpuXqjBOvfmvmPWdna1OSiWUJne+TUqlgJSGh3j65++CTput648pFmbu7KEuL96wyVYwCwR7tbVod50BblIE2+d7aUvnD994uP/vZT8vlcrn8oy/T5Z88+XG5XC6Xr78RKy/M37aes3v8gw3H637y5MflD997u/y9taVyuVwuFwvPy49/sFEuFp6Xy+Vy+fM/Xyt/4w9+11HGj75Ml6+/ETMqt16dP3zv7Zqy7Krbol7z+Z+vObb50ZfpmteoNpTL5fKfPvpW+cP33rbqZn9NsfC8/Jc//AtHGdW84uJWh0bl1YuFvV1ucVZlf+fbH9Rtn05/NBojOnVVY02nHTqxqW6raqPylz/8i/L1N2LlP330Lcdj1WOzHf3fSj94jZt6ZbejDxrFpFF9dM4J9njq7Mu0D5oZZ/Xa4/aY1xht9ngybafOeabZc3s1P8avbn/rnvtN497se4rXOPHqN9P3HFW+OmbL5XL5O9/+wHGOa7au19+IOWLw7Gc/rel3nW104m3yvgH4gal9aJudrU2JTcQl1FuZpx0ZHJJw/4D1/MjYuPWcXTKxLFNvzVrPhfsHJDYRl52tTRER6xso9S1VbCIupWLB88Zar3Lr1TnyypB4sbclMjgkI2PjsvPFZsPXxCYuO75pU1cAREQCgR6rrer/0eHRulcCWolLo/6bvDztaFdsIu7ZLntM6rVPtz/qjRG3utYba622w6uN9vbZ/6/+Xa8P/O7/ZvvBr3HjRx80ikkjzbTBa1+mfdDOcaaj2ePJtJ06sW723O7Gr/Hr1d/Nnvu92tRsuV6aOUc0ioG6mlf9Hp3NpFuuq+oXFYNQb1/lPXJr03gbP983AD8wtQ9tkTvYl1KxIJHBaN1tAsFzdV83f2em7utKxYKkNtYk92Tf8YbZaAlynXLVNtVT4SKDUWu6km5bwhcGWpqbHertk6mrs9b0hOjwqESHR2umOLQaF69YVL8pR4dHrakXrbxR6fSHW1wb1zXa4Ln2tEOXaR800/+t1K3VcdPpPvBz7CsmfdDpcdbK8WQ61nRi3ey5vRl+jl/Tc79Xm1p5T/Hi9zkifGFASsXnkjvYt5KpbCbt24IVbu+R1X3ktY2f7xuAX0ik0BbqRGx6Uleve/DxZ3VfO//+jEQGh2Tq6otvpdS9BK2Ua/8mrlV+vPmMjI1LdHhUspm0NXd9Mj5dd359M3HxilepWGjLh3ed/jAty62cdrejnUz7v1l+jJtO94GfY99Otw86Pc5aPZ5MxlqzsfbzmPejPm51M9WuNuny8xwR7q/cS6SSlHD/gASCPa735/lBJ+bV23Q63oAbpvahrdK728avCQR76r5OrcJjf9PUvfLTqNxGdS4Vn3u+pnqbbCbtyzfQarrGzdvzMhmflmRi2fe4NNp39bSO9O62BII9vrWtmfFRT72y/GpHJ1Z/0u3/Zvk9btrdB8fRBre66/RBs230q66tHk867Ww11n4f8+0evzrnfp02NVNutXrt8vMckd7dlsn4tHz06ecyd3dRbt6ebyphcatrdZvdYqazjd9jCGgViRTaJjI4JKn1hHVpXnfZ4pGx8Zpfj89m9iS9u22bcrBnlen2eyvV25WKhYblKmqutapz7mC/4fx9pfo1qfWERIdfbSl+9qVbS8WC5J8dOqYsrK4sWKt76cbFxMjYuKP/VLvs33a6xdmkfK/+0NVorOm0o1qot89Rj2br1Qqv/rdrth90xo1u2X73gW6dz3/1AdrPsd9MH+i0UXdcNdOfrRxPuu1s9Tzj5zHvR33smj33e7WpmXJ1x4nJ+NShVp01oVvX6jandx/XHP862/g9hoBWMbUPbXPz9rysrizIreuvW49NXZ2VEY9voNVSpXduvel4PDYRl+jwqLW0q4hYS93mDvYdbwCBYI+1zLoq06tctZ29zqHePrk2807DOdnqZuf592e0l/TVkc2kHfPoVV2UUrFgvTkHgj1acTExGZ+WpCxbsXBrl1uc1XLXOuV79YeuRmNNpx3Vrs28I0uL96wpQuH+AZl6a9b3+zsa8ep/u2b7QWfc6Jbtdx80qrPbse3n2G+mD3TaqDuu3NropZXjSbedrZ5n/Dzm/ahPdd1Mz/06bWqmXN1xYjI+dUSHR2V1ZUFWVxZqyqw3FU+3ruELA3Ln1psSOv+y5J89lUCgdtqgzjZ+jyGgVS+Vy+VypyuB083+WxQm1Ddsft671M5yVVv9vKm80T0Xx3U/hj1Za1f5fvVHo7HWTDuOazGKRrE5afcC+N0HnWbaBzptbOe4avZ4Os6x1s5zcKe0o00648SvfksmlqVULDh+t0n9RpeIeCZojep648pF6/fe8s+eiojULMyis0274w00gytSaLtmPzAEgj0SDvp/kmxXua20tVFdm3nuuOrgV/l+9Uej+DfTjk4voXuSEg7F7z7oNNM662zfznHV7PF0nH3TznNwp7SjTTrjxK9+S60nau6JCvX2SWRwSGuKo05dQ719ntvpbKPafdrGEE4m7pECAAA4w6oXcSgVC5Le3ZZkYtn3lUKB04QrUgAAAGfY3DcXJbWRkFvXX7emp6pl5Vu99ygyOOR55UxnG6AbcY8UAAAAABhiah8AAAAAGCKRAgAAAABDJFIAAAAAYIhECgAAAAAMkUgBAAAAgCESKRyrZGJZ8keHJ37/OuWUigXJZvY60k6dfXe6L/zQyTb4ue9uH08AAKAWiRTaKnew7/g7tZ6Q/LOnHauPX/vXKSd3sC8P7891pJ06++50XzTbrm5pg5/77vbxBAAAapFIoa2WFu91ugo4RRhPAACgW5BIoW3yR4cNpytlM3t1pyrZH89m9toyfavR/rtFdRw6Wd/cwX5NP+QO9muuEuWPDmse021fo35udjwxlgAAQDt8rdMVwOlkn4Z048pFERG5eXteRESymbQsLX4g4f4ByT97KqXic7k2865EBoes1z+8Pydzdxfl4f05CfcPSPjCgEzGp0VEJL27LcnEI8kfHUog2CMjY+PWc+r51HrC+jAf6u2T6PCr1jY6+0+tJ2Tni826+3CTTCzLztamlIoFCfcPyMjYuGec8keHkkw8spKUUG+fTMbfkujwqBWHqauzkkwsN6xvM/t206jdO1ubEgj2OOLw8P6chM73ydzdReux1ZUFCV8YkHD/gGd/Nepnv8aT1z4a1c+PsXSc4wkAABwfEim0Rbh/QK7NvCsP78/JR59+7nguf/RU7j74rgSCPSJS+eCdXFt2fBgXkcpj31yUUG+f9djO1qbsbG3KzT/8UEK9fZI72JfVRwuSlGWZjE9L7mBflhbvyc3b8xIZHPrqBv20BILntPefTCxL9ss9ax/ZzJ4k15YlFUhIbCLu2l71GlVf9RovgeA5iQwOydTVWQkEeyS1npDVlQUrkRKpfJjXqa/pvuu1oV67w/0DsrO1KfJVCLKZPQmd73MkgWpBhNjEZa3+qtfPfo+nevtoVL/o8GjLY+m4xxMAADg+TO3DsRsZG7c+eIqIRIdHXaeCjYyN13zwTSaWZeqtWevxcP+AxCbilQ/4IhIIVMpV5QeCPRIdHnVcIfDa/87Wpkxenrb2ERkcquzji826bdrZ2pTYRNzxmsgrQ+JFXZ1Q9YlNxKVULDjqE5u47FnfZvbt1oZG7Y4MDknuYF9KxYKIVK7GRF4ZksjgkKR3H1uPBYI9Vry9+qteP5vQGU/19tGofn6MJZ241usLP/oUAAC0D1ek0LXs3/yLiPUhfv7OTN3XhHr7ZOrqrDWNKzo8KtHhUceH3UbUPqqnZqmrE+rKi9tr7FeRREQig1FJrSca7q9ULEhqY01yT/YdCZRKVnTr28y+m2l3uH9A0rvbMjI2LundxzIZf0sCgXOS3t2W2ERcspk9iQxGtftLpLaf28FtH171a3UsmcTV7TWt9ikAAGgvEimcGOqemwcff9bww+zI2LhEh0clm0nLztamJBOVaWQ695iofZSKBe0PzOo1zZh/f8aa2qc+UKt7gNq97/8/e/8fGlea5/men5yp2ctGyMw0hLWpZdHK3YgboIQdRXMFuyi1KbgVBlkw2k5uGMSWM53yH22XsGYoUxZklpMyaVIeDNNy62bCbYWVldBaFJekY2hZbEYXLZesf1pMhWYhYyvoYMrq+KOVLced7sERwV5m5sb+EX6OTvw6cU78UEjy+wXGdsQ5z3me5zznxPnG8yNaKXfwnVFrgYli4ZVCYxOv53lFrWF94+9NVaTZ7Hz1ipv8tdOWvNRrvX0AAMDpxtA+nCk+f5+SezuutguNTej23SXNROYUj7mfX+Lz9ymdSla8ltzbkc/f5zgErTpfxcIrx+OYFeTsQVSrK8p5PXar5R4cGlb2RUbJvR2rx8T0VCWebih3dKjQ2LsVabo5X73iJn/ttCW39VpPJ84pAADoHgIpdI35Zt0sC+12uJqT8ckpxWPRioAjndqveOi0L3FdLOSVe3noafjY+OSUEpsxK7/Zg4wSmzHHXggzr8a+j30ekJv6yR0dtvQ7Sa0cu9VymzlAyb3nFcPVgu+U50kF+gcqggM358utXrSndtuS23qt1qlzCgAAuoehfegan79P4emItWx1s+We3TBp3LvzYcXr4emI1UOSTiUr5pIE+gd0Y/5jT8eIK6o7N9+3ytFsueqZyJzW15atfcwxneYHmaXETf2Ypc+zBxlPQ+FaOXY75TaLTtjn8ITGJpTYrF2Fzs35cqsX7andtuSlXqv36cQ5BQAA3fNWqVQq9ToTgFemd6DRfBIvc1KcjiHpVM7v6aZulLvZ+eo1p/x1oi2ZdKQ3rz0BAHBeEUgBAAAAgEfMkQIAAAAAjwikAAAAAMAjAikAAAAA8IhACgAAAAA8IpACAAAAAI8IpAAAAADAIwIpAAAAAPCIQAoAAAAAPCKQAgAAAACPCKQAAAAAwCMCKQAAAADwiEAKAAAAADwikAIAAAAAjwikAAAAAMAjAikAAAAA8IhACgAAAAA8IpACAAAAAI9+0OsMACfl1rXLkqTbd5cUHBmVJMVjUUnS+HtTCvQPqFjIS5J8/r5eZ7cl1eUBAABAdxBIoWvSqX09frgoSfri629dv3eSEpsxSVJwJCSf/4Lu3HxfkrR4f0WDQ8M9y1cnykMgBQAA0D0M7QNe8/n7FOgfkM/fJ5/vbPZIAQAA4GTQI4VTo1jIa3d7S+lUUpLk81/Q4NCwxienrKF26dS+fP4+DQ4NK7m3o+xBRqGxibq9R4nNmNKppAL9AxqfnHKVh9nrC9axDS/HzB0dKvfy+5rXzVDCavWG4tV7zUseqmUPMioW8tb+XsuTeBpT7uhQPv8FBfrfVvjKVet8mLQDF9+28lp9PHu9tJIHAACA04hA6g1nHmIDFwcUGpvo6dyg7EHGCiKq83dj/mNJ0uOHiwr0Dyhw8W2lU/uSygFTeDqimcictV88FrWGuSm1r93tLVd5MMMN7fOoWjpmlUbDF+sNxav3mts8VNvd3tL62rJVJi9p2YdfVp6T51r8+Yp8/j7tbm9pd3tL45NTVhD6+OGiNdfMlHv32ZYSmzGFxiZ0Y/7jlssDAABwWjC07w22vras1ZUHSmzGtL62rHt3PlD2INOVYz1+uFjxJ74RrdkmODKq8HREi/dX9MXX31oP1Mm9HevBXCr3bhQLec1eX1BobEKSagIl8//wdKQirVY1O2Y6ta/EZkyB/gE9+vIbK2gx/+8EN+W2S6f2rSBq9vpCRa+Ym7TMvuOTU/ri6291/9FXGhwaft1LtWGdM3MsqbI3yv56+rv9iu1bKQ8AAMBpQiD1hjI9CXZmaF03pFP7FX8aBWwzkTlreJd9OF719uHpSEUvSLGQt7ZJp/atwCt85aq1fbucjlksvJIkBS6+LZ+/zwoYysHCq47Vo1Me7LIvMlpd+UxSOYiqN7TRKa3sQUa5o0PrnEiqGCJ5HBiFrHLmjg6t163tUsmKdKuHOLotDwAAwGnD0L43VO7lYd3Xk3s71kNtJ5keGiP7onYYX/Ygo8RmTMm9nabpmTlM9qGI9l6r4+2O3x8cGm7rId3pmCb4yx5kXgeLSWvbTq6e57bcphcv0D9g9fZ4Scuepv19+zwo815wZFTp1L6Se8+t12cic0psxpR9kbHO5+DQcE1duC0PAADAaUMghRPRaLEFo1jIW3NrwtMRBUdCCo6MWr/95EWjeV6NgsdOCPQPaCYyp3gsas0r8vn7agLIZkwvULuyBxn5/H3KHR0qHot6Do4DF9+2/m0fqldPcCRU7gUsvlL2IGOd6+DIqIqFvFXvwXec2wAAAMBZwtC+N9T4e/VXsXO7ul2nmbk1Unk4XnBktOVhhvaV30wa9uF+3WJWCFy8v6LF+yt69OU3rlehMwFUcu95R/JyY/5jK4irN4yzmUD/gNV7ZN/X/Nvey2UCpOTec+WODjV4qVzmwUvlHsDsi0zNPgAAAGcdPVJvKPPAv/5k2RqO1csV0+wBx9Kn89Zqbj5/X0sBUHg6Yi2iYVb+azUtt0wwuP5k2erBGbw07Lisd6B/QLmjQyuf7ZTZziwdb+ohHosqODLqaZhh+EpE62vLisei1vA8U4/2OWdmyJ4JBk1Zzd/2pc4BAADOCwKpN9jg0LAW76/0OhuSysPgZq8vWL9ZJJV7VYqFvJJ7O56XZQ9fuarsi4y1sMVMZE65l4fKvsh0ZYn33NGh9ftI9nlY6dS+si8yDYf43Zj/WPGNqLXf7PUFFQt5pVPJjuRzJjJn1cPqygNP59v0Tu5ub1llCo1NKDwdqQmKgiOj2n193swCFOZvsx8AAMB58lapVCr1OhPAWff44aLSqf2K359K7u1odeWBpMa/IwUAAICziTlSQAeY30syvUjFQl65o+8lqaOr9gEAAOB0oEcK6IB4LKrEZqzm9UD/gG7Mf8z8IAAAgHOGQArokOxBpuI3sMwS7gAAADh/CKQAAAAAwCPmSAEAAACARwRSAAAAAOARgRQAAAAAeEQgBQAAAAAeEUgBAAAAgEcEUgAAAADgEYEUAAAAAHhEIAUAAAAAHhFIAQAAAIBHBFIAAAAA4BGBFAAAAAB4RCAFAAAAAB4RSAEAAACARwRSQJViIa90at/zftmDjO7d+VC3rl3W6sqDjuUnHosqd3TY62qBR2/6eevW9VDPm17XXrR6f2uklbo/C+frLOTxtDorddfpawFvJgIpdE2xkNfqygPdunZZt65d1p2b7ysei1rv3bn5vrIHmV5ns0b2IKPHDxc97/f44aJCY+/q/qOvFJ6OdCw/ic2Yci+/r8njaeE1L6f53HdSvfPmRe7oUOtry7pz833dunZZ9+58qOTeTs128Vi06TZGcm9Hd26+r3t3Pqyp/2Ihr6V78yoW8h0pf7euh3rares3Sav3t0aa1X296/0snK9O5fGk7neNjtPJ47o9xlk4vybfnbwW8GYikELXrK58Jkm6fXdJ9x99pZnInAIXByRJPn+fgiMh6/9nXTq1r2IhXy5j/4AGh4a7erxuf8Pfzbyct3PfLetry/L5+3Rj/hM9+vIbhcbe1erKg4pvene3t7S7vaXZ6wv64utvNf7eVM02dvHYE92Y/0QzkY+U2IxVvJd4uqHQ2IR8/r62837S1wNOrzf9ej+p8jc6Tic/K07iGMBZQyCFrkmn9jU+OaXgyKgC/QMan5zS+OSU9b7932Z7+7/fhC5388Bp12y4Qe7o8ESGTbg5H63m5STO/Um1p+rjdOrc3L67pJnInIIjo/L5+zQTmdPg0LB2n21Z2ySexjQTmVNobEKSFJ6OKDwdqdjGLnd0qODIqEJjE0qnkhWvZ19kut5zVF1vbtp+K+fRpGPS71RbyB5kas5v9iBT84187ujQeu0ste1Wyledr3p5qb7eO6ET191JDT9r937nNp/Vx2l2f27lfHs9hpf2abYz16893XqvAafBD3qdAZxvxcKrhu89frio23eXFBwZtf4/e31B8VhUg0PDyr38XsXCK92Y/8TaxojHotY36j5/n8JXrloPgcm9HcVjT5Q7OpTP36fxySnNROYa5iMei2p3e0vFQl6DQ8MNP/Qbpbu7vWUNWbx17bIk6Yuvv5VU/pCJx55YH1iB/gHNRD6yHnyr60A6Hm5g0rCzD0Uwx6re3209JTZj2n221bCemp0Pp7x4Lbfbc5/c21FiM2Z9qAf6BxQae7fu+fWSplN7cVOWxfsrevxwUYNDwxq8NFyTn/W15bptq9Hrjfj8ffL5Llj5yh0dWvmoaCcvmg/nsQcx8dgThaevuspDs7bjdD1Unx83bd/LfcGU6/HDRQ1eGvbcvppdE7vbW1ZQa89f4OKAFu+vVJ7XS8MaHBr2nH9zbpu1OS/3Sjf3t1bLJ0npVFKrK581zEu9c13N633b6bpzSuvWtctavL9S0XNr3nfqjW12Tkxd17vftnq/M9dS4OKAisW8ld9A/4DuP/rK8Zpy81nRantudgw3baLROZ29vqDE05h8vj5lDzK2z/XnFa9Vt41m167ba8FrOwQIpNA14emI1teWJUnBkZCrIUPJvR3df/QLa9v1tWXFN6IVN/V4LKr0d/u6/+grBfoHlE7tW9uboU63f/q5Av0Dyh5ktP5kWXFF694MTVqLP1+x0opvRGu2a5ZuoH+gbvDj819QcGRUs9cX5PP3KbEZ0/ract2HXzcGh4Z1Y/6ThoFWvbLVqyfznimPKXfCF6volXA6H055aaXczc599iCj1ZUH1od4+RvKpHz+Cy2n6aa9uClLfCNqtaF6AhcHlHgaq/jgzh0dand7q6JtO8kdHSqd2tfs9YXy/1/PQai+roIjoZphe/XSMky7GBwaVmIzZj08NGtXjdrO+ORUw+uhVW7uC1JlEGXqyW0abq6JwaFh7W5vSZHjugtcHKh4uDbfnNsDU7f5N9y0OS/3ymb3N6PV8uWOvvdUvmpe79tW+epcd27SWn+ybL2fOzrU6soDJZ5uOB6r2Tlxut+20qbTqX2try1b91rpeAjdjfmPm9apm8+KVs+3m2O02ibSqX0rSEzu7Wh15YHGJ6cqXltfW644V26uXTfXQqvtEG82hvaha2Yicwpfuap47Inu3fnA+pbaSXj6asWHT2hsomaYwe72lsLTEevDMzgyan3QxGNRzX60YL03ODRcHuq0XX+oU720gu/UfmPmNV3DPJSaMoWnIyoW8iey0IJTPe1ub2nm6lzFe/WGhLk5H50qd7Nj+Xx9Vtrm79DYhOM3nM3SdHNe3ZTFBA+NjE9O1QyH2n22Vf4m3cX8IbNwiwnaWxXoH1Byb0e7z7aOHwA3yg8J8VhUxeIrZQ8yjteq27bTSW7bYTwWrRtEuUnDTbnMt/DHQwaTCr4zquDIqJJ7z63XynNJRl0fu5qbNtfqvbLe/a3d8tnz6qZ89c5bK/fXetedm7TsdWKGnbd7L3e639bT7PyZQMaexvjkVMWQ3Ha1er7daLVN2L/EMfco+xcIobGJmmvBzbXr5lpotR3izUaPFLrKmrPxeohCsZCv+5DjlrnpB0dCDd9bujfvKa3qXpLqb/S9pmtXLOSVeLqh7ItMxc2/UyujtVNP1R+MobEJa7hLOw/r3Sp3oH9As9cXrKE8obGJthZHcHte3ZTFqVes/H6f9bBm2n9y77nCV9zNSTIBQrtzmG7Mf1zxrXY8FrXa/+72lh59+U05kNqIWt9S16uzbradVsU3osoeZKyhRV64LZd5sE3u7Wh8ckrJveeaiXwkn++Ckns7Ck9HlE7t173uvOjE9eP2/mZ3UuWrl89W7q/V153btKr3G7w03LRunc6J0/22VeU8lb/YsA+h7OSiFb04351izpeba7dYzDe9Ftpph3izEUjhRIxPTmnw0rCW7s03HYvuxHyg1NvfvPfoy29cpe92JTGv6dotfTpvDQcxD5hmLHk3uamnYiHfkRXaTrLc45NT1kIJJjificy1NJnd7XntVFnKH+yfaSYyZw2dcTPEc31tWdkXtQGCeXCoDl6KhVcNg5nBoWFriIxZYOL23SXrocTn71Pg4tsNvzk+ibbTqsFL5Xky8Y2obt9d8pQ/L+UKvjNqTcgvFl4pNDbxev5M1BoGNf5ee4srdKLNtbpS4kmUr14+W7m/diotN3XldE6c7rftlGUmMmc92A8ODcvn72vpiwInJ32+O83Ntevm/HayHeLNwtA+nBjzTZrTAhRuNfqtHJ+/z/F3dNykVS9/raRrVhiyf/C6WXGok6sSOdVT9RCR5N5O+UG6zR6FVsvtlhnSZ1a1czNk1Cktp/PaybKUV98rf9NrvgFu9oFt5hgu3l+pu60Z62+XPci4GoZjX2DCy4NDN9tOO+0kNDZhzWNopU24Ldfg0LCyLzJK7u1YgbD5Zj/xdON1gPxuy+Xo9PXj5v5m1+3yNap7r/fXdtKqroNm27s9J50qgz29mcicvvj6Wy3eX/H8BYEbvTjfneb22m12LXSyHeLNQSCFrsgeZCoe8Mw3XINDw20/bAVHRpXYjFnfotuXXx2fnKr5VfV0ar/hzdEMO7QPE6g3HtprupJswzH2rXxW/96GmbPiNs166TYaktKsnuzvZQ8ySmzGPPfs1MuLm3K3yr78bbGQV+7lYdNhdU6anddOl2X8vSkr/WbBjumJKvfA7Vf8McJXIko8jVn5T+7taHd7q2lPl5kIb8+DmVxtH0rUqM460XZaafvN+Px9mv1owaoHT+fGZbnMXI/k3vOK+gu+U55XYoYAtqqTbc7t/e0ky9eo7r3eX9tJq7oOknvPHduvm3PidL9tVbMFK5px81nR7vl2+3nUTW6uXTfXQifbId4cDO1DV2RfZKxv043gyGhHhiXcvruk9bVl3bn5vvXa7PUFjfcPWN9I37vzYcU+4elI3YfLmchcRVqB/gHdmP+4Zpx0s3TrTcY1y8qa5WHNcrnZg4z14WjmrNiHiMx+tOA4Ttvn77OW1DV5qzd3plk9xRW13mt1mddGeWlW7lalU8mK+R3mfLXKzXntZFnGJ6d0784H8vkvOAY76dS+9SFvjm1nVsgan5xS7uWhlX+T32ZBmhn+Zmfmn/n8FxznMbppO24mp7fS9t0wQ6LMvDK3Q9y8XBNmkn71JPjEZqzteWydbHNu728nWb5G+ZTc37fbTWvw0rDu3flQgYtvK/fye/l8zkPm3JwTp/ttq0JjE1pfW674LDXn0E27dvtZ0c75rneMk+bm2nVzLXSyHeLN8VapVCr1OhM4n8wkXDO2u9Psv6lR79i5l4ctzxNwKlM30u3mJP1m9SR1dmx/t3Vjfk63zms9S/fmFXxntKMPHL2Ys9SpttPLBSq6WS5418nrsFFat65d1u27S1YQJcnzinROnO63Xpg5SvY5xea3rCR3S6C/aTp17Z7k5wHOPnqk0DWtLJnqhdMHlc/fp0F/52+C3Uq3mw+SzerprOlGnrt1XquZJdA7/RDUi/PYqWOepiCqk+WCd528Dpul1Y0hiibdTkhsxmrmRAX6BxQcGWU57gY6de2e1OcBzgfmSAHACSgW8orHnig4MnrqggcAp0v1wgfFQl7JvR3FY9GWVikF0B30SAFAlz1+uPj691hGdWP+k15nB3hjlVfPPP29jos/X1HiaUx3br5vDVkzy68zXwc4PZgjBQAAAAAeMbQPAAAAADwikAIAAAAAjwikAAAAAMAjAikAAAAA8IhACgAAAAA8IpACeqRYyCud2u91NgDP4rGockeHvc4GXkun9q0lshs5jeesF/fATh3zJPN+Gs8dZWxd9iBTt6zVdfAm1clZRiAF9Ej2IKPHDxe7kq5RLOR15+b7Fa91y0keq1daLWOvzkknylcvn4nNmHIvv+9pXrtdf706P620j8cPF5tufxrOWbVO3gPd1lunjukmnU61odN47jrtTSijVG6nS/fmFY89aVoHb0qdnHUEUsA5s7rywPq3z9+n4EhIgYsDXT/uSR6rV1otY6/OSSfKZ8/7adLtfPWq3Ke5fZxmp7HeTuu1g95J7u0oNDah5N4OvU3nBIEUTq16w1V6ORzOftx0ar/jN8FOlDd3dFiTr/HJqbbL6jYP1cdqNZ3TzGt99vKc1BtCkj3I1HxTnjs6tF6z561e3uvlq1Pn1e010CxfTu+5OUaz9BsNpatXt05p2P9tP14r7QOnq97cXDutMu212XDOdvLuhptrqdXPgOoyduKzpJX7Yac/w3a3txQcGVVwZFS7z7baSgunww96nQGcb/FYVInNmKTyN4bhK1cVno4od3SoeOyJdWML9A9oJvKRQmMT1r6PHy7q9t0lBUdGrdfMcIovvv5WUvnbncRmzLrpBfoHFBp7VzOROev9eOyJckeH8vn7ND45Zb3nZn+7xw8XtXh/RY8fLmpwaFiDl4ZdH8fUxe72loqFvAaHhms+9N2U16leg++MWkNNbl27LEm6fXepbrqJzZh2n201zO/jh4uavb6geCyqwaFh5V5+r2LhlW7Mf1KRTr06sh+rlXTctA2n89bsnDYru1O7rS5js7zah//04pzsbm/J5++rSSdwcUCL91es19bXljV4aViDQ8NW3nz+vrp5N8dKp5JaXfnMU/twU8Zm14BTnS7eX9HqygPrYcmk7/P3uT5Go/Qrz9VGxfVvT3smMleukyZtw+l+4qWNVR8/ndpv2K6rdfL+6Eaze6CbPJl06l2f9c5tJ4/ZLJ3q9lSvDbm5/zgpFvLlNnNpuKKcbs6l0/u3rl12df3YubleW7lv1Suj23Sc6rfV+2Ern4WN2kXu5aF17Saexlq+lnB6EEiha+KxqNLf7ev+o68U6B+wPuAlyee/oODIqGavL8jn71NiM6b1teW6DweNZA8yWl15YN3Iy99gJeXzX5BUvmnubm/p9k8/V6B/QNmDjNafLCuuqGYic033r1umjagWf76iQP/x8JFmx7HXhdk3ndpXfCPa0XodHBrWjflP6gZe9fY3+TV5SfhiVrAglT947z/6hXXO1teWy+W3feC44TWdZm3D6bw1O6duyu7Ubr3mtdfnZHBoWLvbW9LrJNKpfQUuDlQ8lJtvfsPTV2v2dcp77uh7T3lxW8ZmnPK1/mTZSj93dKjVlQdKPN3w9LDi5pyFxiYUj0VrHlTNe27ahlT/flLN7b0ysbmh2esLruu2G/dHJ27ugV7upW6uz04f0+39u1EbavcasAcYs9cXXJfBTRmlzlw/9Xi5bzUqo5t0mtVvq/fDTn0W7m5vKTQ2YQV48VhU6dS+54AMpwtD+9A1u9tbCk9HrIeE4MioBoeGJcm6kZgbU3g6omIh72lyrs/XZ6Vl/g6NTVg3pXgsqtmPFqzjDw4NKzwdKd9IXexfz/jkVM1DT7PjNKqL4Dut3Tyd6tXt/jNX5yr2D09HaoYZhKevVjyghMYmWpo87TWdZm3D6bw1O6duyu6lfjvRjrt5ToIjo8oeZGzDY5IKvlMeVpLce269Vp5f4q092svtJi9uy9gO+3kL9A9ofHKq4jrsFBPEmOCpXI/71kOS5K5t1LufVHPbxuxpBUdGy2V3qNtu3B+duLkHtnovbXR9dvOYrdy/270G4rFo3QCjWRnclFHq3vXj5b7VqIxu0mlWv63eDzvxWVgs5K35UfZ07PcQnE30SKErzM0qOBKq+36xkFfi6YayLzIVDwVexnwH+gc0e33BGhoTGpuwHmTM8Zfuzbe0fyPV38a6OY7Zpvob5OBIyBqe0ql6db9/5UNAaGzCGtLR7MGu25q1Dafz5qZNOJW9WMx7qt9OtONunpNA/4AGh4aV3NvR+OSUknvPNRP5SD7fBSX3dhSejrz+RrS19nQaymhXfX0OXhruyjwSE1SY4KlYyJe/8b+7ZG3jpm246d1x28bqlb3RXJdu3R8bcXMP9HIvddNeO33Mdu/f7V4D8Y2osgeZijbmpgxuymic1PXjtYydrN9e3Q+TeztWb1s1p+GTOP0IpNAV9p6nepY+nbeGq5gPDzOW3IvxyanXDzRJ7W5vWcNtzPj1R19+43iDara/23I6HcdLb1G79ep2/2Ihf2pv3G7ahtN5a3ZOncrutX470Y67fU6C74xaE6qLhVcKjU28nncTtYaxjL/X3Un6vWp3nbz2qoXGJqw5Ucm9HQX6Byoe4jp1j2s1HafV69zct6T274/Vx3OzjZt7qZs21Oljtqvda2DwUnkeXXwjas1hdFsGN+93s+ztltFLXpvVb6/uh6ZXszpIW19btt7D2cTQPnRVvW5rs0KV/cHA7SpB9bYz3w7fvrukmcic4rGo9bqbbvNG+7vl9jjV2xQLr1oqb6N69ZLfdCpZk57p0eklL23D6bw5tQk3ZXdTv+2043pl6dY5GRwaVvZFpmJYiflmNvF0Q7mjQ4XG3m3rGN0so5c6rb6m3F4nrZy34MioAv0DSu7tvK7b4zrsVNvwkk512dOpZJO5Vydzf7Rrdg9s9V7ai2O6uX9Xa+c6D41NVMzZ8lIGt2Vs9fqxa2elQqcyuuGmfntxPzSrAI6/N2Wt2Gf+hMbeZfW+M45ACl1jVigyQwPMcrDmmyOzjKiZ1FrNPKQY6dR+zY3dvmxwsZBX7uWhNTzBTOa039ir03Da3y03xzHj0U1dZA8yNWPP3ZTXqV4l1dRtvWEZ45NTFftnDzJKbMZOxdLBbtuG03lr1iaald2pflvJa6/PiRnPn9x7XtFjEnynPC8g0D/Q8CHOTd7dclNGt9dAo3xVX1PJvec1dejmGG7LPf7elBJPYzXfYrttG814Saf6/pLYjDk+EHb6/ri+tuz48OvmHugmT26vz04e0006zc5dsZBv+zr3+fs0+9GCkns7FcdvVgY3ZZTcXT92bq9XLxqV0Q039dvO/dDJ+tpywx9o3n1WXmSiXrrj701VLLeOs4ehfeia23eXtL62rDs337dem72+YC1Ham46Zjnf7EGmokv+xvzHWl15YA1jGRwa1uxHCxVjvdOpZMU49UD/gG7MfyxJ1jdb9+58WJGv8HTE+ibKaX+33BxnJjJXURfmOPayuCmvY732D5SXAn69DLA9b9X5jStq7d/KErzdYpambdY2nM5bszbRrOxO9dtKXk/DOTGTrKsnOic2nVcLq5f3VoeguCmj22ugUZ0OXhrWvTsfKnDxbeVefi+fr69mvoWbY7gtd2jsXcVjUat3yr6/m7bRjJc2Nj45paVP510vq93p++Pu9lbdBQLsx2t2D3STJ7fXZyeP6Sadeueuug114jofHBq2egbNEt3NyuCmjJK768fO7fXqVb0yuuG2flu9HzopFvINv3Dx+S4oPF1/RWIzF/Ek56Khs94qlUqlXmcC55v5FqzVIUrNJuE2GxNtvkltdDPu1LyNZsfpVHnt20mt16u5cZ/WuVJu8t8o727aRLOyt1u/rZapWb7OOrd177Xeb127rNt3l6yHQEmOK8ydhoVVusFruTpxf8weZLR0b76leTit5MmUU+rc9dmp+7fbY0mdv87dnMtG73u9fuxO27XUi/voaZ53jO4ikAIAnHnmQZDfZDl5ZqK+U48UTjeuH6A1DO0DAAAtOw3DggGgF1hsAgBw5gVHRhlaA7SI6wdoDUP7AAAAAMAjeqQAAAAAwCMCKQAAAADwiEAKAAAAADwikAIAAAAAjwikcCrFY1HrBxffJOnUvqtfOD+L9dPrPPf6+OetPMVCXunUfsfzU50u3KHeAODkEUih57IHmZrXEpsx69fVz6piIa87N9+vW75GHj9cdLX9aamfRmU8jee018c/b+XJHmT0+OFix/NTnW6ntXJdngXdrjcAQC0CKfTc6sqDXmehK3z+PgVHQgpcHOh1Vk68jOf1nOLsexOuSwDAySCQQk/ljg6bDgdKp/ZbHrJi3y+d2q97rEbD6bIHGdffWjc6zvjkVPcrscOyB5maeqpXF7mjQ2UPMjVl7OQ5rXduqocwVf/bbVsx6Zj0W02nnbrr1HHb2a/dNE6amzbRjL3Neq0Dt8MXTTomb/b96r0GADh7ftDrDOB8S2zGtPtsS7mjQ/n8fRqfnNJMZE5S5VCUW9cuS5Ju311ScGRUkpROJbW68pkGh4aVe/m9ioVXujH/ifW+JCX3dhSPPambvlQeKrd4f0WPHy5qcGhYg5eGK94v53Gj7uuPHy5qJjInn69P8dgT6yE50D+gmchHCo1NND3O44eLFWXKHR02Tcukl07t1y1TI051kdzbUWIzZj28B/oHFBp7t266u9tb8vn7auoxcHFAi/dXrNfW15Y1eGlYic2YVcZOnNPqerDvb283X3z9rbXN7PUFxWNR1+kWC/nyubo0bG3jNh2nNu217gaHhlvKv9GsPpu1Ny/Hjsei2t3eUrGQ1+DQsKsvCZpdn62k66ZNNGvv9jTc1sHu9pbisagCFwdULOatICjQP6D7j76qm8/Z6wtKPI3J5+tT9iCj8HTkdf6eV7xWe09q3Ma81pubcwAAaA2BFLomHosq/d2+bv/0cwX6B5RO7Su+EVXCF1N4OqLBoWHdmP+k4gHILnf0ve4/+oV8/j5J5YfP+EbUeiDd3d7S7vaWlX72IKP1J8uKK1rxoBDfiGrx5ysK9NcfyhMam1A8VrlPcm/Hek+SgiOjmr2+IJ+/T4nNmNbXlmuCn2bHkSSf/0LTtBKbG5q9vlC3zhpxqovQ2IRWVx5YD47lb8OT8vkv1E1rcGhYu9tb0uvDpVP7ClwcqHgYN9+oh6evKrEZq9i3nXPaquTejut07UHU7PUFT+m4adNe6q6V/HupTzftzc2xTblN+zblduLm+mwl3WayBxlP7d1NHaRT+1pfW9bi/RUNDg1LOh6+emP+44bpplP7VpCV3NvR6soDjU9OVby2vrZceb9q0sa81JvbeyQAoDUM7UPX7G5vaebqnBVYBEdGFZ6OaPfZlqv9xyenrAcbqRzU2IdIxWNRzX60YKU/ODRcTn97qyYdp+DGPFSa4EkqPwCFxibk8/dZ3+KavISnIyoW8jXDtZodR5KrtOzpBEdGNT451bTOnOrC5+uzjm3+Do1NNOztMD1Lx0Pekgq+M6rgyKiSe8+t18pzTZx7TLye01aFp6+6Tjcei9YNotyk06xNt1p3XvLvpT7dtDc3x97d3lJ4OlJR7uA7zufezfXZSrrNeG3vburABMEmiDJ1n04lm54fe5r2v82/q8+Hm/um23pze48EALSGHil0hXmYrH54Mb0j5sGk3fSX7s033dbpm+jy++UHLRM8FQv58re4d5cklXswEk83lH2RqXjoqZ6n0ew4btOqTmfw0rDjXIpmdRHoH9Ds9QVr2GFobMIKEhttPzg0rOTejsYnp5Tce66ZyEfy+S4oubej8HRE6dS+giOhls9fr8Q3osoeZKxz64XbNn2a6s5t23VT7uoe2OBIqKI3st4+TtdnK+m64bW9uzF4aVjFwitlDzJWMJVOJTu2YIU5H27aWLGYd1VvXu6RAIDWEEihK8zDRrGQb+sBpln6j778piPph8YmrDlRyb0dBfoHrIeZpU/nreFRJvgz83+8aiWtZg9rbupifHLqdbCYtOZ6zETmGs6rCL4zai2SUCy8Umhs4vV8m6g1NG38vbO3kMbgpfL8tfhGVLfvLnlqO27b9Gmqu060XXsvjNd9nNpkK+m65bW9uynPTGTOCkoGh4bl8/e1FJC7qTenNua23jp9jwQA1GJoH7rG5++rGfqS3NuRz9/XVm+UPX37cLx2BEdGFegfUHJvR8m9HYXG3pV0vAKf/UG01ZW23KZVLLyq2i/pashgs7owPW+37y5pJjKneKzxXJTBoWFlX2Re10X5m2/T25J4uqHc0aFVRyetnZXOQmMTFfNzvHLTpk9L3XWy7Zpy2lW303p15eb69JpuPfXK5aW9uy3/TGROX3z9rRbvr3gOxN1ye990U2+dvEcCAGoRSKFrxienlNiMVQxbSWzGKr4VPh4mc7xUsJf047FoxUNUOrXf8oPD+HtTSjyNVfQYVOcvd3TY8m8kuU3LrMRlr7NmD97N6sK+1HKxkFfu5aHjUEQzRyS597ximFHwnfJcn0D/QMPgrp1zWs0Et/XK1Cqfv0+zHy0oubfjea6ImzbdTt11UifbrplXYy93s7pzc322kq6bNuG1vbthVtHsNjdtzG29NTsH62vL/IgvALSBoX3ompnInOKK6s7N9yUdT3y3rxbl8/cpPB2xPsxnInOOq9NVpy9J9+58WPF6eDpSM3/AjdDYu4rHolbvlMmfWcZckrV8dPYg4/mhyk1apo6WPp33tFxxs7pIp5IV8ycC/QOOq41JxwsnVE+OT2w6ryDYzjmtdmP+Y62uPLCGow0ODWv2o4W2532YoVpm4Qm3w6XctOl26q6TOtl2ZyJzWl9btspt2o/TeXBzfbaSrps20Up7byY0NqH1tWWtry3XpNvJYYpu2pjbemt2DoqFfFtfdADAm+6tUqlU6nUmcL6ZD+pufZtrvnHu5pyLXmhlQQ6nuujWfLXTWhfd1O02fZ506/ps1iY62d7N/LaZyJyVpvmNLkltB2mN8i91po01Ogdn+Z4AAKcBgRQAAA5uXbtc8yPA0vHvNLX7O2gAgLOJOVIAADioXrShWMgrubejeCza8kqAAICzjx4pAAAc5I4OlXgaU3JvxxpyZ34su5X5mACA84FACgAAAAA8YmgfAAAAAHhEIAUAAAAAHhFIAQAAAIBHBFIAAAAA4BGBFAAAAAB4RCAFAAAAAB4RSAEAAACARwRSAAAAAOARgRQAAAAAeEQgBQAAAAAeEUgBAAAAgEcEUgAAAADgEYEUAAAAAHhEIAUAAAAAHv2g1xkAOiEei0qSxt+bUqB/oNfZOVVuXbssSbp9d0nBkdFeZ+fEdKNNFAt5SZLP39fr4gEAgB4jkELXpFP7evxwse57X3z9bUePldiMSZKCI6ETD6RyR4fKvfz+XAYpZ7lsnW4TxUJed26+L0lavL+iwaHhXhcRAAD0EEP7gDYlnsYaBoxn3Xkum1c+f58C/QPy+fvk89EjBQDAm44eKZyIej1Q2YOMNVTK3uORTu1LkgIX367pScgeZDz1BOSODpV4GlPu6FA+/wUF+t9W+MpVa2hWOrUvn79Pg0PDSqf2lU4lraFgxUJeu9tbSqeSkiSf/4IGh4Y1PjlVMbTL5LeTx8+9/L5uHZg6M/vUk9iMKZ1KKtA/oPHJqbrbtFM2t/u2sp+9PpJ7O8oeZBQam6gpayt5aNSu7HXq8/VZ50uSBi8Na3BoWKGxCUnS7PUF63j1znG9fQAAwPlEIPWGMw+rgYsDCo1NnOjcj2Ihb/V2mPk78VhUic2YfP4+Lf58RbeuXZbP36fbd5e0uvLAelgNT0c0E5lzTL/R0MLk3nMt/nxFPn+fHj9ctB7A19eWJR0PBcseZKx5NtX1dWP+YxULea2ufGblqXouUjvHT2xuKJ3aV2hsQjfmP7b2ffxwUcVCXjORubqBlKk/SVJqX7vbW3Xrpp2ymeM02reRZsc05Qv0Dyhw8W0r8ElsxmrOt5u0qjWr0ysz/09t/0XcCu5NGwqNTVhBUXV7LRbyWvp03nEfAABwPhFIvcHW15YrHrTjsahu313qytwP8yAulXufzINoeDqixGZM62vLujH/sZWf8JWrVq9BsZDX0r15DQ6Vv+nPHmSU2IwpcLFxj4spnySNT05p9vqCckeHWl15UN7/6Yb1YJ49yGh9bVmDQ8PlXonXwaTJn+kRSWzGFI9FldzbUbGwoNzLw4oHaNOrZvZv5/ihsQmlU/vWsXz+vtf/zltp1mPV3+vAw+S5WjtlGxwadty3UTDe7Jhmv9zRoXy+Ps1eX7DqYHd7qyKQcpuWXbM6/T/9n3/P+vejL79RsfBK6dS+4/wqe6+q230AAMD5wBypN9Tu9lZNb4UZLnWSTMCUOzq0egbMQ3LFdtMRLd5f0eL9Fes9p7xmDzJWb4p5ALcPdUt/t183/epA0t7zYw9ezBDDmavHD/e37y5Z+7d7fPsQteTeTnmf1z00jXoO06l966E+fOWqlW4jrZat2b5O3O4Xno5YAahUbpvV23jNQ7M6/b/8/v+tIgjOHmQ0PjnluNBGcGTU8z4AAOB8oEfqDZV7eVj39eTejvXw2kmNVunz+fs0E/lIqysPrCCg3vGDIyHr3+bh2emh3d6bYg86TE9B9b729A3T82Ueur3oxPHHJ6dez3fa1/jklJWP0Ni7TY9vP6YJ7DpVtlb39bKfmYNkL4e9TlvNQ7M6vTH/iVZXPlNyb0fJvR0F+p/oxvzHjr20rewDAADOPnqk0HPVD/nJveeO29sn+jcSuPi29W/7A7hbZv5Wcm9H4emIbt9d8rRke7vHl8q/f1Suj/LQNrMgQqO5N42G1FUHze2UrdV9263PTqXVrE6DI6N69OU3mr1eHvqXOzrU+pNlxzRb2QcAAJx9BFJvKPNAWfO6w5yjbkin9q3FEcwwtMTTDWtYnGH/v/m30zyUQP+A9b59CKD5d7OFAOxzX8JXrio4Mtp02KM9YGr3+CYNM0Qs8bRcR07nx94DYo5jH+7XibK1sm87+3U6Lac6zR0dWkH9+OSUtbCGU89nK/sAAIDzgaF9b6hA/4AW769o/cmy9dDnZiW8VtkXm5DKQ/2Khby1IIM5dvZFRunUvtbXlq2HUqn80Ovz96lYyFuLJzQb4ha+EtH62rK1CIFUfsD1+fsc5w5JlUHJ0qfz1ipyJg/1trt35wMFLg4o+M6oZiJzbR3fMAskmOCxWQBmX7zDrGLnlGevZfu9/3bE1b6t1qcb7abVqE5zL7+3VuULjoweL0HvELC3sg8AADgfCKTeYINDw1q8v9Kz45ueJ5+/z1ocYebqnJbuzVf0VEnloXKrKw8q8m72acT0NOxub1nBYmhsQuHpSNP5Kz5/edU4++8DmWXBk3s71jA6s108FlWxkFdOhwpcnGr7+PYymLTNqoVOwleuWsFo9iCjmcicci8PlX2RqclzK2UzC0A027fV+nSj3bQa1Wng4tsKjU0oubdjLUIRHBmtWHSjWiv7AACA8+GtUqlU6nUmgEbsv1+UOzpU7uVh02XPz5ule/NWUOS2JwvOqFMAANAueqRwZrxJwZMRj0Ur5uCgfdQpAADoBAIp4BSKx6IVQxvD0xFPw99QizoFAACdRCAFnEKBi8ery4XGJug56QDqFAAAdBJzpAAAAADAI35HCgAAAAA8IpACAAAAAI8IpAAAAADAIwIpAAAAAPCIQAoAAAAAPCKQAgAAAACPCKQAAAAAwCMCKQAAAADwiEAKAAAAADwikAIAAAAAjwikAAAAAMAjAikAAAAA8IhACgAAAAA8IpDCuRSPRZU7Oux1NrqqWMgrndp/4/Nw1p2ltppO7atYyJ+b8lRrtT2f5TLjdHJzrUm0PaDXCKTQNenUvm5du1zz5/HDRRULed25+b6yB5m2j1MvjcRmTLmX3/e6Clritm6yBxk9frjY07yeRB460UY6qZNtV+pdW22lHI8fLjbd/ixfe27a83m733hhL3unr4PzrFvXmvTmtD3gtCKQQtd98fW3FX9u312Sz9+n4EhIgYsDbae/uvKg10XsqE7WzXlw2s7veTk/56UcJ+20tcdelZ324x51BZxfBFLomfHJqYr/24fUpFP7roYr5I4OT+WwhuqyeB0uVF033crXaaw7u3bPb7vla1Rf3To/9Y5fb3hP9iDj+tttp3N+UuU4Se1ee07ctMdWj9nNfHfiuPXK3uweXi+tem261SGV3U5L8nat1auDk75nADhZP+h1BvDmevxwUbfvLik4Mmr9f/H+ih4/XNTg0LAGLw1rJjKn5N6OEpsx68Ms0D+g0Ni7Co1NWMNwbl27LEkV6Rnra8saHBqu+SBr9LpUHnee2IxJKn+bGL5yVeHpiKTyUIrdZ1vKHR3K5+/T+OSUZiJzNWWbvb6geCyqwaFh5V5+r2LhlW7Mf2Llr1G5ZiJzNXVj8rS7vaViId8w3ybdeOxJ3fw1quNm+3nNg5u6zB0dKh57ouxBRrmjQwX6BzQT+UihsQlJlcOsqs9vs7zubm8pHosqcHFAxWLeepgJ9A/o/qOvPJ3HevXV6Py0Uk4nic2NinNkz9dMZK7ctpqk73TO7eXwks/HDxeVTu03rDcvbbLZtVDNTXmbXXuttGen9ihJ6VRSqyufOR6z2bXpNt9urzE37dzNcRuVvd49vFla9a4dk/4XX39b1f6b571ZWm7bVieuNafrrTqvbq+3Xl5rAFwoAV3ym++SpZs/Cjd8/+aPwqXffJes+P/y0t3Sy7/7W+u1v3nx1xXbFfKvSr/+q19Z/290DPs+3/75RulnP/mg4v2Xf/e3pZs/Cpf+5sVf1+z7Zxurpc9/9mMrH7/5LmltV++9z3/249K3f75Rc/zlpbulQv6V9dqfPvmj0uc/+7GrclXXTaPjVpf9+V8+rdjub178denzn/249Gcbqw3r2M1+XvLgti4L+Vel53/51Kqjb/98o/STP/yDpm2oWV7NPvZz+yd//FnpT/74s6ZlaXQeq+vLzflxW87qtKrLWl0nv/6rX5V+8od/YKXnJv16Zag+tpvzUZ1WvXqrLk+z89XsWqjmtryNrr1mbcCpPTvdb/7kjz9zPKbba7NZvqu1e79ye9x6ZW90D3dKq157r5e227w7peWlbXXiWrPXQbN7htfr1ukeZdLt9LUGoDmG9qHrqhebiMeiDbcdn5xSoP94HLnP11f+23/8d2hsouk3tNVp5o4OK4Zn7D7bKn9bODRcs/3u9pbC0xErH8GRUWu73e0tzVydq3gvPB3R7rOtmnTC01etfEtSaGzCyoPXctXLU/Cd2m3jsahmP1qwthscGi7nb/s4f9V17HY/t3lwW5fm21JTB+HpiIqFfNNhNM3yar7dtZ/b8ckppVPJiny5PY/16uskymnajFT+FtlIp/YVGpuoaDvN0ndTBrf5tKcVHBnV+ORU3Xpze768Xgtu8ul07Tmds2bt2Yk9T/WO6eYac5Pvap24X7Vy3EY6lZaXa7QRL22rU9ea1LnrrdfXGoDmGNqHrqseruHE579Q8f9A/4Bmry9YwyRCYxMVH2zu0ix/YO1ub2n2+oIkKbn3XOErkZptswcZFQt5BUdCDu9VfuiExia0uvLAeoB3w0u5zHGrh3wER0LWcB77dkv35j3VsZv93ObBbV1K5bkMiacbyr7IVDxAOC356yavg5eGVSy8UvYgYz1QplNJa6K31/NYXV8nUc7jY5cfdMwDXbGQ1+72lm7fXfKUfrMyeMlndVqDl4Ybzhtyc768XuPt1Gd1vry053a4vTZbTbfb96uT1qm8e2lbnbrWyml15nrr9bUGoDkCKZx645NTrz/gktbcl5nInKfJu+UP4M80E5mzxqTXm/th70Vo9F6xkO/IB4/bctXrNavHbPfoy2885c/Nfm7z4LYuJWnp03kFR0Y1e/34G1Qz/6LdvM5E5qwHisGhYfn8fdYDUafPYzfKaWfmApr5goH+gYoHzHbTbzcdp5XI3LZJL9d4J8rbSntuR6vXptt0T+J+dZI6mXcvbeukrrVW0zrpaw1Acwztw5lgvi28fXdJM5E5x+GB9QRHRuXzX1Byb0fJvZ2aYTjV7MM7qvNhHyJmtvX5+1r6dtdLuarzVCy8qpteo7w3y4eb/dzkwU1dmtWs7A8RblfYc5PX5N6OZiJz+uLrb7V4f8Vact+eRifPYzfKaQRHRhXoH7Dabmjs3Y6m7zWd6nOeTiUd68xt23JzLXSqvEYr7blVrV6brZTDfsxOt/NuqHcOW817o7Tc3GdP4lrzklYvrzUA7hBI4dSzLyFbLOSVe3loDXk4Hrq1b73fyPh7U0qn9pXc23EcEx4cGVViM2alZV/2d3xyquK97EFGic1YS9/mOZWrmhnnbj+ufW6FVcbJqZpfujdlduJmP7d5cFOX1ectd3RY9/d56p1fN3k1q1w5lbdT57ET5Wxm/L0pJZ7GlE7ta/y94zx2Kn0v6VS3gcRmrOKBs15duzlfbq6FTpVXaq09e7nftFIPrTip+1U7ZbczgUqzOnCTdzdpebnPSt2/1ryk1ctrDYA7DO3DqZdOJSvmLQT6B3Rj/mNJr5f6nY5YS/POROasZX+rjU9O6d6dD+TzX3Bcevr23SWtry3rzs33rddmry9ovH+g/O2dotZ7bpek9VquajORuYo8mW2rx8ObfNy782HF6+HpiGOZ3eznNg+u6vJ1nZnzZpb+zR5kanqOqs+vm7yGxia0vras9bXlmvo1Q/86dR47Uc5mQmPvKh6LWt+Y2+unE+m7TcfU09Kn847Lxtu5OV9ur4VOldfky2t79nK/aaUeWnFS96t6ZW/FjfmPtbrywBrGNjg0rNmPFurey5rl3U1aXu6zUvevNbdp9fpaA+DOW6VSqdTrTADNdGqc/9K9eQXfGXX1EGD/7aF6+ZHUdp66NX/BfNPodS5Iq/s141SXnS5jPBZVsZDXTGTOqlvzmy2SKh4aOnUeu1nO08rrYgXN2tZZnMvTil5cY51u553Kr5v24ybvzdI6622Law04vQik8MbIHR3q3p0Pdf/RV2/Eg+6b6ta1y3V/mHl3e0u721tavL/S6ywCAIBzgDlSeCMUC3nFY09qhmvg/KmecF0s5JXc21E8FmVlKgAA0DH0SOHce/xwUenUvoIjo7ox/wlDGs653NGhEk9jSu7tWMOCzI9ZtjMXBQAAwI5ACgAAAAA8YmgfAAAAAHhEIAUAAAAAHhFIAQAAAIBHBFIAAAAA4BGBFAAAAAB4RCAFAAAAAB4RSAEAAACARwRSAAAAAOARgRQAAAAAeEQgBQAAAAAeEUgBAAAAgEcEUgAAAADgEYEUAAAAAHhEIAVJ0q1rl3Xr2mWlU/ue9ovHoorHosodHXY03UaKhbyKhbynPDTKR720AAAAADd+0OsMoNata5etf9+Y/1ihsYmK93e3t7S+tmz9/4uvv+1ZXhObMUlScCSkQP9AV49VLOR15+b7kqTF+ysaHBpuOQ+N0gIAAADcoEfqlKvXk9Op3p2zxufvU6B/QD5/n3y+vlOTFgAAAN489EidYj5/n5J7O5q9vmC9VizkldzbUaB/oO5QttzRoRJPY8odHcrnv6BA/9sKX7kqn78yWEhsxpROJRXoH9D45FTDPOSODpXce65i8ZV8vgsKjb3bUs9T4OLbWl9bVu7o0DqmvRcoHotKksbfm7LSr/eaqQuf/4Lj8dyUrzqtdGpfPn+fBoeGldzbUfYgo9DYRMPeqtzRoXIvv695PTgyWvNacm9HuaPvNT45VXMuAAAAcPYQSJ1Sgf4BBUdGtbu9peTejjW8L7m3I0kaHBquCaTSqX09frhYk1Zy77kWf75iPcDHY1FrOJxS+9rd3qqbh+xBRo8fLlbMI0o83dCN+U/qBgtOVlceKHuQqTjm7btLVjr1hufVe82Uz75vNbflq07r8cNFBfoHFLj4ttXrl9iMKTwd0UxkrvExqtQbarm+tlyek1V8VZMWAAAAzh6G9p1SuaNDqyfEPpTP/LteL4mZNzU+OaUvvv5W9x99ZQVciacb1nYmsAhPR/TF1982fLBff1J++DfbhacjKhbySmxuyKvBS8N69OU3Vp6k46Cw09yWr1G9Fwt5zV5fsILX6kAsndpXYjOmQP+AHn35jW7fXZIk6/91y/+6zMzFAgAAOB8IpE6x6l4o+7C+wUuVD+TZg4zVQ2UCB/uwtvR35QAsndq3epjCV66W/56O1Bw7e5CxepDMdibdVuZohcYmrHlJJk/dCKTcls9JeDqi8ckpa+hfsZA/7k2TVCy8Ktfvxbfl8/dZPWPlIOxV3TRv313SF19/W7NwCAAAAM4mhvadYj5/n0JjE0ru7Si5t2MFCKGxd2u2tQ+/s8/BMUPi7IFAve0Gh4argoXj9Mzqdnbp1L7n4X3Veer20uNO5XPe70LN/va8ml6l7EFG6dS+0qmktX23Vy4EAADA6UAgdcoFR0aV3Nup6GkZf2+qZpGDwMW3rX8XC/mGCxo0ej338rDhdvV6dOzH6wan34Ry4rZ87Qj0D2gmMqd4LGrNs/L5+6whfgAAADj/CKROudDYhNbXlq0eqcGh4fKKfdWBVP+AtZLf7vaWFfyY+T1mSJl9js7u9pbGJ6cqgjTDvt3g0HDFkLTsQcZzz0s6lbR6sEye6vVo5Y4OpZFRJfeet1RfbsvXLrMi4I35j2uOWw+r9gEAAJwvBFKnnJmDY+YlOc2xCV+JaH1tWfFY1Jp/lD3IyOfvq+hVCk9HlNiMWQGa2aY62DC9LqsrDxTof6LAxbeVPcioWMh7/hHgxGZMyb3n8vn6rCF29mXJTRBo8mSWIm8lAHJbvnaYelh/smwFRoOXhhsul86qfQAAAOcLgdQZEBwJ2QKpdxtuZwKT3e0tK1gJjU0oPB2peLgPX7mq7Ivy/J7sQUYzkTnlXh4q+yJTM6Qv0P+2EpsxazGLZr87VZv30fLiGEPDSjyNWb1Z4SuRiqDwxvzHim9ErTzNXl9QsZBXOpX03IPjtnytMisqmvSNdGpf2ReZukP8zPas2gcAAHA+vFUqlUq9zgRwljx+uKh0ar/it6ySeztaXXkgSZ576wAAAHD2sPw54JHpHTS9W8VCXrmj8pw1Vu0DAAB4M9AjBXgUj0WV2IzVvG4Wn2D4HgAAwPlHIAW0IHuQqfhB4eBIqOXf1QIAAMDZQyAFAAAAAB4xRwoAAAAAPCKQAgAAAACPCKQAAAAAwCMCKQAAAADwiEAKAAAAADwikAIAAAAAjwikAAAAAMAjAikAAAAA8IhACgAAAAA8IpACAAAAAI8IpAAAAADAIwIpAAAAAPCIQAoAAAAAPCKQAs6RYiGvdGq/4fvp1L6KhXyvs3mqZQ8yunfnQ926dlmrKw/qbhOPRZU7OuzocbuRphedaBu9LgO6g/MKAPURSKFrioW8Vlce6Na1y7p17bLu3Hxf8Vj0RPOQPchU5OfOzfcrXjtvsgcZPX642PD9xw8Xz3X5O+Hxw0WFxt7V/UdfKTwdqbtNYjOm3MvvG6bRSltrlmYnjtGs3O2m5bUMvXBa7wPdzk876Z+F8woAvUAgha5ZXflMknT77pLuP/pKM5E5BS4OnHAejnsUfP4+BUdCJ54HnB2mV2YmMqdA/4AGh4ZbSuck2hrtuTWntd4a9X6elfQB4E1EIIWuSaf2NT45peDIqAL9AxqfnNL45FTF+9LxcDT70JF6r3mVOzqs2d9+fHsezL+dhsV5yUu9YVLNht29Sc5T/TRqN9VtzXDTjpq1xUbH6PY11a3681rudrVzH/BaNjftvN69qvr9bqYPAGjND3qdAfRWcm9H2YOMAhcHFBqbkM/f19H0i4VXDd97/HBRs9cXlHgak8/Xp+xBxhpKldx7XvHaTGSuZv/EZky7z7aUOzqUz9+n8ckpazv7ELdb1y5LKveMPX64qNt3lxQcGa3IQzwW1eDQsHIvv1ex8Eo35j+xttnd3lI8FlXg4oCKxbz1QBLoH9D9R181LJv9OPY8ffH1t1bdJzZj1pCbQP+AQmPvWmVI7u0oHntSt3xGPBbV7vaWioW8BoeGGz6818tfOrXfMF03x4/HokpsxiSVv+UPX7mq8HREuaNDxWNPlD3IKHd0qED/gGYiHyk0NtHR+nFbR27bjDnP9jZj8lJPOpXU6spnDdtNdRndtKNmaTZrZ+1eU83ahptza+e2LTS7Bp3aWyvtoJX7gNf25LadO92rFu+vaHXlgdVWTPrmPt1O+vXK5VTHXs+r0/Xr5toGgDOhhDfWnz75o9LNH4WtPz/5wz8o/c2Lv+5Y+n+2sVr6yR/+QenXf/WrUiH/qub9mz8Kl/7kjz+z/v/rv/pV6eaPwqU/ffJHFa/95A//oG7an//sx6WXf/e3pVKpVPrNd8nS5z/7cenbP9+wtvnNd8nSzR+Fa475m++SFf9fXrpbkb8/ffJHpc9/9uOKNOz18id//FlFvuupPk51fv7mxV9XbFPIvyr9+q9+Zf3/+V8+rSjf37z469LnP/tx6c82VpvWQXWZq/O1vHTXsd7cHL/esU0dFfKvSs//8qlVp9/++UbNOWy3ftzWUSfaTKN6/JM//qxhu6kuo5t25CbNZu2snWvKTdtodm6r8+O2LThdg43OnalLr+2gUb01y0M1N+2pWTt3eu3mj8IV6b/8u7+tKVc76bspj6ljr+fV6fp1c20DwFnB0L431O72lna3typeKxbyNa+1YyYyp/CVq4rHnujenQ/qLjRh70Ex32bav9UMjU2oWMjXTJTe3d7SzNXyPBZJCo6MKjwd0e4z7/kPT1+t6IkLjU1YxzPfttrnyoxPTimdSrZVNz5f+XjmuD5/n0JjE9a3xPFYVLMfLVjlGxwaLpfPdn52t7cUno5U1EHwndGmxx6fnKrYZ3xyqqbemh2/3rFNHZlv5k3ZwtORuuewnfpxW0d2nWwzph4btZtqbtuRlzSd8mXf3/63+Xej89GsbXg9t263d7oGzblr1N68toNGmuWhWqfbU/08HZfZDI/u5D26ujyN6rhas/PqdP26ubYB4KxgaN8bKvey/nj55N6OZq8vdOw44emI9VATj0VVLORbSt8+DyB7kFGxkK/54A2NTVjDYMzDQLsGLw2rWHil7EHGeqhIp5JtT1QP9A9o9vqCHj9c1ODQsEJjE9bQSlO+pXvzDfc321QPqQqOhKyhOY34/BdqymifP9Hs+Mf1H6r7frGQV+LphrIvMhUPV16W1naqHzd5bJzn7reZerrVjtpR73w0axtez20n2oJTe/PaDjrlpNpTvfPRjZ8vaHZNV2t2Xp2u32bXNgCcJQRSOBHjk1MavDSspXvzFWP8W2EeRIuFfNc/fAeHhjUTmbMe1AaHhuXz9+n23aWO1ElobELpVNIKNGcic1aPwqMvv2lYvlZXk6un+mHepO10fEkN31v6dF7BkVHNXj/uJTBzMzpVP27zWF2mk2gzjY7frXbUTdVtw+u57URbsPd0NnrPbTvolF61p05e9/XSdVsWN+fV6fptdu8DgLOCoX1vqPH36n9gdfODzDyUOS1A4ZbP31czLCq5t2N949lJyb0dzUTm9MXX32rx/opu311q6eGp3qpZZljL7btLmonMWcMfff4+Jfd2XOXNzk3dVm+TTiVr6szN8eu9b1aFsz9guV0tzEv9eKkj+/Yn1WYa1Vcn2lE3ObUNr+e2nbbQqP7q8doOOqXV9uSlDqrPh5tydqOO7byc12bXb6P3AOCsIJB6QwX6B7R4f6XiG06nlby8yh5kKpbgLa/yVF4RqxMPreOTU0psxqyhJNmDjBKbsYpA8HgI1fGS0K0wK5h5rV/7Q0k6tV/zkGJfirpYyCv38tAayjM+OaV4LFrxgFKdhhkyaa8DN/MnqvdJbMYUGnu3pn6djh8cGa2of7O8cnWd544O6/5+Tbv147aOqsvUrM10Uyvt6KQ5tQ2359bwur2TRu1N8t4OOsVNe3LTzuvVlUmz+npO7j3vaPpu69gprUbn1en6dXpvfW3Z8UfFAeA0YWjfG2xwaFiL91e6knb2RUbra8sVrwVHRjs2lGkmMqe4orpz831Jx5Of7YGgz9+n8HTE+lBuNUgMjU1ofW25ojyB/gHdmP+44VCbG/Mfa3XlgTXcZXBoWLMfLVTM5UinkhXzmUya9rzeu/NhRbrh6Yg1L2omMqf1tWWrDsz+TvNFTD0tfTrvuFR0s+PfvrtUcWxJmr2+YKVl6twsi5w9yFQEEe3Wj9s6aqXNdGvSeyvt6CQ1axs+f5+rc2tPz8v2Thq2t/4Bz+2gU9y0Jzft3Oxb7141eGlY9+58qMDFt5V7+b18vsrhoO2kX72suVMdt3Jena5fp/eKhXxX5oEBQDe8VSqVSr3OBM4nMwnZzAfp1jEk92P7vTILZNjndZnfUJFU8WBfT7NJ583mWJhva7vxoO1mQnyz49t/C6kbeXAzB8VrHXW7zdTTbjs6ad1efKOdfEn121s3rxUnbtpTK/V569pl3b67ZAVRkhoG+Z08X+1e09V106heGr3Xq3mMANAKhvaha8y3+938UPT5+7qafnloU+WKUoH+AQVHRl3NRWj2MNIs7z5/X9ceDN08KDU7fqB/oK0Hrnbrp5U66nabqafddnTSTmMQZfLVKG/dvFacuGlP7V4jwZFRx57STp6vdq/p6rrx+h5BFICzhEAKcFA9kb1YyCu5t6N4LMoKU3CNdgQAwPnD0D7AQe7oUImnMSX3dqwhPOaHSrs5/wLnC+0IXj1+uKiZq3OnYv4cAKA+AikAAAAA8IihfQAAAADgEYEUAAAAAHhEIAUAAAAAHhFIAQAAAIBHBFIAAAAA4NEPep0BnH/FQl7Zg4ykxj+aGY9FJUnj702d2I+BmmWo3fwAZC/yd9rdunZZknT77pLjj4UCAACcRwRS6Lrd7S0rEPH5+/Toy29qtklsxiRJwZHQiQQqxUJed26+L0lavL9SEdzljg6Ve/l9RXBw0vkDAADA6cbQPnRdcm9HUjmIKhby1v97yefvU6B/QD5/n3y+yh6pxNOYHj9c7HUWAQAAcIrRI4Wuyh0dKnuQkc/fp/HJKSU2Y0ruPVdobMLVvrmX39e8bu8pyh0dKvE0ptzRoXz+Cwr0v63wlavWcL10at8aTphO7SudSlrD82avL0iSfP4LFemnU/sN8zQ4NKzd7S3lXh4qNDZRd5ii/Zj1tnXa314eSRq8NKzBoeG69VVvuGG919ykmTs6VHLvuYrFV/L5Lig09m5Nz1tiM6Z0KqlA/4DGJ6e60l4AAADOCgKpN1xyb0fZg4wCFwcUGptwNV/Ii91nW5Kk0NiEgiOh14HUjoqFBcdjxWNRazhdtS++/lZSOWCp13OU3HuuxZ+vyOfv0+OHixocGtb45JTW15YlHQ/PM/uaOT7FQl6rK59ZAYd9DpA9X7vb5TIlNmMKT0c0E5mrOP7jh4sK9A8ocPFtKyhLbMY0Pjml7IuMNV+sev9iIa+lT+etuVumjKGxibqBVL3hhtWvuUkze5DR44eLFdsknm7oxvwnVtBacT5S+1YdAAAAvKkY2vcGW19b1urKAyU2Y1pfW9a9Ox9YD/mdktx7LqncixQcGbWCJ6fhfenUvhKbMQX6B/Toy2+sQMb8355/SRqfnNIXX3+r+4++0uDQ8OsemA1ru+xBRutryxocGq7IQ7Xcy8OKYKI6z5KUfZHR7PUFKwhpFFDkjspp1du20f7Zg4x1/EdffqP7j77S7PWFtnp/3KS5/mRZxUJe4emIvvj6W4WnIyoW8kpsHtehyafZpjp4BAAAeNMQSL2hdre3aoKAYiHf0Z6G7EHG6t0JjoQkyXqAdxo+Vyy8kiQFLr4tn7/P6hUpByevatI2D/X2IWfp7yrTD09HtHh/RbfvLtUdjieVh+3NXD0OEG7fXarZPjwd0fjklDUs0L4iYbXqbRvtb+rCHrStry0re5DR+ORUWyviNUsze3DcQxa+crWiPk2+0ql9Kxgz24SnIy3nCQAA4DxgaN8bKvfysO7ryb2digf/dth7ncwKefb3Gg3vM4FL9iBjzWuSjheIkFTRc2RPw7xfHdyYQK5dZj6V/Zj2vDTbtt5rdjfmP9HqymdK7u0oubejQP8T3Zj/uGHw54ZTmva8V58jqdD9ZloAAIAASURBVDbgted7cGi44z2YAAAAZwU9UugaM6yvkUa9X4H+Ac1E5lQs5PX44aISmzH5/H0Vc5UCF9+2/t0okDmLgiOjevTlN5q9Xg4yc0eHWn+y7Gpf00PnJU17YBSejtT8Mb2CdY/XIBgHAAB4E9Aj9YYaf2+q7mIOnVqNLbm3Yz3Y33/0VcUKcOtry9rd3lJyb6fhEDGzOtyN+Y8lqaZHJtA/oED/gHJHh9rd3rLSMcGZm1UBmykW8h1ffMNJ7uhQxWLeWhxj8NKwlu7NN+31yR0dSiOjdQPXZmna67V6Jb/sQaZm5b7d7S2NT05VDPcDAAB4ExFIvaEC/QNavL+i9SfLx3Nk6qxA1yozJGxwaLjmYTw4Mqrd7S1rnlO9H7g1iySsP1m2gpnBS8MVS4aHr0S0vraseCxqDSM0S623OofHHljcu/OBAhcHFHyn9TlKXuRefm+tJBgcGbWWfm/0A8AmkFxfW1Zyb8dadt0e4LhJcyYyp3gsqtWVBwr0P1Hg4ttW/ZsVEsPTEWtRErPSY/WxAAAA3iQEUm+wwaFhLd5f6UragYsDCk9H6s7tCY1NKDxdDt6KxdoH8dzRofW7T/bemHRqX9kXGWuIn+k9M0HZcdqRlucU+fx9mr2+oHgsqmIhr5wOFbh4Mr+ZFLj4tkJjE1ZQJJWDH/sCGHY35j9WfCNq1dPs9YXXi1ckreDTTZrh6YgC/W8rsRmrCG7tvZPhK1eVfZGxjjUTmVPu5aGyLzIn2msHAABwWrxVKpVKvc4EYPf44aLSqX3r952k8lDB1ZUHko5/RwoAAADoFRabwKljek5MT0exkFfuyHmYGwAAAHCS6JHCqROPResuhGEWn2hnKXAAAACgEwikcCplDzIVv0MVHAm19cO0AAAAQCcRSAEAAACAR8yRAgAAAACPCKQAAAAAwCMCKQAAAADwiEAKAAAAADwikAIAAAAAjwikAAAAAMAjAimcC7vbW7p17bLSqf2Op51O7evWtctdzX+xkNedm+8re5BxvY9921b2r1dG+5+le/OKx6IqFvJdLXu3tVs3AAAA9fyg1xkA2lEs5BWPRbsSQJ0kn79PwZGQAhcHXO+zuvJA9x991fL+9Xzx9beSykFa9kVGu9tbKhbymr2+0Osqalmn6gYAAMCOHimcaYmnGyoW8rox/3Gvs+JK7uiw4Xvjk1Oe0qlOy8v+zQwODWt8ckrh6Yh2t7c6Wk570JtO7Ttu2ymt1E11Ps96sA4AADqLHimcaeErV+Xz9/U6G0psxrT7bEu5o0P5/H0an5zSTGTOen93e0vxWFSBiwMqFvNW8BDoH7B6lR4/XNTtu0sKjowqubejxGbMGo4W6B9QaOxdzUTmlD3I6PHDRUmyhhzevrtUsb8Rj0WV2IxJKvfMhK9cVXg64rpcPv+FmvpN7u0oHntSt6xuy7l4f0WPHy5qcGhYg5eGrf2d0naqk2bv16ubZufs8cNFzV5fUDwW1eDQsHIvv1ex8Eo35j+pSAcAALyZCKRwpp2GICoeiyr93b5u//RzBfoHlE7tK74RVcIXU3g6onRqX+try1q8v6LBoWFJ5WF5kur2pGUPMlpdeWA9+BcLeaVTSfn8FySVe4tuzH+ixw8XraF4Tvm6/+grK19e6it7kFF8I1rRm7O7vaXd7S2rrNmDjNafLCuuqIIjIdfljG9EtfjzFQX6B1ylHRqbcKyTZnXm9ZwZyb0d3X/0C6ve1teWy3m/v3KibQwAAJw+DO0D2rS7vaWZq3NWUBAcGS0PiXtWHhKXOzpUoH/ACi6k8lCzdCpZNz2fr/zQbh7eff4+hcYmPPeC7G5vKTwdqciXPQ/1VC82Ud1LE49FNfvRgpXm4NCwNfzPSznHJ6cqgqhmaTerE6911uycGeHpyh7P0NgEi1YAAABJ9EgBbckeZFQs5Gse2E0PSu7oUIOXhlUsvFL2IGMFGelUsuHiB4H+Ac1eX7CGvoXGJhQam/Dcm1TOV8hTeUwPVzq1r8cPFyuCHZPm0r35uvt6KWd1T1GztJvViZc6c3POqoM8AACAagRSQBtMwFAs5BsGOoND5TlAJkgYHBqWz9+n23eXGqY7Pjml0NiE0qmkNe9oJjLnetEEk69Whz4GR0Y1Pjml9bVla26TSfPRl980TNdrOavz65R2szpxW2duzhkAAEAzBFJAm3z+PqVTSYXGJqzXkns78vn7rJ6N5N6OZiJzHhd66LN6Vkxg4HX1ueTeTkW+vJiJzOnenQ+U2DyeN+Tz9ym5t9MwH62U015ep7Td1InbOnNzzgAAAJwwRwrn3vrasrXKXTvMEtjmj5krMz45pcRmzPrh2uxBRonNWMUDvNeFHuzLghcLeeVeHlYMhzseOrdvbVMtODJaka96S6Y7MSvZmSXmTVnjsWhFOunUvpJ7Oy2V085N2k510uz96mM1O2cAAABO6JHCuVcs5OsGGl5VB2PBkVHdvrukmcic4orqzs33JanuUtqhsQmtry1rfW3Zei3QP6Ab8x/XXQAinUpay5bbtzV8/j6FpyNWnuzHMm7fXdL62rKVL0mavb6gcQ89LjOROSX3nivxdEMzkTnrOPfufFixXXg6YvUEeSln9bGc0m5WJ83erz5Ws3MGAADg5K1SqVTqdSaAbjqpuTAmWKs+VjwWVbGQ10xkznovd3SoeOyJJDV82O9Uvu2/5dTJsuZeHlYER62W003abuvEa501OmcAAADNMLQP595JPST7/H11j5XYjNWsIBfoH1BwZNRxqF2n8h3oH+j4vB+fv68m0Gm1nG7SdlsnXuus0TkDAABohkAK6DKziIJRLOSV3NtpafGI0+xNKScAAIDE0D6g63JHh0o8jSm5t2MNJTPLi7e6ot5p9KaUEwAAQCKQAgAAAADPGNoHAAAAAB4RSAEAAACARwRSAAAAAOARgRQAAAAAeEQgBQAAAAAeEUgBJ6RYyCud2u91NiRJ8VjU04/kdlr2IKN7dz7UrWuXtbryoNfVAQAA4NkPep0BoB3Vv10U6B/QTOSjjv5uUTq1r8cPFyteGxwaVvCdUYWvXJUk3bvzgW7fXdLg0HDDdLIHGT1+uKgvvv72ROpmd3tLu9tbyh5kJJV/MDc4EtLs9QUlNmMKjoQU6B/oah6KhXzdunn8cFHjk1Maf29K//F/OdKdm+83rT8AAIDThEAKZ9r62rIGLw3rxvwnGhwaVuLphlZXHuj+o+GOBwkmAMoeZJR9kdHu9paKhbxmry+Ug5KL3Q1KvNZLcm9H45NTmrk6p8DFt8v5PsjI5+87sXyY4M1eN+nUvoqFvGYic5KkQP/Aqas/AACAZgikcKbdvrtU8f+ZyJzS3+1r99mW9aDeaYNDwxocGpbP36fVlQeavb6g8cmpttLMHR12LPAzPVGL91cqengC/QMd7alzy03dtFJ/6dS+giOj1r8DF9/ueg8bAACAQSCFc8fn75PPd+EEjnPB6t15/HBRt+8uWQ/2Unkekum1Ghwarhss7G5vKR6LKnBxQMVi3pq3FOgf0P1HX0mSkns7iseeKHd0KJ+/r9zL5BAkJp7GND455WmYXO7oUPHYE2UPMlZQVz1EMrm3o8RmzBoqWA7M3tVMZM7xPXvdmPJK0q1rlyWVe/rq1V+zcj9+uKjF+yt6/HCxHNxeGu5a8AwAAFCNQArnSu7oUOnUvmavL3T1ONmDjOIb0YY9KfFYVOnv9rX48xUF+geUTu0rvhGt2Cad2tf62nJFz5FZeOHG/MeSjnuXbv/0cwX6B5Q9yGj9ybLiitYNGnJHh8odHSoY+chTeXz+CwqOjGr2+oJ8/j4lNmNaX1u2AqnsQUarKw+sYKe8cEZSPv8Fx/eqjU9OKdA/0HSumNtyxzeiVh0DAACcJFbtw7lRLOS1uvJAM5G5rjxY37p22fqzdG/esWdod3tL4emIlY/gyKiC74xWbGN6fuw9R+OTU0qnktb/47GoZj9asNIZHBpWeDqi3e2tusc1wUu9IMaJ6fExPWzh6YiKhfzxQhW+Pms783dobELBkVHH91rlttwmMAMAADhp9Ejh3IjHohq8VH7g7gbTg2JW8Wv0AJ89yKhYyNfMRwqOhJTYjFn/H7w0rGLhlbIHGSuYSqeS1qILJp2le/Ou89jqQhLFQl6JpxvKvshUBFDFQl5Seaje7PUFaxhdaGxCobEJ+fx9ju+1wku5vQaMAAAAnUIghXNhfW1Z2ReZmsUnuiE4MqrxySmtry1b85js3M5NGhwqz+kxAYNZwMKUwaTz6MtvPAUl5aGESU89QkufzltD+0yAaOYwGeOTUwqNTSidSlpznWYic+VlzB3e86rVcgMAAJwkhvbhzFtfW5YkLd5fObEH75nInIqFVxU9TNWSezsV/y8WXtXdZiYypy++/laL91d0++5SRRl8/r6adJoJjb1rLXLhRjq1r9zRYUUQ1ejHes2wvdt3lzQTmbMWjmj2nletlBsAAOAkEUjhTDM9UeXekP2KP/Ztqn9Qt11mTlHi6UbdgMXM5zHvZQ8ydec1pVP7jsHf+OSU4rFoRWCTTu07BhnhK1cVuFhe0MG+nVmIo9rxsMJ9azuz6EV1Xk0+ioW8ci8PraF1Tu+1opVyAwAAnCSG9uHMSqf2reCkXqBk5jQVC3nXvTNelJf9fq7E0426762vLevOzfcllYfb3Zj/uGbeT2hsQutry1avmn1bM/RPku7d+bBiv/B0pOFvQpnhgasrn70OiI6DovHJqZohfz5/n7VMuTn+TOSjmh/vTaeSFT1wJp/N3quXv2bDDlspNwAAwEl6q1QqlXqdCaCbioX8qZxrE49FVSzkNROZs/Jnfs9JUkUgYnp5vPw2lEkv9/L7tlbQs3Oqy27Uc6vlBgAA6DaG9uHcO41BlCQlNmM1q9sF+gcUHBmtmaPk8/e1FEyY9DrFqS67Uc+tlhsAAKDbCKSAHqleUKFYyCu5t6N4LNrSancAAAA4OQztA3okd3SoxNOYkns71hwus7Q684AAAABONwIpAAAAAPCIoX0AAAAA4BGBFAAAAAB4RCAFAAAAAB4RSAEAAACARwRSAAAAAOARgRRwyhULeaVT+73OxrkXj0Vrfgj5JGUPMrp350PdunZZqysPel0dAACgiR/0OgNAO5J7O9rd3rICjdDYhMLTEQ0ODXfsGOnUvh4/XKx4bXBoWMF3RhW+clU+f19Xy5g9yOjxw0V98fW3XT2Ol/JL5d+8un13qSd5ssseZFyf793tLe1ubyl7kJFU/lHk4EhIs9cXlNiMKTgSUqB/oKv5LRbyunfnA92+u1SR78cPFzU+OaXx96b0H/+XI925+X7NNgAA4PQgkMKZVSzktbu9pdDYhGauzsnn61PiaUzrT5a1eH+l48czgUz2IKPsi4x2t7dULOQ1e32h11VxInoVyDWzuvJA9x991XS79bVlJfd2ND45pZmrcwpcfLt8Lg8yXQ+G7UzwFrh4HLClU/sqFvKaicxJkgL9AzXbAACA04WhfTizfP4+3b67pPHJKQ0ODSvQP6DZ6wvWw3G3DA4Na3xySuHpiHa3t1zvZx+el07td324nknfDA20D1ur99pJ5MX8u1PHzR0dukrL9ETdvrukmcicgiOjCvQPlIPw18HLSRqfnOrINtW6Vc8AAKAWPVI4V8yD40kMh/L5L1g9GbmjQ8VjT5Q9yCh3dKhA/4BmIh8pNDZhbf/44aJmry8oHotqcGhYuZffq1h4pRvznyg4MmptF49Frd4uE7TVk9iMaffZlnJHh/L5+8o9LbagwBwv8TQmn69P2YOMwtMRSVJy73nFa+0GE27ysnh/RY8fLmpwaFiDl4at95N7O4rHnjTcN7m3o8RmzAqOywHQuwqNTVhDDm9duyxJun13qaIurfw9jVkBt1tuzmmjvM1E5hzfe/xw0crr7vaW4rFoRTm++Prbim3sx3OqK6d6BgAAnUUghXPDPLiaYKGbsgcZxTeiVpDj819QcGRUs9cX5PP3KbEZ0/racsVDt8nj/Ue/sAKw9bVlxTei1lDEeCyq9Hf7Wvz5igL9A0qn9hXfiNYc32x3+6efV2yX8FWWP53at4a9Jfd2tLryQOOTUxWvra8tt/Ww7TYv8Y2oVS7D6il6vW/2IKP1J8uKK6qZyJyyBxmtrjywAopyT1pSPv8FDQ4N68b8J03nj5leq2DkI0/lanZOnfLm9F618ckpBfoHmpajWV051TMAAOg8hvbhzHv8cNFa6Wzw0rDG3/M+JMqNW9cuW3+W7s1X9AaY3gETIIWnIyoW8jVDDMPTlYtThMYmKrbZ3d5SeDpiPQQHR0YVfKe2h2V3e6s8z8e2XXg6ot1nlUMN7b1ZJgCwB3ehsYm6+WxW/lvXLlu9KF7yUv1wH49FNfvRgvX64NBwxZBJn6/Pql/zd2hsom6vUyMmeKkXxDjv53xOnfLWiXxXa1ZXTvUMAAA6jx4pnHlm5bjc0aF2n21p6dP5il6fTjG9BWYVO/vDarGQV+LphrIvMhUP28VC3nX62YPyvtW9WMGRkBKbsZrtqh/KQ2MTWl15YA1D88JNPuv1lnjJS3UgY/Zdujff8Jhm3psZqhYam1BobMLTuW21HTQ7p05560S+vdbVcXm9BYwAAKA1BFI4N8pzWOaU/m7f6tnphuDIqMYnp7S+tmwNkVv6dN4aBmYCBzPfxS2383fMdsVC/kRXm+t0Xsy+j778xnHf8ckphcYmlE4lrflEM5E5T4sxlIccJj31CLk5p05560S+vdYVAAA4OQztw7nU7YfNmcicioVXSmzGrNXR7A/c7ayWltzbqfh/sfCqbvnSqWTNfqY35CS1kxefv6+mvI22C41NWKvumWGFboXG3rUW8HDDyzl1ylu7+W6lrgAAwMkgkMKZlTs6tH5/Ryr3isRjUeVeHlb0PKyvLdf9Qdl2mPkziacbuvj6QdssPZ07OtTqyoOW0jVzXkyZsgeZukusj09OKbEZq9gusRlrqbejXe3kZXxyqnzObEFKOrVfETDYl/EuFvLKvTy0hq+Znhr7Uu916/XKVQUulhd0sKdt2lC16nQbnVOnvDm912o9N6srAABwchjahzMtvhGtWCgh0D+g23eXauYveZmr5FZ5ievner791FrS2uRhJvJRSz/0OhOZ0/rasu7cfN9K68b8xzVzY2Yic4oram1Xbynsk9JOXsw29+58WPF6eDpizRVLp5IVc8RMnZhjhacjVt3PRObqDuk0vzm2uvLZ64DoOCgan5yqGfLn8/e5OqdOeXN6r17+mg07dFNXAADg5LxVKpVKvc4E0I7yb+pcaBi0nIa5RN1iAsTTUL528mJ6bBrNE+vkOcwdHSr38vu2VtBzm7dutL1mdQUAAE4GgRQAAAAAeMQcKQAAAADwiEAKAAAAADwikAIAAAAAjwikAAAAAMAjAikAAAAA8IhACgAAAAA8IpACAAAAAI8IpAAAAADAIwIpAG+8eCyq3NFhT46dPcjo3p0PdevaZa2uPOh1VQAAAJcIpHBuZA8yunXtsuKxaEfTLRbyWl15oFvXLuvWtcu6c/P9jh/jpGUPMg3fu3fnQyU2Y3Xf293e0p2b759IPjppd3tLS/fmK87h6soDFQt5SVJiM6bcy++7no9iIa87N9+vKPfjh4sKjb2r+4++Ung6UnebdlWn1Y1jAADwpiGQwrlQLOS1/mRZPn9fx9NeXflMknT77pLuP/pKM5E5BS4O9LrIbZapcc9HaOxd7T7bqvve7vaWxienTiQfnbK+tqx4LKrgO6PWOZy9vqBA/9tdaS9OfP4+BUdCVvtJp/ZVLOTLbap/QINDwzXbdEJ1PXfjGAAAvGkIpHAumAflwaHhjqedTu1rfHJKwZFRBfoHND45VRFMmIdhu2Ihr3Rqv2GaboaRtTvUzH78dGrfSi93dOiY9vh7U8odHdb0VpjXQmMTHanXZvlopWzVdre3tLu9pdt3lzQTmbPOYWhsQjORuY6Uwys3gWgng9VG9dzKMarr3amNAwBw3v2g1xkA2rW7vaXsi4wW76/o8cPFrhyjWHjV8L3HDxd1++6SgiOj1mvZg4weP1zUF19/a71269plLd5f0erKA+vBdnxySjOROatnxM02Unko2u6zLeWODuXz91nbVOfL1Mng0LAGLw0rNDZh1dGta5clqSbvpmckubdTEZgm955b7x2/tqN47IljPuKxqDVU0OfvU/jKVQXfGXXMR7Py1StbvcAo8TSm8ckpTwF27uhQ8dgTZQ8yyh0dKtA/oJnIRxUBZHJvR4nNmBVsloOzdzUTmXN8z95eyseJVtSBaS/VbapeHYanI03za9phvXquPobbNjV7fUHxWFSDQ8PKvfxexcIr3Zj/pKINAQDwJiCQwpmWPcgo8TSm2z/9vGvHCE9HtL62LEkKjoTaGg62/mRZt3/6uQL9A8odHWp15YESTzcqHlibbROPRZX+bt/aJp3aV3wjqoQvZj1cG/GNqBZ/vqJA//EQrhvzn9QEedVCYxPafbZVka/dZ1sKjb17/H/T2/M6H9mDjNafLCuuaE1e7z/6ysqrz9+nwaHhhvlwW756ZbMzPTHByEeezpHPf0HBkVHNXl+Qz9+nxGZM62vLViCVPchodeWBFYSUex+T8vkvOL5XbXxySoH+gabnolEdusmvUz23UudSOYi8/+gXVh7W15bL5+L+iqd6BgDgrGNoH84sMy8qfCXS8GG6E2Yicwpfuap47Inu3fmgrYUmwtPHeTXDBHe3tzxts7u9pZmrc9Y2wZFRhacjdec1mYd1r8Yny8P7zNAt09sx/t7xcLB4LKrZjxas9AeHhsv5qMqrvTzBkebDL92Wr1nZTPBSL4hxYnpjTKBgFoAwPUw+X5+1nfk7NDah4Mio43utalaHzfLr9hhu21R4+mpFIGd6vgAAeNPQI4UzK/F0Q4OXhjs6n6SR8HTEChLisaiKhbxmry94Tqf6oX7w0nDN/CqnbbIHGRUL+ZoH89DYhDUc0B5ceA0ijvcrBwDJvR0FR0atYX4mbZOPpXvzDdM4zmvI9XG9lK9Z2VrtOSwW8ko83VD2RaYiIDHnINA/oNnrC9awwtDYhEJjE/L5+xzfa4WbOmyW307WOQAAOEYghTPLzBmp7tFJp/aV2Iw5DmVq1fjklAYvDWvp3nzNvKVWuJm7Y9/G/LtYyHd9xbngyKgST8t1nNx7rvCV4yFeJh+PvvymYT7MNl7y2enylYepJT31CC19Om8NlTMBhJlfZIxPTik0NqF0KmkF1zOROWshkkbveeWmDt3k9yTrHACANwVD+3BmffH1tzV/zJCkbgRRhlky2mkBikaryFXvk9zb8byNz9+ndCpZs43pEemU8ckpFQuvtLtdXoCgerU+n7+vbv6rudmmW+ULjb2r3e0t170zZgVAe1DS6FyaXjuzIqB9yKfTe61oVIde8ntSdQ4AwJuCQArn3vracsur+WUPMhVLPJuV1uzD3AL9AxUPuunUfsMH3+res+Te85qeimbbjE9OKbEZqxjul9iMue7xMD0QplxOQUZobMJauKC6t2J8ckrxWLTiwb267MGR0Yq82pfibpSPdstnF75yVYGL5QUd7Pmyz/9yqhuz2Ec1+5LrxUJeuZeH1lBDp/da4aUO6+XXzfnuZJ0DAPCmYGgfzr1iIe+6R6Ja9kXGWrHPCI6Uf9jVuDH/sVZXHljDqQaHhjX70ULd+UODl4Z1786HClx8W7mX38vn66tIy802M5E5xRXVnZvvS1LDpaob8fn7FJ6OWMHlTGSuZmU2e1l3t7fqDo0zx7t358OK18PTEav36vbdJa2vLVt5laTZ6wsa7x9omI92y1dd1tt3l7S68tnrAOM4yDC/DVa9/UxkzsqTWUo8e5CpCCTTqaQ1tNRsd2P+46bv1ctfs2GHzeqwWX7dnO9O1jkAAG+Kt0qlUqnXmQC6qd25H2YC/+DQsGM6zSbl37p2WbfvLlkBkqSah2g329jzJbW+qEKnmF4Xp/lepgfFyzCxTpcvd3So3MvvO/Z7R07tqhvzjVqpw1bKJPW+TQEAcBbQI4Vzr92HQje9BpL7B9xA/0DTbd1sc1oedn3+Pg36nRfNaOXhv9Plc1OnncpfN87NScxVOi1tCgCAs4A5UgAAAADgEYEUcEKCI6NNv/F3sw0AAAB6jzlSAAAAAOARPVIAAAAA4BGBFAAAAAB4RCAFAAAAAB4RSAEAAACARwRSAAAAAOARgRQAAAAAePSDXmcAaEfu6FD37nxY8/rtu0sKjoy2nX5iM6bdZ1ta/PlKxe875Y4OtfTpvG7Mf1JxnHRqX7vbW0qnkioW8pKkwaFhhcYmFJ6OWNs8frhYcZxA/4CCI6Oaicz15HeksgcZDQ4Nn/hxAQAAzioCKZxpuZffSyoHTnadCgrC0xGlU0klnm5oJjJnvb6+tqzxyamKICoei2p3e0vjk1O6MfmJBoeGlT3IKPsiUzc4+uLrb8tlODq0ArD1tWXdmP/4xOtxdeWB7j/66sSPCwAAcFYRSOHMGxwa7kjvUyMzV+e0dG9eobEJDQ4Na3d7S7mX3+vG/CfWNiYQun13qSKIC46MNs1boH9A4/0D8vn7tLryQNLJBlK5o0Pljg5P9JgAAABnHYEUzrTc0WHXh8INDg0rPB3R+pNl3b67pHgsqhvzn1Qc1/REtdMT5vNfqCmLGVpoyjk+OVXRM+Zmm+TejhKbMWUPMpLKgVto7F3NROaUPchYwwxvXbssqXPDIgEAAM4zAimcabmXh8oeZHTvzofKHR1WBAmdNBOZ09J387p354OaIX2SlE4ldWPykxZTL89RSmxuaHxyynotHosq/d2+bv/0cwX6B5RO7Su+EVXCF7PmWzXbJnuQ0erKAys4KhbySqeS8vkvSCoHiTfmP9Hjh4vWUEMAAAA0RyCFM20mMqfgSEhSOShI7u0oHota73VS8J1RJTbrL8pgFpawi8eiSmzGrP9XByqmB8gIT0cq8ry7vaUb858o0D9QPv7IqMLTEcVjT6xAqtk2Pl+5h8v0dPn8fQqNTXT7tAAAAJx7LH+OM8/MQzLD2sYnp7S7vdXRY+SODrW7vWUFKfUCp2ozkTl98fW3NQthGF98/a31Z/H+inJH32vp3ryKhbyyBxkVC/manq/Q2IQ1p8nNNoH+Ac1eX9Djh4t6/HBRu9tbrvIOAAAAZwRSOHeCI6GOBwtmlb6ZyJx8vj4lnm5UvD84NNzWgg3lIXYfK3uQUTqVtHq9nMrhZhtJGp+c0v1Hv9D45JSSezu6d+eDjgeaAAAAbxoCKZw7xcIra6hbJyT3dpQ9yCh85aqk8ip+9sUbpNfD/p7GOhLAmflLPn+f0qlkTV58/j6rfG62MduFxiZ0++6SZiJz1vBHAAAAtIZACmeaCXLs/4/Hnmj8veNFG9bXlmt+ANetYiGv9bVlzV5fsOYZBUdGNT45pfjGcTBieqoeP1xUcm+nIqDKvsg0PY5ZFMLn77OG6o1PTimxeRyclRekiFUsSOFmm3Rq3+otKxbyyr08tII16bhnK53at7YBAACAMxabwJlmAhDD5+9T+MpVazEGqRwYtBocxGNRDQ4N1yzQMBOZ0707HyixebyC3u27S0o83ajIj1FvgYfqxSaCI6MV86lmInOKK6o7N9+3yla9tLmbbdKpZMWiF4H+gYof/fX5+xSejljB5kxkrqL+AAAAUOutUqlU6nUmgHaYXpZGv+FULOS7/ltT1dKp/Y79FpMJAp3K0GybXtQBAADAeUYgBQAAAAAeMUcKAAAAADwikAIAAAAAjwikAAAAAMAjAikAAAAA8IhACgAAAAA8IpACAAAAAI8IpAAAAADAIwIpAAAAAPCIQAoAAAAAPCKQAgAAAACPCKQAAAAAwCMCKQAAAADwiEAKAAAAADwikAIAAAAAjwikAAAAAMAjAikAAAAA8IhA6g1WLOSVTu33Ohtti8eiyh0d9jobp46X85s9yOjenQ9169plra486HXWAdeqr//Tej9o5X57Wstid5bvHb38DDwL5xanw3l5VjuvCKROsXRqX6srD3Tn5vu6de2ybl27rKV780psxhz3KxbyunPzfWUPMo7bZQ8yevxw0VVeioW8VlceWPm4c/N9xWPRXleRJCmxGVPu5fdtpbG7vaWle/MV5VtdeaBiIa97dz5sWOe721u6c/P9XldBXV7O7+OHiwqNvav7j75SeDrS66yfWc2uubNwLLf3j9Oi+vrvxP2gG7xcj6e9LHZn+d7Ryjlx0ujaqXctnYVzi9Oh0+0UnfWDXmcA9cVjUe1ub2l8cko3Jj/R4NCwsgcZZV9k5PP3Oe7r8/cpOBJS4OJAx/KzuvKZfP4Lun13SYGLb5+rb0fW15aV3NvR+OSUZq7OKXDx7XJdH5TrOjT2rnafbdV9SDDn6CxLp/ZVLOQ1E5nrdVbOvNWVB7r/6Kszfaxu3D9wPnHvqNTo2jnJ+wKAk0WP1CmUTu1rd3tLt+8uaSYyp+DI6Osb9KjC05GKB3d7QJNO7VtDBTr9cJ9O7Wt8ckrBkVEF+gc0PjnVlWPUK4vXNLwEebvbWzV1HegfUGhswno4GH9vSrmjw5pvFc1robGJpnkqFvIVr52Xrvp2zlk7w1raOa7Z15wD+771XvNSnlbbrNey1DuWm3ZW/e9GbbD62na7n8nbadetNnCa9ep685LeaTwv2YNMzTHNF2125vOg+tpxc1/w+rnVLa3cQ87LddLuZ0qn7r04e+iROoVML8fg0HDTbR8/XNTi/RU9friowaFhDV4a1kxkTo8fLur23SUFR0atbU0vV7GQ1+DQsOdAqFh45fh+cm9H8dgT5Y4O5fP3lXt4bN9U5o4OFY89sT6YAv0Dmol8ZAUijcpi8m6G1/n8fQpfuVrRQ5ROJbW68pkGh4aVe/m9ioVXujH/SUX560k8jTWt60D/gAaHhpXc26nYLrn33Hqv2TmqPhemq/6Lr7+16i6xGbM+nMvB3LtW+ZvVbavnd3d7yxqieevaZUmy8pTYjGn32ZbjMZ3OWT23rl3W4v0Vra48qAj6ZyJzVk9rs3bidFy3+85eX1DiaUw+X5+yBxmrLSX3nle8Vl2WRufBPvTC1KP9nDudP6912OhYbtqZKXs8FnW8VqrTcrOfaUuBiwMqFvPW+Q30D7T1bbybc+pVO23AzXUhubse3VzX9m2d7hH1uLne3OSjXhsNXBxo+d7h9LnV6nlxU45W75E+f19N/gMXB7R4f8V6bX1tWYOXhpXYjFnXTrP7QiufW26vB6fPzEbvub2HNLpfuclbvWPnXh7WPR/ra8stPau0UmdO5XLTnjt17221naKHSjh1fvKHf1D6zXdJV9ve/FG4tLx0t/Ty7/625nV7Gn+2sVr6/Gc/trb7zXfJ0uc/+3Hp5o/Cro7zZxurpZ/84R+Ufv1XvyoV8q9q3n/+l08r0v+bF39d+vxnPy792caqtU0h/6r0/C+fWvt/++cbpZ/84R80LUu9vP/Ni7+u2O9P/vizinz96ZM/Kn3+sx87lunl3/1t6eaPwqVf/9Wvmpb/2z/fKP3sJx9UvPazn3xQUT6nc1R9Pn/zXdKq+7958dcV2xTyr0q//qtfWf93U7ftnF97Xpql9+2fb9SUrd45c6oLe7ov/+5vPbcTp+O63fdP/vgz6/+//qtflW7+KFz60yd/VPFa9X7NzkO9enSzn9c6bHSsZu3Mfqxm10p1Ws32M8exX5d/8sefVdRzq9zcN6rz2uz+2WobcHtduLke3VzXpizN7hFO5Wx2vbnNR7022uq9w+lzq5Xz4qYcrd4jTbr2Mpv9TFqF/Cvr/FS3v0b3hVY/t9zc45w+M53e83IPqXe/apa3Rseu9/lqPp/t95RWtfOZ4rY9d+re2+6zGk4eQ/tOoeouYqn8DYVZCMF8s2WMT04p0O88n2F3uzzHx2wXHBlV8B3n3hq7mcicwleuKh57ont3PqhZaCIei2r2owUr/cGhYYWnI9rd3rK2Md/kmG9Cw9MRFQv5iiES9cpSL+/VvUD2dCUpNDbRdLK8z3+h4m8n45Pl4X2mO958szX+XvvfFPl8fVb9mL9DYxPWt1Ru6rbd81ttd3urPF/Mll54OqLdZ1s127ppf3b2fJphol7bSaPjetnXMN9K2r+dDI1N1Ozn5jzU42Y/r3XYjvD0Vc/XSrP9zLe89utyfHJK6VSy7fy6PadetdIG3F4Xbq5HL+2p2T3C+bw5X29u8+G2jbqto0bptXJe3JSj1Xuk6Vkyn8vpVFLBd0YVHBlVcu+59ZoZfu9Fa59bza8Hp89MN5+nbvJd79w1y1ujY5vP14oyPNsq9wx5zFurddaoXF4+C5txc+/t9Gc5uo+hfWfETGROM5E5pVP7Nau3NAsEzIdAddd/cCTUdAVAu/B0xPpgiseiKhbymr2+YKW/dG/ecf9iIa/E0w1lX2QqbmL2wLG6LCbt4Eio43XabNGO6m1DYxNK7u28/gAtD/PrxMNvoH9As9cXrCEFobEJhcYm5PP3uarbTp3f6vSqHwpCYxPWECF7ud0EopV1Wbn94KXhijbgpp00Oq7bfd0y+7lt443qstl+XuvwtCmfw1fKHmSsB590KtmRBSs6fU5bOb7k/rpwcz16bU9O94hmnK43L/lw00a93DvabfP289+sHO3cI+1Du8cnp5Tce66ZyEfy+S4oubej8HRE6dR+Vz6jGpXb6Xpw+szs1Odpo3PnlDenY5tAZ3d7S7PXFySVh3KGr3RmFchWP1O8fha2q9Of5TgZBFKn0ODQcHk8u8dvt5zS66TxySkNXhrW0r15zUTmrPQfffmN4wf70qfzCo6Mavb68beG1b1rjfLuJejxItA/UP6G0UVdB0dGlXhavpl18iZv6jQ0NqF0KmkFqjOROevbWae67fT5NekVC/mu1btT/ltpJ53Y100em7XxTu131gwOlecTmAfZwaFh+fx9un13qe20u3VOWymj1Py6cHM9ttIumt0jvJaj1Xx0oo46rdvXWfCdUWuBiWLhlUJjE6/n3UStRQU6MTrBjWbXg9NnZrc/T53y1uzY5eDkM2vOae7osK15kF7qrJFefxbibGBo3ykUfKf8wN7pb1yTezsV/2+2eIQT802zScPn76tJ386sgmO/kXlZFccp7XaExt61JnU2Mz45pWLhlXa3t9q+ydcru+n1MisImuGTzeq2UR21c359/r6aYVnJvR35/H1tfwNXnS97vttpJ+22MTd10ko7bHW/TjjJFbWSezuaiczpi6+/1eL9Fd2+u9T2w0e3z6lXXq6LZtdjK+2i0T3CidP11mo+OlVHneSmHK3eIweHhpV9kVFyb8e675ueqsTTjdefB+92rWyGl+vBqS68nO9O338bHbu8OnG5l8/0/nUieGn3HtJqe27nPtXJz3J0H4HUKTQTmZPP16fHDxeV3NupHMLworV5AWZInr37v9ncDuuYB5mKpTrNN3H2oW3jk1M1v9SeTu1bN4Tj4T77VhqrKw9cHT84MqrE5nFg2eoy03Xr5cpVBS4OWHVtL2O95UlDYxNaX1t2PaxGKn/gVgcL1TdK+3KrxUJeuZeH1jCDZnUrtXd+6xmfnKqo8+xBRonNWEdWD6rOV3LvuZVuO+2knX3d1omXNm7qzs3586resdy0s25Kp/Y9P/isry07BgPdPqdeub0u3FyPXtuF0z3CidP11ko+OlVHndasHO3cI81cluTe84rRC8F3Rq3VWxs9VDe6L7TC7fXg9Jnp9F479xA3eWv2WT7+3pR1TK/zzdqts0bctOdO3ns7/VmO7mNo3yl1++6SEk836l7wrfSEzETmtL62rDs335dUvvBvzH/samx89kVG62vLFa8FR0Yrhu2YpUDv3fmwYrvwdMQKOszytub4M5GPrB+9bVYX9rxL0uz1BY134NtNM/xodeWz13V9XN/md7Oqy727veXpJn9j/mOtrjyoGOIw+9FCRd2nU8mKMdDm/LipW7NNq+e33iTpmcic4opa6TVbmtmLwUvDunfnQwUuvq3cy+/l8x0PAWunnbSzrxtu2rhZQthsb1+m2en8eVXvWG7aWTeZLxns9wrTDhsNWbHPiWhUzm6eU6/cXhdurkev7cLpHuHE6XprJR/V5+ck7x3Nzo1TOdq5R0rHi05UL3yR2IzV/bF2ex3Vuy+0wu314PSZ6fReO/cQN3lr9lk+Pjmle3c+kM9/oWPD+tq9h7hpz52897bbTnHy3iqVSqVeZwLOyhNZe7tqi5mgaeY+OG1nfhOi0+zfmnVD7uhQuZffd62um01MbTYOu5t163RMqXNj6m9du6zbd5eshzpJPW/brdRJK+fhpM5fpydAu2HmitT7PTBJdR/4swcZLd2bP5Pzxzp5XXhpF17nani53jrdPjt97/By3JO+T55WTp+Zzd7r5j3E6dhL9+YVfGe064G3V27acy/uveg9eqTOgNPwoOl2aVefv0+D/u58gHX7BuU0POMk8u+mx6Vbddtqntqpi7P6gdPqeTip89eLejU/QmpvL4H+AasHt55OzoM4aZ3Ms5d20epx3VxvnW6fvTqvvbhPnlZO57zV97qZL7MEupue1pPmpj2f1c80tIdACgDQFjPR33zZUl7JLGmtLFfPafvGGUDvFAt5xWNPFBwZJSDBmUIgBeDElFdmOns9EHC2+PMVJZ7GdOfm+9YQGLPccKfmOsA7rjecBY8fLlpTGG7Mf9Lr7ACeMEcKAAAAADxi+XMAAAAA8IhACgAAAAA8IpACAAAAAI8IpAAAAADAIwIpAAAAAPCIQArokvJv6ez3NA/Zg4zu3flQt65d1urKg15XSU/EY1Hljg57nQ3XTkO7OW+4DgAA3UAgdQoVC3mtry3r1rXLunXtsu7d+VDZg0zNdvFYVHduvm9tk9zbsd5L7u3ozs336+5bLOS1dG/e+r2X86Be/fRa9iCjxw8Xe5qHxw8XFRp7V/cffaXwdKTXVdL0PBULed25+X7Ndu2c38RmTLmX3/e66K6dhnZz3jS7Dsw919xPl+7N171vNtvG7k27BwPAm4hA6hSKx6LKvsjo9t0lPfryG4WvRPT44WLFh/Hu9pZ2t7c0e31BX3z9rcbfm9LqygPrm/d47IluzH+imchHSmzGKtJPPN1QaGziXP1QI98y10qn9lUs5DUTmVOgf0CDQ8O9zlLT8+Tz9yk4ElLg4oCn/YBG3FwHptfy/qNf6NGX3yj4zmhNm3OzTeX2b9Y9GADeRARSp0zu6FC721u6Mf+x9av045NTCl+5WtHjlHga00xkTqGxCUlSeDqi8HREu8+2rHSCI6MKjU0onUpWpJ99kelI70Tu6LDuN7Lp1H7Hh1I5pZc7Omx6PPtQKa/5q96328OuTPpmiJc9r/Ve69bxW6krJ27OkySNT061tJ/bsrV6/rIHmZp8ZA8yNddAo+virDCBh131cMNutZFeyR0dKjx9VT5/n3z+Ps1E5mranZttqtPs9j0YANBbP+h1BlDJDEEK9Fd+Iz94aVjxjagUOX6wNEGUXfZF7QOc/aEoHnui8PRV1/lJ7u0oHnui3NGhFdTNROas9x8/XNTs9QUrL8m9Ha2vLWvx5yu2Y0atb2R9/j6Fr1y1HiKc0r917bIW769U9LSZ9803ufZhULeuXZYk3b67pODIaEU5Hj9c1OL9FT1+uKjBoWENXhq2HoTisSfWQ3Kgf0AzkY8q6taUMR6LanBoWLmX36tYeKUb859UHCcei2p3e0vFQl6DQ8M1AYGR2Ixp99lW0zpNPI3J5+tT9iBjq6/nFa/Z97Pb3d5SPBatqJcvvv7W9fHr1ZWbNpHc21FiM2YFEoH+AYXG3lVobMLVeTLHN++5Pb+NjmvylU4ltbrymeP5a1Y3u9tb1gO0Pa+BiwNavH/c3tfXljV4adjq+Wh2DbltN3Zu2q3Tdef0nr3+DXMeTBtq53pqdPzcy8O65V9fW275enK6Dux8/gtKp5JWmdOpffn8fRX3YTfbNNLOPRgAcIqVcKq8/Lu/Ld38Ubj08u/+tuL133yXLN38Ubjm3422MX+b9Mz7f/rkj0qF/KvSt3++UXr+l08d8/L8L5+WPv/Zj628/M2Lvy59/rMfl/5sY7Vim5/84R+UCvlXpUL+Veknf/gHpV//1a+s9/9sY7Uijd98lyz9zYu/dpX+zR+FK95/+Xd/W3N8p/qwu/mjcGl56W5NvRbyr0rP//JpqZB/VSqVSqVv/3yj9JM//IO6+5ptSqVS6U+f/FHp85/92LGcn//sxzX5arTdt3++UXG8P/njz6z///qvflW6+aNw6U+f/FHFa9X5dGoPXo9fr66anbO/efHXpZs/Cpd+813Sqttf/9WvrP+7OU/m+GYfN/s1O66pT6fz56ZuTNnt+TLn2OxTyL+qyEuzNu623VRr1m6drjun9+rVf71z0M711Oj43/75RulnP/mgYltz/7Lnz8s5c9vuXv7d35Z+8od/UPrTJ39Uev6XT0s/+8kHFfcxt9vYdeIeDAA43Rjad8oE+gcU6B9Q4unxmPp0al+JzQ3P6ST3drT7bMv6Nji+EdVMZE7xWFTF4itlDzLWt7X1xGNRzX60YH3jOjg0XB4+uL1lbTM+OaXgSEjra8taX1tWcCRU8e3z7vaWwtMRK43gyKj1Tb2b9O37BvoHND45VfG+F+OTUzXfHptvsE0PV3g6omIhXzM0ywzpMUJjEzVz1qrLGXyntrdld3tLM1fnKrazD8m059V+LPvf5t/18tmMl+PX+6bd6Zz5fH1WnZq/Q2MTdXudOsnNce3nuN75c1M3pofM9C6kU0kF3xlVcGRUyb3n1mvleV6jTevLHNNNu6kpc5N263TdOb3nRavXU6Pjj09O1QyL3H22Ve7xapA/t+25mXIP5sTr3sNo+TyMhDxvU719u/dgAMDpxtC+U2jx5yuKx6LWUBTzge1l5bEb8x9bE6FvzH+seCxqfZjvbm/p0ZfflD/EXw8XrGYeGJfuzTc91uz1BS19Om/lvTqNeg8bbtP3+S9U/H/w0nDLK11VpyWVh9wknm4o+yJT8cDn5RimLNXDl4IjoYpJ5sf1UfmgHBqbsIYvuhkmVJ1/r/l0c/x6ddXsnAX6BzR7fcEa7hUamziRCfWdOK7buhkcGlZyb0fjk1NK7j3XTOQj+XwXlNzbUXg6onRq32rvzerLbbupx6ndurnunAIAt1q5npyOb4Iws4iOVB7KGr5Sfy5RJ6+n9bVlFQt53X/0C+v/Zviil23s2r0HAwBOPwKpU8jn79Ps9QXrYUIqzwMw38qaB4fqB4Vi4VXFN9/3H31lbWdWATQPND5/nwIX327Yo2GO9ejLb5o+kOZeHk+4zr081KB/uCKNevt7Sb/efp2y9Om8giOjmr1+3GtgAthO58lsVyzke7JaV7vHd3POxienrMn1Zn7KTGTO1byfdrR7XLd1E3xn1Fpgolh4pdDYxOt5QVFrQYbx96Zc11ernNqtm+uuW+2v2fXU7PjlIOgzzUTmrHlW9eaC2tNq93rKHmSswMakc2P+Y92786F2t7c0Pjnlapt6+WvnHgwAOP0Y2ndG7D7bqvjmNdA/ULP6WPYgU3cYlX1ys5cHDp+/r2KlwHqKhbxWVx5oJjKnmcicVlce1PSSNErDXfqvXKXVCrPamP2hr53Vx6rzVp13U2b7Cl5mP7eT1tvV7vHdnDMztO723SVrGNNJaPe4bupmcGhY2RcZJfd2rAd801OVeLrx+sH/XU/15abd2Lltt07H9XodubkuvFxPjY5fXqm03MNnev6c7lmduJ7sgU1F2r4+5V4eut7GSav3YADA6UYgdQrZA5HsQUarKw8UuPh2xbee4SsRJZ7GrAeV5N6Odre3ar69NStLVQdh5lt1p96U8ckp67dT7OnZH4LisagCF9+2ll8PXHy74gE2ODKqxGbMKpN9uWA36VfPh0ruPa/59teUwb5suBvV++WODlv+vSIz78U+hKneXK7xyamK+sgeZJTYjHW9x6ZTx292zuxLYRcLeeVeHlpDwDp1nurt53TcTtaNmVuV3HtecU0F3ynPkzJzHN3Wl9t241Qf9dqt03Xn9J50PLenXn7bzZeb44+/N2Uds9n8uk5cT+ZnJtbXlq3XzAqQpnfRzTaNeLkHm+GCAICzgaF9p5B9yWezjHP4ykLFNuOTU8q9PNS9Ox9KkrUsc/WDR3wjqtt3lypeM/NJfP4LFcMHq5klhM0xjPB0xJp0ndzbqZgXZeZLmd9PuX13Setry7pz8/2Kbcb7B5qmL5XnRN2786ECF99W7uX38vn6asrj8/cpPB2x6mwmMufqN1pMndnreibykbIHGc/fGs9E5irKGegf0I35j2vmx8xE5hRX1Nqu3nLYnVL98NaJ4zc7Z+lUsmJ+j6mHds9Ts/2cjuuW27oxi05UL/6R2IzV5KtZfbltN9X10azdOl13Tu9Jx3N77EMFZz9acDGf0d311Oz445NTunfnA/n8FxoO6/NyzupdB9Vu313S+pNlq8zmPNiDYjfb1OPlHlws5FueAwoAOHlvlUqlUq8zgVpuJ0qfxHwb8w1/O/OTzDfO9crUKP1b1y7r9t0lK4iS1PUV4E5Ko6FCZ+X4Tm2iV3PAOnXcbpybTlxDrXC67pzeM+93c7ip0/GX7s0r+M6o6wC/19dTp/Tq2gEAtIZACqeWCaTOS/AEoLncUbmn/f6jr05k3iAAAK1ijhQA4FQoFvKKx54oODJKEAUAOPWYI4VTy0zwBnD+PX64+Pp3uEZ1Y/6TXmcHAICmGNoHAAAAAB4xtA8AAAAAPCKQAgAAAACPCKQAAAAAwCMCKQAAAADwiEAKAAAAADwikAIAAAAAjwikAAAAAMAjAikAAAAA8IhACgAAAAA8IpACAAAAAI8IpAAAAADAIwIpAAAAAPCIQAoAAAAAPCKQAgAAAACPCKQAAAAAwCMCKQAAAADwiEAKAAAAADwikAIAAAAAjwikAAAAAMAjAikAAAAA8IhACgAAAAA8IpACAAAAAI8IpAAAAADAIwIpAAAAAPCIQAoAAAAAPCKQAgAAAACPCKQAAAAAwCMCKQAAAADwiEAKAAAAADwikAIAAAAAjwikAAAAAMAjAikAAAAA8IhACgAAAAA8IpACAAAAAI8IpAAAAADAIwIpAAAAAPCIQAoAAAAAPCKQAgAAAACPCKQAAAAAwCMCKQAAAADwiEAKAAAAADwikAIAAAAAjwikAAAAAMAjAikAAAAA8IhACgAAAAA8IpACAAAAAI8IpAAAAADAIwIpAAAAAPCIQAoAAAAAPCKQAgAAAACPCKQAAAAAwCMCKQAAAADwiEAKAAAAADwikAIAAAAAjwikAAAAAMAjAikAAAAA8IhACgAAAAA8IpACAAAAAI8IpAAAAADAIwIpAAAAAPCIQAoAAAAAPCKQAgAAAACPCKQAAAAAwCMCKQAAAADwiEAKAAAAADwikAIAAAAAjwikAAAAAMAjAikAAAAA8IhACgAAAAA8IpACAAAAAI8IpAAAAADAIwIpAAAAAPCIQAoAAAAAPCKQAgAAAACPCKQAAAAAwCMCKQAAAADwiEAKAAAAADwikAIAAAAAjwikAAAAAMAjAikAAAAA8IhACgAAAAA8IpACAAAAAI8IpAAAAADAIwIpAAAAAPCIQAoAAAAAPCKQAgAAAACPCKQAAAAAwCMCKQAAAADwiEAKAAAAADwikAIAAAAAjwikAAAAAMAjAikAAAAA8IhACgAAAAA8IpACAAAAAI8IpAAAAADAIwIpAAAAAPCIQAoAAAAAPCKQAgAAAACPCKQAAAAAwCMCKQAAAADwiEAKAAAAADwikAIAAAAAjwikAAAAAMAjAikAAAAA8IhACgAAAAA8IpACAAAAAI8IpAAAAADAIwIpAAAAAPCIQAoAAAAAPCKQAgAAAACPCKQAAAAAwCMCKQAAAADwiEAKAAAAADwikAIAAAAAjwikAAAAAMAjAikAAAAA8IhACgAAAAA8IpACAAAAAI8IpAAAAADAIwIpAAAAAPCIQAoAAAAAPCKQAgAAAACPCKQAAAAAwCMCKQAAAADwiEAKAAAAADwikAIAAAAAjwikAAAAAMAjAikAAAAA8IhACgAAAAA8IpACAAAAAI8IpAAAAADAIwIpAAAAAPCIQAoAAAAAPPpBrzMAAAAAQPr1r3+tv//7v695/b//7//7XmcNdbxVKpVKvc4EAAAA8Kb74Q9/qF/+8pcVr/3u7/6u/sN/+A+9zhrqYGgfAAAAcAr8xV/8hUqlkkqlkv7dv/t3+p3f+R0tLS31OltogB4pAAAA4JT54Q9/KKkcXOF0Yo4UAAAAcIr8z//z/6xf/vKXDOk75eiRAgAAAE6R3/u939P/8D/8DwzrO+WYIwUAAACcEg8fPtRvf/tbPXz4UD/84Q/129/+ttdZQgP0SAEAAACnxG9/+1v99re/1d///d9rcXFRv/M7v6N/9+/+Xa+zhToIpAAAAIBT6Je//KV++MMf6i/+4i/4LalTiKF9AAAAwClkgqdf//rXvc4K6iCQAgAAAE6hv//7v5ck/f7v/36vs4I6CKQAAACAU+iXv/ylJOl3fud3ep0V1MEcKQAAAOAUMCv0/e7v/q5++ctfWotN8KO8pxM9UgAAAMAp8D/9T/+Tfu/3fk9vvfWWfvjDH+p3f/d3FYvFep0tNECPFAAAAHBKmOXPf//3f58hfaccgRQAAAAAeMTQPgAAAADwiEAKAAAAADwikAIAAAAAjwikAAAAAMAjAikAAAAA8IhACgAAAAA8IpACAAAAAI8IpAAAAADAIwIpAAAAAPCIQAoAAAAAPCKQAgAAAACPCKQAAAAAwCMCKQAAAADw6Ae9zgDq+/c7/2Ovs3CulSTpH5f0v/tf39I//MCn/3RpWP/xn/wf9I//N+k//+P/on9U4jsGVPpH+if6v+b+v/pv/l/L+j/m8/rf/tE/1n/5R/9VPyj9F6n036j01n/tdRaBtvxjlfSbvkH94rf/oPw/+Sf6R//5f9V/fut/r//6j0r6x/r/6a0SjwxAL33x9f+711lAFZ4WAQAAAMAjAikAAAAA8IhACgAAAAA8IpACAAAAAI8IpAAAAADAIwIpAAAAAPCIQAoAAAAAPCKQAgAAAACP3iqVSqVeZwIAAAAAzhJ6pAAAAADAIwIpAAAAAPCIQAoAAAAAPCKQAgAAAACPCKQAAAAAwCMCKQAAAADwiEAKAAAAADwikAIAAAAAjwikAAAAAMAjAikAAAAA8IhACgAAAAA8IpACAAAAAI8IpAAAAADAIwIpAAAAAPCIQAoAAAAAPCKQAgAAAACPCKQAAAAAwCMCKQAAAADwiEAKAAAAADwikAIAAAAAjwikAAAAAMAjAikAAAAA8IhACgAAAAA8IpACAAAAAI8IpAAAAADAIwIpAAAAAPCIQAoAAAAAPCKQAgAAAACPCKQAAAAAwCMCKQAAAADwiEAKAAAAADwikAIAAAAAjwikAAAAAMAjAikAAAAA8IhACgAAAAA8IpACAAAAAI8IpAAAAADAIwIpAAAAAPCIQAoAAAAAPCKQAgAAAACPCKQAAAAAwCMCKQAAAADwiEAKAAAAADwikAIAAAAAj37Q6wygjtin0sG/L/+78A/lP/1D0sUhaez/IY281+scHvvX/+L43z/9t73ODQAAAHAi3iqVSqVeZwJVPvinzu+/96F0fbnXuazN6y/+U69zAwAAAJwIhvadRc++Kv85zQr/UM7j2sJx7xoAAABwThBInXY//bflnp6f/lvJ/8+OX9/7s17nzNnTf1MOop59VQ6qAAAAgHOEQOqsGHmvPKTPSD3rdY4AAACANxaLTZwlQ6PNt3n2lbS9djyc7r0Ppel/VV6ootE2F4eksRlpZLIcsDWa9+R2PtS//hfS0cHx/2OflnvThv65FPm5+3wAAAAApxSB1FlS/Ifjf9uH+RlmKJ3ds6/KvVeP/j/H/19bqNzm5YH09I/K/+5EAFPdW1ZvjtRJ5AMAAADoEob2nSX2eVH/3Uzle6lnlUHUex8eB1svD8q9QlK5B8gY+ufSlX95HLSMTJ5cWU5LPgAAAIAW0CN12u39mZTaLvfq2Ht6Jq9XbvfMFphc+ZflIXST16VP/+/l10yvkPnb/8+kn//qeJ/CP9Tv5WrFL/5TOXAzvUs//be1PUwnkQ8AAACgS+iROu2efVUOSOxB1PXlci+O3V78+N9X/lX5b/s21cPtzPLkRq+Cl9OSDwAAAMADAqnTbuifVwYXV/5l5ep99di3rw5MxmaO/722IP2PH/RmBcDTkg8AAACgBQRSp13k59KPf3H8/+reqXo++KfHf8xvOJmAKvLzyhX89uLlVfbMHKqTLNdpyAcAAADQAgKps2Dkvco5Rk//jfc0zDC/i0PlOUnVvVpP/6hyeGC3nZZ8AAAAAC0gkDor3rMtLpF61rhXauS98mIP1X9++m+Pt/H/s/I8q5//qnIeVXWAZh8WaHq2OsltPgAAAIBThkDqrBibqRoK92eV75tAJPXMfdAz9M8rA6zq33sq/MPxa26Cm0bHNWk0er9ZPgAAAIBThkDqLJn+V8f/fvZV+fehDPvQv69sP3R78O8r5x3txct/TFBj79kyadh7h/71vygvoW6WMnfSaI5T7NPye/Z8uckHAAAAcErxO1JnyXsfloMSE3xs/pvy0Dip/JtRz74qv7cXl/b+aeW+I5PlAOXpv2nc42N+CHfon1f2IhX+fXkYXuTn5RX2pHIQd3Go/LrJz8G/L/+J/Fzqv1SZdupZ5VBBN/kAAAAATikCqdPI3iNTvXz5lX9V/oFeqRzMmB+wvThUGejYmWCn8A+VvVjVxzQLP1xflor/cDxM8OKQNP+LcoBlhhQW/kG6qPKKgmsL5XT9/+w47+99KB29OA7uLg4dv+c2HwAAAMAp9VapVCr1OhPoIPMDt4W/L/+//5L0380cB2QvD6QX/1462D/eZ2i08nedTsJpyQcAAADQAgIpAAAAAPCIxSYAAAAAwCMCKQAAAADwiEAKAAAAADwikAIAAAAAjwikAAAAAMAjAikAAAAA8IhACgAAAAA8IpACAAAAAI8IpAAAAADAIwIpAAAAAPCIQAoAAAAAPCKQAgAAAACPCKQAAAAAwCMCKQAAAADwiEAKAAAAADwikAIAAP9/9v4ntI2r/+NHPw88K0nZKebR5SKcyxWI61y41gWtFFNvFHDNRTRcBQzJE8dZ1ImxFzU/C9q4fE1CbMiidk27qBX3W6jBA6WC2oaIS53avosKKm8qKqpFXC3q1BZ3Y0nbuQvljGdG8+fMP0m23y8ojUcz53z+nTNzznzOGQAAABbBQAoAAAAAAAAALIKBFAAAAAAAAABYBAMpAAAAAAAAALAIBlIAAAAAAAAAYBEMpAAAAAAAAADAIhhIAQAAAAAAAIBFMJACoAPkhCzVTo67LUbXaTbqVC4ddlsMT7lIvi6XDqnZqHdbDMdcxri6iDpdpNhnXJY2ALzlIsY26AwYSAHPKJcO6fH9223/rSxlui1ax8lvCVQ7fdfROqtHlW6rrSmTHf/3oi56uOXrZqNOs5N3PNV9ZSnDVb5VGTohu1q+y9avXESd7Ma+PE46HTu8bcCKDleRXtPf7Tjqxj0cXAwwkAKe89V3rxX/Tc8tdlukK8Ha6vNuiwBdHODzByg6EKPg9VC3RbFs/16SHfQ+8vi6qLFzFfuoXtb/osYRuHhgIAW6hjxtpVw6tPTanF3L0l/k12ods0vt5FhzRkuvfLdf/du1Ue3k2LYsTvziBU50caJ3L6RVJYZHui2CbfurZe9F+/Lqfxkxaued7AO04stO3HczvrR0qB5VNI+p7yd69xi7dMMOTvtop/GlF6+90H+Cy8+/uy0A6C7Fwh5VjyoUvB6iWHyIfP5Ax+peWcpQZmGVVpYyFO6PUPhGhFLpCSJqvUY/eLNDtZNj8vkDlBgekX5j146Nz1B+WyCfL0DVowolR9PvddpXHJNfZ2SHnPBKsz5WVyw+JJ27sb5Mmf9ZJSKix/dvU2ZhldZWnys68FR6wtCeZjoa2ah2ckw54ZV0sw72hSiVfkix+JAiJejx/dtERDQ9t0jRgUFu26rrbDbqFO6PtN2YNtaXNY8zckKWDnZ3dK830oOIdHUJXv+P4XVqzOqR+zknZCncH6Ha6TtqNs7o0dRnku14yuGxDzvu8wcovyVID1LBvhDF4rcUscd8VyzsGZ5rN8ZYPeXSYds5RrFkZgu57Lz2NWuLvHFlx/9qDnZ3KCdkKXg9RM1mXWrbwb4QLbz8ltu+vD6wqhO7Jr8lEFFrBj754V2pH7TTzuVxp/cbj3947a4XX+rY4dWHJ7700GsDZnGpp0OxsEc+f6BNxuD1EGUWVqVjG+vLFL4RoXB/hMu+Zr/btYNeLNn1IeuzjGR1q43pxatWHNnVEwBdRHBl+f7VF+LkvaT03ycffyT+9fZP18r/4/eiOHkvqfv75L2kuLw4J57+87fi+I+ba+KLp0+k43/8XhRfPH0ivv5pU3HtN18+k/7+7ddfxMl7SfH7V18ojn3y8Uemcu7/vK2o76+3f4ovnj4Rf9xck37/5OOPxEb9TGzUz8RPPv5I/O3XXxSyyK8//edvxfXsnD9+L1rS0chGjfqZuP/zttion4miKIqvf9pU6Kpne17bqut8/dOm+PST/yrKOv3nb3HyXlI3ZvTqkstlpoeeLjzXWT2f6c3OEcVWG3nx9Inlcpivjez26//3/6M4t1E/E3/79RdFnLDf/3r7p+m5bvha6xy9WDKzhTrmeexr1hZ548qO/+UwneWx/c2XzxR9Do99edu5HZ20rmHy2m3nZr+Z+Uftc7vt205/yRNfWvC0ATO9tXRg18j1ZD5l5TTqZwpdee5FZu3Djh2MYsmuD3lt5rSNGcUrTxzx6qkuCwAGUvuuKAe7O3Swu6M41mzU2465gXqziZyQlX5LDI9QsE+Zw3ywu0OpuxPS8ejAICVH03TwRimbfMaWzRrJZ49i8SFqNuqmaRM5IUtjD2ek+sL9kVZ9722RGB6h6ECMNtaXaWN9maIDsbZZquRoWro+2BeixPCIoS15ddSzEZuZY2+8kqNpLl2t2FZeZ2J4pC0F5eDNTmv27/1MqlZdcrtEBwYpelM5I2pXD6vX8Z6fHL2reIvI3vDZrdfIbv+X/+v/TSqT/T8WH9KcNfb5AtznOvF1dGCwFbtvzPsBO74zs69ZW2R6mcWVU1nZjLQ8thPDI1QuFS3Zl9cHdnTSuobJa7edm/3G4x+nMaKnK48+ZvGlh1kbsKo3K6d6VJF2BCyXihS9Ofj+Tc2+dKy1lmeQqx5eOazawSiW7PrQTFa32piWDzupJwBI7bui1E61c5KLhT0aG59xta6vvnut+5vPf03xN7vxqB8QY/EhKXXOrLNUY7S1LatvcX7KsIyx8Rla/Lx1DkvpM9KDpcMZ1cmro7psplN+e5OqbyuKzp5HV5561XWym8zB7o4UH8XCPiU/TBvWpR5wRgdiUlqFXT3sXGe3HqflGNkt2BeisfEZKR0lFh/STa+1cq5TX4dvRLjWLLhlU7XMRm2RN66cytpqv2dUPapID1rlUlFauM5j32azzuUDOzqd1x8z+M267+Xo9c1mfaUTuxvr6t49wUxXeRuwozcRSYOEYmGPEsMjVCzsUyr9kHy+a1Qs7FFyNE3l0qHkQ7N67MrBb9+Y5u9O7jVGsrrRxszuk17rCQARBlKgx2AdarNR78h6LVbfy69/MKyvdnq+mLZ2ekxhf4SrXK90XPx8iqIDgzQ2fj7jx/LTvaq3dQN7Jq0LqJ0c6+aPG+nvVA8719mtx41yjOyWGB6hWHyIyqWitF4glZ7QXB9j5Vwnvubd5cotm6plNmqLvHHlVNZwf2uNBXsQZOvZ2I6jPPbl9YEdneSz6HbrtVunWV8px40Y6fQ9gUjZBuzozYjeHJQ2mGg2zigWH3q/FicrbYqU+GDEUj125OCxr16ZTu41Zm3ZaRvrtp4AEGHXvisL67zbjvfALjc+f0Dxep+IpIW7Tmce9eorFvZ0f2826rS2+pxS6QlKpSdobfV52yxVs3HWJq9XOrJdieQdPu+uR07qjQ4Mks/fmk1ls6xmNzi1HeR2squH1euc2MuNcszsxtL0pucWKZWeUKS+qrF6Lo+v1bFbLhU9jUEjzNqiXA85ah3ckLVY2KNUeoK++u41ZRZWaXpusc1vZva10t6s6KR3jRXZ7MDrHyd276Q+DLM2YEVvOeH+CFXfVqhY2JMmT9ibqvz25vtJlVvc9diVgwetcp3ea8xkdaONdVtPADCQuqIE+1o7B8lnQ3l3uPOaxPAI5bcEabBSPapQfkvwbJCXGB5p+2p5uXQodbitXYX+Q8nRdCu/+vp/2h5g1TnqxcK+obxOdDxPg2ht+Vo7OW77hof6HFaPU9smPhiRbGO2ExbLh5fXJbcTjx5a511/f6Mzu85qPW7Y3ard5Fv1Nht1qp0e66aoWDmXiN/Xah/ltwTFw51WLLllUy2ZjdoikXlcueU3toObE/vy+sCqTkStAbq8bPkW1F71oTz+sWp3vb7Kqq2dYNYGzPTW04GtTSoW9hXtPnqztU4q2BdqW4tqVI8V+1tBL5ac+JBHVjfaWCf1BEALpPZdYcL9EcU2rL1CKj1BOcrS7OQdIjpfZ+LVII+VOz/7QHH8fDv1PcW6KLZeKjowKM0yhm9EaH72AQWv/4dqp+/I5wsYfnjYiY5sS1225SzbprV6VFFsRpAcTUvnpNIT0kDZiW0TwyM0P/tf8vmvmW4Lm0pP0Mb6slRXsC9Ej6Y+lVI5ePTQ04XnOiv24sFJOXp2K5eKinUwzEZaWDmX2cnM1+zY4udTutsLG8WSU5tqyUyk3RaZ3cziyi2/xeJD0gYzapuztCQz+/K2N6s6EbW2mJZfQ9TqmxJ9Ic/6UB7/WLW7Vnxp1evVPYGnDZjprddGiM43nVBvhJTfEqRzeOuxYn8r6MbSezvY7aPNZHWjjXVSTwC0+JcoimK3hQBACzZr1KmOjM3yW12z8Pj+benbRrXTd0REXN8t6YaObtS7OD9F0ZuDPfH28iKhZzcrawDsrBfg9bUbi/bdwm5bdAu2hkX+LTj2nRkiUgxgeezrZTuXf3unU/V2yz9e95dmbaBTepvV45UcRrHkti5ut7Fu6wmuLkjtAz2Lzx/o6ADD5w84ujEF+0KtbYs5B1Hd0NFpvWwrb701dkAbI7tZfStmFV5f99JDhdO26JRWapdyV0TWvtVrJ3js62U7V6eHdaLebvnH6/7SrA10Sm+zerySwyiW3NbF7TbWbT3B1QUDKQAAF81GnXLCK4oODOImZAHY7eKhXijfbNSpWNijnJDtiQ15ALjooI2BywJS+wBwyMpShlJ3J7o6g94JHVvfPBmkR1OfIW+cE9jtYlI7Oab8tkDFwp6UVsQ+1OpkLQoAoAXaGLgsYCAFAAAAAAAAABZBah8AAAAAAAAAWAQDKQAAAAAAAACwCAZSAAAAAAAAAGARDKQAAAAAAAAAwCIYSAEAAAAAAACARTCQAleCculQ2mJVj5yQbfsQ4EWh2ahTuXToaR08NgTnVI8qND/7gB7fv01rq8+7LU5X6UR8AgAAAJ0GAylwoWg26jQ7eYeqRxVL160sZUyvyW8JVDt9120VbVE9qtDKUsbTOnhs6DZ2/c1s4kY5dllZylAsfosWXn5LydG06+V32hdOZfU6Pq2iFxMXya4AAAC6CwZS4ELh8wcoOhCj4PVQt0UBHcCJv+VvgTodN+ztXSo9QcG+kCcfa77qb7mcohcTsCsAAABeMJACnqCXBlY9qnDP+MpTgcqlQyntLjE80m31PEGtb6dSobR81elULD1fExn7Wy8Vs3Zy3PabnbjptE+M7GCmn9Py2W/M9/LftI51Eq/qVceEXbsCAAC4mvy72wKAy0l+a5PCNyKUSk8ojq8sZSiVnqBwf4RqJ8eUE15R9ahCtZNjCvaFKJV+SLH4kHRuZmGVVpYyFO6PSOWtLGVoem6RogODRESm5ajrL5cOyecPUGJ4pE0+NcXCHuWEV1Q7Oda8pljYo/yWIA0Og30hisVvaZbLo+/Y+AzlhGzLPqfvqNk4o0dTn0m6MnJClg52d6jZqFO4P2I6SDCSU21PovNUrK++e23Jhmb2yAlZym8JRNR6I5D88C4lR9O6vmb1yeV7fP82ZRZWaW31uWJwnUpPkM8fUKSRPb5/m4iIpucWNfXMbwl08GZH179WfMI42N2hnJBV1M/syFOfnh3UvlHrx+QxilkzO4+Nz1B+WyCfr2VHlpJYLOwrjpm1G574NGtbZn7m9SFv7BvZ1Uo7BwAAcIUQAfCA/Z+3xU8+/khx7LdffxE/+fgjsVE/E0VRFBv1M3H/523p79c/bSqumbyXFJcX58TTf/5WlDN5Lyn+8XtR+tusHK2y/vi9KL54+kR8/dOmbrn7P2+LL54+ka756+2f4ounT8QfN9ekv+XXNOpn4m+//qIoQw6vvux3URTF7199Ib54+kRRzo+bawq5mC6T95Ka9ZrJqdablakuz8yGZvVoyf3X2z8Nfa0l3+S9pKKc03/+VvjFSH55OXp2VMcEj0/UaNVvpT4tO5iVL4rmMWtm52++fCb9/duvv4iT95Li96++UBxTty01PPFpJievn81sajX2texqtZ0DAAC4OiC1D3gCe8tSLOxJx8qlQ4rFh6TZZDZ7zP5Ojqap2agrUv8SwyMU7DNe18JTjrqs6MAgJYZH6ODNjm65OSFLYw9npGvC/RFKjqbpYLd1jc93rgf7fyw+pPumgkfO5OhdxWx7LD7UpsfB7g4lR9MKXaI3teu0I6cRRjY0q0dLbvnaIR5fn9vpvJxgX6glx+4O17VyO6buTijkSY6m22KCxydu1mfFDmrMYtasfPmbI9aG5W92Y/Ehzbal1tMsPnnkbNne2M9mNnUj9t1sPwAAAC4XSO0DnsAeNtjgqdmo08HuDk3PLUrnNBt1ym9vUvVtRfFwJl+v4/NfM62LpxytssI3IrrrIapHrbIW56d06w32hWhsfEZKk4rFhxQDRbtyGsHkUqctRgdiUsqcUzmN/apvQ6N6mNzRgRh32VblsGNH9cNwLD4kpZLZHcw4rc+KHbTqMIpZJ+XL0bM1T3zyyqklq9zPvDZ1Gvtuth8AAACXCwykgGfE4kPSmqhiYY+CfSHFQ8/i51MUHRiksfHzmWm2NsEKdssx2sGNvSl5+fUPhg9MieGR9wPGorQ2JpWe0FwT4oa+dnd/syKnFdQ2NKvHq4dPq3Zh5zcb9Y48EHeiPt6Y7YSeXskpL5/Xpm7EvlftBwAAwMUGqX3AM6IDgxTsC1GxsEfFwh7F4rek39gOYPJBhd1dyHjLaTbOVNcWDd86+PwBRWqi0Xmx+BBNzy1SKj0hbTRgV04e1HKpdbMrJ8OJDY3q4bEnD2o57JTr8weoXCq2lePzB1x9G9XJ+nhj1mvM4pNXTjM/89rUSuzr4UYZAAAALhcYSAFPSXwwQvltgcqlQ0p8cD57y2aT2ZbLtZNjW99vsVIO20WMqJUWlN8SFIO7NtmHRygnZNu2iFav+2K/Nxt1qp0ea6ZOuaUvEUlrSeS6mK0PMpKTDXb1dLRiQ6N6ogODlN8SpOudbDWt1rdY2Fe8HVDbWysVLTE8opCH6ePVWwY369PTjydmvYYnPnnlNPMzj01526iRXY3K2Fhf7rmPDQMAAOgMSO0DnhKL36KckJXeTjF8/oC0/TARSVuBV48qltJ9eMthGz0sfj6lu02yGvbb/OwDxfHkaFpaA1IuFRVrk4J9IXo09altOXlIpSdoY32ZZifvKOo0WnNiJOejqU9pbfW5lGYY7o/Q2MOZtvJ4bGhUz/TcokJuIqKx8RlK2HgbE74RofnZBxS8/h+qnb4jny+gWH/n8wekbdXlvlTbMUdZSR7eLfF5aH3sVbl2x836tPSTb0tuFLNewxOfvHKa+ZnHprxt1MiuRmU0G3VL6/MAAABcHv4liqLYbSEA6CRWNxJgM9B66z86tc7GKWZyWrGL0bk89RCR7XS2x/dv0/TcovRwTUSOdlBjD8Gd8mEn6jOL2V7BSE4rfjazqRttVK+Mi9L+AQAAuA/eSIErh9UHeJ8/QGF/xPD3i4CZnFbsYra2zK16zMpxo6xO+68T9ZnFbK/AIyePn81s6obN9cq4KO0fAACA+2CNFAAAAAAAAABYBAMpAMCFIjowiLcAVwD4GQAAQK+DNVIAAAAAAAAAYBG8kQIAAAAAAAAAi2AgBQAAAAAAAAAWwUAKAAAAAAAAACyCgRQAAAAAAAAAWAQDKQAsUD2qSB+U7XWajTqVS4fdFgMYUD2q0PzsA3p8/zatrT73pI5y6VD6YC24WnQivnqZq9QH5oSs5XuTnWvc4CL5pVs2AhcHDKTApeBgd4ce37/taefcbNRpcX6KcsKrbqvLRfWoQitLmW6L0VF9LxorSxmKxW/RwstvKTma9qyOTtum2ajT7OQdW/Wqr3FS1lWnE/HlBW752us+sJdiMr8lUO30ne7vWu3I7BqvcMsvnegbumUjcHHAQApcaJqNOm2sL1N+W/C8rmJhj2LxISoW9jBD1YNctBl39qYolZ6gYF+Iwv2RbovkGj5/gKIDMQpeD1m+Vu1HJ2VdZS5yfF2UtnxR5CS6nO3oMuoELh4YSIELTX57k5qNOj2a+tTzug52dyg6MEjRgUE6eLNj6dqLMvByIqf8bWC5dOiazupytd461k6OHdV3UfyjZRt12l6n02b0/J4YHtG9Rs/een40KotXrk7ZhNXD/CDXR+tYJ3HSRjull1YMdDLOeePGaZ9jhFYKefWo0vbmpXZyrPk2Rk9uO+2oEziJLblOXrd5J2U69SnoXf7dbQEAcELyw7vk8wc8r6d6VKHa6THF4kNERJTfFiiVnjC97mB3h3JCloLXQ9Rs1qWONNgXooWX37bK2hLo4M0O1U6OyecPUGJ4pK1snnNyQpYOdneo2ahTuD/CfdN8fP82ZRZWaW31ueIhOJWeUNi2WNijnPBKV4aVpQxlFlZpZSlD4f4IhW9EpN9zQpbyW623hj5/gJIf3pVSjXjKHRufoZyQpXB/hGqn76jZOKNHU59RdGBQkSby+P5tIiKanluk6MAg1U6OKSe8km5iwb4QpdIPJT/y+MdMPj2MfMbqlcv81Xev28ooFvYovyVIN9ZgX4hi8VtSOStLGUlXeayuLGXayltZylC5dKipg1k9Rj7U87taNrM4M/Kjlp5mbcIsbvQwilWedsjqzW8L5PO19DqP9X3FMfW1RrHG4yOGXnwZtVFee9rRizem9WKAN855+0AjO/PEjZ6czcYZt4+MONjdIZ8/0Gb/4PUQZRZWpWMb68sUvhGR3jaWS0VaW32mK7eWHa3YRguzPpbHL05iS66T3TZv1rbM7Epk3n7s+NRKmwddRATgkjB5Lyn+8XvRk7K/f/WF+P2rL6S/P/n4I9O6/vi9KE7eS4p/vf1TOvbNl8/Eb758Jv394+aa+OLpE/H0n7+la148fSK+/mnTlXMm7yW57Ca/9vSfv8UXT5+IP26uSefs/7ytOOevt3+2nTN5LykuL85J5xjJxmxipdxG/UzhjxdPn7TZWk2jfibu/7wtXfv6p03xk48/4vYPj3xa8PhMT2bGX2//VMR0o34m/vbrL4q404p5dblqv6hl4anHyId6flfLxhNnejZRl8VjX5644fEb05OnTlavPIZ++/UXcfJeUtF//PbrL1Ic8sQaj4/UaNnSShvVsqcdveTw6KEnt1mc8/aBZm2aN27U9dvxkR5MRnldTBcmd6N+pqiP+cdIbq02Kf/bTn9n1Mfy+sVJbKltYLXNm/mNx6487ceqT92MJ+AtSO0DwIRmoy6tj2KwtVJGsNk5+dqExPAIlUtF6e+D3R1K3W2tYSAiig4MUnI0rUgd5D0nOZpWnBO9OUi8yK8N9oUoMTxCB7vn5eeELI09nJHOCfdHWjLsKlMcE8Mj0jlGsjGb8JabHFW+eYzFh7jSH9jMILs2OZqmZqOumD018g+vfGp4fGYquy8g6cD+H4sPGc6s6iH3S3RgsOXf97Lw1GPkQz2/a2EWZ7zw2tdq3BjpacWn8hl31m+o+w8WhwyjWPMqFqza045ectzUg8d3Wn0gT5u209+4qRt7087SGculIkVvttLKi4V96VhrjdB5+fK+jlduq7Zp09ugj7XiF6exZdd3PH4zsytP+7HqUy/bCnAXpPYBYEKxsEfNRl1zlyF1+puc8I0INRtnVD2qKFIv2MJY1qmqO8ZYfEhKf2o269znyG86RETRgZiUomSGz39NQ/a6Qs7F+SnL5ZzrGGs710q5dmk26pTf3qTq24riJtxs1Ln9Y1U+Hr/yDDqCfSEaG5+R0rBi8SGKxYdspbJq+VeexmhUj5EP9cq3IofVrdndsq9+uTGD39ytk7eNeRkLXuim51M39dDSwawP9LLPcVM3NsFTLOxRYniEioV9SqUfks93jYqFPUqOpqlcOjRsk3ZtaNU2Rn0sr1+s1ucmTv3G236s+tSrtgLcBwMpAExgM2rqm9bG+rL0mxbh/tb6A3ZjCvdHyOcP0PTcovQ3UevGoDsYs3COm8jLZP9++fUPljtxdq3WdU7K5WXx8ymKDgzS2Pj5LCtb08DrH6vy8fiMl8TwCMXiQ1QuFaV1L6n0hONF4+pdrozqMfKhU+zErpv21SrXKFbdrlNdvlGseRULXuvWCT1448jrPsdN3aI3B6XNCJqNM4rFh96vR8pKGzAkPnBv8wi7tjHrYy8CTvxmpf1Y9alXbR64C1L7ADCA7aCT+GBE2rGP/ReL3zJN1SoW9iiVnqCvvntNmYVVmp5bVHS2Pn9AkUrGrvH5A9JNieccdkxOs3HGraf6XHVZPn/ANJXRzA5aOC3XCLbTk/wGr941icc/duTj9RlvWbH4EE3PLVIqPSFtIqCH1u5Wav+WS8U2OczqccNPZnHWDfuqMYpVr+pk5ZvZw2osWKnbS9280EMrznn6QC/7HLd0I2o9oFffVhRp5eytRn57k2onxxSL33Jddiu24eljiZzdmzqFE7/xth87PvWqzQP3wEAKXHo21pdtf/zv4M0OxeJDmg8TiQ9GTLcqZbuk6ZEYHqH8lqBI8clvCYoZJ55zWB67/Bwra0/U5xYL+20yqL/wXi4dct10owODCvnl2wY7KVfOeWre+Ta66mO1k+O2777w+MeOfDw+40G+7W+zUafa6bEiNSvYF1LIoiebOjbyW4Lihm1Wj5EPrWAWZ1p+9NK+asxi1Ys65ToZxZqZj5zW7aVucsz00IoBnjjn7QO97HOs+GhjfdnwoZitwykW9hVpY9GbrTU1LF3MTazahqePdXpv6gRO2xZv+7HqUy/bPHAPpPaBS0+zUbedV+3zXaPk6JDmbyyH2ajsWHyINtaXaWN9WXHdo6lPpdSyHGVpdvJOqz6NbVN5z9lYX5bOYXXw5ruHb0RofvYBBa//h2qn78jnO09xY+UTEc3PPlBclxxNt+W/q5meW1TIRkQ0Nj5Dib6Qo3IVfvIHpK24mbxsq1x2jG3LWz2qSIMnHv/YkY/HZ+qF4lqUS0XFWgImG+PR1Ke0tvpckUoz9nBG4XdW9+LnU7pb85rVY+RDK5jFmZ4f7djXDmax6kWdcp2I9GPNzEdqeOLLa3tqYaaHVgzwxDlvH+hln9NsnnH76GB3h8bGZwzrYBsUqDddyG8JuinlTrBqG7adt1Ef6/Te1Amsti0tu/G2Hys+dSoX6Az/EkVR7LYQAHhJp3L/1bC8Z/mGFOybG0Sk6BDZYMxITp5z7PD4/m2anluUHm6JSPcBjM2K2cl9l29u4Ga5drHqHzvyueEznvjl3RDA6DzeeojI1ky4lTizYhsi99uEWax6Uae8fL1Y87ov81o3p3rY3dRDTwYv+hwe3apHFVqcn/J0fWgv2qaXcaNtedF+uvX8AvjBGylw6elWJ5TfEtrW3AT7QhQdGGxLbeCR0Ws9eFJFfP4Ahf32bq5GZTsp1y5W/WNHPjd8xlMG78OlmQ/cqsesDLcehr1qE07t5FQnvVjrRN2dwG49bqayedXn8OjGdm7r1QfkbvTH3aZTfXUvlAncBWukAPAI9cJd9j2qnJDFrjs9APwDAOgGqfSEaVofAOBigDdSAHhE5n9WKb8t0OzkHemVP9sm1kouvtdEBwav5KzXRfHPZeGqxhkAAIDLC9ZIAQAAAAAAAIBFkNoHAAAAAAAAABbBQAoAAAAAAAAALIKBFAAAAAAAAABYBAMpAAAAAAAAALAIBlIAAAAAAAAAYBEMpAAwISdkqXZy3G0xANCk1+LTK3l6TU/gjGajTuXS4YWvAwA5iLmrBwZSAJiQ3xKodvqu22JcGqpHlW6LcKFR26/X4tMteXpdz4tGs1Gn2ck7PdP+qkcVWlnK9HwdvWY30NtYjTnE1cUHAykAQEdZW33ebREuNFfFfldFz07h8wcoOhCj4PVQt0W5UMBuwEvQz118MJAC4ALiJMVJnnZQLh26li6lLlcrvaF2cuyovm6ldpVLh9Rs1NuOV48q3DOKPPbh0d/IBnbLNdJTL1WFxxe9qme3YDIzm8p11DqmZxu7JIZHLJXnRsz2Enbtr7abl3ZxI0bMymb/7pVU2W63i27Zxen9EPQG/+62AABcRIqFPcoJr6h2ckw+f4ASwyOUSk9Iv+W3BOkBO9gXolj8Fvfvejy+f5syC6u0tvpc6nxZvT5/gEs2IqKVpQxlFlZpZSlD4f4IhW9EpN9zQpbyWwIRtWZikx/epeRomrvcsfEZyglZCvdHqHb6jpqNM3o09RlFBwYVKQ+P798mIqLpuUWKDgxS7eSYcsIrqh5VqHZyTMG+EKXSDykWHyIiooPdHcoJWQpeD1GzWZf0D/aFaOHlt9y62/VpfmtTYSe5zqn0BIX7I6ZlmNnHDD37ERGVS0VaW31mWG5+S6CDNzuGtllZykg+Udf71XevuX3BI49Xehr5YGN9mcL9kbYHY73jWui1EbMYlsdAflsgny9A1aOKrH3tK47JfcPT9nnrZ/7l8SNvzPK0u5yQpYPdHWo26ty2ZvDoxlOHXfur2wWPXez283ZlJDJv40Z9v5O+0+i+wdvvdLtd2LWL3bg2uh/y2Az0ECIAwJDJe0nxj9+L0t/7P2+LL54+EU//+VsURVH86+2f4ounT8QfN9fEv97+qTi/UT8Tf/v1F+lvs9/N5JDXe/rP31K9PLLJy1lenJPOYfy4uaa49o/fi+Jfb/+0XG6jfiYd+/7VF+KLp0+kv//4vShO3ku26daon4n7P29L177+aVP85OOPFNcwWURRFL/58pn4zZfPFGXwyKiH2bX7P29L8jB++/UX8ZOPP5JkNiuDxz5maNlv8l5S/ObLZ4blavn2xdMn4uufNtvKUseivE4eX/DI45WeZj54/dOm+PST/yrKPf3n7zad9DBqI0YxrNaB8duvv4iT95Li96++UBzTus6s7fPW/8fvRe42xROzPO1OL/60+gIteHTjqcOJ/eXtwswuTvt5OzLytHG9vt9J32nUJqz0O91uF3bs4jSutfo5XpuB3gGpfQBYJCdkaezhDAX7Wjnz4f4IJUfTdLC7Qz5faxaMzYb5/AGKxYekWUqz381IjqaleoN9IUoMj9DB7g6XbHISwyPSOYyD3R1F+dGBQelNC2+5ydG7irdjsfgQV+obm3Vj1yZH09Rs1BWziEwWJn+5VOT2ixOfMj2IWrOTjHLpkGLxIUlmnvrt2scMue20yj3Y3aHU3QmFb5OjaTp4Y24bOby+MJPHKz3NfJAYHqHaybHSNm92WrPQMp30MGojRjGs1kEuv/z/7N9a15m1fd76rfixVc5dRzbXs1v0Jl+fx6sbbx127W/FLk77eTsy8rZxrb7fSd9p1Cas9Dvdbhd27OI0rvXs6UZfDToHUvsAsED1qELNRp0W56c0fw/2hWhsfEZKEYjFhxQP22a/m+HzX1P8Hb4Rkda0mMlmVA67NjoQs6yzGzQbdcpvb1L1bUVxk2s26u91PKPqUUW6QZdLRcXibycy8lzLHoTY4KnZqNPB7o6UctYJG9nl3LfKG3wsPiSlxKgfIPTg8UW39TTzI3vQGhufIaJW6lDyw7QFO8Y0fzeKYTuorzNq+1brd8uPPDZn56jT8KIDMSkdjMcWRrq5UYeZ/a3gtJ+3KqOVNq7X9zvpO43uG270O1o6M9xqF1bt4kXMeWUz4C0YSAFgAfbQ8fLrH3RvionhkfcP3UVpHUIqPSHNuJn9bkceXtnMytG6zkm5vCx+PkXRgUEaGz+f/WN54+H+Vr46u6GF+yPk8wekQYxbuptdG4sPSWuiioU9CvaFpBteJ2xkFyZbs1F3LBuPL7qtJ48f11afUSo9Ib3xVD8MGZWvV7ZRDHupr5363fIjj8153vSZYaabG3W4jZv9vBlO2rjX9w03+h07MjHststu9OndshlwBlL7ALCIzx9QpHjpnROLD9H03CKl0hOUE7KWftej2ThT/K2Wg0c2I/SudVquEWyXJPmNTr2TUbGwR6n0BH313WvKLKzS9Nxi243GiYw810YHBinYF6JiYY+KhT2KxW91zEZO8fkDbWlbxcIe+fwB0xlOO77opp48fvT5r0l+VKcLmqFVPk8MO8Wo7dup3y0/8sa9+hy1PnpY0c1uHV5ht5+3W5fdNu7lfcOuTLy43S6s2sXtmOuEzYC7YCAFgEUSwyOUE7KKDrlcOpQ6VPn2qc1GnWqnx4q0AbPfjVDnrBcL+4oZTjPZjGC7BbGUB/nWrE7KlXOeRnS+3a36WO3kuO3bGuXSoelDnhMZea9NfDBC+W2ByqVDSnwwYqsMJ2jZj4fE8IjCt9WjCuW3hLbZcTZQNJKfxxfd1JPXj+w477oVIv02whPDTjFq+3bqd8uPPDZn60rk8cez/saKbk7q8AIn/bwdeNu43rVe3TfsysSL2+3Cil2cxpxWP9cJmwF3QWofABZh25DOzz5QHE+OpqVUDnmOdLAvRI+mPpX+NvvdiPCNCM3PPqDg9f9Q7fQd+XzKdBwz2YyYnlukjfVlmp28Ix0bG5+hRF/IUblyfP4AJUfT0ravqfSEtKUtO8a2p60eVaQHvVh8iDbWl2ljfbnNbuxm5ERG3mtj8VuUE7LS2yk7ZThBy348pNITlKOs5Fu9LXUfTX1Ka6vPFWmVYw9nFOsEeHzRTT15fJAYHqH52f+Sz3/Nkm9028h7WxrFsFOM2r7PH7Bcv1t+5LF5Kj2hsBurh289J59uTurwAif9vB1427jetUTe3DfsysSL2+3Cil2cxpxWP9cJmwF3+ZcoimK3hQDgIsJmGbUeOsxynO3kQD++f5um5xalGwYR6c6mG8lmhvx7Mm6Wa5eckKVmo675bRAians4cSKjG/p1w0ZWZCMi09jTW9Rs1Rfd1NPMB4vzUxS9OWjrAcWojXiBlbbPgxd+7OW47xbdWOvC28b1rvXqvmFXJiPcbhde2MVJnUTu2wy4D95IAWATnz9AYX9E9zeza+0S7Atx5bzrycZTvhfl2iW/JbSt32AbPWilUTiR0Q39umEjK7LxoBcDVn3RTT2NfMC2QLc78OvWWgWets+DF37s5bjvFt14CHZSp5f3DS9xq114YRcndYKLAdZIAQB6GvWC32aj/v5r81nkjXeYy+CLZqNOOeGVZnrmVeEy+BEAAHoBvJEC4ILQ2m3s6s1SZf5nlfLbAs1O3pHSHdh2tm6tPQJ8XHRfrCxlqFw6pOjAID2a+qzb4nDjdtu/6H4EgOjq3hNBb4E1UgAAAAAAAABgEaT2AQAAAAAAAIBFMJACAAAAAAAAAItgIAUAAAAAAAAAFsFACgAAAAAAAAAsgoEUAAAAAAAAAFgEAykAPCQnZKUvvvcq5dKhtAUyAAAAAADgAwMpAFyielRpO5bfEqh2+q4j9TcbdZqdvKMphxErSxnL17hBN+o0wq79AAAAAHA1wUAKAJdYW33e1fp9/gBFB2IUvB7qtim46La91Fw0+wEAAACgu2AgBYAL1E6OTVP4yqVDKpcObZUvv65cOtSt69HUpxfiS+889jK73i5GtkwMj3TbNAAAAAC4IPy72wIAcBHIbwl08GaHaifH5PMHKDE8Qqn0BBG1UtRWljJERPT4/m0iIpqeW6TowCAREZVLRVpbfUbh/gjVTt9Rs3FGj6Y+k34nIioW9ignvNIsn6iVfpdZWKWVpQyF+yMUvhFR/C4/L3V3gsL9ES7Z1deWS4eG58jJCVnKbwlE1Hqbk/zwLiVH01Q7Oaac8IqqRxWqnRxTsC9EqfRDisWHTO1lZoeD3R3KCVkKXg9Rs1mXBkHBvhAtvPyWS18jW64sZRS+M/NNsbBH+S1BSgcM9oUoFr9lajsAAAAAXHwwkALAhJyQpfLvhzT9f7ygYF+IyqVDym1mKe8TKDmapnB/hB5NfUYrSxn66rvXbdfXTt7Rwsv/ld4UbawvU24zS5mFVSJqDQ4Odnek8qtHFdp4tUw5yioeyHObWcr8zyoF+/RTz9QbR5jJzshvbdLY+IzhOVo2WXj5rXQN08/nv0bRgUEaG58hnz9A+S2BNtaXpYGUnr3M7FAuHdLG+jJlFlalgSJLD3w09aklfXlsaSZTLD5Ea6vPpYFXs1GncqlIPv+17gQqAAAAADoKUvsAMOFgd4dSdyekh+7owCAlR9N08GaH6/rE8Igi3S4WH1JsaJATsjT2cEYqP9wfaZW/u9NWjtmDv13Z5WVHBwYpMTxiqN/B7g4lR9OKa9jghr21YTonR9PUbNRNN3EwswN7uyV/25YYHqFyqehIX7sy+Xxs4Hj+/1h8SPE2CwAAAACXF7yRAsCA6lGFmo1628MxexvBHu6dlr84P2V6rtU3HVZkV5cdvhHRXYd0Xm5M8/dmo0757U2qvq0oBlBGW6zz2CF8I0LNxhlVjyrSYKpcKkqbQzjR145Mwb4QjY3PSCmCsfgQxeJDF2KNGgAAAACcg4EUAAawB/Zmo+7JAzIr/+XXP7hevhPZjXauk7950mLx8ykptY8NXNhaKCd2CPe31jKxgU24P0I+f4Cm5xYd62tXpsTwCMXiQ1QuFaX1W6n0BDatAAAAAK4ASO0DwASfP6BIHyNqbTLg8wccvY2Sl18s7HVV9mbjTHFOuVQ01U1LZrYLnnwQxbvDHo8dioU9SqUn6KvvXlNmYZWm5xYVgxy3fcUjE0vpm55bpFR6gnJC1nI9AAAAALh4YCAFgAmJ4RHKbwlSalr1qEL5LUHx1uE81ay1tbZRGptW+TkhqxhwlEuHrgyueGQnaq0tUp8Ti9/SLTc6MKgol21nrrZD7eRY83tRWvbisYN8Uwsn+rrlG/n26c1GnWqnx1La4Mb6srQ7IQAAAAAuH0jtA8CEVHqCcpSl2ck7RESaW2r7/AFKjqalB+dUekJ3xzut8omI5mcfKI4nR9PSTndey54YHqHFz6dMt0hnTM8t0sb6slQuEdHY+Ix0HbMD2/q8elRpe3OkthePHWLxIdpYX6aN9WXp92BfiB5NfSql/pnpa9V+RjKVS0VpC3i5LEStgZWVATUAAAAALhb/EkVR7LYQAFwE2EOxV5sJsDca8l3prPL4/u227yBZkd3q5hny7zh5bYeckKVmo06p9ISkB/tmFdH5FuhW9HUqE/tNqx6v1tUBAAAAoDdAah8AnPj8AU8fjH3+gKNBlBuyWx0QBftCrg6ijOzQSjdU7ooX7AtRdGCwbR2W274y8o1ePRhEAQAAAJcbDKQAuOCwty9s3c5l/Y6ReuOHZqNOxcIe5YQsdskDAAAAQMdBah8AF5zqUUXaEtzK2qyLRu3kmPLbAhULe9LgkX082OlaMgAAAAAAq2AgBQAAAAAAAAAWQWofAAAAAAAAAFgEAykAAAAAAAAAsAgGUgAAAAAAAABgEQykAAAAAAAAAMAiGEgBAAAAAAAAgEUwkALggpITsm0fou0W1aMKzc8+oMf3b9Pa6vMLJTtoAZ90h2ajTuXSYbfFcAziRxvYpffpdR9dlj7isoKBFLjQ1E6OaWN9mWYn79Dj+7dpfvaB4qOtbvH4/m2anbwjfb9ICyaDF1SPKm3H8lsC1U7feVKfVVaWMhSL36KFl99yfcfKC9m1bNQreCGb22X2UjxdJapHFVpZynRbDMfYjR95HDcbdZqdvNPTbdlITq/66ZWlDNeDdO3kmB7fv+3qPbBcOvTsvtYr9Hrfd1n6iMsKBlLgQrOxvkw+f4AeTX1GL7/+gWLxW7S2+tyT2SWf/5ruDepgd4eC10Oe6cnzlqdblEuH1GzUKZWeoGBfiML9ka7I0cs28kK2XtYXAF7kcezzByg6EPO0L3UDPTm9aJPVowqVS4cUHRjkOtfnD+AD5QB0EAykwIVmem6RUukJig4Mks8foFR6gsL9ETp4s+NqPa2b0y062NUu92B3h8I3rA8g5LOM5dKh5qxj7eTYdGCod+1VgcdGXuCW/3pNXyfxVD2qtMlWPaq0zdbXTo576s1DL6f2uI06bpnuese9QiuOE8MjjvWxE7tW41Ytp1f9dLGwxz05pSWXFzi1NzufpazJ7aZ1zIlsVsvx6l7qRoyC3uTf3RYAALfx+QPk811ztcxmo06JD0YovyVQ9aiiuLFVjypUOz2m5Gi6baCV3xLo4M0O1U6OyecPUGJ4hFLpCen3laUMjY3PUE7IUrg/QrXTd9RsnNGjqc8oOjCoeKXP0ium5xal2clyqUhrq880ryVq3YSZzEREwb4QxeK3FDKYYaTDwe4O5YSsQr6vvntt2b61k2PKCa+kh5lgX4hS6YfSzKqRHmY2MiInZCm/JUhxk/zwrpSaaOY7J/4LXv+Pob5G8kVvDtrW1ywezOKJxy4HuzvSpIbcTsHrIcosrErHNtaXKXwjQrWTY0cxahY7ZrAYDl4PUbNZlx68gn0hWnj5LbfevOfkhCwd7O5Qs1GncH/E9oOvk9hdWcpQZmGVVpYyFO6PUPhGhFLpCd3j8vjJCa8M9eP1i17bWFnKtMWz036UNw6sxG1+S5DkdNpPmxG9OXhet0bMsONE1JG3UU7tza7Pbwvk8wWoelSRYrdY2Fcck/uDp60bxbBRm3HqIzPZrNjMrT4CdAgRgEvE6T9/i5P3kuLpP3+7Wu7kvaQoiqL4zZfPxO9ffaH47ftXX4jfv/pC/OP3onSeKIrij5tr4ounTyRZ/vi9KL54+kR8/dOmotzlxTmxUT9TlPfi6RPpb3W58mu/+fKZ7rV/vf1TnLyXFP/4vSiKoig26mfib7/+Iv3NA48OevKZ2VMuR6N+Ju7/vC3p8vqnTfGTjz/i1sOODFq6/fX2T269nfjPSF8e+ezoa2ZHs3jitcv+z9tt+r94+kTRLhv1M3HyXlL85f/zk+MY5bGlHsyOzK6i2Grj33z5zNQXar2dnNPp2GVxq+4n9Y7L/cp+++vtn+KLp0/EHzfXpGt527Ta/moZ5OW41Y+aYSVumdw8fRBPu+Ll9U+b4tNP/qs4xu558hh2Ez0fObE3swnjt19/ESfvJRX31t9+/aUtXnhiSi+GjdqMGz4yk43XZm71EaBzILUPXBqajTqtrT6X1up4QSx+i4qFPWnTiWajTsXCnuaM0cHuDqXunssSHRhsvbVSpR0mR++Szx+Q1THEnfKUGB7RJrhAzwAAgABJREFUvdbnax1nv7Pced4ZNis6OIXNMjNZk6NpajbqrZx/F/TQ0y05mlboxmZ1rehtx39G+vLIZ8vGHHY0iideu7AZetZGyqUiRW8OUnRgkIqFfemYzx+g/9v//f/p2Lc8ttSDzRzL7ZoYHqFyqag4j0dv3nPUPmVvG6zgRuwmhkc0+0m94zkhS2MPZ6Tfwv0RzbfwbvjFqu1b5dvvR1m5vHFrte8xa1dWylGnxB682Wm9eenw2lSn9pbfM9lbG/mbpVh8qC1eeGNKK4bN+lOnPuKRjcdmbvURoHMgtQ9cGnJClsI3Ily7xtklFh+inPBKGjwVC3sUvN56EJPnPLMbsvqGG4sPSZtheDXYYwT7QjQ2PiOlOMTiQxSLDyk6ciM6qUOzUaf89iZV31YUNx+W2uBED2PdYl3R20hfM/ns0ql4YAOT8zayT6n0Q/L5Wpu1JEfT7xfPxxzLxGNLI8I3ItRsnCnSdculomITAR69m8069znq1KvoQExKN7LmB2ex6/Nrpz9rHWflLs5PdcQvdvRxipW47RbsYf1gd4fGxmeIqJUKl/zQu3tet5HHC29MqWPYi/5US0634t1pHwE6CwZS4FKwsb5M1bcVmp5b9LwutukEu6FpvY1iD2XNRt3RA79TEsMjFIsPUblUlNaCpNITXDnXndRh8fMpig4M0tj4+Yy3fMtdJ3oY6aalVyf0NtPXSD4ndCoeojcHpYX6zcYZxeJD79cQZKXF5IkPRhzLxGNLM51S6QlpgBDuj5DPH1D0Izx6WznHKd2IXVbuy69/4C7XiV+81kcPK3HbLVqDyGfS+tDayfGV2aXPbkx51Z+6IZuWnOBigdQ+cOHZWF8mIqLMwmpHbraJD0aoelRpfcTvVP8m5vMH2lKEioU98vkDnr+NUssRiw9JOxyyzSF4r/VaB7azkvwGpLXTkhM99NDbzt5LvXn1NZLPCZ2Ih3B/hKpvK1Qs7Entg83457c33z/83XIskxVb6lEs7FEqPUFfffeaMgurND232NaP8OjNaxu1T5uNM1t+7HTs+vwB7nh0wy9e66OF1bjtBq0daltvydjbs25O1nUKt9p6r8pmJKfdPgJ0BgykwIWGvYlqzWgfKv6Tn+Pmx+xau4oNUX5LMExDSgy3dvmTp2vltwTLb1HOU47Ot4zlRb79a7NRp9rpsW5Kj5c6WNGvdnLc9j0WMz3s2Cg6MKjQTb59sZt6q2W7/v5Ga6SvmXx2Y6JT8cBy/4uFfUVaVvRma70JSwF0KhNP7PDYxOxBlEdvnnPYmiL5OXprjIzoVOyqbZATsooHxHLpUPPhlNcvPHHciT6IYSVu7ejiFokPRiTb21kr6vY9sRM4betGbabbsslxq48AnQOpfeDCUi4dSh2M1k2BbcPdbNRdv6mxTSeMctNT6QnKUZZmJ+8Q0Xl+u5Wtx9l1ydG0pGMqPcG9DqxcKipyq4N9IXo09Sl33Tw62Fl8rdaPbb3MZEylH0ofl+TRw46NpucWaWN9WdKNiGhsfIYSfSHXfKcnm5m+ZvLZjYlOxAODLd5XLyDPbwkKWZ3IxBM7ZsTiQ7Sxviy92ZbLwB6QePTmPUfuU1aPlbVHRJ2LXTns+vnZB4rjydF021t5Xr9oxbFWvV7oowdv3Kpx0k9bJTE8QvOz/yWf/5qttD4v7ole47StG7WZbssmx60+AnSOf4miKHZbCAC8pNvrlNgNq1syuKF/t3VwSw8t5N8N6kW9jeSzQy/GQ7faKFv7kkpPSPWz78EQUduAjkfvTsZMN2KXvTXs9HqOXmiLvcTi/BRFbw7aGlB2+57YTdzuTwHAQAoAAMCV5PH925ofMz7Y3aGD3R3Fh1gB6BVqJ8c0P/uAFl5+iwEBAF0Ga6QAAABcSdQbKLDvwuWErCdrcABwSrNRp5zwiqIDgxhEAdAD4I0UAACAK0nt5Jjy24LiI9vRgUFpS3YAeomVpcz7b1kN0qOpz65seh4AvQQGUgAAAAAAAABgEaT2AQAAAAAAAIBFMJACAAAAAAAAAItgIAUAAAAAAAAAFsFACgAAAAAAAAAsgoEUAAAAAAAAAFgEAykAbNBs1KlcOuy2GFyUS4fS1s4AGIFYuTpcpD4MAAB6FQykALBB9ahCK0uZbovBxcpShqpHlW6LAS4A3YiVZqNOs5N3bNWrvsZJWVcNsz6sdnJMj+/fbvtPPfjKCVmanbxDj+/fpvnZB4oPHBMRFQt7NDt5h+ZnH2j6a3F+CoN3AMCF5d/dFgAAAMDVxecPUHQgRsHrIcvXrq0+p4WX37pSFlBSO31HRETTc4uK4+H+iPTvg90dOtjdobHxGYrFhyi/Jbz3SYSCfS0f5IRX9GjqM2o2zii/JdCjqU+l6/PbmxSLD+HDsgCACwveSAFwQWAzwSwlp3ZyLP2mdcyr+tm/teqqHlXajlePKm0z0bWT4669NVDrcVXSm7TS9jqd3qUXQ4nhEd1r9GK6dnKs+ZtRWbxyuWUTnjZjdC2Pv7yM53B/hKIDg4r/5IOe/LZAqfQExeJDRESUHE1TcjRNB292pHNqJ8cUHRikWHyIyqWi4nj1bYWSo2nX5AUAgE6DN1IAcJATsnSwu0PNRp3C/RHNh7ViYY9ywiuqnRyTzx+gxPAIpdITbeXktwQias2eJz+8Kz1ImF2/spShsfEZym8L5PMFqHpUkV27rzimrpddXy4d6srGU39mYZVWljIU7o9Q+EakrYyD3R3y+QNt1wWvhyizsCod21hfpvCNiDS7zWM7XjvWTo4pJ7ySBnXBvhCl0g+lhz1mx5yQpXB/hGqn76jZOKNHU59RdGBQt85iYY/yW4I0AAz2hSgWvyXJaaaDVR3N9LAq38pShqbnFhU6svSur757zR0rZvUY+UcvhtSyPb5/mzILq7S2+lwx2EqlJ8jnDyjS0h7fv01EJF2vpWd+S6CDNzumbctKTPD4x6jN8MjE4y9e2Xn6MLV+Rm+K2EBWKx6rb7UnSeQDw5zwipKjdwkAAC4yGEgBYEJOyFL590PK/M8qBftCVC4dUm4zqziHpbhM/x8vKNgXoupRhTZeLVOOstLDEStn4eW3UjnsQYXneqLWjDNLZSoW9mht9TklhkcUxzbWl9se0PNbmzQ2PqOQP+8TpMEHb/25zaxkBy3C/RE62N0hSp/LG7weUjxssll19hDFW7faH1p2JCLy+a9RdGCQxsZnyOcPUH5LoI31ZcUDX7GwRwsv/1e6bmN9uaWbbLAnp3pUobXV59KDbUuHIvn817h0sKojrx688lnBKFZ46jHzj1kMMTZeLUv2qp0c09rqc8pvb1IqPUHh/gg9mvpMcxCoFy+sLK34txMTvP7R0pdXJl7MZOfpw9TUTltvjednH0htVz5gZql/6sFWdCAmDaIV5cnexrGYCPdHKL8lSANJAAC4aCC1DwATDnZ3KDmalh6EogODFL2pnKXOCVkaezgjnRPuj7RSXHZ3DMthb2R4ridSpi2xBzb5g1ssPkTNRr0tbS4xPKKoNzE8oki/sVK/0QNwdGCQqkcVaea5XCpS9GYrJahY2JeOtdayDFqqm8eORCQ9lLEHvORous0mydG7igfAWHzIMNXQ5wtIZbP/x+JD3DpY1ZFXD175rGAUKzz1mPnHLIbOfXReRrAv1JLDwF56HOzuUOruhEIedfpZqz6LMcHpHy19eWXixUx2nj5MTSo9QY+mPqOx8Rl6+fUPlPywFa85wXgApibYF6JiYY8O3uxIfVVuszWBkBOy1GyeUfWoYrlcAADoBfBGCgAD2KBAPcssn3Vl5yzOT5mWEx2I6f5mdL1V1Gsr1G8mwjci0gyxlfrN3nAE+0IU7o9QsbBHieERKhb2KZV+SD7fNSoW9ig5mqZy6VCyg1Xdjewo1z2/vUnVtxXFg62TncGCfSEaG5+RUrRi8SFpkbyZDnb9a0UPI/msYhQrZvXw+If3LZmWHFZ9eC6PctAQiw9JaYM8gzon/lHr4aVMRjYw6sP0kMuYGB6h2ulxaxBokJKq5tHUp7S2+lz6d07ISrIc7O7Qy69/aA2kNrPSm2wAALgoYCAFgAHymXSzc15+/YPugys7R+t3nuvdRr6rmdv1R28OShtMNBtnFIsPvV9PkpXS+hIfjNiq28iOjMXPp6SUK/ZAytbROCExPCItmGcz86n0hPSW0EwHq/a1qoeZfHZR74BnVA+Pf+zC0xb1rmk26q7LZDfOvJTJqD43kA++2CBLPfBrNs4Uf4f7I1LqMdtgYnpuURpw+vwBCl7/D7asBwBcSJDaBwAH6m+jNBtnir99/kDbOTzlWL3eLmp5y6Wi4mHHzfrD/RGqvq1QsbAnzTyzN1X57c33C9RvOapb73y2M5r84dbNnQxZKtv03KKUmsSjg1Ud7eqhJ58eWmWaxQpPPW7EkloOu2X6/AHFbnGsLJ8/YPvNj9M4syuTk1g268N4UA+S2HorOdWjim5KqXyDCWx5DgC4DGAgBYAJbC0Lm0GtHlU01w7lhGzbgmr5w0t0YJDyW4JUjnz7Zp7rnaCWP78lKAYzbtbP1mcUC/uKB6rozdY6qWBfSPEwZrVuIzuy2Xf2cMc2KXAD+fbVzUadaqfHUtqWmQ5WdbSjh5F8ROdrVczqN4sVs3qM/GMFdRsrFvYVb9fUNtJL+0sMjyjkYTo5eVPnNM54ZOL1Fw88fZiaYmFP8ZaI7TrJ3iYTESU/TFN+W5D8Wyzs0cHujuaGKGyDCXmfwDZeqR5VJJturC9fmI+dAwAAUvsAMCGVnqCN9WWanbxDRK2b/6OpTxVrXtiagfnZB4prk6Np6aFiem5RUQ4R0dj4DCX6QlzX24Util/8fEp3q2W362ebTqg3wshvte9KZrVuIzuyrdfZgxjbkrp6VHE8A14uFRVrSlgc8OhgVUc7ehjJR3S+VoWln4X7IzT2cEYRxzyxYlaPkX+sEL4RofnZBxS8/h+qnb4jny+g+Diszx+QtlRnPtDa8S6VnqAcZSV5eLaeN8NpnPHIxOMvXnj6MDVsh0aFvWWfGSA6XzfF4prZReuNVG4z2/ZxX7bezue/RmPjM0TUGhA7Wc8IAACd5F+iKIrdFgKAywKboTdalyBfuG/neieYLWT3un4jrNZtZEcvZTR6UDbTwWv78qy74d3MwOg83nqI7Pnn8f3bND23KA2iiMjWDoRqmYl6K6WMRya3N5+wKh9PvLq53qtTa8cAAMANMJACAADQU7CBlNPBEwAAAOAlWCMFAAAAAAAAABbBQAoAAEBPER0YRHoXAACAngepfQAAAAAAAABgEbyRAgAAAAAAAACLYCAFAAAAAAAAABbBQAoAAAAAAAAALIKBFAAAAAAAAABYBAMpAAAAAAAAALAIBlIAXCDKpUNqNurdFkOT6lGF5mcf0OP7t2lt9Xm3xbnSXHRfNBt1KpcODc9xsy30sr1yQpZqJ8fdFgPocJH845WsF8kGALgNBlLgQlMs7NHKUoYe378tPQRVjyqu1/P4/m3KCVnd38we+txiZSnjiX5uyRaL36KFl99ScjTdbXE8s1Ov2l9Or/nCKtWjCq0sZUx1dMsXvWIvLX3yWwLVTt91TaZepNmo0+zknZ5oixfJP2ay2rXrRbIBD3btID+/l2IUeAsGUuDC0mzU6WB3h2LxIcosrNLCy2/J5w/QxqtlT+rLbwnoFHVgbwdS6QkK9oUo3B/ptkievVnotTcWanrRF71ML9mr12OrV/D5AxQdiFHweqjbolwqYFdndpC3X9jy6oCBFLiw+PwBmp5bpMTwCIX7IxTsC9HY+AxVjyquD3jC/RFKjqa5BmlaKUfqVCX2b3Zcnhahdcxt1LJcpLQMtexabwNrJ8ee6OR2uU7K8sKHemV2O157FTd9wBNbevHeTd2dxoRdmyWGRyyXx9N3OLWJ3TKrR5U22bXuZbWTY1fub3qy2rGrWzboJfTsoIdW+7VaBpH3MQrc59/dFgAAN2EdmduzytWjCk3PLdLB7g7ltwTD9J+VpQxNzy1SdGBQcf3KUoa++u61dM7Y+AzltwXy+QJUPapIZRYL+4pjqfSEZh3l0iH5/AFKDI+0nVMs7FFOeEW1k2PNc1aWMpRZWKWVpQyF+yMUvhHRrIeR3xLo4M2OZnkHuztS2uPj+7eJiCQ99cgJWcpvCUTUGhAnP7wr6W9Ul9x2OSFL4f4I1U7fUbNxRo+mPqPowKAiLYzJw/xROzmmnPBKemgJ9oUolX5IsfiQqWx65TYbZ4q3lcG+EMXit3Tt+fj+bcosrNLa6nMpXpmOPn+A249aPgxeDxn6gse2WnHhJF7NYpHZ/GB3h5qNOoX7I5YeQMzagpEMRrFrZiuzdsSjN8MoZomIyqUira0+04x3K3bWQi/ezdqKk5jgaQM89cttxHwZvB6iZrMulRvsC9HCy28VMuv1HXoUC3uGbZzHP2YxdbC7Qz5/oK09Bq+HKLOwKh3bWF+m8I0IhfsjpnJpYSarHbtasQHDzL9mupn9ztN+je5DcjuYyarXfrWeBZze30APIgJwSfjt11/EF0+fiD9urrle9uS9pFTHJx9/JJ7+87fitz9+L+r+LYqi+MfvRakMds43Xz5TyD55Lyl+/+oLxbFPPv6oTY7lxTmp/j9+L4ovnj4RX/+0KZ2z//O2+OLpE+mcv97+2WYXdTlG/Li5pihPq061flbL++vtn9x1Mdkb9TPp2PevvhBfPH1iKk+jfibu/7wtXfv6p02FjY1k0yr3r7d/KvzdqJ+Jv/36S5v/1T6U13H6z9+acWvmRz0f6uluxbbqMu3GK08s6sllFk88bYFHBi178djKyF48eqvR8xuzvVG826lPT08W72ZtxW5MsGvN2gBP/aydMdvJ2+o3Xz5TyCf3l5Et1Zi1cR7/8MQU86E8Hlg7YNc06meSLHb7HjNZ7dqVxwZyjPxrppvZ7zzt16yvV5dvFItyW6ntIveHW/c30FsgtQ9ceNhmE2urzyl8I0KJD6y/TuclFh+icH+EcsIrx2XJZ93ZzJb8zUgsPkTNRr0tjSMxPELBvlbedXRgkBLDI3TwZkf6PSdkaezhjHQOS0s82N3RLceIg90dSt2dUNSZHE0r6rTCwe4OJUfTivLYG0TeupKjdxVvb2LxIa50FzYDyK5NjqYVNjaSTbM8X0Aql/0/Fh8ynTmU1xHsC7V8qPIPjx95fWjFtnpl2olXHh20bB69yTfzatYWeGWways9e9mp00xPo3i3W59RvJu1FbsxwTBrAzz1M9hbAnlbTQyPULlU1KjXWt/B08bN/MNsbRRT7G06Swsvl4oUvTlI0YFBKhb2pWOttTeDtvseHlnt2NVKuWb+NdPN7Hee9mulr7cSi0Z4fX8D3QGpfeDCMz23SEStTv/gzQ4tfj5FCy//ty1Nyi3Gxmdo8fMpKhb2KDoQ81w/9Xorn/+a4u/wjYiUbsFuxIvzU6blqsvRgpWnvjnH4kNSWg7vg7yyvJjBb+7UpWfL/PYmVd9WFDdC9m892fRg6/JYalcsPkSx+JBp7Gn5UO5nXj/y+NCqbXnLNLIxrw7sHPnDNxFRdCAmpdxYtaN8nYKV9mDHVloy2KnTCXbrM4t3o7ZiFa1rzNqAlfpb155R9agiPQyXS0VXFvrbbePatjaOKZaulxgeoWJhn1Lph+TzXaNiYY+So2kqlw4lf7khlxle2tXIv+H+iKFuRrrz2LrZrFvq691oC524v4HugIEUuDS08pYnqPz7oTTb5FU9ieERygmvaGzc2UOnK/LIbmrsZvfy6x9cuaGy8pqNuqvlaZXldl1aLH4+RdGBQRobP5+9ZzntRrIZkRgeoVh8iMqlorSeIJWesLTORz0T2ut+tFKnkQ5ur2VUP+DZsaNTW7ntO6/qM4t3o7bipR526g/3t9amscFkuD8ibUbkBk7bOG9MRW8OShtMNBtnFIsPvV+fk5U28JBnXLjR95jJ7ZVdzfxrppvZ70a2ttrXu9EWutEHg86A1D5wKfG6o0qlJ8jnC2imOGjh5o5mzcaZ4u9yqaiaIQ9QsbDnWn0+f7uexcIe+fwB2zNoevJ5Ude5nVq7iMlvhlp+sWM7lloyPbdIqfSE7jfHGGofatV5EfzIUyePDupz1PbRw6wtWJHBTVu57Tsv69O6jretOMGoDdipv1jYo1R6gr767jVlFlZpem7R1fuA1Taudb1ZTIX7I1R9W6FiYU96S8veVOW3N6l2ckyx+C1X5TLDC7vy+tdMN73fedsvT5txsy10ow8G3oOBFLiw1E6OFVuNNxv11hfWT48Vr8831pdNP+5ph9TdCc30o2BfqO2hwM2HKra7GVErXSC/JShurq23ZcovzTuRITE8Qvktoa1Ou7Oe0YFBRXnybWPdqus8DeV8i2b1sdrJcdt3e4xk0ytXvs1zs1Gn2umxaXqceu1KsbDfpmOv+5G3TjMd2FoeuVy8a4nM2oJdOzq1lZ06tWLLTTtroRfvPG3FKUZtwE79bOdGL7DTxtXwxBRbC1Ms7CvuYdGbrXVSwb6Q4oHbDbl4dHfbrjz+NdPN6HceW5v19VZk1TpPq/12ow8G3oPUPnChyW1mFYswg30hmp5bVNxsmo26rbx+M9hCUfVg6tHUp7S2+lyRMjb2cMaVNRNs0evi51O626eyf8/PPlBcmxxNt61F4SGVnqAcZWl28o5CBnmdbAE0D9Nzi7SxviyVR9Rad5Z4n5ppVhevnZKjaWkAnUpPSNsws2NsC9vqUUV6UDCSTa/cZvNMEQPBvhA9mvrUUL7wjQjNzz6g4PX/UO30Hfl87ekydv2o5wu3bGsFHh1S6QmFzZn9zNeHmbcFHhm07OXUVnZ8pxezXtVHZBDv73U1aitOMWoDbBtwK/XH4kO0sb5MG+vn3/pjseQ0hbRcKlpu41o+4okptumEetMOrc9uuCGXGV7Ylce/ZroZ/c5ja7O+3oqs7Dx1+1XTjT4YeM+/RFEUuy0EAE5oPURd073Bdisn2evFo2bls1k6t9ahsMGoW7aUf4/E67rclE3PNryyPr5/uzXYf/8ASUSGg9Be9yNvnW7qoIanrdmRwamtvNbbrfqsxrtTrLYBM9gaIq3vUBGRK4MLt+4jbrc/L+9vnbCrE914ficytnWnY59XLnBxwBspcOEx6wC71Vl53THz6B32u/cA57YdjeTv9g3Gqu/syKtO0zEqu5f9yFunmzqo8cqOTm3ltd5u1det9Rm8bcCM/JbQtnYn2Bei6MCg7S3n1bjVbtxuf162507Y1YluTn9n+nSabt/fgLtgjRQAAAAALizqzTaajToVC3uUE7JYf+IA2BUAc/BGCgAAOkh0YBAzkuBK43YbyPzPKuW3BZqdvCOlTbHtqu2sCwUtYFcAzMEaKQAAAAAAAACwCFL7AAAAAAAAAMAiGEgBAAAAAAAAgEUwkAIAAAAAAAAAi2AgBQAAAAAAAAAWwUAKAAAAAAAAACyCgRQAXSAnZKUvql9kqkeVjutxWWxnhXLpUNp++KJQParQ/OwDenz/Nq2tPu+2OOAS0GzUqVw6dK28q9iXAADcBQMpAFyk2ajT7OQdqh5VFMfVf+e3BKqdvnOt3pWljOkDRu3kmB7fv634wKJTXRfnpygnvHJNDy28tt1FYGUp02aHXmdlKUOx+C1aePktJUfT3RZHEy9s6kWZev3KVaN6VKGVpYyj6+VclL7kMvj/MujgNrDJ5QADKQBcxOcPUHQgRsHrIcVxL2fkq0cVKpcOKTowaHqezx9w7UOKxcIexeJDVCzseTqri7cZFw/2Bi2VnqBgX4jC/ZFui6SJF7HlRZl6/QqwxkXtSy6D/y+DDm4Dm1wOMJACwACt1LXqUaVtBql2ciwdSwyPtP1mNNAolw4dpasUC3tcD6rVo0qbbE442N2h6MAgRQcG6eDNjmvlyvHadrzI69CrUyv9Tp2KxP7Njst10zrmtR6XNa2Jx19msWUHL8pkqNsuj45W7XRZ44HI276kE3Z0s+92opuT/hYx3BmbgM7y724LAEAvc7C7Qz5/gFLpCenYylKGgtdDlFlYlY5trC9T+EaEwv0RWlnK0PTcIkUHBhWpKI/v3yYioum5RSIiKpeKtLb6jML9EaqdvqNm44weTX1m+mZJi+jNwZYM/ZG2jpkdJyLX3kZVjypUOz2WystvCwobEbUGePktQRpgBvtCFIvfajvPqA6ntisW9ignvKLayTH5/AFKDI9w1y9nZSlDY+MzlBOyunXK/a7W4avvXivKyW8L5PMFqHpUkdLeioV9xTEtOVkKp5EuRjqvLGUos7BKK0sZCvdHKHwjYsse+S2BDt7saNZxsLtDOSGr8BvTn5eckKX8lkBErVnb5Id3FemBRvXz+EsvtqIDg1Q7Oaac8EqaRAn2hSiVfqhoO1ryRW8O6pbptC1oxRdPTJrZ0ygezNqOmZ3MdOZpmzkhSwe7O9Rs1DX7Nl6c9iVmsjqxo13/uxFTPLFuJc6s6sBbtlF/0Osx7JVNQA8hAgB02f95W3zx9In09x+/F8UXT5+Ik/eS4uk/f4uiKIqN+pk4eS8p/vF7URRFUfFvds3kvaSi3Ml7SfGbL5+JjfqZdOz7V18o6rLK6582xaef/Fdx7PSfv8XJe0nxr7d/umqX7199IX7/6gvp708+/kih819v/1TYoVE/E3/79RfFOTw4sR3zHfPTX2//FF88fSL+uLlmWd/Je0lxeXHOsE6137XkZ7Izfvv1F3HyXlJhy99+/UX85OOPNOtnurA4fP3TpiWd1eXY4cfNNUUdWrJo+c1J+fL45amfx196MjbqZ+L+z9vSta9/2lT4w0g+rTLdagvq+OLR0UxevXjgaTtGdjLTmad8PT/bjSu7fQmPrE7saMf/bsWUWazLdXPjXmUnhs36g16OYa9sAnoLpPYBYACbvWYpW+VSkaI3B9/PMu9Lx1q5ztZmixLDI+TzB6S/Y/EhR4tOE8MjihRDIqKDNzutWToX16g0G3VpfZRcdvkmFj5fSy+mH1ub5daMGo/tckKWxh7OULCvlX8e7o9QcjRNB7v20hCTo3dd8Zd8Vp3ZUG3LZqPeVnZieETSJTowSInhkbaUSh6d5eXY4WB3h1J3JxSyJEfTrqV3HuzuUHI0rShfHr+89dv1F5tZZtcmR9MKf5jJ11aeh22BR0czebXigSeOjOxkpjNP+VpyR2+6PyNv1pfw9iN27WgHt2LKLNYZbvV9WpiVzdPeejWGvbIJ6C2Q2geAAWyhfLGwR4nhESoW9imVfkg+3zUqFvYoOZp+v9FDrNuiSjeFg90dGhufIaJWuljyQ3d3TCsW9qjZqGvunpVKT5DPH6BgX4jGxmekdItYfIhi8SHFzcFL2OB3cX6qI/V5gXq9lc9/TfF3+EZEsR6AV2d1OVZgdagf2GLxIVpbfS6lxzgvP2byuzf1E7Xsnt/epOrbiuKhkv3bSD4tutkWeORVxwNvHBnZKdwf0dWZp3x2jjoVOToQk1K8OoGVfsSuHe3gVkwZ+bAX4G1vvRjD4OqAgRQAJkRvDkobTDQbZxSLD73Prc5KGwQkPujOQmA1rQfKZ5RKT0h5326ti2KwGUL1zW1jfVn6jag1SxiLD1G5VJTWzaTSEx1ZNM1mLF9+/UPHBm+dRr3TUyd0ZnU0G3VP6mDl65Xtdf1ERIufT1F0YJDGxs9nm9m6GjP59OhWW7AjL28cGdmJR2ej8ntll0cnbcrr9uhGTJn5sNvYbW+9EMPg6oDUPgBMCPdHqPq2okhnY2+q8tub7wcrt7otJhG10h58/tbbMvYWzc2OnqUOJj4YkXbsY//F4rfa0qtYOsT03CKl0hPSJgSdwOcPuPbNLCf2cotm40zxd7lUbHv70gmdff4AlUtFxbFiYU96E+kGRjp4WT/b9Uv+YKXlQzs27mZbsCqvWRzx2klPZ944VZ+jbgOdwEmb8ro9OokpXh/2AnbbWy/EMLj8YCAFgAksP7lY2FekFEVvttZJBftChg9wbHZMvvW1lyQ+GKFy6ZCKhT3DnPmN9WXLH7c8eLNDsfiQpr6JD5RrtORb0TYbdaqdHltOK3Niu8TwCOWErOLmyOziBcG+kKJst+tiu5cRtVJX8ltC2wC+EzonhkcovyW0yeLW25XowKCifPW21W7VrxVb6mO1k+O2bw8ZyacXr260Ba/sqYVZHPHYyUhnnjhl603kfnay/sRuX+KkTXnZHp3GFI8PewE78UvUGzEMrgZI7QOAA7bphHpTgPyWoNiWWQufPyBtNUxEtra+tUJieITmZ/9LPv81w7S+ZqNueVDn812j5Kh2mSxvX74xh3w9Q7AvRI+mPrVWnwPbsXPnZx8ojidH066nOxIRPZr6lNZWnyvSwMYezriSR8/Wvy1+PmW41W4ndE6lJyhHWZqdvKOQTS6Lnc1XGNNzi7SxviyVT0Q0Nj5DifeDd576eW2qji227Tw7xrZDZh+zNpNPr0w32oJdzOyphVkcsU9CGNnJSGeeOE2lJxRys+vttie7fYmTNuVle3QaUzw+7AXsxC9Rb8QwuBr8SxRFsdtCAADcZXF+iqI3Bw0fFrxcZ9LJOnhkqJ0ed2zdhRsbHjgtvxM6swGzV/5lM716unpdv1P5tOTtZluwKi+T2Ukcmenc6bbpBCeyeqVnt2Oqk9iJXyLEMPAeDKQAuGTUTo5pfvYBLbz81tMHegAAAACAqwzWSAFwiWg26pQTXlF0YBCDKAAAAAAAD8EaKQAuCStLmffftBqkR1OfdVscAAAAAIBLDVL7AAAAAAAAAMAiSO0DAAAAAAAAAItgIAUAAAAAAAAAFsFACgAAAAAAAAAsgoEUAAAAAAAAAFgEAykAAAAAAAAAsAgGUgCAC0P1qELzsw/o8f3btLb63PP6yqVDajbq3VYb9DjNRp3KpcNui2GJTrelq0JOyFLt5LjbYnQU9JPegrba22AgBcAVoXpU6bYIjllZylAsfosWXn5LydF0R+rrht2ajTrNTt6xVbf8GifluE31qEKP79+mnJC1rY9TyqVDenz/tu5/TnRbWcp4Zjsv6HRb4sWLWO1k/Oe3BKqdvutYfb1AN/pJt/pIp2V1gl5tq6AFBlIAXBEu+kwWm/VMpSco2BeicH+k2yJ5hs8foOhAjILXQ5avlfvZSTlu0mzUaePVMvn8AUf6OCXcH6HpucW2/2LxIYoODHbVRp2kl9uSF/3URe/7QDtu9ZFOy/KaXm6roAUGUgBYwEnKhjz1p1w6dC39Q12uVopR7eTYUX2XMVVFKx2l0ylaRjGRGB7RvMbIF1p+1ivHilxObZITshS9OWj5IcBp3KppPTANtv1XLhUpFh9yrR7QTif6KS28KNOKznbaTvWo0iZz9ajS9sakdnLs+VuUXu4njfo2PZ/rxUMv9JPgYvIvURTFbgsBQC/z+P5tyiys0trqc0UHnkpPKGbYi4U9ygmvqHZyTD5/QDpHXc7KUobC/REK34hIv+eELOW3BCJqPewlP7wrvcLnKXdsfIZyQpbC/RGqnb6jZuOMHk19RtGBQSntSH4znJ5bpOjAINVOjiknvJJu3MG+EKXSD6WHyoPdHcoJWQpeD1GzWZf0D/aFaOHlt9y6m5HfEujgzY7u9UwOuQ5ffffatNxiYY/yW4L0sBHsC1EsfotS6Ql6fP+2ZAdGuXRIK0sZqWx2Tn5rk8qlQ13djOox8q9RTMjl44lBPT+vLGXa9DSzt1lMWeFgd4cOdnfO9ZTpaIRR3JrJb1W+/LagiGczckKWDnZ3qNmoU7g/QonhEdpYX5bixqxdbawvS9fJkR83iykjjOxjty0Z9VFmdRJ520/pyRe9Oahbpl37ml33+P5tSo6m6WB3x7DtGNlrY7319lYuy+zkHQpeD1FmYVU6Jm9PXurjRj/JI5/VflItm1k/aRRjWnp2op/0oq2CDiMCAAyZvJcUXzx9Ip7+87coiqJ4+s/f4ounT8QfN9ekc/Z/3lac89fbP9vOmbyXFJcX56RzGD9urimu/eP3ovjX2z8tl9uon0nHvn/1hfji6RPp7z9+L4qT95JtujXqZ+L+z9vSta9/2hQ/+fgjxTVMFlEUxW++fCZ+8+UzRRk8Mhqhpf+Lp0/E1z9tKs7T00GPv97+KU7eS4p//F6UdP3t11+kv+W/6dWh9pmWbGb1GPlXLybU8vHEoJ6N1Hry2Jsnpnh98PST/0p1LS/OcceFnj688cLL00/+K+7/vM19vl79cjmN2hX7++kn/1WUe/rP31J7M4spO/LJ7WO1LRnFMG+dXvVTZvJplWnXvjzXTd5Lit98+cxQTzN7sT5VbhcWY+yaRv1MksVrfZz2kzz12Okn1bLx9JN6MdaNftKLtgo6D1L7AOAgOZqmYF8rfzrYF6LE8Agd7O5Iv+eELI09nJHOCfdHpFlJOYnhEekcxsHujqL86MB5ChRvucnRu4q3Y7H4EFfKB5sBY9cmR9PUbNQVM7/ydKzE8AiVS0VFGbwy6nGwu0OpuxMK/ZOjaTp4w3e9rm6+gKQj+7+dtTByn0UHBlu+l8lmVo+Rf9XlG2EWg7zw2ttuTDHYuqjkh2ku/dyWn7esZuPMUlqflj+jN5UxZdSuiFo+V6dlHbxpvcEI90ccxa4X7ckshr2OKTN7msnXVp5N+/JeJ5dVS08ze7E3dOxNRLlUpOjNwfdv0valYyxV1Wt9eDDqJ3nquYr9pFf3PtBZ/t1tAQC4CPj81xR/h29EpJscu+Etzk9ZLoddGx2ItZ1rpVy7NBt1ym9vUvVtRfFg0mzU3+t4RtWjinRDK5eKigW5TmU81195447Fh6T0DLsP4cG+EI2Nz0jpILH4EMXiQ5Y3PNDyvTzH3qgeI//qlW9FDqtbDntpbzX57U0K34jYWnvQKfmLhb22h16e+tUDr+hATEpJIjJuV0TnA4OD3R0aG595L8s+JT9spcrZjV0v/GsWw52IKSN78rQxNXbt60afwmuvcH9Eis9iYZ9S6Yfk812jYmGPkqNpKpcOJZ27qQ/DqJ80q+cq9pOd7IuBt2AgBYAN5DNl7N8vv/7B8g2IXat1nZNyeVn8fIqiA4M0Nn7+RoltAx3ub+Whs0FSuD9CPn+ApucWXZORXd9s1D3RMTE8QrH4EJVLRSnfPJWecPRwr7Wzk1k9XuhmZ/cmr+0thw0s1LPB5dIh5bcEW7n+bsrPFoezgYyV+s0waleM1gPTM0qlJ6Q3wPIBmp3Y9cK/Rn2UV3VasaeZfHrY7Ruc9im89oreHJQ2mGBvTVtrxbLSZg+JD87r7JY+eqj7SaN67PrQir3tXONlTHeyLwbegtQ+ADhoNs4UfxcLe4q/ff5A2zEr6F3rtFwj2O5H8ocT9W5GxcIepdIT9NV3rymzsErTc4ttnb5TGX3+QFu6YLGwRz5/wJUZOZZGMj23SKn0hOF3jLR2c1L7vlwqasplVI8bPjSLQSv28NLejK++e932H0tdcbJg2i3581ub3OlCatS2l/uGp10RtdJ4fP7WGwa9N2NWYtdt+5jp3Ik6rdjTTnuwY18n11mxV7g/QtW3FSoW9qQBNntTld/efD/wvtUVfez2k2b1XLV+slN9MfAWDKQA4EA9q14s7Ctm7BLDI21ftC+XDrk6cbYLGUs/kG/P6qRcOeepea3tWdluY/JjtZPjtu9rsB2YjHAqY2J4RKF/9ahC+S3BlZQw+Va5zUadaqfHUupHsC+kkFFPZrY7m1w29QOMUT1G/rWCWQwSafu5k/Z2Gy193JC/dnJM5dKhlEpnBbb+T16/3Dc87YqR+GBEijt1io9RTBnhhX/NYtitOu32U0by6bUJu/a1e51VH7G1NsXCviI2ojdb66SCfSHFw7ZX+rjVT5rV06l+kqeP5PWRUy5SXwz0QWofAByEb0RofvYBBa//h2qn78jnU6a4se1K52cfKK5LjqZNF7JPzy3SxvoyzU7ekY6Njc9Qoi/kqFw5Pn+AkqNpWlnKSPImR9OUSk9Ix9iWwtWjijR4isWHaGN9mTbWl6Wygn0hejT1qXRDcipjKj1BOcpK+uttZ80WVluhXCoq1q4w2YmIHk19SmurzxUpQmMPZxTrvZgsi59PGW61bVSPkX+tYBaDen62a+9eQEsfN+TPbwsUHRi0NeubSk8o/Ml8zeKGbVtt1K4YieERmp/9L/n819railFMmclnZh+rbcksht2KKbv9lJF8emXata/d66z6iOh80wl5bMTiQ5TfEhRbzzuRy+w6t/pJs3o61U/qxYNdHznBi7YKOg++IwWACez7EqxjJiLdjo3NtNnJy5YvzHWzXLuwXHz5t4rY91yIqO0m7VRG+UJ8NzHLQedd1Gt2Hk89RGTr4d1KDFqxC5E36xI6wUWXn7E4P0XRm4OaD2hO1k94YR+zGO62T6y2Mbv2dWtdi9v28lIfN/pJ3nqIrlY/2e12A5yBN1IAcKJOpdDC5w9Q2G9vIGFUtpNy7ZLfEtrWRAX7QhQdGNTcTtapjF7dRHh2ruKBx/du1GNWhpv5+ReZiy4/EUlboOu9OXCioxf2cdoGvMZq27Arr1t6um0vL/Vxo590sx6zMi5SP9ntdgOcgTVSAABN1JtINBt1Khb2KCdkkcMNgEOajTrlhFe2UwwBAAB0H7yRAsCE1u5aV2/GKPM/q5TfFmh28o6UesC2ILayPgs456rG4GVlZSnz/jtAg/Ro6rNuiwPApQD9JOgGWCMFAAAAAAAAABZBah8AAAAAAAAAWAQDKQAAAAAAAACwCAZSAAAAAAAAAGARDKQAAAAAAAAAwCIYSAFwyckJWekjhwAAAAAAwB2w/TkAl4jqUYXC/cqP4ua3BIoOxLryrZrayTHNzz5oOz49t6j44nxOyNLB7g41G3UK9oUolX4obbFeLOzRxvoy+fzX6NHUpwr9mo06rSxl2j4cDAAAAADgNRhIAXCJWFt9Tgsvv+22GBK103dE1Bo4yZEPhg52d+hgd0f6PlV+S3ivR4SCfSHKCa/o0dRn1GycUX5LoEdTn0rX5rc3KRYfwiAKAAAAAB0HqX0AmFAuHRJR6+1HuXSoSJPTOmanbPZvJyl4tZNj0+vLpUNFnXbltFJGuD9C0YFBxX/ygU9+W6BUekJ6A5UcTVNyNE0Hb3YkvaIDgxSLD1G5VFToW31boeRo2rbNAAAAAADsgjdSAJiwspShsfEZym8L5PMFqHp0/vBeLOwrjqXSE4pr81sCHbzZodrJMfn8AUoMjyjOWVnKUGZhlVaWMhTuj1D4RkTxe7GwRznhle71jOpRhVaWMkRE9Pj+bSJSps+VS0VaW31G4f4I1U7fUbNxRo+mPpN+r50cU054RdWjCtVOjtvS65gNckJWtwwtmNxGv9dOjqV6FDq9rbQdazbq0r9zwitKjt7tSkwAAAAAAGAgBQAH5dKhlDJXLOzR2upzSgyPKI5trC8rBjk5IUvl3w9p+v94QcG+EJVLh5TbzFLeJyjeouQ2s5T5n9W2NUws5Y1dXz2q0MarZcpRtm0wFe6P0KOpz2hlKUNfffe6Tf7ayTtaePm/0qBmY325Ve/CKhER+fzXKDowSGPjM+TzByi/JdDG+rJigFMs7BmWoUXt9JiqRxWan30gDdBi8VuS/Cz1Tz3Yig7EKL8lqHQ4f9tWLh2Szx+gcH+E8luCNMgEAAAAAOgUSO0DgAP5QzobXMgHGbH4EDUbdaoenb9FOdjdodTdCWmAFB0YVKSsycvW2ggiJ2Rp7OGM9Fu4P9K6fneHrJIYHlEMVmLxIYWsbCDCzkmOptv0SY7eNSxDi1R6gh5NfUZj4zP08usfKPlhS/6ckOWWPdgXomJhjw7e7Eg2z222BpM5IUvN5hlVjyqWygQAAAAAcAreSAHgIiz1rHpUoWaj3pb2FosP0drqc+ntDFHrbZAadv3i/FTH5M5vb1L1bUUxgJKn0tlFboPE8AjVTo9bg0yNFEUtHk19Smurz6V/54SsNKA62N2hl1//0BpIbWaJsFwKAAAAAB0CAykAPIDtStds1G3tKMeuf/n1Dx3ZkW7x8ykptY8N8NhaK7eRp+3J12jJ38o1G2eKN3EshZJtMDE9tygN8nz+AAWv/8f07RgAAAAAgJsgtQ8Aj/D5A4pd5oha64x8/gDXN518/gAVC3uey8l2C5QPorz8gK98kERE0voxOdWjiuYmFvINJrDlOQAAAAC6CQZSAHhEYniE8luCIt0vvyVwb4qQGB6hnJBt22RBb3DF3mLJt2vnQX1d7eRYSqVzSrGwp3hTxHYhTHxwboPkh2nKbwuSnsXCHh3s7rTt5Mc2mJAPsNgmHOoPEW+sL0u7GAIAAAAAeAFS+wDwiFR6gnKUpdnJO0REhtuX611PRDQ/+0BxPDma1twu3OcPUHI0LQ0gUukJrm8s+fwBSqUnpOvY1ufVo4rjtz7Vo4piUObzByj54V2FXGzdFNOTyaN+I5XbzLZ92HdsfIZWljLk81+jsfEZ6XizUXdlfRcAAAAAgB7/EkVR7LYQAFxm5Gt57F5fOz1WvHG5SPDKb3c9mddlAQAAAABogYEUAAAAAAAAAFgEa6QAAAAAAAAAwCIYSAEAAAAAAACARTCQAgAAAAAAAACLYCAFAAAAAAAAABbBQAoAAAAAAAAALIKBFAAAAAAAAABYBAMpAAAAAAAAALAIBlIAAAAAAAAAYBEMpMCFJCdkqXZy3G0xrqwu5dIhNRv1bosBZFzEOLqsNBt1KpcOuy3GhaQTtkP/ZY3qUYXmZx/Q4/u3aW31ebfFAaCnwEAKeEa5dEiP7982/a3ZqNPs5B2qHlW4y85vCVQ7fddtFV3Bri5ye9mxoRNWljKu1NUpeS8aV71N2MVJO3CzDVWPKrSylPGkbHkdlxG17bzArf7LCk5joNv9fSx+ixZefkvJ0bQndVzWeAaXHwykQNfx+QMUHYhR8Hqo26JcKOQzgxfVhpjd1Oai+rPbOLGblzb3omy0nYuF0xjoVn/P3t6l0hMU7AtRuD/iST2IZ3BRwUAK9ASJ4RHN4zypSuXSYcfSaOT1lEuHCvmMfnOb2slxW/l6NrSiTyfTkbR0qB5VNI+pZytrJ8euzmB20w562PFnt3HTjuxaluoljwutYwwndlNf66Y+bvpTq+3w0ql+qlttSittr9Oplno2NooBIz9c1P6eN9bsxrNe+Xb7DgDs8O9uCwC6S7GwR9WjCgWvhygWHyKfP9AVOVaWMjQ9t0jRgUEiIjrY3aGckKXg9RA1m3Wp0wv2hWjh5bdERFQuFWlt9RmF+yNUO31HzcYZPZr6TCpDj5yQpfyWQEStmb3kh3eldIX8lkAHb3aodnJMPn+AEsMjlEpPKOTMLKzSylKGwv0RCt+ISL8b/VYs7FFOeKVbrpzayTHlhFfSoCLYF6JU+iHF4kNEpEx9YemR03OLbTbk1WdsfIZyQtayHdn15dKhrk56euvpUCzskc8faJMxeD1EmYVV6djG+jKFb0Sk2VEz+5r9bscOxcIe5bcEaUAX7AtRLH5LKtfM9mbxqPanWVzwwBOHTtsHrx15y8pvC+TzBah6VJHkKBb2FcfU16nbgZFO6niWX8urT07I0sHuDjUbdQr3RzQfcq3IZeRrvbbDyrXbh5nFsxyeWHTTdlpxrCerlp2Zzb767nWbT8z6LyObGLVdLRurZXt8/zZlFlZpbfW5YrCVSk9I9+Ju9vfsPiyvW25DJ/dLtW+04pmn39azs52+AwBbiODK8v2rL8TJe0npv08+/kj86+2frpX/x+9FcfJeUvzj92Lbf69/2hQn7yWlc9l58uvksnzz5TPxmy+fKc7/5stnYqN+ptDnxdMnhjL9uLkmvnj6RDz952+pLlaP1m8vnj4RX/+0qah3eXFOOkeO3m/7P28ryv3r7Z/ii6dPxB8319p0F0VRbNTPxP2ftyXdXv+0KX7y8UeatlXXLy/Hij5W7ajWVatsM721dGDXyPV88fSJOHkvKZXTqJ8pdDWrx+x3O3b46+2fChka9TPxt19/kf7msb1ZPFqNC/X5anjs4Fb7MLMjb1nyNv/br7+Ik/eS4vevvlAcU7cNnnag18+pr+XRR08XO+2TyWXma622Y9VH8n7KLJ7V8PRRbtpOjpmsWu1AbS+e/stOG5e3Xa17gVZ8ycs4/efvtjap5+9O9fduxxpvHVb6bS072+k7ALADUvuuKAe7O3Swu6M41mzU2465QX5rs+2/YmFP93w2wynPxU4Mj1C5VFSclxgeUbxBY7O1ZnonR9MU7GvllkcHBqV6DnZ3KHV3QvFbcjRNB2922upl56jR+i0nZGns4Yx0PNwfaZWrY2s288Z0S46mqdmoW05l49UnOXrXsh3VukYHBikxPKIo26rerJzqUUVKzSmXihS9Ofh+dnJfOtZaIzDIVQ+vHFbs4PMFJF+x/8fiQ4o3qjy2N4pHt+OCxw5utA8eO1ppa/Jy5P9n/zazgRUba2Gmj1b50Zvmb3ON5LLra7t9mFk8q+GVzwvbWZVVD7P+i6eNG8WV0X1CaaPzMoJ9oZYcNu7DXvf3duvjtYMa3n5br3w3+g4AeEBq3xWldqqdH1ws7NHY+IyrdU3PLbYdK5cOdXdmCt+IULNxRtWjinRjKpeKjhfWsgf06EDM4DflzTgWH5LSLlhn7fNf061D/Rsrd3F+ilvOZqNO+e1Nqr6tKDp6K9v1WtHHLmpdwzciUnqKHb2JSBpAFwt7lBgeoWJhn1Lph+TzXaNiYY+So2kqlw4lH5rVY1cOHjnHxmeklJJYfEhKjeW1vVE8auEkLnjs4Fb74JXFzdjUs4FVG1uFla9Or4wOxKSULzty2fG1kz7MKJ7dks8t21mVVQ+j/susHp64MrpPmMlhdWv2TvT3duvjtYNW+Tz9tp3y5WAbfOAUDKRAzxHub+U5s0403B8hnz+gOSCzWi4Rad5w2W/NRt3VdWKs3Jdf/8Bd7uLnUxQdGKSx8fPZOL1t5M3qdVsfI+QDXTt6M6I3B6UNJpqNM4rFh96vychKC4UTH4xYqseOHGYkhkcoFh+icqkorSVIpSekmVAz2xvFoxZO4oLHTp1qH52MTas2tlu+23LZ8bVTu5rFs1P53LKdVVl50ZqoM6vHi7iyY5dO9/de1+fk/gFAp0Fq3xWFPYi2He+RncKKhT1KpSfoq+9eU2ZhlabnFl3rUPXSCn3+QFv6INv8wMlsns8fMExllMN2E5I/oNjdXcgrfRjNxplK9qIyXciC3nLC/RGqvq1QsbAnzVazN1X57U2qnRxTLH6Lux67cvDaOBYfoum5RUqlJ6SF2VZszyObG3HBa4dOtA+vY5NXJ6/KV7cNK3I58bVTu+rFs1vyuWk7HlkZWvKZ9V889bgRV2o57JbZ6TbldX1e9tsAuAkGUleUYF9rFzT57Fcv7WDDdlJym+jAIOW3BOl1vnzb1cTwiOK36lGF8luC48FlYniEckK2bat0rZvEeSrjoSSf1vc11OdppSd4pQ+D7bQlL1s+wDHTW08HlrNfLOwrUkeiN1vrpIJ9IcWN2qweK/a3gnwL3WajTrXTYynNhNf2RvFo5G+9uDCCxw6dah9ex6YdG9uFrduQ68KzxkVPLh5f67UdJ3Y1imejuu3EolPbGcka7AspYlqvrZv1X2b1uBVXan2Lhf02f/VCf+9lfVr6edVvA+A2SO27woT7I4otpXuJWHyINtaXaWN9WToW7AvRo6lPHaWETM8t0sb6Ms1O3pGOjY3PUKIv1JptpKz0m9k25byw6+dnHyiOJ0fTbesD2NbfbP0Y21a4elRRDCx9/oC0za68DnW9XugjL2vx8yndrWnN9NbSgW1RyzadUC8Ozm8JbdtWm9Vjxf5WKJeKirUcLD6t2N4oHtX25okLI3js0Kn24WVsquG1sV1S6QlF+SwOzNZ36Mr13g5GvtZrO07sahTPctyIRae2M5L10dSntLb6XEo1DPdHaOzhjKJMnv7LrB634ip8I0Lzsw8oeP0/VDt9Rz5fexp7N/t7+cY+XtWnpZ9X/TYAbvMvURTFbgsBgBy2Fkb+LQ323RIi0ry5W0X+XSo1bIbN7TdibEbTqy/DG9XrhT4Ms4XMndLbrB4v5DBbI8Bre6N47LSdzORxM568jk1enbqJF3LZtWsn11S6oaORrLwbLPD0X2b1ENnz3+P7t2l6blEaRBGR5d0HteQl6kyb6kR93bpvAsALBlKg52A3F/UNhW3Z3qtv0QAAAABe9O51AICLA9ZIgZ5Dvci02ai//8J5tmc2wwAAAAAAAFcbrJECPUfmf1Ypvy3Q7OQdKW2AbbWL3GgAAACXgejA4IVJpQQAaIPUPgAAAAAAAACwCFL7AAAAAAAAAMAiGEgBAAAAAAAAgEUwkAIAAAAAAAAAi2AgBQAAAAAAAAAWwUAKAAAAAAAAACyCgRToKM1Gncqlw26LAXoAxMLVpVw6lD5toEdOyFLt5LjbonbVBp2ielSh+dkH9Pj+bVpbfd5tcYgI/QMA4GKAgRToKNWjCq0sZbotRhvNRp1mJ+9Q9ajSJq8T8lsCLc5PdVs9V3FqE3k5vRILap304gG0Y8dWK0sZ0/PzWwLVTt/1jMwMt2LCzAadjMGVpQzF4rdo4eW3lBxNe14fD73UP1wmWFxd5kkKADoJBlIAEJHPH6DoQIyC10OK405mZ5uNOuW3Nyl1d6Lb6rlKr8xYe6mTXjyAdi6irZzI3Kn475Rd2ZuxVHqCgn0hCvdHOqIf6A4+f4ASwyO0sb7cbVEAuBRgIAUuFF7OoiWGR9rqclLfwe4OhfsjFB0YdE1GeapLuXSomfqilzJUPapwz26r62F2cGqTTsNjLz2d1PFg1/Z2U5S8LovInZjQstVFwI5/Ox3/dmTsFEbx0IvoycfTznh07XX95SQ/vEvVowpSJwFwgX93WwBwuckJWTrY3aFmo07h/ojmA1exsEc54RXVTo6l2bJU+vwtzuP7tymzsEprq8+lmxU7x+cPSOfltwQ6eLOjW06xsEf5LUF6cAz2hSgWvyWds7KUoem5RYoODCrSSh7fv01ERNNzi9RsnBmWodZLS9+ckKX8lkBErdnB5Id3pXQaMx1WljI0Nj5DOSFL4f4I1U7fUbNxRo+mPpMGbPmtTQrfiLTJtLKUoVR6gsL9EVObryxlKLOwSitLGQr3Ryh8I0Kx+JCmTVi9ZmXyxIIVW7lhLz0/RwcGFfHAa3v1NUTnKUpfffeaW27essxi+rw+85ionRxTTnhF1aMK1U6OKdgXolT6IcXiQ7oxodV2zMpR118uHeraQKtNGcUYrz207OskVnh9qoWRDezEoBUbHOzuUE7IKnRiscXTtvTiwarfiMz7BytxxeC5d/C0Mz1dee9NPPY085ubse/zBygWH6JyqejqRB8AVxIRAI/4cXNNfPH0iXj6z9+iKIriH78XxRdPn4iT95LSOfs/byvO+evtn+KLp0/EHzfXpHMm7yUV55z+83fbOXp1vf5pUyp38l5S/OP3oiiKotion4m//fqL9DerR/73H78XFbLylMFo1M/EyXtJSR4jOf96+yeXDkzG5cU5sVE/k459/+oL8cXTJwqbfvLxR4p6f/v1F/GTjz8SG/UzbpsvL861ya+2Ca8feWKBJ36Yrdy0l55O6njgKUt9jVb5PHLzlGUlHs1igl2///O29PfrnzYV1+jFhFpWs3K0ytLznVwXsxizYg+7/tWLFV6fOrWBmYxWbaCnk5W2pRUPcnj6G57+gSeutGxsdu/gabN6uvKUz2NPM7+5HftMpuXFOREA4Ayk9gHPONjdoeRomoJ9rRz/6MAgRW8qZ79yQpbGHs5I54T7I5QcTdPB7o7iPHk5wb4QJYZHFOcc7O5Q6u6Eoq7kaJoO3rTO8flas4NslpDNyFmZjbNShnxW0MwmbE2CmQ7ntrirmO2MxYcU6VlshrZY2JOOlUuHFIsPkc8f4LZ5YnikTX49zMrkiQWe+JGv33DLXlZwoyxeuc2wEo9mMcGuTwyPSH8nR9PUbNQV+vHEBE856rKiA4OtNm1gA7MYc6ON2/WvXZ9atYGZjG7YwIo+PPHA09/w9A+8cdVuL+N7By96uvKU7/T+5EXsh/sj2EwHABdAah/whOpRhZqNelvaRXQgJqVqsXN4drXz+a8p/g7fiEh57awc9U0jFh+SUi6CfSEaG5+RUjNi8SHFQyQPTss4lzNm8JuxDjycp220HpSbjTod7O7Q9NyiI5ub6aVXJk8sWLGV2/bqJG7KbSUejWKCwTZHqb6tKB5Q5etHeGKCpxytssI3IrrrTHji1o02bgcnPrViAx7csIEVfczigcdvvP0Db1zx2NjOtvN6upqV7/T+5FXs+/zXemb7fQAuMhhIAU/g2fmJnfPy6x8sP+zIy2f/bjbqhuUkhkekvHC2NiCVnrC0UN5JGUxOLRl5deCFrWdKpSeoWNijYF9IcSO3Y3MzvbwoU688t+3VKdyW20o8msXE4udTFB0YpLHx85lvtm7GCnbLMdqdjjfG3GjjVnHTp27s0OfUBm7qw+M33l0C3YpPr3clVJfv1v2pF2MfAIBd+4DHyFOJiIiajTPF3z5/oO0cLdTXqa/x+QNULhXbzvH5A4rZYDYzPz23SKn0hLTQ2go8ZbAHVK3ZZT19eXXgITowSMG+EBULe1Qs7FEsfsuyza3axKxMs1jgucYre3mJOgacyK0VT7wxbRQTbCcy+UOqnTcjVspR+79cKhrqzxu3brRxq9j1qVUbWJHHiQ3cbFu8fjPqH5zEp9m9Qwsrsc9TvtP7kxex32yc9VQ/CcBFBQMp4Bksh1uegqe1DicnZBU3rnLpsO2mob6uWNhXzLQlhkcovyUo6spvCYpz5NvWNht1qp0eG6amsJlEtkUs2xJXr4yN9WXFByRbN0/l9rLRgUGFnPLtlHl0sELigxHKbwtULh1S4gOlrXhszmsTnjJ5YkGNka3ctJeeTnZgAxUju/LKzVOW1ZjWiwm1DWonx7a+l2SlHHU85LcExeCuTXaOuLVqD6f6yePfTixatQEPbtjAzb6Ix29m/YOT+DS7d/C0Myfl89rTyG9OY199b2Iy4JthADgHqX3AM1LpCdpYX6bZyTtE1LphPZr6VJHrzbZmnZ99oLg2OZpW5MyHb0RofvYBBa//h2qn78jnCyjWd6TSE5SjrFSX1vaw5VJRkXPP5NHD5w9QcjQt3YBS6QlqNs90y2g26oqH8MTwSNti3um5RYVNiIjGxmco0Rfi0sEKsfgtyglZ6U2EVZvz2iQ5mjYtkycW1BjZitfnPOjpZIdHU5/S2upzKeUo3B+hsYczbTHPIzdPWVZjWi8mfP4ApdITkg3Y1tLVo4ql9C7ecpjOi59PcW8XzhO3Vu1hFaP4txqLdmzAg51+Tr1+x82+iMdvZv2Dk/g0u3fwtDMn5fPa08hvTmNffW8iIir/foi0PwBc4F+iKIrdFgIANoOmNUP2+P5tmp5blG5URKS7GxG7WejdXN3I+9crQ328WNijjfVlWnj5v23ns5lDrdQKMx3cwsjmvVSmka1YnUTe28uqzGZpM7xym5V10daJWdVPS1+jGOumPezGotubo7hlAzfblhd9gxlW7h12fGClfGYDIvv3J7uxrz5eLh3S2uozzXsTAMAaeCMFegKfP0Bhv/ENNtgX4tp62cnvvLLyHI/Fhyi/JVB+e7NtJtdsLUgn4LF5L5Tp1OfdgOeBjFfui6i/FeysuTGKsW7aw27dbq9VccsGbtrSi76BF557hxMf8JTPbOD0dzuxrz6e28wqtpIHANgHAykAPIRtOQ4AAAB0m2ajTqm7E5a/LQYA0AabTYCeJzoweGFnzrTWHwAAAPAer+8dF/HehHsSAO6CNVIAAAAAAAAAYBG8kQIAAAAAAAAAi2AgBQAAAAAAAAAWwUAKAAAAAAAAACyCgRQAAAAAAAAAWAQDKQAAAAAAAACwCAZSAABXyAlZqp0cd1sMbpqNOpVLh90WA1xALlqsXzUboG3rUz2q0PzsA3p8/zatrT7vtjiXFsTg1QEDKXApONjdocf3b3vScZVLh/T4/m3Ff/OzDygnZKnZqHdcV/UHfpuNOs1O3un6h3/zWwLVTt91VQYrVI8qtLKU6bYYXdUf2MNOrMvt3SttVgst2bTktGODlaWMaR9dOzmmx/dvU7GwZ1uHbrXti+DjlaUMxeK3aOHlt5QcTXdbnEvLVb+/XCUwkAIXmmajThvry5TfFjyv66vvXtNX372mzMIqxeK36GB3h+Zn/9vxwZR6FrH1gcUYBa+HOioHuNhgNrqzyO3dy21WSzY3YqV6VKFy6dD0Y7DVowr5/AGKxYe6bQrL9LqPy6VDajbqlEpPULAvROH+SLdFAuDCg4EUuNDktzep2ajTo6lPO1ZnuD9CqfQELbz8XwpeD1F+e1P6jd2o5Gi94pf/XS4dcqfI1E6ONc9NDI9Y1kMtg5tv85yUVz2qtOlYPaq0zezWTo57arZXy/d6shuVIf+3V6lTWnHkpG6rsdTJlDA9vTpla6avuvxOtVk77Ukum16fo5bLTJZiYY/rwb16VLFlGzP5vOyX9ezUa/2y13SyTXVDn4vkC9A5/t1tAQBwQvLDu+TzB7pSt88foORomjbWlymVniCiVtrE9NyiYtaVveL/6rvX0rGVpQxlFlZpZSlD4f4IhW+0Bme1k2PKCa+kh59gX4hS6YcUiw8pUgUe379NRCTVpa43vyXQwZsdqp0ck88foMTwiCSjXIax8RnKCVkK90eodvqOmo0zejT1me6scbGwR/ktQXrgCvaFKBa/JZVdLhVpbfWZaXlG8h3s7pDPH1DIu7KUoeD1EGUWVqVjG+vLFL4RkR7OioU9ygmvdHXOCVk62N2hZqNO4f4I10OOkT/U5Lc2JT+q7ZxKT3DJqRcXG+vLmjLrHTfyk14c6dXNE0+8sXSwu0M5IUvB6yFqNuvSg1awL0QLL7/V9EFOyFJ+Szhvcx/elVKSeONcSy8jfc1iyUqMGNlb3Ve4ZWc5dtoTk83nD+j2OUT87Z0RvTloGLcb68v0/6ud0P/r//2ArGDWtr3sl3vBxzzlsrYnl1Guu7x+9YAhOjBI03OLRGSv/+KVUY3Z/YannTrpP6z4wiwGzXQBFxgRgEvC5L2k+MfvRdfL/eP3ojh5L6n5W6N+pqhXSwat6yfvJcXlxTnx9J+/28rb/3lbbNTPRFEUxdc/bYqffPyRqSzyen/cXBNfPH0ilf3H70XxxdMn4uufNjVlYHWJoih+/+oL8cXTJ5q6/vX2T0U9jfqZ+Nuvvyh0/+bLZ6blmcm3//O24hr2++S9pHSN2u7sGvb7X2//FF88fSL+uLlmWKeeX3n9IWf/5+2233779Rfxk48/kq43k1MvLl7/tCk+/eS/imOn//wtTt5Lin+9/dOSn6zGJE888cQSq1Mu7zdfPhO/+fKZrv216mbXW41ztV56x818xK6V29csRvTsLfeJW3ZWY6c9yf9t1OfwtHctrMSzGTxt2+t+uds+5m0LRvcyLRr1M/HpJ/9t65ut9l9WZGSY9WM87dRp/8HrC7MY5OmTwcUFqX0AOMDJ27DE8AgF+5T582xWjJWbHE1Ts1G3lMJ2sLtDqbsTUtnRgUFKjqbp4M1O27nJUeUbPfbmS1NXX0ChM1vHIJ+Zk8uuV56ZfNGBQaoeVaRUnHKpSNGbgxQdGKRiYV861lqD0Ko7J2Rp7OGMVGa4P9Iqc3dHqjM5mlbUyWbHzfzL6w82Oy1fJF8uHVIsPiRdbyanXlwkhkfaUhkP3uy0Zn1V6VI8ftJDq27eeDKLJTaTL5c3MTxC5VJRVx4tv7HrrcS5ll56x3l8ZDdGjHDLzmrstCdeeNq73nW88cxjNztt20g2L/plJqsXPrbSFqzA3hyyNzh2+y87Mpr1YzyyuNF/8PjCLAad9Mmg90FqHwAOcJID7vNfazvWbNQpv71J1bcVxY2ad0ML9sCk7qBj8SFaW30uPczaIdgXorHxGSltIxYfUgwS3JQv3B+hYmGPEsMjVCzsUyr9kHy+a1Qs7FFyNP1+0XpMUebi/JRhnep0vOhATEr50MOKP9jNkQ2emo06HezuSCkxZnKel3NNs+zE8Agd7O7Q2PgMEREVC/uU/LB91y0nflLX7WY8hW9EqNk4o+pRRXqYKZeKuovxz+uOGfzGJ5eWTY30NfORHKdt1m07q7HanjqBlXjmsZudtq0vm/v9slxWt33sVbkHuztULhVp4eX/Kuqx03/ZkdGoH+ORxc3+g8f+RjHoxr0T9C4YSAHgADaj69buR4ufT1F0YJDGxs9n2lg+Ow9Mjmaj7kknnRgeeT9YKEo596n0BPeial75ojcHpQXxzcYZxeJD79cpZKVF4okPRhRlvvz6B9d1tuqPWHxIWhNVLOxRsC8k3aydytm6yT+T1jnVTo51dzZz6ier/uItK5WekB5+wv0R8vkD0kBTr26ter2Kczs+ctpmvdSHYaU9dQor8WxmN6/pZR97US6LjUdTn0llOum/7Mpo1o8ZydKp/oM3Bt3qk0HvgdQ+AGzSbNTp4M1OW3qLGt63VmyXI/nN2s4bL58/0JYuVSzskc8fsD2rrS4/Fh+i6blFSqUnpAXMbsoX7o9Q9W2FioU96eGKzazntzffP3TdUpRp9t0Z9e/Nxpnr/ogODFKwL0TFwt572W8pfueR06hsn/+aVLZZ3Dn1kxV/8VIs7FEqPSF9RoBtaGB2jddyqcvl9ZFbbdZLfYist6dOYDWejbDatok63y8TeRuzbpa7tvqcEsMjbW9snPRfdmXU68d4ZelU/8ETg271yaC3wEAKXHo21pdd/TBe9ahCB7s7tPj5FPl8yt2w2EM0o1w65L7xnKc7tXZMqp0ct32/RX2OVmpJYniE8luC9Fv1qEL5LcGVmS/5lrbNRp1qp8e6aVN68MjH8tCLhX3FzTx6s7WuI9gXUtzsEsMjlBOyigccue1Z7ry8Tr01L1b8oanfByOU3xY0Z/nN5OQpm51vlF9v5ieeOLLiL17KpUNLD8vRgUFF3fItpr2Kcys+4o2Rbrdbq+3Jquy2bc0Zz3LU/TlP2/a6X+a1k5cx61a57OFeazc5J/2XHRmN+jEeWTrVf/DEoBv3TtCbILUPXHqajborN395Kkcrz/lW2/brj6Y+pbXV59K54f4IjT2c4VpzwbYoZg8JbItd9oFKdk5yNC2dk0pPtH2dPpWeoBxlaXbyjnSN2TazvJRLRcXag2BfyPI3vHjlY4vk5ek+sfgQ5bcETZ2JiOZnHyiOJ0fTFIsPSVuIszqZ3EZ+4fGHFrH4LcoJWentlBU5zUgMj9D87H/J579meL6Zn7TiyKm/eIjFh2hjfZk21pfbZNNKkZmeW1T4jYhobHyGEn0hz+Lcio94Y4TH3l62WyJr7Umto1mfYxfeeJaj7s952rbX/bKendR4GbM85fJsKML6DXXq4lffvXbUf9nR3agf45GlU/0HTwy6ce8Evcm/RFEUuy0EAF7i1boDI5wsDndTbyJnOwvqletGmV7Ix2b6OrV2ohtyLs5PUfTmoOkN3+24d+ovth4nlZ6QymDf5yEiw4cK+fem3JbLSN9uxJJX+vQqvPHMcBLXvdAvMx2IvIlZL8rVqsdu27Aqo5m/eWTpRv9hRxdwMcFACgAALgi1k2Oan31ACy+/7YkHQis8vn+77eOkRK3dwQ52dxQfhwVXg4sczwAAQIQ1UgAAcCFoNuqUE15ppgxeBNSLw5uNOhULe5QTsti56gpy0eMZAACI8EYKAAB6npWlzPtv/QwqtiS+SNROjim/LVCxsCel00QHBqVtgcHV4TLEMwAAEGEgBQAAAAAAAACWQWofAAAAAAAAAFgEAykAAAAAAAAAsAgGUgAAAAAAAABgEQykAAAAAAAAAMAiGEgBAAAAAAAAgEUwkAIA9DTl0qG0XfZllaPZqFO5dNhRfXJClmonxx2t0wndsBEw56LFEQAAuAkGUgAA21SPKp7XsbKU6Ug9apqNOs1O3pHq9lKO6lGFVpYy3LLIr7NLfkug2uk7T/TpJRsBb7ETR3IfwW8AgIsMBlIAANusrT7vtgie4fMHKDoQo+D1ULdF0ZXlMtvfKr3kL2CMPG7hNwDARQYDKQBMYOlELLVInsaidcyLutm/3UhtcqvM2smxY7210uU6ncKltodcp8TwSMfkMEMtixv2l+tt1+bVo0qbHNWjStsbhtrJsedvHdQ2Mot1vXRNLfmNbCf/dy+nuenJ2kkdtOLWbjvzon8EAAAr/LvbAgDQ66wsZWhsfIby2wL5fAGqHlUoOZomIqJiYV9xLJWeUFxbLOxRTnhFtZNj8vkDlBgeUZxTOzmmnPBKehgN9oUolX5IsfiQou6ckKVwf4Rqp++o2TijR1OfUXRgUFFPfkuQHv6CfSGKxW+1yWOlzPyWQAdvdjRll6dZPb5/m4iIpucWFdfzyLaylGm7jpX91Xev2+Qulw417chjg5yQpfyWQEStWfDkh3cpOZqmlaUMZRZWaWUpQ+H+CIVvRKRrtOQzk4PH7zkhSwe7O9Rs1CncH+F6kJTLwmt/M5uUS0VaW31mGAdmsXCwu0M+f0Ch38pShoLXQ5RZWJWObawvU/hGhML9kY7YiCfW81ubCn/Ly0mlJ7hk1YsfnjZpZgM1ejFs5iO5XlqyGrUBqzIa9Wl6cavVznj14enLAADAM0QAgCGT95LiN18+k/7+7ddfxMl7SfH7V18ojn3y8UeK6/Z/3hZfPH0inv7ztyiKovjX2z/FF0+fiD9urknnNOpn4v7P22KjfiaKoii+/mlTUc7kvaS4vDgn/S6Kovj9qy/EF0+fSH//9fZPcfJeUvzj96JU5m+//iL9raWPWZk/bq4pZP/j96L44ukT8fVPm9I5f/xeFCfvJQ1tZyab/De9cpm8RrKY1aOlz19v/9QsX20ruaxmcvD4Xc+2ZrZU28rM/jy2/+bLZ4ZxwBMLTF+5XEwfdk2jfqaQpVM2Mov1/Z+329ota8vsGjNZteKHp03y9A9mfmAxzNNe9WQ1Os4jo9rmZn2aVtyqy7Cqj1kMAwCAVyC1DwAO5LPh7G0R+z/7d7NRV6QD5YQsjT2coWBfK/c/3B+h5GiaDnZ3pHPYTKvPHyAiouRouq2c5Ohd6XdWl/x3ny8glcX+H4sPGc7ImpV5sLtDqbsTkuzRgcGW7G92yAp2ZNOzv1yWxPCIQhazeg52dyg5mlaUwd42qMt3IgeP37Vkid50f/acx/by2CNqjwMmr1EssDdkLEWuXCpS9OYgRQcGqVjYl4611sIMdtxGRrHO2nCxsCf9Xi4dUiw+JF3D047V8cNje55y1X7Qi2Er7VUv1rWOW5WR6WrWp5lhRR+zvgwAALwEqX0AuAh7mGQPlovzU6bn57c3qfq2onjYsLLNdrAvRGPjM1JaTiw+pHgQtAqTXT3YicWHaG31uZSu00nZfP5rir/DNyKKdRZG9ZzrE+Mu364cZn5nv8sH4URE0YGYlLLlFm7YnjcWwv0RKhb2KDE8QsXCPqXSD8nnu0bFwh4lR9NULh1K9u8lG7EBDhs8NRt1Otjdoem5RS5Zz8tRxoWZ7XnLbfdDzOA3vvaqF+vq41ZlZDjt09zsfwAAwGswkALAA9hM8cuvfzB8cF38fIqiA4M0Nn4+68vWDlghMTzy/oGwSAe7O5QTspRKT9haxM1kbzbqtgdjXsnG0Nrhy6weN3Qxk4PX753Cqe15YyF6c1DaoKHZOKNYfOj9WpmstHlI4oORnrRRLD4krYkqFvYo2BeSHuKdyGpke6vlsvO1znW7varLtaq70z7NK30AAMALkNoHgEf4/AFFypAatjuW/IHDyW5ZbHZ9em6RUukJyglZR2WVS0XFsWJhj3z+gK3ZYCuyadmg2ThT2a6oKYdRPUa+4IVHDjO/a8miLtdNnMYFTyyE+yNUfVuhYmFPepPE3lTltzepdnJMsfitnrRRdGCQgn0hKhb23st/S/E7j6x2bG+nXL3z3W6vdmV0q0/zSh8AAHAbDKQA8IjE8AjlhKziQaJcOpQeTNjMK9uyt3ZybPu7QPIti5uNOtVOj7nT1fRkz28JilTF/JageJOhll8vdcdINvYAq2UfOWz3Nrks6gdeo3paO7Sd62N363AeOcz8ztaYyMvRWnOysb5s+AFaHvu7ERc8scDWpRQL+4qUrOjN1jqpYF9I8QDslo3cIvHBCOW3BcWbM15Z9TCzvdVyjWKYx0e27GJRRp4+jSdu3dTHrB0BAIATkNoHgEewrXrnZx8ojidH09J6Cbb1MBFJ2wRXjyqWU1rKpaJi/UiwL0SPpj51JHuOsjQ7eYeIzheQy7cf9vkD0vbh7Bq2FTOvbI+mPqW11edS6k+4P0JjD2cU6zJY3YufTxluhWxUz/TcIm2sL0v6EBGNjc9QwsLsNq8cZn5PpScUsjA51WtRmo264boSHvu7ERc8sUB0vumEehOW/JbQJpdbNnKLWPwW5YSs9HbKiqx6mNnearlGMczrI6tYlZGnT9OKW6163dLHrB0BAIAT/iWKothtIQC4zLDZaPkucV7V4/aaAvYA4rRcM9l4F5CbncdTDxE5Tg/ikdep393yp5vlELm71qxTbaNbsvLY3mq5RjHshY/s6u5WvU71wVorAICXYCAFAAAAAAAAABbBGikAAAAAAAAAsAgGUgAAAAAAAABgEQykAAAAAAAAAMAiGEgBAAAAAAAAgEUwkAIAAAAAAAAAi2AgBQAAAAAAAAAWwUAKAAAAAAAAACyCgRQAAAAAAAAAWAQDKQB6iJyQpdrJcbfF6Arl0iE1G/WO1HWV7QyAGrQH+zQbdSqXDrstRs/LpEX1qELzsw/o8f3btLb6vNviAGALDKTAhaZ2ckwb68s0O3mHHt+/TfOzD6hY2HO1jnLpkB7fv93238pSxnV98lsC1U7fdcp81GzUaXbyDlWPKpavtXONEStLGdfL1MOKnXvJRk7xWp5e0/eq6mCVTvc7l4nqUcX0XtDpmOKRqRdYWcpQLH6LFl5+S8nRdLfFAcAWGEiBC83G+jL5/AF6NPUZvfz6B4rFb9Ha6nNPZle/+u614r/pucVuq+8Ynz9A0YEYBa+HLF97VWYQL5ONvJan1/S9qjqA3gIx1Q7LQEilJyjYF6Jwf6TbIgFgCwykwIVmem6RUukJig4Mks8foFR6gsL9ETp4s9Nt0RTI0yzKpUPXBnrVo0pbWdWjStsMaO3kWHdWNDE8YiirVopI7eTYlg5e2cGK7FqwVBi91MLLYCMeeZzUbVdfN9HyoZU0Jyc6sDpYffJytI7ZKZv920s7W2k3atzoj+zS7dgzksuNfsDrVL1O1+eWnL3qd3B1+He3BQDAbXz+APl81zpaZ35LoIM3O1Q7OSafP0CJ4RFKpSek31eWMpRZWKWVpQyF+yMUvhFR/G637IPdHWkAKa8reD1EmYVV6djG+jKFb0Q0Z/1WljI0PbdI0YFB6e+x8RnKCVkK90eodvqOmo0zejT1GUUHBhVpI4/v3yYiUlxfLOxRTnilKS+PHVaWMlQuHWrasXZyTDnhlfTAFuwLUSr9kGLxIS7ZtWg26i15bkR0z3HTRkb2MbOR2bXFwh7ltwTpITXYF6JY/BbF4kOGPuOp28j2TmJCT2a99pETspTfEoio1daTH96V0oLUfiI6T3P66rvXjmzE08bHxmcovy2Qzxeg6lFFkqtY2FccU+tmNyas2M7s3HKpSGurz0zbjdf9kVkbV3Owu0M5IUvB6yFqNuvSg3WwL0QLL7/lktvKOTkhSwe7O9Rs1CncH2mbZJHjtK/k7ct4ZOKJMZ76tNpf7fRYs96N9WXN48xncruw9unlvRQATxABuESc/vO3OHkvKZ7+87drZf7xe1GcvJfU/f3HzTXxxdMnUp1//F4UXzx9Ir7+aVM6Z/JeUlxenDOVa/JeUvzj9yJ32fs/b4svnj5RyPri6ROFDRr1s7ZyjepksjbqZ9Kx71990VaPlk2YPKzuv97+Kb54+kT8cXPN1A7q37Ts2Kififs/b0uyvf5pU/zk448syS7XuVE/E188fSJ+/+oLS36xayMz+xjZyOzav97+qZCzUT8Tf/v1F+lvszg284+Z7e3EhJnMarTaw19v/9T1k1ouuzbibePffPlM+vu3X38RJ+8lFbH126+/KGzmJCas2M7sXCa7WbvpRH9kFmdavpXHwDdfPlP4gdd/Ts4xaldO+0q7PpHXaSXGjOrTa3+vf9oUn37yX4Vc7F4s942ZXdy8lwLQKZDaBy4NzUad1lafSznXbqPebILNqB3s7lDq7nmd0YFBSo6m29ILE8MjluUyK5u9/WDpTOVSkaI3B9+/+diXjrXW+Qxy15scvUs+f0D6m711MCMnZGns4Ywkb7g/0pJ399wWRnaQ/xYdGKTE8IjCjmyGksmWHE1Ts1FXyGZF9pyQpfCNCI2Nz1jyi10b8dhHz0Zm1/p8AclG7P+x+JAlvxv5h8f2VnW2KvPB7g4lR9OKGLGytsKujay0cQZ7gyJ/kxKLD7XZzG5MWNGF51y5b5msat92oj+yEmfsjZU8BhLDI1QuFS37j/ccdfxFb1prX1b8ztPH8MjEG2Nm9em1v8TwSFu65sGbndYbIwvt08t7KQBegdQ+cGlgD8Ve7f7DUg/ksIcG9UNBLD4kbXrBOnyf31q6IW/Z4f4IFQt7lBgeoWJhn1Lph+TzXaNiYY+So2kqlw4pOhDz0vQKeRfnpwzPM7KD+rfwjUjbWpP89iZV31YUD1d2tk3PbWapelTp2KYhvPbRsgPPtcG+EI2Nz0gpL7H4EMXiQ4oHIx70/GPH9mZyW5H5vD3Yj2U7NrLSxnlhNnMSE1Z0cSM2OtUfWYmz8I0INRtnVD2qSA/s5VJRsTEMj9zNZp37HHWKYXQgJqW6WbUlj995yjGSye26tHzHBr8HuzvSpFSxsE/JD/nvxV7eSwHwEgykwKVgY32Zqm8791DMYDfvZqNu+YHVrbKjNwelBd3NxhnF4kPv1xlkpUXuiQ9GeKt1LO/Lr39wzRbqnfIWP5+i6MAgjY2fz66yHHvL8t5o5dfnNrM0Pbfouv/ctA/vtYnhEYrFh6hcKkrrEFLpCcN1HLzYsT2P3Lwys7Kc+smqjTrRxu22GSu6OI2NTvVHVuIs3N9aH8MGCeH+CPn8AcV9gEduK+e4gVt9JY9MbtelV0ZrwPOMUukJaX2b3ro2o/K9aGcAeAlS+8CFZ2N9mYiIMgurXemAff5AWypJsbBHPn/AcfoBT9nh/ghV31aoWNiTblxsZji/vfn+hnarY7Zw8h2vZuNM8Xe5VJT0ZDs0yR+wnOzYFIsPSYuUWZpmL9uH91qWtsV2tHRDNye255HbisxW7aclp1Ubed3GnbQZK7o4jQ2v+yM7cVYs7FEqPUFfffeaMgurmpMiPHLz+ljtK3WfZcWWbn3z0EwmL+titHbObb15ZG8krb8N966dAeAVGEiBCw17E9WaaT1U/Cc/x8uPEyaGRyi/JSjSdfJbgitvAXjKZnnsxcK+Ii0ierO1LiHYF3L9JnSeRnO+5TOTNydkFQ8/5dIh902c7Twl15U9dKnrrJ0cO/4+i88foLGHM1Qs7LWtF/DCRk7sw3OtfDvgZqNOtdNjKQ1Gz2d2dNGyvd2YMJJZTXRgUNEe1FtLB/tCbfZQ29aOjbxu43ZjwortrJxrJKuX/ZGdNs52+HQqN885bF2R/ByzfsOrvtKKTG7VZdb+Eh+MSOVaXZvJ6wMAeg2k9oELS7l0KN0wtAZKbE1Ts1G3tYaGl1R6gnKUpdnJO0R0ni/uxpasvGWzRd7qhe35LcGTNWM+f4CSo2nJ7qn0hGJb5/nZB4rzk6Np0zQPptvi51OaW9+ybZVZnWxb5OpRxXHKCpud19uS2S0bObEPz7XlUlGxXiPYF6JHU58a+oxXFzPb240JI5nVTM8t0sb6stQeiIjGxmco8f7B/NHUp7S2+lxKBQv3R2js4YxifYgdG3ndxs38qocV21k510hWL/sjO208Fh+ijfVlKTNBrhtryzxy854jjz9Wj9H6Iy/6SrVPzGRyqy6z9pcYHqH52f+Sz3+Nq79XD7a8bGcAeMW/RFEUuy0EAF7SqZxrNljzoi4vy/bKFuzbInaws4D/IuHEPmbX9uoaAyO5rcos/1aQ3u9G8WPXRl63cTsxYUUXt2KjV/ojtu4qlZ6QZGHfoSKitoEij9yd1s1pX9mNuoza3+L8FEVvDjoa/PRKfAHAAwZSAAAAALhwPL5/W/PD0ge7O3Swu6P4CDDwntrJMc3PPqCFl99e6okwAORgjRQAAAAALhzqTRSajToVC3uUE7JYV9Nhmo065YRXFB0YxCAKXCnwRgoAAAAAF47ayTHltwUqFvakdDD2IW8ra3+AM1aWMu+/DzZIj6Y+Q0oeuFJgIAUAAAAAAAAAFkFqHwAAAAAAAABYBAMpAAAAAAAAALAIBlIAAAAAAAAAYBEMpAAAAAAAAADAIhhIAQAAAAAAAIBFMJACoAOUS4fS9rzAOtWjCs3PPqDH92/T2urzbovjCZ2OkZyQpdrJcbfVBhqgv7gcNBt1KpcOuy2GJmj/ALgDBlIAdICVpQxVjyodrbPZqNPs5B1b9cqvcVKOW6wsZSgWv0ULL7+l5Gja1bLLpUN6fP+2rWvdtEmnYyS/JVDt9J3peU7938246YY8bpTvZiz0mv2tkBOyNDt5hx7fv03zsw8UH981u45NvDy+f7trg5nqUYVWljKm5x3s7tiSs3pUocf3b1NOyHKdK4e3/XeKbt5nzOxoFE/Fwh7NTt6h+dkHbbI3G3VanJ/CpMglBwMpAC4pPn+AogMxCl63/pV5+VsfJ+W4AZudT6UnKNgXonB/pCtyaHFZ347Jcer/XrOR1/JcNX294mB3hw52d2hsfIa++u41JT4YobXV56ZvUVaWMlQ7eUfT/8cL+uq717Tw8tue6jPkNBt12lhfpvy2YO/aV8vcH7/t9Tjo1n3GzI5m8ZQTXtGjqc8olX5I+S2lH/PbmxSLD+EDxZccDKQAcIBWCk430jnk9ZVLh9LDRmJ4RPcavQeS2slx229G5fDK1Cs2cUt2LTt5LZdbsmvB4lZr9lTtf946es1GPPI4qduuvl6hlqd6VGmTr3pUaZtJr50cu/pmwE5M5rcFSqUnKBYfIiKi5GiakqNpOnizo3vNwe4ONRt1ejT1KQX7Wg/kwb6QowdZL/ux/PamJK9VckKWojcHuQaJZnHpRC8326qd+4xTjOzIE0+1k2OKDgxSLD5E5VJRcbz6tuJ6BgXoPf7dbQEA6HWKhT3KbwnSg0WwL0Sx+C1KpSdoZSlD03OLFB0YlM5n6Rxfffe6rayVpQyVS4fk8wcoMTxCqfQEVz1ErQ6fzXj5/AFKfnhX6qRXljKUWVillaUMhfsjFL4R0ZTv8f3blFlYVczsMjl8/oAiFYWlu03PLWrqmd8S6ODNDtVOjjX1WVnK0Nj4DOWELIX7I1Q7fUfNxhk9mvpMUY4RB7s7UroFk4fZlad+LZvwYCa7np2iA4NULOxRTnhlWy6jGCFq3aBzwivpoTjYF6JU+qH0wGnH7s1GvSXPjYjmOWr/89ThlY2MrjVqQ0byqHXVqtvM7k70NYpDo1gwKldLnpv/jzj9n/7P/W22Dl4PUWZhVTq2sb5M4RsR6eGSR36jc6zGJHvwZ7aVU32rP8A72N2x/DDuZnvKCVnp4TvcHzGVJfnhXVuDvIPdHaq+rUhxaoReXBIRlUtFWlt9ZqiXV21VC3U/Y3ZPtOJHO3a0Gk/ySaic8IqSo3ct+xZcQEQAgC5/vf1TnLyXFP/4vSiKoig26mfib7/+Iv0t/43xx+9FcfJeUnFs8l5SXF6cE0//+Vs658XTJ+Lrnza56vlxc0188fSJ4vq/3v6pW778uFy+yXtJRTmn//wtvnj6RPxxc81Ufnk5WvLI9ZHL1KifSce+f/WF+OLpE0s+0JLHSv1qm/CUzyO71nX7P28r5Prr7Z9t9jXylVGMMBr1M3H/521Jttc/bYqffPyRZbsznzbqZ+KLp0/E7199oWsjrTjiqcNtGxlda9aG9OTR0lWrbjO7O9HXTAatWOApVy0Pu0b++4unT8TJe0mpnEb9TGFHnnrMzrHaF+j5ycx/TO5vvnwm1aluP2rcak96fZJZvKllN+Ovt3+KTz/5r1TP8uKcYSzp2W3yXlL85stnhnp51VZ5bMDTnq340Y4deeKJ2fX0n7+lf//xe1H8/tUXYqN+Jr7+aVPc/3mbKwbAxQSpfQAY4PO1ZgvZrKHPH6BYfIj7jYqcxPCIlB4QHRikxPCIlKZiVs/B7g4lR9OK69WpCPLyjZCXE+wLteTY3TG9Ts7B7g6l7k4o5NFKu0mOKmdcY/EhV1KGeOvntYm2nazLnhOyNPZwRqoz3B9pybXLJ5dRjDDYzC6TLTmapmajrpDNiuw5IUvhGxEaG5/x3D5ObWR0rVdt1YrdnehrJINWLNgpl71NZTPn5VKRojcH378125eOtdarDHLXw3OOV31Bm703s5QYHqGvvntNydG779+K6G/G4FZ70uqjozetx54RbD1P8sO07X5NjlxvLb28aqs8WG3PVtqnFTuaxVOwL0TFwh4dvNmR3n7lNrOUSk9QTshSs3lG1aMK14Yg4GKC1D4ADAj2hWhsfEZKW4jFh2wvHvX5ryn+Dt+ISOl1RvWwB5/oQMxS+VbksLKr0Lk8yhtaLD4kpQy6cZN3o35em7gp1+L8lOm5enIZxQij2ahTfnuTqm8rigcFOztD5TazVD2qSKk+vWwjs2u9bKtE9uxuRV8zGeSxYLdctllLsbBHieERKhb2KZV+SD7fNSoW9ig5mqZy6VDqa3jqcaKjF8jXs7ABaE7I6qaUudGemA3UaWTRgVjbBgROyG9vUviGecqgG3jZVnmw2p6t+NGKHc3i6dHUp9JGHo+mPqWckJXi4GB3h15+/UNrILWZJcJyqUsJBlIAmJAYHpEWkrI1O6n0hOObmXp3IrN6vNr5x+qOVuz8ZqPeld2Iul2/mVwvv/7BNbm0drBa/HyKogODNDZ+Pttrd/v28I3WmobcZpam5xY9t6cTG/Fc61VbJbJndzdjQh4LTsqN3hyUNphoNs4oFh96v74kK204kvhghLseL+KeTZKoJ2WajTPTSRr178G+kOGgyI321KldAdmgTP1Wp1w6pPyWoLku1y5et1UerLRnK360YkezeAr3R2jh5bdEdL7BxPTconSOzx+g4PX/XOjPEABjkNoHAAcsrWB6blF6Za+H3q5FzcaZ4u9yqaiZPqRXD+83VMxQy2GnXJ8/oNihiJXj8wc8fRvVK/UbyeXET2YxwnbFkj8sONklKxYfUmxm0us24rnWSlvlxYnd7eprFgt2yw33R6j6tkLFwp40c87eVOW3N99v8nDLss3d6p8Ywb5Q205y1aOKYaomS7NS21GvT3C7PWnV7SZfffe67T+W1uzmIIrhdVvlLcesPVv1I68drcaTfIOJXprkA96CgRQAJsi3dG026lQ7PZZSGdQdbbl0qHvzYLs5EbUeCPJbguKBxaie6MAg5bcE6Xon2yyrZ+GKhX3FDB+bTWQPMXrbYcvlYfrYmfnfWF/m+milV/XbRctOLO1D7hujmFBjFiPqOmsnx46/D+PzB2js4Uwrz9/iWrlO28jsWqM2pCePHT307O6mvmaxwFOuljxsHUyxsK8YlERvttZJBftCigdFnnqcxr0WyQ/TlN8WpDJZfMrT59R9R/LDtLRzG5NBbTc7fuWS9/36H7nP3GhPdvpHMz15497LtsqDWXvW08+NfpHIWjyx3TXlbSrYF5Le/vbqt8yAc5DaB4AJ5VJRkece7AtJ3/1g+dEshSDcH6GxhzNtueFsIezi51O6W8Ea1TM9t0gb68s0O3lH+n1sfIYSNt6+hG9EaH72AQWv/4dqp+/I5wso1sj4/AFKjqalm7fW2oJUeoJylJXksbKls5pmo254Y1ffnNyu3y5admL1z88+UJybHE0bbsMr18EoRnz+gLStPRFJW/xWjyqOZkDD/RFptle+7XWv2cjsWqM2pCcPz3deeO3ulr48scBTrp6+bNMJef2x+BDlt4Q2e/DU48SneiSGR6h2eiyVyXwg7wvUfQebSJH3v0b9gpvtKZWeUPTRLPacrh0z6x954OnT9XQi8qat8mDWnuX6edEvWoknlh4th63x8vmvWd7MB1wc/iWKothtIQDodczW41jZYMHoXJ56iMh2+trj+7dpem5RGkQRka1dzeTyEjlLY3Cy1smN+r2AzZ7aHZB4vWFHL+DERkbX9traOaf6msWC01hzU34vZDHyp93fLhK9oIdXbfWi6N9LcoDeAwMpAK4QbCDlZPAEAAAAAACwRgoAAAAAAAAALIOBFABXiOjAINITAAAAAABcAKl9AAAAAAAAAGARvJECAAAAAAAAAItgIAUAAAAAAAAAFsFACgAAAAAAAAAsgoEUAAAAAAAAAFgEAykAAAAAAAAAsAgGUgC4RPWoQvOzD+jx/du0tvrckzrKpUNqNurdVhUAAAAA4MqDgRQALrGylKFY/BYtvPyWkqNpz+qoHlU6qlezUafZyTu26lVf46QsAAAAAIBeAgMpAFyAvSlKpSco2BeicH+k2yK5hs8foOhAjILXQ5avVb+Zc1IWAAAAAEAvgYEUAD2CVtpes1GncumwozLI/107OSYiosTwiO417Byt41q/GZXFK1cnbQIAAAAAoMW/RFEUuy0EAL1Ofkuggzc7VDs5Jp8/QInhEUqlJ4iI6GB3h3JCVjEI+uq7121lFAt7lN8SpLS2YF+IYvFbUjmP79+m6blFig4MSteUS4e0spSRymPn5Lc2qVw6bJOFpx4iopyQpfyWQEStt0TJD+9ScjRNj+/fpszCKq0sZSjcH6HwjQil0hNtsrHz1lafKwZbqfQE+fwBqh5VaGUpo7AJu15LTyP7svrGxmcoJ2Qp3B+h2uk7ajbO6NHUZ4pyAAAAAAA6xb+7LQAAvU5OyFL590Oa/j9eULAvROXSIeU2s5T3CZQcTVNieISCfSHFgEdN9ahCa6vPpQFE601TkXz+a5blyW9t0tj4jKYsPPUwfRZefiuV4fMHzn/fzFLmf1Yp2GecfrfxalmySe3kmNZWn1N+e5NS6QkK90fo0dRnhjbhtS+jWNijhZf/K8m6sb7cknVhtfNBAQAAAIArD1L7ADDhYHeHUncnpIFFdGCQkqNpOnizw12Gz9d6+GeDAJ8/QLH4kK23KWzgxmRJDI9IsvDUc7C7Q8nRtKIM+ZoueflGyMsI9oVacuzy28SqfZOjdxUDvlh8CJtWAAAAAKBrYCAFgAHVowo1G/W2AU8sPqS7BkiLYF+IxsZnaGUpQytLGTrY3bG9jbn6LVb4RkSSw6yec31i3OVbkcOqTm7ZFwAAAACg02AgBYAB7E2NG99uSgyP0MLL/6XE8AgVC3s0P/tfW29w1Kh3wDOqh+kjf7Pjtq3sXINvYwEAAADgooGBFAAm+PwBKpeKimPFwh75/AGuFDh1WbH4EE3PLVIqPUE5IWt4vtYbmWbjTPF3uVRsk8OsnmJhz7Fd1HLYLdNN+wIAAAAAdAoMpAAwITE8QvktQXprUj2qUH5LsLyNt3w78WajTrXTY0V6XLAvpBiMlEuHmoMTeboekyUWv8VdT3RgUKGP3RQ69du0YmFfYRP2toltVa731skt+wIAAAAAdBLs2geACan0BOUoS7OTd4iINLfnbn1o1njjiHKpKG05TtQaOD2a+lT6+9HUp7S2+pwe379NRK2ByNjDGVqcn1LUkxgeocXPp3S3CjerZ3pukTbWlyV9iIjGxmcoYfHtT/hGhOZnH1Dw+n+odvqOfL4ATc8tKmRNjqZpZSkj2VG+C58V+wIAAAAA9Br4jhQAnLA3Jk7WFzUbddPrayfHXCltRufx1kNEttLn2Leg2CCKiBx/z8kN+wIAAAAAdAq8kQKAEzce8HnK4B3YGJ3nZj1mZbi1jgkDKAAAAABcJLBGCgAAAAAAAAAsgoEUAMAy0YFBvEECAAAAwJUGa6QAAAAAAAAAwCJ4IwUAAAAAAAAAFsFACgAAAAAAAAAsgoEUAAAAAAAAAFjk/9/e/YTGdd/9o/8+8KxGyk4x1UY4C110UeAiLbRSTMQFBVRzES1XAUPSOM6iTo29iLkWNHH5mYTIkEXtxzxdPJbd54EaLCgV1DZEizq1vamg8qaiooIbVVyq1tbOkrZzF8qZzIzmz/mMZizZfr2gpNbMnPmc7/l+z5z3nO85I0gBAAAECVIAQTvbW2ll+fFBl3GgVpYfl35E+bBZX1tNF89/kD5+/510/doXB13OHvNzs6UfxKZ12vHFZvtpg5eBIMULbWnxQbp6eTp9/P47pYOm9bXVgy6LFuxsb6Xzp3/cse3XzuWvr62mq5enn3cTHSpXL08f2rF29fJ0Gh55K1366tdp/PjUQZezx8KdubT59J8HXcZz0ck+ctjbsdP7tBddK9uvvC0Pc/vWq63634e9D9OcIMULa2d7Kz26fy8NjxxL05eupUtf/ToVurrTrRtXDro0WlDo6k4Dg8Op5/XeF3L5HA7ZmbLJqVOp50hv6jvaf9AlvdIO4xnB58U+p/3K+9Nhbt96tb3K4+FlJUjxwip0daezF2bS6NhE6jvan3qO9KYTJ8+l9bXVQ/UNVfkUsJXlxy1NCas1jarW9LLs39lj5VMGav2t1XXIs4xGz6m3vNGxidYaOafq5bdj2+Sx+WSjZp9sdXvkrT1Pv+lUn2l1PQ7LNJd2tMthWZeDsvlk47m1Qavjd31tdU+NtT5D6o3hZlrZ59SbNhv5bHte4+p5jt9a/anVz4zovr+VflJdW7Px0MnPIDrn3w+6AGinbCfV7m+h5+dm08KduZTSboAb/+G7pSlDC3fm0qNv7qXNJxup0NWdRscm0uTUqdJrr16eTidOnkvzc7Op72h/2nz6z7Sz/Sx9dObTNDA4VHre0uKDtHBnrrQT7jnSm4ZH3kqTU6fS1cvT6eyFmYrnZ9PL/vN/vt7zXgt351Kh0J3W11ZLdS4tPqz4W3mN2fvPz92ouR5XL0+n6UvX0tXL06nvaH/qe6N/z+tTSunj999J05eupevXvqgIR5NTp1Khq7uizlrLq7Wejdq+Uc21VC8/77aZn5tNj+7fSzvbW6nvaH/ND+9mtWTvNTxyrPT8WzevpOn/da2lPpmn9jz9Zj99Jnv9yvLjhu3fjr6VaTTeHt2/l+bnZkt9MaVUMT5a2V7Rdsk7BiLrdevmlZr9rvrvzdYpz+P19kHRNiyf/ppti6wvNhrT1ctvVs/K8lK6fu3zhuO3WZ8pdHXv2fY9r/em6Uvfj81bN6+kvjf6U9/R/lA7tbLPWbhzu+Y4uHp5Ok1OnSrV0Kz/1hpXzWpvZZ9ab/xGl7X5ZCPNz90ohZaeI71pcurDNDxyrG5/qrWPa/aZnHc7lGuln5TXVq/+vH2YQ6wIL4k//+mPxS8/+1nxd7evt3W5v7t9vfjlZz8rPv3XP4rFYrH4178sFf/+7d/qPvblZz8rfv3726XXn35vvHhl5kJxe+tZ6W+/ufHL4pef/az0779/+7fi6ffGi3/9y1KxWCwWt7eeFf/8pz+W/l3+WOavf1kqnn5vvOJvp98bL/7Xf3xe0San3xsv/ubGLyv+9slPf1Txuod/uFuxHn//9m8VbZmtQ/Z4PaffG683LHt9AAAqUElEQVRYztN//aPmNqm3vOr1bNT2zWquV1/58vNsm3rbuLzt89Ty8A93i5/89EfF7a1nxe2tZ8VPfvqj4p//9MdcfbDeujSrPU+/abXPVG/DWn0/T9vk7VuNtkX5e9YaF9XybK/9tEuzMZCnn5ev19e/v1387JOfVLzP03/9o3j6vfHc46HZ4832Qa20Ya1t0WhMl8tTT7aNWhm/Wdtm61Fecza+s9dsbz0r1RJtp1b2Odm+olzW17a3nuXuv9Xjqlntre5Ta43fvDWWt022blnbfP372xXtUO8zLzKWItuh1vrk7Se1amv0mZ23Dg4fU/t44WU3m7h+7YvU90Z/Gn27vdPDHt2/l8aPT6WeI7tznQcGh0pnvB7dv5cm3z1V8dj48an06Jt7FcsYP/5uxbfR2TdsmUJh97HsOYWu7jQ8cqylb6TKv7XOzn5k/83+/872VsX7z8/NphMfniutR9/R/t31uH+vYrnZ442Ut1XPkd40OjZRsZzI8hq1fZ6a82i2bWrVMPBm5XbJ234Dg8Pp1s0r6dbNK2lgcLhiu7SiWe15tdJnsteVt8vo2MSevt/OvpV3vDWTt++02i55x0De9Rodm9gztezRN/d2zwDkHA/NHo/ug1odf43GdLm89YyOTTQdv43aNjtbkE2lW1leSgNvDqWBwaG0tPiw9Lfda16G2rKvbjZuy89aZ1aWH6fhkWOp0NUd6r/l46pZ7a1u01rjt5VlZWePsvrGj0/VHF+NRPYRkf1ntJ9ENOvDHG6m9vHCy06Pbz7ZSI++uZdmfnEmXfrqvxtOo8kr23EODA43eKxypzk8cqw0rSfPwWFKqXR9VzY9YnjkWOlDs1OyD4RsPWYunmn4/ELXa7mWW/28vjf6a873b7a8PG3frOb9yt6nOvAMDA6XpiZFajlx8lya+cXu81qd0neQqrdjrW1dfg1AO/tWu8ZbJ/pOnnapd6v4vOuVhbETJ8+llHanF47/cCrXOuVZ58g+qNU2bDSm91NP8/dr3LbZVLnRsYm0tPgwTU59mAqF19LS4oM0fnwqrSw/LtX8PPbVWcDJwlN2Y6WzF2ZCbV/dDxvVvp9xUf0+rS5rZ3srLdy9nda/Xa0IUHl/ZqGdn8nVov2EV4cgxUtjdz71qbTyl8elbz33K/umtNaHZPbYzvZWWz5ER8cmvvvwXCpd6zE5darjN2DI1uOrX/22I8Gt1evV8rR9p2qO1B6pZfPp9xcbbz7dSH1dL9cd5arvUNXO7dSu8fa8+k6t99zPeu0eDH6eJqdOla4hyQJ+3nVq9njefVCrbdhoTO+nnv227cCbQ6UbB+xsP0vDI8e+u15ntnRjkfKZDs9jXz08cqx0TdTS4oPUc6S3IiC02n+b1d7OsRpd1swvzqSBwaF04uT3Z7Ky64ki79uuz+Rq0X7Cq8HUPl5K7d6Jlk+xqH6fleWlPc8tdHW39M1X9k3k2QszaXLqVOnC+VraeXekQld33XWM2tl+lqvt8mrU9u2qOVpD9TrmqWVneytdv/ZFmpw6lSanTqXr1744kB+0bWe/qW6HleWlPf2+ndupXeOt030nOgbyrNfA4FAqdO1++519K16+n2u2TnnXOe8+aD9tGHldZJ/Yatv2He1P69+upqXFB6Vwmp2BWLh7+7vQ+lZb62pmYHAo9RzpLW3v8vffb/+tV3u7x2pkWdkd/8pDVCv7qnZ/JpdrpZ/w8hOkeGFtPtmouE3szvbW7q+EP92o+Obu1s0r+/rx1IHBobRwZ670PuW3MB0dm6h4bH1tNS3cmWvpm8nyW8fubG+lzacbpSkT2Qdq+XPbeSA4Ojax5xfWW32P6jnwS4sPW/6mtlnbt6vmRrJ5/eXbuNa1CM1qmZ+bTT2v/yCNH5/avUbk9R9UHHzdunml7Qdjne431e2ycGduz4FEO7dTu8Zbp/tOdAzkXa/RtydKdda6VqjROuVZ50b7oFbaMDtDUH4r+UZjulqknv20bXZNytLiw4p2HXhz9/qXniO9FQfh7agrV+1vT6SFu3M1z4i12n8b1d7usRpZVnVf2Xyysec3l2r1p1rv267P5GrRftJsHQ/iizTaz9Q+Xmjzt2crLsrsOdKbzl6YqdiZ7Wxv7WuHdfbCTLp180o6f/rHpb+dOHkujX43lXA+zZYey3OL13pWlpdK191k6/LRmZ+nlFL66MzP0/VrX5SmOfQd7U8nPjzXtus8snovnv+g4u/jx6fCN0Toe6M/XTz/Qep5/Qdp8+k/U6HQXbqOrd1t366am7VNeQ3Zdilv+2a1ZN8ql18XlV0vNTA4lIZHjlVc/9Iunew3WV+f+cWZhrcZbud2yjPe8lzs3em+Ex0Defcjo2MT6eL5n6RC12t76my2TnnWudE+qJU2LHR1p/HjU6UvsianTjUc09Ui9ey3bbObCVTfTGThztyeaeLtqCuP4ZG30vzcbOnsVKTt62lUe7vHamRZ2a3Fs76S3fp8fW214uYY1f2p1vu26zO5lkg/qbWOzernxfNvxWKxeNBFwH7sHsS9Vnc6X7vmS2ffrNX6xikLavt9n2a17udi2bzvv/l0o+Xrmj5+/53dIPvdAWRKqS2/hdGs7fdTczu1Wsv62mqauXimY9ftdLrf5Fl+O7dTO8dbu/vOfsZAnvWauXgmDbw5VPcgrNk65Xk80q6ttmGjMb2fehotJ6X2Tfvu1HU40Rpaaftmtbd7rB7E/rnd2xvqEaSAtskOIv2QYEx2sXK7z0jx/HVyDGw+2UgXz3+QLn31644GYwDyMbUP4ICZ4kEzu9eA3tgzzQuAgyNIAW2ze2cxUyl4dXViDFy9PP3db9QMpY/OfHrQqwjAd0ztAwAACHL7cwAAgCBBCgAAIEiQAgAACBKkAAAAggQpAACAIEEKAAAgSJCCJrLfcGlk88lG+vj9d9LS4oODLhcAgOdAkIIG1tdWSz+E2ex5ha7uNDxy7KBLBgDgORCkoIGlxQep72h/0+etr62m0bGJgy4XAIDnRJCCJgbe3D0bdevmlfTo/r09j9+6eSX9f3//f52NAgB4hQhS0MDk1Kk0OXUqpZRSz+u9aeHuXMXjm0820qP799L/9X9/kOvMFQAALwdBCnIaHZtIm0820vraaulvj765l/qO9gtRAACvGEEKcip0dafRsYmK6X1Liw9dGwUA8AoSpCBgeORYWlp8kHa2t9LK8uO0+WTDtVEAAK+gfz/oAuBFMjA4lApdr6WlxQelO/UVuroPuiwAAJ4zZ6QgaPTtibSy/DgtLT6o+/tSt25eSVcvTx90qQAAdIggBUGjYxNpZXkpFbpeqzutb2d7K+1sbx10qQAAdIipfRBU6OpOPa/3ln5fqpYTJ8+Z8gcA8BJzRgqCslugj75d/259QhQAwMtNkIKAne2tND93Iw0MDqWeI70HXQ4AAAfE1D7I6erl6bSy/DgNDA6lj858etDlAABwgP6tWCwWD7oIAACAF4mpfQAAAEGCFAAAQJAgBQAAECRIAQAABAlSAAAAQYIUh9r83GzafLJx0GXUtLO9lVaWHx90GYeupvW11XTx/Afp4/ffSdevfXHQTbJvB90HX7b2LNdKfz3o7dFJh23dnmc9h23deX5e5n0cLz9Bio7Z2d5K1699kT5+/5308fvvpPOnf5zm52ZDy1i4M5c2n/6zrXWtr622bTlXL0+3tbaXoaarl6fT8Mhb6dJXv07jx6cOukn2vb070Qdr2dneSudP/3hPveXteez/PF7zOS+qVvrr89oez2PdD/u6tVJPrX6cp78etnXn+Wn2mbGzvZVu3bySzp/+cfr4/XfSzMUze/pUnucsLT5I50//OF08/0HN189cPJN2trdq1lhv//yy7ItpnSBFx1y/9nlKKaWzF2bSpa9+nSanTqWe13sPuizfeHXQyvLjtLO9tbutj/SmvqP9B13SC7O9C13daWBwuGKMVLfn//a//x97nsOL6UXpl1G1+vHLuq7sX57PjOxs5aWv/jt99avfpoE3h/b0qXzPuZE+OvNpmpz6MC3cmat4bOHu7TQ8ciwVurpr1lmrX6ekbyNI0UEry4/T6NhEGhgcSj1HetPo2EQaHZs40Jo2n2w8t+kj5VOWVpYfh963+rWdnq6XLT+balVea62/Haa2auR5bu92yDM+omMob9sedB84CNlBXLX1tdXc3zS3Mlbz9Mv9jPta69VoGmWe7Rqpp7yPtjIGn8c+L28dh7GmZtu2U/vTg7L5ZCONH383Fbq6U6GrO01OndrTr/I+Z2BwKA2PHEsry0sVf1//drXpDIrqfe+L9vlCZ/z7QRfAwVpafJDW11ZTz+u9Db+NadXO9rOm7z8/dyNtPtlIha7uNDo2kSanTu3rNfNzs6Vvmwpd3Wn8h++m8eNTFdOIPn7/nZTS7tmygcGhXHXMz82mR/fvpZ3trdR3tL/pAe3Vy9Np+tK1dPXydOo72p/63ugv7dzn526k9bXVtPlkI/Uc6U2TUx+m4ZFjFa89cfJcmp+bTX1H+9Pm03+mne1n6aMzn6aBwaFQTQt35tKjb+41XLfs/RbuzqVCoTutr33/obK0+LDib/W2z6P790pTN7P2/c//+TpXDfXaKs/2Xlp8kBbuzJUOfHuO9KbhkbfS8Mixutu7lnr9plqz7VevnsmpUw0fy9ohq7Fee5Y/J8+YaNS27ewDefpZnv7ayj6hkUbLW7hzu2Z7XL08nSanTpW+HW/WvnnGaqbRfiillFaWl9L1a583XFae8VTdR7L3zcZkSt+P2Z7Xe9POzlbpoLDnSG+69NWvc9dTqy+dvTCTCl3doTHY7L3y7DubjbFyzZYX3bZ5l5tS4/1No8fybNv9fPbUe//Npxs1x+ytm1cafh426quNPjPKFbpeSyvLS2Vj5HEqdHWnniO9oeeUKw+j83M30vjxd1Mz5W3fbBzzCinyyvrNjV8WT783XvrfJz/9UfHv3/6tbcv/3e3rxU9++qPin//0x+L21rM9jz/8w93il5/9rPj0X/8oFovF4t+//Vvxy89+Vvzd7eul55x+b7z4178s5X7N725fr3j8r39Zqlinv/5lqXj6vfFwHbWW++VnP9uzrHKn3xsvXpm5UHpNZnvrWfHhH+6W2uTr398ufvLTH9V8bXm7/ebGL4tffvazUE31nvP172/veb//+o/PS//+85/+WDz93njxNzd+WfG36jqr1WrfPDXUa6tm2+bv3/6too9sbz0r/vlPfyz9u1Y9tTTqN9V9sNH2a1RPs1prvVet+qNjol7bVttPH8izjfP011b2CY00W97DP9zdsz7ZOmbbN2/7Nhqr1er1y2wbtDLuq8dTdRtVv2f27/L943/9x+cVfSBPPfX6UnQM5nmvZvvOPGOsXLPltbJt8yy30f6m2WdYnm27n8+eeu//9e9vFz/75CcVz336r3/s6UPNllXdV/P0j6f/+kfxk5/+qPibG78sPvzD3eJnn/yk+Oc//TH8nOx9srqz9//NjV8Wt7eeFb/+/e3iwz/crVtHnv0zrx5T+15Rj+7fS4/u36v428721p6/7cfk1Kk0/sN30/zcjXTx/E/23Ghifm42nfjwXOkbo76j/Wn8+FTDGpq95tH9e2n8+FTp8YHBoabX6eSpo9ZyB95s/s3T6NjEnm/Esm/lsrN/48en0s721p6pRNk0hczwyLGK5+Sp6dH9e2ny3VMVzxk/PpUefbO3jcu/Ucy+oSz/pnJ45FjNOpvJW0Ottmq2bQqF7lKbZv8dHjkW/lYw0m8abb9G9bSr1mp5+m+ttq2l1T6QZxvn6a+t7BP20zblZxEzK8uPK87O56mp2ViNKO9btZYVGdONZGckyvv56NhExZSnPPW0U7P3arbvjI6xPPviVrZts+U22t+08hlWry1b+eyp9/6jYxO7U+DKn/vNvd0zXnXqa1df3T2reOy7M8Ozu/uOweGWnrO0+CA9+uZeaezP355Nk1On0vzcbNrZeZbW11bDN8Xi1WZq3ytq82nteb1Liw/SiZPn2vY+48enSgcd83OzaWd7K504eS6tr62W7pKTV7PXZI9X7zz3s8zy51RPfxgYHN5zwWq1Qtdre/62s72VFu7eTuvfrlZ8iNW7W1CrNX3fHpUHEcMjx9L1a1+UDqSiWqkzTw3VbZVn2/Qc6U0nTp4rTWEZHjkWnqIa7TeNtl/f0f669bSj1nq1NxtHtfrhfpT3gTzbeGdnK3d/jewT9ts22YF2Fp6yL5POXpjpSE3tWqd2jOm+N/rTzvbugWN2ILyyvHSob2TSbN8ZHWPt2BdHl9tof9PKZ1g9rXz2NHr/LIQ9un+vdIywtPgwjf+w9nVF7eyrt25eSTvbW+nSV/9d+nc2fTHynI/O/Lx0c4iPzvw8zc/NlvZJj+7fS1/96re7Qer2bEoHf8NZXhCCFM/F6NhE6nujP81cPFNx7cFXv/pt7gPJvK+JHJjmWWa77zw384szaWBwKJ04+f233Nkc62jdeZ6zs73V9mvfonW2UkPe7T06NlG6eDgL7JNTp3LflCF7n7z1Ndt+jerZb62ttlEn5dnGkf7arnXJu7zsWrrsGraeI72lg7/D0L611qkdY7rv6O51M1lI7Dvanwpd3aUQeRjl2XdGxlg79sXROhvtb6L7ona3X7P33w1Bn6fJqVOl66yqvxypXtZ+++r62mop5GTL+ejMz9PF8x+kR/fvpdGxiVzPyWrKrv3LbjBx9sJMKUgWurpTz+s/cEtzQkzte0WNvl37wK2Td9XLvunMbkBR6OqumFKTR57XdGKZtZbb7EYatWR3UCr/INvPXX+a1VTo6t4zVWdp8UHDi3DbbT815N022ZmFsxdmStM09tuWteTdfo3qaUetrbRRJ+Xdxnn6azvXJc/ysruKLi0+SEuLD9LwyFsdrakd69TKeKrVT5cWH6TJqVPpP//n6zR96VrpBhGHUWTfmWeMtXtfHF1uoz4V7W9577qYd33rvf/A4FAqdL1WGivVUzGrtePzpzzkVCy70F2aWZPnOdXKbzBxWPs8LwZB6hXVc6Q3TV+6VvFNcaM7skWtr61W3IJ1925Bu3c+ynago2MTe37NfmX5ccMPkWavGRgcSgt35ko71urbk34/heX7Wz3nqSObnlg+BaKV6zaq33/zyUbLv0ORp6bRsYmK9lhfW00Ld+ae623o91NDnm1Tfnvfne2ttPl0ozStpdb2rqVZv8nk2X6N6mn02H7aNzqO2i3PNs7bX/e7LrduXikdOOdd3ujbE2nh7tzuTzZUfcnUifbN2y9bbessGDarN7uzWSftZ10bLafevjPvGGvnvji63Eb7m2b7orzbttX1bfb+o29PlN6z2fWd7fj82Q1v3enWzSulv2V3ZczGap7nlMv6fXn9PUd6Sz97kHcWSrv6Ni82U/teYX1H+yvmD7fT+rerFTu1lHZ3duXTRrLQdvH8BxXPGz8+VXe6QLPXnL0wU/p188yJk+fSaOk6nO40fnyqdNvSyalTueqYnDpVsdyeI73pozM/D187kf2+Rfb+2e1n19dWwwc0eWqanDqV5tNs6TntuJ10s/Wr/nDdTw15ts3K8lLFtWpZO2TvVb29a93SvFm/iWy/RvU0eixve7bSRp2WZxvn7a/7XZfyazjyLm945K3SBerV35R3on3z9stW2zq7FqR8OtmJD8/t2V8NjxxLt25eqdhXZ9ulXVOa97Ou1cvJs+/MO8bauS+OLrfR/qbZvijvtm11fZu9/+jYRLp4/iep0PVa0/6fp6/m2cedvTCTbt24UlrnbJuWj9U8z8nM357dM4U1u7au0PVa7uvE29W3ebH9W7FYLB50EbycsotZs7n3jZ6X/UZFZNmNXlP+eyjtWuaLrN7Uhxelhmbbpl3XgbXSb6L1dOqatcPQf9vVz1pdl/W11TRz8cyea5ra0TaHoX2r60mpcVs3uqA/u/nP5NSp0jKy3xlKKTUM+IfdQV4XGtFof9NsX9TqzYLaUdvMxTNp4M2h3F/IHYbPH+gUQQqAl0L5nUFp7OP336n5A6LZT2N0arYCL7bNJxvp4vkP0qWvfv3crrOFw8zUPgBeCp2asvoyym6ikQWpne2ttLK8VLrLHVTb2d5K83M3ak6BhVeVM1IA8IrZfLKRFu7OpaXFB6WpVwODQ6Xbh0O5q5en08ry4zQwOJQ+OvOpaXrwHUEKAAAgyO3PAQAAggQpAACAIEEKAAAgSJACAAAIEqQAAACCBCleKru/hfL4oMvYdy3zc7OlX5Y/zPbb3i/KerbLyvLj0q2mAYAXmyDFS2V9bTVdvTxd+vfO9lY6f/rHaX1tNbSMTtQSsXBnLm0+/WdnG+uA1/Eg17OVftEOVy9Pt7V/Rf4OALSXIMVLrdDVnQYGh1PP6/l/hf36tS8Oumw6rJV+cdjU66f6LwA8H4IUz0W96Vvl08JWlh93ZJrX6NhEqM7DONUsm0KXd1rY+trqnvVYX1vdc7Zi88nGK3sGo7pfVPfFwzJFtJZ6/bTV/ptnHOpTAFDp3w+6AF5eH7//Tpq+dC1dv/ZF6QBsdGwiTU6dSoWu7pTS7lSn6UvX0tXL06nvaH/qe6M/TU6dKi1jafFBmp+7kTafbKRCV3fp9Zn5udn06P69tLO9lfqO9tcMTVcvT6ezF2bSwOBQ6TULd+ZSSrtnJsZ/+G4aPz5VMU3t4/ffSSml0uua1ZG3lnJLiw/Swp250kFnz5HeNDzy1p7l7mxv7bbPG/2ldWjWNo/u30uFru6KZV29PJ16Xu9N05eulf526+aV1PdGf+o72t+29q6lXptX23yykebnbpQO2nuO9KbJqQ/T8Mixpm2Wtz3r9Yurl6fTiZPn0vzcbOo72p82n/4z7Ww/Sx+d+bSi3SP11nP18nRaWX5cty812hb1+mmhq7vl/ttsHLbapxq1z62bV2r2oXp/B4DDRpCio27duJLO/j9fpp4jvWnzyUa6fu2LtHD3duXB+e3ZNP2/rqWeI5XTrB7dv5ce3b9Xev362mq6deNKmk+zaXLqVJqfm00rf3lceu3K8uM0f3u2YT3Zay599evSa7JQ13e0P3105tN09fJ0+s//+Tp3HeXLzVvL+tpqun7ti9KB7u4Zp6VU6Hqt4nnlIerEyXO5a+o72p8e3b+X0ndZZWX5cep5vbfigDY7yzV+/N2OtXezNq9W6HotDQwOpRMnz6VCV3dauDOXbt28koZHjjVss7zt2czS4oN06av/LtV36+aV3f5ZFhTy1lvPwp3b6cTJcxVtuFCYqwiWzbZFrX6aUmq5/6ZUfxxmWulTjdqn5/XetHB3riIwbT7ZSI/u36vb3gBwmJjaR0eNH58qHZj1HOlNo2MTuwdjZUbHJmoevM3PzaYTH54rPdZ3tD+NH58qvf7R/XsVyx8YHEoDbw41Kqfma7KzMfU0q6OVWgqF3QP17IC90NWdhkeO7TnzMT83uydE5alpYHAora+tlqYCriwvpYE3h747O/Gw9Lfda4WGci2zlfaOtnl2tiRrl/HjU2lneyutr602bLO87dnM+PF3K0JeFuDqbscG9dZT3t8HBod2x8Q3lWMiT5/LK++y6o3DTCt9qlH7jI5N7JkG+Oibe7tnxJqMSQA4DJyRoqOqzwj0vdG/5zqfWmcNsgO2mYtnai43e7z6m/+BweHSFLJ6rxkYHM5df7M6Wq2l50hvOnHyXGkq1fDIsTQ8cqziIH7+9mxaX1tNZy/MhGvqOdKb+o72p6XFB2l0bCItLT5Mk1MfpkLhtbS0+CCNH59KK8uPS23RifZupc13trfSwt3baf3b1YpAkk0lrNdmedqzExrVW0+tMVF+7VGe7ZtXZFnNzt5F+1Sz9ikc7S59sZJ9UbC0+DCN/3AqAcCLQJDiucr7TXP2vK9+9du2HQxny4wsL08drX57Pjo2kYZHjqWV5aX06P69ND+3O9Uqm+rU98butSrzt2dL18BE2mbgzaHSzQB2tp+l4ZFj312zMluagjX69kTH2ruVNp/5xZnSVLDs7Eh2vU+zNmvWnp3QrN48qu8c2M5t0e7tGulTedpneORYun7t89K1X5tPNppeXwYAh4WpfXTUzvazin8vLT7I/dpCV3fT51c/Xv1+eV7TjjparSWbgnb2wkzpOqTM8MiximuwojX1He1P69+upqXFB6WD0+yswsLd298dtL7V8fbO2+bZ3eLKD7pr3T2uUZs1eqzd8tZbrbrNVpaX9kypy9vn8mjnsiJ9Kk/7DAwOpULX7hmt7ExXp88iAkC7CFJ0VPV1GEuLD3OfIRgdm0jzc7MVB18ry49LB4XZdR7ZNKr1tdWm15AMDA6lhTtzpddU3y46+wY/ux30zvZW0zparaX8NtM721tp8+nGnulVha7udOLDc2lp8UHF8vLUlF3fs7T4sOJaoYE3d69p6TnSW3EA34n2ztPm9do+uzlJ3jbL057tlKfeWqrbcOHOXEWgzbMtavXTen/P01fyivSpvO0z+vZEqZ7qa9pu3byyrx98BoBOMrWPjup7oz9dPP9B6nn9B2nz6T9TodC955qferKzMRfPf1Dx9/HjU6WzNbduXknnT/84pbT7zfhHZ37e8HqQsxdmKl6TUkonTp5Lo98d/BW6utP48anSwdvk1KmmdWTPi9aysrxUcX1R9po9bXi0v3R2JbutdJ6aUvr+BgHlfxseOZYW7sztuf14J9o7T5tnsltrZ22f3Sp7fW21dJaiUZvlbc92yVNvrdeMjk2kmV+caXgr/WbbolY/HT8+1XL/jcjbp/K2z+jYRLp4/iep0PXannp2trdy/3YaADxv/1YsFosHXQQvp4/ffyedvTBTClEppfBd1FL6/uxCO+/klX073+guZc+jjp3trX1NZepUTe1eZkqttXm9+uq12X7b83nKbhnebF3btS06tV3bYebimTTw5lDN31B7UbYnAK8eQYqOyYJUK+EJeDVsPtlIF89/UPqdMQB4UbhGCoADsbO9lebnbqSBwSEhCoAXjmuk6JjdO3KZlgPsdfXy9He/OzWUPjrz6UGXAwBhpvYBAAAEmdoHAAAQJEgBAAAECVIAAABBghQAAECQIAUAABAkSAEAAAQJUgAAAEGCFAAAQJAgBQAAECRIAQAABAlSAAAAQYIUAABAkCAFAAAQJEgBAAAECVIAAABBghQAAECQIAUAABAkSAEAAAQJUgAAAEGCFAAAQJAgBQAAECRIAQAABAlSAAAAQYIUAABAkCAFAAAQJEgBAAAECVIAAABBghQAAECQIAUAABAkSAEAAAQJUgAAAEGCFAAAQJAgBQAAECRIAQAABAlSAAAAQYIUAABAkCAFAAAQJEgBAAAECVIAAABBghQAAECQIAUAABAkSAEAAAQJUgAAAEGCFAAAQJAgBQAAECRIAQAABAlSAAAAQYIUAABAkCAFAAAQJEgBAAAECVIAAABBghQAAECQIAUAABAkSAEAAAQJUgAAAEGCFAAAQJAgBQAAECRIAQAABAlSAAAAQYIUAABAkCAFAAAQJEgBAAAECVIAAABBghQAAECQIAUAABAkSAEAAAQJUgAAAEGCFAAAQJAgBQAAECRIAQAABAlSAAAAQYIUAABAkCAFAAAQJEgBAAAECVIAAABBghQAAECQIAUAABAkSAEAAAQJUgAAAEGCFAAAQJAgBQAAECRIAQAABAlSAAAAQYIUAABAkCAFAAAQJEgBAAAECVIAAABBghQAAECQIAUAABAkSAEAAAQJUgAAAEGCFAAAQJAgBQAAECRIAQAABAlSAAAAQYIUAABAkCAFAAAQJEgBAAAECVIAAABBghQAAECQIAUAABAkSAEAAAQJUgAAAEGCFAAAQJAgBQAAECRIAQAABAlSAAAAQYIUAABAkCAFAAAQJEgBAAAECVIAAABBghQAAECQIAUAABAkSAEAAAQJUgAAAEGCFAAAQJAgBQAAECRIAQAABAlSAAAAQYIUAABAkCAFAAAQJEgBAAAECVIAAABBghQAAECQIAUAABAkSAEAAAQJUgAAAEGCFAAAQJAgBQAAECRIAQAABAlSAAAAQYIUAABAkCAFAAAQJEgBAAAECVIAAABBghQAAECQIAUAABAkSAEAAAQJUgAAAEGCFAAAQJAgBQAAECRIAQAABAlSAAAAQYIUAABAkCAFAAAQJEgBAAAECVIAAABBghQAAECQIAUAABAkSAEAAAQJUgAAAEGCFAAAQJAgBQAAECRIAQAABAlSAAAAQYIUAABAkCAFAAAQJEgBAAAECVIAAABBghQAAECQIAUAABAkSAEAAAQJUgAAAEGCFAAAQJAgBQAAECRIAQAABAlSAAAAQYIUAABAkCAFAAAQJEgBAAAECVIAAABBghQAAECQIAUAABAkSAEAAAQJUgAAAEGCFAAAQJAgBQAAECRIAQAABAlSAAAAQYIUAABAkCAFAAAQJEgBAAAECVIAAABBghQAAECQIAUAABAkSAEAAAQJUgAAAEGCFAAAQJAgBQAAECRIAQAABAlSAAAAQYIUAABAkCAFAAAQJEgBAAAECVIAAABBghQAAECQIAUAABAkSAEAAAQJUgAAAEGCFAAAQJAgBQAAECRIAQAABAlSAAAAQYIUAABAkCAFAAAQJEgBAAAECVIAAABBghQAAECQIAUAABAkSAEAAAQJUgAAAEGCFAAAQJAgBQAAECRIAQAABAlSAAAAQYIUAABAkCAFAAAQJEgBAAAECVIAAABBghQAAECQIAUAABAkSAEAAAQJUgAAAEGCFAAAQJAgBQAAECRIAQAABAlSAAAAQYIUAABAkCAFAAAQJEgBAAAECVIAAABBghQAAECQIAUAABAkSAEAAAQJUgAAAEGCFAAAQJAgBQAAECRIAQAABAlSAAAAQYIUAABAkCAFAAAQJEgBAAAECVIAAABBghQAAECQIAUAABAkSAEAAAQJUgAAAEGCFAAAQJAgBQAAECRIAQAABAlSAAAAQYIUAABAkCAFAAAQJEgBAAAECVIAAABBghQAAECQIAUAABAkSAEAAAQJUgAAAEGCFAAAQJAgBQAAECRIAQAABAlSAAAAQYIUAABAkCAFAAAQJEgBAAAECVIAAABBghQAAECQIAUAABAkSAEAAAQJUgAAAEGCFAAAQJAgBQAAECRIAQAABAlSAAAAQYIUAABAkCAFAAAQJEgBAAAECVIAAABBghQAAECQIAUAABAkSAEAAAQJUgAAAEGCFAAAQJAgBQAAECRIAQAABAlSAAAAQYIUAABAkCAFAAAQJEgBAAAECVIAAABBghQAAECQIAUAABAkSAEAAAQJUgAAAEGCFAAAQJAgBQAAECRIAQAABAlSAAAAQYIUAABAkCAFAAAQJEgBAAAECVIAAABBghQAAECQIAUAABAkSAEAAAQJUgAAAEGCFAAAQJAgBQAAECRIAQAABAlSAAAAQYIUAABAkCAFAAAQJEgBAAAECVIAAABBghQAAECQIAUAABAkSAEAAAQJUgAAAEGCFAAAQJAgBQAAECRIAQAABAlSAAAAQYIUAABAkCAFAAAQJEgBAAAECVIAAABBghQAAECQIAUAABAkSAEAAAQJUgAAAEGCFAAAQJAgBQAAECRIAQAABAlSAAAAQYIUAABAkCAFAAAQJEgBAAAECVIAAABBghQAAECQIAUAABAkSAEAAAQJUgAAAEGCFAAAQJAgBQAAECRIAQAABAlSAAAAQYIUAABAkCAFAAAQJEgBAAAECVIAAABBghQAAECQIAUAABAkSAEAAAQJUgAAAEGCFAAAQJAgBQAAECRIAQAABAlSAAAAQYIUAABAkCAFAAAQJEgBAAAECVIAAABBghQAAECQIAUAABAkSAEAAAQJUgAAAEGCFAAAQJAgBQAAECRIAQAABAlSAAAAQYIUAABAkCAFAAAQJEgBAAAECVIAAABBghQAAECQIAUAABAkSAEAAAQJUgAAAEGCFAAAQJAgBQAAECRIAQAABAlSAAAAQYIUAABAkCAFAAAQJEgBAAAECVIAAABBghQAAECQIAUAABAkSAEAAAQJUgAAAEGCFAAAQJAgBQAAECRIAQAABAlSAAAAQYIUAABAkCAFAAAQJEgBAAAECVIAAABBghQAAECQIAUAABAkSAEAAAQJUgAAAEGCFAAAQJAgBQAAECRIAQAABAlSAAAAQYIUAABAkCAFAAAQJEgBAAAECVIAAABBghQAAECQIAUAABAkSAEAAAQJUgAAAEGCFAAAQJAgBQAAECRIAQAABAlSAAAAQYIUAABAkCAFAAAQJEgBAAAECVIAAABBghQAAECQIAUAABAkSAEAAAQJUgAAAEGCFAAAQJAgBQAAECRIAQAABAlSAAAAQYIUAABAkCAFAAAQJEgBAAAECVIAAABBghQAAECQIAUAABAkSAEAAAQJUgAAAEGCFAAAQJAgBQAAECRIAQAABAlSAAAAQYIUAABAkCAFAAAQ9P8D+7RoAgULlWgAAABKdEVYdHNpZ25hdHVyZQA5OWZlYWQ3NzYxMzQ1NjAyM2M0NzliNGQ1ZThjMTI5OGEwZGJjYzViNTBiY2ZmNDIxMjNmMjQyM2I4MmQ2YWRh4UBXhwAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from wand.image import Image \n", "imageFromPdf = Image(filename='project21.pdf',resolution=100) \n", "pages = len(imageFromPdf.sequence) \n", "\n", "image = Image(width=imageFromPdf.width,height=imageFromPdf.height * pages) \n", "for i in range(pages): \n", " image.composite(imageFromPdf.sequence[i],top=imageFromPdf.height * i,left=0) \n", "image.format=\"png\" \n", "image" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Importing necessary modules" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import warnings \n", "warnings.filterwarnings('ignore')\n", "import seaborn as sns\n", "import pandas as pd\n", "import researchpy\n", "import matplotlib.pyplot as plt\n", "import plotly.graph_objects as go \n", "from plotly.subplots import make_subplots" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Data overview" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
agejobmaritaleducationdefaulthousingloancontactmonthday_of_week...campaignpdayspreviouspoutcomeemp.var.ratecons.price.idxcons.conf.idxeuribor3mnr.employedy
056housemaidmarriedbasic.4ynononotelephonemaymon...19990nonexistent1.193.994-36.44.8575191.0no
157servicesmarriedhigh.schoolunknownnonotelephonemaymon...19990nonexistent1.193.994-36.44.8575191.0no
237servicesmarriedhigh.schoolnoyesnotelephonemaymon...19990nonexistent1.193.994-36.44.8575191.0no
340admin.marriedbasic.6ynononotelephonemaymon...19990nonexistent1.193.994-36.44.8575191.0no
456servicesmarriedhigh.schoolnonoyestelephonemaymon...19990nonexistent1.193.994-36.44.8575191.0no
\n", "

5 rows × 21 columns

\n", "
" ], "text/plain": [ " age job marital education default housing loan contact \\\n", "0 56 housemaid married basic.4y no no no telephone \n", "1 57 services married high.school unknown no no telephone \n", "2 37 services married high.school no yes no telephone \n", "3 40 admin. married basic.6y no no no telephone \n", "4 56 services married high.school no no yes telephone \n", "\n", " month day_of_week ... campaign pdays previous poutcome emp.var.rate \\\n", "0 may mon ... 1 999 0 nonexistent 1.1 \n", "1 may mon ... 1 999 0 nonexistent 1.1 \n", "2 may mon ... 1 999 0 nonexistent 1.1 \n", "3 may mon ... 1 999 0 nonexistent 1.1 \n", "4 may mon ... 1 999 0 nonexistent 1.1 \n", "\n", " cons.price.idx cons.conf.idx euribor3m nr.employed y \n", "0 93.994 -36.4 4.857 5191.0 no \n", "1 93.994 -36.4 4.857 5191.0 no \n", "2 93.994 -36.4 4.857 5191.0 no \n", "3 93.994 -36.4 4.857 5191.0 no \n", "4 93.994 -36.4 4.857 5191.0 no \n", "\n", "[5 rows x 21 columns]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data=pd.read_csv(\"/home/user/Downloads/bank-additional-full.csv\",sep=';')\n", "data.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 1 . Preprocessing" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1.1 Data Cleaning" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(41188, 21)" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.shape" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
agejobmaritaleducationdefaulthousingloancontactmonthday_of_week...campaignpdayspreviouspoutcomeemp.var.ratecons.price.idxcons.conf.idxeuribor3mnr.employedy
126539blue-collarmarriedbasic.6ynononotelephonemaythu...19990nonexistent1.193.994-36.44.8555191.0no
126639blue-collarmarriedbasic.6ynononotelephonemaythu...19990nonexistent1.193.994-36.44.8555191.0no
1226036retiredmarriedunknownnononotelephonejulthu...19990nonexistent1.493.918-42.74.9665228.1no
1226136retiredmarriedunknownnononotelephonejulthu...19990nonexistent1.493.918-42.74.9665228.1no
1415527techniciansingleprofessional.coursenononocellularjulmon...29990nonexistent1.493.918-42.74.9625228.1no
1423427techniciansingleprofessional.coursenononocellularjulmon...29990nonexistent1.493.918-42.74.9625228.1no
1681947techniciandivorcedhigh.schoolnoyesnocellularjulthu...39990nonexistent1.493.918-42.74.9625228.1no
1695647techniciandivorcedhigh.schoolnoyesnocellularjulthu...39990nonexistent1.493.918-42.74.9625228.1no
1846432techniciansingleprofessional.coursenoyesnocellularjulthu...19990nonexistent1.493.918-42.74.9685228.1no
1846532techniciansingleprofessional.coursenoyesnocellularjulthu...19990nonexistent1.493.918-42.74.9685228.1no
2007255servicesmarriedhigh.schoolunknownnonocellularaugmon...19990nonexistent1.493.444-36.14.9655228.1no
2021655servicesmarriedhigh.schoolunknownnonocellularaugmon...19990nonexistent1.493.444-36.14.9655228.1no
2053141technicianmarriedprofessional.coursenoyesnocellularaugtue...19990nonexistent1.493.444-36.14.9665228.1no
2053441technicianmarriedprofessional.coursenoyesnocellularaugtue...19990nonexistent1.493.444-36.14.9665228.1no
2518339admin.marrieduniversity.degreenononocellularnovtue...29990nonexistent-0.193.200-42.04.1535195.8no
2521739admin.marrieduniversity.degreenononocellularnovtue...29990nonexistent-0.193.200-42.04.1535195.8no
2847624servicessinglehigh.schoolnoyesnocellularaprtue...19990nonexistent-1.893.075-47.11.4235099.1no
2847724servicessinglehigh.schoolnoyesnocellularaprtue...19990nonexistent-1.893.075-47.11.4235099.1no
3250535admin.marrieduniversity.degreenoyesnocellularmayfri...49990nonexistent-1.892.893-46.21.3135099.1no
3251635admin.marrieduniversity.degreenoyesnocellularmayfri...49990nonexistent-1.892.893-46.21.3135099.1no
3695045admin.marrieduniversity.degreenononocellularjulthu...19990nonexistent-2.992.469-33.61.0725076.2yes
3695145admin.marrieduniversity.degreenononocellularjulthu...19990nonexistent-2.992.469-33.61.0725076.2yes
3825571retiredsingleuniversity.degreenononotelephoneocttue...19990nonexistent-3.492.431-26.90.7425017.5no
3828171retiredsingleuniversity.degreenononotelephoneocttue...19990nonexistent-3.492.431-26.90.7425017.5no
\n", "

24 rows × 21 columns

\n", "
" ], "text/plain": [ " age job marital education default housing loan \\\n", "1265 39 blue-collar married basic.6y no no no \n", "1266 39 blue-collar married basic.6y no no no \n", "12260 36 retired married unknown no no no \n", "12261 36 retired married unknown no no no \n", "14155 27 technician single professional.course no no no \n", "14234 27 technician single professional.course no no no \n", "16819 47 technician divorced high.school no yes no \n", "16956 47 technician divorced high.school no yes no \n", "18464 32 technician single professional.course no yes no \n", "18465 32 technician single professional.course no yes no \n", "20072 55 services married high.school unknown no no \n", "20216 55 services married high.school unknown no no \n", "20531 41 technician married professional.course no yes no \n", "20534 41 technician married professional.course no yes no \n", "25183 39 admin. married university.degree no no no \n", "25217 39 admin. married university.degree no no no \n", "28476 24 services single high.school no yes no \n", "28477 24 services single high.school no yes no \n", "32505 35 admin. married university.degree no yes no \n", "32516 35 admin. married university.degree no yes no \n", "36950 45 admin. married university.degree no no no \n", "36951 45 admin. married university.degree no no no \n", "38255 71 retired single university.degree no no no \n", "38281 71 retired single university.degree no no no \n", "\n", " contact month day_of_week ... campaign pdays previous \\\n", "1265 telephone may thu ... 1 999 0 \n", "1266 telephone may thu ... 1 999 0 \n", "12260 telephone jul thu ... 1 999 0 \n", "12261 telephone jul thu ... 1 999 0 \n", "14155 cellular jul mon ... 2 999 0 \n", "14234 cellular jul mon ... 2 999 0 \n", "16819 cellular jul thu ... 3 999 0 \n", "16956 cellular jul thu ... 3 999 0 \n", "18464 cellular jul thu ... 1 999 0 \n", "18465 cellular jul thu ... 1 999 0 \n", "20072 cellular aug mon ... 1 999 0 \n", "20216 cellular aug mon ... 1 999 0 \n", "20531 cellular aug tue ... 1 999 0 \n", "20534 cellular aug tue ... 1 999 0 \n", "25183 cellular nov tue ... 2 999 0 \n", "25217 cellular nov tue ... 2 999 0 \n", "28476 cellular apr tue ... 1 999 0 \n", "28477 cellular apr tue ... 1 999 0 \n", "32505 cellular may fri ... 4 999 0 \n", "32516 cellular may fri ... 4 999 0 \n", "36950 cellular jul thu ... 1 999 0 \n", "36951 cellular jul thu ... 1 999 0 \n", "38255 telephone oct tue ... 1 999 0 \n", "38281 telephone oct tue ... 1 999 0 \n", "\n", " poutcome emp.var.rate cons.price.idx cons.conf.idx euribor3m \\\n", "1265 nonexistent 1.1 93.994 -36.4 4.855 \n", "1266 nonexistent 1.1 93.994 -36.4 4.855 \n", "12260 nonexistent 1.4 93.918 -42.7 4.966 \n", "12261 nonexistent 1.4 93.918 -42.7 4.966 \n", "14155 nonexistent 1.4 93.918 -42.7 4.962 \n", "14234 nonexistent 1.4 93.918 -42.7 4.962 \n", "16819 nonexistent 1.4 93.918 -42.7 4.962 \n", "16956 nonexistent 1.4 93.918 -42.7 4.962 \n", "18464 nonexistent 1.4 93.918 -42.7 4.968 \n", "18465 nonexistent 1.4 93.918 -42.7 4.968 \n", "20072 nonexistent 1.4 93.444 -36.1 4.965 \n", "20216 nonexistent 1.4 93.444 -36.1 4.965 \n", "20531 nonexistent 1.4 93.444 -36.1 4.966 \n", "20534 nonexistent 1.4 93.444 -36.1 4.966 \n", "25183 nonexistent -0.1 93.200 -42.0 4.153 \n", "25217 nonexistent -0.1 93.200 -42.0 4.153 \n", "28476 nonexistent -1.8 93.075 -47.1 1.423 \n", "28477 nonexistent -1.8 93.075 -47.1 1.423 \n", "32505 nonexistent -1.8 92.893 -46.2 1.313 \n", "32516 nonexistent -1.8 92.893 -46.2 1.313 \n", "36950 nonexistent -2.9 92.469 -33.6 1.072 \n", "36951 nonexistent -2.9 92.469 -33.6 1.072 \n", "38255 nonexistent -3.4 92.431 -26.9 0.742 \n", "38281 nonexistent -3.4 92.431 -26.9 0.742 \n", "\n", " nr.employed y \n", "1265 5191.0 no \n", "1266 5191.0 no \n", "12260 5228.1 no \n", "12261 5228.1 no \n", "14155 5228.1 no \n", "14234 5228.1 no \n", "16819 5228.1 no \n", "16956 5228.1 no \n", "18464 5228.1 no \n", "18465 5228.1 no \n", "20072 5228.1 no \n", "20216 5228.1 no \n", "20531 5228.1 no \n", "20534 5228.1 no \n", "25183 5195.8 no \n", "25217 5195.8 no \n", "28476 5099.1 no \n", "28477 5099.1 no \n", "32505 5099.1 no \n", "32516 5099.1 no \n", "36950 5076.2 yes \n", "36951 5076.2 yes \n", "38255 5017.5 no \n", "38281 5017.5 no \n", "\n", "[24 rows x 21 columns]" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data[data.duplicated(keep=False)]" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "data=data.drop_duplicates()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(41176, 21)" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.shape" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "age 0\n", "job 0\n", "marital 0\n", "education 0\n", "default 0\n", "housing 0\n", "loan 0\n", "contact 0\n", "month 0\n", "day_of_week 0\n", "duration 0\n", "campaign 0\n", "pdays 0\n", "previous 0\n", "poutcome 0\n", "emp.var.rate 0\n", "cons.price.idx 0\n", "cons.conf.idx 0\n", "euribor3m 0\n", "nr.employed 0\n", "y 0\n", "dtype: int64" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.isna().sum()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "age int64\n", "job object\n", "marital object\n", "education object\n", "default object\n", "housing object\n", "loan object\n", "contact object\n", "month object\n", "day_of_week object\n", "duration int64\n", "campaign int64\n", "pdays int64\n", "previous int64\n", "poutcome object\n", "emp.var.rate float64\n", "cons.price.idx float64\n", "cons.conf.idx float64\n", "euribor3m float64\n", "nr.employed float64\n", "y object\n", "dtype: object" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.dtypes" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1.12 Handling Outliers" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- checking for outliers" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAS/0lEQVR4nO3de4wd5XnH8e8TzHrBJGAuOUGQZJGggHHERUeUiF7WmKRpUsVum1pBKNpWlrcowSE1Uu3AH2mkFmypkKbuxbVL2q2UODgkYBQqF+T4pErVkNiExLcECDGJkW2S2CaYm43z9I8du2bZNXt2zu7ZM/5+pNXMvDNz5rE0/M7LO3NmIjORJFXLW9pdgCSp9Qx3Saogw12SKshwl6QKMtwlqYKmtLsAgLPPPjt7enraXYb0Bi+++CLTpk1rdxnSsDZt2vSLzDxnuHWTItx7enrYuHFju8uQ3qDRaNDb29vuMqRhRcQzI61702GZiPhCRDwXEVuOaTszIh6JiCeL6fSiPSLi7yPiqYj4QURc1Zp/giSpGaMZc/934AND2pYA6zPzImB9sQzw+8BFxV8/8M+tKVOS1Iw3DffM/G9g75DmOcBAMT8AzD2m/T9y0LeBMyLi3FYVK0kanbGOudcyc1cxvxuoFfPnAT87ZrudRdsuhoiIfgZ799RqNRqNxhhLkcbPgQMHPDfVkUpfUM3MjIimH1CTmSuBlQD1ej29aKXJyAuq6lRjvc99z5HhlmL6XNH+LPDOY7Y7v2iTOsrChQvp7u5m1qxZdHd3s3DhwnaXJDVlrD33B4E+YGkxXXtM+80R8WXgN4Hnjxm+kTrCwoULWbFiBcuWLWPGjBls27aNxYsXA7B8+fI2VyeNzmhuhVwN/C9wcUTsjIj5DIb6+yLiSeD6YhngP4GngaeAVcDHx6VqaRytWrWKZcuWsWjRIrq7u1m0aBHLli1j1apV7S5NGrWYDM9zr9fr6Y+YNFlEBC+++CKnnnrq0TH3l156iWnTpjEZ/nuRjoiITZlZH26dz5aRhpg6dSorVqx4XduKFSuYOnVqmyqSmjcpHj8gTSYLFiw4OsY+Y8YM7r77bhYvXsxNN93U5sqk0TPcpSGOXDS97bbbePXVV5k6dSo33XSTF1PVURxzl47D+9w1mTnmLjVp9erVzJw5k9mzZzNz5kxWr17d7pKkpjgsIw2xevVqbr/9du655x4OHz7MSSedxPz58wG44YYb2lydNDoOy0hDzJw5k7lz5/LAAw+wfft2Lr300qPLW7ZsefMPkCbI8YZl7LlLQ2zbto2XXnrpDT33HTt2tLs0adQcc5eG6Orq4uabb2bWrFlMmTKFWbNmcfPNN9PV1dXu0qRRs+cuDXHw4EGWL1/OlVdeyeHDh9mwYQPLly/n4MGD7S5NGjXDXRpixowZzJ07l4ULFx4dc7/xxht54IEH2l2aNGqGuzTE7bffTl9fH4cOHQJg69atPPHEEwwMDLzJntLk4Zi7NMSdd97JoUOHOO200wA47bTTOHToEHfeeWebK5NGz3CXhti8eTM9PT1He+6HDh2ip6eHzZs3t7kyafQclpGGsWPHDu66666jL+u49dZb212S1BR77tIwLrvsste9rOOyyy5rd0lSU0qFe0TcEhFbImJrRHyqaDszIh6JiCeL6fTWlCpNnK1btzJnzhz279/PnDlz2Lp1a7tLkpoy5scPRMRM4MvA1cBBYB1wE9AP7M3MpRGxBJiemYuP91k+fkCTSXd3N9OnT2f37t1H297xjnewb98+XnnllTZWJr3eeD0V8lLg0cx8KTNfA74J/BEwBzhyz9gAMLfEMaQJt2DBAvbs2cOUKYOXpKZMmcKePXtYsGBBmyuTRq/MBdUtwN9ExFnAy8AHgY1ALTN3FdvsBmrD7RwR/Qz28qnVajQajRKlSK2zc+dOAH7961+/brpz507PU3WMUk+FjIj5wMeBF4GtwKvAn2bmGcdssy8zjzvu7rCMJpPu7m7uuOMOFi1adPRlHXfffTe33XabwzKaVI43LNOyR/5GxB3ATuAWoDczd0XEuUAjMy8+3r6GuyaTiBhx3WR4RLZ0xLi9iSki3l5M38XgePuXgAeBvmKTPmBtmWNI7eT97epUZX/E9NVizP0Q8InM3B8RS4E1xZDNM8C8skVK7VCr1bjrrruo1Wrs2bOn3eVITSkV7pn528O0/RKYXeZzpXbr6upi7969AOzdu5euri4f+auO4i9UpWEcPHiQgwcPsmHDhqPzUifx2TLSCI53YVWa7Oy5S1IFGe6SVEGGuyRVkOEuSRVkuEsjiAiWLl3qhVV1JO+WkUaQmSxZsqTdZUhjYs9dkirIcJekCjLcJamCDHdJqiDDXRpBZrJhwwaf4a6O5N0y0gi8BVKdzJ67JFVQ2Tcx/UVEbI2ILRGxOiK6I+KCiHg0Ip6KiHsjoqtVxUqSRmfM4R4R5wGfBOqZORM4CfgosAz4XGZeCOwD5reiUEnS6JUdlpkCnBIRU4BTgV3AdcB9xfoBYG7JY0ht4QVVdbIxX1DNzGcj4m+BnwIvAw8Dm4D9mflasdlO4Lzh9o+IfqAfBt9V2Wg0xlqKNC6Gu6DqeapOMeZwj4jpwBzgAmA/8BXgA6PdPzNXAisB6vV69vb2jrUUacJ4nqpTlBmWuR74SWb+PDMPAV8DrgXOKIZpAM4Hni1ZoySpSWXC/afANRFxagz+/+tsYBuwAfhIsU0fsLZciZKkZo053DPzUQYvnD4GbC4+ayWwGFgUEU8BZwH3tKBOSVITSt0tk5mfycxLMnNmZn4sM1/NzKcz8+rMvDAz/yQzX21VsdJEmzdvXrtLkMbEX6hKx7FmzZp2lyCNieEuSRVkuEtSBRnuklRBhrskVZDhLo3AZ8uok/myDmkEvqxDncyeuyRVkOEuSRVkuEtSBRnu0gi8oKpO5gVVaQReUFUns+cuSRVkuEtSBRnuklRBYw73iLg4Ih4/5u9XEfGpiDgzIh6JiCeL6fRWFixNFC+oqpON+YJqZv4IuAIgIk5i8F2p9wNLgPWZuTQilhTLi1tQqzShvKCqTtaqYZnZwI8z8xlgDjBQtA8Ac1t0DEnSKLUq3D8KrC7ma5m5q5jfDdRadAxpwl111VXtLkEak9L3uUdEF/Bh4NND12VmRsSwA5YR0Q/0A9RqNRqNRtlSpJZ77LHHXrfseapOEWUvFkXEHOATmfn+YvlHQG9m7oqIc4FGZl58vM+o1+u5cePGUnVIrXJkrD0zaTQa9Pb2vq5NmiwiYlNm1odb14pfqN7A/w/JADwI9AFLi+naFhxDaolmLpIOt+1o9/dLQO1WKtwjYhrwPuDPj2leCqyJiPnAM8C8MseQWmm0oTtciBvY6iSlLqhm5ouZeVZmPn9M2y8zc3ZmXpSZ12fm3vJlShMrM8lM3r3460fnpU7iL1QlqYIMd0mqIMNdkirIcJekCjLcJamCDHdJqiDDXZIqyHCXpAoy3CWpggx3Saogw12SKshwl6QKMtwlqYIMd0mqIMNdkirIcJekCioV7hFxRkTcFxE/jIjtEfHeiDgzIh6JiCeL6fRWFStJGp2yPffPA+sy8xLgcmA7sARYn5kXAeuLZUnSBBpzuEfE6cDvAPcAZObBzNwPzAEGis0GgLlli5QkNafMC7IvAH4O/FtEXA5sAm4Bapm5q9hmN1AbbueI6Af6AWq1Go1Go0Qp0vjx3FQnKhPuU4CrgIWZ+WhEfJ4hQzCZmREx7JuFM3MlsBKgXq9nb29viVKkcbLuITw31YnKjLnvBHZm5qPF8n0Mhv2eiDgXoJg+V65ESVKzxhzumbkb+FlEXFw0zQa2AQ8CfUVbH7C2VIWSpKaVGZYBWAh8MSK6gKeBP2PwC2NNRMwHngHmlTyGJKlJpcI9Mx8H6sOsml3mcyVJ5fgLVUmqIMNdkirIcJekCjLcJamCDHdJqiDDXZIqyHCXpAoy3CWpggx3Saogw12SKshwl6QKMtwlqYIMd0mqIMNdkirIcJekCir1PPeI2AG8ABwGXsvMekScCdwL9AA7gHmZua9cmZKkZrSi5z4rM6/IzCMv7VgCrM/Mi4D1DHlptiRp/I3HsMwcYKCYHwDmjsMxJEnHUfYdqgk8HBEJ/EtmrgRqmbmrWL8bqA23Y0T0A/0AtVqNRqNRshRpfHhuqhOVDfffysxnI+LtwCMR8cNjV2ZmFsH/BsUXwUqAer2evb29JUuRxsG6h/DcVCcqNSyTmc8W0+eA+4GrgT0RcS5AMX2ubJGSpOaMOdwjYlpEvPXIPPB+YAvwINBXbNYHrC1bpCSpOWWGZWrA/RFx5HO+lJnrIuK7wJqImA88A8wrX6YkqRljDvfMfBq4fJj2XwKzyxQlSSrHX6hKUgUZ7pJUQWVvhZTa5vLPPszzLx8a9+P0LHlo3I9x+ikn8/3PvH/cj6MTh+GujvX8y4fYsfRD43qMRqMxIfe5T8QXiE4sDstIUgUZ7pJUQYa7JFWQ4S5JFWS4S1IFGe6SVEGGuyRVkOEuSRVkuEtSBRnuklRBhrskVZDhLkkVVDrcI+KkiPheRHy9WL4gIh6NiKci4t6I6CpfpiSpGa3oud8CbD9meRnwucy8ENgHzG/BMSRJTSgV7hFxPvAh4F+L5QCuA+4rNhkA5pY5hiSpeWWf5/53wF8Cby2WzwL2Z+ZrxfJO4LzhdoyIfqAfoFar0Wg0SpaiE9F4nzcHDhyYsHPT/wbUSmMO94j4A+C5zNwUEb3N7p+ZK4GVAPV6PSfihQiqmHUPjfuLNCbqZR0T8W/RiaVMz/1a4MMR8UGgG3gb8HngjIiYUvTezweeLV+mJKkZYx5zz8xPZ+b5mdkDfBT4RmbeCGwAPlJs1gesLV2lJKkp43Gf+2JgUUQ8xeAY/D3jcAxJ0nFEZra7Bur1em7cuLHdZajDvGfgPe0uoaU2921udwnqMBGxKTPrw60re7eM1DYvbF/KjqUfGtdjTNQF1Z4lD437MXRi8fEDklRBhrskVZDhLkkVZLhLUgUZ7pJUQYa7JFWQ4S5JFWS4S1IFGe6SVEGGuyRVkOEuSRVkuEtSBfngMHW0CXng1rrxP8bpp5w87sfQicVwV8ca7ydCwuCXx0QcR2q1MQ/LRER3RHwnIr4fEVsj4rNF+wUR8WhEPBUR90ZEV+vKlSSNRpkx91eB6zLzcuAK4AMRcQ2wDPhcZl4I7APmly9TktSMMu9Qzcw8UCyeXPwlcB1wX9E+AMwtVaEkqWmlxtwj4iRgE3Ah8I/Aj4H9mflasclO4LwR9u0H+gFqtRqNRqNMKdK48dxUJyoV7pl5GLgiIs4A7gcuaWLflcBKGHyH6kS8ykxq2rqHJuQ1e1KrteQ+98zcD2wA3gucERFHvjTOB55txTEkSaNX5m6Zc4oeOxFxCvA+YDuDIf+RYrM+YG3ZIiVJzSkzLHMuMFCMu78FWJOZX4+IbcCXI+Kvge8B97SgTklSE8Yc7pn5A+DKYdqfBq4uU5QkqRyfLSNJFWS4S1IFGe6SVEGGuyRVkOEuSRVkuEtSBRnuklRBhrskVZDhLkkVZLhLUgUZ7pJUQYa7JFWQ4S5JFWS4S1IFGe6SVEFl3sT0zojYEBHbImJrRNxStJ8ZEY9ExJPFdHrrypUkjUaZnvtrwK2ZOQO4BvhERMwAlgDrM/MiYH2xLEmaQGMO98zclZmPFfMvMPj+1POAOcBAsdkAMLdskZKk5rRkzD0iehh85d6jQC0zdxWrdgO1VhxDkjR6ZV6QDUBEnAZ8FfhUZv4qIo6uy8yMiBxhv36gH6BWq9FoNMqWIo0Lz011olLhHhEnMxjsX8zMrxXNeyLi3MzcFRHnAs8Nt29mrgRWAtTr9ezt7S1TijQ+1j2E56Y6UZm7ZQK4B9iemXcfs+pBoK+Y7wPWjr08SdJYlOm5Xwt8DNgcEY8XbbcBS4E1ETEfeAaYV65ESVKzxhzumfktIEZYPXusnytJKs9fqEpSBRnuklRBpW+FlDrJsbfqjnqfZc0fJ3PYO4ClCWPPXSeUzGzqb8OGDU3vY7BrMjDcJamCDHdJqiDDXZIqyHCXpAoy3CWpggx3Saogw12SKshwl6QKisnwg4uI+DmDT5CUJpuzgV+0uwhpBO/OzHOGWzEpwl2arCJiY2bW212H1CyHZSSpggx3Saogw106vpXtLkAaC8fcJamC7LlLUgUZ7pJUQYa7JFWQ4S5JFWS464QXEQ9ExKaI2BoR/UXb/Ih4IiK+ExGrIuIfivZzIuKrEfHd4u/a9lYvDc+7ZXTCi4gzM3NvRJwCfBf4PeB/gKuAF4BvAN/PzJsj4kvAP2XmtyLiXcB/ZealbSteGsGUdhcgTQKfjIg/LObfCXwM+GZm7gWIiK8Av1Gsvx6YERFH9n1bRJyWmQcmsmDpzRjuOqFFRC+Dgf3ezHwpIhrAD4GReuNvAa7JzFcmpkJpbBxz14nudGBfEeyXANcA04DfjYjpETEF+ONjtn8YWHhkISKumNBqpVEy3HWiWwdMiYjtwFLg28CzwB3Adxgce98BPF9s/0mgHhE/iIhtwE0TXrE0Cl5QlYZxZBy96LnfD3whM+9vd13SaNlzl4b3VxHxOLAF+AnwQJvrkZpiz12SKsieuyRVkOEuSRVkuEtSBRnuklRBhrskVdD/AdZ6v43qk5PnAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAWp0lEQVR4nO3dfXBd9Z3f8ffXkmMbm8R4STV+AMw0tCuvt0uChtBZtyPFw1NSwJ1kk8CmcRLNmJRUs51pB+P4D7rJqoPZTtPAbJx4VjRmgw1MWIgnpkk8RhrqzpBgx3lwUCgiBJDtQBeBHWNDLenbP3SkyuCHe42kq8t5v2Y0Oud3Hu73eq4+9+ff/d1zIjORJJXDjFoXIEmaOoa+JJWIoS9JJWLoS1KJGPqSVCKNtS7gdM4///xcunRprcuQTur1119n7ty5tS5Deps9e/b8Q2a+/2TbpnXoL126lN27d9e6DOmkenp6aG1trXUZ0ttExPOn2ubwjiSViKEvSSVSUehHxG8j4pcR8bOI2F20LYiIHRHxTPH7vKI9IuKuiOiLiF9ExIfGnWd1sf8zEbF6cp6SJOlUqunpt2XmpZnZUqzfBuzMzEuAncU6wLXAJcXPGmAjjLxJALcDHwYuB24ffaOQJE2NdzK8cwOwuVjeDKwa135vjngCmB8RC4GrgR2ZOZCZrwI7gGveweNLkqpU6eydBH4UEQl8KzM3AU2ZebDY/jugqVheDLw47tj+ou1U7SeIiDWM/A+BpqYmenp6KixRmho7d+7kO9/5Di+88AIXXnghn/nMZ1i5cmWty5IqUmnor8jM/RHxj4AdEfHr8RszM4s3hHeseEPZBNDS0pJOidN0snXrVu677z7uuecehoaGaGhooL29nWXLlnHjjTfWujzpjCoa3snM/cXvl4GHGRmTf6kYtqH4/XKx+37ggnGHLynaTtUu1Y3Ozk66urpoa2ujsbGRtrY2urq66OzsrHVpUkXOGPoRMTcizh1dBq4C9gHbgNEZOKuB7xXL24DPFrN4rgAOFcNAPwSuiojzig9wryrapLrR29vLihUrTmhbsWIFvb29NapIqk4lwztNwMMRMbr/lsz8QUQ8CTwYEe3A88Ani/0fBT4K9AFHgc8DZOZARHwVeLLY7yuZOTBhz0SaAs3NzezatYu2traxtl27dtHc3FzDqqTKxXS+c1ZLS0t6GQZNJ1u3bmX9+vV0dXWdMKbf2dnpmL6mjYjYM256/Qmm9bV3pOlmNNg7Ojro7e2lubnZwFddsacvnSUvuKbp6nQ9fa+9I0klYuhLUokY+pJUIoa+JJWIoS9JJWLoS1KJGPqSVCKGviSViKEvSSVi6EtSiRj6klQihr4klYihL0klYuhLUokY+pJUIoa+JJWIoS9JJWLoS1KJGPqSVCKGviSViKEvSSVi6EtV2rp1K8uXL2flypUsX76crVu31rokqWKNtS5Aqidbt25l/fr1dHV1MTQ0RENDA+3t7QDceOONNa5OOjN7+lIVOjs76erqoq2tjcbGRtra2ujq6qKzs7PWpUkVMfSlKvT29rJixYoT2lasWEFvb2+NKpKqY+hLVWhubmbXrl0ntO3atYvm5uYaVSRVx9CXqrB+/Xra29vp7u5mcHCQ7u5u2tvbWb9+fa1LkyriB7lSFUY/rO3o6KC3t5fm5mY6Ozv9EFd1IzKz1jWcUktLS+7evbvWZUgn1dPTQ2tra63LkN4mIvZkZsvJtlU8vBMRDRGxNyK+X6xfHBE/joi+iHggIt5TtM8q1vuK7UvHnWNd0f50RFz9zp6WJKla1Yzp/wUwforCBuBrmfkB4FWgvWhvB14t2r9W7EdELAM+DfwRcA3wjYhoeGflS5KqUVHoR8QS4GPA3xbrAXwE+G6xy2ZgVbF8Q7FOsX1lsf8NwP2Z+WZmPgf0AZdPxJOQJFWm0g9y/xtwK3Busf4HwGuZOVis9wOLi+XFwIsAmTkYEYeK/RcDT4w75/hjxkTEGmANQFNTEz09PZU+F2lKHTlyxNen6s4ZQz8i/hXwcmbuiYjWyS4oMzcBm2Dkg1w/KNN05Qe5qkeV9PT/FLg+Ij4KzAbeC3wdmB8RjUVvfwmwv9h/P3AB0B8RjcD7gFfGtY8af4wkaQqccUw/M9dl5pLMXMrIB7GPZeafA93AJ4rdVgPfK5a3FesU2x/LkXmh24BPF7N7LgYuAX4yYc9EknRG7+TLWWuB+yPir4C9QFfR3gX8XUT0AQOMvFGQmb+KiAeBp4BB4EuZOfQOHl+SVKWqQj8ze4CeYvk3nGT2TWa+AfzZKY7vBLwcoSTViNfekarkTVRUz7z2jlQFb6KiemdPX6qCN1FRvTP0pSp4ExXVO0NfqoI3UVG9c0xfqsL69ev51Kc+xdy5c3n++ee56KKLeP311/n6179e69Kkihj6UpXeeOMNXnvtNTKT/fv3M3v27FqXJFXMm6hIVbjgggsYHBxky5YtY7N3brrpJhobG3nxxRdrXZ4ETNBNVCRBf38/99577wmzd+699176+/trXZpUEUNfkkrE0JeqsGTJElavXk13dzeDg4N0d3ezevVqlixZUuvSpIr4Qa5UhTvvvJObb76Zq6++muPHjzNz5kxmz57Nt771rVqXJlXEnr5UpdmzZ7N48WIigsWLFzt7R3XF0Jeq0NnZyQMPPMBzzz3HY489xnPPPccDDzzgZRhUNwx9qQq9vb309/efcJXN/v5+L8OguuGYvlSFRYsWceutt75tnv6iRYtqXZpUEXv6UpUi4rTr0nRmT1+qwoEDB7j55pu59tprefPNN5k1axZf+MIXnL2jumFPX6rCokWL2LJlCwsXLmTGjBksXLiQLVu2OLyjumHoS1U4evQoR44coaOjg+3bt9PR0cGRI0c4evRorUuTKuLwjlSFgYEBrr/+er785S+PDe987GMfY9u2bbUuTaqIPX2pSo8//jgLFy4kIli4cCGPP/54rUuSKmboS1VoaGjg8OHDdHR08Oijj9LR0cHhw4dpaGiodWlSRRzekaowNDTEe9/7Xu6+++6xO2fNmzePw4cP17o0qSL29KUqtba2cvDgQTKTgwcP0traWuuSpIrZ05eqsGDBArZv386dd97JsmXLeOqpp7j11ltZsGBBrUuTKmLoS1U455xzGB4e5u677+aFF17gwgsv5Nxzz+Wcc86pdWlSRRzekapw4MAB7rrrLubOnQvA3Llzueuuuzhw4ECNK5Mq443RpSosX76cOXPmsGfPHjKTiOCyyy7j2LFj7Nu3r9blSYA3RpcmzIwZM9i9ezfXXXcdDz/8MNdddx27d+9mxgz/lFQffKVKVdi3bx8rV67k2Wef5eMf/zjPPvssK1eutJevunHG0I+I2RHxk4j4eUT8KiL+smi/OCJ+HBF9EfFARLynaJ9VrPcV25eOO9e6ov3piLh6sp6UNFkyk4ceeoh9+/axc+dO9u3bx0MPPcR0HiaVxqukp/8m8JHM/BPgUuCaiLgC2AB8LTM/ALwKtBf7twOvFu1fK/YjIpYBnwb+CLgG+EZE+DVG1ZWIYN26dSe0rVu3zmvqq26cMfRzxJFidWbxk8BHgO8W7ZuBVcXyDcU6xfaVMfIXcQNwf2a+mZnPAX3A5RPyLKQpcuWVV7Jx40ZuueUWjhw5wi233MLGjRu58sora12aVJGK5ukXPfI9wAeAvwGeBV7LzMFil35gcbG8GHgRIDMHI+IQ8AdF+xPjTjv+mPGPtQZYA9DU1ERPT091z0iaROvWreOZZ55h48aNbNy4EYCLL76YdevW+VpVXago9DNzCLg0IuYDDwN/OFkFZeYmYBOMTNn0K+6aTrZu3QrAY489NnaP3Pb2dg4ePMiNN95Y4+qkM6tq9k5mvgZ0A/8cmB8Ro28aS4D9xfJ+4AKAYvv7gFfGt5/kGKkudHZ20tXVRVtbG42NjbS1tdHV1UVnZ2etS5MqUsnsnfcXPXwiYg5wJdDLSPh/othtNfC9YnlbsU6x/bEcmdqwDfh0MbvnYuAS4CcT9USkqdDb20t/fz/Lly9n5cqVLF++nP7+fnp7e2tdmlSRSoZ3FgKbi3H9GcCDmfn9iHgKuD8i/grYC3QV+3cBfxcRfcAAIzN2yMxfRcSDwFPAIPClYthIqhuLFi3i1ltvZcuWLWPDOzfddJP3yFXdOGPoZ+YvgA+epP03nGT2TWa+AfzZKc7VCfj/YNW1t07PdLqm6olX2ZSqcODAAb797W/T0dFBb28vzc3NbNiwgc997nO1Lk2qiJdhkKrQ3NzM008/fULb008/TXNzc40qkqpjT1+qQltbGxs2bGDDhg1jN1FZu3YtX/ziF2tdmlQRQ1+qQnd3N2vXruWee+4ZG95Zu3YtjzzySK1Lkyri8I5Uhd7eXgYGBujr62N4eJi+vj4GBgacsqm6YehLVZg/fz7f/OY3mT9/PhFxwrpUDwx9qQqHDh0au2PW6E9mcujQoVqXJlXE0JeqMDQ0xJw5c3jllVcYHh7mlVdeYc6cOQwN+T1D1Qc/yJWq1NDQwPbt28e+kXv99dfXuiSpYvb0pSodPXqUvXv3Mjg4yN69ezl69GitS5IqZk9fqtKsWbO47bbbOH78ODNnzmTWrFkcO3as1mVJFbGnL1VhyZIlJ732zpIlS2pUkVQdQ1+qwqpVqzh27BjDw8MADA8Pc+zYMVatWnWGI6XpwdCXqvDII48QEWOzdYaGhogIv5GrumHoS1Xo7+9neHiYefPmATBv3jyGh4fp7++vcWVSZQx9qUozZszg/PPPP+G3VC98tUpVGh4epqOjg+3bt9PR0TE2vi/VA6dsSlVqaGg4YcpmQ0OD38hV3bCnL1VpaGiIxsZGIoLGxkYDX3XF0Jeq0Ng48p/jY8eOkZljX8oabZemO0NfqsLg4CDA2Ie3o79H26XpztCXqjQ6jg8j4/szZ86scUVS5Qx9qUrHjx9nwYIFACxYsIDjx4/XuCKpcoa+VKWI4KWXXgLgpZdeetu1eKTpzNCXqpSZp12XpjNDXzoLo717e/mqN4a+VKXR++ICY/fLleqFoS9VKTNPmLLp8I7qiaEvnYXx19OX6omhL0klYuhLUomcMfQj4oKI6I6IpyLiVxHxF0X7gojYERHPFL/PK9ojIu6KiL6I+EVEfGjcuVYX+z8TEasn72lJkk6mkp7+IPAfMnMZcAXwpYhYBtwG7MzMS4CdxTrAtcAlxc8aYCOMvEkAtwMfBi4Hbh99o5AkTY0zhn5mHszMnxbLvwd6gcXADcDmYrfNwOidoW8A7s0RTwDzI2IhcDWwIzMHMvNVYAdwzYQ+G0nSaVU1ph8RS4EPAj8GmjLzYLHpd0BTsbwYeHHcYf1F26naJUlTpOKLgEfEPOAh4N9n5uHxX0jJzIyICZmsHBFrGBkWoqmpiZ6enok4rTTpfK2qHlQU+hExk5HAvy8z/75ofikiFmbmwWL45uWifT9wwbjDlxRt+4HWt7T3vPWxMnMTsAmgpaUlW1tb37qLNC35WlU9qGT2TgBdQG9m/tdxm7YBozNwVgPfG9f+2WIWzxXAoWIY6IfAVRFxXvEB7lVFmyRpilTS0/9T4N8Av4yInxVtXwbuAB6MiHbgeeCTxbZHgY8CfcBR4PMAmTkQEV8Fniz2+0pmDkzIs5AkVSSm83VDWlpacvfu3bUuQxpzuourTee/JZVLROzJzJaTbfMbuZJUIoa+JJWIoS9JJWLoS1KJGPqSVCKGviSViKEvSSVi6EtSiRj6klQihr4klYihL0klYuhLUokY+pJUIoa+JJWIoS9JJWLoS1KJGPqSVCKGviSViKEvSSVi6EtSiRj6klQihr4klYihL0klYuhLUokY+pJUIoa+JJWIoS9JJWLoS1KJGPqSVCKGviSViKEvSSVi6EtSiZwx9CPinoh4OSL2jWtbEBE7IuKZ4vd5RXtExF0R0RcRv4iID407ZnWx/zMRsXpyno4k6XQq6el/G7jmLW23ATsz8xJgZ7EOcC1wSfGzBtgII28SwO3Ah4HLgdtH3ygkSVPnjKGfmY8DA29pvgHYXCxvBlaNa783RzwBzI+IhcDVwI7MHMjMV4EdvP2NRJI0yRrP8rimzDxYLP8OaCqWFwMvjtuvv2g7VfvbRMQaRv6XQFNTEz09PWdZojS1fK2qHpxt6I/JzIyInIhiivNtAjYBtLS0ZGtr60SdWppUvlZVD8529s5LxbANxe+Xi/b9wAXj9ltStJ2qXZI0hc429LcBozNwVgPfG9f+2WIWzxXAoWIY6IfAVRFxXvEB7lVFmyRpCp1xeCcitgKtwPkR0c/ILJw7gAcjoh14HvhksfujwEeBPuAo8HmAzByIiK8CTxb7fSUz3/rhsCRpkkXmhA3HT7iWlpbcvXt3rcuQxkTEKbdN578llUtE7MnMlpNt8xu5klQihr4klYihL0klYuhLUokY+pJUIoa+JJWIoS9JJWLoS1KJvOMLrknvBqf70tVEnsMvcKnWDH2JysPYb+Sq3jm8I0klYuhLVThVb95evuqFoS9VKTPJTC5a+/2xZaleGPqSVCKGviSViKEvSSVi6EtSiRj6klQihr4klYihL0klYuhLUol47R29K/3JX/6IQ8eOT/rjLL1t+6Se/31zZvLz26+a1MdQuRj6elc6dOw4v73jY5P6GD09PbS2tk7qY0z2m4rKx+EdSSoRQ1+SSsTQl6QSMfQlqUT8IFfvSuc238Yfb75t8h9o8+Se/txmgMn9QFrlYujrXen3vXc4e0c6CYd3JKlE7OnrXWtKesk/mPwvZ0kTacpDPyKuAb4ONAB/m5l3THUNeveb7KEdGHlTmYrHkSbSlA7vREQD8DfAtcAy4MaIWDaVNUhSmU31mP7lQF9m/iYz/y9wP3DDFNcgSaU11cM7i4EXx633Ax8ev0NErAHWADQ1NdHT0zNlxam82trazuq42FDd/t3d3Wf1ONJEmXYf5GbmJmATQEtLS072lDgJIDOrPmYqpmxKE22qh3f2AxeMW19StEmSpsBUh/6TwCURcXFEvAf4NLBtimuQpNKa0uGdzByMiH8H/JCRKZv3ZOavprIGSSqzKR/Tz8xHgUen+nElSV6GQZJKxdCXpBIx9CWpRAx9SSqROJsvpUyViPg/wPO1rkM6hfOBf6h1EdJJXJSZ7z/Zhmkd+tJ0FhG7M7Ol1nVI1XB4R5JKxNCXpBIx9KWzt6nWBUjVckxfkkrEnr4klYihL0klYuirlCLiP0XEf5yA88yPiFvGrS+KiO++0/NKk8XQl84gIk53Ndr5wFjoZ+aBzPzE5FclnR1DX6UREesj4n9HxC7gnxZtPRHRUiyfHxG/LZY/FxHbIuIxYGdEzIuInRHx04j4ZUTcUJz2DuAfR8TPIuKvI2JpROwrzjE7Iv57sf/eiGgbd+6/j4gfRMQzEXHnFP9TqMSm3T1ypckQEZcxcqe2Sxl53f8U2HOGwz4E/LPMHCh6+/86Mw9HxPnAExGxDbgNWJ6ZlxaPs3Tc8V8CMjP/OCL+EPhRRPyTYtulwAeBN4GnI+LuzHxxIp6rdDqGvsriXwAPZ+ZRgCKwz2RHZg4UywH854j4l8AwsBhoOsPxK4C7ATLz1xHxPDAa+jsz81BRy1PARYChr0ln6KvsBvn/w5yz37Lt9XHLfw68H7gsM48Xw0Bv3b8ab45bHsK/RU0Rx/RVFo8DqyJiTkScC1xXtP8WuKxYPt0HsO8DXi4Cv42RnjnA74FzT3HM/2TkzYJiWOdC4OmzfgbSBDD0VQqZ+VPgAeDnwP8Aniw2/Rfg30bEXkYulXwq9wEtEfFL4LPAr4vzvgL8r4jYFxF//ZZjvgHMKI55APhcZr6JVENehkGSSsSeviSViKEvSSVi6EtSiRj6klQihr4klYihL0klYuhLUon8Px9w1GoLQFF0AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAATq0lEQVR4nO3df5DddX3v8ec7u7gx5IfKyhkMYLAR72pEnLvjtJA/sqQCM+01zBW8ZpCbyjJJ/rgZHbwU6jpjcdiZ5HKn1hFmJOnWZqRdFBwgcHuhXu8ukNCqSWO0sK1yvYmAUUtjJD/I1mze/WNP0k1Isufs7tnvfjnPx0xmz/dzfnxfMCevfPZzvuf7jcxEklQ+s4oOIEmaGAtckkrKApekkrLAJamkLHBJKqnW6dxZe3t7Llq0aDp3KdXk0KFDnHvuuUXHkE5rx44dr2Tm208dn9YCX7RoEdu3b5/OXUo1GRwcZNmyZUXHkE4rIvacbtwlFEkqKQtckkrKApekkrLAJamkLHBJKikLXE2tv7+fJUuWsHz5cpYsWUJ/f3/RkaSaTethhNJM0t/fT09PD319fYyMjNDS0kJ3dzcAK1euLDidND5n4Gpavb299PX10dXVRWtrK11dXfT19dHb21t0NKkmFria1tDQEEuXLj1pbOnSpQwNDRWUSKqPBa6m1dHRwdatW08a27p1Kx0dHQUlkupjgatp9fT00N3dzcDAAEePHmVgYIDu7m56enqKjibVxA8x1bSOf1C5bt06hoaG6OjooLe31w8wVRoxndfE7OzsTE9mpZnIk1lpJouIHZnZeeq4SyiSVFIWuCSVlAUuSSVlgUtSSVngklRSFrgklZQFLkklZYFLUklZ4JJUUha4JJWUBS5JJWWBS1JJWeCSVFIWuCSVVE3nA4+I3cABYAQ4mpmdEfE24OvAImA38LHM/FVjYkqSTlXPDLwrMy8fc07aO4BvZ+a7gW9XtyVJ02QySygrgM3V25uB6yYfR5JUq1ovqZbA30REAvdl5kagkpl7q/f/HKic7okRsRpYDVCpVBgcHJxcYqkBDh486HtTpVNrgS/NzJcj4nzgWxHxj2PvzMyslvvrVMt+I4xeUs3LVmkm8pJqKqOallAy8+Xqz18CDwMfAn4RERcAVH/+slEhJUmvN26BR8S5ETHv+G3gauAfgC3AqurDVgGPNiqkJOn1allCqQAPR8Txx/9VZj4REd8DvhER3cAe4GONiylJOtW4BZ6ZPwE+cJrxfwGWNyKUJGl8fhNTkkrKApekkrLAJamkLHBJKikLXJJKygKXpJKywCWppCxwSSopC1ySSsoCl6SSssAlqaQscEkqKQtckkrKApekkrLAJamkLHBJKikLXE1t3bp1zJ49m66uLmbPns26deuKjiTVrNar0ktvOOvWreMrX/kKGzZs4L3vfS/PP/88t99+OwBf/vKXC04njc8ZuJrWpk2b2LBhA7feeiuzZ8/m1ltvZcOGDWzatKnoaFJNLHA1reHhYdauXXvS2Nq1axkeHi4okVQfl1DUtNra2rj66qvZvn07w8PDtLW10dnZSVtbW9HRpJo4A1fTuvTSS9m2bRvXXHMNDz/8MNdccw3btm3j0ksvLTqaVBNn4GpaP/rRj7jyyit58skn2bJlC21tbVx55ZVs37696GhSTZyBq2kNDw9zyy23sHjxYmbNmsXixYu55ZZbXANXaTgDV9NqbW3lM5/5DA899BAjIyO0tLRw/fXX09rqXwuVgzNwNa358+ezf/9+du7cydGjR9m5cyf79+9n/vz5RUeTauJUQ01r//79rFmzhs9+9rMnjkJZs2YN9913X9HRpJrUPAOPiJaI2BkRj1e3L4mI70TECxHx9Yh4U+NiSlOvo6ODvXv3njS2d+9eOjo6Ckok1aeeJZRPAUNjtjcAX8zMxcCvgO6pDCY12sKFC3nkkUe4+eabeeyxx7j55pt55JFHWLhwYdHRpJrUVOARcSHwe8CfVbcDuAp4qPqQzcB1jQgoNcpTTz3FjTfeyNNPP82KFSt4+umnufHGG3nqqaeKjibVpNY18D8F/hCYV90+D9ifmUer2y8Bp522RMRqYDVApVJhcHBwwmGlqTQ8PMzChQvZtm0bAIcOHWLhwoUMDw/7PlUpjFvgEfH7wC8zc0dELKt3B5m5EdgI0NnZmcuW1f0SUkO0trayadMmvvnNb544jPCjH/0ora2t+D5VGdSyhHIl8JGI2A08wOjSyZeAt0TE8X8ALgRebkhCqUHmz5/Pq6++etJhhK+++qqHEao0xp2BZ+YfAX8EUJ2B//fMvDEiHgSuZ7TUVwGPNjCnNOVOdxjh6tWrPYxQpTGZL/LcDtwaES8wuibeNzWRpOnR0dHBDTfcwJEjRxgYGODIkSPccMMNHkao0qjrizyZOQgMVm//BPjQ1EeSpkdPTw/d3d309fUxMjLCwMAA3d3d9Pb2Fh1NqonfxFTTWrlyJTB6abWhoSE6Ojro7e09MS7NdJGZ07azzs7O9FSdmokGBwc98kQzVkTsyMzOU8c9mZWaWn9/P0uWLGH58uUsWbKE/v7+oiNJNXMJRU2rv7+fnp6eE2vgLS0tdHePnhHCZRSVgTNwNa3e3l76+vro6uqitbWVrq4u+vr6/BBTpWGBq2kNDQ2xdOnSk8aWLl3K0NDQGZ4hzSwWuJpWR0cHW7duPWls69atHgeu0rDA1bSOHwc+MDDA0aNHTxwH3tPTU3Q0qSZ+iKmm5XHgKjuPA1dTu/jii3nxxRdPbF900UX89Kc/LTCR9HoeBy6d4nh5X3HFFTz44INcccUVvPjii1x88cVFR5NqYoGraR0v723bttHe3s62bdtOlLhUBq6Bq6m1tLQwa9YsMpOIeN1hhdJM5gxcTe2ZZ55h7dq1PPbYY6xdu5Znnnmm6EhSzSxwNb1du3Zx5MgRdu3aVXQUqS4uoaipveMd7+DZZ5/l2WefPbH9s5/9rOBUUm2cgatpRQRHjhw5aezIkSNEREGJpPpY4Gpac+bMYd++fSxatIivfe1rLFq0iH379jFnzpyio0k1cQlFTevQoUO0t7ezZ88ebrrpJiKC9vZ2XnnllaKjSTVxBq6mNjQ0xLFjxxgYGODYsWOeiVCl4gxcTe1d73oXBw4cOLE9b968AtNI9XEGrqbV1tbGgQMHqFQqfPWrX6VSqXDgwAHa2tqKjibVxBm4mtbw8DDz5s3jF7/4BZ/85CeB0Rn42Bm5NJM5A1dTGxkZOeu2NJNZ4Gpqhw8fPukwwsOHDxcdSaqZBa6md9lllzF37lwuu+yyoqNIdXENXE1t8eLFbNmyhS1btpzYfuGFFwpOJdVm3Bl4RMyOiO9GxK6IeC4i7qyOXxIR34mIFyLi6xHxpsbHlabWqWVteatMallCGQauyswPAJcD10bEbwMbgC9m5mLgV0B342JKjTNr1izuvvtuZs1yRVHlMu47NkcdrG6eU/2TwFXAQ9XxzcB1DUkoNdixY8e47bbbOHbsWNFRpLrUtAYeES3ADmAxcC/w/4D9mXm0+pCXgIVneO5qYDVApVJhcHBwkpGlxvN9qjKoqcAzcwS4PCLeAjwM/Idad5CZG4GNMHpV+mXLlk0gptQ4c+fO5e677+a2227j4MHRXzZ9n6oM6lr0y8z9wADwO8BbIuL4PwAXAi9PcTZpWrS3tzN37lza29uLjiLVpZajUN5enXkTEW8GPgwMMVrk11cftgp4tFEhpUZpa2tj9+7d3HTTTezevdvzoKhUallCuQDYXF0HnwV8IzMfj4jngQci4i5gJ9DXwJxSQwwPD591W5rJajkK5QeZ+cHMvCwzl2TmF6rjP8nMD2Xm4sy8ITN956u0Pv/5zxcdQaqbB75KwJ133ll0BKluFrgklZQFrqY3e/Zs7rnnHmbPnl10FKkuFria3oIFCzj33HNZsGBB0VGkung2QjW9sVfkkcrEGbgklZQFLgGf+9znio4g1c0Cl4C77rqr6AhS3SxwNbWhoSEyk4GBATKToaGhoiNJNfNDTDW1jo6OoiNIE+YMXAJ6e3uLjiDVzQKXgJ6enqIjSHWzwCWppCxwNb2IYP369URE0VGkuljganrnn38+lUqF888/v+goUl08CkVNraWl5aSv0re0tDAyMlJwKqk2zsDV1E4ta8tbZWKBS8AnPvGJoiNIdbPAJeD+++8vOoJUNwtckkrKApeAL3zhC0VHkOpmgUuMHn0ilY0FLuFX6VVOFrgklZQFLgHXXntt0RGkulngEvDEE08UHUGq27gFHhEXRcRARDwfEc9FxKeq42+LiG9FxI+rP9/a+LjS1Lr33ntPuiLPvffeW3QkqWaRmWd/QMQFwAWZ+fcRMQ/YAVwH/AGwLzPXR8QdwFsz8/azvVZnZ2du3759apJLk3S2sw+O9/dCmk4RsSMzO08dH3cGnpl7M/Pvq7cPAEPAQmAFsLn6sM2MlrpUSpdffnnREaS61bUGHhGLgA8C3wEqmbm3etfPgcqUJpOm0fe///2iI0h1q/l0shExF/gm8OnMfHXsr5+ZmRFx2t85I2I1sBqgUqkwODg4qcDSdPB9qjIYdw0cICLOAR4HnszMP6mO/ROwLDP3VtfJBzPzPWd7HdfANZOMnYSsWbOG++6778S2a+CaSSa8Bh6j7/I+YOh4eVdtAVZVb68CHp2KoFIRXnvttaIjSHWr5SiUpcAzwA+BY9XhzzK6Dv4N4GJgD/CxzNx3ttdyBq6ZxKNQVBZnmoGPuwaemVuBM73Tl082mCRpYvwmpgS8733vKzqCVDcLXAKee+65oiNIdbPAJamkLHAJWLJkSdERpLpZ4BIWuMrJApeABx54oOgIUt0scEkqKQtckkrKApekkrLA1dRWrFhx0hV5VqxYUXQkqWY1n05WeiN69NFHz3pOFGkmcwYuSSVlgUtSSVngklRSFrgEXHLJJUVHkOpmgUvAeeedV3QEqW4WuAR4pSiVkQUuSSVlgUtSSVngklRSFrgklZQFLkklZYFLwJw5c4qOINXNApeAw4cPFx1BqpsFLkklZYFLUklZ4JJUUuMWeET8eUT8MiL+YczY2yLiWxHx4+rPtzY2ptQ4Y6/II5VJLTPwvwCuPWXsDuDbmflu4NvVbamUIoKuri6vzKPSGbfAM/NpYN8pwyuAzdXbm4HrpjiXJGkcE10Dr2Tm3urtnwOVKcojSarRpC9qnJkZEWdcPIyI1cBqgEqlwuDg4GR3KTWc71OVQdTywU1ELAIez8wl1e1/ApZl5t6IuAAYzMz3jPc6nZ2d6XmXNVOcbc3bDzQ1k0TEjszsPHV8oksoW4BV1durgEcnGkySNDG1HEbYD/wt8J6IeCkiuoH1wIcj4sfA71a3JUnTaNw18MxceYa7lk9xFklSHfwmpiSVlAUuSSVlgUtSSVngklRSFrgklZQFLkklZYGr6Xk6WZXVpM+FIpWdp5FVWTkDV9M604zbmbjKwhm43pAmM6uu57mWvYrkDFxvSJlZ15933v543c+xvFU0C1ySSsoCl6SSssAlqaQscEkqKQtckkrKApekkrLAJamkLHBJKikLXJJKyq/Sa8b7wJ1/w69f+03D97Pojv/V0Ndf8OZz2PX5qxu6DzUXC1wz3q9f+w271/9eQ/cxODjIsmXLGrqPRv8DoebjEooklZQzcM148zru4P2b72j8jjY39uXndQA09jcJNRcLXDPegaH1LqFIp+ESiiSVlAUuSSU1qSWUiLgW+BLQAvxZZq6fklTSKepdftiz4fcblORk77z98Zofu+DN5zQwiZrRhAs8IlqAe4EPAy8B34uILZn5/FSFk4CJrX+vr+9qOdOxBi5NtcksoXwIeCEzf5KZ/wo8AKyYmliSpPFMpsAXAi+O2X6pOiZJmgYNP4wwIlYDqwEqlQqDg4ON3qVUt4MHD/reVOlMpsBfBi4as31hdewkmbkR2AjQ2dmZrjNqJnINXGU0mSWU7wHvjohLIuJNwMeBLVMTS5I0ngnPwDPzaET8N+BJRg8j/PPMfG7KkkmSzmpSa+CZ+dfAX09RFklSHfwmpiSVVGTW94WHSe0s4p+BPdO2Q6l27cArRYeQzuCdmfn2UwentcClmSoitmdmZ9E5pHq4hCJJJWWBS1JJWeDSqI1FB5Dq5Rq4JJWUM3BJKikLXJJKygKXahQRH4mIO4rOIR3nGrgklZQzcJVGRPzXiPhBROyKiK9FxH+KiO9ExM6I+D8RUak+7o8jYnNEPBMReyLiP0fE/4iIH0bEExFxTvVxu8eMfzciFlfHz/S6fxAR91Rv/1ZE/F31uXdFxMHq+LKIGIyIhyLiHyPiLyMiivk/pjc6C1ylEBHvAz4HXJWZHwA+BWwFfjszP8joJf3+cMxTfgu4CvgIcD8wkJnvB14Dxl5k89fV8XuAP62One11j/sS8KXqc1865b4PAp8G3gu8C7hyQv/R0jgafkUeaYpcBTyYma8AZOa+iHg/8PWIuAB4E/D/xzz+f2fmbyLih4ye7viJ6vgPgUVjHtc/5ucXq7cvPMvrHvc7wHXV238F/M8x9303M18CiIjvV/e3ta7/WqkGzsBVZl8G7qnOgtcAs8fcNwyQmceA3+S/f9hzjJMnLnma22d73VoMj7k9ghMlNYgFrrL4v8ANEXEeQES8DVjAv1/Gb9UEX/e/jPn5t9Xbtbzu3wEfrd7++AT3LU2KMwOVQmY+FxG9wFMRMQLsBP4YeDAifsVowV8ygZd+a0T8gNFZ88rqWC2v+2ng/ojoYXR55tcT2Lc0KR5GqKYVEbuBzuPr6nU+dw7wWmZmRHwcWJmZK6Y6o3Q2zsClifmPwD3VQwT3AzcXnEdNyBm4JJWUH2JKUklZ4JJUUha4JJWUBS5JJWWBS1JJ/RuFJOEpgG48JwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAOFUlEQVR4nO3df6zdd13H8eerlDFAXMdGrthW7gIVnCTAvBkjBL1QQ7eJdjGwgMYVrLn/zAFOI1MTl0iiYAyTESW5UqCEBRmTZA1O6Rw9IaA0Wxlug0J2MzLapmP82IZlElx8+8f9DE+6dus9595ze/N5PpKb+/1+vp9zvp+TnDzvud97TpuqQpLUh3WrvQBJ0uQYfUnqiNGXpI4YfUnqiNGXpI6sX+0FPJlzzz23pqenV3sZ0gn98Ic/5NnPfvZqL0N6ggMHDny3qp53omOndfSnp6e54447VnsZ0gkNBgNmZ2dXexnSEyS5/2THvLwjSR0x+pLUEaMvSR0x+pLUEaMvSR15yugn+XCSB5PcMzT23CS3Jrm3fT+7jSfJ9UkWktyV5IKh2+xo8+9NsmNlHo4k6cmcyiv9jwIXHzd2DXBbVW0Bbmv7AJcAW9rXHPBBWPwhAVwLvBK4ELj28R8UkqTJecroV9Xnge8fN7wd2N22dwOXDY1/rBZ9CdiQ5PnANuDWqvp+VT0E3MoTf5BIklbYqB/Omqqqo237AWCqbW8EDg3NO9zGTjb+BEnmWPwtgampKQaDwYhLVM+uuv+qyZxo91NPGdcHXvCBlT+JujH2J3KrqpIs2//EUlXzwDzAzMxM+YlHjeJu7l7xc/iJXK1Fo75759vtsg3t+4Nt/AiweWjepjZ2snFJ0gSNGv09wOPvwNkB3Dw0fkV7F89FwCPtMtBngdcnObv9Aff1bUySNEFPeXknySeAWeDcJIdZfBfOe4Abk+wE7gcub9NvAS4FFoBHgbcBVNX3k7wbuL3N+4uqOv6Pw5KkFfaU0a+qt5zk0NYTzC3gypPcz4eBDy9pdZKkZeUnciWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0ZfkjoyVvST/EGSrya5J8knkpyZ5Lwk+5MsJPlkkjPa3Ge0/YV2fHo5HoAk6dSNHP0kG4G3AzNV9VLgacCbgfcC11XVi4CHgJ3tJjuBh9r4dW2eJGmCxr28sx54ZpL1wLOAo8DrgJva8d3AZW17e9unHd+aJGOeX5K0BCNHv6qOAH8DfIvF2D8CHAAerqrH2rTDwMa2vRE41G77WJt/zqjnlyQt3fpRb5jkbBZfvZ8HPAx8Crh43AUlmQPmAKamphgMBuPepbQijh075vNTa87I0Qd+FfhmVX0HIMmngVcDG5Ksb6/mNwFH2vwjwGbgcLscdBbwvePvtKrmgXmAmZmZmp2dHWOJ0soZDAb4/NRaM841/W8BFyV5Vrs2vxX4GrAPeGObswO4uW3vafu045+rqhrj/JKkJRrnmv5+Fv8g+2Xg7nZf88C7gKuTLLB4zX5Xu8ku4Jw2fjVwzRjrliSNYJzLO1TVtcC1xw3fB1x4grk/At40zvkkSePxE7mS1BGjL0kdMfqS1BGjL0kdMfqS1BGjL0kdMfqS1BGjL0kdMfqS1BGjL0kdMfqS1BGjL0kdMfqS1BGjL0kdMfqS1BGjL0kdMfqS1BGjL0kdMfqS1BGjL0kdMfqS1BGjL0kdMfqS1BGjL0kdMfqS1BGjL0kdMfqS1BGjL0kdMfqS1BGjL0kdMfqS1JGxop9kQ5Kbknw9ycEkr0ry3CS3Jrm3fT+7zU2S65MsJLkryQXL8xAkSadq3Ff67wf+tapeArwMOAhcA9xWVVuA29o+wCXAlvY1B3xwzHNLkpZo5OgnOQv4ZWAXQFX9uKoeBrYDu9u03cBlbXs78LFa9CVgQ5Lnj7xySdKSrR/jtucB3wE+kuRlwAHgHcBUVR1tcx4Aptr2RuDQ0O0Pt7GjQ2MkmWPxNwGmpqYYDAZjLFFaOceOHfP5qTVnnOivBy4Arqqq/Unez/9fygGgqipJLeVOq2oemAeYmZmp2dnZMZYorZzBYIDPT60141zTPwwcrqr9bf8mFn8IfPvxyzbt+4Pt+BFg89DtN7UxSdKEjBz9qnoAOJTkxW1oK/A1YA+wo43tAG5u23uAK9q7eC4CHhm6DCRJmoBxLu8AXAXckOQM4D7gbSz+ILkxyU7gfuDyNvcW4FJgAXi0zZUkTdBY0a+qrwAzJzi09QRzC7hynPNJksbjJ3IlqSNGX5I6YvQlqSNGX5I6YvQlqSNGX5I6YvQlqSNGX5I6YvQlqSNGX5I6YvQlqSNGX5I6YvQlqSNGX5I6YvQlqSNGX5I6YvQlqSNGX5I6YvQlqSNGX5I6YvQlqSNGX5I6YvQlqSNGX5I6YvQlqSNGX5I6YvQlqSNGX5I6YvQlqSNGX5I6YvQlqSNjRz/J05LcmeQzbf+8JPuTLCT5ZJIz2vgz2v5COz497rklSUuzHK/03wEcHNp/L3BdVb0IeAjY2cZ3Ag+18evaPEnSBI0V/SSbgF8DPtT2A7wOuKlN2Q1c1ra3t33a8a1tviRpQtaPefu/Bf4YeE7bPwd4uKoea/uHgY1teyNwCKCqHkvySJv/3eE7TDIHzAFMTU0xGAzGXKK0Mo4dO+bzU2vOyNFP8gbgwao6kGR2uRZUVfPAPMDMzEzNzi7bXUvLajAY4PNTa804r/RfDfxGkkuBM4GfBt4PbEiyvr3a3wQcafOPAJuBw0nWA2cB3xvj/JKkJRr5mn5V/UlVbaqqaeDNwOeq6reBfcAb27QdwM1te0/bpx3/XFXVqOeXJC3dSrxP/13A1UkWWLxmv6uN7wLOaeNXA9eswLklSU9i3D/kAlBVA2DQtu8DLjzBnB8Bb1qO80mSRuMnciWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0ZfkjoycvSTbE6yL8nXknw1yTva+HOT3Jrk3vb97DaeJNcnWUhyV5ILlutBSJJOzTiv9B8D/rCqzgcuAq5Mcj5wDXBbVW0Bbmv7AJcAW9rXHPDBMc4tSRrByNGvqqNV9eW2/V/AQWAjsB3Y3abtBi5r29uBj9WiLwEbkjx/5JVLkpZs/XLcSZJp4BXAfmCqqo62Qw8AU217I3Bo6GaH29jRoTGSzLH4mwBTU1MMBoPlWKK07I4dO+bzU2vO2NFP8lPAPwHvrKofJPnJsaqqJLWU+6uqeWAeYGZmpmZnZ8ddorQiBoMBPj+11oz17p0kT2cx+DdU1afb8Lcfv2zTvj/Yxo8Am4duvqmNSZImZJx37wTYBRysqvcNHdoD7GjbO4Cbh8avaO/iuQh4ZOgykCRpAsa5vPNq4HeAu5N8pY39KfAe4MYkO4H7gcvbsVuAS4EF4FHgbWOcW5I0gpGjX1VfAHKSw1tPML+AK0c9nyRpfH4iV5I6YvQlqSNGX5I6YvQlqSNGX5I6YvQlqSNGX5I6YvQlqSNGX5I6YvQlqSNGX5I6YvQlqSNGX5I6YvQlqSNGX5I6YvQlqSNGX5I6YvQlqSNGX5I6YvQlqSNGX5I6YvQlqSNGX5I6YvQlqSNGX5I6YvQlqSNGX1qibdu2sW7dOl772teybt06tm3bttpLkk6Z0ZeWYNu2bezdu5eqAqCq2Lt3r+HXmmH0pSXYu3fvksal043Rl6SOGH1J6sjEo5/k4iTfSLKQ5JpJn1+SejbR6Cd5GvB3wCXA+cBbkpw/yTVIUs8m/Ur/QmChqu6rqh8D/whsn/AaJKlb6yd8vo3AoaH9w8ArhyckmQPmAKamphgMBhNbnDQOn6taCyYd/adUVfPAPMDMzEzNzs6u7oKkU+RzVWvBpC/vHAE2D+1vamOSpAmYdPRvB7YkOS/JGcCbgT0TXoM0ssc/iXuq49LpZqLRr6rHgN8HPgscBG6sqq9Ocg3SuKqKqmLfvn0/2ZbWiolf06+qW4BbJn1eSZKfyJWkrhh9SeqI0Zekjhh9SepITud3HiT5DnD/aq9DOolzge+u9iKkE3hBVT3vRAdO6+hLp7Mkd1TVzGqvQ1oKL+9IUkeMviR1xOhLo5tf7QVIS+U1fUnqiK/0JakjRl+SOmL0pVOQZDbJZ1Z7HdK4jL4kdcToq3tJppN8PckNSQ4muSnJs5Jc3Ma/DPzm0PwLk/xHkjuT/HuSF7fxzyd5+dC8LyR5WZJfSfKV9nVnkueswsOUAKMvPe7FwN9X1S8APwCuBv4B+HXgl4CfGZr7deA1VfUK4M+Bv2zju4C3AiT5eeDMqvpP4I+AK6vq5cBrgP9e8UcjnYTRlxYdqqovtu2PAzPAN6vq3lp8X/PHh+aeBXwqyT3AdcAvtvFPAW9I8nTgd4GPtvEvAu9L8nZgQ/sf5KRVYfSlRcd/YOWsJ5n7bmBfVb2Uxd8EzgSoqkeBW4HtwOXADW38PcDvAc8EvpjkJcu7dOnUGX1p0c8leVXb/i3g34DpJC9sY28ZmnsWcKRtv/W4+/kQcD1we1U9BJDkhVV1d1W9F7gdMPpaNUZfWvQN4MokB4GzWbxsMwf8c/tD7oNDc/8a+Kskd3Lc/zNdVQdY/JvAR4aG35nkniR3Af8D/MvKPQzpyfnPMKh7SaaBz7TLNePe188CA+AlVfW/496ftNx8pS8tkyRXAPuBPzP4Ol35Sl+SOuIrfUnqiNGXpI4YfUnqiNGXpI4YfUnqyP8Bw+VS1ZWOo7UAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD4CAYAAADFAawfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAOpklEQVR4nO3df4zceV3H8eeLlh9aEAyFjYGWxaBHSQ0/nKBckUw5NQccqH8YqcGoadw/kAqHRCCNqWdSEv8xIiHGhnJouBRzJxfNieglzhe8Lhxsj/M42bsEydHeRYETEbZ/gG3e/tHZum13b6Z0pvsZ+3wkm539fmdn371MnvfpZ2f6TVUhSWrXkzZ7AEnSEzPUktQ4Qy1JjTPUktQ4Qy1Jjds6jQfdvn17zc/PT+OhpSty+vRptm3bttljSJc4ceLE41X1nPXOTSXU8/PzLC0tTeOhpSvSdR39fn+zx5AukeSrG51z60OSGmeoJalxhlqSGmeoJalxhlqSGjcy1EmuS3L/mo9vJ3nH1RhOmpRjx46xe/dubrjhBnbv3s2xY8c2eyRpbCNfnldVDwMvA0iyBXgMuHPKc0kTc+zYMQ4ePMjRo0c5e/YsW7ZsYf/+/QDs27dvk6eTRrvcrY8bgH+rqg1f7ye15vDhwxw9epS9e/eydetW9u7dy9GjRzl8+PBmjyaN5XLf8PJmYN2/MyZZABYA5ubm6LruyiaTJmR5eZmzZ8/SdR0rKyt0XcfZs2dZXl72eaqZMHaokzwFeBPw3vXOV9UR4AhAr9cr3/2lVuzatYstW7bQ7/fPvzNxMBiwa9cu36WomXA5Wx+vA+6rqq9NaxhpGg4ePMj+/fsZDAacOXOGwWDA/v37OXjw4GaPJo3lcrY+9rHBtofUstVfGB44cIDl5WV27drF4cOH/UWiZkbGuWZikm3ASeBHq+q/R92/1+uV/yiTWuQ/yqRWJTlRVb31zo21oq6q08CzJzqVJGksvjNRkhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakho3VqiTPCvJHUkeSrKc5FXTHkyapJ07d5KEvXv3koSdO3du9kjS2MZdUb8f+GRVvRh4KbA8vZGkydq5cyenTp3i+uuv5/bbb+f666/n1KlTxlozY2SokzwTeA1wFKCqvldV35r2YNKkrEb6+PHjbN++nePHj5+PtTQLto5xnxcC3wBuTfJS4ATw9qo6vfZOSRaABYC5uTm6rpvwqNL37+abb6brOlZWVui6jptvvpnFxUWfp5oJqaonvkPSAz4L7Kmqe5O8H/h2Vf3+Rt/T6/VqaWlpspNK36ck51fUXdfR7/fZs2cPi4uLjHr+S1dLkhNV1Vvv3Dh71I8Cj1bVvcOv7wBeManhpGnbsWMHi4uL7Nmzh8cff/x8pHfs2LHZo0ljGbn1UVX/keRUkuuq6mHgBuBL0x9NmoyTJ0+yc+dOFhcXWVxcBM7F++TJk5s8mTSecV/1cQC4LckDwMuA901vJGnyTp48SVUxGAyoKiOtmTLOLxOpqvuBdfdOJEnT5TsTJalxhlqSGmeoJalxhlqSGmeoJalxhlqSGmeoJalxhlqSGmeoJalxhlqSGmeoJalxhlqSGmeoJalxhlqSGmeoJalxhlqSGmeoJalxhlqSGmeoJalxhlqSGjfWxW2TPAJ8BzgLnKkqL3SrmZLkkmNVtQmTSJfvclbUe6vqZUZas2ZtpA8dOrTucallbn3omlFV9Pt9V9KaOWNtfQAF/GOSAv68qo5cfIckC8ACwNzcHF3XTWxI6UodOnSIrutYWVmh6zoOHTrELbfc4vNUMyHjrC6SPK+qHkvyXOBu4EBVfXqj+/d6vVpaWprgmNL3b3WLo6rouo5+v3/BMakFSU5stLU81tZHVT02/Px14E7glZMbT7o6ktB1nXvTmjkjQ51kW5JnrN4Gfh54cNqDSZOydtV8yy23rHtcatk4K+o54J4k/wJ8Dvi7qvrkdMeSJquqqCoGg8H529KsGPnLxKr6CvDSqzCLJGkdvjxPkhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakho38pqJq5JsAZaAx6rqpumNJE1ekkuOeYFbzYrLWVG/HVie1iDStKyN9Pz8/LrHpZaNFeokzwfeAHxouuNI01NV3Hrrra6kNXPG3fr4E+D3gGdsdIckC8ACwNzcHF3XXfFw0qTMz8/TdR0rKyt0Xcf8/DyPPPKIz1PNhIxaXSS5CXh9Vb01SR9416g96l6vV0tLS5ObUroCq1scVUXXdfT7/QuOSS1IcqKqeuudG2dFvQd4U5LXA08DfijJR6vqLZMcUpq2JOdX0tIsGblHXVXvrarnV9U88Gbgn4y0ZsnaVfPaSLua1qzwddS6JlQVVcVgMDh/W5oVY7+OGqCqOqCbyiSSpHW5opakxhlqSWqcoZakxhlqSWqcoZakxhlqSWqcoZakxhlqSWqcoZakxhlqSWqcoZakxhlqSWqcoZakxhlqSWqcoZakxhlqSWqcoZakxhlqSWqcoZakxo28ZmKSpwGfBp46vP8dVXVo2oNJk5TkkmNe4FazYpyL234XeG1VrSR5MnBPkr+vqs9OeTZpItaL9OpxY61ZMHLro85ZGX755OGHz27NnKpiMBgYZ82ccVbUJNkCnABeBHywqu5d5z4LwALA3NwcXddNcEzpynVdx8rKygXPTZ+nmgW5nNVFkmcBdwIHqurBje7X6/VqaWlpAuNJV25166Oq6LqOfr9/wTGpBUlOVFVvvXNjrahXVdW3kgyAG4ENQy21aKO9aql1I/eokzxnuJImyQ8APwc8NO3BpEnZaNXsalqzYpzXUf8IMEjyAPB54O6qumu6Y0mTVVUX/DLRSGuWjNz6qKoHgJdfhVkkSevwnYmS1DhDLUmNM9SS1DhDLUmNM9SS1DhDLUmNM9SS1DhDLUmNM9SS1DhDLUmNM9SS1DhDLUmNM9SS1DhDLUmNM9SS1DhDLUmNM9SS1DhDLUmNM9SS1LiR10xMsgP4S2AOKOBIVb1/2oNJk5TkkmNe4FazYmSogTPA71bVfUmeAZxIcndVfWnKs0kTsV6kV48ba82CkVsfVfXvVXXf8PZ3gGXgedMeTJq0qmIwGBhnzZxxVtTnJZkHXg7cu865BWABYG5ujq7rrnw6aYK6rmNlZeWC56bPU82CjLu6SPJ04FPA4ar6+BPdt9fr1dLS0gTGk67c6tZHVdF1Hf1+/4JjUguSnKiq3nrnxlpRJ3ky8NfAbaMiLbVqo71qqXUj96hz7tl9FFiuqj+e/kjSZG20anY1rVkxzuuo9wC/Brw2yf3Dj9dPeS5poqrqgl8mGmnNkpFbH1V1D+DfGSVpk/jORElqnKGWpMYZaklqnKGWpMYZaklqnKGWpMYZaklqnKGWpMYZaklqnKGWpMYZaklqnKGWpMYZaklqnKGWpMYZaklqnKGWpMYZaklqnKGWpMYZaklqnKGWpMaNvLhtkg8DNwFfr6rd0x9Jmrzk0uszeyVyzYpxVtQfAW6c8hzS1KwX6Sc6LrVmZKir6tPAN6/CLNJUVRWDwcCVtGbOyK2PcSVZABYA5ubm6LpuUg8tTUTXdaysrFzw3PR5qlmQcVYXSeaBu8bdo+71erW0tHRlk0kTsrrFUVV0XUe/37/gmNSCJCeqqrfeuYmtqKXWuSetWeXL8/T/3karZlfTmhUjQ53kGPAZ4LokjybZP/2xpMmqqgt+mWikNUtGbn1U1b6rMYgkaX1ufUhS4wy1JDXOUEtS4wy1JDXOUEtS4wy1JDXOUEtS4wy1JDXOUEtS4wy1JDXOUEtS4wy1JDXOUEtS4wy1JDXOUEtS4wy1JDXOUEtS4wy1JDXOUEtS48YKdZIbkzyc5MtJ3jPtoSRJ/2ecq5BvAT4IvA54CbAvyUumPZgk6ZxxVtSvBL5cVV+pqu8BHwN+YbpjSZJWbR3jPs8DTq35+lHgpy6+U5IFYAFgbm6OrusmMZ+uIQe+euDq/KC/mP6P+MALPjD9H6JrxjihHktVHQGOAPR6ver3+5N6aF0jvsgXp/4zuq7D56ZmzThbH48BO9Z8/fzhMUnSVTBOqD8P/FiSFyZ5CvBm4G+nO5YkadXIrY+qOpPkbcA/AFuAD1fVv059MkkSMOYedVV9AvjElGeRJK3DdyZKUuMMtSQ1zlBLUuMMtSQ1LlU1+QdNvgF8deIPLF257cDjmz2EtI4XVNVz1jsxlVBLrUqyVFW9zZ5DuhxufUhS4wy1JDXOUOtac2SzB5Aul3vUktQ4V9SS1DhDLUmNM9S6JiX5RJJnbfYc0jjco9bMS7Klqs5u9hzStLiiVtOSzCd5KMltSZaT3JHkB5M8kuSPktwH/HKSn0/ymST3Jbk9ydOT3Jjk9jWP1U9y1/D2I0m2D2+/M8mDw493rPm5D6753ncl+YPh7d9J8qUkDyT52NX876Fr08SumShN0XXA/qo6nuTDwFuHx/+zql4xDO7HgZ+tqtNJ3g28E3gfcCTJtqo6DfwKcEFYk/wk8Jucu2BzgHuTfAr4ryeY5z3AC6vqu26f6GpwRa1ZcKqqjg9vfxR49fD2Xw0//zTwEuB4kvuBX+fcv5twBvgk8MYkW4E3AH9z0WO/Grizqk5X1Qrngv8zI+Z5ALgtyVuAM1fw55LG4opas+DiX6Ssfn16+DnA3VW1b53v/RjwNuCbwFJVfWfMn3mGCxcyT1tz+w3Aa4A3AgeT/MTwfwrSVLii1izYmeRVw9u/Ctxz0fnPAnuSvAggybYkPz489yngFcBvcdG2x9A/A7843PfeBvzS8NjXgOcmeXaSpwI3DR/7ScCOqhoA7waeCTx9Qn9OaV2GWrPgYeC3kywDPwz82dqTVfUN4DeAY0keAD4DvHh47ixwF/C64Wcu+t77gI8AnwPuBT5UVV+oqv8B/nB4/G7goeG3bAE+muSLwBeAP62qb03yDytdzJfnqWlJ5oG7qmr3Jo8ibRpX1JLUOFfUktQ4V9SS1DhDLUmNM9SS1DhDLUmNM9SS1Lj/BRCuT8Sfh2RkAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD4CAYAAADxeG0DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAALYElEQVR4nO3db6xk9V3H8c9XFlMClKaCF0sN2yhpIJUae60xMfU2RQIBS/1TY2NDNjVujOFhxSUYSTXqEp6qtfugKQ/QNrYSKkuWBWQkaWrKUil/LCppFsWYYMUgi00L8vPBHZLL5u7unZ259+539/VKJnvnzJzz+w05ee/ZHzNza4wRAPr6vu2eAADzEXKA5oQcoDkhB2hOyAGa27Edg1544YVj586d2zE0HNcrr7ySc889d7unAet67LHHvj3GuOjo7dsS8p07d+bQoUPbMTQc12QyycrKynZPA9ZVVc+tt93SCkBzQg7QnJADNCfkAM0JOUBzQg7QnJADNCfkAM1tyweC4GS891MH89J3Xp1pn+duv36TZvNml/7OvRt+7gXnnJ1v3Hb1Js6GM42Q08ZL33k1h/deN9tOe2f7xSlb8cnOnXv2b+rxOfNYWgFoTsgBmhNygOaEHKA5IQdoTsgBmhNygOaEHKA5IQdoTsgBmhNygOZ81wptnH/5nvzYnXs2f6A7N/fw51+eJDN+Zwwcx0JCXlWfTXJ9khfGGO9ZxDHhaC9/c+/sX5o1I1+aRUeLWlr5XJJrFnQsAGawkJCPMR5J8uIijgXAbLZsjbyqdifZnSRLS0uZTCZbNTSnkc0+b44cObIl56bzn0XaspCPMfYl2Zcky8vLY7PXITkNHdi/6evXW7FGvhWvgzOLtx8CNCfkAM0tJORV9ZdJvprk3VX1fFX9+iKOC8CJLWSNfIzxsUUcB4DZWVoBaE7IAZoTcoDmhBygOSEHaE7IAZoTcoDmhBygOSEHaE7IAZoTcoDmhBygOSEHaE7IAZoTcoDmhBygOSEHaE7IAZoTcoDmhBygOSEHaE7IAZoTcoDmhBygOSEHaE7IAZoTcoDmhBygOSEHaE7IAZoTcoDmhByguYWEvKquqap/qqpnq2rPIo4JwMbMHfKqOivJnya5NskVST5WVVfMe1wANmYRV+TvT/LsGONbY4zvJfl8khsWcFwANmDHAo5xSZJ/W3P/+SQ/dfSTqmp3kt1JsrS0lMlksoChOdNs9nlz5MiRLTk3nf8s0iJCviFjjH1J9iXJ8vLyWFlZ2aqhOV0c2J/NPm8mk8mmj7EVr4MzyyKWVv49yQ+vuf/O6TYAtsAiQv5oksuq6l1V9f1JfjXJlxdwXAA2YO6llTHGa1V1U5L7k5yV5LNjjKfnnhkAG7KQNfIxxn1J7lvEsQCYjU92AjQn5ADNCTlAc0IO0JyQAzQn5ADNCTlAc0IO0JyQAzQn5ADNCTlAc0IO0JyQAzQn5ADNCTlAc0IO0JyQAzQn5ADNCTlAc0IO0JyQAzQn5ADNCTlAc0IO0JyQAzQn5ADNCTlAc0IO0JyQAzQn5ADNCTlAc0IO0NxcIa+qj1bV01X1elUtL2pSAGzcvFfkTyX5xSSPLGAuAJyEHfPsPMb4ZpJU1WJmA8DM5gr5LKpqd5LdSbK0tJTJZLJVQ3Ma2ezz5siRI1tybjr/WaQThryqHkxy8ToP3TrGuGejA40x9iXZlyTLy8tjZWVlo7vCqgP7s9nnzWQy2fQxtuJ1cGY5YcjHGFdtxUQAODnefgjQ3LxvP/yFqno+yU8n2V9V9y9mWgBs1LzvWrk7yd0LmgsAJ8HSCkBzQg7QnJADNCfkAM0JOUBzQg7QnJADNCfkAM0JOUBzQg7QnJADNCfkAM0JOUBzQg7QnJADNCfkAM0JOUBzQg7QnJADNCfkAM0JOUBzQg7QnJADNCfkAM0JOUBzQg7QnJADNLdjuycAs9i5Z//mD3Jgc8e44JyzN/X4nHmEnDYO771u08fYuWf/lowDi2RpBaA5IQdoTsgBmpsr5FV1R1U9U1VPVNXdVfW2RU0MgI2Z94r8gSTvGWNcmeSfk9wy/5QAmMVcIR9jHBxjvDa9+/dJ3jn/lACYxSLffviJJF841oNVtTvJ7iRZWlrKZDJZ4NCwOM5NujlhyKvqwSQXr/PQrWOMe6bPuTXJa0nuOtZxxhj7kuxLkuXl5bGysnIy84XNdWB/nJt0c8KQjzGuOt7jVbUryfVJPjTGGAuaFwAbNNfSSlVdk+TmJD87xvjfxUwJgFnM+66VP0lyfpIHqurxqvrzBcwJgBnMdUU+xvjRRU0EgJPjk50AzQk5QHNCDtCckAM0J+QAzQk5QHNCDtCckAM0J+QAzQk5QHNCDtCckAM0J+QAzQk5QHNCDtCckAM0J+QAzQk5QHNCDtCckAM0J+QAzQk5QHNCDtCckAM0J+QAzQk5QHNCDtCckAM0J+QAzQk5QHNCDtCckAM0N1fIq+oPquqJqnq8qg5W1TsWNTEANmbeK/I7xhhXjjF+PMm9SX5vAXMCYAZzhXyM8T9r7p6bZMw3HQBmtWPeA1TVHya5MclLST54nOftTrI7SZaWljKZTOYdGjaFc5NuaozjX0RX1YNJLl7noVvHGPesed4tSd4yxrjtRIMuLy+PQ4cOzTpX2HQ79+zP4b3Xbfc0YF1V9dgYY/no7Se8Ih9jXLXBMe5Kcl+SE4YcgMWZ910rl625e0OSZ+abDgCzmneNfG9VvTvJ60meS/Kb808JgFnMFfIxxi8taiIAnByf7ARoTsgBmhNygOaEHKA5IQdoTsgBmhNygOaEHKA5IQdoTsgBmhNygObm/sUScCqrqtn3uX32cU70vf6wmVyRc1obY8x0e/jhh2feR8TZbkIO0JyQAzQn5ADNCTlAc0IO0JyQAzQn5ADNCTlAc7UdH2aoqv9M8tyWDwwndmGSb2/3JOAYLh1jXHT0xm0JOZyqqurQGGN5u+cBs7C0AtCckAM0J+TwZvu2ewIwK2vkAM25IgdoTsgBmhNy2AJV9baq+q3tngenJyGHGVXVWcfYfrxfnfi2JELOphByTklV9fGq+lpVPV5Vn6mqs6rqSFXdUVVPV9WDVfX+qppU1beq6sPT/XZV1T3T7f9SVbetc+xrquqv1txfqap7pz9/uqoOTcf41JrnHK6q26vq60k+umb7rqr6clX9bZKHquq8qnqoqr5eVU9W1Q3Tp+5N8iPT13PHdN/frqpHq+qJtWPBzE7m9xO6uW3mLcnlSf4mydnT+3+W5MYkI8m10213JzmY5Owk703y+HT7riT/keQHkpyT5Kkky0cdf0eSf01y7vT+p5N8fPrz26d/npVkkuTK6f3DSW5eZ667kjy/Zr8dSd46/fnCJM8mqSQ7kzy1Zr+rs/pWx8rqBdW9ST6w3f/t3XrejvdPQdguH0ryviSPVlWyGuQXknwvyYHpc55M8t0xxqtV9WRWQ/mGB8YY/5UkVfXXSX4myaE3HhxjvFZVB5L8fFV9Mcl1SW6ePvwrVbU7q0H+oSRXJHli+tgXjjHfB8YYL05/riR/VFUfSPJ6kkuSLK2zz9XT2z9M75+X5LIkjxxjDDgmIedUVEnuHGPc8qaNVZ8cY7zxwYfXk3w3ScYYrx+1Pn30hyPW+7DE55PclOTFJIfGGC9X1buSfDLJT44x/ruqPpfkLWv2eeUY8127/deSXJTkfdO/ZA4fdYy1r/GPxxifOcYxYcOskXMqeijJL1fVDyZJVb29qi6dYf+fm+5zTpKPJPnKOs/5uyQ/keQ3shr1JHlrVqP8UlUtJbn2JOZ+QZIXphH/YJI35v1ykvPXPO/+JJ+oqvOSpKoueeP1wqyEnFPOGOMfk/xukoNV9USSB7K6zLFRX0vypawuiXxpjHEoSarqvqp6x3SM/8vquvS10z8zxvhGVpc6nknyF1n/L4BU1Yer6vePMfZdSZanyz03To+V6VLPV6rqqaq6Y4xxcDrGV6fP/WLeHHrYMB/R57RSVbuy+j83b9ruucBWcUUO0JwrcoDmXJEDNCfkAM0JOUBzQg7QnJADNPf/Ilw7+qqFzJAAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAPbklEQVR4nO3df6zddX3H8edrqUOtTmtr70SEO4NzdQUq3HRZFHLZTHVIZKtb9sMMcJaukRnYNA51EyfrUmYyo5vJ6GyVGDCLIRrSJqXN8MIiSry4FlshqATULjpNWxxtpy2898f9druWc3vP7f1FP30+kpNzzvf7+Xw/7y85vO6nn++595uqQpLUrp+b7wIkSbPLoJekxhn0ktQ4g16SGmfQS1LjFsx3Ab0sWbKkBgcH57sM6RkOHjzIwoUL57sM6RkeeOCBH1XVS3vte1YG/eDgIKOjo/NdhvQMIyMjDA8Pz3cZ0jMkeXyifS7dSFLjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhr3rPyFKWkuJJmzsbzvg+aTM3qdtqpqyo9z/nLLSfWT5pNBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqXF9Bn+S6JLuT7Ely/XH73p2kkiyZoO9TSXZ2jztnomhJUv8mvZVgkuXANcBK4KfAtiRbqupbSV4BrAK+c4JDHK6qFTNSrSRpyvqZ0S8D7q+qQ1V1FLgHWN3t+yjwXsB7pUnSs1Q/NwffDaxPshg4DFwGjCa5AthbVbsmucnyc5OMAkeBDVX1hV6NkqwF1gIMDAwwMjLS/1lIc8jPpk41kwZ9VT2U5GZgO3AQ2AmcAbyfsWWbyZxTVXuTvBK4O8nXq+rbPcbZCGwEGBoaquHh4f7PQpor27biZ1Onmr4uxlbVpqq6qKouAfYDe4BfAnYleQw4C/hakl/s0Xdv9/woMAK8dmZKlyT1o99v3Sztns9mbH3+1qpaWlWDVTUIfA+4sKq+f1y/RUnO6F4vAV4HfGMG65ckTaKfNXqAO7o1+iPAtVV1YKKGSYaAdVW1hrELubckeZqxHyobqsqgl6Q51FfQV9XFk+wfHPd6FFjTvb4POG8a9UmSpsnfjJWkxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJalxfQZ/kuiS7k+xJcv1x+96dpJIsmaDvVUm+2T2umomiJUn9WzBZgyTLgWuAlcBPgW1JtlTVt5K8AlgFfGeCvi8BbgSGgAIeSHJnVe2fqROQJJ1YPzP6ZcD9VXWoqo4C9wCru30fBd7LWIj38kZgR1Xt68J9B/CmadYsSZqCSWf0wG5gfZLFwGHgMmA0yRXA3qralWSivi8Hvjvu/fe6bc+QZC2wFmBgYICRkZG+TkCaa342daqZNOir6qEkNwPbgYPATuAM4P2MLdvMiKraCGwEGBoaquHh4Zk6tE4TF/zNdp44fGTWx7l628FZPf6Lnvccdt04Y/9rSX3N6KmqTcAmgCR/B/wA+G3g2Gz+LOBrSVZW1ffHdd0LDI97fxYwMu2qpR6eOHyExza8eVbHGBkZYbYnIYM3bJ3V4+v00++3bpZ2z2cztj5/a1UtrarBqhpkbEnmwuNCHuAuYFWSRUkWMfYvgLtmrHpJ0qT6mtEDd3Rr9EeAa6vqwEQNkwwB66pqTVXtS3IT8NVu94erat/0SpYkTUW/SzcXT7J/cNzrUWDNuPebgc0nWZ8kaZr8zVhJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1Lh+/x699Kz3wmU3cN6tN8z+QLfO7uFfuAxgdu+UpdOLQa9m/PdDG7yVoNSDSzeS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXF9BX2S65LsTrInyfXdtpuSPJhkZ5LtSc6coO9TXZudSe6cyeIlSZObNOiTLAeuAVYCFwCXJzkX+EhVnV9VK4AtwAcnOMThqlrRPd4yU4VLkvrTz4x+GXB/VR2qqqPAPcDqqvrxuDYLgZqNAiVJ09PPHaZ2A+uTLAYOA5cBowBJ1gNXAk8Al07Q/7lJRoGjwIaq+kKvRknWAmsBBgYGGBkZmcJpSGNm+3Pz5JNPzsln08+/ZlKqJp+IJ3kH8E7gILAH+ElVXT9u//uA51bVjT36vryq9iZ5JXA38JtV9e0TjTc0NFSjo6NTOxOd9gZv2NrMrQRn+zzUniQPVNVQr319XYytqk1VdVFVXQLsBx45rsltwFsn6Lu3e34UGAFe22fdkqQZ0O+3bpZ2z2cDq4Hbk7xqXJMrgId79FuU5Izu9RLgdcA3plu0JKl//azRA9zRrdEfAa6tqgNJNiV5NfA08DiwDiDJELCuqtYwdiH3liRPM/ZDZUNVGfSSNIf6CvqqurjHtomWakaBNd3r+4DzplOgJGl6/M1YSWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxC+a7AGkmDd6wdfYH2Ta7Y7zoec+Z1ePr9GPQqxmPbXjzrI8xeMPWORlHmkl9Ld0kuS7J7iR7klzfbbspyYNJdibZnuTMCfpeleSb3eOqmSxekjS5SYM+yXLgGmAlcAFweZJzgY9U1flVtQLYAnywR9+XADcCv9b1vzHJohmsX5I0iX5m9MuA+6vqUFUdBe4BVlfVj8e1WQhUj75vBHZU1b6q2g/sAN403aIlSf3rZ41+N7A+yWLgMHAZMAqQZD1wJfAEcGmPvi8Hvjvu/fe6bc+QZC2wFmBgYICRkZH+zkCaY342daqZNOir6qEkNwPbgYPATuCpbt8HgA8keR/wZ4wt05yUqtoIbAQYGhqq4eHhkz2UNHu2bcXPpk41fV2MrapNVXVRVV0C7AceOa7JbcBbe3TdC7xi3Puzum2SpDnS77dulnbPZwOrgduTvGpckyuAh3t0vQtYlWRRdxF2VbdNkjRH+v0e/R3dGv0R4NqqOpBkU5JXA08DjwPrAJIMAeuqak1V7UtyE/DV7jgfrqp9M3wOkqQT6Cvoq+riHtt6LdVQVaPAmnHvNwObT7ZASdL0+LduJKlxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuP6Cvok1yXZnWRPkuu7bR9J8nCSB5N8PsmLJ+j7WJKvJ9mZZHQmi5ckTW7SoE+yHLgGWAlcAFye5FxgB7C8qs4HHgHed4LDXFpVK6pqaAZqliRNQT8z+mXA/VV1qKqOAvcAq6tqe/ce4CvAWbNVpCTp5C3oo81uYH2SxcBh4DLg+CWYPwH+dYL+BWxPUsAtVbWxV6Mka4G1AAMDA4yMjPRRmjT3/GzqVDNp0FfVQ0luBrYDB4GdwFPH9if5AHAUuG2CQ7y+qvYmWQrsSPJwVd3bY5yNwEaAoaGhGh4enuq5SLNv21b8bOpU09fF2KraVFUXVdUlwH7G1uRJcjVwOfC2qqoJ+u7tnv8L+Dxja/2SpDnS77dulnbPZwOrgduTvAl4L/CWqjo0Qb+FSV547DWwirGlIEnSHOlnjR7gjm6N/ghwbVUdSPJPwBmMLccAfKWq1iU5E/hkVV0GDACf7/YvAG6vqm0zfhaSpAn1FfRVdXGPbedO0PY/GbtgS1U9ythXMiVJ88TfjJWkxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TG9XsrQak53S0up97v5qn3qaqTGkuaCc7oddqqqik/vvjFL55UP2k+GfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxuXZ+MscSX4IPD7fdUg9LAF+NN9FSD2cU1Uv7bXjWRn00rNVktGqGprvOqSpcOlGkhpn0EtS4wx6aWo2zncB0lS5Ri9JjXNGL0mNM+glqXEGvXQSkgwl+fgMHGddkit7bB9Msnu6x5fANXppypIsqKqjszzGILClqpbP5jg6PTij1ykjyZVJHkyyK8lnulnv3d22f0tydtfu00k+nuS+JI8m+d1u+8uS3JtkZ5LdSS7uMcZIko+Na7Oy2/6hbswvAZ9JMpxkS7fvBUk+leTrXS1v7bavSvLlJF9L8rkkL+gx3oeSvKd7fVF3bruAa8e1+fMkm7vX53V1PX+m//uqXQa9TglJfhX4K+A3quoC4DrgH4Fbq+p84DZg/FLKy4DXA5cDG7ptfwTcVVUrgAuAnRMM9/yuzTuBzeO2vwZ4Q1X94XHt/xp4oqrO62q5O8mSrt43VNWFwCjwF5Oc5qeAd3XnN97HgHOT/E7X5k+r6tAkx5L+z4L5LkDq028An6uqHwFU1b4kvw6s7vZ/Bvj7ce2/UFVPA99IMtBt+yqwOclzuv0TBf1nuzHuTfILSV7cbb+zqg73aP8G4A+Ovamq/UkuZ+wHw5eSAPw88OWJTq4b48VVde+48/mt7nhPJ7kaeBC4paq+NNFxpF6c0atVPxn3OjAW3MAlwF7g070ugnaOv3B17P3BKYwfYEdVreger6mqd0yh//FeBTwJnDmNY+g0ZdDrVHE38HtJFgMkeQlwH/8/k34b8O8nOkCSc4AfVNW/AJ8ELpyg6e937V/P2JLME5PUtoOfXVNfBHwFeF2Sc7ttC5P88kQHqKoDwIFuzGPnc+x4L2JsWeoSYPGxaw5Svwx6nRKqag+wHrinu1j5D8C7gLcneRD4Y8bW7U9kGNiV5D8YC/OPAST5ZJLxf5Hyf7o2/wz0Mwv/W2BRd5F0F3BpVf0QuBr4bFffl4Ff6cb7cJK39DjO24FPJNlJ96+QzkeBT1TVI109G5Is7aMuCfDrldLPSDICvKeqRue7FmmmOKOXpMY5o5ekxjmjl6TGGfSS1DiDXpIaZ9BLUuMMeklq3P8CFHLKyzvaBagAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAD4CAYAAAAJmJb0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAANg0lEQVR4nO3df6zd9V3H8efLsQxGcIuW3fJLLpl1mwSH5MqGbuZuaZh0Jp0bCrrQhKl1C3P+AUFYFeZIYxWVQMhICiawiT9J2AgliHU9g0gIK9iWMTFWBxtloEXTjR9bBrz9435rju1t7z33nHtv7+c+H8lN7/l+z/l8PpecPu+Xzz33NFWFJKlNP7TYC5AkzR8jL0kNM/KS1DAjL0kNM/KS1LCjFnsB/VasWFHj4+OLvQxpWi+++CLHHnvsYi9DOsgjjzyyt6qOn+7cERX58fFxtm/fvtjLkKbV6/WYnJxc7GVIB0ny1KHOuV0jSQ0z8pLUMCMvSQ0z8pLUMCMvSQ07ol5dIx2Jkhx0zDf201Lhlbx0GNMF/nDHpSONkZdmoarYtm2bV/Bacoy8JDXMyEtSw/zBqzQL7sFrqfJKXjqMQ+3BuzevpcLISzOoqv/3g1cDr6XEyEtSw4y8JDXMyEtSw4y8JDXMyEtSw4y8JDXMyEtSw4y8JDXMyEtSw4y8JDXMyEtSw4y8JDXMyEtSw4y8JDXMyEtSw4y8JDXMyEtSw4y8JDVsqMgnuSbJriQ7ktyX5MTueJLckGR3d/6s0SxXkjSIo4Z8/LVV9fsAST4FXAV8HDgPWNV9vAu4qftTOiIkWZB5/PdgtdiGupKvqu/03TwW2P+MXgt8vqY8BLw5yQnDzCWN0v5/kHuQj1N/9+6BHyMttmGv5EmyEVgH7APe1x0+CfhW392e7o59e5rHrwfWA4yNjdHr9YZdkjRvfH5qqZkx8km2AiunObWhqr5UVRuADUmuBD4JXD3IAqpqM7AZYGJioiYnJwd5uLRw7t2Cz08tNTNGvqpWz3Ks24F7mIr8HuCUvnMnd8ckSQto2FfXrOq7uRZ4ovv8LmBd9yqbdwP7quqgrRpJ0vwadk9+U5K3Aa8BTzH1yhqYuqJfA+wGXgIuHnIeSdIcDBX5qvrIIY4XcMkwY0uShudvvEpSw4y8JDXMyEtSw4y8JDXMyEtSw4y8JDXMyEtSw4y8JDXMyEtSw4y8JDXMyEtSw4y8JDXMyEtSw4y8JDXMyEtSw4y8JDXMyEtSw4y8JDXMyEtSw4y8JDXMyEtSw4y8JDXMyEtSw4y8JDXMyEtSw4y8JDXMyEtSw4y8JDXMyEtSw4y8JDXMyEtSw4y8JDVsqMgnuSbJriQ7ktyX5MTu+GSSfd3xHUmuGs1yJUmDGPZK/tqq+qmqOhO4G+iP+QNVdWb38dkh55EkzcFQka+q7/TdPBao4ZYjSRqlo4YdIMlGYB2wD3hf36lzkuwEngEuq6rHD/H49cB6gLGxMXq93rBLkuaNz08tNak6/MV3kq3AymlObaiqL/Xd70rg6Kq6OskPA69V1QtJ1gDXV9WqmRYzMTFR27dvH+wrkBbI+BVbeHLTBxd7GdJBkjxSVRPTnZvxSr6qVs9yntuBe4Cr+7dxquqeJJ9LsqKq9s5yLEnSCAz76pr+q/O1wBPd8ZVJ0n1+djfP88PMJUka3LB78puSvA14DXgK+Hh3/HzgE0leAV4GLqyZ9oUkSSM3VOSr6iOHOH4jcOMwY0uShudvvEpSw4y8JDXMyEtSw4y8JDXMyEtSw4y8JDVs6PeukRbbO//gPva9/IMFmWv8ii3zOv6bjnk9O68+d17n0PJi5LXk7Xv5BwvynjK9Xo/Jycl5nWO+v4lo+XG7RpIaZuQlqWFGXpIaZuQlqWFGXpIaZuQlqWFGXpIaZuQlqWFGXpIaZuQlqWFGXpIaZuQlqWFGXpIaZuQlqWFGXpIaZuQlqWFGXpIaZuQlqWFGXpIaZuQlqWFGXpIaZuQlqWFGXpIaZuQlqWEjiXySS5NUkhXd7SS5IcnuJLuSnDWKeSRJgxk68klOAc4Fvtl3+DxgVfexHrhp2HkkSYMbxZX8dcDlQPUdWwt8vqY8BLw5yQkjmEuSNIChIp9kLbCnqnYecOok4Ft9t5/ujkmSFtBRM90hyVZg5TSnNgCfZmqrZs6SrGdqS4exsTF6vd4ww2mZWojnzQsvvLAg8/h3QKM0Y+SravV0x5OcAZwG7EwCcDLwaJKzgT3AKX13P7k7Nt34m4HNABMTEzU5OTnA8iXg3i0sxPOm1+vN/zwL9LVo+Zjzdk1VPVZVb6mq8aoaZ2pL5qyqeha4C1jXvcrm3cC+qvr2aJYsSZqtGa/k5+geYA2wG3gJuHie5pEkHcbIIt9dze//vIBLRjW2JGlu/I1XSWqYkZekhhl5SWqYkZekhhl5SWqYkZekhhl5SWqYkZekhhl5SWrYfL2tgbRgjnvHFZxx2xULM9lt8zv8ce8A+OD8TqJlxchryfvuv2ziyU3zH8aFeBfK8Su2zOv4Wn7crpGkhhl5SWqYkZekhhl5SWqYkZekhhl5SWqYL6FUExbspYf3zu88bzrm9fM6vpYfI68lbyFeIw9T30gWai5pVNyukaSGGXlJapiRl6SGGXlJapiRl6SGGXlJapiRl6SGGXlJapiRl6SGGXlJapiRl6SGGXlJapiRl6SGGXlJathIIp/k0iSVZEV3ezLJviQ7uo+rRjGPJGkwQ7+ffJJTgHOBbx5w6oGq+sVhx5ckzd0oruSvAy4HagRjSZJGaKgr+SRrgT1VtTPJgafPSbITeAa4rKoeP8QY64H1AGNjY/R6vWGWJM0rn59aamaMfJKtwMppTm0APs3UVs2BHgVOraoXkqwBvgismm78qtoMbAaYmJioycnJ2a1cWmj3bsHnp5aaGSNfVaunO57kDOA0YP9V/MnAo0nOrqpn+x5/T5LPJVlRVXtHtG5J0izMebumqh4D3rL/dpIngYmq2ptkJfBcVVWSs5na+39+2MVKkgYz9KtrDuF84BNJXgFeBi6sKn8wK0kLbGSRr6rxvs9vBG4c1diSpLnxN14lqWFGXpIaZuQlqWFGXpIaZuQlqWFGXpIaZuQlqWFGXpIaZuQlqWFGXpIaZuQlqWFGXpIaZuQlqWFGXpIaZuQlqWFGXpIaZuQlqWFGXpIaZuQlqWFGXpIaZuQlqWFGXpIaZuQlqWFGXpIaZuQlqWFGXpIaZuQlqWFGXpIaZuQlqWFGXpIaZuQlqWFGXpIaNlTkk3wmyZ4kO7qPNX3nrkyyO8m/JvnA8EuVJA3qqBGMcV1V/Un/gSQ/CVwInA6cCGxN8hNV9eoI5pMkzdJ8bdesBf66qr5fVd8AdgNnz9NckqRDGMWV/CeTrAO2A5dW1f8AJwEP9d3n6e7YQZKsB9YDjI2N0ev1RrAkaX74/NRSM2Pkk2wFVk5zagNwE3ANUN2ffwp8bJAFVNVmYDPAxMRETU5ODvJwaeHcuwWfn1pqZox8Va2ezUBJbgbu7m7uAU7pO31yd0yStICGfXXNCX03fwn4Wvf5XcCFSd6Q5DRgFfDwMHNJkgY37J78Hyc5k6ntmieB3wKoqseT/C3wdeAV4BJfWSNJC2+oyFfVRYc5txHYOMz4kqTh+BuvktSwUbyEUlpyksztcX802P2rak7zSKPilbyWpaoa+GPbtm0DP0ZabEZekhpm5CWpYUZekhpm5CWpYUZekhpm5CWpYUZekhpm5CWpYTmSfmEjyX8BTy32OqRDWAHsXexFSNM4taqOn+7EERV56UiWZHtVTSz2OqRBuF0jSQ0z8pLUMCMvzd7mxV6ANCj35CWpYV7JS1LDjLwkNczIS/MgyXuTPJ5kR5Jj+o5/Nsnqae4/meTuhV2llgP/+T9pfnwU+MOq+ov+g1V11SKtR8uUV/JaMpKsS7Iryc4kX0gynuTL3bF/TPJj3f1uTXJDkgeT/EeS87vjJyS5v7u6/lqS904zx48n2drN8WiSt2bKtd1jHktyQXffySS9JHckeSLJ7d19fwP4FeCaJLcfMP6tfev5he5xjwIf7rvP9Umu6j7/QLdm/65qTryS15KQ5HTg94Cfraq9SX4EuA24rapuS/Ix4AbgQ91DTgDeA7wduAu4A/g14O+ramOS1wFvnGaq24FNVXVnkqOZuhD6MHAm8E6m3trgq0nu7+7/08DpwDPAPwE/V1W3JHkPcHdV3XGIr+do4Gbg/cBu4G/6Tl/ZzfFA9zWtqarXBvnvJe3n1YGWivcDf1dVewGq6r+Bc4C/7M5/gamo7/fFqnqtqr4OjHXHvgpcnOQzwBlV9d3+CZIcB5xUVXd2c3yvql7qxv2rqnq1qp4DvgL8TPewh6vq6S7CO4DxWX49bwe+UVX/VlOvY/6/bZ1uzt8E/gG4sar+fZZjSgcx8mrV9/s+D0BV3Q/8PLAHuDXJuhHP8yqj+7/jM4DngRNHNJ6WKSOvpeLLwC8n+VGAbrvmQeDC7vxHgQcON0CSU4Hnqupm4BbgrP7z3ZX900k+1N3/DUne2I17QZLXJTmeqW8UDw/59TwBjCd5a3f7Vw9Y56VMbQWdl+RdQ86lZczIa0moqseBjcBXkuwE/gz4baa2X3YBFwG/M8Mwk8DOJP8MXABcD5DkliT7313yIuBT3ZgPAiuBO4FdwE6mvtlcXlXPznbtB4y//+v5HrAe2NL94PU/u/sG+HPgsqp6Bvh14JZuD18amG9rIEkN80pekhpm5CWpYUZekhpm5CWpYUZekhpm5CWpYUZekhr2vz/HxccaNMDLAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD4CAYAAADFAawfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAK3klEQVR4nO3df6jvB13H8dd73tHGXFZMD9VslwptlKl1EEqjo6VIk0GwKMlACC5CfxgFdYOglP7QfhH0Sy/92KBf2A9j7NJF030xobTNX5vOCmRmJk6RbGfYnPPdH/erXq9nO9+7ez7nvud5PODLvjvfz4/3GZ89z4fP+Xy/p7o7AMx12aUeAIBHJ9QAwwk1wHBCDTCcUAMMd2yJjV5zzTV9/PjxJTYNF+WBBx7IVVdddanHgK9w5513frK7n7zXa4uE+vjx47njjjuW2DRclNVqlZ2dnUs9BnyFqvrwI73m0gfAcEINMJxQAwwn1ADDCTXAcEINMJxQAwy30X3UVXVvkvuTPJzkc929veRQAHzJhbzh5fnd/cnFJoELVFWHti+f286l5NIHj1vdfcGP637xtse0HlxKm55Rd5I3VVUneX13nzp/gao6keREkmxtbWW1Wh3YkHCQHJs83mwa6ud190er6ilJ3lxVH+zut527wDrep5Jke3u7fZ4CI5057bM+eNzZKNTd/dH1P++rqjcmeU6Stz36WnBhnvmqN+XTn3lo8f0cP3l60e0/6crL895fedGi++Bo2TfUVXVVksu6+/718xclefXik3HkfPozD+Xe19yw6D4O49Pzlv5BwNGzyRn1VpI3rn/DfizJX3T3mUWnAuCL9g11d38oyTMPYRYA9uD2PIDhFvkLL/BYXH39yTzjlpPL7+iWZTd/9fVJsuy1do4WoWaM++95jV8mwh5c+gAYTqgBhhNqgOGEGmA4oQYYTqgBhhNqgOGEGmA4oQYYTqgBhhNqgOGEGmA4oQYYTqgBhhNqgOGEGmA4oQYYTqgBhhNqgOGEGmA4oQYYTqgBhhNqgOGEGmA4oQYYTqgBhhNqgOGEGmA4oQYYTqgBhhNqgOGEGmA4oQYYbuNQV9UTqurdVXXbkgMB8OUu5Iz6lUnuWWoQAPa2Uair6tokNyT5o2XHAeB8xzZc7neS/EKSqx9pgao6keREkmxtbWW1Wl30cBw9Sx83u7u7h3JsOv45SPuGuqpekuS+7r6zqnYeabnuPpXkVJJsb2/3zs4jLgp7O3M6Sx83q9Vq8X0cxvfB0bLJpY/nJrmxqu5N8ldJXlBVf7boVAB80b6h7u5f6u5ru/t4kp9I8tbuftnikwGQxH3UAONt+svEJEl3r5KsFpkEgD05owYYTqgBhhNqgOGEGmA4oQYYTqgBhhNqgOGEGmA4oQYYTqgBhhNqgOGEGmA4oQYYTqgBhhNqgOGEGmA4oQYYTqgBhhNqgOGEGmA4oQYYTqgBhhNqgOGEGmA4oQYYTqgBhhNqgOGEGmA4oQYYTqgBhhNqgOGEGmA4oQYYTqgBhhNqgOGEGmC4fUNdVVdU1Tur6r1V9f6qetVhDAbAWcc2WObBJC/o7t2qujzJ26vqH7r7XxaeDYBsEOru7iS763+9fP3oJYcC4Es2OaNOVT0hyZ1Jvj3J73f3O/ZY5kSSE0mytbWV1Wp1gGNyVCx93Ozu7h7Ksen45yBtFOrufjjJs6rq65K8saq+q7vvPm+ZU0lOJcn29nbv7Owc9Kx8tTtzOksfN6vVavF9HMb3wdFyQXd9dPf/JLk9yYuXGQeA821y18eT12fSqaork7wwyQeXHgyAsza59PGNSW5ZX6e+LMkbuvu2ZccC4As2uevjfUmefQizALAH70wEGE6oAYYTaoDhhBpgOKEGGE6oAYYTaoDhhBpgOKEGGE6oAYYTaoDhhBpgOKEGGE6oAYYTaoDhhBpgOKEGGE6oAYYTaoDhhBpgOKEGGE6oAYYTaoDhhBpgOKEGGE6oAYYTaoDhhBpgOKEGGE6oAYYTaoDhhBpgOKEGGE6oAYYTaoDhhBpguH1DXVVPrarbq+oDVfX+qnrlYQwGwFnHNljmc0l+vrvfVVVXJ7mzqt7c3R9YeDYAssEZdXd/rLvftX5+f5J7knzz0oMBcNYmZ9RfVFXHkzw7yTv2eO1EkhNJsrW1ldVqdfHTceQsfdzs7u4eyrHp+OcgbRzqqnpikr9N8rPd/b/nv97dp5KcSpLt7e3e2dk5qBk5Ks6cztLHzWq1Wnwfh/F9cLRsdNdHVV2es5H+8+7+u2VHAuBcm9z1UUn+OMk93f3by48EwLk2OaN+bpKfSvKCqnrP+vEjC88FwNq+16i7++1J6hBmAWAP3pkIMJxQAwwn1ADDCTXAcEINMJxQAwwn1ADDCTXAcEINMJxQAwwn1ADDCTXAcEINMJxQAwwn1ADDCTXAcEINMJxQAwwn1ADDCTXAcEINMJxQAwwn1ADDHbvUA8C5jp88vfxOziy7jyddefmi2+foEWrGuPc1Nyy+j+MnTx/KfuAgufQBMJxQAwwn1ADDCTXAcEINMJxQAwwn1ADDCTXAcEINMJxQAwy3b6ir6k+q6r6quvswBgLgy21yRn1zkhcvPAcAj2DfUHf325J86hBmAWAPrlEDDHdgH3NaVSeSnEiSra2trFarg9o0HCjHJo83Bxbq7j6V5FSSbG9v987OzkFtGg7OmdNxbPJ449IHwHCb3J73l0n+OcnTq+q/quqnlx8LgC/Y99JHd7/0MAYBYG8ufQAMJ9QAwwk1wHBCDTCcUAMMJ9QAwwk1wHBCDTCcUAMMJ9QAwwk1wHAH9jGncNiq6rGt99oLX6e7H9O+4CA4o+Zxq7sv+HH77bc/pvXgUhJqgOGEGmA4oQYYTqgBhhNqgOGEGmA4oQYYTqgBhqslbuavqk8k+fCBbxgu3jVJPnmph4A9XNfdT97rhUVCDVNV1R3dvX2p54AL4dIHwHBCDTCcUHPUnLrUA8CFco0aYDhn1ADDCTXAcELNV42qurGqTq6f31xVN13Etq6rqndV1Xuq6v1V9YqDmxQujD/FxVeFqjrW3bcmufUgtpXkY0m+r7sfrKonJrm7qm7t7v++2O3DhXJGzShV9bKqeuf6TPb1VfWEqto95/Wbqurm9fObq+p1VfWOJL9eVS+vqt87Z3M/XFV3VNW/V9VL1utcUVV/WlV3VdW7q+r566+/vKpuraq3JnlLd3+2ux9cb+drcs7/K1W1W1W/sT7T/seqek5VrarqQ1V147L/hTiKhJoxqur6JD+e5Lnd/awkDyf5yX1WuzbJ93f3z+3x2vEkz0lyQ5LXVdUVSX4mSXf3M5K8NMkt668nyfckuam7f3A9z1Or6n1JPpLkteecTV+V5K3d/Z1J7k/ya0lemORHk7z6wr9zeHQufTDJDyX53iT/uv4L41cmuW+fdf66ux9+hNfe0N2fT/IfVfWhJN+R5HlJfjdJuvuDVfXhJE9bL//m7v7UF1bu7o8k+e6q+qYkf19Vf9PdH0/y2SRn1ovdleTB7n6oqu7K2R8OcKCcUTNJJbmlu5+1fjy9u381ybk3+19x3joPPMr2zn+TwH5vGthzW+sz6buT/MD6Sw/1l96A8PkkD66X+3yc/LAAoWaStyS5qaqekiRV9Q1VdV2Sj1fV9VV1Wc5eXtjUj1XVZVX1bUm+Ncm/JfmnrC+nVNXTknzL+utfpqquraor18+/PmfPxL9iOTgMfvozRnd/oKp+Ocmb1lF+KGevKZ9McluSTyS5I8kTN9zkfyZ5Z5KvTfKK7v6/qvqDJH+4vkzxuSQvX9/Zcf661yf5rarqnD3T/83uvuvivkN4bLyFHGA4lz4AhhNqgOGEGmA4oQYYTqgBhhNqgOGEGmC4/wcDUehGZy44hAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAP/klEQVR4nO3df5BdZX3H8fdHAsrEtGqBrRI0dAyj+ANad4KdSZ1lbEP8MYJaHawzQnFMbbHT/tEfsc5UxaHFaf/o+LNJLYqtDNI6K5kmDYmULbYjkiAxIRJkjaFkRVPAwQYYFPn2j3syXMIuuRt2byDP+zWzc895zvc85zk7h885PPfebKoKSVIbnnWkByBJGh5DX5IaYuhLUkMMfUlqiKEvSQ1ZcKQHcCgnnHBCLVmy5EgPQ3qCBx54gIULFx7pYUhPcPPNN99TVSdOt+1pH/pLlixh69atR3oY0hNMTEwwNjZ2pIchPUGSO2fa5vSOJDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSFP+y9nSYfjjI9u4v6HfjZw/Z0ff/M8jubxXvLn/zZw7S8efyzf/vCKeRyNWmPo66h0/0M/Y89lbxp8h8tm/8eEhvGN3CWr189r/2qP0zuS1BBDX5IaYuhLUkMMfUlqiKEvSQ0x9CWpIYa+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYMFPpJ9iTZkWRbkq1d298k2ZVke5LxJM/rq/9gkskktyc5p699Zdc2mWT13J+OJOnJzOZJ/+yqOrOqRrv1zcArq+rVwHeBDwIkOR04H3gFsBL4TJJjkhwDfBp4A3A68K6uVpI0JIc9vVNVm6rqkW71RmBxt3wucFVVPVxV3wcmgWXdz2RV7a6qnwJXdbWSpCEZ9G/kFrApSQFrqmrtQdsvAr7cLZ9M7yZwwN6uDeCug9rPmu5gSVYBqwBGRkaYmJgYcJjSY+b7utm/f/9Qrk2vf82lQUN/eVVNJTkJ2JxkV1XdAJDkQ8AjwJfmalDdTWUtwOjoaM33H5/WUWjj+nn/o+XD+MPowzgPtWWg6Z2qmupe9wHj9KZqSHIh8Gbg3VVVXfkUcErf7ou7tpnaJUlDcsjQT7IwyaIDy8AK4NYkK4E/A95SVQ/27bIOOD/Js5OcCiwFbgK2AEuTnJrkOHpv9q6b29ORJD2ZQaZ3RoDxJAfqr6yqjUkmgWfTm+4BuLGq3l9VO5NcDXyH3rTPxVX1c4AkHwCuBY4BLq+qnXN+RpKkGR0y9KtqN3DGNO0vfZJ9LgUunaZ9A7BhlmOUJM0Rv5ErSQ0Z9NM70jPKopev5lVXDOFL31fMb/eLXg7wpvk9iJpi6Ouo9H+3Xcaey+Y3LIfxkc0lq9fPa/9qj9M7ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQwx9SWqIoS9JDTH0Jakhhr4kNcTQl6SGGPqS1BBDX5IaYuhLUkMMfUlqiKEvSQ0x9CWpIYa+JDXE0Jekhhj6ktSQgUI/yZ4kO5JsS7K1a3tHkp1JHk0y2le7JMlDXe22JH/ft+01XT+TST6RJHN/SpKkmSyYRe3ZVXVP3/qtwNuANdPUfq+qzpym/bPA+4BvAhuAlcC/z2IMkqSn4LCnd6rqtqq6fdD6JC8EfqGqbqyqAr4InHe4x5ckzd6goV/ApiQ3J1k1QP2pSW5J8p9JfqNrOxnY21ezt2uTJA3JoNM7y6tqKslJwOYku6rqhhlq7wZeXFX3JnkN8NUkr5jNoLobyyqAkZERJiYmZrO7BDDv183+/fuHcm16/WsuDRT6VTXVve5LMg4sA6YN/ap6GHi4W745yfeA04ApYHFf6eKubbo+1gJrAUZHR2tsbGyQYUqP2bie+b5uJiYm5v0YwzgPteWQ0ztJFiZZdGAZWEHvTdyZ6k9Mcky3/CvAUmB3Vd0N/CTJa7tP7bwHuGYOzkGSNKBBnvRHgPHu05ULgCuramOStwKfBE4E1ifZVlXnAK8DLknyM+BR4P1VdV/X1x8AXwCOp/epHT+5I0lDdMjQr6rdwBnTtI8D49O0fwX4ygx9bQVeOfthSpLmgt/IlaSGGPqS1BBDX5IaYuhLUkMMfUlqiKEvSQ0x9CWpIYa+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQwx9SWqIoS9JDTH0Jakhhr4kNcTQl6SGGPqS1BBDX5IaYuhLUkMMfUlqyEChn2RPkh1JtiXZ2rW9I8nOJI8mGT2o/oNJJpPcnuScvvaVXdtkktVzeyqSpENZMIvas6vqnr71W4G3AWv6i5KcDpwPvAJ4EfC1JKd1mz8N/BawF9iSZF1VfedwBy9Jmp3ZhP7jVNVtAEkO3nQucFVVPQx8P8kksKzbNllVu7v9rupqDX1JGpJBQ7+ATUkKWFNVa5+k9mTgxr71vV0bwF0HtZ81XQdJVgGrAEZGRpiYmBhwmNJj5vu62b9//1CuTa9/zaVBQ395VU0lOQnYnGRXVd0wX4PqbiprAUZHR2tsbGy+DqWj1cb1XLjxgXk+SID5PcYvHn8sXv+aSwOFflVNda/7kozTm66ZKfSngFP61hd3bTxJuzSn9lz2pnk/xpLV64dyHGkuHfLTO0kWJll0YBlYQe9N3JmsA85P8uwkpwJLgZuALcDSJKcmOY7em73rnuoJSJIGN8iT/ggw3r1huwC4sqo2Jnkr8EngRGB9km1VdU5V7UxyNb03aB8BLq6qnwMk+QBwLXAMcHlV7Zz7U5IkzeSQod992uaMadrHgfEZ9rkUuHSa9g3AhtkPU5I0F/xGriQ1xNCXpIYY+pLUEENfkhpi6EtSQwx9SWqIoS9JDTH0Jakhhr4kNcTQl6SGGPqS1BBDX5IaYuhLUkMMfUlqiKEvSQ0x9CWpIYa+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhoyUOgn2ZNkR5JtSbZ2bS9IsjnJHd3r87v2sST3d7XbkvxlXz8rk9yeZDLJ6vk5JUnSTGbzpH92VZ1ZVaPd+mrguqpaClzXrR/w9a72zKq6BCDJMcCngTcApwPvSnL6Uz8FSdKgnsr0zrnAFd3yFcB5h6hfBkxW1e6q+ilwVdeHJGlIFgxYV8CmJAWsqaq1wEhV3d1t/yEw0lf/60m+DfwA+JOq2gmcDNzVV7MXOGu6gyVZBawCGBkZYWJiYsBhSsPltalnmkFDf3lVTSU5CdicZFf/xqqq7oYA8C3gJVW1P8kbga8CS2czqO6mshZgdHS0xsbGZrO7NBwb1+O1qWeagaZ3qmqqe90HjNObqvlRkhcCdK/7upqfVNX+bnkDcGySE4Ap4JS+bhd3bZKkITlk6CdZmGTRgWVgBXArsA64oCu7ALimq/nlJOmWl3XHuBfYAixNcmqS44Dzuz4kSUMyyPTOCDDe5fgC4Mqq2phkC3B1kvcCdwLv7Op/G/j9JI8ADwHnV1UBjyT5AHAtcAxweTfXL0kakkOGflXtBs6Ypv1e4PXTtH8K+NQMfW0ANsx+mJKkueA3ciWpIYa+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQwx9SWqIoS9JDTH0Jakhhr4kNcTQl6SGGPqS1BBDX5IaYuhLUkMMfUlqiKEvSQ0x9CWpIYa+JDXE0Jekhhj6ktQQQ1+SGjJQ6CfZk2RHkm1JtnZtL0iyOckd3evzu/Yk+USSySTbk/xaXz8XdPV3JLlgfk5JkjST2Tzpn11VZ1bVaLe+GriuqpYC13XrAG8AlnY/q4DPQu8mAXwYOAtYBnz4wI1CkjQcT2V651zgim75CuC8vvYvVs+NwPOSvBA4B9hcVfdV1Y+BzcDKp3B8SdIsLRiwroBNSQpYU1VrgZGqurvb/kNgpFs+Gbirb9+9XdtM7U+QZBW9/0tgZGSEiYmJAYcpDZfXpp5pBg395VU1leQkYHOSXf0bq6q6G8Kc6G4qawFGR0drbGxsrrqW5s7G9Xht6plmoOmdqprqXvcB4/Tm5H/UTdvQve7ryqeAU/p2X9y1zdQuSRqSQ4Z+koVJFh1YBlYAtwLrgAOfwLkAuKZbXge8p/sUz2uB+7tpoGuBFUme372Bu6JrkyQNySDTOyPAeJID9VdW1cYkW4Crk7wXuBN4Z1e/AXgjMAk8CPwuQFXdl+RjwJau7pKqum/OzkSSdEiHDP2q2g2cMU37vcDrp2kv4OIZ+rocuHz2w5QkzQW/kStJDTH0Jakhhr4kNcTQl6SGGPqS1BBDX5IaYuhLUkMMfUlqiKEvSQ0x9CWpIYa+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUkAVHegDS00GSw9vv47Pfp6oO61jSXPBJX6IXxLP9uf766w9rP+lIMvQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQwx9SWqIoS9JDcnT/csiSf4XuPNIj0OaxgnAPUd6ENI0XlJVJ0634Wkf+tLTVZKtVTV6pMchzYbTO5LUEENfkhpi6EuHb+2RHoA0W87pS1JDfNKXpIYY+pLUEENfmiNJliS5dZ6PMZHEj4nqsBn6akIS/zSohKGvo0D3hH1bkn9IsjPJpiTHd0/Ff5dkK/BHB+3zp0m2JNme5KN9/exK8oUk303ypSS/meS/k9yRZFlX95Ek/5TkG137+6YZ03OSfD7JjiS3JDm7a78hyZl9df+V5IwkC5NcnuSmrv7cbvvxSa7qzm8cOH7+fpNqgU8/OlosBd5VVe9LcjXw9q79uIO/NZtkRVe/DAiwLsnrgP8BXgq8A7gI2AL8DrAceAvwF8B5XTevBl4LLARuSbL+oPFcDFRVvSrJy4BNSU4D/hG4EPjjbv05VfXtJH8F/EdVXZTkecBNSb4G/B7wYFW9PMmrgW899V+VWuaTvo4W36+qbd3yzcCSbvnL09Su6H5uoReiL6N3EzjQz46qehTYCVxXvc817+jrE+Caqnqoqu4Brqd3A+m3HPhngKraRe/fjzoN+BfgzUmOpXdj+ULfmFYn2QZMAM8BXgy8rq+f7cD2gX4b0gx80tfR4uG+5Z/z2DTIA9PUBvjrqlrzuMZkyUH9PNq3/iiP/+/l4C+4DPSFl6p6MMlm4FzgncBr+sb09qq6/aAxDdKtNDCf9NWia4GLkjwXIMnJSU6aZR/ndvP2vwSM0ZsK6vd14N1d/6fRe2o/EOifAz4BbKmqH/eN6Q/TpXySX+3ab6A3xUSSV9KbVpIOm6GvJiQZTfI5gKraBFwJfCPJDuBfgUWz7HI7vWmdG4GPVdUPDtr+GeBZXf9fBi6sqoe7498M/AT4fF/9x4Bjge1JdnbrAJ8FnpvkNuASelNX0mHzn2GQZinJR4D9VfW3h7n/i+jN27+se+9AGhqf9KUhSvIe4JvAhwx8HQk+6UtSQ3zSl6SGGPqS1BBDX5IaYuhLUkMMfUlqyP8Db42VNQozZp8AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "\n", "for columns in (data.dtypes[data.dtypes!='object'].index):\n", " plt.figure()\n", " data.boxplot([columns])\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- pdays,previous have outliers, but both can't be changed using iqr,considering seperatly" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 1. Column:- pdays" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- pdays values can't be handled by iqr => all values will be changed to 999 \n", "- created new column by binning old pdays" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "data['y']=data['y'].map({'yes':1,'no':0})" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "-0.324947586385566" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.corr()['pdays']['y']\n" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "data['pdays']=pd.cut(data['pdays'],bins=[-0.9,5,31,999],labels=['0 to 5 days','6 to 31 days','no previous cnt'])" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Chi-square testresults
2Cramer's V =0.3249
\n", "
" ], "text/plain": [ " Chi-square test results\n", "2 Cramer's V = 0.3249" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "crosstab,res=researchpy.crosstab(data['y'],data['pdays'],test='chi-square')\n", "res.iloc[[2]]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 2. Column:- previous" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.2302015702154456" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.corr()['previous']['y']" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 35551\n", "1 4561\n", "2 754\n", "3 216\n", "4 70\n", "5 18\n", "6 5\n", "7 1\n", "Name: previous, dtype: int64" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data['previous'].value_counts()" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "data['previous']=pd.cut(data['previous'],bins=[-0.9,0,1,3,7],labels=['not contacted','1day','2 or 3 days','4 to 7 days'])" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "not contacted 35551\n", "1day 4561\n", "2 or 3 days 970\n", "4 to 7 days 94\n", "Name: previous, dtype: int64" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data['previous'].value_counts()" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Chi-square testresults
2Cramer's V =0.2345
\n", "
" ], "text/plain": [ " Chi-square test results\n", "2 Cramer's V = 0.2345" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "crosstab,res=researchpy.crosstab(data['y'],data['previous'],test='chi-square')\n", "res.loc[[2]]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 3. Columns:- age,campaign,cons.conf.idx" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "from scipy.stats import iqr\n", "list_box=['age','campaign','cons.conf.idx','duration']\n", "for column in list_box:\n", " UT=data[column].quantile(.75)+iqr(data[column])*1.5\n", " LT=data[column].quantile(.25)-iqr(data[column])*1.5\n", " data[column]=data[column].clip(lower=LT,upper=UT)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1.13 Handling Unknown" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- finding percentage of 'unknown' present" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "age 0.000000\n", "job 0.801438\n", "marital 0.194288\n", "education 4.201477\n", "default 20.876239\n", "housing 2.404313\n", "loan 2.404313\n", "contact 0.000000\n", "month 0.000000\n", "day_of_week 0.000000\n", "duration 0.000000\n", "campaign 0.000000\n", "pdays 0.000000\n", "previous 0.000000\n", "poutcome 0.000000\n", "emp.var.rate 0.000000\n", "cons.price.idx 0.000000\n", "cons.conf.idx 0.000000\n", "euribor3m 0.000000\n", "nr.employed 0.000000\n", "y 0.000000\n", "dtype: float64" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "unknown_pcnt=data.isin(['unknown']).sum()*(100/len(data))\n", "unknown_pcnt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 1. Column:-default" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "no 32577\n", "unknown 8596\n", "yes 3\n", "Name: default, dtype: int64" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data['default'].value_counts()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- default has >20% unknown" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Chi-square testresults
0Pearson Chi-square ( 2.0) =406.5561
1p-value =0.0000
2Cramer's V =0.0994
\n", "
" ], "text/plain": [ " Chi-square test results\n", "0 Pearson Chi-square ( 2.0) = 406.5561\n", "1 p-value = 0.0000\n", "2 Cramer's V = 0.0994" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cross,res=researchpy.crosstab(data['y'],data['default'],test='chi-square')\n", "res" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- unknown changing using mode" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "data_cp=data.copy()\n", "data_cp['default'][data_cp['default']=='unknown']=data_cp['default'].mode()[0]\n" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Chi-square testresults
2Cramer's phi =0.003
\n", "
" ], "text/plain": [ " Chi-square test results\n", "2 Cramer's phi = 0.003" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cross,res=researchpy.crosstab(data_cp['y'],data_cp['default'],test='chi-square')\n", "res.iloc[[2]]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- 0.09---->0.003\n", "- for default column decided to consider unknown " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 2. Other columns with unknown" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- filled all other variables with mode except default" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "list_n=unknown_pcnt[unknown_pcnt>0][unknown_pcnt<20].index\n", "for column in list_n:\n", " data[column][data[column]=='unknown']=data[column].mode()[0]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1.2 EDA" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1.21 Object&category variables" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 1. Column:- job, y" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Jobs are grouped according to yes, no" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
jobadmin.blue-collarentrepreneurhousemaidmanagementretiredself-employedservicesstudenttechnicianunemployedAll
y
09361861513329542596128412723644600600987036537
113886381241063284341493232757301444639
All1074992531456106029241718142139678756739101441176
\n", "
" ], "text/plain": [ "job admin. blue-collar entrepreneur housemaid management retired \\\n", "y \n", "0 9361 8615 1332 954 2596 1284 \n", "1 1388 638 124 106 328 434 \n", "All 10749 9253 1456 1060 2924 1718 \n", "\n", "job self-employed services student technician unemployed All \n", "y \n", "0 1272 3644 600 6009 870 36537 \n", "1 149 323 275 730 144 4639 \n", "All 1421 3967 875 6739 1014 41176 " ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cross_tab=(pd.crosstab(index=data['y'],columns=data['job'],margins=True))\n", "cross_tab" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### percentage wise distribution of each jobs among total persons campaigned" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
jobadmin.blue-collarentrepreneurhousemaidmanagementretiredself-employedservicesstudenttechnicianunemployed
y
025.62060423.5788383.645622.6110527.1051263.5142463.4814029.9734521.64217116.4463422.381148
129.92024113.7529642.672992.2849757.0704899.3554653.2118996.9627075.92800215.7361503.104117
All26.10501322.4718283.536042.5743157.1012244.1723333.4510399.6342532.12502416.3663302.462600
\n", "
" ], "text/plain": [ "job admin. blue-collar entrepreneur housemaid management retired \\\n", "y \n", "0 25.620604 23.578838 3.64562 2.611052 7.105126 3.514246 \n", "1 29.920241 13.752964 2.67299 2.284975 7.070489 9.355465 \n", "All 26.105013 22.471828 3.53604 2.574315 7.101224 4.172333 \n", "\n", "job self-employed services student technician unemployed \n", "y \n", "0 3.481402 9.973452 1.642171 16.446342 2.381148 \n", "1 3.211899 6.962707 5.928002 15.736150 3.104117 \n", "All 3.451039 9.634253 2.125024 16.366330 2.462600 " ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cross_tab=pd.crosstab(index=data['y'],columns=data['job'],margins=True,normalize='index')*100\n", "cross_tab" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- ##### Job has a strong association with subscription" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/html": [ " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "name": "no", "type": "bar", "x": [ "admin.", "blue-collar", "entrepreneur", "housemaid", "management", "retired", "self-employed", "services", "student", "technician", "unemployed" ], "y": [ 87.08717089961857, 93.10493893872258, 91.48351648351648, 90, 88.78248974008208, 74.73806752037252, 89.51442646023928, 91.85782707335518, 68.57142857142857, 89.16753227481821, 85.79881656804734 ] }, { "name": "yes", "type": "bar", "x": [ "admin.", "blue-collar", "entrepreneur", "housemaid", "management", "retired", "self-employed", "services", "student", "technician", "unemployed" ], "y": [ 12.912829100381432, 6.895061061277423, 8.516483516483516, 10, 11.21751025991792, 25.261932479627475, 10.48557353976073, 8.14217292664482, 31.428571428571427, 10.832467725181779, 14.201183431952662 ] } ], "layout": { "barmode": "stack", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } } } }, "text/html": [ "
\n", " \n", " \n", "
\n", " \n", "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "cross_tab1=pd.crosstab(index=data['job'],columns=data['y'],normalize='index')*100\n", "x=cross_tab1.index\n", "fig = go.Figure(go.Bar(x=x, y=cross_tab1[0].values, name='no'))\n", "fig.add_trace(go.Bar(x=x, y=cross_tab1[1].values, name='yes'))\n", "fig.update_layout(barmode='stack')\n", "\n", "fig.show()" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "hole": 0.5, "labels": [ "no", "yes" ], "marker": { "colors": [ "lightskyblue", "limegreen" ] }, "type": "pie", "values": [ 36537, 4639 ] } ], "layout": { "annotations": [ { "font": { "size": 20 }, "showarrow": false, "text": "y", "x": 0.5, "y": 0.5 } ], "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } } } }, "text/html": [ "
\n", " \n", " \n", "
\n", " \n", "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "## y\n", "fig = go.Figure(data=[go.Pie(labels=['no','yes'], values=data['y'].value_counts().values, hole=.5,marker=dict(colors=['lightskyblue','limegreen']))])\n", "fig.update_layout(annotations=[dict(text='y', x=0.5, y=0.5, font_size=20, showarrow=False)])\n", "fig.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- #### campaign covered mostly admin,among them only $12$% subscribed\n", "- #### for student and retired persons percentage of subscription is more compared to other jobs\n", "- #### student subscribed around $31$%\n", "- #### retired subscribed around $ 25$% \n", "- #### there is imbalance in yes,no in y so need smoting" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2. columns:-marital, poutcome, month, day of week" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
maritaldivorcedmarriedsingleAll
y
010.04225854.54148024.14999088.733728
11.1560136.1759283.93433111.266272
All11.19827160.71740828.084321100.000000
\n", "
" ], "text/plain": [ "marital divorced married single All\n", "y \n", "0 10.042258 54.541480 24.149990 88.733728\n", "1 1.156013 6.175928 3.934331 11.266272\n", "All 11.198271 60.717408 28.084321 100.000000" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cs_marital=(pd.crosstab(data['y'],data['marital'],margins=True,normalize=True))*100\n", "cs_marital" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "marker": { "color": "gold" }, "name": "yes", "type": "bar", "x": [ "divorced", "married", "single" ], "xaxis": "x", "y": [ 10.323140316634136, 10.17159313627455, 14.008993427879627 ], "yaxis": "y" }, { "marker": { "color": "coral" }, "name": "no", "type": "bar", "x": [ "divorced", "married", "single" ], "xaxis": "x", "y": [ 89.67685968336586, 89.82840686372545, 85.99100657212037 ], "yaxis": "y" }, { "marker": { "color": "gold" }, "showlegend": false, "type": "bar", "x": [ "failure", "nonexistent", "success" ], "xaxis": "x2", "y": [ 14.22859830667921, 8.832381648898766, 65.1128914785142 ], "yaxis": "y2" }, { "marker": { "color": "coral" }, "showlegend": false, "type": "bar", "x": [ "failure", "nonexistent", "success" ], "xaxis": "x2", "y": [ 85.7714016933208, 91.16761835110123, 34.8871085214858 ], "yaxis": "y2" }, { "marker": { "color": "gold" }, "name": "yes", "showlegend": false, "type": "bar", "x": [ "apr", "aug", "dec", "jul", "jun", "mar", "may", "nov", "oct", "sep" ], "xaxis": "x3", "y": [ 20.486507031546942, 10.60556994818653, 48.9010989010989, 9.038917561724089, 10.511470477623167, 50.54945054945055, 6.435679523498221, 10.146341463414634, 43.93305439330544, 44.91228070175438 ], "yaxis": "y3" }, { "marker": { "color": "coral" }, "name": "no", "showlegend": false, "type": "bar", "x": [ "apr", "aug", "dec", "jul", "jun", "mar", "may", "nov", "oct", "sep" ], "xaxis": "x3", "y": [ 79.51349296845306, 89.39443005181347, 51.098901098901095, 90.96108243827591, 89.48852952237684, 49.45054945054945, 93.56432047650178, 89.85365853658537, 56.06694560669456, 55.08771929824562 ], "yaxis": "y3" }, { "marker": { "color": "gold" }, "showlegend": false, "type": "bar", "x": [ "fri", "mon", "thu", "tue", "wed" ], "xaxis": "x4", "y": [ 10.810120112445693, 9.950657894736842, 12.1141796240427, 11.785802621815483, 11.667076469141874 ], "yaxis": "y4" }, { "marker": { "color": "coral" }, "showlegend": false, "type": "bar", "x": [ "fri", "mon", "thu", "tue", "wed" ], "xaxis": "x4", "y": [ 89.1898798875543, 90.04934210526315, 87.88582037595731, 88.21419737818451, 88.33292353085812 ], "yaxis": "y4" } ], "layout": { "barmode": "stack", "height": 900, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "width": 700, "xaxis": { "anchor": "y", "domain": [ 0, 0.45 ], "title": { "text": "marital status" } }, "xaxis2": { "anchor": "y2", "domain": [ 0.55, 1 ], "title": { "text": "previous campaign outcome" } }, "xaxis3": { "anchor": "y3", "domain": [ 0, 0.45 ], "title": { "text": "last contact month" } }, "xaxis4": { "anchor": "y4", "domain": [ 0.55, 1 ], "title": { "text": "last contact day" } }, "yaxis": { "anchor": "x", "domain": [ 0.575, 1 ] }, "yaxis2": { "anchor": "x2", "domain": [ 0.575, 1 ] }, "yaxis3": { "anchor": "x3", "domain": [ 0, 0.425 ] }, "yaxis4": { "anchor": "x4", "domain": [ 0, 0.425 ] } } }, "text/html": [ "
\n", " \n", " \n", "
\n", " \n", "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from plotly.subplots import make_subplots\n", "fig=make_subplots(rows=2, cols=2)\n", "cs_marital=pd.crosstab(index=data['marital'],columns=data['y'],normalize='index')*100\n", "fig.add_trace(go.Bar(x=cs_marital.index,y=cs_marital[1].values,name='yes',marker_color='gold'),row=1,col=1)\n", "fig.add_trace(go.Bar(x=cs_marital.index,y=cs_marital[0].values,name='no',marker_color='coral'),row=1,col=1)\n", "fig.update_xaxes(title_text=\"marital status\", row=1, col=1)\n", "#\n", "cs_poutcome=pd.crosstab(index=data['poutcome'],columns=data['y'],normalize='index')*100\n", "fig.add_trace(go.Bar(x=cs_poutcome.index,y=cs_poutcome[1].values,showlegend=False,marker_color='gold'),row=1,col=2)\n", "fig.add_trace(go.Bar(x=cs_poutcome.index,y=cs_poutcome[0].values,showlegend=False,marker_color='coral'),row=1,col=2)\n", "fig.update_xaxes(title_text=\"previous campaign outcome\", row=1, col=2)\n", "#\n", "cs_month=pd.crosstab(index=data['month'],columns=data['y'],normalize='index')*100\n", "fig.add_trace(go.Bar(x=cs_month.index,y=cs_month[1].values,name='yes',showlegend=False,marker_color='gold'),row=2,col=1)\n", "fig.add_trace(go.Bar(x=cs_month.index,y=cs_month[0].values,name='no',showlegend=False,marker_color='coral'),row=2,col=1)\n", "fig.update_xaxes(title_text=\"last contact month\", row=2, col=1)\n", "#\n", "cs_week_day=pd.crosstab(index=data['day_of_week'],columns=data['y'],normalize='index')*100\n", "fig.add_trace(go.Bar(x=cs_week_day.index,y=cs_week_day[1].values,showlegend=False,marker_color='gold'),row=2,col=2)\n", "fig.add_trace(go.Bar(x=cs_week_day.index,y=cs_week_day[0].values,showlegend=False,marker_color='coral'),row=2,col=2)\n", "fig.update_xaxes(title_text=\"last contact day\", row=2, col=2)\n", "fig.update_layout(barmode='stack',height=900, width=700)\n", "fig.show()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- marital status shows weak association with subscription,there is no much difference in percetage\n", "- among single catagory subscribed -->14%\n", "- last contact month has a very strong association (march,dec,oct,sep shows higher subscription)\n", "- day possess very weak association" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 3. columns:-housing ,education,Loan, contact" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "marker": { "color": "midnightblue" }, "name": "yes", "type": "bar", "x": [ "no", "yes" ], "xaxis": "x", "y": [ 10.878323932312652, 11.586365852577456 ], "yaxis": "y" }, { "marker": { "color": "orchid" }, "name": "no", "type": "bar", "x": [ "no", "yes" ], "xaxis": "x", "y": [ 89.12167606768735, 88.41363414742254 ], "yaxis": "y" }, { "marker": { "color": "midnightblue" }, "showlegend": false, "type": "bar", "x": [ "basic.4y", "basic.6y", "basic.9y", "high.school", "illiterate", "professional.course", "university.degree" ], "xaxis": "x2", "y": [ 10.24904214559387, 8.206023570493235, 7.82464846980976, 10.838940285954584, 22.22222222222222, 11.354961832061068, 13.818914639412696 ], "yaxis": "y2" }, { "marker": { "color": "orchid" }, "showlegend": false, "type": "bar", "x": [ "basic.4y", "basic.6y", "basic.9y", "high.school", "illiterate", "professional.course", "university.degree" ], "xaxis": "x2", "y": [ 89.75095785440614, 91.79397642950676, 92.17535153019024, 89.16105971404542, 77.77777777777779, 88.64503816793892, 86.1810853605873 ], "yaxis": "y2" }, { "marker": { "color": "midnightblue" }, "name": "yes", "showlegend": false, "type": "bar", "x": [ "no", "yes" ], "xaxis": "x3", "y": [ 11.326156665139717, 10.931498079385403 ], "yaxis": "y3" }, { "marker": { "color": "orchid" }, "name": "no", "showlegend": false, "type": "bar", "x": [ "no", "yes" ], "xaxis": "x3", "y": [ 88.67384333486028, 89.0685019206146 ], "yaxis": "y3" }, { "marker": { "color": "midnightblue" }, "showlegend": false, "type": "bar", "x": [ "cellular", "telephone" ], "xaxis": "x4", "y": [ 10.24904214559387, 8.206023570493235, 7.82464846980976, 10.838940285954584, 22.22222222222222, 11.354961832061068, 13.818914639412696 ], "yaxis": "y4" }, { "marker": { "color": "orchid" }, "showlegend": false, "type": "bar", "x": [ "cellular", "telephone" ], "xaxis": "x4", "y": [ 89.75095785440614, 91.79397642950676, 92.17535153019024, 89.16105971404542, 77.77777777777779, 88.64503816793892, 86.1810853605873 ], "yaxis": "y4" } ], "layout": { "barmode": "stack", "height": 900, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "width": 700, "xaxis": { "anchor": "y", "domain": [ 0, 0.45 ], "title": { "text": "housing loan" } }, "xaxis2": { "anchor": "y2", "domain": [ 0.55, 1 ], "title": { "text": "education" } }, "xaxis3": { "anchor": "y3", "domain": [ 0, 0.45 ], "title": { "text": "Personal Loan" } }, "xaxis4": { "anchor": "y4", "domain": [ 0.55, 1 ], "title": { "text": "Communication Type" } }, "yaxis": { "anchor": "x", "domain": [ 0.575, 1 ] }, "yaxis2": { "anchor": "x2", "domain": [ 0.575, 1 ] }, "yaxis3": { "anchor": "x3", "domain": [ 0, 0.425 ] }, "yaxis4": { "anchor": "x4", "domain": [ 0, 0.425 ] } } }, "text/html": [ "
\n", " \n", " \n", "
\n", " \n", "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig=make_subplots(rows=2, cols=2)\n", "cs_housing=pd.crosstab(index=data['housing'],columns=data['y'],normalize='index')*100\n", "fig.add_trace(go.Bar(x=cs_housing.index,y=cs_housing[1].values,name='yes',marker_color='midnightblue'),row=1,col=1)\n", "fig.add_trace(go.Bar(x=cs_housing.index,y=cs_housing[0].values,name='no',marker_color='orchid'),row=1,col=1)\n", "fig.update_xaxes(title_text=\"housing loan\", row=1, col=1)\n", "#\n", "cs_education=pd.crosstab(index=data['education'],columns=data['y'],normalize='index')*100\n", "fig.add_trace(go.Bar(x=cs_education.index,y=cs_education[1].values,showlegend=False,marker_color='midnightblue'),row=1,col=2)\n", "fig.add_trace(go.Bar(x=cs_education.index,y=cs_education[0].values,showlegend=False,marker_color='orchid'),row=1,col=2)\n", "fig.update_xaxes(title_text=\"education\", row=1, col=2)\n", "#\n", "cs_loan=pd.crosstab(index=data['loan'],columns=data['y'],normalize='index')*100\n", "fig.add_trace(go.Bar(x=cs_loan.index,y=cs_loan[1].values,name='yes',marker_color='midnightblue',showlegend=False),row=2,col=1)\n", "fig.add_trace(go.Bar(x=cs_loan.index,y=cs_loan[0].values,name='no',marker_color='orchid',showlegend=False),row=2,col=1)\n", "fig.update_xaxes(title_text=\"Personal Loan\", row=2, col=1)\n", "#\n", "cs_contact=pd.crosstab(index=data['contact'],columns=data['y'],normalize='index')*100\n", "fig.add_trace(go.Bar(x=cs_contact.index,y=cs_education[1].values,showlegend=False,marker_color='midnightblue'),row=2,col=2)\n", "fig.add_trace(go.Bar(x=cs_contact.index,y=cs_education[0].values,showlegend=False,marker_color='orchid'),row=2,col=2)\n", "fig.update_xaxes(title_text=\"Communication Type\", row=2, col=2)\n", "fig.update_layout(barmode='stack',height=900, width=700)\n", "fig.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- housing loan has very weak association with subscription\n", "- education has a weak association with subscription\n", "- illiterate 22% subscribed\n", "- Communication type has moderate assosciation(cellular 10%)\n", "- Personal loan has very weak association" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 4. Columns:- pday, previous" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "marker": { "color": "midnightblue" }, "name": "yes", "type": "bar", "x": [ "0 to 5 days", "6 to 31 days", "no previous cnt" ], "xaxis": "x", "y": [ 63.12056737588653, 64.44444444444444, 9.258465495070723 ], "yaxis": "y" }, { "marker": { "color": "orchid" }, "name": "no", "type": "bar", "x": [ "0 to 5 days", "6 to 31 days", "no previous cnt" ], "xaxis": "x", "y": [ 36.87943262411347, 35.55555555555556, 90.74153450492928 ], "yaxis": "y" }, { "marker": { "color": "midnightblue" }, "showlegend": false, "type": "bar", "x": [ "not contacted", "1day", "2 or 3 days", "4 to 7 days" ], "xaxis": "x2", "y": [ 8.832381648898766, 21.201490901118174, 49.27835051546392, 57.446808510638306 ], "yaxis": "y2" }, { "marker": { "color": "orchid" }, "showlegend": false, "type": "bar", "x": [ "not contacted", "1day", "2 or 3 days", "4 to 7 days" ], "xaxis": "x2", "y": [ 91.16761835110123, 78.79850909888182, 50.72164948453608, 42.5531914893617 ], "yaxis": "y2" } ], "layout": { "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "xaxis": { "anchor": "y", "domain": [ 0, 0.45 ], "title": { "text": "no of days passed from previous campaign" } }, "xaxis2": { "anchor": "y2", "domain": [ 0.55, 1 ], "title": { "text": "no.of contacts before campaign" } }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ] }, "yaxis2": { "anchor": "x2", "domain": [ 0, 1 ] } } }, "text/html": [ "
\n", " \n", " \n", "
\n", " \n", "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig=make_subplots(rows=1, cols=2)\n", "cs_pdaynew=pd.crosstab(index=data['pdays'],columns=data['y'],normalize='index')*100\n", "fig.add_trace(go.Bar(x=cs_pdaynew.index,y=cs_pdaynew[1].values,name='yes',marker_color='midnightblue'),row=1,col=1)\n", "fig.add_trace(go.Bar(x=cs_pdaynew.index,y=cs_pdaynew[0].values,name='no',marker_color='orchid'),row=1,col=1)\n", "fig.update_xaxes(title_text=\"no of days passed from previous campaign\", row=1, col=1)\n", "#\n", "cs_previous=pd.crosstab(index=data['previous'],columns=data['y'],normalize='index')*100\n", "fig.add_trace(go.Bar(x=cs_previous.index,y=cs_previous[1].values,showlegend=False,marker_color='midnightblue'),row=1,col=2)\n", "fig.add_trace(go.Bar(x=cs_previous.index,y=cs_previous[0].values,showlegend=False,marker_color='orchid'),row=1,col=2)\n", "fig.update_xaxes(title_text=\"no.of contacts before campaign\", row=1, col=2)\n", "#" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- number of days that passed by after the client was last contacted from a previous campaign has a very strong association\n", "- number of contacts performed before this campaign and for this client has a strong association " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1.22 continuous and discrete variables" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1. Column:-cons.conf.idx" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [], "source": [ "data_cp1=data.copy()" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [], "source": [ "data_cp1['cons.conf.idx']=pd.cut(data_cp1['cons.conf.idx'],bins=7)" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [], "source": [ "lis_con=data_cp1['cons.conf.idx'].value_counts().sort_index().index" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "marker": { "color": "palegreen" }, "name": "yes", "type": "bar", "x": [ "(-50.824, -47.393]", "(-47.393, -43.986]", "(-43.986, -40.579]", "(-40.579, -37.171]", "(-37.171, -33.764]", "(-33.764, -30.357]", "(-30.357, -26.95]" ], "y": [ 45.11400651465798, 11.707021791767556, 6.818329541761456, 52.91512915129152, 5.668137291557616, 37.26541554959786, 42.429906542056074 ] }, { "marker": { "color": "violet" }, "name": "no", "type": "bar", "x": [ "(-50.824, -47.393]", "(-47.393, -43.986]", "(-43.986, -40.579]", "(-40.579, -37.171]", "(-37.171, -33.764]", "(-33.764, -30.357]", "(-30.357, -26.95]" ], "y": [ 54.88599348534202, 88.29297820823244, 93.18167045823854, 47.08487084870849, 94.33186270844239, 62.73458445040214, 57.570093457943926 ] } ], "layout": { "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "xaxis": { "title": { "text": "cons.conf.idx" } } } }, "text/html": [ "
\n", " \n", " \n", "
\n", " \n", "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "lis_con1=[str(x) for x in lis_con]\n", "cs_cons=pd.crosstab(index=data_cp1['cons.conf.idx'],columns=data_cp1['y'],normalize='index')*100\n", "fig=go.Figure(go.Bar(x=lis_con1,y=cs_cons[1].values,name='yes',marker_color='palegreen'))\n", "fig.add_trace(go.Bar(x=lis_con1,y=cs_cons[0].values,name='no',marker_color='violet'))\n", "fig.update_xaxes(title_text=\"cons.conf.idx\")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- it has a strong association with subscription\n", "- as correlation indicate we can see an inverse relation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2. Column:-duration" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [], "source": [ "data_cp1['duration']=data_cp1['duration']/60" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [], "source": [ "data_cp1['duration']=pd.cut(data_cp1['duration'],bins=[-0.5,0,1,2,3,4,5,6,7,8,9,10,11])\n" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [], "source": [ "lis_dur=data_cp1['duration'].value_counts().sort_index().index\n", "lis_dur1=[str(x) for x in lis_dur]" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [], "source": [ "lis_dur1=['0','(1.0, 2.0]','(2.0, 3.0]','(3.0, 4.0]','(4.0, 5.0]','(5.0, 6.0]','(6.0, 7.0]', '(7.0, 8.0]','(8.0, 9.0]','(9.0, 10.0]','(10.0, 11.0]']" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "marker": { "color": "gray" }, "name": "yes", "type": "bar", "x": [ "0", "(1.0, 2.0]", "(2.0, 3.0]", "(3.0, 4.0]", "(4.0, 5.0]", "(5.0, 6.0]", "(6.0, 7.0]", "(7.0, 8.0]", "(8.0, 9.0]", "(9.0, 10.0]", "(10.0, 11.0]" ], "y": [ 0, 0.023364485981308414, 1.9123783031988872, 5.113052415210689, 8.91324200913242, 12.22718906126742, 13.571961222967936, 16.789473684210527, 19.594594594594593, 24.358974358974358, 30.493827160493826, 48.61431870669746 ] }, { "marker": { "color": "limegreen" }, "name": "no", "type": "bar", "x": [ "0", "(1.0, 2.0]", "(2.0, 3.0]", "(3.0, 4.0]", "(4.0, 5.0]", "(5.0, 6.0]", "(6.0, 7.0]", "(7.0, 8.0]", "(8.0, 9.0]", "(9.0, 10.0]", "(10.0, 11.0]" ], "y": [ 100, 99.9766355140187, 98.08762169680111, 94.88694758478931, 91.08675799086758, 87.77281093873258, 86.42803877703207, 83.21052631578948, 80.4054054054054, 75.64102564102564, 69.50617283950618, 51.38568129330254 ] } ], "layout": { "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "xaxis": { "title": { "text": "duration" } } } }, "text/html": [ "
\n", " \n", " \n", "
\n", " \n", "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "cs_dur=pd.crosstab(index=data_cp1['duration'],columns=data_cp1['y'],normalize='index')*100\n", "fig=go.Figure(go.Bar(x=lis_dur1,y=cs_dur[1].values,name='yes',marker_color='gray'))\n", "fig.add_trace(go.Bar(x=lis_dur1,y=cs_dur[0].values,name='no',marker_color='limegreen'))\n", "fig.update_xaxes(title_text=\"duration\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- duration shows high correlation\n", "- 0 duration implies not subcribed\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 3. Column:-euribor3m" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [], "source": [ "data_cp1['euribor3m']=pd.qcut(data_cp1['euribor3m'],q=10)" ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [], "source": [ "lis_eur=data_cp1['euribor3m'].value_counts().sort_index().index\n", "lis_eur1=[str(x) for x in lis_eur]" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "marker": { "color": "black" }, "name": "yes", "type": "bar", "x": [ "(0.633, 1.046]", "(1.046, 1.299]", "(1.299, 1.41]", "(1.41, 4.191]", "(4.191, 4.857]", "(4.857, 4.864]", "(4.864, 4.96]", "(4.96, 4.962]", "(4.962, 4.964]", "(4.964, 5.045]" ], "y": [ 45.91713108795735, 14.754825826492123, 12.585987261146498, 9.218125277654377, 3.127506014434643, 4.339022273647672, 5.90007532011047, 5.185021050299135, 4.9426542872747135, 6.093394077448747 ] }, { "marker": { "color": "tomato" }, "name": "no", "type": "bar", "x": [ "(0.633, 1.046]", "(1.046, 1.299]", "(1.299, 1.41]", "(1.41, 4.191]", "(4.191, 4.857]", "(4.857, 4.864]", "(4.864, 4.96]", "(4.96, 4.962]", "(4.962, 4.964]", "(4.964, 5.045]" ], "y": [ 54.08286891204265, 85.24517417350788, 87.41401273885351, 90.78187472234562, 96.87249398556536, 95.66097772635233, 94.09992467988954, 94.81497894970087, 95.05734571272528, 93.90660592255125 ] } ], "layout": { "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "xaxis": { "title": { "text": "euribor 3 month rate" } } } }, "text/html": [ "
\n", " \n", " \n", "
\n", " \n", "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "cs_eur=pd.crosstab(index=data_cp1['euribor3m'],columns=data_cp1['y'],normalize='index')*100\n", "fig=go.Figure(go.Bar(x=lis_eur1,y=cs_eur[1].values,name='yes',marker_color='black'))\n", "fig.add_trace(go.Bar(x=lis_eur1,y=cs_eur[0].values,name='no',marker_color='tomato'))\n", "fig.update_xaxes(title_text=\"euribor 3 month rate\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- shows strong correlation\n", "- as interbank interest rate increase percentage of subscription decrease" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 4. Column:-age" ] }, { "cell_type": "code", "execution_count": 47, "metadata": {}, "outputs": [], "source": [ "data_cp1['age']=pd.qcut(data_cp1['age'],q=10)" ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [], "source": [ "lis_age=data_cp1['age'].value_counts().sort_index().index\n", "lis_age1=[str(x) for x in lis_age]" ] }, { "cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "marker": { "color": "gold" }, "name": "yes", "type": "bar", "x": [ "(16.999, 28.0]", "(28.0, 31.0]", "(31.0, 33.0]", "(33.0, 35.0]", "(35.0, 38.0]", "(38.0, 41.0]", "(41.0, 45.0]", "(45.0, 49.0]", "(49.0, 55.0]", "(55.0, 69.5]" ], "y": [ 17.4655908875178, 11.888932342588971, 10.712343665035345, 10.019982871824151, 9.311306586569405, 8.040330920372284, 8.051044083526682, 7.655629139072848, 9.570661896243292, 20.692543982127898 ] }, { "marker": { "color": "coral" }, "name": "no", "type": "bar", "x": [ "(16.999, 28.0]", "(28.0, 31.0]", "(31.0, 33.0]", "(33.0, 35.0]", "(35.0, 38.0]", "(38.0, 41.0]", "(41.0, 45.0]", "(45.0, 49.0]", "(49.0, 55.0]", "(55.0, 69.5]" ], "y": [ 82.5344091124822, 88.11106765741103, 89.28765633496467, 89.98001712817585, 90.6886934134306, 91.95966907962772, 91.94895591647332, 92.34437086092714, 90.4293381037567, 79.3074560178721 ] } ], "layout": { "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "xaxis": { "title": { "text": "age" } } } }, "text/html": [ "
\n", " \n", " \n", "
\n", " \n", "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "cs_age=pd.crosstab(index=data_cp1['age'],columns=data_cp1['y'],normalize='index')*100\n", "fig=go.Figure(go.Bar(x=lis_age1,y=cs_age[1].values,name='yes',marker_color='gold'))\n", "fig.add_trace(go.Bar(x=lis_age1,y=cs_age[0].values,name='no',marker_color='coral'))\n", "fig.update_xaxes(title_text=\"age\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- a good no.of subscription is comes from customers of age in the range of 17 to 31 and 55 to 70\n", "- most no of subscription comes from student's and retired customers " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 5. Column:-campaign" ] }, { "cell_type": "code", "execution_count": 50, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "-0.06939731551002387" ] }, "execution_count": 50, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.corr()['campaign']['y']" ] }, { "cell_type": "code", "execution_count": 51, "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "marker": { "color": "midnightblue" }, "name": "yes", "type": "bar", "x": [ 1, 2, 3, 4, 5, 6 ], "y": [ 13.0373142792333, 11.459121877365632, 10.749063670411985, 9.39622641509434, 7.5046904315197, 5.4948301329394384 ] }, { "marker": { "color": "orchid" }, "name": "no", "type": "bar", "x": [ 1, 2, 3, 4, 5, 6 ], "y": [ 86.9626857207667, 88.54087812263437, 89.25093632958801, 90.60377358490565, 92.4953095684803, 94.50516986706056 ] } ], "layout": { "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "xaxis": { "title": { "text": "campaign" } } } }, "text/html": [ "
\n", " \n", " \n", "
\n", " \n", "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "cs_camp=pd.crosstab(index=data['campaign'],columns=data['y'],normalize='index')*100\n", "fig=go.Figure(go.Bar(x=cs_camp.index,y=cs_camp[1].values,name='yes',marker_color='midnightblue'))\n", "fig.add_trace(go.Bar(x=cs_camp.index,y=cs_camp[0].values,name='no',marker_color='orchid'))\n", "fig.update_xaxes(title_text=\"campaign\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- doesnt shows any good relation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 6. Column:-emp.var.rate" ] }, { "cell_type": "code", "execution_count": 52, "metadata": {}, "outputs": [], "source": [ "data_cp1['emp.var.rate']=pd.cut(data_cp1['emp.var.rate'],bins=4)" ] }, { "cell_type": "code", "execution_count": 53, "metadata": {}, "outputs": [], "source": [ "lis_emp=data_cp1['emp.var.rate'].value_counts().sort_index().index\n", "lis_emp1=[str(x) for x in lis_emp]" ] }, { "cell_type": "code", "execution_count": 54, "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "marker": { "color": "black" }, "name": "yes", "type": "bar", "x": [ "(-3.405, -2.2]", "(-2.2, -1.0]", "(-1.0, 0.2]", "(0.2, 1.4]" ], "y": [ 39.0840220385675, 20.4438149197356, 6.310942578548212, 4.610254272613589 ] }, { "marker": { "color": "tomato" }, "name": "no", "type": "bar", "x": [ "(-3.405, -2.2]", "(-2.2, -1.0]", "(-1.0, 0.2]", "(0.2, 1.4]" ], "y": [ 60.91597796143251, 79.5561850802644, 93.68905742145178, 95.38974572738641 ] } ], "layout": { "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "xaxis": { "title": { "text": "emp.var.rate" } } } }, "text/html": [ "
\n", " \n", " \n", "
\n", " \n", "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "cs_emp=pd.crosstab(index=data_cp1['emp.var.rate'],columns=data_cp1['y'],normalize='index')*100\n", "fig=go.Figure(go.Bar(x=lis_emp1,y=cs_emp[1].values,name='yes',marker_color='black'))\n", "fig.add_trace(go.Bar(x=lis_emp1,y=cs_emp[0].values,name='no',marker_color='tomato'))\n", "fig.update_xaxes(title_text=\"emp.var.rate\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 7. Column:-nr.employed" ] }, { "cell_type": "code", "execution_count": 55, "metadata": {}, "outputs": [], "source": [ "data_cp1['nr.employed']=pd.cut(data_cp1['nr.employed'],bins=4)" ] }, { "cell_type": "code", "execution_count": 56, "metadata": {}, "outputs": [], "source": [ "lis_nr=data_cp1['nr.employed'].value_counts().sort_index().index\n", "lis_nr1=[str(x) for x in lis_nr]" ] }, { "cell_type": "code", "execution_count": 57, "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "marker": { "color": "midnightblue" }, "name": "yes", "type": "bar", "x": [ "(4963.336, 5029.725]", "(5029.725, 5095.85]", "(5095.85, 5161.975]", "(5161.975, 5228.1]" ], "y": [ 39.0840220385675, 20.4438149197356, 6.310942578548212, 4.610254272613589 ] }, { "marker": { "color": "orchid" }, "name": "no", "type": "bar", "x": [ "(4963.336, 5029.725]", "(5029.725, 5095.85]", "(5095.85, 5161.975]", "(5161.975, 5228.1]" ], "y": [ 60.91597796143251, 79.5561850802644, 93.68905742145178, 95.38974572738641 ] } ], "layout": { "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "xaxis": { "title": { "text": "nr.employed" } } } }, "text/html": [ "
\n", " \n", " \n", "
\n", " \n", "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "cs_nr=pd.crosstab(index=data_cp1['nr.employed'],columns=data_cp1['y'],normalize='index')*100\n", "fig=go.Figure(go.Bar(x=lis_nr1,y=cs_emp[1].values,name='yes',marker_color='midnightblue'))\n", "fig.add_trace(go.Bar(x=lis_nr1,y=cs_emp[0].values,name='no',marker_color='orchid'))\n", "fig.update_xaxes(title_text=\"nr.employed\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- no of subscription more when number of employees less" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 6. Column:-cons.price.idx" ] }, { "cell_type": "code", "execution_count": 58, "metadata": {}, "outputs": [], "source": [ "data_cp1['cons.price.idx']=pd.qcut(data_cp1['cons.price.idx'],q=4)" ] }, { "cell_type": "code", "execution_count": 59, "metadata": {}, "outputs": [], "source": [ "lis_price=data_cp1['cons.price.idx'].value_counts().sort_index().index\n", "lis_price1=[str(x) for x in lis_price]" ] }, { "cell_type": "code", "execution_count": 60, "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "marker": { "color": "black" }, "name": "yes", "type": "bar", "x": [ "(92.19999999999999, 93.075]", "(93.075, 93.749]", "(93.749, 93.994]", "(93.994, 94.767]" ], "y": [ 39.0840220385675, 20.4438149197356, 6.310942578548212, 4.610254272613589 ] }, { "marker": { "color": "tomato" }, "name": "no", "type": "bar", "x": [ "(92.19999999999999, 93.075]", "(93.075, 93.749]", "(93.749, 93.994]", "(93.994, 94.767]" ], "y": [ 60.91597796143251, 79.5561850802644, 93.68905742145178, 95.38974572738641 ] } ], "layout": { "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "xaxis": { "title": { "text": "cons.price.idx" } } } }, "text/html": [ "
\n", " \n", " \n", "
\n", " \n", "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "cs_price=pd.crosstab(index=data_cp1['cons.price.idx'],columns=data_cp1['y'],normalize='index')*100\n", "fig=go.Figure(go.Bar(x=lis_price1,y=cs_emp[1].values,name='yes',marker_color='black'))\n", "fig.add_trace(go.Bar(x=lis_price1,y=cs_emp[0].values,name='no',marker_color='tomato'))\n", "fig.update_xaxes(title_text=\"cons.price.idx\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- for low consumer price index showing more percentage of subscription" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 2. Model Building" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2.1 Splitting, Smoting data " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- dropping y and day_of_week" ] }, { "cell_type": "code", "execution_count": 61, "metadata": {}, "outputs": [], "source": [ "X=data.drop(['y','day_of_week'],axis=1)" ] }, { "cell_type": "code", "execution_count": 62, "metadata": {}, "outputs": [], "source": [ "y=data['y']" ] }, { "cell_type": "code", "execution_count": 63, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(41176, 19)" ] }, "execution_count": 63, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X.shape" ] }, { "cell_type": "code", "execution_count": 64, "metadata": {}, "outputs": [], "source": [ "X=pd.get_dummies(X)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- splitting" ] }, { "cell_type": "code", "execution_count": 65, "metadata": {}, "outputs": [], "source": [ "from sklearn.model_selection import train_test_split\n", "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,random_state=42)" ] }, { "cell_type": "code", "execution_count": 66, "metadata": {}, "outputs": [], "source": [ "from imblearn.over_sampling import SMOTE\n", "sm = SMOTE(random_state=42)\n", "X_res, y_res = sm.fit_resample(X_train, y_train)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2.2 Logistic regression" ] }, { "cell_type": "code", "execution_count": 67, "metadata": {}, "outputs": [], "source": [ "from sklearn.linear_model import LogisticRegression\n", "l_reg=LogisticRegression()" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [], "source": [ "from sklearn.model_selection import GridSearchCV\n", "solver_values = ['newton-cg','sag','lbfgs']\n", "penalty_values = ['l1', 'l2', 'elasticnet']\n", "parameters = {'solver':solver_values , 'penalty': penalty_values }" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "GridSearchCV(estimator=LogisticRegression(),\n", " param_grid={'penalty': ['l1', 'l2', 'elasticnet'],\n", " 'solver': ['newton-cg', 'sag', 'lbfgs']})" ] }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ "logistic= GridSearchCV(l_reg, parameters)\n", "logistic.fit(X_res, y_res)\n" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'penalty': 'l2', 'solver': 'newton-cg'}" ] }, "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# obtaining best parameters\n", "logistic.best_params_" ] }, { "cell_type": "code", "execution_count": 66, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "LogisticRegression(solver='newton-cg')" ] }, "execution_count": 66, "metadata": {}, "output_type": "execute_result" } ], "source": [ "logistic_reg = LogisticRegression(penalty = 'l2',solver='newton-cg')\n", "logistic_reg.fit(X_res, y_res)" ] }, { "cell_type": "code", "execution_count": 67, "metadata": {}, "outputs": [], "source": [ "y_pred=logistic_reg.predict(X_test)" ] }, { "cell_type": "code", "execution_count": 68, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[10597, 332],\n", " [ 825, 599]])" ] }, "execution_count": 68, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.metrics import confusion_matrix\n", "confusion_matrix(y_test,y_pred)" ] }, { "cell_type": "code", "execution_count": 69, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.9063385412450417" ] }, "execution_count": 69, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# accuracy score\n", "from sklearn.metrics import accuracy_score\n", "accuracy_score(y_test,y_pred)" ] }, { "cell_type": "code", "execution_count": 70, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " precision recall f1-score support\n", "\n", " 0 0.93 0.97 0.95 10929\n", " 1 0.64 0.42 0.51 1424\n", "\n", " accuracy 0.91 12353\n", " macro avg 0.79 0.70 0.73 12353\n", "weighted avg 0.89 0.91 0.90 12353\n", "\n" ] } ], "source": [ "from sklearn.metrics import classification_report\n", "print(classification_report(y_test,y_pred))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2.3 Ridge classifier" ] }, { "cell_type": "code", "execution_count": 71, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "GridSearchCV(estimator=RidgeClassifier(),\n", " param_grid={'alpha': [1, 4, 4.9, 4.8, 4.7, 4.75, 5, 5.5, 10, 20]})" ] }, "execution_count": 71, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.linear_model import RidgeClassifier\n", "ridge = RidgeClassifier()\n", "parameters = {'alpha': [ 1,4,4.9,4.8,4.7,4.75, 5, 5.5,10, 20]}\n", "ridge_clr = GridSearchCV(ridge, parameters)\n", "ridge_clr.fit(X_res, y_res)" ] }, { "cell_type": "code", "execution_count": 51, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'alpha': 4.7}" ] }, "execution_count": 51, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ridge_clr.best_params_" ] }, { "cell_type": "code", "execution_count": 72, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "RidgeClassifier(alpha=4.7)" ] }, "execution_count": 72, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ridge_classifier=RidgeClassifier(alpha=4.7)\n", "ridge_classifier.fit(X_res, y_res)" ] }, { "cell_type": "code", "execution_count": 73, "metadata": {}, "outputs": [], "source": [ "y_pred=ridge_classifier.predict(X_test)" ] }, { "cell_type": "code", "execution_count": 74, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[10634, 295],\n", " [ 869, 555]])" ] }, "execution_count": 74, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.metrics import confusion_matrix\n", "confusion_matrix(y_test,y_pred)" ] }, { "cell_type": "code", "execution_count": 75, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.9057718772767749" ] }, "execution_count": 75, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.metrics import accuracy_score\n", "accuracy_score(y_test,y_pred)" ] }, { "cell_type": "code", "execution_count": 76, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " precision recall f1-score support\n", "\n", " 0 0.92 0.97 0.95 10929\n", " 1 0.65 0.39 0.49 1424\n", "\n", " accuracy 0.91 12353\n", " macro avg 0.79 0.68 0.72 12353\n", "weighted avg 0.89 0.91 0.90 12353\n", "\n" ] } ], "source": [ "from sklearn.metrics import classification_report\n", "print(classification_report(y_test,y_pred))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2.4 RFC" ] }, { "cell_type": "code", "execution_count": 78, "metadata": {}, "outputs": [], "source": [ "from sklearn.ensemble import RandomForestClassifier\n", "cls=RandomForestClassifier()" ] }, { "cell_type": "code", "execution_count": 57, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "GridSearchCV(estimator=RandomForestClassifier(max_depth=10,\n", " max_features='sqrt'),\n", " param_grid={'criterion': ['gini', 'entropy'],\n", " 'max_depth': [3, 5, 10],\n", " 'max_features': ['log2', 'sqrt'],\n", " 'n_estimators': [98, 100]})" ] }, "execution_count": 57, "metadata": {}, "output_type": "execute_result" } ], "source": [ "n_estimators=[98,100] \n", "criterion=['gini','entropy'] \n", "max_depth=[3,5,10] \n", "max_features =[\"log2\",\"sqrt\"]\n", "parameters={'n_estimators': n_estimators,'criterion':criterion,'max_features':max_features,'max_depth':max_depth} #this will undergo 4*2*3 = 24 iterations\n", "RFC_cls = GridSearchCV(cls, parameters)\n", "RFC_cls.fit(X_res,y_res)" ] }, { "cell_type": "code", "execution_count": 58, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'criterion': 'entropy',\n", " 'max_depth': 10,\n", " 'max_features': 'log2',\n", " 'n_estimators': 100}" ] }, "execution_count": 58, "metadata": {}, "output_type": "execute_result" } ], "source": [ "RFC_cls.best_params_" ] }, { "cell_type": "code", "execution_count": 84, "metadata": {}, "outputs": [], "source": [ "rfc=RandomForestClassifier(n_estimators=100,criterion='entropy',max_depth=10,max_features='log2')" ] }, { "cell_type": "code", "execution_count": 85, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "RandomForestClassifier(criterion='entropy', max_depth=10, max_features='log2')" ] }, "execution_count": 85, "metadata": {}, "output_type": "execute_result" } ], "source": [ "rfc.fit(X_res,y_res)" ] }, { "cell_type": "code", "execution_count": 86, "metadata": {}, "outputs": [], "source": [ "y_pred=rfc.predict(X_test)" ] }, { "cell_type": "code", "execution_count": 87, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.8877195822877034" ] }, "execution_count": 87, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#accuracy score\n", "accuracy_score(y_test,y_pred)" ] }, { "cell_type": "code", "execution_count": 88, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " precision recall f1-score support\n", "\n", " 0 0.96 0.91 0.93 10929\n", " 1 0.51 0.70 0.59 1424\n", "\n", " accuracy 0.89 12353\n", " macro avg 0.73 0.81 0.76 12353\n", "weighted avg 0.91 0.89 0.90 12353\n", "\n" ] } ], "source": [ "\n", "print(classification_report(y_test,y_pred))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2.5 SVC" ] }, { "cell_type": "code", "execution_count": 55, "metadata": {}, "outputs": [], "source": [ "from sklearn.svm import SVC \n", "sv=SVC()" ] }, { "cell_type": "code", "execution_count": 92, "metadata": {}, "outputs": [], "source": [ "parameters = {'kernel':['linear','poly']}" ] }, { "cell_type": "code", "execution_count": 94, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "GridSearchCV(estimator=SVC(), param_grid={'kernel': ['linear', 'poly']})" ] }, "execution_count": 94, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sv_c=GridSearchCV(sv, parameters)\n", "sv_c.fit(X_res, y_res)" ] }, { "cell_type": "code", "execution_count": 56, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'kernel': 'linear'}" ] }, "execution_count": 56, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sv_c.best_params_" ] }, { "cell_type": "code", "execution_count": 56, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "SVC(kernel='linear')" ] }, "execution_count": 56, "metadata": {}, "output_type": "execute_result" } ], "source": [ "svclassifier=SVC(kernel='linear')\n", "svclassifier.fit(X_res,y_res)" ] }, { "cell_type": "code", "execution_count": 57, "metadata": {}, "outputs": [], "source": [ "ypred=svclassifier.predict(X_test)" ] }, { "cell_type": "code", "execution_count": 58, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.9013195175261071" ] }, "execution_count": 58, "metadata": {}, "output_type": "execute_result" } ], "source": [ "accuracy_score(y_test,ypred)" ] }, { "cell_type": "code", "execution_count": 59, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " precision recall f1-score support\n", "\n", " 0 0.92 0.97 0.95 10929\n", " 1 0.61 0.39 0.48 1424\n", "\n", " accuracy 0.90 12353\n", " macro avg 0.77 0.68 0.71 12353\n", "weighted avg 0.89 0.90 0.89 12353\n", "\n" ] } ], "source": [ "from sklearn.metrics import classification_report\n", "print(classification_report(y_test,ypred))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2.6 XGBoost" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [], "source": [ "import xgboost as xgb\n", "xg_cl = xgb.XGBClassifier()\n" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "GridSearchCV(estimator=XGBClassifier(base_score=None, booster=None,\n", " colsample_bylevel=None,\n", " colsample_bynode=None,\n", " colsample_bytree=None, gamma=None,\n", " gpu_id=None, importance_type='gain',\n", " interaction_constraints=None,\n", " learning_rate=None, max_delta_step=None,\n", " max_depth=None, min_child_weight=None,\n", " missing=nan, monotone_constraints=None,\n", " n_estimators=100, n_jobs=None,\n", " num_parallel_tree=None, random_state=None,\n", " reg_alpha=None, reg_lambda=None,\n", " scale_pos_weight=None, subsample=None,\n", " tree_method=None, validate_parameters=None,\n", " verbosity=None),\n", " param_grid={'gamma': [0, 0.001, 0.01, 0.001, 0.01, 0.1],\n", " 'max_depth': [3, 5, 10]})" ] }, "execution_count": 46, "metadata": {}, "output_type": "execute_result" } ], "source": [ "max_depth=[3,5,10]\n", "gamma=[0,1e-3,1e-2,1e-3,1e-2,0.1]\n", "parameters={'gamma':gamma,'max_depth':max_depth}\n", "xg=GridSearchCV(xg_cl, parameters)\n", "xg.fit(X_res, y_res)" ] }, { "cell_type": "code", "execution_count": 47, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'gamma': 0, 'max_depth': 10}" ] }, "execution_count": 47, "metadata": {}, "output_type": "execute_result" } ], "source": [ "xg.best_params_" ] }, { "cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,\n", " colsample_bynode=1, colsample_bytree=1, gamma=0, gpu_id=-1,\n", " importance_type='gain', interaction_constraints='',\n", " learning_rate=0.300000012, max_delta_step=0, max_depth=10,\n", " min_child_weight=1, missing=nan, monotone_constraints='()',\n", " n_estimators=100, n_jobs=0, num_parallel_tree=1, random_state=0,\n", " reg_alpha=0, reg_lambda=1, scale_pos_weight=1, subsample=1,\n", " tree_method='exact', validate_parameters=1, verbosity=None)" ] }, "execution_count": 49, "metadata": {}, "output_type": "execute_result" } ], "source": [ "xgboost=xgb.XGBClassifier(gamma=0,max_depth=10)\n", "xgboost.fit(X_res,y_res)" ] }, { "cell_type": "code", "execution_count": 50, "metadata": {}, "outputs": [], "source": [ "ypred=xgboost.predict(X_test)" ] }, { "cell_type": "code", "execution_count": 52, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.9027766534445074" ] }, "execution_count": 52, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.metrics import accuracy_score\n", "accuracy_score(y_test,ypred)" ] }, { "cell_type": "code", "execution_count": 54, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " precision recall f1-score support\n", "\n", " 0 0.94 0.95 0.95 10929\n", " 1 0.59 0.54 0.56 1424\n", "\n", " accuracy 0.90 12353\n", " macro avg 0.76 0.74 0.75 12353\n", "weighted avg 0.90 0.90 0.90 12353\n", "\n" ] } ], "source": [ "from sklearn.metrics import classification_report\n", "print(classification_report(y_test,ypred))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.9" } }, "nbformat": 4, "nbformat_minor": 4 }