{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Adaptive PDE discretizations on Cartesian grids\n", "## Volume : Algorithmic tools\n", "## Part : Tensor decomposition techniques\n", "## Chapter : Voronoi's reduction, in dimension 4 and 5\n", "\n", "\n", "This notebook presents some tensor decomposition techniques that are at the foundation of our anisotropic PDE discretizations on cartesian grids. The general objective is to express a given symmetric positive definite (SPD) matrix $D$ under the form\n", "$$\n", " D = \\sum_{0 \\leq i < I} \\lambda_i e_i e_i^T,\n", "$$\n", "where $\\lambda_i \\geq 0$ is a non-negative weight, and $e_i \\in Z^d$ is an integral offset.\n", "This decomposition is a starting point for the design of various numerical schemes, for both first order and second order, linear and non-linear PDEs, which will be discussed in the subsequent notebooks.\n", "\n", "The techniques used for constructing the above decomposition are non-trivial, related to classical yet subtle tools of discrete geometry. In this notebook, we however insist more on their properties \n", "\n", "This notebook is devoted to the decomposition of SPD tensors of size $d \\times d$, where the dimension $d\\in \\{4,5\\}$. A simpler set of techniques applies in dimension $d \\in \\{2,3\\}$, see the notebook [I Tensor decomposition, dimensions 2 and 3](http://nbviewer.jupyter.org/urls/rawgithub.com/Mirebeau/AdaptiveGridDiscretizations/master/Notebooks/TensorSelling.ipynb)\n", "\n", "**Acknowledgement.** \n", "\n", "The experiments presented in this notebook are part of ongoing research, with PhD student Guillaume Bonnet, in co-direction with [Frederic Bonnans](http://www.cmap.polytechnique.fr/~bonnans/).\n", "\n", "\n", "**References.**\n", "\n", "The tensor decomposition presented in this notebook is a central ingredient of the following paper:\n", "\n", "Mirebeau, J.-M. (2017, April 12). Riemannian fast-marching on cartesian grids using Voronoi's first reduction of quadratic forms. HAL (Preprint)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "[**Summary**](Summary.ipynb) of volume Algorithmic tools, this series of notebooks.\n", "\n", "[**Main summary**](../Summary.ipynb) of the Adaptive Grid Discretizations \n", "\tbook of notebooks, including the other volumes.\n", "\n", "# Table of contents\n", " * [1. Computing the decomposition of a tensor](#1.-Computing-the-decomposition-of-a-tensor)\n", " * [1.1 Case of a $4 \\times 4$ tensor](#1.1-Case-of-a--$4-\\times-4$-tensor)\n", " * [1.2 Case of a $5\\times 5$ tensor](#1.2-Case-of-a-$5\\times-5$-tensor)\n", " * [1.3 A field of tensors](#1.3-A-field-of-tensors)\n", " * [2. Under the hood: Voronoi's first reduction of tensors.](#2.-Under-the-hood:-Voronoi's-first-reduction-of-tensors.)\n", " * [2.1 Comparing the objective function](#2.1-Comparing-the-objective-function)\n", " * [2.2 Non-uniqueness of the maximizer](#2.2-Non-uniqueness-of-the-maximizer)\n", " * [3. Properties of Voronoi's reduction](#3.-Properties-of-Voronoi's-reduction)\n", " * [3.1 Smallness of the offsets](#3.1-Smallness-of-the-offsets)\n", " * [3.2 Stability](#3.2-Stability)\n", " * [3.3 Spanning, of the lattice $Z^d$ by the tensor decomposition offsets.](#3.3-Spanning,-of-the-lattice-$Z^d$-by-the-tensor-decomposition-offsets.)\n", "\n", "\n", "\n", "**Acknowledgement.** Some of the experiments presented in these notebooks are part of \n", "ongoing research with Ludovic Métivier and Da Chen.\n", "\n", "Copyright Jean-Marie Mirebeau, Centre Borelli, ENS Paris-Saclay, CNRS, University Paris-Saclay" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 0. Importing the required libraries" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:17.917157Z", "iopub.status.busy": "2024-04-30T08:46:17.916832Z", "iopub.status.idle": "2024-04-30T08:46:17.927022Z", "shell.execute_reply": "2024-04-30T08:46:17.926580Z" } }, "outputs": [], "source": [ "import sys; sys.path.insert(0,\"..\") # Allow import of agd from parent directory (useless if conda package installed)\n", "#from Miscellaneous import TocTools; TocTools.displayTOC('TensorVoronoi','Algo')" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:17.929534Z", "iopub.status.busy": "2024-04-30T08:46:17.929307Z", "iopub.status.idle": "2024-04-30T08:46:18.144797Z", "shell.execute_reply": "2024-04-30T08:46:18.144509Z" } }, "outputs": [], "source": [ "from agd import LinearParallel as lp\n", "from agd.Selling import GatherByOffset\n", "from agd.Plotting import savefig; #savefig.dirName = 'Figures/TensorVoronoi'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The routines for tensor decomposition are for efficiency purposes provided in a small c++ library, named FileVDQ where VDQ stands for \"Voronoi Decomposition of Quadratic forms\". This is in contrast with the two and three dimensional cases, where the decomposition algorithm is coded in Python (the c++ library can also be used in smaller dimensions). A function named `VoronoiDecomposition` provides the interface." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.146468Z", "iopub.status.busy": "2024-04-30T08:46:18.146346Z", "iopub.status.idle": "2024-04-30T08:46:18.184528Z", "shell.execute_reply": "2024-04-30T08:46:18.184106Z" } }, "outputs": [], "source": [ "from agd.Eikonal import VoronoiDecomposition" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.186180Z", "iopub.status.busy": "2024-04-30T08:46:18.186094Z", "iopub.status.idle": "2024-04-30T08:46:18.191289Z", "shell.execute_reply": "2024-04-30T08:46:18.191019Z" } }, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 0.1 Optional configuration\n", "\n", "Uncomment the following line to use the GPU implementation of Voronoi's decomposition." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.192829Z", "iopub.status.busy": "2024-04-30T08:46:18.192734Z", "iopub.status.idle": "2024-04-30T08:46:18.194236Z", "shell.execute_reply": "2024-04-30T08:46:18.193984Z" }, "tags": [ "EikonalGPU_config" ] }, "outputs": [], "source": [ "#VoronoiDecomposition.default_mode = 'gpu_transfer'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1. Computing the decomposition of a tensor\n", "\n", "We illustrate our tensor decomposition method on random positive definite matrices, of the form \n", "$$\n", " D = A^T A,\n", "$$\n", "where $A$ is a square matrix with random coefficients w.r.t. the Gaussian normal law." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.195562Z", "iopub.status.busy": "2024-04-30T08:46:18.195481Z", "iopub.status.idle": "2024-04-30T08:46:18.197175Z", "shell.execute_reply": "2024-04-30T08:46:18.196925Z" } }, "outputs": [], "source": [ "def MakeRandomTensor(dim,shape = tuple()):\n", " A = np.random.standard_normal( (dim,dim) + shape )\n", " return lp.dot_AA(lp.transpose(A),A)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.198458Z", "iopub.status.busy": "2024-04-30T08:46:18.198377Z", "iopub.status.idle": "2024-04-30T08:46:18.199820Z", "shell.execute_reply": "2024-04-30T08:46:18.199589Z" } }, "outputs": [], "source": [ "# For reproducibility, we fix the random seed\n", "np.random.seed(42) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The inserse operation to tensor decomposition is, of course, reconstruction, defined by \n", "$$\n", " (\\lambda_i, e_i)_{i=1}^I \\mapsto D = \\sum_{1 \\leq i \\leq I} \\lambda_i e_i e_i^T\n", "$$" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.201166Z", "iopub.status.busy": "2024-04-30T08:46:18.201067Z", "iopub.status.idle": "2024-04-30T08:46:18.202750Z", "shell.execute_reply": "2024-04-30T08:46:18.202500Z" } }, "outputs": [], "source": [ "def Reconstruct(coefs,offsets):\n", " return lp.mult(coefs,lp.outer_self(offsets)).sum(2)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.204014Z", "iopub.status.busy": "2024-04-30T08:46:18.203937Z", "iopub.status.idle": "2024-04-30T08:46:18.205608Z", "shell.execute_reply": "2024-04-30T08:46:18.205368Z" } }, "outputs": [], "source": [ "def LInfNorm(a):\n", " return np.max(np.abs(a))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1.1 Case of a $4 \\times 4$ tensor" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.206914Z", "iopub.status.busy": "2024-04-30T08:46:18.206836Z", "iopub.status.idle": "2024-04-30T08:46:18.208599Z", "shell.execute_reply": "2024-04-30T08:46:18.208378Z" } }, "outputs": [], "source": [ "D4 = MakeRandomTensor(4)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.209864Z", "iopub.status.busy": "2024-04-30T08:46:18.209785Z", "iopub.status.idle": "2024-04-30T08:46:18.211699Z", "shell.execute_reply": "2024-04-30T08:46:18.211468Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 0.58050469 -0.73151355 -0.24786425 0.65940888]\n", " [-0.73151355 4.02894983 2.589515 0.43286178]\n", " [-0.24786425 2.589515 6.10351105 3.38411893]\n", " [ 0.65940888 0.43286178 3.38411893 3.44164748]]\n" ] } ], "source": [ "print(D4)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.213046Z", "iopub.status.busy": "2024-04-30T08:46:18.212964Z", "iopub.status.idle": "2024-04-30T08:46:18.225870Z", "shell.execute_reply": "2024-04-30T08:46:18.225468Z" } }, "outputs": [], "source": [ "coefs,offsets = VoronoiDecomposition(D4)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Our decomposition, of a $4 \\times 4$ SPD tensor, involves either $10$ or $12$ coefficients and offsets. \n", "If the tensor is randomly generated, then each possibility arises with positive probability, in approximately half the cases.\n", "\n", "For uniformity of the data structures, we always return $12$ coefficients and offsets, but the last two are often zero." ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.227613Z", "iopub.status.busy": "2024-04-30T08:46:18.227438Z", "iopub.status.idle": "2024-04-30T08:46:18.229978Z", "shell.execute_reply": "2024-04-30T08:46:18.229711Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Coefficients : [1.73966329 0.06642844 0.15724673 0.18106995 0.16328382 0.00623787\n", " 1.38738859 0.93488664 0.00623787 0.27498616 0.302155 0.00623787]\n", "Offsets : \n", " [[ 0 1 1 1 1 1 0 0 0 0 0 1]\n", " [ 1 -1 -2 -1 -1 0 0 1 1 0 1 -1]\n", " [ 0 1 -1 0 -1 1 1 2 1 1 1 0]\n", " [ 0 2 1 1 1 2 1 1 0 0 1 2]]\n" ] } ], "source": [ "print(\"Coefficients : \", coefs)\n", "print(\"Offsets : \\n\", offsets.astype(int))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "By design, the coefficients are non-negative, and the reconstruction is exact up to numerical precision." ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.231585Z", "iopub.status.busy": "2024-04-30T08:46:18.231463Z", "iopub.status.idle": "2024-04-30T08:46:18.233853Z", "shell.execute_reply": "2024-04-30T08:46:18.233583Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Minimal coefficient : 0.006237872725368132\n", "Reconstruction error : 8.881784197001252e-16\n" ] } ], "source": [ "print(\"Minimal coefficient : \", np.min(coefs))\n", "print(\"Reconstruction error : \", LInfNorm(D4-Reconstruct(coefs,offsets)))\n", "assert np.allclose(D4,Reconstruct(coefs,offsets))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Drawing another tensor at random, we observe only $10$ non-zero coefficients and offsets." ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.235467Z", "iopub.status.busy": "2024-04-30T08:46:18.235250Z", "iopub.status.idle": "2024-04-30T08:46:18.237554Z", "shell.execute_reply": "2024-04-30T08:46:18.237181Z" } }, "outputs": [], "source": [ "MakeRandomTensor(4), MakeRandomTensor(4); # Please do not comment" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.239243Z", "iopub.status.busy": "2024-04-30T08:46:18.239104Z", "iopub.status.idle": "2024-04-30T08:46:18.247864Z", "shell.execute_reply": "2024-04-30T08:46:18.247555Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Coefficients : [0.07072164 0.67380855 0.17172141 0.01978496 0.18202013 2.27992042\n", " 0.00239801 0.33441994 0.49956443 1.96547794 0. 0. ]\n", "Offsets : \n", " [[ 0 1 0 0 0 0 1 1 1 0 0 0]\n", " [ 2 -1 1 1 1 1 1 0 0 0 0 0]\n", " [ 0 0 0 -1 1 0 0 -1 0 1 0 0]\n", " [ 1 -1 1 0 1 0 0 -1 0 1 0 0]]\n" ] } ], "source": [ "D4b= MakeRandomTensor(4)\n", "coefs,offsets = VoronoiDecomposition(D4b)\n", "print(\"Coefficients : \", coefs)\n", "print(\"Offsets : \\n\", offsets.astype(int))" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.249478Z", "iopub.status.busy": "2024-04-30T08:46:18.249354Z", "iopub.status.idle": "2024-04-30T08:46:18.251368Z", "shell.execute_reply": "2024-04-30T08:46:18.251128Z" } }, "outputs": [], "source": [ "assert np.allclose(D4b,Reconstruct(coefs,offsets))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1.2 Case of a $5\\times 5$ tensor" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.252892Z", "iopub.status.busy": "2024-04-30T08:46:18.252685Z", "iopub.status.idle": "2024-04-30T08:46:18.254402Z", "shell.execute_reply": "2024-04-30T08:46:18.254165Z" } }, "outputs": [], "source": [ "D5 = MakeRandomTensor(5)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.255670Z", "iopub.status.busy": "2024-04-30T08:46:18.255567Z", "iopub.status.idle": "2024-04-30T08:46:18.257444Z", "shell.execute_reply": "2024-04-30T08:46:18.257208Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 1.25435342e+01 -4.42058086e-01 -2.72865159e+00 -1.58137791e+00\n", " 5.02471743e-01]\n", " [-4.42058086e-01 2.94553339e+00 -8.03620276e-03 6.12724263e-01\n", " 1.51099932e+00]\n", " [-2.72865159e+00 -8.03620276e-03 3.34380956e+00 6.75320007e-01\n", " 1.71840079e+00]\n", " [-1.58137791e+00 6.12724263e-01 6.75320007e-01 3.39001528e+00\n", " -6.60686207e-01]\n", " [ 5.02471743e-01 1.51099932e+00 1.71840079e+00 -6.60686207e-01\n", " 3.13656032e+00]]\n" ] } ], "source": [ "print(D5)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.258712Z", "iopub.status.busy": "2024-04-30T08:46:18.258631Z", "iopub.status.idle": "2024-04-30T08:46:18.265389Z", "shell.execute_reply": "2024-04-30T08:46:18.265020Z" } }, "outputs": [], "source": [ "coefs,offsets = VoronoiDecomposition(D5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Our decomposition of $5 \\times 5$ SPD tensors always involves $15$ coefficients and offsets. (Some coefficients may vanish but, contrary to the four dimensional case, this occurs with probability zero.)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.267015Z", "iopub.status.busy": "2024-04-30T08:46:18.266926Z", "iopub.status.idle": "2024-04-30T08:46:18.269245Z", "shell.execute_reply": "2024-04-30T08:46:18.268977Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Coefficients : [0.9851582 5.91306866 0.16216179 0.16119026 0.54030804 1.33730873\n", " 0.8835638 0.80238202 0.24029056 0.09283979 0.10087599 0.28825227\n", " 0.34849989 0.5609605 0.37243394]\n", "Offsets : \n", " [[ 1 1 0 2 0 0 1 1 1 1 1 1 1 2 0]\n", " [-1 0 1 0 0 0 1 0 0 -1 1 0 -1 0 1]\n", " [ 0 0 0 -1 0 1 0 -1 0 -1 -1 -1 0 -1 0]\n", " [-1 0 0 -1 1 0 0 -1 1 0 0 1 0 0 -1]\n", " [ 0 0 1 0 0 1 1 0 0 -1 0 -1 0 0 1]]\n" ] } ], "source": [ "print(\"Coefficients : \", coefs)\n", "print(\"Offsets : \\n\", offsets.astype(int))" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.270534Z", "iopub.status.busy": "2024-04-30T08:46:18.270433Z", "iopub.status.idle": "2024-04-30T08:46:18.272322Z", "shell.execute_reply": "2024-04-30T08:46:18.272094Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Minimal coefficient : 0.09283978602904733\n", "Reconstruction error : 1.7763568394002505e-15\n" ] } ], "source": [ "print(\"Minimal coefficient : \", np.min(coefs))\n", "print(\"Reconstruction error : \", LInfNorm(D5-Reconstruct(coefs,offsets)))" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.273550Z", "iopub.status.busy": "2024-04-30T08:46:18.273457Z", "iopub.status.idle": "2024-04-30T08:46:18.275084Z", "shell.execute_reply": "2024-04-30T08:46:18.274862Z" } }, "outputs": [], "source": [ "assert np.allclose(D5,Reconstruct(coefs,offsets),atol=1e-5) # atol is for float32" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1.3 A field of tensors\n", "\n", "When provided with a numerical array shaped as $(d,d,n)$, or $(d,d,n_1,\\cdots,n_d)$, our tensor decomposition routine automatically threads over the inner dimensions $n$ or $n_1,\\cdots, n_d$.\n", "\n", "" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.276327Z", "iopub.status.busy": "2024-04-30T08:46:18.276234Z", "iopub.status.idle": "2024-04-30T08:46:18.277902Z", "shell.execute_reply": "2024-04-30T08:46:18.277699Z" } }, "outputs": [], "source": [ "D4_field = MakeRandomTensor(4,(10,))\n", "# Alternatively\n", "#D4_field = MakeRandomTensor(4,(2,2,2,2))\n", "#D5_field = MakeRandomTensor(4,(2,2,2,2,2))" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.279194Z", "iopub.status.busy": "2024-04-30T08:46:18.279112Z", "iopub.status.idle": "2024-04-30T08:46:18.286356Z", "shell.execute_reply": "2024-04-30T08:46:18.285975Z" } }, "outputs": [], "source": [ "coefs,offsets = VoronoiDecomposition(D4_field)" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.287906Z", "iopub.status.busy": "2024-04-30T08:46:18.287820Z", "iopub.status.idle": "2024-04-30T08:46:18.289921Z", "shell.execute_reply": "2024-04-30T08:46:18.289702Z" } }, "outputs": [], "source": [ "assert np.allclose(D4_field,Reconstruct(coefs,offsets))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2. Under the hood: Voronoi's first reduction of tensors.\n", "\n", "The tensor decompositions computed in this notebook are the result of a linear program, which is well known in the field of lattice geometry (a subfield of discrete computational geometry).\n", "The dual to this linear program is often referred to as Voronoi's first reduction. \n", "\n", "In detail, the decomposition of a tensor $D$ proceeeds by maximizing the sum of the weights\n", "$$\n", " \\text{maximize} \\quad \n", " \\sum_{1 \\leq i \\leq I} \\lambda_i,\n", "$$\n", "while the constraints enforce that the decomposition is valid\n", "$$\n", " \\text{subject to} \\quad \n", " \\lambda_i \\geq 0, \\quad \n", " e_i \\in Z^d, \\quad\n", " \\text{and} \\quad\n", " \\sum_{1 \\leq i \\leq I} \\lambda_i e_i e_i^T = D.\n", "$$\n", "Note that the vectors $e_i \\in Z^d$ are not fixed a-priori, and that $I$ is not bounded a-priori, hence that optimization problem is strictly speaking infinite dimensional.\n", "\n", "Two motivations can be invoqued to justify the choice of objective function, which is the sum of the decomposition coefficients. Indeed, this approach:\n", "* Promotes small offsets. This is clear in view of the trace identity\n", "$$\n", " \\mathrm{Tr}(D) = \\sum_{1 \\leq i \\leq I} \\lambda_i \\|e_i\\|^2,\n", "$$\n", "which relate the coefficients magnitudes with the offsets norms.\n", "* Is highly symmetrical, allowing for efficient implementations. The numerical cost of our optimized implementation is expected to be low enough to compute one such decomposition for each point of the discretization grid of a PDE.\n", "\n", "It can be shown that Voronoi's first reduction, the above linear program, has at least one solution for each positive definite symmetric matrix $D$. \n", "Interestingly however, the solution may not be unique, so that a selection principle becomes necessary. More precisely:\n", "* In dimension $2$ and $3$, the linear program actually always has a unique solution, which can also be computed using Selling's algorithm, see the relevant notebook [I Tensor decomposition, dimensions 2 and 3](http://nbviewer.jupyter.org/urls/rawgithub.com/Mirebeau/HFM_Python_Notebooks/master/TensorSelling.ipynb).\n", "* In dimension $4$, the linear program either has a unique solution, or a set of solutions that forms a triangle (equilateral) in the coefficients space. In the latter case, the triangle barycenter is returned.\n", "* In dimension $5$, the linear program often has a $5$ dimensional set of solutions, forming a convex polyhedron. A vertex of this polyhedron is selected, in a consistent manner so as to ensure the continuity of the coefficients. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2.1 Comparing the objective function\n", "\n", "We empirically check, on a random example, that our tensor decomposition yields a large sum of coefficients.\n", "\n", "For that purpose, we generate a matrix $D = \\sum_{i=1}^I \\lambda_i e_i e_i^T$ by drawing randomly the weights \n", "$(\\lambda_i)$ and offsets $e_i$." ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.291264Z", "iopub.status.busy": "2024-04-30T08:46:18.291173Z", "iopub.status.idle": "2024-04-30T08:46:18.292951Z", "shell.execute_reply": "2024-04-30T08:46:18.292745Z" } }, "outputs": [], "source": [ "coefs = np.random.standard_normal(15)**2\n", "offsets = np.random.uniform(-5,5,(5,15)).astype(int)" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.294265Z", "iopub.status.busy": "2024-04-30T08:46:18.294189Z", "iopub.status.idle": "2024-04-30T08:46:18.296112Z", "shell.execute_reply": "2024-04-30T08:46:18.295877Z" } }, "outputs": [], "source": [ "D5b = Reconstruct(coefs,offsets)" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.297422Z", "iopub.status.busy": "2024-04-30T08:46:18.297330Z", "iopub.status.idle": "2024-04-30T08:46:18.299459Z", "shell.execute_reply": "2024-04-30T08:46:18.299200Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Sum of coefficients : 26.029629166601506\n", "Coefficients : [1.64010186e-01 1.58982835e+00 8.42470554e-01 4.50354692e+00\n", " 1.06598451e+00 2.30848509e+00 2.34482637e-01 1.60506386e+00\n", " 5.00796073e-01 1.96975685e-01 6.00057917e-01 8.59200099e-01\n", " 3.54326801e-03 1.05058140e+01 1.04937004e+00]\n", "Offsets ; \n", " [[-3 0 -1 1 1 -4 -1 1 0 3 1 -3 -4 1 -4]\n", " [ 0 4 0 -1 1 0 0 4 -1 4 4 -3 -4 -3 -4]\n", " [-4 1 -4 -1 3 -4 3 -2 -3 1 1 3 2 3 -2]\n", " [-3 2 3 4 0 -1 2 -1 4 3 0 2 2 -3 4]\n", " [ 0 3 -1 3 -1 -4 4 -4 -1 4 4 0 1 0 -2]]\n" ] } ], "source": [ "print(\"Sum of coefficients : \", np.sum(coefs))\n", "print(\"Coefficients : \", coefs)\n", "print(\"Offsets ; \\n\", offsets)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Our tensor decomposition yields, as expected, a larger sum of coefficients." ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.300779Z", "iopub.status.busy": "2024-04-30T08:46:18.300702Z", "iopub.status.idle": "2024-04-30T08:46:18.307981Z", "shell.execute_reply": "2024-04-30T08:46:18.307624Z" } }, "outputs": [], "source": [ "coefs,offsets = VoronoiDecomposition(D5b)" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.309410Z", "iopub.status.busy": "2024-04-30T08:46:18.309320Z", "iopub.status.idle": "2024-04-30T08:46:18.311682Z", "shell.execute_reply": "2024-04-30T08:46:18.311462Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Sum of new coefficients 411.51346376975914\n", "Coefficients : [ 0.45441405 42.80148792 3.89099871 80.67126692 10.11443835\n", " 2.63908912 0.35419077 26.78412094 23.91171188 17.48091081\n", " 7.15102796 10.27693749 61.22356591 100.25658831 23.50271461]\n", "Offsets ; \n", " [[ 1 1 0 0 1 1 1 0 0 1 0 1 0 0 0]\n", " [ 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0]\n", " [ 0 1 0 0 1 0 0 -1 0 1 1 0 -1 0 1]\n", " [ 0 0 0 1 -1 0 0 0 1 -1 0 0 1 0 -1]\n", " [ 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0]]\n" ] } ], "source": [ "print(\"Sum of new coefficients\", np.sum(coefs))\n", "print(\"Coefficients : \", coefs)\n", "print(\"Offsets ; \\n\", offsets.astype(int))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this second example, we expose the non-linearity of our tensor decomposition by comparing:\n", "* The average of the decompositions of two tensors.\n", "* The decomposition of the average tensor." ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.313049Z", "iopub.status.busy": "2024-04-30T08:46:18.312953Z", "iopub.status.idle": "2024-04-30T08:46:18.328241Z", "shell.execute_reply": "2024-04-30T08:46:18.327938Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Sum of coefficients, average decomposition : 5.712829835862355\n", "Sum of coefficients, decomposition of the average : 7.5782526717648695\n" ] } ], "source": [ "coefs0,_ = VoronoiDecomposition(D4)\n", "coefs1,_ = VoronoiDecomposition(D4b)\n", "coefs01,_ = VoronoiDecomposition(D4+D4b)\n", "print(\"Sum of coefficients, average decomposition : \", 0.5*(np.sum(coefs0)+np.sum(coefs1)))\n", "print(\"Sum of coefficients, decomposition of the average : \", 0.5*np.sum(coefs01))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2.2 Non-uniqueness of the maximizer\n", "\n", "We illustrate a case where a tensor $D$ admits several optimal decompositions, all maximizing the coefficients sum.\n", "The specific example chosen is also interesting from the point of view of the spanning property, discussed in the next section.\n", "\n", "Note that the choice of theses offsets is very specific, coming from a fine theoretical description of Voronoi's first reduction, the associated *perfect forms*, and their minimal vectors." ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.329837Z", "iopub.status.busy": "2024-04-30T08:46:18.329722Z", "iopub.status.idle": "2024-04-30T08:46:18.331834Z", "shell.execute_reply": "2024-04-30T08:46:18.331577Z" } }, "outputs": [], "source": [ "coefs_NonUnique = np.array([1,1,1,1])\n", "offsets_NonUnique = np.transpose(np.array([[0,0,1,0],[0,1,0,-1],[1,-1,0,0],[1,0,-1,1]]))" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.333143Z", "iopub.status.busy": "2024-04-30T08:46:18.333047Z", "iopub.status.idle": "2024-04-30T08:46:18.334834Z", "shell.execute_reply": "2024-04-30T08:46:18.334593Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Sum of coefficients : 4\n" ] } ], "source": [ "print(\"Sum of coefficients : \", np.sum(coefs_NonUnique))" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.336132Z", "iopub.status.busy": "2024-04-30T08:46:18.336029Z", "iopub.status.idle": "2024-04-30T08:46:18.337720Z", "shell.execute_reply": "2024-04-30T08:46:18.337484Z" } }, "outputs": [], "source": [ "D4_NonUnique = Reconstruct(coefs_NonUnique,offsets_NonUnique)" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.338926Z", "iopub.status.busy": "2024-04-30T08:46:18.338834Z", "iopub.status.idle": "2024-04-30T08:46:18.345679Z", "shell.execute_reply": "2024-04-30T08:46:18.345317Z" } }, "outputs": [], "source": [ "coefs,offsets = VoronoiDecomposition(D4_NonUnique)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The tensor decomposition returned by our software is different, but the coefficients sum is no smaller." ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.347187Z", "iopub.status.busy": "2024-04-30T08:46:18.347097Z", "iopub.status.idle": "2024-04-30T08:46:18.349485Z", "shell.execute_reply": "2024-04-30T08:46:18.349242Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Sum of new coefficients : 4.000000000000001\n", "Coefficients : [0.33333333 0.33333333 0.33333333 0.33333333 0.33333333 0.33333333\n", " 0.33333333 0.33333333 0.33333333 0.33333333 0.33333333 0.33333333]\n", "Offsets : \n", " [[ 0 0 0 1 0 0 1 0 1 1 1 1]\n", " [ 0 0 1 0 1 0 0 1 -1 -1 0 -1]\n", " [ 0 1 0 0 0 1 -1 -1 0 0 -1 -1]\n", " [ 1 0 0 0 -1 -1 0 0 0 1 1 1]]\n" ] } ], "source": [ "print(\"Sum of new coefficients : \", np.sum(coefs))\n", "print(\"Coefficients : \", coefs)\n", "print(\"Offsets : \\n\", offsets.astype(int))" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.350723Z", "iopub.status.busy": "2024-04-30T08:46:18.350641Z", "iopub.status.idle": "2024-04-30T08:46:18.352415Z", "shell.execute_reply": "2024-04-30T08:46:18.352199Z" } }, "outputs": [], "source": [ "assert np.allclose(D4_NonUnique, Reconstruct(coefs,offsets) )" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 3. Properties of Voronoi's reduction\n", "\n", "We discuss three properties of the implemented tensor decomposition\n", "$$\n", " D \\mapsto (\\lambda_i, e_i)_{i=1}^I,\n", "$$\n", "which seems to be desirable from the implementation point of view. There properties are\n", "* **Smallness** of the offsets $e_i \\in Z^d$.\n", "* **Stability** of the coefficients $\\lambda_i \\in R$\n", "* **Spanning** of the full lattice $Z^d$, by the offsets $(e_i)_{i=1}^I$. (Not always satisfied if $d=5$.)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 3.1 Smallness of the offsets\n", "\n", "By design, by the choice of the objective function in the underlying linear program, Voronoi's first reduction promotes small offsets in the tensor decompositions produced.\n", "It is also possible to bound the offsets norm in terms of the tensor condition number\n", "$$\n", " \\|e_i\\| \\leq C \\mu(D)^{d-1}\n", "$$\n", "where $\\mu(D) := \\sqrt{\\|D\\| \\|D^{-1}\\|}$ and $C$ is an absolute constant. \n", "\n", "\n", "Note that this theoretical bound is not sharp in dimension $d=3$, in that case one can prove that $\\|e_i\\| \\leq C \\mu(D)$, and may not be sharp either in higher dimension." ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.353766Z", "iopub.status.busy": "2024-04-30T08:46:18.353683Z", "iopub.status.idle": "2024-04-30T08:46:18.355252Z", "shell.execute_reply": "2024-04-30T08:46:18.355032Z" } }, "outputs": [], "source": [ "mu=10" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We generate a SPD tensor with condition number $\\mu$, and compare $\\max_{1 \\leq i \\leq d} \\|e_i\\|$ with $\\mu$. Successively $d=4$ and then $d=5$." ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.356549Z", "iopub.status.busy": "2024-04-30T08:46:18.356451Z", "iopub.status.idle": "2024-04-30T08:46:18.358344Z", "shell.execute_reply": "2024-04-30T08:46:18.358105Z" } }, "outputs": [], "source": [ "v = np.random.standard_normal(4)\n", "v=v/np.linalg.norm(v)\n", "D4_cigar = (mu**2-1)*lp.outer_self(v) + np.eye(4)" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.359775Z", "iopub.status.busy": "2024-04-30T08:46:18.359698Z", "iopub.status.idle": "2024-04-30T08:46:18.366441Z", "shell.execute_reply": "2024-04-30T08:46:18.366067Z" } }, "outputs": [], "source": [ "coefs,offsets = VoronoiDecomposition(D4_cigar)" ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.368058Z", "iopub.status.busy": "2024-04-30T08:46:18.367964Z", "iopub.status.idle": "2024-04-30T08:46:18.370464Z", "shell.execute_reply": "2024-04-30T08:46:18.370238Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "mu : 10\n", "max offset norm : 6.708203932499369\n", "Offsets : \n", " [[ 3 1 2 1 2 1 4 2 3 1 0 0]\n", " [-2 -2 -1 0 -2 -1 -4 -2 -3 -1 0 0]\n", " [ 2 1 1 0 2 1 3 1 2 1 0 0]\n", " [ 1 1 1 0 1 0 2 1 2 1 0 0]]\n" ] } ], "source": [ "print(\"mu : \",mu)\n", "print(\"max offset norm : \",np.max(np.linalg.norm(offsets,axis=0)))\n", "print(\"Offsets : \\n\", offsets.astype(int))" ] }, { "cell_type": "code", "execution_count": 43, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.371744Z", "iopub.status.busy": "2024-04-30T08:46:18.371653Z", "iopub.status.idle": "2024-04-30T08:46:18.373613Z", "shell.execute_reply": "2024-04-30T08:46:18.373356Z" } }, "outputs": [], "source": [ "v = np.random.standard_normal(5)\n", "v=v/np.linalg.norm(v)\n", "D5_cigar = (mu**2-1)*lp.outer_self(v) + np.eye(5)" ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.374835Z", "iopub.status.busy": "2024-04-30T08:46:18.374747Z", "iopub.status.idle": "2024-04-30T08:46:18.381817Z", "shell.execute_reply": "2024-04-30T08:46:18.381466Z" } }, "outputs": [], "source": [ "coefs,offsets = VoronoiDecomposition(D5_cigar)" ] }, { "cell_type": "code", "execution_count": 45, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.383325Z", "iopub.status.busy": "2024-04-30T08:46:18.383219Z", "iopub.status.idle": "2024-04-30T08:46:18.385554Z", "shell.execute_reply": "2024-04-30T08:46:18.385306Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "mu : 10\n", "max offset norm : 6.855654600401044\n", "Offsets : \n", " [[ 1 2 0 2 0 1 1 1 1 0 1 1 1 0 1]\n", " [ 0 0 0 1 1 0 0 0 0 1 0 0 1 0 1]\n", " [ 3 5 1 5 1 2 2 4 2 0 3 3 2 1 3]\n", " [-2 -4 -1 -4 -1 -2 -1 -3 -2 0 -3 -2 -2 0 -2]\n", " [ 1 1 0 1 0 1 0 1 0 0 1 0 0 0 0]]\n" ] } ], "source": [ "print(\"mu : \",mu)\n", "print(\"max offset norm : \",np.max(np.linalg.norm(offsets,axis=0)))\n", "print(\"Offsets : \\n\", offsets.astype(int))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 3.2 Stability\n", "\n", "The implemented tensor decompositions are stable, in the sense that the weight associated with and offset depends continuously on the tensor decomposed.\n", "Mathematically, for any $e \\in Z^d / \\{\\pm 1\\}$, the following mapping is locally Lipschitz \n", "$$\n", " D \\mapsto \\lambda^e(D),\n", "$$\n", "where $\\lambda^e(D)$ is the coefficient of $e e^T$ in the decomposition of $D$.\n", "\n", "This continuity is achieved thanks to an appropriate selection principle, in the cases where the linear program defining Voronoi's first reduction does not have unique maximizer. Note that the coefficient of an offset $e_i$ and of its opposite $-e_i$ are regarded as identical.\n", "\n", "We check the coefficients continuity by interpolating between two randomly drawn tensors." ] }, { "cell_type": "code", "execution_count": 46, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.386784Z", "iopub.status.busy": "2024-04-30T08:46:18.386712Z", "iopub.status.idle": "2024-04-30T08:46:18.388653Z", "shell.execute_reply": "2024-04-30T08:46:18.388396Z" } }, "outputs": [], "source": [ "def Interpolate(a,b,T=np.linspace(0,1,100)):\n", " return T, np.moveaxis(np.array([(1-t)*a + t*b for t in T]),0,-1)" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.389895Z", "iopub.status.busy": "2024-04-30T08:46:18.389803Z", "iopub.status.idle": "2024-04-30T08:46:18.391870Z", "shell.execute_reply": "2024-04-30T08:46:18.391644Z" } }, "outputs": [], "source": [ "T_interp, D4_interp = Interpolate(MakeRandomTensor(4),MakeRandomTensor(4))" ] }, { "cell_type": "code", "execution_count": 48, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.393109Z", "iopub.status.busy": "2024-04-30T08:46:18.393031Z", "iopub.status.idle": "2024-04-30T08:46:18.400083Z", "shell.execute_reply": "2024-04-30T08:46:18.399750Z" } }, "outputs": [], "source": [ "coefs,offsets = VoronoiDecomposition(D4_interp)" ] }, { "cell_type": "code", "execution_count": 49, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.401634Z", "iopub.status.busy": "2024-04-30T08:46:18.401539Z", "iopub.status.idle": "2024-04-30T08:46:18.404018Z", "shell.execute_reply": "2024-04-30T08:46:18.403813Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Reconstruction error : 5.329070518200751e-15\n" ] } ], "source": [ "print(\"Reconstruction error : \", LInfNorm(D4_interp - Reconstruct(coefs,offsets)))\n", "assert np.allclose(D4_interp, Reconstruct(coefs,offsets),atol=1e-5)" ] }, { "cell_type": "code", "execution_count": 50, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.405244Z", "iopub.status.busy": "2024-04-30T08:46:18.405153Z", "iopub.status.idle": "2024-04-30T08:46:18.410773Z", "shell.execute_reply": "2024-04-30T08:46:18.410554Z" } }, "outputs": [], "source": [ "decomp = GatherByOffset(T_interp,coefs,offsets)" ] }, { "cell_type": "code", "execution_count": 51, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.412075Z", "iopub.status.busy": "2024-04-30T08:46:18.411978Z", "iopub.status.idle": "2024-04-30T08:46:18.639662Z", "shell.execute_reply": "2024-04-30T08:46:18.639401Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABjQAAAMtCAYAAAA4/JhmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde1zUVf4/8NdwG0cElAAJUy5eMNSUlUzcDN0UyNu2a2mRKGlq7SqS0kXbVtZ+ibauq+luVmtY2UJrhLXlBesrgisqmSMg3gNRcMQEZhQGBuH8/nCddWTEmWGGzwCv5+Mxj0edOZ/3ecO8/Yx+zudzjkwIIUBERERERERERERERGTHHKROgIiIiIiIiIiIiIiI6F44oUFERERERERERERERHaPExpERERERERERERERGT3OKFBRERERERERERERER2jxMaRERERERERERERERk9zihQUREREREREREREREdo8TGkREREREREREREREZPec2nrApqYmlJeXw83NDTKZrK2HJyIiIiIiIiIiIiIiOyKEwLVr1+Dn5wcHh7s/h9HmExrl5eXo3bt3Ww9LRERERERERERERER27MKFC3jggQfu+n6bT2i4ubkBuJmYu7t7Ww9PRERERERERERERER2RKPRoHfv3vr5g7tp8wmNW8tMubu7c0KDiIiIiIiIiIiIiIgA4J7bVHBTcCIiIiIiIiIiIiIisnuc0CAiIiIiIiIiIiIiIrvHCQ0iIiIiIiIiIiIiIrJ7bb6Hhimampqg0+mkToOIiDohZ2dnODo6Sp0GERERERERERHdwe4mNHQ6HYqLi9HU1CR1KkRE1El1794dvr6+99yIioiIiIiIiIiI2o5dTWgIIXDp0iU4Ojqid+/ecHDgilhERNR2hBCora1FRUUFAOD++++XOCMiIiIiIiIiIrrFriY0bty4gdraWvj5+aFr165Sp0NERJ2QQqEAAFRUVMDHx4fLTxERERERERER2Qm7egSisbERAODi4iJxJkRE1JndmlRvaGiQOBMiIiIiIiIiIrrFriY0buGa5UREJCV+DxERERERERER2R+7nNAgIiIiIiIiIiIiIiK6HSc0iIiIiIiIiIiIiIjI7nFCw0quXr0KHx8flJSUSJ2KpDZu3IgpU6ZInUa7w/q5ifVjPaypu0tMTER8fLzUaRARERERERERkZk4oWElycnJmDx5MgICAvRtixYtwvDhwyGXyzFs2DCLY6enpyMkJARyuRwhISHIyMgwO0Z9fT0WLlwILy8vuLq6YsqUKbh48aLZcQoKChAREQGFQoFevXphxYoVEELo3587dy7y8vKwf/9+s2N3Zsbqp7S0FJMnT4arqyu8vLwQHx8PnU5ndmx7qZ+6ujrExcVhyJAhcHJywpNPPtmsD+vHemxVU8ePH8fUqVMREBAAmUyGdevWWZSftc5Jd7p06RJiYmIQHBwMBwcHJCQkNOvz6quvIiUlBcXFxa0ej4iIiIiIiIiI2g4nNKxAq9Vi8+bNeOGFFwzahRCYPXs2pk+fbnHs3NxcTJ8+HbGxsTh27BhiY2Mxbdo0HDp0yKw4CQkJyMjIQFpaGvbv34/r169j0qRJaGxsNDmGRqPB+PHj4efnh7y8PGzYsAFr1qzB2rVr9X3kcjliYmKwYcMGs/LrzIzVT2NjIyZOnIiamhrs378faWlpSE9Px5IlS8yKbU/109jYCIVCgfj4eIwbN85oH9aPddiypmpraxEUFIRVq1bB19fX4hytUVPG1NfXw9vbG2+88QaGDh1qtI+Pjw8iIyOxadOmVo1FRERERERERERtSyZuv72+DWg0Gnh4eECtVsPd3d3gvbq6OhQXFyMwMBBdunSBEALahtZd3LKUwtkRMpnMpL5ffvkl5s+fjytXrhh9PykpCdu3b4dSqTQ7j+nTp0Oj0WDnzp36tujoaPTo0QOpqakmxVCr1fD29sann36qn1wpLy9H7969sWPHDkRFRZkU57333sPSpUtx+fJlyOVyAMCqVauwYcMGXLx4Uf/72rdvHyIjI1FdXQ2FQmHOj2tVQgjc0DVJMraTi0Or6mfnzp2YNGkSLly4AD8/PwBAWloa4uLiUFFR0ezPzt3YU/3cLi4uDtXV1di+fXuz9+ylfowRQqCpSSvJ2A4OCruoqdsFBAQgISHB6FMQLbFFTRkzZswYDBs2zOhTJB9//DHefPNNlJaWGj32zu8jIiIiIiIiIiKynZbmDW7n1IY5mU3b0IiQP+6WZOyiFVHo6mLaryc7OxthYWE2ySM3Nxcvv/yyQVtUVJRZy7wcOXIEDQ0NiIyM1Lf5+flh8ODBOHDggMkXD3NzcxEREaGfzLiVy9KlS1FSUoLAwEAAQFhYGBoaGnD48GFERESYnKe13dA14YNF+yQZe976CDjLHU3qa6x+cnNzMXjwYP2FZ+Dm77q+vh5HjhzB2LFjTYptT/VjKnupH2OamrTI2jdEkrHHRBTA0bGrSX1tWVPW0NY1ZcyIESNw4cIFnD9/Hv7+/jYfj4iIiIiIiIiIWo9LTllBSUmJwUVCa1KpVOjZs6dBW8+ePaFSqcyK4eLigh49erQ6jrFcbr13i6urK7p3787NiE1krH6M/a579OgBFxcXq3xmUtSPqVg/rWfLmrKGtq4pY3r16gUArDMiIiIiIiIionbErp/QUDg7omiF7e/UvdvYptJqtTZdkuTOZWaEECYvPdMSS+IYy8VYu0KhQG1tbesSbCUnFwfMWy/NHf5OLqbPFd6tfox9Ntb6zKSqH1PZQ/0Y4+CgwJiIAsnGNpWta8pWzM2lW7du+v+eMWOGWXti3FrOzB7rjIiIiIiIiIiIjLPrCQ2ZTGbysk9S8vLyQlVVlU1i+/r6NrtjuaKiotmd1veKodPpUFVVZXBHdEVFBUaNGtXqXAA0y6eyshLe3t4mx7YFmUxm8rJPUjJWP76+vs027q6qqkJDQ4PZn7291I857KF+jJHJZCYv+yQlW9aUNVirpm7fl8jcPUAqKysBwC7rjIiIiIiIiIiIjOOSU1YQGhqKoqIim8QODw/Hnj17DNoyMzPNuug3fPhwODs7G8S5dOkSCgsLzYoTHh6O7Oxs6HQ6g1z8/PwQEBCgbzt37hzq6uoQGhpqcuzOzFj9hIeHo7CwEJcuXdK3ZWZmQi6XY/jw4SbHtqf6MRXrp/VsWVPWYK2a6tevn/7l4+NjVg6FhYVwdnbGoEGDzDqOiIiIiIiIiIikwwkNK4iKisLx48eb3RF99uxZKJVKqFQqaLVaKJVKKJVKgwmBe1m0aBEyMzOxevVqnDx5EqtXr8Z3332HhIQEk2N4eHhgzpw5WLJkCb7//nscPXoUM2bMwJAhQzBu3DiT48TExEAulyMuLg6FhYXIyMjAypUrsXjxYoNlYnJychAUFIS+ffuaHLszM1Y/kZGRCAkJQWxsLI4ePYrvv/8eiYmJmDt3rll3ottT/QBAUVERlEolKisroVar9X8mbsf6aT1b1pROpzM4l5WVlUGpVOLs2bMmx7BmTRlzK7/r16/jypUrUCqVzSZ4cnJyMHr0aP3SU0RERERERERE1A6INqZWqwUAoVarm72n1WpFUVGR0Gq1bZ1Wq40cOVJs2rTJoC0iIkIAaPYqLi7W9wEgUlJSWoy9bds2ERwcLJydncXAgQNFenq6wfspKSniXh+lVqsVCxYsEJ6enkKhUIhJkyaJ0tLSZvnOmjWrxTj5+fli9OjRQi6XC19fX5GUlCSampoM+kRGRork5OQW45AhY/Vz/vx5MXHiRKFQKISnp6dYsGCBqKurM+jT3urH39/f6J+J27F+rMNWNVVcXGz0M4yIiND3acuaMsZYfv7+/gZ9BgwYIFJTU1vMr71+HxERERERERERtTctzRvcTibEf3d1biMajQYeHh5Qq9XN7gquq6tDcXExAgMDbbrJti3s2LEDiYmJKCwshIODaQ++lJSUoH///igqKkL//v0tHjspKQlZWVnIysqyOAYABAQEICkpCXFxcRbHKCwsxOOPP47Tp0/Dw8OjVfl0Jqyfm1g/1sOaurtvv/0Wr7zyCvLz8+HkZHyfpvb8fURERERERERE1N60NG9wO/vfcbudmDBhAs6cOYOysjL07t3bpGN27dqFefPmterCIQDs3r0b69evb1WMkydPws3NDTNnzmxVnPLycnzyySe8GG0m1s9NrB/rYU3dXU1NDVJSUu46mUFERERERERERPaJT2gQERHdgd9HRERERERERERtx9QnNLgpOBERERERERERERER2T1OaBARERERERERERERkd3jhAYREREREREREREREdk9TmgQEREREREREREREZHd44QGERERERERERERERHZPU5oEBERERERERERERGR3eOEhpVcvXoVPj4+KCkpkToVu5OYmIj4+Hip07BrrJ+bNm7ciClTpkidRofAmrqJNUVERERERJ2VEAInVRqs2X0KL209gl2FlyCEkDotIqJW4YSGlSQnJ2Py5MkICAjQt5WWlmLy5MlwdXWFl5cX4uPjodPpzI6dnp6OkJAQyOVyhISEICMjw+wYH3zwAcaMGQN3d3fIZDJUV1ebHcOYS5cuISYmBsHBwXBwcEBCQkKzPq+++ipSUlJQXFxslTE7IlvVz/HjxzF16lQEBARAJpNh3bp1FuVXX1+PhQsXwsvLC66urpgyZQouXrxoVoy6ujrExcVhyJAhcHJywpNPPtmsz9y5c5GXl4f9+/dblCf9j7GaWrRoEYYPHw65XI5hw4ZZFNcaNVVZWYmFCxciODgYXbt2RZ8+fRAfHw+1Wm1WHNYUERERERFRc2crrmHdd6cx/q/ZiF6Xg417z2JnoQovbv0RU987gLySSqlTJCKyGCc0rECr1WLz5s144YUX9G2NjY2YOHEiampqsH//fqSlpSE9PR1LliwxK3Zubi6mT5+O2NhYHDt2DLGxsZg2bRoOHTpkVpza2lpER0dj2bJlZh13L/X19fD29sYbb7yBoUOHGu3j4+ODyMhIbNq0yapjdxS2rJ/a2loEBQVh1apV8PX1tTjHhIQEZGRkIC0tDfv378f169cxadIkNDY2mhyjsbERCoUC8fHxGDdunNE+crkcMTEx2LBhg8W5kvGaAm7enTN79mxMnz7d4tjWqKny8nKUl5djzZo1KCgowJYtW7Br1y7MmTPHrDisKSIiIiIiopuKf67Bxv87g+h12Ri3NhvrvjuDsxXX4eLogPEhPTHn0UAonB3xY2k1nt6Uixc+zsOZy9ekTpuIyGwy0cbPmmk0Gnh4eECtVsPd3d3gvbq6OhQXFyMwMBBdunRpy7Ra5csvv8T8+fNx5coVfdvOnTsxadIkXLhwAX5+fgCAtLQ0xMXFoaKiotnPfjfTp0+HRqPBzp079W3R0dHo0aMHUlNTzc41KysLY8eORVVVFbp372728S0ZM2YMhg0bZvSO7Y8//hhvvvkmSktLrTpmR2DL+rldQEAAEhISjD5F0xK1Wg1vb298+umn+gvh5eXl6N27N3bs2IGoqCizc4mLi0N1dTW2b9/e7L19+/YhMjIS1dXVUCgUZscm4zV1u6SkJGzfvh1KpbJV41haU8Zs27YNM2bMQE1NDZycnMw+3to11V6/j4iIiIiIqPO4UFmLb/Iv4Zv8chwv1+jbnR1lGN3fG5Meuh/jQnrCvYszAKBCU4f1359BWt4FNDYJOMiAp4Y/gJfHD8D9Hvz3NxFJq6V5g9uZf9WoLQkBNNRKM7ZzV0AmM6lrdnY2wsLCDNpyc3MxePBg/cVoAIiKikJ9fT2OHDmCsWPHmhQ7NzcXL7/8skFbVFSUxUsHSWXEiBG4cOECzp8/D39//zYZUwiBG/X1bTLWnZzkcsjsoH6s4ciRI2hoaEBkZKS+zc/PD4MHD8aBAwcsmtBoSVhYGBoaGnD48GFERERYNXZrCSFQ29QkydhdHRxaVVP27taXlSWTGfdizzVFRERERERkjvJqLXYUXMK/8y/h2IVqfbujgwy/7OeFSQ/dj6gQX3h0dW52rI97F7z9myGY/Wgg1uw+hZ2FKvzrh4v4SlmO538ZiJfG9IWHovlxRET2xL4nNBpqgZV+9+5nC8vKARdXk7qWlJQYXHgGAJVKhZ49exq09ejRAy4uLlCpVCanYSxOz549zYphD3r16gXg5u+qrSY0btTX491ZT7XJWHeK//gLOJt4V7ct68caVCoVXFxc0KNHD4N2W9Whq6srunfvjpKSEru7+Fzb1IS+2QWSjH3usSFwdXQ0qa+xmrJnV69exVtvvYX58+fbJL491xQREREREdG9VNXo8G3BJXylLENeSZW+3UEGhPe9DxOH+CF6sC88XV1MitfXuxvemzEcP5ZWYdWOkzhcUolN+84h9XApFozth9hwf3RxNu3fn0REbc2+JzTaCa1Wa3RJEmN3UwshTL7L+m5xLIlhDd26ddP/94wZM8zaE+PWMi+1tRI9cWPHbF0/tmLLXBQKBWulFe5WU/ZIo9Fg4sSJCAkJwfLly202DmuKiIiIiIjaE62uEd+duIyvlGXIOnUFN5purhgvkwEPB3hi8kP3I3rw/fB2k1s8xi/69MDn80fi/05WYPWukzh9+Tre3nECWw6UYPH4AXgytBccHezjGgQR0S32PaHh3PXmkxJSjW0iLy8vVFVVGbT5+vo227i7qqoKDQ0Nze68b4mvr2+zu+ArKirMimEtt6+3b+4eDpWVlQAAb29va6bUIie5HPEff9Fm4905tqlsWT/W4OvrC51Oh6qqKoOnNCoqKjBq1CibjFlZWdmmtWKqrg4OOPfYEMnGNpWxmrJH165dQ3R0NLp164aMjAw4O9vu0WZ7rSkiIiIiIqJbbjQ24cC5q9iuLMPuQhVqdI369wb5uePJYb0weagffD2sdwObTCbD4w/2xJhgH6T/eBF/3XMaZdVaLNl2DB/m/ITXnhiIMQO87ebmSiIi+57QkMlMXvZJSqGhodi6datBW3h4ON5++21cunQJ999/PwAgMzMTcrkcw4cPNzl2eHg49uzZY7CPRmZmps0uJLekX79+Fh9bWFgIZ2dnDBo0yIoZtUwmk5m87JOUbFk/1jB8+HA4Oztjz549mDZtGgDg0qVLKCwsxDvvvGP18c6dO4e6ujqEhoZaPXZryWQyk5d9kpKxmrI3Go0GUVFRkMvl+Prrr236RIk91xQREREREXVuQgjkX1Rju7IM/z52CT9f/99eoA/0UODJYb3wZKgf+vm42TQPRwcZpoX1xpShfthyoAR/33sWJ1XX8HxKHn4b2gvvPPUQnBxNv9GOiMhW7HtCo52IiorC0qVLDe5gj4yMREhICGJjY/HnP/8ZlZWVSExMxNy5c816umHRokV47LHHsHr1avz617/GV199he+++w779+83K0eVSgWVSoWzZ88CAAoKCuDm5oY+ffrA09PTrFh3uvXkxvXr13HlyhUolUq4uLggJCRE3ycnJwejR4/WLz1F/2PL+tHpdCgqKtL/d1lZGZRKJbp162byBJWHhwfmzJmDJUuW4L777oOnpycSExMxZMgQjBs3zqyftaioCDqdDpWVlbh27Zq+doYNG6bvk5OTg6CgIPTt29es2PQ/xmoKAM6ePYvr169DpVJBq9Xqf/8hISFwcTFtrVVr1NS1a9cQGRmJ2tpabN26FRqNBhqNBsDNp7gczZg0Yk0REREREVF7VPJzDbYry/C1shw//Vyjb+/R1RmTHvLDk6F++EWfHm3+ZEQXZ0e8GNEXzzzcG3/POoeP9hfjy6NluF5/AxtiQiF3sv+b/IiogxNtTK1WCwBCrVY3e0+r1YqioiKh1WrbOq1WGzlypNi0aZNB2/nz58XEiROFQqEQnp6eYsGCBaKurs6gDwCRkpLSYuxt27aJ4OBg4ezsLAYOHCjS09MN3k9JSRH3+iiXL18uADR73T52RESEmDVr1j1/1jsZi+vv72/QZ8CAASI1NdXs2J2FreqnuLjY6OcTERGh72NK/Wi1WrFgwQLh6ekpFAqFmDRpkigtLTXoY0r9+Pv7G83ndpGRkSI5ObnFOHRvxmoqIiLC6O+/uLhY36ctamrv3r1GY9yZi5Q11Z6/j4iIiIiIyD5pdTfEth8uiN/8bb/wf+0b/Sv4DzvEgn/+KL4/oRK6G41Sp2lgz3GV6P/GDuH/2jdixj8Oitr6G1KnREQdVEvzBreTCSGE1WdJWqDRaODh4QG1Wt3sTvO6ujoUFxcjMDCw3Wxoe8uOHTuQmJiIwsJCOJi41n1JSQn69++PoqIi9O/f3+Kxk5KSkJWVhaysLItjAEBAQACSkpIQFxfXqjh3+vbbb/HKK68gPz8fTk58KMgY1s9NhYWFePzxx3H69Gl4eHi0Kp/OjjV1k6U11Z6/j4iIiIiIyL4U/1yDzw6exxc/XkR1bQMAwEEGPNrfG08O80PkIF90k9vv9ZL/nP0ZL3z8A7QNjRgR4InNcWFw62K7PRCJqHNqad7gdvZ7tmxnJkyYgDNnzqCsrAy9e/c26Zhdu3Zh3rx5rbpwCAC7d+/G+vXrWxXj5MmTcHNzw8yZM1sVx5iamhqkpKRwMqMFrJ+bysvL8cknn3AywwpYUzexpoiIiIiISAoNjU34/sRlbD1Yiv1nf9a39+quQMwjffB02APwcWsfN0/9sp8XPp0zAs+n5OFwSSVm/OMQPp49At27mrZ0MRGRNfEJDSIiojvw+4iIiIiIiCxxSa1F6uEL+DyvFJc1Nzf4lsmAscE+mDGyDyIG+MDRoW33xbCWwjI1YjcfQlVtAwb6uuHTOY/A200udVpE1EHwCQ0iIiIiIiIiIiIba2oS2H/2Z2w9eB7fn6xAY9PNe4e9urlg+sO98czDfdDbs6vEWbbe4F4e+Nf8cDz3j0M4qbqGae/nYusLj6BXd4XUqRFRJ8IJDSIiIiIiIiIiIjNV1ujwxZEL+OxQKc5frdW3PxLoiRkj/RE1yBcuTqbtadhe9O/phm0vhiPmw0Mo/rkG0zbl4rMXHkGAl6vUqRFRJ8EJDSIiIiIiIiIiIhM1NQmkHCjBn3efRF1DEwDATe6EqcMfwHOP9EH/nm4SZ2hb/ve5YtuL4Zjxj0P46ecaPP3+zUmNAR385yYi+8AJDSIiIiIiIiIiIhOUV2uRuO0YDpy7CgAY5OeO2JH+mDLMD11dOs9lNr/uCnw+Pxyxm28uPzX9/Vx8MvsRDHnAQ+rUiKiD61jPvREREREREREREVmZEALbj5Yhal02Dpy7CoWzI/7fk4PxzcJH8cyIPp1qMuMWbzc50uaNxNDe3VFV24CYDw/ih5JKqdMiog6OExpERERERERERER3UVWjw4J/HkXC50pcq7uBob2749v4RzFjpD9kMpnU6Umqe1cXfPbCIxgR6Ilr9TcQu/kw9p/5Weq0iKgD44QGERERERERERGREVmnKhC1LhvfFlyCk4MMi8cPQPqL4Qjy7iZ1anajm9wJHz8/AhEDvKFtaMTsLXnYU3RZ6rSIqIPihIaVXL16FT4+PigpKZE6FbuTmJiI+Ph4qdOwa6yfmzZu3IgpU6ZInUaHwJq6O56TiIiIiIjoXmp1N/Dm9kLEpeSh4lo9+nq74svfjUL84/3h5MjLaXdSuDjig5nDETWoJ3SNTXhx6xH8+1i51GkRUQfEM7CVJCcnY/LkyQgICNC3LVq0CMOHD4dcLsewYcMsinv8+HFMnToVAQEBkMlkWLdunVXyBYC3334bo0aNQteuXdG9e3eLYnz55ZcYP348vL294e7ujvDwcOzevdugz6uvvoqUlBQUFxdbIeuOyd7r54MPPsCYMWPg7u4OmUyG6upqi+IUFBQgIiICCoUCvXr1wooVKyCE0L8/d+5c5OXlYf/+/RbFp/+xVU0Zk52djcmTJ8PPzw8ymQzbt2+3KI41zkmXLl1CTEwMgoOD4eDggISEhGZ9eE4iIiIiIqKWHC2twsR39+PTg+cBAHGjAvBt/Gg89EB3aROzc3InR/wt5hf4bWgvNDYJLP6XkntqEJHVcULDCrRaLTZv3owXXnjBoF0IgdmzZ2P69OkWx66trUVQUBBWrVoFX1/f1qZqQKfT4emnn8ZLL71kcYzs7GyMHz8eO3bswJEjRzB27FhMnjwZR48e1ffx8fFBZGQkNm3aZI20O5z2UD+1tbWIjo7GsmXLLI6h0Wgwfvx4+Pn5IS8vDxs2bMCaNWuwdu1afR+5XI6YmBhs2LDB4nHItjVlTE1NDYYOHYqNGze2Ko41zkn19fXw9vbGG2+8gaFDhxrtw3MSEREREREZ09DYhLV7TuOpTbko/rkGvu5d8OmcEUiaMghdnB2lTq9dcHJ0wJqnh2LCEF80NAq89NmPuKypkzotIupAnKROoCPYuXMnnJycEB4ebtD+7rvvAgCuXLmC/Px8i2I//PDDePjhhwEAr7/+eusSvcOf/vQnAMCWLVssjnHnHf8rV67EV199hX//+98IDQ3Vt0+ZMgVvvvkmVq9ebfFYHVV7qJ9bd7lnZWVZHOOzzz5DXV0dtmzZArlcjsGDB+P06dNYu3YtFi9erN9IbcqUKYiMjIRWq4VCobB4vM7MljVlzBNPPIEnnnii1XGscU4KCAjA+vXrAQAfffTRXfvxnERERERERLc7W3Edi/+lRP5FNQBgylA/vPXrwfDo6ixxZu2Pg4MMf35qKM5V1ODU5Wt4cesRpM0bCbkTJ4WIqPXsekJDCAHtDa0kYyucFPoLrPeSnZ2NsLAwG2fUPjQ1NeHatWvw9PQ0aB8xYgQuXLiA8+fPw9/fv01yEUJANDS1yVh3kjk7sH7ukJubi4iICMjlcn1bVFQUli5dipKSEgQGBgIAwsLC0NDQgMOHDyMiIkKqdI0SQkDb0CjJ2ApnR9aUFUlxTiIiIiIiIvvT1CTw6cHzWLnjBOpvNMG9ixP+32+GYMpQP6lTa9dc5U74YOZwTN6wH0dLq7H8q+NI/u0Qk/9dS0R0N3Y9oaG9ocUj/3xEkrEPxRxCV+euJvUtKSmBnx+/6ADgL3/5C2pqajBt2jSD9l69egG4+btqswmNhiaU//FAm4x1J78VoyBzMe3Og85SPyqVymA/BwDo2bOn/r1bExqurq7o3r07SkpK7G5CQ9vQiJA/7r53RxsoWhGFri6mnbI7S021hhTnJCIiIiIisi8VmjokfpGP7NNXAACj+3vhz08Nha9HF4kz6xj873PFu8+G4vkteUjLu4AhD3jguUf47y8iah3uoWEFWq0WXbrY75fdiy++iG7duulftpKamoqkpCR8/vnn8PHxMXjv1tJBtbW1Nhu/vbL3+rGmO+/EuLUh+J3tCoWCtdIKtqqpnJwcg3PJZ599ZvUx2grPSUREREREndvu4ypErctG9ukrkDs5IGlyCD5+fgQnM6xsTLAPXokKBgAkfX2cm4QTUavZ9RMaCicFDsUckmxsU3l5eaGqqsqG2bTOihUrkJiYaNMxPv/8c8yZMwfbtm3DuHHjmr1fWXnzC8vb29umedxO5uwAvxWj2my8O8c2lb3Xj7X4+vpCpVIZtFVUVAD435Mat1RWVrZprZhK4eyIohVRko1tKlvVVFhYGJRKpf7/7/zc2hMpzklERERERCS9Wt0NvPVNEVIPXwAAhNzvjvXPDEP/nm4SZ9ZxvRTRF8fLNPi24BJe+uxHfLPwUfR058QREVnGric0ZDKZycs+SSk0NBRbt26VOo278vHxafbEhDWlpqZi9uzZSE1NxcSJE432KSwshLOzMwYNGmSzPO4kk8lMXvZJSvZeP9YSHh6OZcuWQafTwcXFBQCQmZkJPz8/g6Wozp07h7q6OoNN5e2FTCYzedknKdmqphQKBfr162f1uFKQ4pxERERERETSOnahGgmfK1H8cw1kMmDe6CAsjhzAzaptTCaT4Z2nHsK5K9dxUsVNwomodbjklBVERUXh+PHjze6IPnv2LJRKJVQqFbRaLZRKJZRKJXQ6ncmxdTqdwXFlZWVQKpU4e/Zsq/MuLS2FUqlEaWkpGhsb9eNcv37d5BipqamYOXMm/vKXv2DkyJFQqVRQqVRQq9UG/XJycjB69Gj9Mi/0P+2hflQqlcFxBQUFUCqV+rvcTRETEwO5XI64uDgUFhYiIyMDK1euxOLFiw2WnMrJyUFQUBD69u1rVo70P7asKWOuX7+ujwUAxcXF+nOLOaxxTgJgcNyVK1egVCpRVFRk0IfnJCIiIiKizqOxSWDj/53B1PcOoPjnGtzv0QWfvfAIlk54kBfV24ir3Anvxw6Hexcn/Sbht5ahJiIyi2hjarVaABBqtbrZe1qtVhQVFQmtVtvWabXayJEjxaZNmwzaIiIiBIBmr+LiYn0fACIlJeWucYuLi43GiIiI0PdJSUkRlnyUs2bNMhp77969+j7+/v5i+fLld41xt59x1qxZBv0GDBggUlNTzc6xs7D3+lm+fLnROLePHRER0exzv1N+fr4YPXq0kMvlwtfXVyQlJYmmpiaDPpGRkSI5ObnFOHRvtqopY/bu3XvP88Dy5cuFv79/i3GscU669TPc+bpz7Hudk9rz9xEREREREf1P6dUaMfXv/xH+r30j/F/7RvzusyOiukYndVqd1t6Tl0XA6zc/i60HS6ROh4jsSEvzBreTCdG206EajQYeHh5Qq9Vwd3c3eK+urg7FxcUIDAxsd5sk79ixA4mJiSgsLISDg2kPvpSUlKB///4oKipC//79LR47KSkJWVlZyMrKsjiGMVqtFp6entixYwfGjh1rcZxvv/0Wr7zyCvLz8+HkZP/L9UihI9RPQEAAkpKSEBcXZ3GMwsJCPP744zh9+jQ8PDxalU9nJ2VNGXOrLrZs2WJxjLY8J7Xn7yMiIiIiIgKEEMg4WoY/fnUc1+tvoJvcCX+aMgi//UUvg1UCqO39Pess3tl1Cs6OMqTOHYmwAE+pUyIiO9DSvMHteHXZSiZMmIAzZ86grKwMvXv3NumYXbt2Yd68ea2+cLh7926sX7++VTGM2bdvH371q1+16sIhANTU1CAlJYWTGS1o7/Vz8uRJuLm5YebMma2KU15ejk8++YSTGVYgZU0Zs2/fPmRnZ7c6Bs9JRERERER0L+raBryxvQDf5F8CAAz374F104eht6f979PaGXCTcCJqDT6hQUREdAd+HxERERERtU+5565iyb+UKFfXwdFBhkWP98fvxvSFkyO3kbUnNfU3MPW9AzipuobQPt25STgRmfyEBs/mRERERERERETUruluNCF55wnE/OMgytV18L+vK754MRzxj/fnZIYdurVJuIfCmZuEE5FZeEYnIiIiIiIiIqJ266cr1/Hb9/6D9/f9BCGA6WG9sSN+NEL79JA6NWqB/32uePfZUDjIgLS8C/jn4VKpUyKidoATGkRERERERERE1O4IIbDthwuYtGE/Css06N7VGZtm/AKrn3oIrnLumdceRAzwxitRAwEASV8fxw8llRJnRET2jhMaRERERERERETUrmjqGhCfpsQrX+SjVteIkUGe2LloNKIH3y91amSmFyOCMHHI/WhoFHjpsx9xWVMndUpEZMc4oUFERERERERERO3Gj6VVmLA+B/8+Vg5HBxleiQrGZy+MxP0eCqlTIwvIZDK889RDGOjrhivX6vHi1iPQ3WiSOi0islOc0CAiIiIiIiIiIrvX2CSw8f/O4OlNubhYpcUDPRTY9mI4fj+2HxwdZFKnR61w5ybhf9lzSuqUiMhOcUKDiIiIiIiIiIjsmkpdh+f+cRBrMk+jsUlgylA/7Fg0Gr/gxt8dhv99rlg99SEAwAfZP+HA2Z8lzoiI7BEnNKzk6tWr8PHxQUlJidSp2J3ExETEx8dLnYZdY/3ctHHjRkyZMkXqNDoE1tRNrCkiIiIiovYv87gK0euzcfCnSnR1ccSap4di/TPD4N7FWerUyMqiB/vi2RF9IATw8r+UqKrRSZ0SEdkZTmhYSXJyMiZPnoyAgAB9W2lpKSZPngxXV1d4eXkhPj4eOp35J+L09HSEhIRALpcjJCQEGRkZZh1fWVmJhQsXIjg4GF27dkWfPn0QHx8PtVptdi53unTpEmJiYhAcHAwHBwckJCQ06/Pqq68iJSUFxcXFrR6vo7JV/Rw/fhxTp05FQEAAZDIZ1q1bZ1F+H3zwAcaMGQN3d3fIZDJUV1dbFKegoAARERFQKBTo1asXVqxYASGE/v25c+ciLy8P+/fvtyg+/Y89n5MA69RUXV0d4uLiMGTIEDg5OeHJJ59s1oc1RURERETUftU1NOLN7YWY9+kRVNc2YEgvD3yz8FE8NfwByGRcYqqjenPSgwjydsVlTT1eS883uG5ARMQJDSvQarXYvHkzXnjhBX1bY2MjJk6ciJqaGuzfvx9paWlIT0/HkiVLzIqdm5uL6dOnIzY2FseOHUNsbCymTZuGQ4cOmRyjvLwc5eXlWLNmDQoKCrBlyxbs2rULc+bMMSsXY+rr6+Ht7Y033ngDQ4cONdrHx8cHkZGR2LRpU6vH64hsWT+1tbUICgrCqlWr4Ovra3GOtbW1iI6OxrJlyyyOodFoMH78ePj5+SEvLw8bNmzAmjVrsHbtWn0fuVyOmJgYbNiwweJxyP7PSYB1aqqxsREKhQLx8fEYN26c0T6sKSIiIiKi9umU6hp+vfE/+PTgeQDAvMeCkP7SKAR5d5M4M7K1ri5OePeZUDg7ypBZdBmphy9InRIR2RGZaONpTo1GAw8PD6jVari7uxu8V1dXh+LiYgQGBqJLly5tmVarfPnll5g/fz6uXLmib9u5cycmTZqECxcuwM/PDwCQlpaGuLg4VFRUNPvZ72b69OnQaDTYuXOnvi06Oho9evRAamqqxTlv27YNM2bMQE1NDZycnCyOc7sxY8Zg2LBhRp8C+Pjjj/Hmm2+itLTUKmN1JLasn9sFBAQgISHB6FM0psrKysLYsWNRVVWF7t27m3Xse++9h6VLl+Ly5cuQy+UAgFWrVmHDhg24ePGi/u6affv2ITIyEtXV1VAoFBbn2pm1p3NSa2rqdnFxcaiursb27dubvWdJTbXX7yMiIiIiovZOCIGth0rx/74pQv2NJnh1k+Mv04YiYoC31KlRG/sw+ye8veMEujg74JuFo9HPh5NZRB1ZS/MGt7PrJzSEEGiqrZXkZc48T3Z2NsLCwgzacnNzMXjwYP2FQwCIiopCfX09jhw5YnLs3NxcREZGGrRFRUXhwIEDJscw5lZhWGsy415GjBiBCxcu4Pz5820yHnCzfnQ6nSQve6kfe5Kbm4uIiAj9ZAZw82cqLy832OchLCwMDQ0NOHz4sARZ3oMQgK5Gmped1JStzkm2ZNc1RUREREREejX1N/DS1h/x5vZC1N9owphgb+xKGM3JjE5qzqOBGN3fC3UNTViUdhT1NxqlTomI7EDbXM22kNBqceoXwyUZO/jHI5B17WpS35KSEoOLhACgUqnQs2dPg7YePXrAxcUFKpXK5DyMxenZs6dZMe509epVvPXWW5g/f77FMczVq1cvADd/V/7+/m0yZkNDA1auXNkmY91p2bJlcHFxMamvLevHnqhUKoP9HADof0aVSoXAwEAAgKurK7p3746SkhJERES0dZota6gFVvrdu58tLCsHXFxN6trezkm2Ztc1RUREREREAACVug5zPs7D8XINXBwd8NoTA/H8qAA4OHCvjM7KwUGGNU8PRfS6bBwv12DN7lN4Y2KI1GkRkcTs+gmN9kKr1RpdksTYBlVCCLM3rrqzvyUxbtFoNJg4cSJCQkKwfPlys47t1q2b/vXiiy+adeytZV5qa2vNOq4zsHX92BNjtWysXaFQsFZaoT2dk9oKa4qIiIiIyH4dL1fjyb/9B8fLNbjP1QVp80dizqOBnMwg9HTvgneeurln64c5xcg5c+UeRxBRR2fXT2jIFAoE/yjN8joyM9bu9/LyQlVVlUGbr69vs01yq6qq0NDQ0Ozu5pb4+vo2u/O5oqLCrBi3XLt2DdHR0ejWrRsyMjLg7Oxs1vFKpVL/3+bu4VBZWQkA8PZuu8dEnZ2dW7XhcGvHNpUt68ee3K2WATT7mSorK9u0Vkzm3PXmkxJSjW2i9nJOakt2W1NERERERJ3c9ycuY2HqUdTqGtHPpxtS4h5Gb0/T//1DHd/4kJ6YMbIPth4sxZJ/HcPORaNxXzf5vQ8kog7Jrp/QkMlkcOjaVZKXOXcbh4aGoqioyKAtPDwchYWFuHTpkr4tMzMTcrkcw4ebvoxWeHg49uzZY9CWmZmJUaNGmRwDuPlkRmRkJFxcXPD1119btMltv3799C8fHx+zji0sLISzszMGDRpk9riWkslkcHFxkeRlL/VjT8LDw5GdnQ2dTqdvy8zMhJ+fn8FSVOfOnUNdXR1CQ0MlyPIeZLKbyz5J8bKTmrLWOakt2XVNERERERF1Yin/KcbcT35Ara4Rv+x3H9JfGsXJDDLqjQkh6OfTDRXX6vFaer5Ze5cSUcdi1xMa7UVUVBSOHz9ucEd0ZGQkQkJCEBsbi6NHj+L7779HYmIi5s6da9bTDYsWLUJmZiZWr16NkydPYvXq1fjuu++QkJBgcoxr164hMjISNTU12Lx5MzQaDVQqFVQqFRobW7+hklKphFKpxPXr13HlyhUolcpmF1NzcnIwevRo/dJT9D+2rB+dTqf/fHQ6HcrKyqBUKnH27FmzclSpVAbHFRQUQKlU6p+8MUVMTAzkcjni4uJQWFiIjIwMrFy5EosXLzaYAMrJyUFQUBD69u1rVo70P/Z+TgKsU1MAUFRUpD9OrVbr6/12rCkiIiIiIvtyo7EJy78qxJ/+XYQmATzzcG9seX4EPBTmrSRBnYfCxRHvPhMKF0cHfHeiAlsPlUqdEhFJRbQxtVotAAi1Wt3sPa1WK4qKioRWq23rtFpt5MiRYtOmTQZt58+fFxMnThQKhUJ4enqKBQsWiLq6OoM+AERKSkqLsbdt2yaCg4OFs7OzGDhwoEhPTzd4PyUlRbT0Ue7du1cAMPoqLi7W94uIiBCzZs0y6ee982e48+Xv72/QZ8CAASI1NdXs2J2FreqnuLjY6OcTERGh73Ov+hFCiOXLlxuNc/vYptRPfn6+GD16tJDL5cLX11ckJSWJpqYmgz6RkZEiOTm5xTh0b/Z8ThLCejXl7+9vNM7tLKmp9vx9RERERERkz67VNYi4jw4J/9e+Ef6vfSM2ZZ1t9u9Corv5R85Pwv+1b8SAN3aI0yqN1OkQkRW1NG9wO5kQbfuMlkajgYeHB9RqdbO7guvq6lBcXIzAwECLlkSS0o4dO5CYmIjCwkI4OJj24EtJSQn69++PoqIi9O/f3+Kxk5KSkJWVhaysLItjAEBAQACSkpIQFxfXqjh3+vbbb/HKK68gPz8fTk52vW2LZFg/NxUWFuLxxx/H6dOn4eHh0ap8OjvW1E2W1lR7/j4iIiIiIrJXl9RazN7yA05c0qCLswPWTR+G6MH3S50WtSNNTQJxW/KQffoKHrzfHRm/G4Uuzo5Sp0VEVtDSvMHteHXZSiZMmIAzZ86grKwMvXv3NumYXbt2Yd68ea26cAgAu3fvxvr161sV4+TJk3Bzc8PMmTNbFceYmpoapKSkcDKjBayfm8rLy/HJJ59wMsMKWFM3saaIiIiIiOxDwUU15nych4pr9fDqJsfmWWEY2ru71GlRO+PgIMOapx/CE+tycOKSBu/sOoU/Tg6ROi0iakN8QoOIiOgO/D4iIiIiIrKezOMqLEpTQtvQiOCebtgcF4YHenDzb7Lc/528jNlbfgAAbHn+YYwJ9pE4IyJqLVOf0OCm4EREREREREREZHVCCPwj5yfM33oE2oZGPDbAG9teCudkBrXarwb2xKxwfwBA4rZ8/Hy9XuKMiKitcEKDiIiIiIiIiIis6kZjE/6wvRD/79sTEAJ47pE++GhWGNy7OEudGnUQSyc8iOCebvj5ej1e2XYMbbwIDRFJhBMaRERERERERERkNVpdI+Z8/AM+O1QKmQz4w8QH8f+eHAwnR16GIuvp4uyI9c8Og4uTA/aeuoJPcs9LnRIRtQF+kxARERERERERkVU0NDbhpc+OYN/pK1A4O+L9GcPxwuggyGQyqVOjDmigrzuWPTEQAPD2jhM4pbomcUZEZGuc0CAiIiIiIiIiolZrahJ4ZdsxZJ26gi7ODvh0zghEDvKVOi3q4GaNCsDYYG/objQhPvUo6hoapU6JiGyIExpERERERERERNQqQgi89W0RtivL4eQgw3szhiMswFPqtKgTkMlk+PPTQ+HVzQWnLl/Dqp0npU6JiGyIExpERERERERERNQqf9t7Fin/KQEArHl6KMYG+0ibEHUqXt3kWPP0UADAlgMl2HuyQuKMiMhWOKFhJVevXoWPjw9KSkqkTsXuJCYmIj4+Xuo07Brr56aNGzdiypQpUqfRIbCm7o7nJCIiIiIi6/rs0HmsyTwNAFg+OQRPhvaSOCPqjMYE++D5XwYAAF754hiuXKuXNiEisglOaFhJcnIyJk+ejICAAH1baWkpJk+eDFdXV3h5eSE+Ph46nc6suMePH8fUqVMREBAAmUyGdevWWS3nt99+G6NGjULXrl3RvXt3i2J8+eWXGD9+PLy9veHu7o7w8HDs3r3boM+rr76KlJQUFBcXWyHrjslY/SxatAjDhw+HXC7HsGHDLI6dnp6OkJAQyOVyhISEICMjw+wYH3zwAcaMGQN3d3fIZDJUV1dblEtBQQEiIiKgUCjQq1cvrFixAkII/ftz585FXl4e9u/fb1F8+h9b1pSxsR5++GG4ubnBx8cHTz75JE6dOmV2nKqqKsTGxsLDwwMeHh6IjY21qNb27duH4cOHo0uXLggKCsKmTZsM3uc5iYiIiIjIenYUXMIfthcCABaM7YfnfxkocUbUmb0WPRADfd3w83UdErcdQ1OTuPdBRNSucELDCrRaLTZv3owXXnhB39bY2IiJEyeipqYG+/fvR1paGtLT07FkyRKzYtfW1iIoKAirVq2Cr691N9LS6XR4+umn8dJLL1kcIzs7G+PHj8eOHTtw5MgRjB07FpMnT8bRo0f1fXx8fBAZGdnsoiLdZKx+gJvrj86ePRvTp0+3OHZubi6mT5+O2NhYHDt2DLGxsZg2bRoOHTpkVpza2lpER0dj2bJlFuei0Wgwfvx4+Pn5IS8vDxs2bMCaNWuwdu1afR+5XI6YmBhs2LDB4nHItjVlzL59+/D73/8eBw8exJ49e3Djxg1ERkaipqbGrDgxMTFQKpXYtWsXdu3aBaVSidjYWLNiFBcXY8KECRg9ejSOHj2KZcuWIT4+Hunp6fo+PCcREREREVnHf87+jIQ0JYQAYh7pgyWRA6ROiTq5Ls6OePfZUMidHLDv9BVsOVAidUpEZG2ijanVagFAqNXqZu9ptVpRVFQktFptW6fVKunp6cLLy8ugbceOHcLBwUGUlZXp21JTU4VcLjf6s5vC399f/PWvf21NqkalpKQIDw8Pq8ULCQkRf/rTnwzatmzZInr37m21MToSY/Vzu+XLl4uhQ4daFHvatGkiOjraoC0qKko888wzFsXbu3evACCqqqrMPvbvf/+78PDwEHV1dfq25ORk4efnJ5qamvRtWVlZwsXFRdTW1lqUI9m2pkxRUVEhAIh9+/aZfExRUZEAIA4ePKhvy83NFQDEyZMnTY7z6quvioEDBxq0zZ8/X4wcOdKg7V7npPb6fURERERE1FaOXagSIW/uFP6vfSNe2vqDuNHYdO+DiNrIJweKhf9r34j+y3aIonLLrsMRUdtqad7gdnb9hIYQAg31jZK8hDD9kbTs7GyEhYUZtOXm5mLw4MHw8/PTt0VFRaG+vh5Hjhyx2u/I3jQ1NeHatWvw9PQ0aB8xYgQuXLiA8+fPt1kuQgg0NtZK8mpt/VhLbm4uIiMjDdqioqJw4MABm4x3r1wiIiIgl8sNcikvLzfY5yEsLAwNDQ04fPhwm+d4L0II1DbUSvKyl5oyhVqtBoBm54GW5ObmwsPDA4888oi+beTIkfDw8DCrXu9W8z/88AMaGhr0bVKck4iIiIiIOoqzFdcRl5KHGl0jftnvPvx1+jA4OsikTotIb8ZIf4x70Ae6xibEpx5FXUOj1CkRkZU4SZ1AS27omvDBon2SjD1vfQSc5Y4m9S0pKTGYuAAAlUqFnj17GrT16NEDLi4uUKlUVsvT3vzlL39BTU0Npk2bZtDeq9fNDcFKSkrg7+/fJrk0NWmRtW9Im4x1pzERBXB07GpSX2P1Yy3G6rBnz56S1KBKpTLYz+FWLrfeCwy8uc6qq6srunfvjpKSEkRERLR1mi3S3tDikX8+cu+ONnAo5hC6OktfU/cihMDixYvx6KOPYvDgwSYfp1Kp4OPj06zdx8fHrHq9W83fuHEDP//8M+6//34A0pyTiIiIiIg6gktqLWZuPoTKGh0eesAD78eGQe5k2vUTorYik8mweupDiF6fgzMV1/H2tyfw1pOm/xuViOyXXT+h0V5otVp06dKlWbtM1vzuBCGE0XZbevHFF9GtWzf9y1ZSU1ORlJSEzz//vNmFSYVCAeDmXgxk6G71Yy131psUNdhSLsbaFQoFa6UVbFVTOTk5BueSzz77rFmfBQsWID8/H6mpqWbHt9Y505Q64zmJiIiIiMh8VTU6xG4+jHJ1HYK8XZES9zC6ye36XlnqxO7rJsfaaUMBAJ8ePI/vii5LnBERWYNdf+s4uThg3npp7tB2cjF9rsfLywtVVVUGbb6+vs02Xq6qqkJDQ0Ozu4dtbcWKFUhMTLTpGJ9//jnmzJmDbdu2Ydy4cc3er6ysBAB4e3vbNI/bOTgoMCaioM3Gu3NsUxmrH2vx9fVtdnd7RUVFm9dgS7kAaJZPZWVlm9aKqRROChyKMW9DdWuObSpb1VRYWBiUSqX+/+/83BYuXIivv/4a2dnZeOCBB8yK7evri8uXm//l8sqVK2bV693qzMnJCffdd5++TYpzEhERERFRe1ZTfwPPb8nD2Yrr8HXvgk/nPIL7usnvfSCRhEb398YLjwbiH/uL8Wp6PnY9MBo+7ra7qZSIbM+uJzRkMpnJyz5JKTQ0FFu3bjVoCw8Px9tvv41Lly7plzjJzMyEXC7H8OHD2zQ/Hx8fo0u5WEtqaipmz56N1NRUTJw40WifwsJCODs7Y9CgQTbL404ymczkZZ+kZKx+rCU8PBx79uzByy+/rG/LzMzEqFGjbDLevXJZtmwZdDodXFxc9Ln4+fkZLEV17tw51NXVITQ0tM1zvBeZTGbysk9SslVNKRQK9OvXr1m7EAILFy5ERkYGsrKy9MuHmSM8PBxqtRqHDx/GiBEjAACHDh2CWq02q17Dw8Px73//26AtMzMTYWFhcHZ21rdJcU4iIiIiImqvdDea8OLWI1BeqEb3rs74dM4I9Opu+k1XRFJ6JToYB85dRdElDZZsO4aPnx8BB+75QtRucckpK4iKisLx48cN7oiOjIxESEgIYmNjcfToUXz//fdITEzE3Llz4e7ubnJsnU4HpVIJpVIJnU6HsrIyKJVKnD17ttV5l5aWQqlUorS0FI2Njfpxrl+/bnKM1NRUzJw5E3/5y18wcuRIqFQqqFQq/abAt+Tk5GD06NH6ZV7of4zVDwCcPXsWSqUSKpUKWq3WoA5MtWjRImRmZmL16tU4efIkVq9eje+++w4JCQlm5ahSqQzqrqCgAEqlUn+XuyliYmIgl8sRFxeHwsJCZGRkYOXKlVi8eLHBUkA5OTkICgpC3759zcqR/seWNWXM73//e2zduhX//Oc/4ebmpj8PaLVak2M8+OCDiI6Oxty5c3Hw4EEcPHgQc+fOxaRJkxAcHGxynBdffBHnz5/H4sWLceLECXz00UfYvHlzs6fUeE4iIiIiIjJNU5PAkm3HkHPmZyicHfFR3MPo39NN6rSITCZ3csS7z4aii7MDcs78jI/+Uyx1SkTUGqKNqdVqAUCo1epm72m1WlFUVCS0Wm1bp9VqI0eOFJs2bTJoO3/+vJg4caJQKBTC09NTLFiwQNTV1Rn0ASBSUlLuGre4uFgAaPaKiIjQ90lJSRGWfJSzZs0yGnvv3r36Pv7+/mL58uV3jREREWE0xqxZswz6DRgwQKSmppqdY2dhrH7u9rstLi7W97lX/QghxLZt20RwcLBwdnYWAwcOFOnp6Qbvm1I/y5cvN5rL7WNHREQ0+9zvlJ+fL0aPHi3kcrnw9fUVSUlJoqmpyaBPZGSkSE5ObjEO3Zsta+pOxmLeGWf58uXC39+/xThXr14Vzz33nHBzcxNubm7iueeeE1VVVQZ97nVOEkKIrKwsERoaKlxcXERAQIB47733mvW51zmpPX8fERERERFZS1NTk3hze4Hwf+0b0W/ZtyLrVIXUKRFZbOvBEn0tF1ysljodIrpDS/MGt5MJ8d/dUtuIRqOBh4cH1Gp1sycV6urqUFxcjMDAQJtukmwLO3bsQGJiIgoLC+HgYNqDLyUlJejfvz+KiorQv39/i8dOSkpCVlYWsrKyLI5hjFarhaenJ3bs2IGxY8daHOfbb7/FK6+8gvz8fDg52fUqZ5LpCPUTEBCApKQkxMXFWRyjsLAQjz/+OE6fPg0PD49W5dPZSVlTxtyqiy1btlgcoy3PSe35+4iIiIiIyFrWfXca6747A5kMWP9MKKYM9ZM6JSKLCSEw79Mj2FN0GX29XfHNwtFQuNj/UvdEnUVL8wa349VlK5kwYQLOnDmDsrIy9O7d26Rjdu3ahXnz5rX6wuHu3buxfv36VsUwZt++ffjVr37VqguHAFBTU4OUlBROZrSgvdfPyZMn4ebmhpkzZ7YqTnl5OT755BNOZliBlDVlzL59+5Cdnd3qGDwnERERERG1jU9zS7DuuzMAgKTJgziZQe2eTCbD6qkPIf9iNs5dqcFb3xZh5W+GSJ0WEZmJT2gQERHdgd9HRERERNSZfX2sHIvSjkIIYNHj/fHy+AFSp0RkNf85+zNmbD4EIYD3Y4cjapCv1CkREUx/QoObghMREREREREREQAg+/QVLPmXEkIAM8P9kTDO+k9wE0npl/28MG90EADgtfR8qNR1EmdERObghAYREREREREREeFoaRXmf3oEDY0Ckx66H0mTB0Emk0mdFpHVLYkMxuBe7qiubcCSbUo0NbXpAjZE1Aqc0CAiIiIiIiIi6uTOXL6G57fkQdvQiNH9vbB22jA4OHAygzomFycHrH8mFApnR/zn7FV8kPOT1CkRkYk4oUFERERERERE1ImVVWsx86PDqK5twNDe3bFpxnC4OPGSEXVsfb27YfnkEADAmt2nUHBRLXFGRGSKVn07JScnQyaTISEhwUrpEBERERERERFRW7l6vR6xmw/hkroOfb1dkRL3MFzlTlKnRdQmpj/cG08M9sWNJoFFaUdRq7shdUpEdA8WT2jk5eXhgw8+wEMPPWTNfIiIiIiIiIiIqA1cr7+B57fk4acrNfDz6IJP5zwCT1cXqdMiajMymQzJvx2C+z264Kefa7Di30VSp0RE92DRhMb169fx3HPP4cMPP0SPHj2snRMREREREREREdlQ/Y1GzP/0B+RfVKNHV2d8MucR+HVXSJ0WUZvr3tUFa6cNg0wGpOVdwM6CS1KnREQtsGhC4/e//z0mTpyIcePG3bNvfX09NBqNwasjunr1Knx8fFBSUiJ1KnYnMTER8fHxUqdh11g/N23cuBFTpkyROo0OgTV1dzwnEREREVFn19gk8PLnSvzn7FV0dXFEyvMj0M+nm9RpEUkmvO99eCmiLwDg9S8LUF6tlTgjIrobsyc00tLS8OOPPyI5Odmk/snJyfDw8NC/evfubXaS7UFycjImT56MgIAAfduiRYswfPhwyOVyDBs2zOLY6enpCAkJgVwuR0hICDIyMsyO8cEHH2DMmDFwd3eHTCZDdXW1xfnc7tKlS4iJiUFwcDAcHByM7qfy6quvIiUlBcXFxVYZsyOyVf0cP34cU6dORUBAAGQyGdatW2d2jMrKSixcuBDBwcHo2rUr+vTpg/j4eKjV5m+WVVBQgIiICCgUCvTq1QsrVqyAEEL//ty5c5GXl4f9+/ebHZsM2fKcZGyshx9+GG5ubvDx8cGTTz6JU6dOmR3n7bffxqhRo9C1a1d0797dolx4TiIiIiIiapkQAn/8qhA7ClRwdpThg9gwDOvdXeq0iCT38vgBGPqAB9TaBiz+lxKNTeLeBxFRmzNrQuPChQtYtGgRtm7dii5duph0zNKlS6FWq/WvCxcuWJSoPdNqtdi8eTNeeOEFg3YhBGbPno3p06dbHDs3NxfTp09HbGwsjh07htjYWEybNg2HDh0yK05tbS2io6OxbNkyi3Mxpr6+Ht7e3njjjTcwdOhQo318fHwQGRmJTZs2WXXsjsKW9VNbW4ugoCCsWrUKvr6+FsUoLy9HeXk51qxZg4KCAmzZsgW7du3CnDlzzIqj0Wgwfvx4+Pn5IS8vDxs2bMCaNWuwdu1afR+5XI6YmBhs2LDBolzpJlvWlDH79u3D73//exw8eBB79uzBjRs3EBkZiZqaGrPi6HQ6PP3003jppZcszoXnJCIiIiKilv11z2l8dqgUMhmwbnooHu3vJXVKRHbB2dEB658JRVcXRxz8qRKb9p2TOiUiMkImbr89+h62b9+O3/zmN3B0dNS3NTY2QiaTwcHBAfX19QbvGaPRaODh4QG1Wg13d3eD9+rq6lBcXIzAwECTJ0zswZdffon58+fjypUrRt9PSkrC9u3boVQqzY49ffp0aDQa7Ny5U98WHR2NHj16IDU11ex4WVlZGDt2LKqqqiy+A/puxowZg2HDhhl9CuDjjz/Gm2++idLSUquO2RHYsn5uFxAQgISEBKN3rJtr27ZtmDFjBmpqauDk5GTSMe+99x6WLl2Ky5cvQy6XAwBWrVqFDRs24OLFi5DJZABuXhyPjIxEdXU1FAqu32qJtqqpu7ly5Qp8fHywb98+PPbYY2Yfv2XLFiQkJLT6SbLWnJPa6/cREREREVFLUv5TjD/9d9Pj//fkYMwY6S9xRkT2Z9sPF/DKF/lwcpAh/aVRGMonmIjaREvzBrcz7Urkfz3++OMoKCgwaHv++ecxcOBAvPbaa/eczDCXEAI36uutGtNUTnK5/gLrvWRnZyMsLMwmeeTm5uLll182aIuKirJo6SApjRgxAhcuXMD58+fh7982f2ESQqC2qalNxrpTVwcHu6gfW7l1YjF1MgO4WcsRERH6yQzgZi0vXboUJSUlCAwMBACEhYWhoaEBhw8fRkREhNVzbw0hBIRWmnU0ZQpFu6mpW8uReXp6SpbDvUhxTiIiIiIiktJXyjL9ZMbi8QM4mUF0F08NfwBZp6/g2/xLWJR2FN/Ej0Y3uVmXUInIhsz60+jm5obBgwcbtLm6uuK+++5r1m4NN+rr8e6sp6we1xTxH38BZxPvyi0pKYGfn59N8lCpVOjZs6dBW8+ePaFSqWwynq306tULwM3fVVtdPKxtakLf7IJ7d7SBc48NgauJE3y2rB9buHr1Kt566y3Mnz/frONUKpXBfg4A9LWtUqn0Exqurq7o3r07SkpK7G9CQ6vFqV8Ml2Ts4B+PQNa1q0l9pawpIQQWL16MRx991CbfC9YixTmJiIiIiEgqe09VYMm/jgEA4kYFYOGv+kmcEZH9kslkWPnkEBw9X4WSq7VI+vo41jxtfEljImp7Zm8KTs1ptVqbLkly513ZQgiT79S2pm7duulfL774olnH3lo6qLa21haptWu2rh9r0mg0mDhxIkJCQrB8+XKzjzdWy8baFQoFa6UVbFVTOTk5BueBzz77rFmfBQsWID8/36Il8doSz0lERERE1FkcOV+Fl7YewY0mgV8P88MfJ4VIck2BqD3x6OqMdc+EwkEGfHHkIr7JL5c6JSL6r1Y/L5WVlWWFNIxzkssR//EXNot/r7FN5eXlhaqqKpvk4evr2+xpjIqKimZPbbSF29fbb2kdM2MqKysBAN7e3tZMqUVdHRxw7rEhbTbenWObypb1Y03Xrl1DdHQ0unXrhoyMDDg7O5t1/N1qGUCzeq6srGzTWjGVTKFA8I9HJBvbVLaqqbCwMIPzwJ2f28KFC/H1118jOzsbDzzwgNXHtyYpzklERERERG3t9OVrmL0lD3UNTYgY4I0/PzUUDg6czCAyxYhAT/x+bD9s+L+zWPplAYb17o4Hepi2cgIR2Y5dLwAnk8lMXvZJSqGhodi6datNYoeHh2PPnj0G+2hkZmZi1KhRNhmvJf36Wf5IamFhIZydnTFo0CArZtQymUxm8rJPUrJl/ViLRqNBVFQU5HI5vv76a4vu/g8PD8eyZcug0+ng4uIC4GYt+/n5GSxFde7cOdTV1SE0NNRa6VuNTCYzedknKdmqphQKhdHzgBACCxcuREZGBrKysvTLh9kzKc5JRERERERt6UJlLWI3H4Ja24Bf9OmO92b8Ai5OXKiDyBzxj/dHzpmfobxQjcWfH0PqvJFw5KQgkaT4TWYFUVFROH78eLM7os+ePQulUgmVSgWtVgulUgmlUgmdTmdy7EWLFiEzMxOrV6/GyZMnsXr1anz33XdISEgwK0eVSgWlUomzZ88CAAoKCqBUKvV3KbfGrZ/r+vXruHLlCpRKJYqKigz65OTkYPTo0fplXuh/bFk/Op3O4LiysjKDOjDFtWvXEBkZiZqaGmzevBkajQYqlQoqlQqNjY0mx4mJiYFcLkdcXBwKCwuRkZGBlStXYvHixQaPO+fk5CAoKAh9+/Y1OTYZsmVNGfP73/8eW7duxT//+U+4ubnp60Nr5gbqpaWlUCqVKC0tRWNjo8G5xRw8JxERERFRZ/fz9XrM/OgwLmvqMaBnN3wU9zC6utj1Pa1EdsnZ0QHvPhOKbnInHC6pxN/3mn49hYhsRLQxtVotAAi1Wt3sPa1WK4qKioRWq23rtFpt5MiRYtOmTQZtERERAkCzV3Fxsb4PAJGSktJi7G3btong4GDh7OwsBg4cKNLT0w3eT0lJEff6KJcvX240l9vHjoiIELNmzTLlxzVgLK6/v79BnwEDBojU1FSzY3cWtqqf4uJiozEiIiL0fe5VP3v37jUa485cTKmf/Px8MXr0aCGXy4Wvr69ISkoSTU1NBn0iIyNFcnJyi3Ho3mx5TrrT3erj9jjLly9vdl6406xZs4zG2bt3r76Pv7+/WL58udn5mHtOas/fR0RERETUuWm0OjHx3Wzh/9o3YlTy9+JSNf9OS9Ra6UcuCP/XvhFBS78VR85XSp0OUYfU0rzB7WRC/HdX3jai0Wjg4eEBtVrdbB+Guro6FBcXIzAwsN1sknzLjh07kJiYiMLCQjiYuH9CSUkJ+vfvj6KiIvTv39/isZOSkpCVldXq/UwCAgKQlJSEuLi4VsW507fffotXXnkF+fn5cHLiHSHGsH5uKiwsxOOPP47Tp0/Dw8OjVfl0dlLWlDG36mLLli0Wx9BqtfD09MSOHTswduxYi+OYck5qz99HRERERNR51TU04vmUPOT+dBX3ubpg24vhCPLuJnVaRO2eEAIJnyvxlbIcvT0V2BE/Gm5dzNtblIha1tK8we14ddlKJkyYgDNnzqCsrAy9e/c26Zhdu3Zh3rx5rb5wuHv3bqxfv75VMU6ePAk3NzfMnDmzVXGMqampQUpKCiczWsD6uam8vByffPIJJzOsQMqaMmbfvn3Izs5udYxf/epXrZrMAHhOIiIiIqKOqbFJICFNidyfrqKb3Albnh/ByQwiK5HJZHjrycE4cr4KFyq1WP7VcaydPkzqtIg6JT6hQUREdAd+HxERERFReyKEwNIvC5CWdwEujg7YMvthjOrrJXVaRB3ODyWVmPZ+LpoEsP6ZYfj1sF5Sp0TUYZj6hAY3BSciIiIiIiIiasf+vPsU0vIuwEEGvPvsME5mENlIWIAn4h+/uarBHzIKcaGyVuKMiDofTmgQEREREREREbVT/8j5CX/POgcAePs3QxA9+H6JMyLq2BaM7Ycw/x64Vn8DCZ8rcaOxSeqUiDoVTmgQEREREREREbVD6Ucu4v99ewIA8EpUMJ4d0UfijIg6PidHB/x1+jC4yZ1w5HwVNu49K3VKRJ0KJzSIiIiIiIiIiNqZ709cxqvp+QCAOY8G4ndj+kqcEVHn0duzK/7fbwYDAN79/gx+KKmUOCOizoMTGkRERERERERE7UheSSV+99mPaGwS+G1oL7wx4UHIZDKp0yLqVH49rBd+G9oLTQJYlKaEpq5B6pSIOgVOaBARERERERERtRMnLmkwe0se6m804VcDfbD6qYfg4MDJDCIp/OnXg9DHsyvKqrX4Q0YhhBBSp0TU4XFCg4iIiIiIiIioHSi9WouZHx3GtbobeDigB/4W8ws4O/LSDpFU3Lo4Y90zw+DoIMPXx8qRcbRM6pSIOjx+61nJ1atX4ePjg5KSEqlTkdTGjRsxZcoUqdNod1g/N7F+rIc1dXeJiYmIj4+XOg0iIiIiIrNcuVaP2I8O4cq1egz0dcM/Zj0MhYuj1GkRdXq/6NMDCY/3BwD88avjKL1aK3FGRB0bJzSsJDk5GZMnT0ZAQIC+rbS0FJMnT4arqyu8vLwQHx8PnU5nduz09HSEhIRALpcjJCQEGRkZZsf44IMPMGbMGLi7u0Mmk6G6utrsGABQUFCAiIgIKBQK9OrVCytWrDB4nG7u3LnIy8vD/v37LYrfWdmqfo4fP46pU6ciICAAMpkM69atsyi/+vp6LFy4EF5eXnB1dcWUKVNw8eJFs+OwftqOrWrqww8/xOjRo9GjRw/06NED48aNw+HDh83Oz1o1dadLly4hJiYGwcHBcHBwQEJCQrM+r776KlJSUlBcXNzq8YiIiIiI2oKmrgEzPzqM81dr0dtTgU9mj4CHwlnqtIjov343th9GBHjiev0NLPr8KBoam6ROiajD4oSGFWi1WmzevBkvvPCCvq2xsRETJ05ETU0N9u/fj7S0NKSnp2PJkiVmxc7NzcX06dMRGxuLY8eOITY2FtOmTcOhQ4fMilNbW4vo6GgsW7bMrONup9FoMH78ePj5+SEvLw8bNmzAmjVrsHbtWn0fuVyOmJgYbNiwweJxOhtb1k9tbS2CgoKwatUq+Pr6WpxjQkICMjIykJaWhv379+P69euYNGkSGhsbTY7B+mk7tqyprKwsPPvss9i7dy9yc3PRp08fREZGoqzMvMdqrVFTxtTX18Pb2xtvvPEGhg4darSPj48PIiMjsWnTplaNRURERETUFuoaGvHCxz/gxCUNvLrJ8ensR+Dj3kXqtIjoNo4OMvz1mWFw6+KEo6XV2PD9GalTIuq4RBtTq9UCgFCr1c3e02q1oqioSGi12rZOq1XS09OFl5eXQduOHTuEg4ODKCsr07elpqYKuVxu9Ge/m2nTpono6GiDtqioKPHMM89YlOvevXsFAFFVVWX2sX//+9+Fh4eHqKur07clJycLPz8/0dTUpG/LysoSLi4uora21qIcOxtb1s/t/P39xV//+lezj6uurhbOzs4iLS1N31ZWViYcHBzErl27TI7D+mk7bVVTQghx48YN4ebmJj7++GOTj7FWTd1LRESEWLRokdH3tmzZInr37n3XY9vr9xERERERdSwNNxrFnC15wv+1b8TgP+4ShWXVUqdERC3497Ey4f/aNyLw9W/EoZ+uSp0OUbvS0rzB7ez6CQ0hBJp0jZK8xG3L4NxLdnY2wsLCDNpyc3MxePBg+Pn56duioqJQX1+PI0eOmBw7NzcXkZGRBm1RUVE4cOCAyTGsJTc3FxEREZDL5Qa5lJeXG6zTHxYWhoaGBouWobEmIQRqdTckedlL/VjDkSNH0NDQYFCHfn5+GDx4sFl12N7qxxghBBrqGyV52WtN1dbWoqGhAZ6eniYfY62aao0RI0bgwoULOH/+fJuMR0RERERkLiEEln5ZgO9OXIaLkwM+nBWGQX4eUqdFRC2Y9JAfnhr+AJoE8PLnSqi1DVKnRNThOEmdQEtEQxPK/9j2F+4BwG/FKMhM3FyrpKTE4CIhAKhUKvTs2dOgrUePHnBxcYFKpTI5D2NxevbsaVYMa1GpVAbr8d/K5dZ7gYGBAABXV1d0794dJSUliIiIaOs09bQNjQj5425Jxi5aEYWuLqb98bJl/ViDSqWCi4sLevToYdBubh22t/ox5oauCR8s2ifJ2PPWR8BZLv056U6vv/46evXqhXHjxpl8jLVqqjV69eoF4Obvyt/fv03GJCIiIiIyx6qdJ7HtyEU4yICNz4ZiZNB9UqdERCZImjIIeSWVOH+1FssyCrDx2VDIZDKp0yLqMOz6CY32QqvVokuX5utXGjtZCSHMPond2d+SGNZiLBdj7QqFArW1tW2WV3tm6/qxFWvVsrF21k/rtFVNvfPOO0hNTcWXX35pdDxzmZtLt27d9K8XX3zRrLEUCgUAsM6IiIiIyC69v+8c3s/+CQCwaupDiBxk+Z6IRNS2usmdsP6ZUDg5yPBt/iV8ceSi1CkRdSh2/YSGzNkBfitGSTa2qby8vFBVVWXQ5uvr22zj7qqqKjQ0NDS7S7olvr6+ze5YrqioMCuGtdwtFwDN8qmsrIS3t3eb5WaMwtkRRSuiJBvbVLasH2vw9fWFTqdDVVWVwR31FRUVGDXK9D+f7a1+jHFyccC89dI8NeLkYh/npFvWrFmDlStX4rvvvsNDDz1k1rHWqimlUqn/b3d3d7NyqKysBAC7rDMiIiIi6tz+9cMFJO88CQBY+sRATAvrLXFGRGSuYb274+XxA/Dn3aew/OvjeDjAEwFerlKnRdQh2PUTGjKZDA4ujpK8zLlLODQ0FEVFRQZt4eHhKCwsxKVLl/RtmZmZkMvlGD58uMmxw8PDsWfPHoO2zMxMsy76WUt4eDiys7Oh0+kMcvHz8zNYSujcuXOoq6tDaGhom+d4O5lMhq4uTpK87KV+rGH48OFwdnY2qMNLly6hsLDQrDpsb/VjjEwmg7PcUZKXPdXUn//8Z7z11lvYtWtXs706TGGtmurXr5/+5ePjY1YOhYWFcHZ2xqBBg8w6joiIiIjIljKPq/B6ej4AYP5jQZgf0VfijIjIUi9G9MUjgZ6o1TViUdpRNDQ2SZ0SUYdg1xMa7UVUVBSOHz9ucEd0ZGQkQkJCEBsbi6NHj+L7779HYmIi5s6da9adxIsWLUJmZiZWr16NkydPYvXq1fjuu++QkJBgVo4qlQpKpRJnz54FABQUFECpVOrvUjZFTEwM5HI54uLiUFhYiIyMDKxcuRKLFy82uNiak5ODoKAg9O3Lv3iZwpb1o9PpoFQqoVQqodPpUFZWZlAHpvDw8MCcOXOwZMkSfP/99zh69ChmzJiBIUOGmLVvAuun7diypt555x384Q9/wEcffYSAgACoVCqoVCpcv37d5BjWqqm7uVXz169fx5UrV6BUKptN8OTk5GD06NH6paeIiIiIiKR28KerWJB6FE0CeHr4A3j9iYFSp0REreDoIMNfpw+Dh8IZxy6qse6701KnRNQxiDamVqsFAKFWq5u9p9VqRVFRkdBqtW2dVquNHDlSbNq0yaDt/PnzYuLEiUKhUAhPT0+xYMECUVdXZ9AHgEhJSWkx9rZt20RwcLBwdnYWAwcOFOnp6Qbvp6SkiHt9lMuXLxcAmr1uHzsiIkLMmjWrxTj5+fli9OjRQi6XC19fX5GUlCSampoM+kRGRork5OQW45AhW9VPcXGx0c89IiJC38eU+tFqtWLBggXC09NTKBQKMWnSJFFaWmrQh/VjX2xVU/7+/kZravny5fo+bVlTxhjLz9/f36DPgAEDRGpqaov5tdfvIyIiIiJqfwouVovBf9wl/F/7RrzwcZ5ouNEodUpEZCU78suF/2vfiIDXvxEHzv4sdTpEdquleYPbyYT47668bUSj0cDDwwNqtbrZXcF1dXUoLi5GYGCgVTaYbUs7duxAYmIiCgsL4eBg2oMvJSUl6N+/P4qKitC/f3+Lx05KSkJWVhaysrIsjgEAAQEBSEpKQlxcnMUxCgsL8fjjj+P06dPw8PBoVT6dCevnJtaP9bCm7u7bb7/FK6+8gvz8fDg5Gd9Kqj1/HxERERFR+1Lycw2e2nQAP1/XYUSgJz6ZPQJdzNiXkYjs32tf5OPzHy7gfo8u2LloNLp3dZE6JSK709K8we3selPw9mTChAk4c+YMysrK0Lu3aRt27dq1C/PmzWvVhUMA2L17N9avX9+qGCdPnoSbmxtmzpzZqjjl5eX45JNPeDHaTKyfm1g/1sOauruamhqkpKTcdTKDiIiIiKitVGjqEPvRIfx8XYeQ+93xj1lhnMwg6oD+ODkEeSWV+OnnGizLKMDfYn5h1l6ZRPQ/fEKDiIjoDvw+IiIiIiJbU9c2YPoHuTipugb/+7riixdHwdtNLnVaRGQjBRfV+O17/0FDo8DqqUMw/eE+UqdEZFdMfUKDm4ITEREREREREbUhra4Rcz7Ow0nVNXi7yfHp7Ec4mUHUwQ15wANLIoMBAElfF+GnK9clzoiofeKEBhERERERERFRG2lobMKCf/6IH85Xwa2LEz6ZPQJ97usqdVpE1AbmjQ7CqL73QdvQiEVpSuhuNEmdElG7wwkNIiIiIiIiIqI2cKOxCQlpSnx/sgJyJwd8FPcwHrz/7stqEFHH4uAgw9ppw9C9qzMKytRYu+e01CkRtTuc0CAiIiIiIiIisrHGJoFXvsjHtwWX4Owow6bY4Xg4wFPqtIiojfl6dMHqqQ8BAN7PPocDZ3+WOCOi9oUTGkRERERERERENtTUJPBGRgEyjpbB0UGGjTG/wNhgH6nTIiKJRA3yxbMj+kAI4OV/KVFVo5M6JaJ2gxMaREREREREREQ2IoRA0r+PIy3vAhxkwLrpwxA1yFfqtIhIYm9OehB9vV1xWVOP17/MhxBC6pSI2gVOaBARERERERER2YAQAit3nMAnuechkwFrnh6KyUP9pE6LiOxAVxcnrH8mFM6OMuw+fhmphy9InRJRu8AJDSu5evUqfHx8UFJSInUqktq4cSOmTJkidRrtDuvnJtaP9bCmbmJNEREREZGU1u45jQ9zigEAK38zBL/9xQMSZ0RE9mRwLw+8GjUQALDim+M4W3Fd4oyI7B8nNKwkOTkZkydPRkBAgL5t0aJFGD58OORyOYYNG2ZR3OPHj2Pq1KkICAiATCbDunXrLIpTX1+PhQsXwsvLC66urpgyZQouXrxoVoy6ujrExcVhyJAhcHJywpNPPtmsz9y5c5GXl4f9+/dblGdnZav6AYD09HSEhIRALpcjJCQEGRkZZsdg/bQ/xmqqtLQUkydPhqurK7y8vBAfHw+dzrx1Or/88kuEhYWhe/fucHV1xbBhw/Dpp5+and8HH3yAMWPGwN3dHTKZDNXV1WbHAICCggJERERAoVCgV69eWLFihcFjuqwpIiIiIpLKhu/PYMP/nQUA/GnKIDw7oo/EGRGRPZrzaCBG9/dCXUMTFqUdRf2NRqlTIrJrnNCwAq1Wi82bN+OFF14waBdCYPbs2Zg+fbrFsWtraxEUFIRVq1bB19fyNTYTEhKQkZGBtLQ07N+/H9evX8ekSZPQ2Gj6SbKxsREKhQLx8fEYN26c0T5yuRwxMTHYsGGDxbl2Nrasn9zcXEyfPh2xsbE4duwYYmNjMW3aNBw6dMisOKyf9sVYTTU2NmLixImoqanB/v37kZaWhvT0dCxZssSs2J6ennjjjTeQm5uL/Px8PP/883j++eexe/dus+LU1tYiOjoay5YtM+u422k0GowfPx5+fn7Iy8vDhg0bsGbNGqxdu1bfhzVFRERERFL4IPsc/rLnNABg2YSBmDUqQNqEiMhuOTjI8Jenh8LT1QXHyzVYs/uU1CkR2TWZaOMdZzQaDTw8PKBWq+Hu7m7wXl1dHYqLixEYGIguXbq0ZVqt8uWXX2L+/Pm4cuWK0feTkpKwfft2KJXKVo0TEBCAhIQEJCQkmHWcWq2Gt7c3Pv30U/3F8fLycvTu3Rs7duxAVFSU2bnExcWhuroa27dvb/bevn37EBkZierqaigUCrNjdza2rJ/p06dDo9Fg586d+rbo6Gj06NEDqampJsVg/bQ/xmpq586dmDRpEi5cuAA/v5tr9qalpSEuLg4VFRXNzsfm+MUvfoGJEyfirbfeMvvYrKwsjB07FlVVVejevbtZx7733ntYunQpLl++DLlcDgBYtWoVNmzYgIsXL0ImkwGwrKba6/cREREREUnv4wMlWP71cQDAkvEDsPDx/hJnRETtwZ6iy5j7yQ8AgE/njMDo/t4SZ0TUtlqaN7idXT+hIYSATqeT5GXOPE92djbCwsJs+JtonSNHjqChoQGRkZH6Nj8/PwwePBgHDhyw+nhhYWFoaGjA4cOHrR7bLEIAuhppXnZSP7m5uQafOwBERUWZ9bl32voxQgiBhro6SV6tPSfl5uZi8ODB+skM4GYt1NfX48iRIxb/Pr7//nucOnUKjz32mEUxWiM3NxcRERH6yQzg5s9UXl5usHeIPdcUEREREXUsqYdL9ZMZC8b242QGEZlsfEhPxI70BwAs+dcxXL1eL3FGRPbJSeoEWtLQ0ICVK1dKMvayZcvg4uJiUt+SkhKDi4T2RqVSwcXFBT169DBo79mzJ1QqldXHc3V1Rffu3VFSUoKIiAirxzdZQy2wUqLPZVk54OJqUldb1o9KpULPnj0N2sz93Dtt/Rhxo74e7856SpKx4z/+As4mPilgrKaM1UKPHj3g4uJi9ueoVqvRq1cv1NfXw9HREX//+98xfvx4s2JYg0qlMtgjBID+Z1SpVAgMDARg3zVFRERERB3Hlz9exLKMAgDA3NGBWBI5QOKMiKi9eWPigzj401WcqbiO19Lz8eHMMP3qA0R0k10/odFeaLXadrkkiRDCZidFhUKB2tpam8TuaGxdP3d+xtb63Fk/9utuNWXs87Lkc3Rzc4NSqUReXh7efvttLF68GFlZWZam2yrG6ttYO2uKiIiIiGzpm/xyJG47BiGAmeH+WDbhQV6EJCKzdXF2xLvPhsLF0QHfnajA1kOlUqdEZHfs+gkNZ2fnVm0Y29qxTeXl5YWqqiobZtM6vr6+0Ol0qKqqMrjLvqKiAqNGjbLJmJWVlfD2lnitP+euN5+UkGpsE9myfnx9fZvdfV9RUdHsTv17xeiU9WOEk1yO+I+/kGxsUxmrKV9f32abwVdVVaGhocGsegAABwcH9OvXDwAwbNgwnDhxAsnJyRgzZoxZcVrrbvUNoNnPZK81RURERETt3+7jKixKU6JJANPDeiNp8iBOZhCRxR683x2vPzEQK74pwv/7pggjAz3Rv6eb1GkR2Q27fkJDJpPBxcVFkpc5f/kIDQ1FUVGRDX8TrTN8+HA4Oztjz549+rZLly6hsLDQJhekz507h7q6OoSGhlo9tllkspvLPknxspP6CQ8PN/jcASAzM9Osz73T1o8RMpkMzl26SPJq7TkpPDwchYWFuHTpkr4tMzMTcrkcw4cPb9XvRQiB+vq2X9szPDwc2dnZ0Ol0+rbMzEz4+fkZLEVlzzVFRERERO3b3pMVWPDPH9HYJPCb0F5Y+dshcHDgZAYRtc7zvwxAxABv1N9owsLUo6hraJQ6JSK7YdcTGu1FVFQUjh8/3uyO6LNnz0KpVEKlUkGr1UKpVEKpVBpcfLsXnU5ncFxZWRmUSiXOnj1rcgwPDw/MmTMHS5Yswffff4+jR49ixowZGDJkCMaNG2dyHAAoKiqCUqlEZWUl1Gq1Prfb5eTkICgoCH379jUrdmdly/pZtGgRMjMzsXr1apw8eRKrV6/Gd999h4SEBJNjsH7aH2M1FRkZiZCQEMTGxuLo0aP4/vvvkZiYiLlz58Ld3d3k2MnJydizZw9++uknnDx5EmvXrsUnn3yCGTNmmJWjSqUyOJcVFBToa8NUMTExkMvliIuLQ2FhITIyMrBy5UosXrzYYAKINUVEREREtrD3VAXmbz2ChkaBiUPux5+fegiOnMwgIiuQyWRY8/RQ3OfqgpOqa3hn1ympUyKyH6KNqdVqAUCo1epm72m1WlFUVCS0Wm1bp9VqI0eOFJs2bTJoi4iIEACavYqLi/V9AIiUlJS7xi0uLjYaIyIiQt8nJSVF3Ouj1Gq1YsGCBcLT01MoFAoxadIkUVpa2izfWbNmtRjH39/faD63i4yMFMnJyS3GIUO2qh8hhNi2bZsIDg4Wzs7OYuDAgSI9Pd3gfdZPx2Ssps6fPy8mTpwoFAqF8PT0FAsWLBB1dXUGfe5VU2+88Ybo16+f6NKli+jRo4cIDw8XaWlpBn1Mqanly5cbrYXbxzalpvLz88Xo0aOFXC4Xvr6+IikpSTQ1NRn0saSm2vP3ERERERHZXsaPF0Xfpd8K/9e+EXO25AndjUapUyKiDuj/TlwW/q99I/xf+0bsPXlZ6nSIbKqleYPbyYT47w6qbUSj0cDDwwNqtbrZXcF1dXUoLi5GYGBgu9tke8eOHUhMTERhYSEcHEx78KWkpAT9+/dHUVER+vfvb/HYSUlJyMrKavWmvAEBAUhKSkJcXJzFMQoLC/H444/j9OnT8PDwaFU+nQnr5ybWj/Wwpm6ytKba8/cREREREdnWR/uLseKbm0u8/nqYH/781FC4OHEBDCKyjaSvj2PLgRJ4dZNjV8JoeHUzfY9NovakpXmD29n1puDtyYQJE3DmzBmUlZWhd+/eJh2za9cuzJs3r1UXDgFg9+7dWL9+fatinDx5Em5ubpg5c2ar4pSXl+OTTz7hxWgzsX5uYv1YD2vqJtYUEREREVmLEAJrMk/hb3vPAQDiRgXgj5NCuGcGEdnU608MRO65qzh1+Rpe2XYMH8U9bNY+m0QdDZ/QICIiugO/j4iIiIjodjcam/CH7YVIy7sAAHglKhi/G9OXFxWJqE2cUl3D5I37obvRhKTJIYj7ZaDUKRFZnalPaPCZSCIiIiIiIiKiu6hraMTv//kj0vIuwEEGJP92CH4/th8nM4iozQT7uuGNCQ8CAFbuPImTKo3EGRFJhxMaRERERERERERGaOoaMOujw9h9/DJcHB3w9+d+gWdH9JE6LSLqhGaG++NXA32gu9GERalK1DU0Sp0SkSQ4oUFEREREREREdIcr1+rxzPsHcai4Et3kTtgy+2FED75f6rSIqJOSyWR456mH4NVNjlOXr2HVzpNSp0QkCU5oEBERERERERHdpvRqLZ7adABFlzTw6uaCtHkjMaqvl9RpEVEn59VNjjVPPwQA2HKgBP938rLEGRG1PU5oEBERERERERH914lLGkzddADnr9ait6cCX7w4CoN7eUidFhERAGBMsA9m/3dT8Fe25aPiWp3EGRG1LU5oEBEREREREREBOFxciWnv5+LKtXoM9HVD+oujEODlKnVaREQGXo0OxkBfN1yt0eGVbfloahJSp0TUZjihQURERERERESd3p6iy4jdfAjX6m5gRIAnPp8fDh/3LlKnRUTUTBdnR2x4NhRyJwfsO30FKQdKpE6JqM1wQsNKrl69Ch8fH5SUlEidiqQ2btyIKVOmSJ1Gu8P6Mc9TTz2FtWvXSp2GXWNN3cRzEhERERGZ4l8/XMCLW4+g/kYTxj3og0/mjICHwlnqtIiI7qp/Tzf8YVIIAGD1zpMoKtdInBFR2+CEhpUkJydj8uTJCAgI0LctWrQIw4cPh1wux7BhwyyKe/z4cUydOhUBAQGQyWRYt26dRXE++OADjBkzBu7u7pDJZKiurjY7Rl1dHeLi4jBkyBA4OTnhySefbNZn7ty5yMvLw/79+y3Ks7OyVf0Yk52djcmTJ8PPzw8ymQzbt2+3KE5VVRViY2Ph4eEBDw8PxMbGWlRXdzKl5v/4xz/i7bffhkbDL+u7sWVNpaenIyQkBHK5HCEhIcjIyDDr+MrKSixcuBDBwcHo2rUr+vTpg/j4eKjVarPi8JxERERERK3V2CSwds9pvPpFPhqbBJ4a/gA2zRiOLs6OUqdGRHRPMx7pg3EP9oSusQmL0o5Cq2uUOiUim+OEhhVotVps3rwZL7zwgkG7EAKzZ8/G9OnTLY5dW1uLoKAgrFq1Cr6+vq2KEx0djWXLllkco7GxEQqFAvHx8Rg3bpzRPnK5HDExMdiwYYPF43Q2tqwfY2pqajB06FBs3LixVXFiYmKgVCqxa9cu7Nq1C0qlErGxsa3Oz5Saf+ihhxAQEIDPPvus1eN1RLasqdzcXEyfPh2xsbE4duwYYmNjMW3aNBw6dMjkGOXl5SgvL8eaNWtQUFCALVu2YNeuXZgzZ45ZufCcREREREStcVlTh+f+cRDvfn8GADD/sSD8+amH4OTISyVE1D7IZDKsnjoE3m5ynKm4jrd3FEmdEpHNOUmdQEuEEGhq0koytoODAjKZzKS+O3fuhJOTE8LDww3a3333XQDAlStXkJ+fb1EeDz/8MB5++GEAwOuvv25RDABISEgAAGRlZVkcw9XVFe+99x4A4D//+c9d78afMmUKIiMjodVqoVAoLB6vtYQQ0N6Qpn4UTvZRP8Y88cQTeOKJJ1oV48SJE9i1axcOHjyIRx55BADw4YcfIjw8HKdOnUJwcLDFsU2t+SlTpiA1NRUvvfSSxWOZSwgB0dDUZuPdTubsYBc1tW7dOowfPx5Lly4FACxduhT79u3DunXrkJqaalKMwYMHIz09Xf//ffv2xdtvv40ZM2bgxo0bcHIy7aupvZ2TiIiIiMh+ZJ2qwOJ/HUNljQ5dXRzx9m8G4zehD0idFhGR2e7rJsfaaUMRu/kwth4sRcQAH4wP6Sl1WkQ2Y9cTGk1NWmTtGyLJ2GMiCuDo2NWkvtnZ2QgLC7NxRu1HWFgYGhoacPjwYUREREiWh/aGFo/88xFJxj4UcwhdnTtu/eTm5sLDw0M/mQEAI0eOhIeHBw4cONCqCQ1TjRgxAsnJyaivr4dcLrf5eAAgGppQ/scDbTLWnfxWjILMxbTH3m1ZU7m5uXj55ZcN2qKioixeDu8WtVoNd3d3kyczzGEv5yQiIiIikl5DYxPWZJ7C+/t+AgCE3O+OjTGhCPLuJnFmRESWG93fG3NHB+LDnGK8+sUx7Ep4DD3du0idFpFN8DlKKygpKYGfn5/UadgNV1dXdO/evdNvRmyq9lg/KpUKPj4+zdp9fHygUqnaJIdevXqhvr6+zcZrT2xZUyqVCj17Gt7p0bNnz1Z9DlevXsVbb72F+fPntzY9o3hOIiIiIiIAuFBZi2nv5+onM2aG++PL343iZAYRdQiJUcEIud8dVbUNWPKvY2hqElKnRGQTdv2EhoODAmMiCiQb21RarRZdunDW83YKhQK1tbXS5uCkwKEY09f1t/bYprJV/eTk5BgsLfX+++/jueees1p8Y8sfCSFMXhaptLQUISEh+v9ftmyZWXu83Fo6qC3rTObsAL8Vo9psvDvHNpWtz0l3fsbmfO530mg0mDhxIkJCQrB8+XJrpGeUPZyTiIiIiEg6uwpVePWLY9DU3YBbFyf8+amHED34fqnTIiKyGrmTI959NhSTNuRg/9mfsXl/MeY+FiR1WkRWZ9cTGjKZzORln6Tk5eWFqqoqqdOwK5WVlfD29pY0B5lMZvKyT1KyVf2EhYVBqVTq///Ou+pbw9fXF5cvX27WfuXKFZPH8fPzM8jP09PTrBwqKysBoE3rTCaTmbzsk5RseU7y9fVt9jRGRUWFRfV17do1REdHo1u3bsjIyICzs7O10mzGHs5JRERERNT26hoakbzjBD7OPQ8AGNa7OzY8G4renvb/b0UiInP18+mGP04ahGUZBXhn90mE970Pg3t5SJ0WkVVxySkrCA0NRVFRkdRp2I1z586hrq4OoaGhUqfSLtiqfhQKBfr166d/ubm5WS12eHg41Go1Dh8+rG87dOgQ1Go1Ro0y7QkGJycng/zMndAoLCzEAw88AC8vL7OO6wxseU4KDw/Hnj17DNoyMzNN/txv0Wg0iIyMhIuLC77++mubPlHCcxIRERFR51T8cw2mvndAP5kx/7EgbHsxnJMZRNShPTuiN6IG9URDo0B82lHU6m5InRKRVdn1ExrtRVRUFJYuXYqqqir06NFD33727Flcv34dKpUKWq1Wfzd6SEgIXFxcTIqt0+n0FyZ1Oh3KysqgVCrRrVs39OvXz+QcVSoVVCoVzp49CwAoKCiAm5sb+vTpY9aF5KKiIuh0OlRWVuLatWv6n2nYsGH6Pjk5OQgKCkLfvn1NjtuZ2bJ+jLl+/bq+DgCguLgYSqUSnp6e6NOnj0kxHnzwQURHR2Pu3Ll4//33AQDz5s3DpEmTWr0huKk1n5OTg8jIyFaN1VHZsqYWLVqExx57DKtXr8avf/1rfPXVV/juu++wf/9+k/O7du0aIiMjUVtbi61bt0Kj0UCj0QC4+cSNo6PpT8HwnERERERExnylLMOyLwtQo2uEp6sL/jJtKMYGN98HkIioo5HJZFj124egvJCNn67U4K1vTiD5t0OkTovIekQbU6vVAoBQq9XN3tNqtaKoqEhotdq2TqvVRo4cKTZt2mTQFhERIQA0exUXF+v7ABApKSl3jVtcXGw0RkREhL5PSkqKuNdHuXz5cqNxbh87IiJCzJo1q8U4/v7+RuPcLjIyUiQnJ7cYhwzZqn6M2bt3r9G4t3/2y5cvF/7+/i3GuXr1qnjuueeEm5ubcHNzE88995yoqqoy6OPv7y+WL19uVn6m1LxWqxXu7u4iNzfXrNidiS1ratu2bSI4OFg4OzuLgQMHivT0dIP373VOulsN3pmLlOek9vx9RERERNSZ1dbfEK9uOyb8X/tG+L/2jXh60wFxqZp/pyOizmf/mSsi4PWb58KdBZekTofonlqaN7idTAjRplveazQaeHh4QK1Ww93d3eC9uro6FBcXIzAwsN1tsr1jxw4kJiaisLAQDg6mreRVUlKC/v37o6ioCP3797d47KSkJGRlZSErK8viGAAQEBCApKQkxMXFWRyjsLAQjz/+OE6fPg0PD67RZyop68eYWzWwZcsWi2NotVp4enpix44dGDt2rHUS+6+//e1v+Oqrr5CZmWnVuB0Jz0k3WXpOas/fR0RERESd1enL1/D7z37EmYrrkMmAhb/qj/hf9YOTI1fbJqLOKXnnCby/7yd07+qMnYtG434PhdQpEd1VS/MGt+OSU1YyYcIEnDlzBmVlZejdu7dJx+zatQvz5s1r9cXo3bt3Y/369a2KcfLkSbi5uWHmzJmtilNeXo5PPvmEkxlmkrJ+jNm3bx+ys7NbHeNXv/qV1SczAMDZ2RkbNmywetyOhOekm3hOIiIiIur4hBD41w8XsPzr46hraIKPmxzrnhmGUX253x4RdW5LxgfjwNmrKChT442MQmyeFQaZTCZ1WkStwic0iIiI7sDvIyIiIqL24VpdA97IKMTXx8oBAI8N8MbaaUPh1U0ucWZERPbhbMU1PLE+Bw2NAhtjQjHpIT+pUyIyytQnNPjcJRERERERERG1O4VlakzesB9fHyuHo4MMr0UPxJa4hzmZQUR0m34+bvjdmH4AgKSvi6CubZA4I6LW4YQGEREREREREbUbQghs+U8xfvv3Ayi5Wote3RX41/yReGlMXzg4cCkVIqI7/W5sX/T1dsXP1+uRvPOE1OkQtQonNIiIiIiIiIioXVDXNmD+p0eQ9O8i6BqbEBnSE9/GP4rh/p5Sp0ZEZLfkTo5YNfUhAEBa3gUc/OmqxBkRWY4TGkRERERERERk946cr8KEd3OQWXQZLo4OSJocgvdjh6N7VxepUyMisnsPB3gi5pE+AIBlXxagrqFR4oyILMMJDSIiIiIiIiKyW01NApv2ncO093NRVq2F/31dkf7SKMT9MhAyGZeYIiIy1WvRA+HjJsdPP9fg73vPSp0OkUU4oUFEREREREREdunn6/WI25KHVTtPorFJYPJQP3yz8FEMecBD6tSIiNodD4Uz/jRlEADgvX3ncPryNYkzIjIfJzSIiIiIiIiIyO7knruKCetzkH36Cro4O2DVb4fg3WeGwa2Ls9SpERG1W9GDfTHuwZ5oaBR4PT0fTU1C6pSIzMIJDSu5evUqfHx8UFJSInUqktq4cSOmTJkidRrtDuvn7hITExEfHy91Gu0Oa+omnpOIiIiI2p/GJoG/7jmN5/5xEBXX6tHfpxu++v2jeGZEHy4xRUTUSjKZDG89OQiuLo74sbQanx06L3VKRGbhhIaVJCcnY/LkyQgICNC3lZaWYvLkyXB1dYWXlxfi4+Oh0+nMinv8+HFMnToVAQEBkMlkWLdunUX5ffDBBxgzZgzc3d0hk8lQXV1tdoy6ujrExcVhyJAhcHJywpNPPtmsz9y5c5GXl4f9+/dblGdnZax+Fi1ahOHDh0Mul2PYsGFWGys7OxuTJ0+Gn58fZDIZtm/fblGcqqoqxMbGwsPDAx4eHoiNjbWorvbt24fhw4ejS5cuCAoKwqZNmwzef/XVV5GSkoLi4mKL8uysbFVTH374IUaPHo0ePXqgR48eGDduHA4fPmxWjMrKSixcuBDBwcHo2rUr+vTpg/j4eKjVarPzKSgoQEREBBQKBXr16oUVK1ZAiP/dXcJzEhEREVH7cllTh+f+cRDrvz+DJgFMC3sAXy34JYJ93aROjYiow7jfQ4FXowcCAFbvOgWVuk7ijIhMxwkNK9Bqtdi8eTNeeOEFfVtjYyMmTpyImpoa7N+/H2lpaUhPT8eSJUvMil1bW4ugoCCsWrUKvr6+FudYW1uL6OhoLFu2zOIYjY2NUCgUiI+Px7hx44z2kcvliImJwYYNGywep7MxVj8AIITA7NmzMX36dKuOV1NTg6FDh2Ljxo2tihMTEwOlUoldu3Zh165dUCqViI2NNStGcXExJkyYgNGjR+Po0aNYtmwZ4uPjkZ6eru/j4+ODyMjIZhMddHe2rKmsrCw8++yz2Lt3L3Jzc9GnTx9ERkairKzM5Bjl5eUoLy/HmjVrUFBQgC1btmDXrl2YM2eOWbloNBqMHz8efn5+yMvLw4YNG7BmzRqsXbtW34fnJCIiIqL2I+tUBZ5Yn4ODP1XC1cUR66YPwztPDUVXFyepUyMi6nBmjPTHsN7dcb3+BpZ/XSh1OkQmk4nbb2VtAxqNBh4eHlCr1XB3dzd4r66uDsXFxQgMDESXLl0ghEBtU1NbpqfX1cHB5EdZv/zyS8yfPx9XrlzRt+3cuROTJk3ChQsX4OfnBwBIS0tDXFwcKioqmv3spggICEBCQgISEhLMPvaWrKwsjB07FlVVVejevbvFceLi4lBdXW307v59+/YhMjIS1dXVUCgUFo/RWkIICK1WkrFlCkWr6ud2SUlJ2L59O5RKpRUzvEkmkyEjI8Po0zYtOXHiBEJCQnDw4EE88sgjAICDBw8iPDwcJ0+eRHBwsElxXnvtNXz99dc4ceKEvu3FF1/EsWPHkJubq2/7+OOP8eabb6K0tNSsPK1NCIGGhgZJxnZ2drbLmmpsbESPHj2wceNGzJw50+I427Ztw4wZM1BTUwMnJ9P+wfree+9h6dKluHz5MuRyOQBg1apV2LBhAy5evKj/fVlyTrrz+4iIiIiIbKehsQlrdp/C+9k/AQBC7nfHxphQBHl3kzgzIqKO7aRKg0nv7seNJoFNM4YjerDlN1MTtVZL8wa3s+vbHGqbmtA3u0CSsc89NgSujo4m9c3OzkZYWJhBW25uLgYPHqyfzACAqKgo1NfX48iRIxg7dqxV87UnYWFhaGhowOHDhxERESFZHkKrxalfDJdk7OAfj0DWtatJfY3Vj73Lzc2Fh4eHfjIDAEaOHAkPDw8cOHDA5AmN3NxcREZGGrRFRUVh8+bNaGhogLPzzc3+RowYgQsXLuD8+fPw9/e33g9ipoaGBqxcuVKSsZctWwYXFxeT+rZlTdXW1qKhoQGenp6tinPry8rUyQzgZv1EREToJzOAm/WzdOlSlJSUIDAwEID9nJOIiIiIqLkLlbWITzuKo6XVAIBZ4f5YOuFBdHE27d/jRERkuYG+7pgfEYS/7T2H5V8XYlS/++DexVnqtIhaxCWnrKCkpMRg4gIAVCoVevbsadDWo0cPuLi4QKVStWV6bc7V1RXdu3fv9JsRm8pY/dg7lUoFHx+fZu0+Pj5m1bexPyc9e/bEjRs38PPPP+vbevXqBQCsKRO1ZU29/vrr6NWr112XoTPF1atX8dZbb2H+/PlmHXe3+rn13i08JxERERHZp12FKkx8NwdHS6vh3sUJm2b8An/69WBOZhARtaGFv+qPQC9XXNbU451dJ6VOh+ie7PoJja4ODjj32BDJxjaVVqs1uiSJseVhhBAmLxvTnikUCtTW1kqag0yhQPCPRyQb21R3q5/WysnJwRNPPKH///fffx/PPfec1eJbq77v7H9rFbzb228tEyR1TTk7O7dqH5rWjm0qW9XUnd555x2kpqYiKyvL4vE0Gg0mTpyIkJAQLF++3OzjTakfwD7OSURERER0U11DI5J3nMDHuecBAMN6d8eGZ0PR29O0p9yJiMh6ujg74u3fDEbMh4ew9WApnhzWC2EBrVuFgciW7HpCQyaTmbzsk5S8vLxQVVVl0Obr64tDhw4ZtFVVVaGhoaHZHcUdUWVlJby9vSXNQSaTmbzsk5SM1Y81hIWFGeyRYM268/X1xeXLl5u1X7lyxaxxfH19mz3RUVFRAScnJ9x33336tsrKSgCwi5oyddknKdmqpm63Zs0arFy5Et999x0eeughi2Jcu3YN0dHR6NatGzIyMsyatAHuXj9A83q3h3MSEREREQHFP9dgwT9/xPFyDQBg/mNBSIwKhrMjF5AgIpLKqL5emBb2AP71w0Us/bIA38aPhosTz8tkn1iZVhAaGoqioiKDtvDwcBQWFuLSpUv6tszMTMjlcgwfLs2+Dm3l3LlzqKurQ2hoqNSptAvG6scaFAoF+vXrp3+5ublZLXZ4eDjUajUOHz6sbzt06BDUajVGjRplVpw9e/YYtGVmZiIsLMzg4nZhYSGcnZ0xaNCg1iffCdiqpm7585//jLfeegu7du2yeK8OjUaDyMhIuLi44Ouvv7boCY/w8HBkZ2dDp9Pp2zIzM+Hn54eAgAB9G89JRERERPbhK2UZJr2bg+PlGni6uiDl+YexdMKDnMwgIrIDyyY8CK9uLjhTcR2b9p2TOh2iu+LfGqwgKioKx48fN7gjOjIyEiEhIYiNjcXRo0fx/fffIzExEXPnzm1xl/Y76XQ6KJVKKJVK6HQ6lJWVQalU4uzZs2blqFKpDI4rKCiAUqnU3/luqqKiIv1xarVan9vtcnJyEBQUhL59+5oVu7MyVj8AcPbsWSiVSqhUKmi1WoM6aI3r168bfG7FxcVQKpUoLS01OcaDDz6I6OhozJ07FwcPHsTBgwcxd+5cTJo0yeQNwQHgxRdfxPnz57F48WKcOHECH330ETZv3ozExESDfjk5ORg9erR+6SlqmS1r6p133sEf/vAHfPTRRwgICIBKpYJKpcL169dNjnHt2jVERkaipqYGmzdvhkaj0cdpbGw0OU5MTAzkcjni4uJQWFiIjIwMrFy5EosXLzZYcornJCIiIiJpaXWNeO2LfCxKU6JG14gRgZ7YET8aY4Ob78tHRETS6N7VBX+cfPNG0o3/dxbnrpj+73yiNiXamFqtFv+fvTuPr6K6/z/+ujd7QlZCEsKSsEMSsggqoIgsBhQRt4qoKHVvq2gV24q10tqKWtuK2qr1p9Dar9AqghuyqIRFEBRJSAhhTSAkhITs+3Lv/P6IXogETMgyWd7Px4MHZmbumXfIce7NfOacAxjFxcVn7KusrDRSU1ONysrK9o7VYmPGjDFee+21BtuOHDliTJ8+3fDw8DACAgKMBx54wKiqqmpwDGAsWbLkrO2mp6cbwBl/JkyY4DhmyZIlxo/9KJ966qlG2zn93BMmTDDuuOOOc7YTFhbWaDuni4+PNxYtWnTOdqShxvrPhAkTGv23Tk9PdxzzY/2nMRs2bGi03dN/9k899ZQRFhZ2znby8/ONW2+91fD29ja8vb2NW2+91SgsLGxwTFhYmPHUU0+ds52EhAQjLi7OcHV1NcLDw41XX331jGOGDh1qLFu2rInfoRhG2/Wps10DTv85/9g16Wx98IdZmnJN2r17tzF+/HjDzc3NCAkJMRYuXGjY7fYGx5zPNakzvx+JiIiIdCT7ckqMKX9JMMJ+/bER/puPjb+s22fU1tnMjiUiIo2w2+3GHW9tN8J+/bHxk9e2Gjab/cdfJNJKzlU3OJ3FML5bQbWdlJSU4OvrS3Fx8RkjFaqqqkhPT2fAgAHtsqBta1q9ejXz588nJSUFaxMXFM/IyGDIkCGkpqYyZMiQ8z73woULSUhIICEh4bzbAAgPD2fhwoXMnTv3vNtISUlh8uTJ7N+/H19f3xbl6U7M7D+N+b4PLF269LzbqKysJCAggNWrVzNx4sTzbueTTz7hscceY/fu3Tg7d+hlfzoUXZPqne81qTO/H4mIiIh0BIZh8L9vMnnqwz1U1drp5e3G4lmxjBscaHY0ERE5h8yCCuL/tonKWhvPXj+Smy/qb3Yk6SbOVTc4ne4OtpKrrrqKAwcOkJWVRb9+/Zr0mjVr1nDvvfe2+Gb02rVrWbx4cYvaSEtLw9vbm9tvv71F7WRnZ/Pvf/9bxYxmMrP/NGbjxo1s2rSpxW1MmjSpRcUMgPLycpYsWaJiRjPpmlRP1yQRERGR9ldaVcsTK1P4MCkbgPFDAvnbrFgCe7iZnExERH5MvwBPHo0fyh8/2cszq/cyaUQQQd560E86Do3QEBER+QG9H4mIiIicn5SsYh5451sy8itwslp4NH4o9182CKvV8uMvFhGRDqHOZue6f2wlOauY6+P68NdZsWZHkm6gqSM0tCi4iIiIiIiIiLSIYRgs+TKd6/+xlYz8Cvr4efC/+8bw88sHq5ghItLJODtZ+eO1UQB8mJRNXmm1yYlETlFBQ0RERERERETOW1FFDfe9vZPff5RKjc3OFRHBfDLvUkaFBZgdTUREzlNMPz9i+/lRZzdY8e0xs+OIOKigISIiIiIiIiLnZeeRQqa/tIV1qSdwdbKycEYE/5wzCj9PV7OjiYhIC93y3YLgy3ccxW5v11ULRM5KBQ0RERERERERaRa73eDVhEPc9Po2sooqCevpyYqfjWPuJQOwWDTFlIhIV3B1TG96uDmTkV/BV4fzzY4jAqigISIiIiIiIiLNcLKsmrlLv+a5NWnY7AYzYkL5+MFLGdnX1+xoIiLSijxdnZkZGwrAOzuOmpxGpJ4KGiIiIiIiIiLSJFsPneSqxZvZtD8Pdxcrz14/kpdujsXb3cXsaCIi0gZmfzft1Lo9J8gv0+LgYj4VNERERERERETknGx2g7+u38+t/287uaXVDAnqwQe/uJSbL+qvKaZERLqwqD6+RPf1pcZm5/1vs8yOI6KCRmvJz88nKCiIjIwMs6N0OPPnz2fevHlmx+jQ1H/qvfLKK1xzzTVmx+gS1KfOTtckERERkebJKa7ilje+4qXPD2AYMGt0Pz584FKGhXibHU1ERNrB96M0lu04imFocXAxlwoarWTRokXMmDGD8PBwx7aHHnqIUaNG4ebmRmxs7Hm3vWLFCiIiInBzcyMiIoKVK1e2PDDwpz/9iXHjxuHp6Ymfn995t7Nx40ZGjRqFu7s7AwcO5LXXXmuw/1e/+hVLliwhPT29hYm7rsb6z9GjR5kxYwZeXl4EBgYyb948ampqmtXuG2+8wfjx4/H398ff358pU6awY8eOZuf75z//yeWXX46Pjw8Wi4WioqJmt1FVVcXcuXMZOXIkzs7OXHvttWccc8899/D111+zZcuWZrcvDbXlNemHNm3axIwZMwgNDcVisbBq1arzakfXJBEREZGOZ8O+XK56aTPb0wvwcnVi8c2xPHdjNB6uTmZHExGRdjIjJhQvVycOnyxne3qB2XGkm1NBoxVUVlby5ptvcvfddzfYbhgGd955J7NmzTrvtrdt28asWbOYM2cOSUlJzJkzh5tuuont27e3NDY1NTX85Cc/4Wc/+9l5t5Gens5VV13F+PHj2bVrFwsWLGDevHmsWLHCcUxQUBDx8fFn3FSUeo31H5vNxvTp0ykvL2fLli0sX76cFStW8Oijjzar7YSEBGbPns2GDRvYtm0b/fv3Jz4+nqys5g0RrKioYNq0aSxYsKBZrzudzWbDw8ODefPmMWXKlEaPcXNz45ZbbuHll18+7/NI216TGlNeXk5MTAyvvPJKi9rRNUlERESk46i12Vm0ei8/XfI1BeU1RIb68PG88cyM7WN2NBERaWc93Jy55rvFwZdpcXAxmcVo53FCJSUl+Pr6UlxcjI+PT4N9VVVVpKenM2DAANzd3TEMg8paW3vGc/BwcWryPKDvv/8+9913H3l5eY3uX7hwIatWrSIxMbHZOWbNmkVJSQmffvqpY9u0adPw9/dn2bJlzW6vMUuXLuXhhx8+r6fuf/3rX/Phhx+yd+9ex7b777+fpKQktm3b5tj2r3/9iyeffJKjR9vvomcYBnU19nY73+mcXa0t6j+ffvopV199NZmZmYSG1r9hLF++nLlz55Kbm3vG/ztNZbPZ8Pf355VXXuH2229v9usTEhKYOHEihYWFLXqCfu7cuRQVFTX6JP/GjRuJj4+nqKgIDw+P8z5HWzAMA7u90pRzW60eHeKa9GMsFgsrV65sdAROU3WEa9IP349EREREupPMggoeXLaLxMwiAO4YG8bjV43A3UWjMkREuqvdx4q45pUvcXW2sv3xyfh7uZodSbqYc9UNTufcjpmarbLWRsTv1ppy7tQ/TMXTtWn/PJs2bWL06NFtkmPbtm388pe/bLBt6tSpvPjii21yvubatm0b8fHxDbZNnTqVN998k9raWlxcXAC46KKLyMzM5MiRI4SFhbVLtroaO/98aGO7nOuH7l08ARe3pn3Yb6z/bNu2jaioKEcxA+r/Xaurq9m5cycTJ048r1wVFRXU1tYSEBBwXq9vD6NHj6a2tpYdO3YwYcIEs+M0YLdXkrBxpCnnvnxCMk5Onk06ti2vSR1dR74miYiIiHQGa1KO86v3dlNSVYePuzPP3xjNtKjeZscSERGTjezjS2SoD3uyS3h/VxZ3XTrA7EjSTWnKqVaQkZHR4MZza8rJySE4OLjBtuDgYHJyctrkfM11tnx1dXWcPHnSsa1Pn/phyVqg+EyN9Z/G/l39/f1xdXVt0c/+N7/5DX369DnrlE8dgZeXF35+fuorLdCW16SOTtckERERkfNTVWvjqQ9SuP8/31JSVUdcfz8+mTdexQwREQHqZ2TQ4uDSEXToERoeLk6k/mGqaeduqsrKyjadkuSH08wYhtHkqWegfrqV//znP46vy8rKWi0bNJ7vh9u/nzqooqKiVc99Ls6uVu5dbM4T/s6uTa8Vnq3/NPYzbu7P/nTPP/88y5YtIyEhocNPoePh4dGufaWprFYPLp+QbNq5m6qtrkmbN2/myiuvdHz9+uuvc+utt7b6eVqqo16TRERERDqqw3llPPDOLlKPlwBw34SBzI8fhouTnoEUEZFTZsaG8qdP9nIwt4xvjhRyYXjHnQFEuq4OXdCwWCxNnvbJTIGBgRQWFrZJ2yEhIWc8kZ+bm3vGE8jn8oc//IH58+e3djTg7PmcnZ3p2bOnY1tBQQEAvXr1apMcjbFYLE2e9slMjfWfkJCQMxZ+LywspLa2tlk/+++98MILPPPMM3z22WdER0e3KG97KCgoaNe+0lQWi6XJ0z6Zqa2uSaNHj26w7sb59MW21pGvSSIiIiId0QeJWSx4P5nyGhsBXq785aYYJg4LMjuWiIh0QN7uLsyI6c3/vjnGsu1HVdAQU+hxi1YQFxdHampqm7Q9duxY1q9f32DbunXrGDduXJPbCAoKYvDgwY4/7ZFv9OjRjrnqAVJSUnBxcSEyMrJVz98VNNZ/xo4dS0pKCsePH3dsW7duHW5ubowaNapZ7f/5z3/m6aefZs2aNZ1iXYVDhw5RVVVFXFyc2VE6rba6Jnl4eDS4lnh7e7f6OVpK1yQRERGRpqmoqeNX7yXx0PJEymtsXDwggE8fGq9ihoiInNP30059knyc4opak9NId6SCRiuYOnUqe/bsOeOJ6IMHD5KYmEhOTg6VlZUkJiaSmJhITU1Nk9t+6KGHWLduHc899xxpaWk899xzfPbZZzz88MMtzn306FESExM5evQoNpvNka85U1Ldf//9HDlyhEceeYS9e/fy1ltv8eabb54xImTz5s2MHz/eMc2LnNJY/4mPjyciIoI5c+awa9cuPv/8c+bPn88999yDj49Pk9t+/vnn+e1vf8tbb71FeHg4OTk55OTkNHvasZycHBITEzl48CAAycnJJCYmOp5yb6rU1FTH64qLix197nSbN29m4MCBDBo0qFltyylteU1qTFlZWYOfZXp6uuPa0hy6JomIiIi0j305pcx85Uv+980xLBZ4aPIQ3rlnDME+HXtqWhERMV9sPz+Gh3hTXWdn5a5jZseR7shoZ8XFxQZgFBcXn7GvsrLSSE1NNSorK9s7VouNGTPGeO211xpsmzBhggGc8Sc9Pd1xDGAsWbLknG2/++67xrBhwwwXFxdj+PDhxooVKxrsX7JkiXE+P8o77rij0XwbNmxwHBMWFmY89dRT52wnISHBiIuLM1xdXY3w8HDj1VdfPeOYoUOHGsuWLWt2xu6isf5z5MgRY/r06YaHh4cREBBgPPDAA0ZVVVWDY36s/4SFhTX6Mz79Z9qU/vPUU0812s7p554wYYJxxx13nLOds+U5XXx8vLFo0aJztiM/ri2vST+0YcOGRts9vT889dRTRlhY2Dnb6UjXpM78fiQiIiJyNna73Vi2/Ygx9InVRtivPzYu/ON648uDeWbHEhGRTuZfW9ONsF9/bMT/daNht9vNjiNdxLnqBqezGEb7LklfUlKCr68vxcXFZzxpXlVVRXp6OgMGDOjwixb/0OrVq5k/fz4pKSlYrU0b+JKRkcGQIUNITU1lyJAh533uhQsXkpCQQEJCwnm30ZjKykoCAgJYvXo1EydOPO92PvnkEx577DF2796Ns3PHXxPFDF2h/4SHh7Nw4ULmzp173m2kpKQwefJk9u/fj6+vb4vydHdm9qnGfN8vli5det5ttOc1qTO/H4mIiIg0prSqlgUrU/goKRuAy4b24q83xRDYw83kZCIi0tkUV9Zy8TOfUVVrZ8XPxjEqzN/sSNIFnKtucDrdXW4lV111FQcOHCArK4t+/fo16TVr1qzh3nvvbfGNw7Vr17J48eIWtdGYjRs3MmnSpBbdOAQoLy9nyZIlKmacQ2fvP2lpaXh7e3P77be3qJ3s7Gz+/e9/q5jRCszsU43ZuHEjmzZtanEbuiaJiIiINF9KVjEPvPMtGfkVOFktPDZ1GPeOH4jVajE7moiIdEK+Hi5MHxnKim+PsWzHURU0pF1phIaIiMgP6P1IREREugLDMFi6NYNFq9Oosdnp4+fBS7PjdONJRERabOeRAm54dRvuLla2L5iCr4eL2ZGkk2vqCA0tCi4iIiIiIiLSxRRV1HDf2zv5/Uep1NjsxEcE88m8S1XMEBGRVnFBf3+GBvegqtbOh4lZZseRbkQFDREREREREZEuZOeRAqa/tIV1qSdwdbKycEYEr88ZhZ+nq9nRRESki7BYLMy+qD8A/7f9KO08CZB0YypoiIiIiIiIiHQBdrvBqwmHuOn1r8gqqiS8pyfv/3wccy8ZgMWi9TJERKR1XRfXBzdnK2k5pSQdKzY7jnQTKmiIiIiIiIiIdHIny6qZu/RrnluThs1ucE1MKB89eClRfXzNjiYiIl2Un6cr00f2BmDZ9qMmp5HuQgUNERERERERkU5s68GTXLl4M5v25+HuYuW5G0ay+OZYvN21QKuIiLStm7+bdurDpGxKq2pNTiPdgQoaIiIiIiIiIp2QzW7w1/X7ufXN7eSVVjMkqAcf/OJSZl3YX1NMiYhIu7gw3J9BvbyorLXxQWK22XGkG1BBQ0RERERERKSTySmu4pY3vuKlzw9gGDBrdD8+fOBShoV4mx1NRES6kdMXB1/+taadkrangkYryc/PJygoiIyMDLOjmOqVV17hmmuuMTtGp6P+U0/9p/WoT53d/PnzmTdvntkxRERERM7bhrRcrnppM9vTC/BydWLxzbE8d2M0Hq5OZkcTEZFu6IYL+uLqZCUlq4RkLQ4ubUwFjVayaNEiZsyYQXh4uGPb0aNHmTFjBl5eXgQGBjJv3jxqamqa1e6ePXu44YYbCA8Px2Kx8OKLL55Xvurqah588EECAwPx8vLimmuu4dixY81qIyEhgZkzZ9K7d2+8vLyIjY3l//7v/xocc8899/D111+zZcuW88rZXbVV/3njjTcYP348/v7++Pv7M2XKFHbs2NHsfP/85z+5/PLL8fHxwWKxUFRU1Ow2AJKTk5kwYQIeHh706dOHP/zhDxiG4div/tN6GutTDz30EKNGjcLNzY3Y2NhWO9err75KdHQ0Pj4++Pj4MHbsWD799NNmt1NYWMicOXPw9fXF19eXOXPmnFdf27hxI6NGjcLd3Z2BAwfy2muvNdj/q1/9iiVLlpCent7stkVERETMVGuzs2j1Xn669GsKymuIDPXh43njmRnbx+xoIiLSjfl7uXLlyBAA3tmhURrStlTQaAWVlZW8+eab3H333Y5tNpuN6dOnU15ezpYtW1i+fDkrVqzg0UcfbVbbFRUVDBw4kGeffZaQkJDzzvjwww+zcuVKli9fzpYtWygrK+Pqq6/GZrM1uY2tW7cSHR3NihUr2L17N3feeSe33347H330keMYNzc3brnlFl5++eXzztrdtGX/SUhIYPbs2WzYsIFt27bRv39/4uPjycrKalY7FRUVTJs2jQULFjTrdacrKSnhiiuuIDQ0lK+//pqXX36ZF154gb/+9a+OY9R/WkdjfQrAMAzuvPNOZs2a1arn69u3L88++yzffPMN33zzDZMmTWLmzJns2bOnWe3ccsstJCYmsmbNGtasWUNiYiJz5sxpVhvp6elcddVVjB8/nl27drFgwQLmzZvHihUrHMcEBQURHx9/RqFDREREpCPLLKjgJ69t4/VNhwGYOy6c938+jgGBXiYnExERgZsv/G5x8MQsyqrrTE4jXZnFOP3x6HZQUlKCr68vxcXF+Pj4NNhXVVVFeno6AwYMwN3dHQwDaivaM94pLp7QxEXU3n//fe677z7y8vIc2z799FOuvvpqMjMzCQ0NBWD58uXMnTuX3NzcM773pggPD+fhhx/m4YcfbtbriouL6dWrF2+//bbjRmZ2djb9+vVj9erVTJ06tdlZvjd9+nSCg4N56623HNs2btxIfHw8RUVFeHh4nHfbLWUYBnXV1aac29nNrcmL8LVX/4H6Qom/vz+vvPIKt99+e7Nfn5CQwMSJEyksLMTPz69Zr3311Vd5/PHHOXHiBG5ubgA8++yzvPzyyxw7dszx79VR+k9jDMOgwm435dyeVmuL+tTpFi5cyKpVq0hMTGzFhA0FBATw5z//mbvuuqtJx+/du5eIiAi++uorLr74YgC++uorxo4dS1paGsOGDWtSO7/+9a/58MMP2bt3r2Pb/fffT1JSEtu2bXNs+9e//sWTTz7J0aONPzlyxvuRiIiIiInWpBznsfd2U1pVh4+7M8/fGM20qN5mxxIREXEwDINJf9lI+slyFl0/0rGuhkhTnatucDrndszUfLUV8EyoOedekA2uTXvSZdOmTYwePbrBtm3bthEVFeW4GQ0wdepUqqur2blzJxMnTmzVuOeyc+dOamtriY+Pd2wLDQ0lKiqKrVu3tqigUVxczIgRIxpsGz16NLW1tezYsYMJEyacd9stVVddzUt33GjKuef96z1cmngTtD37T0VFBbW1tQQEBJzX61ti27ZtTJgwwVHMgPrv6fHHHycjI4MBAwYAHaf/NKbCbmfQpmRTzn3ospF4OTVtTuTG+lR7sdlsvPvuu5SXlzN27Ngmv27btm34+vo6ihkAY8aMwdfXl61btza5oLFt27YG1zqo72dvvvkmtbW1uLi4AHDRRReRmZnJkSNHCAsLa3JOERERkfZUVWvjmdV7+fe2IwDE9vPj5dlx9AvwNDmZiIhIQ/WLg/fjmdVpLN9xVAUNaTOacqoVZGRkNLjxDJCTk0NwcHCDbf7+/ri6upKTk9Oe8cjJycHV1RV/f/8G24ODg1uU5b333uPrr7/mpz/9aYPtXl5e+Pn5aTHiJmrP/vOb3/yGPn36MGXKlPNu43w19j19//Xp35P6T8s11qfaWnJyMj169MDNzY3777+flStXEhER0eTX5+TkEBQUdMb2oKCgZvX5s/Wzuro6Tp486djWp0/9PNPqZyIiItJRHc4r4/p/bHUUM+6bMJB37x+rYoaIiHRYN1zQFxcnC0nHiknJ0uLg0jY69ggNF8/6kRJmnbuJKisrG52SpLHpYQzDaPK0MW2tJVkSEhKYO3cub7zxBpGRkWfs9/DwoKLCpOnCvuPs5sa8f71n2rmbqr36z/PPP8+yZctISEgwbQqdH2b/fsa7H27vCP2nMZ5WK4cuG2nauZvqbH2qpTZv3syVV17p+Pr111/n1ltvBWDYsGEkJiZSVFTEihUruOOOO9i4cWOzihqt1eeb0s++n86sI/YzERERkVW7sliwMpmKGhsBXq785aYYJg478+EPERGRjqRnDzemRobw8e7jLP/6KH/sY849FOnaOnZBw2Jp8rRPZgoMDKSwsLDBtpCQELZv395gW2FhIbW1tWc8PdzWQkJCqKmpobCwsMEojdzcXMaNG9fs9jZu3MiMGTP461//etZ1GAoKCujVq9d5Z24NFoulydM+mak9+s8LL7zAM888w2effUZ0dHSL8p6vkJCQM560z83NBTjje+oI/acxFoulydM+mamxPtUaRo8e3WDdjdN/bq6urgwePNhx3Ndff83ixYt5/fXXm9R2SEgIJ06cOGN7Xl5es/r82fqZs7MzPXv2dGwrKCgA6JD9TERERLqvipo6nvpgD+/uPAbAxQMCeGl2HME+Hf/3GhEREYDZF/Xn493HWbUrm99Oj8DdpePfR5HORVNOtYK4uDhSU1MbbBs7diwpKSkcP37csW3dunW4ubkxatSods03atQoXFxcWL9+vWPb8ePHSUlJaXZBIyEhgenTp/Pss89y7733NnrMoUOHqKqqIi4urkW5u4u27j9//vOfefrpp1mzZo1p6ypA/fe0adMmampqHNvWrVtHaGgo4eHhjm3qPy3XWJ9qDR4eHgwePNjxx9vb+6zHGoZBdXV1k9seO3YsxcXF7Nixw7Ft+/btFBcXN+s6NXbs2AbXOqjvZ6NHj3asnwGQkpKCi4tLoyPMRERERMywL6eUa175knd3HsNigYcmD+Gde8aomCEiIp3K2IE96ePnQVl1HZ/tPfPBRZGWUkGjFUydOpU9e/Y0eCI6Pj6eiIgI5syZw65du/j888+ZP38+99xzzzlXaf+hmpoaEhMTSUxMpKamhqysLBITEzl48GCT2/D19eWuu+7i0Ucf5fPPP2fXrl3cdtttjBw5sllrKXxfzJg3bx433HADOTk55OTkOJ50/t7mzZsZOHAggwYNanLb3Vlb9p/nn3+e3/72t7z11luEh4c7fmZlZWXNypiTk9Og3yUnJ5OYmHjGz/5cbrnlFtzc3Jg7dy4pKSmsXLmSZ555hkceeaTBVEDqPy3XWJ8COHjwIImJieTk5FBZWdng2tISCxYsYPPmzWRkZJCcnMwTTzxBQkKCYzqqphgxYgTTpk3jnnvu4auvvuKrr77innvu4eqrr27yguAA999/P0eOHOGRRx5h7969vPXWW7z55pvMnz+/wXGbN29m/PjxjqmnRERERMxiGAbLdhzlmle2cDC3jCBvN/7v7ov55RVDcbJ2jOmKRUREmspqtTAztn5dzw8STVpKQLo2o50VFxcbgFFcXHzGvsrKSiM1NdWorKxs71gtNmbMGOO1115rsO3IkSPG9OnTDQ8PDyMgIMB44IEHjKqqqgbHAMaSJUvO2m56eroBnPFnwoQJjmOWLFli/NiPsrKy0njggQeMgIAAw8PDw7j66quNo0ePNjhmwoQJxh133HHWNu64444fzWIYhhEfH28sWrTonHmkobbqP2FhYY3+zJ566inHMU3pP0899VSj7Zx+7h/rP4ZhGLt37zbGjx9vuLm5GSEhIcbChQsNu93e4Bj1n9bRWJ+aMGFCoz/H9PR0xzE/1qcac+eddxphYWGGq6ur0atXL2Py5MnGunXrGhzz1FNPGWFhYedsJz8/37j11lsNb29vw9vb27j11luNwsLCBseEhYU16L+NSUhIMOLi4gxXV1cjPDzcePXVV884ZujQocayZcvO2kZnfj8SERGRzqOkssZ44J1vjbBff2yE/fpj4/Y3txt5pVU//kIREZEOLO14iRH264+NwQs+MQrLq82OI53EueoGp7MYxnerpbaTkpISfH19KS4uPuNJ86qqKtLT0xkwYIBpixafr9WrVzN//nxSUlKwNnHx3oyMDIYMGUJqaipDhgw573MvXLiQhIQEEhISzrsNgPDwcBYuXMjcuXPPu42UlBQmT57M/v378fX1bVGe7kT9p576T+sxs0815vt+sXTp0vNuo7KykoCAAFavXs3EiRPPu51PPvmExx57jN27d+Ps3PhSUp35/UhEREQ6h+RjxTyw7FuO5FfgZLXw2NRh3Dt+IFaNyhARkS5g2oubSMspZdH1I5l9UX+z40gncK66wek69qLgnchVV13FgQMHyMrKol+/fk16zZo1a7j33ntbfONw7dq1LF68uEVtpKWl4e3tfdZFvpsqOzubf//737oZ3UzqP/XUf1qPmX2qMRs3bmTTpk0tbmPSpEktKmYAlJeXs2TJkrMWM0RERETakmEYLN2awTOr91JrM+jj58FLs+MYFeZvdjQREZFWMzO2D2lr0li1K0sFDWlVGqEhIiLyA3o/EhERkbZQVFHDY+/tZn1q/SKp8RHB/PnGGHw9XUxOJiIi0rqyiiq55NkvANj6m0mE+mkNSzm3po7Q0KLgIiIiIiIiIm1s55ECrlq8mfWpJ3B1svL7ayJ5fc4oFTNERKRL6uPnwUXhAQB8lKTFwaX1qKAhIiIiIiIi0kbsdoN/JBzkpte/Iru4ivCenrz/83HcMS4ci0XrZYiISNc1My4UgFWJKmhI61FBQ0RERERERKQN5JVWc8eSHTy/Zh82u8E1MaF8PG88UX20ZpyIiHR9V0X1xsXJwt7jJew/UWp2HOkiVNAQERERERERaWVbD57kqpc2s/nASdxdrDx3w0gW3xxLDzdns6OJiIi0C38vVyYM7QXAB4lZJqeRrkIFDREREREREZFWUmez89d1+7j1ze3klVYzJKgHHz5wKbMu7K8ppkREpNuZGdsHgA8SszEMw+Q00hXo0RARERERERGRVpBTXMW85bvYkV4AwM0X9uOpGZF4uDqZnExERMQcU0YE4+XqxLHCSr49WsiosACzI0knpxEaIiIiIiIiIi20IS2Xq17azI70ArxcnVh8cyzP3hCtYoaIiHRrHq5OTI0MAepHaYi0lAoarSQ/P5+goCAyMjLMjtLhzJ8/n3nz5pkdo0NT/6n3yiuvcM0115gdo0tQn6qnPiUiIiJtrdZmZ9Hqvfx06dcUlNcQGerDx/PGO6bYEBER6e6uiQ0F4OPdx6m12U1OI52dChqtZNGiRcyYMYPw8HDHtoceeohRo0bh5uZGbGzsebe9YsUKIiIicHNzIyIigpUrVza7jerqah588EECAwPx8vLimmuu4dixY+ed6XvHjx/nlltuYdiwYVitVh5++OEzjvnVr37FkiVLSE9Pb/H5uqqO3n/++c9/cvnll+Pj44PFYqGoqKjZbVRVVTF37lxGjhyJs7Mz11577RnH3HPPPXz99dds2bKl2e1LQ431qaNHjzJjxgy8vLwIDAxk3rx51NTUNKvd999/n9GjR+Pn54eXlxexsbG8/fbbzWqjoKCABx98kGHDhuHp6Un//v2ZN28excXFzWpHfUpERETMlllQwU9e28brmw4DMHdcOO//fBwDAr1MTiYiItJxXDo4kMAerhSU17Dl4Emz40gnp4JGK6isrOTNN9/k7rvvbrDdMAzuvPNOZs2add5tb9u2jVmzZjFnzhySkpKYM2cON910E9u3b29WOw8//DArV65k+fLlbNmyhbKyMq6++mpsNtt5Z4P6QkmvXr144okniImJafSYoKAg4uPjee2111p0rq6qM/SfiooKpk2bxoIFC847i81mw8PDg3nz5jFlypRGj3Fzc+OWW27h5ZdfPu/zSON9ymazMX36dMrLy9myZQvLly9nxYoVPProo81qOyAggCeeeIJt27axe/dufvrTn/LTn/6UtWvXNrmN7OxssrOzeeGFF0hOTmbp0qWsWbOGu+66q1lZ1KdERETETGtSjjP9pc0kZhbh4+7Ma7eNYuE1kbg5a4opERGR0zk7Wbk6un6Uxge7skxOI52dxWjn5eVLSkrw9fWluLgYHx+fBvuqqqpIT09nwIABuLu7YxgGlXWV7RnPwcPZA4vF0qRj33//fe677z7y8vIa3b9w4UJWrVpFYmJis3PMmjWLkpISPv30U8e2adOm4e/vz7Jly5rURnFxMb169eLtt9923BzPzs6mX79+rF69mqlTpzY7V2Muv/xyYmNjefHFF8/Y969//Ysnn3ySo0ePtsq5msIwDIxac4axWVysXab/nC4hIYGJEydSWFiIn59fs1//vblz51JUVMSqVavO2Ldx40bi4+MpKirCw8PjvM/RFgzDoLK2ZUXA8+Xh4tSiPvXpp59y9dVXk5mZSWho/YeI5cuXM3fuXHJzc8+4HjfHBRdcwPTp03n66afPu413332X2267jfLycpydnZv9+tbuUz98PxIRERH5XlWtjUWr9/KvbUcAiOvvx8uz4+jr72lyMhERkY7r26OFXP+PrXi6OvHNb6fg6dr83/2laztX3eB0zeo5r776Kq+++qpjTvbIyEh+97vfceWVV7Yo7NlU1lVy8TsXt0nbP2b7LdvxdGnaB9JNmzYxevToNsmxbds2fvnLXzbYNnXq1EaLBmezc+dOamtriY+Pd2wLDQ0lKiqKrVu3tlpB41wuuugiMjMzOXLkCGFhYW1+PgCj1k7277a2y7l+KPQP47A0cfG/jt5/2tvo0aOpra1lx44dTJgwwew4DVTW2oj4XdNHIrSm1D9MbfKbfWN9atu2bURFRTmKGVDfF6qrq9m5cycTJ05sdibDMPjiiy/Yt28fzz33XLNff7rv36zOp5jxYzpynxIREZHO5XBeGQ+8s4vU4yUA3DdhIPPjh+HipMkPREREziWunx/9Azw5WlDB+tQTWmtKzluzPnX17duXZ599lm+++YZvvvmGSZMmMXPmTPbs2dNW+TqFjIyMBjcJW1NOTg7BwcENtgUHB5OTk9OsNlxdXfH3929ROy3Rp0/9Raq7L1DcmI7ef9qbl5cXfn5+6ist0Fifaqwv+Pv74+rq2uz+UFxcTI8ePXB1dWX69Om8/PLLXHHFFeedNz8/n6effpr77rvvvNs4F/UpERERaQ2rdmUx4+UtpB4vIcDLlaU/vZDHrxyhYoaIiEgTWCwWZn63OPgHidkmp5HOrFmPws6YMaPB13/605949dVX+eqrr4iMjGzVYFA/7dP2W5o3139rnrupKisr23RKkh9OM2MYRpOnnjmX5rbTo0cPx3/fdtttzVoT4/tpXioqKpoesIUsLlZC/zCu3c73w3M3VWftP23Jw8OjXftKU3m4OJH6h7Yf0XS2czfV2fpUYz/38+kP3t7eJCYmUlZWxueff84jjzzCwIEDufzyy5vVDtQPJ5w+fToRERE89dRTzX59U3XUPiUiIiIdX0VNHQs/3MP/vjkGwJiBASy+OY5gH01LKSIi0hwzY0N5+YuDbNqfR0F5DQFermZHkk7ovOf2sNlsvPvuu5SXlzN27NizHlddXU11dbXj65KSkiafw2KxNHnaJzMFBgZSWFjYJm2HhISc8fR0bm7uGU9a/1gbNTU1FBYWNhilkZuby7hxTb/hf/oaDs2db7+goACAXr16Net1LWGxWJo87ZOZOnr/MUNBQUG79pWmslgsnWKOx8b6VEhIyBmLwRcWFlJbW9vs/mC1Whk8eDAAsbGx7N27l0WLFjW7oFFaWsq0adPo0aMHK1euxMXFpVmvb46O2qdERESkY9uXU8oD73zLgdwyrBaYN3kID04agpO1Yz8gJCIi0hENDvImMtSHPdklfJJ8nDlj2mdaeulamj02Njk5mR49euDm5sb999/PypUriYiIOOvxixYtwtfX1/GnX79+LQrcEcXFxZGamtombY8dO5b169c32LZu3bpmFSJGjRqFi4tLg3aOHz9OSkpKs9oZPHiw409QUFCTXweQkpKCi4tLm4zk6ew6ev9pb4cOHaKqqoq4uDizo3RajfWpsWPHkpKSwvHjxx3b1q1bh5ubG6NGjWrR+QzDaFC4boqSkhLi4+NxdXXlww8/bNNRSupTIiIi0lyGYbBsx1GueWULB3LLCPJ24//uHsPDU4aqmCEiItIC1363dsaHiVkmJ5HOqtmPGg8bNozExESKiopYsWIFd9xxBxs3bjxrUePxxx/nkUcecXxdUlLS5YoaU6dO5fHHHz9jBMTBgwcpKysjJyeHyspKxwiHiIgIXF2bNqTqoYce4rLLLuO5555j5syZfPDBB3z22Wds2bKlyfl8fX256667ePTRR+nZsycBAQHMnz+fkSNHMmXKlGZ9r435/vsqKysjLy+PxMREXF1dG/SJzZs3M378eMfUU3JKR+8/UL/+Qk5ODgcPHgTqC5ve3t7079+fgICAJreTmppKTU0NBQUFlJaWOr6n2NhYxzGbN29m4MCBDBo0qFkZ5ZTG+lR8fDwRERHMmTOHP//5zxQUFDB//nzuueeeZo24WrRoEaNHj2bQoEHU1NSwevVq/v3vf/Pqq682uY3S0lLi4+OpqKjgP//5DyUlJY7Re7169cLJqekjq9SnREREpLWVVtWyYGUKHyXVz+89YWgv/nJTDIE93ExOJiIi0vnNiAnlmU/38nVGIccKK+jr3/Fn55EOxmihyZMnG/fee2+Tjy8uLjYAo7i4+Ix9lZWVRmpqqlFZWdnSWO1uzJgxxmuvvdZg24QJEwzgjD/p6emOYwBjyZIl52z73XffNYYNG2a4uLgYw4cPN1asWNFg/5IlS4wf+1FWVlYaDzzwgBEQEGB4eHgYV199tXH06NEz8t5xxx0/+r3+UGPfY1hYWINjhg4daixbtqzZbXcXHb3/PPXUU41mOf3cTek/YWFhjbZzuvj4eGPRokXnbEd+XGN96siRI8b06dMNDw8PIyAgwHjggQeMqqqqBsf8WJ964oknjMGDBxvu7u6Gv7+/MXbsWGP58uUNjvmxPrVhw4ZG+8EP+7eZfaozvx+JiIjI+dudWWRc9vwXRtivPzYGPv6J8WrCQcNms5sdS0REpEu5+fVtRtivPzb+vuGA2VGkAzlX3eB0FsMwjJYURCZPnky/fv1YunRpk44vKSnB19eX4uLiM54KrqqqIj09nQEDBrTp9CNtYfXq1cyfP5+UlBSs1qbN5JWRkcGQIUNITU1lyJAh533uhQsXkpCQQEJCwnm3ARAeHs7ChQuZO3dui9r5oU8++YTHHnuM3bt34+zc8dcfMIP6T72UlBQmT57M/v378fX1bVGe7k59qt759qnO/H4kIiIizWcYBku3ZvDM6r3U2gz6+Hnw0uw4RoX5//iLRUREpFn++/VRfr0imWHB3qz95WVmx5EO4lx1g9M16+7yggULuPLKK+nXrx+lpaUsX76chIQE1qxZ0+LAnd1VV13FgQMHyMrKavKUWmvWrOHee+9t0Y1DgLVr17J48eIWtZGWloa3tze33357i9ppTHl5OUuWLFEx4xzUf+plZ2fz73//W8WMVqA+VU99SkRERH5MUUUNj723m/WpJwCIjwjmzzfG4OvpYnIyERGRrmlaVG+eXLWHfSdK2Xu8hBG9mz4VtkizRmjcddddfP755xw/fhxfX1+io6P59a9/zRVXXNHkE3bVERoiItJ16P1IRESke9h5pIAH39lFdnEVrk5WFlw1nDvGhWOxaOFvERGRtnTf29+wds8J7p8wiN9cOdzsONIBtMkIjTfffLPFwURERERERETMZLcbvLbpEH9Ztx+b3SC8pyev3HIBUX00qlNERKQ9zIztw9o9J/gwMYtfTR2G1aqHCaRpNAeQiIiIiIiIdBt5pdU88r9ENh84CcA1MaE8c/1Ierjp12MREZH2Mml4EN5uzmQXV/HNkUIuGhBgdiTpJJq2UqyIiIiIiIhIJ7f14Emuemkzmw+cxN3FynM3jGTxzbEqZoiIiLQzdxcnpkWFALAqMcvkNNKZqKAhIiIiIiIiXVqdzc5f1+3j1je3k1dazZCgHnz4wKXMurC/1ssQERExyczYPgCsTj5OTZ3d5DTSWegxFBEREREREemycoqrmLd8FzvSCwC4+cJ+PDUjEg9XJ5OTiYiIdG9jB/Wkl7cbeaXVbNqfx5SIYLMjSSegERoiIiIiIiLSJW1Iy+XKxZvYkV6Al6sTi2+O5dkbolXMEBER6QCcrBZmRIcC8EFStslppLNQQUNERERERES6lJo6O8+s3stPl35NYUUtkaE+fDxvvGNqCxEREekYro2rL2isT82hrLrO5DTSGaig0Ury8/MJCgoiIyPD7CimeuWVV7jmmmvMjtHpqP/UU/8RERERkZbKLKjgJ69v45+bDgMwd1w47/98HAMCvUxOJiIiIj80so8vAwK9qKq1sz41x+w40gmooNFKFi1axIwZMwgPD3dsO3r0KDNmzMDLy4vAwEDmzZtHTU1Ns9tesWIFERERuLm5ERERwcqVK5vdRnV1NQ8++CCBgYF4eXlxzTXXcOzYsWa3k5yczIQJE/Dw8KBPnz784Q9/wDAMx/577rmHr7/+mi1btjS77e6ssf7z0EMPMWrUKNzc3IiNjT2vdt944w3Gjx+Pv78//v7+TJkyhR07djSrjYKCAh588EGGDRuGp6cn/fv3Z968eRQXFzernaqqKubOncvIkSNxdnbm2muvPeMY9R8RERERaYlPk49z1UubScoswsfdmdduG8XCayJxc9YUUyIiIh2RxWJhZmz9KI1VuzTtlPw4FTRaQWVlJW+++SZ33323Y5vNZmP69OmUl5ezZcsWli9fzooVK3j00Ueb1fa2bduYNWsWc+bMISkpiTlz5nDTTTexffv2ZrXz8MMPs3LlSpYvX86WLVsoKyvj6quvxmazNbmNkpISrrjiCkJDQ/n66695+eWXeeGFF/jrX//qOMbNzY1bbrmFl19+uVn5urPG+g+AYRjceeedzJo167zbTkhIYPbs2WzYsIFt27bRv39/4uPjycrKanIb2dnZZGdn88ILL5CcnMzSpUtZs2YNd911V7Oy2Gw2PDw8mDdvHlOmTGn0GPUfERERETkfVbU2FqxM5mf/9y2lVXXE9fdj9UPjmRYVYnY0ERER+RHfTwm55eBJTpZVm5xGOjqLcfrj9e2gpKQEX19fiouL8fHxabCvqqqK9PR0BgwYgLu7O4ZhYFRWtmc8B4uHBxaLpUnHvv/++9x3333k5eU5tn366adcffXVZGZmEhpaX2Vcvnw5c+fOJTc394zv/WxmzZpFSUkJn376qWPbtGnT8Pf3Z9myZU1qo7i4mF69evH22287bo5nZ2fTr18/Vq9ezdSpU5vUzquvvsrjjz/OiRMncHNzA+DZZ5/l5Zdf5tixY45/r40bNxIfH09RUREeHh5NarstGIZBbW2tKed2cXFpUf853cKFC1m1ahWJiYktzmWz2fD39+eVV17h9ttvP+923n33XW677TbKy8txdnZu9uvnzp1LUVERq1atOmNfR+k/0r398P1IREREOq79J0p58J1d7DtRCsB9EwYyP34YLk56fk9ERKSzmPnKFpKOFfP7ayK5Y1y42XHEBOeqG5yu+Xci25FRWcm+C0aZcu5h3+7E4unZpGM3bdrE6NGjG2zbtm0bUVFRjmIGwNSpU6murmbnzp1MnDixSW1v27aNX/7ylw22TZ06lRdffLFJrwfYuXMntbW1xMfHO7aFhoYSFRXF1q1bm1zQ2LZtGxMmTHAUM77P8vjjj5ORkcGAAQMAGD16NLW1tezYsYMJEyY0OWdrq62t5ZlnnjHl3AsWLMDV1bVJxzbWf9pKRUUFtbW1BAQEtKid7y8s51PM+DEdpf+IiIiISMdmGAbLdmTyh4/3UFVrJ7CHG3+bFcP4Ib3MjiYiIiLNNDO2D0nHilmVmKWChpyTHllpBRkZGQ0KFwA5OTkEBwc32Obv74+rqys5OU1f4KaxdoKDg5vdhqurK/7+/i1up7Es3+/7npeXF35+ft1+geumaqz/tJXf/OY39OnT56xTPjVFfn4+Tz/9NPfdd18rJjtF/UdEREREfkxxZS0PvLOLBSuTqaq1M35IIJ8+NF7FDBERkU7q6pjeWC2w62gRR/LLzY4jHViHHqFh8fBg2Lc7TTt3U1VWVjY6JUljUw4ZhtHkqYjO1s75tNGY1srS2HYPDw8qKipaFrCFXFxcWLBggWnnbqqz9Z/W9vzzz7Ns2TISEhLO+3wlJSVMnz6diIgInnrqqVZOeEpH6D8iIiIi0jHtPFLIvGW7yCqqxNlq4bGpw7hn/ECs1pb/jiQiIiLmCPJ255LBgWw+cJIPErOZN3mI2ZGkg+rYBQ2LpcnTPpkpMDCQwsLCBttCQkLOWLi7sLCQ2traM0Y5nEtISMgZoyhyc3Ob3UZNTQ2FhYUNRmnk5uYybty4FmcBzshTUFBAr17mPh1lsViaPO2TmRrrP63thRde4JlnnuGzzz4jOjr6vNooLS1l2rRp9OjRg5UrVzaraNNcHaH/iIiIiEjHYrMbvLbxEH9dvx+b3aB/gCcvzY4jtp+f2dFERESkFVwb24fNB06yalcWD04a3CoPdEvXoymnWkFcXBypqakNto0dO5aUlBSOHz/u2LZu3Trc3NwYNarp64KMHTuW9evXN9i2bt26ZhUiRo0ahYuLS4N2jh8/TkpKSrPaGTt2LJs2baKmpqZBltDQUMLDwx3bDh06RFVVFXFxcU1uuztrrP+0pj//+c88/fTTrFmz5rzX6igpKSE+Ph5XV1c+/PDDNh1Rov4jIiIiIj+UW1LF7W9t589r92GzG1wTE8on8y5VMUNERKQLmRoVgruLlcMny9l9rNjsONJBqaDRCqZOncqePXsaPGUfHx9PREQEc+bMYdeuXXz++efMnz+fe+6555yrtP/QQw89xLp163juuedIS0vjueee47PPPuPhhx9uchu+vr7cddddPProo3z++efs2rWL2267jZEjRzZrLYVbbrkFNzc35s6dS0pKCitXruSZZ57hkUceaVAx3bx5MwMHDmTQoEFNbrs7a6z/ABw8eJDExERycnKorKwkMTGRxMTEBgWlH/P888/z29/+lrfeeovw8HBycnLIycmhrKysyW2UlpYSHx9PeXk5b775JiUlJY52bDZbk9sBSE1NJTExkYKCAoqLix3f0+nUf0RERETkdBv25XLl4s18eTAfDxcnnr8xmsU3x+Lt3nYjhkVERKT99XBzJj4iBICVu7JMTiMdlQoarWDkyJGMHj2a//3vf45tTk5OfPLJJ7i7u3PJJZdw0003ce211/LCCy80eK3FYmHp0qVnbXvcuHEsX76cJUuWEB0dzdKlS/nvf//LxRdf7Dhm6dKlPzoE629/+xvXXnstN910E5dccgmenp589NFHODk5OY65/PLLmTt37lnb8PX1Zf369Rw7dozRo0fz85//nEceeYRHHnmkwXHLli3jnnvuOWceOaWx/gNw9913ExcXx+uvv87+/fuJi4sjLi6O7OxsxzE/1n/+8Y9/UFNTw4033kjv3r0df07vhz/Wf3bu3Mn27dtJTk5m8ODBDdrJzMx0HPdj/QfgqquuIi4ujo8++oiEhATH93Q69R8RERERAaips/PHj1P56ZKvyS+vYURvHz568FJuGt1PU1CIiIh0UdfF9QHgo6Rsam12k9NIR2Qxvl/VuZ2UlJTg6+tLcXHxGSMVqqqqSE9PZ8CAAe2ySHJrWr16NfPnzyclJQWrtWl1ooyMDIYMGUJqaipDhpz/QjcLFy4kISGBhISE824DIDw8nIULF/7oTelzSUlJYfLkyezfvx9fX98W5elO1H/qqf9IR9GZ349ERES6goyT5Ty4bBfJWfXTTcwdF85vrhyOu4vTj7xSREREOrNam50xz3xOfnkNS356IROHBZkdSdrJueoGp+vQi4J3JldddRUHDhwgKyuLfv36Nek1a9as4d57723RzWiAtWvXsnjx4ha1kZaWhre3N7fffnuL2snOzubf//63bkY3k/pPPfUfEREREVm1K4snViZTXmPDz9OF52+IJj4yxOxYIiIi0g5cnKzMiAll6dYMVu3KUkFDzqARGiIiIj+g9yMREZH2V1Zdx+8+SOH9b+vnzL5oQACLb46lt6+HyclERESkPSVmFnHt37/E3cXKN7+9gh5ueia/O2jqCA2toSEiIiIiIiKmSj5WzNUvbeb9b7OwWuCXU4ay7J4xKmaIiIh0QzF9fRkQ6EVVrZ11e3LMjiMdjAoaIiIiIiIiYgq73eCNTYe5/tUvycivINTXnf/eN5aHpgzByaqFv0VERLoji8XCtbH1i4Ov3JVlchrpaDpkQaOdZ8ESERFpQO9DIiIibS+vtJqfLv2aP63eS63NYFpkCKsfGs+F4QFmRxMRERGTXRsXCsCXB0+SW1JlchrpSDpUQcPJyQmAmpoak5OIiEh3VlFRAYCLi4vJSURERLqmzQfyuHLxZjbuz8PN2cqfrovi1dsuwM/T1exoIiIi0gGE9fTigv5+2A34MCnb7DjSgXSoFVWcnZ3x9PQkLy8PFxcXrNYOVW8REZEuzjAMKioqyM3Nxc/Pz1FoFxERkdZRU2fnL+v38frGwwAMDe7By7MvYFiIt8nJREREpKO5Lq4P3x4tYlViFnePH2h2HOkgOlRBw2Kx0Lt3b9LT0zly5IjZcUREpJvy8/MjJCTE7BgiIiJdypH8cuYtTyQpswiA28b057fTI3B30QMEIiIicqbp0aH8/qNUUrJKOHCilCHBegBCOlhBA8DV1ZUhQ4Zo2ikRETGFi4uLRmaIiIi0sg8Ss3hiZQpl1XX4erjw3A3RTIvSwwMiIiJydgFerlw+rBef7c1lVWIWj00dbnYk6QA6XEEDwGq14u7ubnYMERERERERaYHy6jp+98EeVnx7DIALw/158eY4+vh5mJxMREREOoNr4/rUFzR2ZfPoFcOwWi1mRxKTdciChoiIiIiIiHRuKVnFPLhsF+kny7Fa4MFJQ3hw0mCcnbRWooiIiDTNlBHB9HBzJquokm+OFHLRgACzI4nJ9ElSREREREREWo1hGPy/zYe57h9fkn6ynN6+7iy7Zwy/vGKoihkiIiLSLO4uTlz53TSVK3dlmZxGOgJ9mhQREREREZFWcbKsmjuXfs0fP9lLrc0gPiKY1fPGc/HAnmZHExERkU7qurg+AHyyO5vqOpvJacRsmnJKREREREREWuzLgyd5+L+J5JVW4+ps5cmrI7jt4v5YLJrrWkRERM7fxQN7EuLjTk5JFRvS8pj23YgN6Z40QkNERERERETOW63NznNr0rjtze3klVYzJKgHHz5wCXPGhKmYISIiIi3mZLUwMzYUgFWadqrbU0FDREREREREzktmQQU/eW0bryYcwjDglov78+EDlzI8xMfsaCIiItKFXPvdtFNfpOVSXFFrchoxkwoaIiIiIiIi0mwfJmVz1eLNJGYW4ePuzKu3XsAz143Ew9XJ7GgiIiLSxYzo7cPwEG9qbHZWpxw3O46YSAUNERERERERabKKmjoeezeJect2UVpdx+gwfz59+DKuHNnb7GgiIiLShX0/SmOlpp3q1lTQEBERERERkSbZk13M1S9v4d2dx7BaYN7kISy/dwx9/DzMjiYiIiJd3DUxoVgssCO9gGOFFWbHEZOooCEiIiIiIiLnZBgGS75M57q/b+VwXjkhPu68c88YHrliKM5O+rVSRERE2l6onwdjBvQE4IPEbJPTiFn0yVNERERERETOKr+smrv+9Q2//yiVGpudKyKC+fSh8YwZ2NPsaCIiItLNXHfatFOGYZicRsyggoaIiIiIiIg0auvBk1y5eDNfpOXi6mzl6ZmR/HPOKPy9XM2OJiIiIt3QtJEhuDpbOZhbxp7sErPjiAlU0BAREREREZEGam12nl+Txq1vbie3tJrBQT344BeXMGdsOBaLxex4IiIi0k35uLtwxYhgAFZpcfBuSQUNERERERERccgsqOCm17fxj4RDGAbMvqg/Hz1wKSN6+5gdTURERIRrv5t26oOkbGx2TTvV3TibHUBEREREREQ6ho+SslnwfjKl1XV4uzvz7PXRTI/ubXYsEREREYcJQ3vh5+lCXmk1Ww+dZPyQXmZHknakERoiIiIiIiLdXEVNHb9+bzcPLttFaXUdo8L8+fSh8SpmiIiISIfj6mzl6u8+o6zUtFPdjgoaIiIiIiIi3VhqdgkzXt7Cf7/JxGKBBycN5r/3jqGvv6fZ0UREREQadd13006tTcmhoqbO5DTSnlTQEBERERER6YYMw2Dpl+lc+/cvOZRXTrCPG+/cPYZH44fh7KRfFUVERKTjuqC/P/0CPCivsbE+9YTZcaQd6VOqiIiIiIhIN1NQXsM9//6GhR+lUmOzM2VEEJ8+dBljB/U0O5qIiIjIj7JYLFwXWz9KY5WmnepWVNAQERERERHpRrYeOsmVizfx2d5cXJ2t/P6aSN64fTQBXq5mRxMRERFpspnfTTu16cBJTpZVm5xG2osKGiIiIiIiIt1Anc3OX9bt49b/t50TJdUM6uXFqp9fwh3jwrFYLGbHExEREWmWQb16ENPXF5vd4OOkbLPjSDtRQUNERERERKSLO1ZYwax/fsXLXxzEMODmC/vx0YOXEhHqY3Y0ERERkfN27XejNFYmqqDRXaigISIiIiIi0oV9svs4Vy7ezM4jhXi7OfPy7DievSEaT1dns6OJiIiItMjV0aE4WS0kZRZxOK/M7DjSDlTQEBERERER6YIqa2w8/v5ufvHOt5RW1RHX34/VD41nRkyo2dFEREREWkUvbzcuHRwIwLrUEyankfagR3JERERERES6mL3HS3hw2S4O5pZhscDPLx/Ew1OG4uKkZ9pERESka4nt58fG/XkcyS83O4q0AxU0REREREREugjDMHj7qyP88ZO91NTZCfJ248VZsYz77slFERERka6mr78HAMcKK01OIu1BBQ0REREREZEuoLC8hl+t2M3676ZbmDw8iD//JIYAL1eTk4mIiIi0nb7+noAKGt2FChoiIiIiIiKd3FeH83l4eSI5JVW4Oll5/KrhzB0XjsViMTuaiIiISJv6foRGVmEldruB1arPP12ZChoiIiIiIiKdVJ3NzkufH+DlDQcxDBjYy4uXZ8cRGeprdjQRERGRdtHb1x0nq4Uam528smqCfdzNjiRtSAUNERERERGRTuhYYQUPL0/kmyOFANw0ui8Lr4nE01W/5omIiEj34exkJcTHnayiSo4VVqig0cXpk66IiIiIiEgn82nycX69YjclVXV4uznzx+uimBnbx+xYIiIiIqbo6+/xXUGjklFhZqeRtqSChoiIiIiISCdRWWPjDx+nsmzHUQBi+/nx0s1x9O/paXIyEREREfP09fdke3qBFgbvBlTQEBERERER6QTSckp48J1dHMgtw2KB+ycM4pErhuLiZDU7moiIiIipvl8Y/FhhhclJpK2poCEiIiIiItKBGYbBf746wtOf7KWmzk4vbzf+dlMslw4JNDuaiIiISIdwqqChERpdnQoaIiIiIiIiHVRRRQ2/em8361JPADBxWC9e+EkMPXu4mZxMREREpOPo618//aYKGl2fChoiIiIiIiId0PbD+Tz830SOF1fh4mThN1eO4M5LwrFYLGZHExEREelQvh+hkVVYid1uYLXq81JXpYKGiIiIiIhIB1Jns/PyFwd5+YsD2A0YEOjFy7PjiOrja3Y0ERERkQ6pt687TlYLNTY7eWXVBPu4mx1J2ogKGiIiIiIiIh1EVlElv1yeyI6MAgBuHNWX318TiZebfnUTERERORtnJyshPu5kFVVyrLBCBY0uTJ+KRUREREREOoA1Kcf59Ypkiitr6eHmzJ+ui2JmbB+zY4mIiIh0Cn39Pb4raFQyKszsNNJWVNAQERERERExUVWtjac/TuX/th8FIKavLy/NjiOsp5fJyUREREQ6j77+nmxPL9DC4F2cChoiIiIiIiIm2ZdTyoPLvmX/iTIA7p8wiEeuGIqrs9XkZCIiIiKdy/cLgx8rrDA5ibQlFTRERERERETamWEY/N/2ozz9cSrVdXYCe7jxt1kxjB/Sy+xoIiIiIp3SqYKGRmh0ZSpoiIiIiIiItKOiihp+syKZNXtyAJgwtBd/uSmGwB5uJicTERER6bz6+nsCKmh0dSpoiIiIiIiItJMd6QU8vHwX2cVVuDhZ+PW04dx5yQCsVovZ0UREREQ6te9HaGQVVmK3G/p81UWpoCEiIiIiItLGbHaDV744yOLP92M3ILynJy/NjiO6r5/Z0URERES6hN6+7jhZLdTY7OSVVRPs4252JGkDKmiIiIiIiIi0oeyiSh7+byI70gsAuP6CPvxhZhQ93PTrmIiIiEhrcXayEuLjTlZRJccKK1TQ6KL0CVpERERERKSNrEnJ4dcrdlNcWYuXqxN/vC6K6+L6mh1LREREpEvq6+/xXUGjklFhZqeRtqCChoiIiIiISCurqrXxx09S+c9XRwGI7uvLSzfHER7oZXIyERERka6rr78n29MLtDB4F6aChoiIiIiISCvaf6KUB9/Zxb4TpQDce9lA5scPw9XZanIyERERka7t+4XBjxVWmJxE2ooKGiIiIiIiIq3AMAyW7cjkDx/voarWTmAPV/5yUywThvYyO5qIiIhIt3CqoKERGl2VChoiIiIiIiItVFxRy2/e382nKTkAjB8SyF9viqWXt5vJyURERES6j77+noAKGl2ZChoiIiIiIiIt8E1GAQ8tTySrqBJnq4VfTRvG3ZcOxGq1mB1NREREpFv5foRGVmEldruhz2NdkAoaIiIiIiIi58FmN/j7hoO8+Nl+7AaE9fTkpZvjiOnnZ3Y0ERERkW6pt687TlYLNTY7eWXVBPu4mx1JWpkKGiLSgGEYFFXUcry4iuPFlWQXV3G8qNLx9YmSakJ83Jk8IohJw4MY2KuH2ZFFRERE2t3x4koeXp7I9vQCAK6NDeXpa6PwdncxOZmIiIhI9+XsZCXEx52sokqOFVaooNEFqaAh0g3V2exsTy/gSH4Fx4tPFSuOF1VxvLiKylrbOV+ffrKcbYfz+eMnexkQ6MWk4UFMHh7E6PAAXJ2t7fRdiIiIiJhj3Z4cfrViN0UVtXi6OvHHa6O4/oK+ZscSEREREeqnnaovaFQyKszsNNLaVNAQ6UZKq2r579eZLPkyg6yicy+O1NPLld5+7vT29aC3b/3foX7u9PJ2Y19OKV+k5fLV4XzST5bz5pZ03tySjrebM+OHBjJpeDCXD+tFYA8tgikiIiJdR1WtjUWr9/KvbUcAiOrjw8uzL2BAoJfJyURERETke339PdmeXqCFwbsoFTREuoGsokqWfpnO8h2ZlFbXARDg5UpcPz9CfN0J9TtVtOjt606IrzvuLk5nbW/coEB+eskAyqrr2HIgj8/35rJhXx4ny6pZnZzD6uQcLBaI7efH5OFBTBoezIje3lgsWohJREREOqcDJ0p5cNku0nJKAbhn/AAemzpco1NFREREOpjvFwY/VlhhchJpCypoiHRhSZlF/L8t6axOPo7NbgAwOKgHd186gGvj+pyzaNEUPdycmRbVm2lRvbHbDZKzivk8LZcv0k6QklXCrqNF7DpaxAvr9tPb152J301NNW5QIB6uLTu3iIiISHswDIPlX2fy+4/2UFVrp6eXKy/cFMPEYUFmRxMRERGRRpwqaGiERlekgoZIF2OzG3y29wRvbk5nR0aBY/slg3ty96UDmTC0F1Zr64+UsFotxPTzI6afH49cMZSc4io27Mvl8725fHnwJMeLq3hn+1He2X4UN2crlwwOZNLw+oXFQ/08Wj2PiIiISEsVV9ay4P1kPkk+DsD4IYH85aYYgry1uKSIiIhIR9XX3xNQQaOrUkFDpIuoqKljxc5jvLklnYz8+iF1Lk4WZsSEctelA4gM9W3XPCG+7sy+qD+zL+pPVa2NbYfz2ZBWX+DIKqrki7RcvkjLBWB4iDeTR9RPTRXbzw+nNii4iIiIiDTHziMFzFuWSFZRJc5WC49NHcY94we2yYMhIiIiItJ6vh+hkVVYid1u6PNbF2MxDMNozxOWlJTg6+tLcXExPj4+7XlqkS4pt6SKf23L4P+2H6WoohYAH3dnbh0Txh1jwwnx7VhPEBqGwf4TZXyedoIv9uby7dFC7KddhQK8XLl8aC8mjQjisqG98HF3MS+siIiIdDs2u8GrCQf522cHsNkN+gd48tLsOGL7+ZkdTURERESaoM5mZ9iTa7DZDbYvmEywT8e6NyaNa2rdQCM0RDqpvcdL+H+b0/kwKYtaW31FoH+AJ3ddOoAbR/XFy61j/u9tsVgYFuLNsBBvfn75YArLa9i4P4/P03JJ2JdLQXkN7+/K4v1dWThbLVwYHlA/NdWIIAb16mF2fBEREenCcoqr+OV/E9l2OB+AmbGh/PHaKLz1gIWIiIhIp+HsZCXEx52sokqOFVaooNHFdMw7niLSKMMw2Lg/j/+3OZ0tB086to8O8+fu8QO5IiK4003X5O/lyrVxfbg2rg+1Njs7jxTyRVoun+89waG8crYdzmfb4Xz+tHov4T09mTQ8mMkjgrgwPABXZ6vZ8UVERKSL+Cz1BI+9l0RhRS2erk78YWYUN1zQB4ulc322EhEREZH6aafqCxqVjAozO420JhU0pMnsdoPlX2fy2sZDuDpbievnR1x/f+L6+zE02LvT3UjvTKpqbXyQmMX/25zOgdwyAKwWuDKqN3ePH0Bcf3+TE7YOFycrYwb2ZMzAniy4agQZJ8sda21sT88nI7+Ct75M560v0+nh5sxlQwOZNDyYy4f1IrCHm9nxRUREpBOqqrXx7KdpLN2aAUBkqA8vz45joEaGioiIiHRaff092Z5eoIXBuyAVNKRJkjKL+N0HKSQdK3ZsO5hbxrs7jwHg5epEdF8/4vqfKnLoBnPL5ZdV8/ZXR3h72xHyy2sA6OHmzKwL+zF3XDj9AjxNTti2wgO9uPPSAdx56QDKquvYciCPz/fmsmFfLifLalidnMPq5BwsFojp68fk76amiujto6cpRURE5EcdzC3jwWW72Hu8BIC7Lh3Ar6YNw83ZyeRkIiIiItIS3y8MfqywwuQk0tpU0JBzKiyv4c/r9rFsx1EMo/5m+i+vGEp4T092HS1iV2YhiUeLKK+xOaYG+l6/AA/i+vk7ihwRvX00RVATHcwt480t6bz/7TGq6+wAhPq689NLBjDron7dcqHsHm7OTIvqzbSo3tjtBruzivli7wk+T8tlT3YJiZlFJGYW8Zf1+wnxcWfSiCAmDQviksGBeLjqpoSIiIicYhgG//smk4UfplJZa6Onlysv/CSGicODzI4mIiIiIq3gVEFDIzS6GothGEZ7nrCpq5WLuez2+l/ynluTRmFFLQDXxfXh8SuHE/SDhXRsdoODuWXsOlroKHIcyC3jhz3L1dlKVKiPYwRHXH9/Qn3d9ST9dwzDYNuhfP7flnS+SMt1bI/u68vd4wdyZVQILk4qCDUmp7iKDfty+XxvLlsO5lFVa3fsc3O2Mm5QTyaNCGbS8CD6+HmYmFRERETMVlxZyxMrk/l493EALh0cyF9vijnjM66ISHdkt9upq6ujrq6O2tpax3839vWPbbPZbPj4+BAaGkpoaCg+PhpJLyLtZ9uhfGa/8RUDAr3YMP9ys+NIEzS1bqCChpwh+Vgxv/0ghaTMIgCGBXvzh5mRXDywZ5PbKKmqZXdmcX2RI7OIXUcLHYWR0wV5u52apqqfHyP7+uLp2r0GDtXa7Hy8O5s3NqWT+t10BxYLTBkRzN2XDuCiAQH60NcMVbX1o4U2pNUXOLKKGlbih4d4M3lEEJOGBxPbz09rv4iIiHQjO48U8tDyXRwrrMTZauHR+GHcd9lArPo8ICIdiGEY2Gy2ZhUWzqfg0Ng2u93+4wHPk5eXF71793YUOEJDQ/H29tbvuyLSJjILKhj//AZcnaykPT1Nn/c6ARU0pNmKKmr489p9vHPa9FIPTxnCHePCWzwywDAMMvIrSMz8bhTH0SL2Hi+hzt6w+zlZLQwP8a4vcnw3XdWAQK8u+QGntKqW5TsyeevLdI4XVwHg7mLlJ6P68dNLwrUQZSswDIP9J8r4PO0EX+zN5dujhZze5QK8XLl8aC8mjQjisqG9uuVUXiIiIt2BzW7w2sZD/HX9fmx2g34BHrx0cxxx/f3NjiYi3UBdXR1FRUXk5+eTn59PQUEBBQUFVFZWnrWw0BFYrVacnZ1xdnbGxcXF8d9N3Wa1WikoKCA7O5vc3Fwau/3k5eXVoMDxfZFDRKSl6mx2hj25BpvdYPuCyQRrNG6Hp4KGNJndbvDuzkyeW7OPgu8Wnr42NpQFV41o06H3lTU2UrKLHVNVfXu0kBMl1Wcc5+vhQmy/UwuOx/b1w9ez8954zi6qZOnWDJZtP0ppdf0H1cAebtwxNozbxoTh7+VqcsKuq7C8ho378/g8LZeEfbmUVp36RcHZauHC8IDvRm8EqaAkIiLSRZwoqeKX/01k66H6td5mxITyp+ui9CCDiLQqu91OUVERBQUFDQoX+fn5FBUVNXozv6maW1RozvZzfW21tt6Ux7W1tZw4cYLs7GzHn7y8vEb/XXr06EH//v2JiIhg6NChuLrqd2QROT+XPPsFWUWVrPjZWEaFBZgdR36EChrSJClZxfx2VQqJ300vNTS4B3+YGcWYZkwv1ZqOF1d+N4KjvsiRnFXsWBT7dIN6eZ1ai6OfP0ODe+DcwdeXSM0u4Y3Nh/koKdsxMmVwUA/uGT+AmbF9cHfRwtXtqdZmZ+eRQr5Iy+XzvSc4lFfeYH9MX19+PnEwV4wI1rBEERGRTurzvSeY/24ShRW1eLg48YeZkdw4qm+XHP0rIu0rPz+fgwcPkp6ezsmTJyksLMRms531eBcXF3r27ElAQIDjby8vrx8tVDg5OXXZa1ZNTU2DIsfx48fPKHI4OzszdOhQFTdE5LzMen0b29MLWHxzLDNj+5gdR36EChpyThU1dSxancZ/th/BMMDL1YlfXjG0VaaXak21Njtpx0v59mghid+txZGRX3HGcZ6uTkT39XWsxRHX359e3m4mJG7IMAw2HzjJG5sPs/nAScf2MQMDuPeygVw+NEg3yzuII/nlfJGWyxdpuXx1OJ9aW/2lcViwNz+fOIjpI3t3+KKZiIiI1Kuus7FodRpLt2YAENHbh5dviWOQRmCKyHmqqakhIyODgwcPcuDAAQoLC884xsnJiYCAAEfR4vQChtaKaJqamhqOHz/O/v37SU1NbfDv7OzszJAhQ4iMjFRxQ0Sa5NH/JbHi22M8NnUYv5g42Ow48iNU0JBzeuzdJN7deQyAa2JCeWL6iE4zl1x+WTVJx4oca3EkZhZRVn3mHKN9/T1OK3D4ERHqg5tz+4yCqKmz81FSNm9sPkxaTikAVgtcNbI39142kOi+fu2SQ87PybJq3tqSztvbjjimBQvr6cnPJgzi+gv64uqswoaIiEhHdSivjAff2UXq8RIAfnpJOL+5cni7fQ4Uka7BMAzy8vI4ePAgBw8e5MiRIw1GYFitVvr378/gwYMJCQmhZ8+e+Pr6tuo0Td2dYRgcP36cPXv2nLO4MWTIENzczH+gUUQ6nr+t38/izw8w+6J+LLo+2uw48iNU0JCz2nmkkBte3QrAm3eMZvKI4FM7ayuhshAqCur/dvw5/esisDqDqxe4edf/7eoFrj2+++MFbj0afu3ao36bkyu08lMpNrvBobwyxzRVu44WsT+3lB/2bFcnK5F9fByLjcf196OPn0erPiVTWF7D/77JZMmXGeSU1C/07enqxKwL+3HnJQPoF+DZaueStldcWcu/t2bw1pfpFFbUAhDq6869lw3k5ov6a5owERGRDsQwDN7deYynPthDZa2NAC9X/nxjdMPPuiIi51BVVcXhw4cdRYySkpIG+/38/Bg8eDCDBw9mwIABuonejr4vbqSmprJnzx4VN0SkSd79JpPH3tvN+CGBvH3XxWbHkR+hgoY0ylZdzoJX/kXPgkSm9TxBtH9dw6JFXVXbBvi+EOLqfVrho4nFkMaOc/ECJ+czTlNaVcvuY8V8e+S7qaoyixwLnp+ul7ebY4qquP5+RPf1xdP1zPYMw6Ckqo6c4iqOF1d+93dV/d8lVeQUV3K8qMrxNP/3bf/0knBuvSisUy9iLlBeXceyHUf556bD5JbWL1wf2MOVuy4dyG1j+uOtRUVFRERMVVJVyxMrU/goKRuAsQN78uLNsZ1mBLKImKe8vJyUlBT27NlDZmbmGes3hIeHO4oYPXv21LRRHcCPFTeGDRvGyJEjGTx4MM7OZ/5+LyLdx7ZD+cx+4ysGBHqxYf7lZseRH6GChoBhQPExyNwOmTsgczv2nBSsxpnTMzVgcQIPf/AMqP/bwx88Tv9vP7DboKbsuz/lUH3afzu2lZ76ui0LJc4ep0aJOEaMNCyGGC5eFNncyCyzcLgE9hUa7CswKLG7UYE7ZXhQYbhTafUgLKgnMf39qLUZDQoY5TVnX+DtdMOCvblr/ABmxoZqaoMupqrWxns7j/FqwiGyiioB8HF3Zu4lA/jpuHD8vTSHq4iISHvbdbSQect3kVlQiZPVwiNXDOX+CYNw0jplInIWdXV17N+/n6SkJA4cOIDdbnfs69mzJ0OGDGHw4MGEhYXh4qKHlzqycxU33N3dGTFiBCNHjiQ8PFzTgYl0Q5kFFYx/fgOuTlbSnp6mdWw7OBU0uqO6GsjZfVoBYweUZp9xWI7hT1XIhYTHXAY+oacVKr4rXLh5t/q0UNjqTit4lENN6WmFkPIfFEdKz1IYOe246jIwmlZgaC67YaEMdw4boSTaB5FoH0ySMYh0IwQ/T1dCfNzp7etObz8Pevu4E+LrTm9fj+/+dsfLTU+AdHW1NjsfJGbzj4SDHM4rB+qnFrttTBh3XTpAT4OKiIi0A7vd4LVNh/jruv3U2Q36+Hnw0uw4RoX5mx1NRDogwzDIysoiKSmJlJQUKisrHftCQ0OJjo5m2LBh+PvrGtJZGYZBdnY2ycnJ7Nmzh9LSUse+Hj16EBUVRVRUFH369NFIG5Fuos5mZ9iTa7DZDbYvmKz7NR2cChrdRUk2bH+tvniRvevMkRAWJ+gdDf0u5p2sYF452BO/kAF8NG98535qzTCgrvrMYsj3xQ7Hf5dCbcVpI0jOMaKkpuzcp3T3w9LnAugzGvqMqv/To1c7fcPSEdnsBmtScnhlw0H2frfwqMUCF4YFEB8ZzNTIEK2bIiIi0gZyS6r45f8S+fJgPgDTo3vzzHUj8fXQk9Qi0lBRURG7d+8mKSmJ/Px8x3Zvb2+io6OJiYkhKCjIxITSFux2O0eOHCE5OZnU1FSqqk7dK/H392fkyJGMHDmSXr30O71IV3fJs1+QVVTJip+NZVRYgNlx5BxU0OgObLXwj7GQf+DUNo8A6Hcx9Luw/u/QOHD1IjGziGv//iWA/gc+G7u9vvhRU1a/8PmJFDj2DWTthONJYKs+8zV+/U8VOPqOhpBocNUN7O7GMAw27Mvl1YRDfJ1R2GBfZKgPUyNDmBoZwtDgHnoSSEREpIU2pOXy6LtJFJTX4OHixMJrIrhpdD+9x4qIQ3V1NXv37iUpKYn09HTHdhcXF0aMGEFMTAwDBgzQFETdRF1dHYcOHSI5OZl9+/ZRW1vr2BccHMzIkSOJiorCz8/PvJAi0mZmvb6N7ekFLL45lpmxfcyOI+eggkZ3sP2f8Olj4BkIV/yhvoDRc9AZ00XZ7AbX/eNLdh8r5oYL+vKXm2JMCtyJ1dVA7p764saxnfV/n9x35nEWJ+h3EUTfBJHX1U/jJd1KVlEl6/bksHZPDjvSC7CfdoUdEOjlGLkR29dPczeKiIg0Q3WdjefX7OPNLfU3J0f09uHl2bEMDvI2OZmIdAR2u52MjAwSExPZu3dvg5vW4eHhxMTEEBERgZubm4kpxWw1NTXs27eP5ORkDh482GD9lLCwMKKjo4mIiMDDw8PElCLSmh79XxIrvj3GY1OH8YuJg82OI+eggkZXV1kEL8VBZQFM/wtcePdZD31n+1EWrEzG282ZL+ZfTi9vfYBrFVXF9dN8HfsGsr6FrG+g7MSp/U6uMHQqRM+CIfHgrH/37ia/rJrP9+aydk8Omw+epKbu1IflYB834iPqR25cPDAAFyc9HSYiInI2h/PKmLd8FylZ9VM8zh0Xzm+uHI67i5PJyUTEbHl5eSQlJbF7925KSkoc2wMCAoiNjSU6OlpP3kujKioq2Lt3L8nJyWRkZDi2Ozk5MWzYMGJiYhg8eDBOTnqvEenM/rZ+P4s/P8Dsi/qx6Ppos+PIOaig0dWt/x18uRgCh8HPtoJT4wtRF5bXMPEvCRRV1PK7qyO489IB7Ry0GzEMKDoKqasg6b/1Izq+5+4HUddD9M31Izg0JUK3U1ZdR8K+XNbuOcGGtFzKqusc+3w9XJg8PIipUSFcNqQXHq76wCwiIgL10zqu+DaL332QQkWNDX9PF/58YwxTIoLNjiYiJqqoqCAlJYXExESys7Md293d3YmKiiImJoa+fftqKjppsuLiYpKTk0lKSiIvL8+x3dPTk6ioKKKjo7WYuEgn9e43mTz23m7GDwnk7bsuNjuOnIMKGl1Z4RF4ZTTYauCW/9WPAjiLBSuTeWf7UYaHePPxg5firKfA209OMuz+L+x+F8pyTm33D68ftRE9q36KMOl2qutsbD2Uz9qUHNanniC/vMaxz93FyoShvZgaGcLk4cH4empxUxER6Z5Kq2r57aoUPkisv1k5ZmAAL86KI8TX3eRkImKGuro6Dhw4QFJSEvv373dMFWS1Whk8eDCxsbEMHToUZ+fGH/YTaQrDMMjJySEpKYnk5GTKy8sd+3r27El0dDTR0dH4+2t6aZHOYtuhfGa/8RUDAr3YMP9ys+PIOaig0ZW9dxekvAcDLoPbPzzr0/67jxUx8+9fYhjw33vHcPHAnu0cVACw2yB9Y/2ojb0fQe2pD0T0vbC+sBF5PXjp59Md2ewGO48UsnZPDmtScsgqqnTsc7ZaGDuoJ/GRIUyNCCbIRzdwRESke0jMLGLesl0cLajAyWrhl1OG8LPLB+Ok9adEuhXDMMjOznbcXK6sPPVZuXfv3sTExBAVFUWPHj1MTCldlc1m4/Dhw+zevZu9e/dSV3dqlH3//v0d67JovQ2Rji2zoILxz2/A1clK2tPTtJ5pB6aCRld1bCf8v0mABe7bBL0bn/vNbje4/tWtJGYWcW1sKC/eHNe+OaVxNeWQ9gkkLYfDG8D4bk0Fq3P9Ohsjb4ShV4Krp7k5xRSGYbAnu4R1e3JYsyeH/SfKHPssFojr58fUyPp1N8IDvUxMKiIi0jbsdoN/bj7MC2v3UWc36OPnwUuzYxkVFmB2NBFpR8XFxezevZukpCROnjzp2N6jRw+io6OJiYkhOFhTz0n7qa6uZu/evSQlJZGenu7Y7uTkxKhRo5g8ebIWnBfpoOpsdoY9uQab3WD7gskE62HRDksFja7IMGDJlXB0G8TcAte9etZD//v1UX69Ipkebs588egEPdndEZXmQPJ79dNS5ew+td3FC4ZPh5E/gUETwUlTDnVX6SfLHSM3EjOLGuwbFuzN1KgQpkYGE9HbR3O5iohIp5dbWsWj/0ti84H6m5fTR/bmmetH4uuhz0Ii3UFNTY3jhvHhw4cd252dnRkxYgQxMTEMHDgQq1XTKIu5Gltvw8fHhxkzZjBkyBCT04lIYy559guyiipZ8bOxelCmA1NBoytK/RD+NwecPWDet+AT2uhhRRU1TPrLRgrKa/jt9BHcPX5gOweVZjuRWj+NWPK79QuLf88jACKvhagbof9Y0If3biunuIr1qfUjN746XIDNfurS3dffg6mRIUyLCuGC/v6ajkNERDqdhH25zH83iZNlNbi7WFk4I5JZF/ZTwV6ki7Pb7WRkZJCUlERqaiq1tbWOfWFhYY4pfdzd9YCedDyGYXDo0CE+/vhjioqKAIiOjmbatGl4emrWBZGOZNbr29ieXsDim2OZGdvH7DhyFipodDV1NfCPi6HgMFz2K5j0xFkPfXJVCm9/dYQhQT1Y/dB4XLQQeOdhGHDsm/rCxp73oTzv1D6fPhB1Q/20VCHRZ107Rbq+oooaPt+by5o9OWzan0d1nd2xL7CHK1dE1I/cGDcoEFdn/f8vIiIdV02dnT+vTeONzfXTdwwP8eaVW+IYHORtcjIRaUsnT54kKSmJpKQkSkpKHNsDAgKIiYnRosvSqdTU1PDFF1/w1VdfAeDp6clVV11FZGSkCvMiHcSj/0tixbfHeGzqMH4xcbDZceQsVNDoar56Fdb8BryC6kdnuDX+S15KVjHXvLIFuwHv3HMx4wYFtnNQaTW2OsjYVD8t1d6PoPrUB30Ch9aP2hh5I/QcZF5GMV1FTR2b9uexds8JPtt7gtKqUwvVebs5M2lEEFMjQ5gwtBdebs4mJhUREWko/WQ585btIjmrGIA7xobx+FUjcHdxMjmZiLSFiooKUlJSSEpKIisry7Hdzc2NqKgoYmJi6NdPI7Ok88rMzOTDDz90TEM1bNgwpk+frntfIh3A39bvZ/HnB5h9UT8WXd/4esRiPhU0upLKQngprv7vGYth1NxGD7PbDW58bSvfHi3i6ujevHLLBe2bU9pObRUcWFc/LdW+NWCrPrUvNK5+vY3I68Gnt3kZxXQ1dXa+OpzP2j05rEs9QV7pqX7i5mxl/JBeTI0MZsqIYPy9XE1MKiIi3d373x7jyVUplNfY8PN04fkboomPDDE7loi0srq6Og4ePEhSUhL79u3Dbq8fWWyxWBg8eDCxsbEMHToUFxetlSNdQ11dHVu2bGHTpk3Y7Xbc3Ny44ooruOCCC7T+i4iJ3v0mk8fe2834IYG8fdfFZseRs1BBoytZ+wRsewWCIuD+LWBt/Km193YeY/67SXi6OvH5oxPo7evRzkGlXVSVQNon9dNSHU4Aw/bdDguEX1o/amPENeCpRY66M7vdYFdmIWv3nGDtnhyO5Fc49jlZLVwUHsC0qBDiI4N1rRARkXZTVl3Hk6tSWLmr/unsiwcE8OLNsXovEulCDMPg+PHjJCYmkpKSQkXFqc+hISEhxMTEEBUVhbe3ppaTruvEiRN8+OGHjtFI4eHhzJgxg549e5qcTKR72nYon9lvfMWAQC82zL/c7DhyFipodBUF6fD3i8BWA7eugCFTGj2suLKWyX9J4GRZDb+5cjj3T9A0RN1CWR6krqqflirzq1PbrS4weEp9cWPYleDqZVpEMZ9hGKTllLJ2Tw5r95xg7/GSBvtj+voyNSqEqZEhDOrVw6SUIiLS1e0+VsSDy3ZxJL8CqwUenjKUX0wcjJNV08uIdAUlJSXs3r2bpKQkx5Q7AF5eXkRHRxMTE0NIiEZiSfdht9vZvn07X3zxBbW1tTg7OzNx4kTGjBmDk5OmVxRpT5kFFYx/fgOuTlbSnp6GVZ8/OyQVNLqKd+fCnpUwaBLMWXnWwxZ+uIelWzMY1MuLTx+6TAsBd0dFRyFlRX1x40TKqe0uXjD8qvo1NwZNAmdNNdTdHc2v+K64kcPOo4Wc/i4wOKgHUyODmRoZwsg+vprDWEREWsxuN3hzSzrPr02j1mbQx8+DxTfHMjpco0lFOruamhrS0tJITEzk8OHDju1OTk4MHz6cmJgYBg0apJu30q0VFBTw0UcfkZ6eDkDv3r2ZOXOmCnwi7ajOZmfYk2uw2Q22L5hMsI+72ZGkESpodAWZO+DNKwBL/VRTIVGNHrb3eAnTX9qM3YD/3HUxlw7RQuDdXu7e+sJGyntQmHFqu4c/RMysX3Oj/zjQHJ7dXm5pFetTT7B2zwm2HTpJre3UW0IfPw+uiKgvblwY7o+zk/qLiIg0T15pNY++m8Sm/fVPa18ZFcKz10fj66n58kU6K7vdzpEjR0hKSiI1NZWamhrHvv79+xMTE0NERAQeHppKTuR7hmGQmJjI2rVrqaqqwmq1cumll3LZZZfh7OxsdjyRbuGSZ78gq6iSFT8by6gwPVjTEamg0dkZRn0x49jXEDcHZr5ylsMMbnp9G19nFHLVyBD+ceuodg4qHZphQNbO74obK6A899Q+71C4bD6MvhP0FL5QP3Vdwr5c1qTkkLAvj8pam2Ofv6cLU0YEMy0qhEsGB+LuoqfsRETk3Dbuz+PR/yVysqwGN2crT82IZPZF/TT6T6STOnnypGNKqeLiYsd2Pz8/YmJiiImJISBAN4hEzqW0tJTVq1ezd+9eoH60xvXXX0+vXr1MTibS9c16fRvb0wtYfHMsM2P7mB1HGqGCRme3Z2X9dFMunjBvF3g3PhRx5a5j/PK/SXi4OPHZoxPo46enYOQs7DbI2Fy/mHjqR1D93S8hgybBNa+Ary7mckpVrY3NB06ydk8On+09QVFFrWOfl6sTlw8PYmpkCBOH9cLbXU/ZiojIKTV1dl5Yt49/bqqffmZYsDcv3xLH0GAtACzS2VRWVpKSkkJSUhLHjh1zbHdzcyMyMpKYmBj69++vQqVIM6WkpPDxxx9TVVWFs7Mz8fHxXHjhhfp/SaQNPfq/JFZ8e4zHpg7jFxMHmx1HGqGCRmdWVw2vXAhFR+Dyx+Hy35z10Kl/28S+E6XMjx/KA5OGtGNI6dTqquHrN+Hz30NdFbj7wlUv1E9FpQ9Q8gN1Njs70gsci4rnlFQ59rk6WRk3uCfTIkOYEhFMYA83E5OKiIjZMk6WM2/5LnYfq39w4rYx/fnt9AiN7BPpRGw2GwcPHiQpKYl9+/Zhs9WP2rVYLAwaNIiYmBiGDx+Oi4seahFpiZKSElatWuVYf2bw4MHMnDkTb289ACDSFv62fj+LPz/A7Iv6sej6aLPjSCNU0OjMtr4C654A797w4E5w9Wr0sIyT5Vz+QgJOVgs7fzsFP08t9izNlLcfVt4H2d/Wfz3iGrj6b+CldVikcXa7we6sYsei4ofzyh37rBYYHRbA1KgQpkYG09ff08SkIiLS3lbtyuKJlcmU19jw9XDh+RujmRqpBU9FOgPDMMjJySEpKYnk5GTKy099xgsKCiImJobo6GjdaBVpZXa7nR07drB+/XpsNhuenp7MmDGDESNGmB1NpMt595tMHntvN+OHBPL2XRebHUcaoYJGZ1VRAC/FQlUxzPw7xN121kPf2HSYP63ey7hBPXnnnjHtl1G6FlsdbPkbbHwW7HXg1QtmvATDrzI7mXQCB3NLWZNSP3IjOau4wb7IUB+mRoYwLSqEIUE9NHxaRKSLKquu43cfpPD+t1kAXBQewIs3xxKqqVBFOrzS0lLHuhi5uafW2/Py8mLkyJHExMTQu3dvExOKdA+5ubmsWLGCEydOABAXF8e0adNwc9MIeJHWsu1QPrPf+IoBgV5smH+52XGkESpodFZrHoev/gHBUXDfJrCefXj+T17bytcZhfz+mkjuGBfefhmla8pOhJX3Q1794mTE3gbTFoG7/j+VpjlWWMG6PSdYuyeHrzMKsJ/27jIg0Iv4yGCmRYYQ09cPq1XFDRGRriD5WDEPLvuWjPwKrBZ4aPJQHpg0GCdd50U6rNraWtLS0khKSuLQoUN8f0vAycmJ4cOHExMTw6BBg3By0lRxIu2prq6ODRs28OWXXwLg7+/P9ddfT79+/UxOJtI1ZBZUMP75Dbg6WUl7epruS3RAKmh0RvmH4O8Xg70W5qyCQRPPemheaTUXPfMZhgFbfzNJT8BJ66itgg1/gq0vAwb49odr/w4DLjM7mXQy+WXVfLb3BGv3nGDLgZPU2OyOfcE+bsRH1I/cuGhAAC5OVhOTiojI+bDbDd76Mp3n1qRRazMI9XXnxZvjuGhAgNnRRKQRdrudzMxMEhMTSU1Npbq62rGvX79+xMTEEBkZiYeHfq8UMVtGRgYrV66kuLgYi8XC+PHjmTBhgoqMIi1UZ7Mz7Mk12OwG2xdMJtjH3exI8gMqaHRG/70N9n4Eg6+A294756HLdxzlN+8nM7KPLx89eGk7BZRu48jW+tEaRUfqv774ZzDlKXDRLzjSfGXVdSTsy2XtnhNsSMulrLrOsc/Xw4XJI4KYFhnCZUN7adFYEZFOIK+0mvnvJrFxfx4AUyODee6GaK3nJtIBFRQUkJSURFJSEkVFRY7tfn5+jnUxevbsaV5AEWlUZWUlq1evJjk5GYDQ0FCuv/56AgO13qVIS1zy7BdkFVWy4mdjGRWmB3E6GhU0Opsj22DJNLBY4WdbIejcC0DdufRrvkjL5dErhvLg5CHtFFK6lepSWPdb2Lm0/uueQ+C616HvKFNjSedWXWdj68F81u7JYX3qCfLLaxz7PFycmDC0F9OiQpg4PAhfDxcTk4qISGM2H8jjl/9N4mRZNW7OVp68OoJbL+6vdZJEOpDKykpSU1NJTEwkMzPTsd3V1ZXIyEhiYmLo378/VqtGyYp0dCkpKXz88cdUVVXh4uLC1KlTGTVqlN53Rc7TrNe3sT29gMU3xzIzto/ZceQHVNDoTOx2eHMKZO2EUT+FGS+e8/Cy6joueHo9NXV21v3yMoYGe7dPTumeDqyHDx6AshywOMH4R2HCr8BJN5ulZWx2g28yClj73bobWUWVjn3OVgtjB/VkWlQIV0QEE+StoaAiImaqtdl5Yd0+Xt94GIChwT14efYFDAvR51CRjsBms3Ho0CGSkpJIS0vDZrMBYLFYGDhwILGxsQwbNgxXV42kEulsiouLWbVqFenp6QAMHTqUa665hh49epicTKTzefR/Saz49hiPTR3GLyYONjuO/IAKGp1J3n74f5PBsMO8XdAj6JyHr04+zs//71vCe3qyYf7lqsxL26sogNWPQcp3U6H1Hwe3rQBXT3NzSZdhGAZ7sktYuyeHNSk5HMgtc+yzWOCC/v5MjQxmamQIYT29TEwqItL9HMkvZ97yRJIyiwC49eL+/HZ6BB6umiZQxGw5OTkkJSWxe/duysvLHdt79epFbGwsI0eO1O/dIl2A3W5n+/btfPbZZ9hsNry8vLjuuusYPFg3ZEWa42/r97P48wPMvqgfi66PNjuO/IAKGp1N+Uk4ngiDp/zooQ8t38UHidnce9lAFlx17qmpRFpVyvvw0cNQXQxD4uHmdzRSQ9rE4bwy1u45wZo9OY4baN8bHuLN1MgQpkaGMKK3t4q6IiJt6IPELJ5YmUJZdR0+7s48f2M006J6mx1LpFsrKytj9+7dJCUlceLECcd2T09PRo4cSUxMDL1799ZnJJEu6MSJE7z33nvk5dWvYzVmzBimTJmCs7OzyclEOod3v8nksfd2M35IIG/fdbHZceQHVNDoomrq7Iz643pKq+p47/6xjA7XAjbSzo5+Bf++FuoqIXoWXPsaaP5daUPHiytZn1o/LdVXhwuw2U+9bfUP8HSM3Ligvz9Wq35xFxFpDeXVdTz14R7e23kMgNFh/iyeHUcfPw+Tk4l0T7W1tezbt4+kpCQOHjzI97/GOzk5MWzYMGJiYhg8eDBOTho5JdLV1dbWsm7dOr7++msAgoODufHGG+nVq5fJyUQ6vm2H8pn9xlcMCPRiw/zLzY4jP6CCRhe1+UAec97cQWAPV7YvmIKTbt6JGfavhWWzwbDBmF/A1D/Vzwsk0sYKy2v4PC2XtXty2LQ/j+o6u2NfL283roioL26MHdgTV2cV2kREzkdKVjEPLttF+slyrBZ4cNIQHpw0GGcnXVdF2pNhGGRmZpKYmMiePXuorq527Ovbty8xMTFERkbi6alpYEW6o3379vHBBx9QUVGBs7Mz06ZN04LhIj8is6CC8c9vwNXJStrT0/RQZAejgkYX9eSqFN7+6ojmehPzJS6DVffX//eUhXDpL02NI91PRU0dG/flsXZPDp+n5VJaVefY5+3uzOThQUyNDGHCsF54umoItojIjzEMg7e+zODZT/dSazPo7evO32bFMmZgT7OjiXQrhYWFJCUlkZSURGFhoWO7r68vMTExREdHExgYaGJCEekoSktLWblyJYcPHwZg+PDhXHPNNSp0ipxFnc3OsCfXYLMbbF8wmWAfd7MjyWmaWjfQHZ5OxG43WJ9aP0dqfESIyWmk24udDRX5sO4J+GwhePaEC243O5V0I56uzlw5sjdXjuxNTZ2dbYfzWbsnh/WpJ8grrWZVYjarErNxc7Zy2dBeTI0MYcqIIPw8Xc2OLiLS4eSXVTP/3SQ27Kufk/uKiGCevyEafy9dM0XaQ1VVFampqSQmJnL06FHHdldXVyIiIoiJiSEsLAyrpnoVkdN4e3tz22238dVXX/HZZ5+RlpZGVlYW1113HQMHDjQ7nkiH4+xkJcTHnayiSo4VVqig0UlphEYnkphZxLV//xIvVyd2PnkF7i6aH1U6gPVPwZcvgsUKN70NI642O5F0c3a7wa7MQtak5LB2zwmOFlQ49jlZLVw8IIBpUSHER4QQ4qsPLyIiXx48ycP/TSSvtBpXZytPTh/BbWPCNGWFSBuz2WwcPnyYpKQk0tLSqKs7Ndp04MCBxMTEMGLECFxdVVgUkR93/Phx3nvvPfLz8wG45JJLmDhxohYMF/mBWa9vY3t6AYtvjmVmbB+z48hpNOVUF/T8mjT+kXCI6SN78/dbLzA7jkg9w4APH4Bd/wEnN5izEsIvMTuVCFA/fUpaTul3xY0c0nJKG+yP6efHtMgQpkYGM7BXD5NSioiYo9Zm56/r9/PaxkMYBgwJ6sHLt8QxPESf0UXa0okTJ0hKSmL37t2UlZU5tgcGBhIbG8vIkSPx9fU1MaGIdFY1NTWsXbuWnTt3AtC7d29uuOEGTVMncppH/5fEim+P8djUYfxi4mCz48hpVNDogqb8dSMHc8tUQZSOx1YH/7sd9n0Cbj7w09UQMtLsVCJnOJJfzro9J1izJ4dvjxZy+jvgkKAeTIsKYWpkCJGhPnoyWUS6tMyCCh5ctovEzCIAZl/Un99dHYGHq0YAi7SFsrIykpOTSUpKIicnx7Hdw8ODzDkNzgABAABJREFUkSNHEhMTQ2hoqD5/iEirSE1N5cMPP6SqqgoXFxeuvPJK4uLidI0RAf62fj+LPz+g9Yk7IBU0uphDeWVM/stGXJws7HzyCnzcXcyOJNJQbSX85wY48iV4BcFd6yBggNmpRM4qt7SK9aknWJOSw7ZD+dTZT70d9vHzID4ymGmRIYwOD8DJqg/+ItJ1fJiUzRPvJ1NaXYePuzPP3hDNVSN7mx1LpMupra1l//79JCUlceDAAb7/1dtqtTJ06FBiY2MZPHiwpoMRkTZRXFzMypUrycjIACAiIoKZM2fi5uZmbjARk737TSaPvbeb8UMCefuui82OI6fRouBdzLo99YuBjxnYU8UM6ZhcPGD2MlgyHU4kw9vXwZ1rwTvY7GQijQrydufWi8O49eIwiitr2ZCWy9o9OSTsyyOrqJIlX2aw5MsMenq5MmVEMFOjgrlkcCBuznp6WUQ6p4qaOp76YA/v7jwGwOgwf168OZa+/p4mJxPpOgzD4NixYyQmJrJnzx6qqqoc+/r06UNMTAxRUVF4eur/OxFpW76+vtx+++18+eWXbNiwgdTUVKxWKzfccINGaki39v1n32OFlSYnkfPVrILGokWLeP/990lLS8PDw4Nx48bx3HPPMWzYsLbKJ99Zl1o/LDk+MsTkJCLn4O4Lt62At+KhMB3+7waY+0n9dpEOzNfDhWvj+nBtXB+qam1s2p/H2j0n+GzvCfLLa/jvN5n895tMvFydmDg8iKmRIUwcHkQPNz0XICKdw57sYh5ctovDeeVYLPDgxMHMmzwEZyer2dFEuoTCwkJ2795NUlISBQUFju0+Pj5ER0cTExNDr169TEwoIt2R1Wpl/Pjx9OvXj3/961+kpKQwZMgQYmJizI4mYpq+/h4AZBVWYrcbWDUjQ6fTrCmnpk2bxs0338yFF15IXV0dTzzxBMnJyaSmpuLl5dWkNjTlVPPlllRx0TOfA/DV45MJ8XU3OZHIjyg4DG9OhfJcCLu0vsjhon4rnU+tzc6O9ALW7slh3Z4T5JScesrS1cnKJYN7MjUyhCkRwQT20NBtEel4DMNg6dYMFq1Oo8ZmJ9jHjRdnxTF2UE+zo4l0etXV1aSmppKUlOSY0gXAxcWFiIgIYmJiCA8Px2pV4VBEzLdx40Y2bNiAq6sr999/PwEBAWZHEjFFnc3OsCfXYLMbbF8wmWAf3a/qKNplDY28vDyCgoLYuHEjl112WasGk1P+b/sRnliZQmw/P1b94hKz44g0zfEkWHo1VJfA8KvhJ/8CJz3NLp2X3W6QdKyItXtOsHZPDuknyx37rBYYHR7A1MgQpkYGa/oWEekQ8suqeey93XyRlgvAlBHBPH9jNAFeriYnE+m87HY7hw8fJikpib1791JXV+fYN2DAAGJiYhgxYoTmqBeRDsdut7N06VKOHj1Knz59uPPOO3Fy0nS60j1d8uwXZBVVsuJnYxkVpuJeR9Eua2gUFxcDnLOqW11dTXV1dYNg0jzfr58RH6m1CKQT6R1Tv6bG29dD2sfwyS9hxkuguTqlk7JaLcT19yeuvz+/njaMA7llrE3JYW1qDilZJexIL2BHegFPf5xKVB8fpkaEMC0qhMFBPTRHrYi0u60HT/LwfxPJLa3G1dnKb6ePYM6YMF2PRM5Tbm4uSUlJ7N69m9LSUsf2nj17EhsbS3R0NL6+mmZVRDouq9XK9ddfz6uvvkpWVhYbN25k0qRJZscSMUVffw+yiio5VljJqDCz00hznfcIDcMwmDlzJoWFhWzevPmsxy1cuJDf//73Z2zXCI2mKamqZdTT66m1GXz2yAQGB/UwO5JI8+z9GP43Bww7XPoITHnK7EQirS6zoIJ1qfUjN77OKOD0d9aBgV7EfzdyI6avn+bnFJE2VWuz8+Jn+/lHwiEMAwb18uLl2RcQEarP3SLNVV5eTnJyMklJSRw/ftyx3cPDg6ioKGJiYujTp48KhSLSqaSkpPDee+9hsViYO3cuYWG6myvdz6P/S2LFt8d4bOowfjFxsNlx5DttPuXUL37x/9m77/A2y6vx418Ny1PetuS9He8MIJDFynDYZY8OKLQU2tLSX/t2j7d7v51vGX2hLaVAocww4gzCSIAEyJAt2/EeiS3vPbSe5/eHHNlOnJDhWB7nc11cSZ77iXQSHFm6z33O+QKvvPIKO3fuJDEx8bj3TVWhkZSUJAmNk/TSgRa+9OQ+0mOCef2rF/s6HCFOz97H4KX7PD8v/hms+IJv4xHiLOoctLNtLLmxq6YLh1vxrplDA9iQb6I438zytEj8ZBivEGIaNXcP86Wn9rGvqReAW85L4vtX5RFkkJaPQpwsl8tFVVUVBw4coLq6GkXxfB/XarVkZ2ezePFisrKy0Ovl35UQYu564YUX2L9/P6Ghodx7770EBgb6OiQhZtTvtlbxh+3V3Lo8iZ9fV+TrcMSYs9py6r777uOll17irbfeOmEyA8Df31/6h56BLVYbAMX5Zh9HIsQZWPYpGOqE7T+Ekm9DUDQsvtnXUQlxVkSH+HPL8mRuWZ7MwKiTHQc7KLHaeKOyHVv/KI+928hj7zYSFujHulwTxfkmLsyOIcBP+tcKIU7fy5YWvvVcKQOjLowBen5+XSFXFsX7Oiwh5gRVVTl8+DD79++nrKyM0dFR71p8fDyLFy+moKCA4OBgH0YphBDT57LLLqOxsZGenh5efvllbrjhBqk2EwtKYoQniXeoZ8THkYjTcUoJDVVVue+++3j++ed54403SEtLO1txCcDucvPGwQ4ANuTJ/Awxx63+iiep8d7/woufh8AIyN7g66iEOKuMAX5cvTieqxfHM+p0805tJ5vLbGyraKd7yMGzew/x7N5DBPrpuHhRDMX5Zi7JiSUs0M/XoQsh5ohhh4sfbSrnqfebAViWHM4fbllKUmSQjyMTYvbr7e3FYrFw4MABurq6vNeNRiOLFy+mqKiI2NhYH0YohBBnh7+/P9dffz2PPvooVquVzMxMli5d6uuwhJgxiRGe98qS0JibTimh8YUvfIEnnniCF198EaPRiM3mqR4ICwuT8rSz4N3aLgbtLmKN/ixODPd1OEKcGY0GNvwEhjvB8m94+lNw+0uQtNzXkQkxIwL8dFyaY+LSHBMut8IHjT1sLrOxxWqjpW+U18psvFZmw0+nYUVGNMX5JtbnmYg1Bvg6dCHELFXe0s99T+6ltmMIjQa+eEkmX16bhV7a2QlxXHa7nYqKCvbv309DQ4P3up+fH7m5uSxevJi0tDS0Wvl3JISY3xITE7nkkkvYvn07r776KsnJyURFRfk6LCFmxJEKjcM9IyiKKrMu55hTmqFxvPKzv/3tb9xxxx0n9Rgn2wtLwLeeK+XJPU18/Pxkfnptoa/DEWJ6uJ3w5K1QsxUCwuHOzRCb6+uohPAZVVUpO9xPidXGZquNmvZB75pGA8uSI9iYb6Y430xylJy4FkJ4Xjcee7eRn75agcOlYAr153c3L2FlRrSvQxNiVlIUhfr6eg4cOEBFRQVOp9O7lpqaypIlS8jNzZVWyUKIBUdRFP7xj3/Q2NhIfHw8d911FzqdtMIV85/LrbDoe5txKyq7v70WU6gcJJwNzvpQ8NMlCY2Toygqy3+2nc5BO/+4czkXZcf4OiQhpo9jCB77GBzaA8Z4uKsEwpN9HZUQs0JtxyAlVhslZTYOHOqbtJZjNlKcb2ZjgZkcs1H63AqxAHUPOfj6fw6wraIdgHW5sfzqhsVEBht8HJkQs09HRwcHDhzAYrHQ39/vvR4ZGcmSJUsoKioiPDzcdwEKIcQs0NfXxwMPPMDo6Chr1qxh7dq1vg5JiBmx6hevc7h3hGfvXcE5KZG+DkcgCY0578PGHq5/4B2M/no+/N56DHopeRbzzHA3/O0y6KiEqEy4swSC5WSpEBO19o2wxdpGidXG7vpu3Mr4t+zkyCCK801sLDCzNClCSmSFWADeqe3kK//eT1u/HYNOy7cvz+H2lamS3BRigqGhIcrKyjhw4AAtLS3e6wEBARQUFLB48WISExPl340QQkxgtVp55plnALj99ttlZq5YEG5+6F1213fzh1uWcM2SBF+HIzj5vMEpzdAQM2dLuWc+ySU5sZLMEPNTUCR84jl4tBi6auBfN8Dtm8Df6OvIhJg14sICuX1lKrevTKVnyMG2ijZKrG28Xd1BU/cwf327nr++XU+M0Z/1eSaK882sSI+S7xtCzDMut8Iftlfz5x01qCpkxATzx1uXkh8f5uvQhJgVnE4nBw8exGKxUFNTg6IoAGi1WjIzM1myZAnZ2dno9fLxVwghppKfn09NTQ379u3j+eef55577iEoSNrdivktMSKI3fXdMhh8DpJ3dLOQqqpssbYBsCHf5ONohDiLwhLgk897khot++Cpj8PHnwG99C8W4mgRwQZuPDeJG89NYsju4s2qDkqsNl6vaKdjwM4Tu5t4YncTxgA9a3NiKc43c9GiGIIM8q1eiLnsUM8wX35qPx829gBw87lJ/ODqPPm3LRY8RVFoaGjAYrFQXl6Ow+HwrpnNZpYsWUJBQQEhISE+jFIIIeaOjRs30tjYSHd3Ny+//DI33nijVLOJee3IYPBDPcM+jkScKvkkNAvVtA9S3zmEQaeV2Rli/ovO8iQx/n4V1L8Jz90NNzwKWhlEJsTxBPvrubwwjssL43C4FN6p7aTE2sbW8jY6B+28sL+FF/a34K/XcmF2DMX5ZtblxhIeJD32hZhLXrG08s3nLAyMujD66/nZdYVctTje12EJ4TOqqtLW1obFYqG0tJSBgQHvWlhYGEVFRRQWFhIbG+vDKIUQYm7y9/fn+uuv55FHHqG8vJx9+/axbNkyX4clxFkzntCQCo25RhIas9CWck91xqrMKIwBfj6ORogZkHAO3PI4/OsmKH8BXouGy38DchpEiI9k0Gu5eFEsFy+K5ScfK2BvUw8lZTZKym00d4+wtdyT6NBpNVyQHklxvpkNeWbMYQG+Dl0IcRwjDjc/etnKk3uaAViaHM4fb1lKUqS0fhALU19fH6WlpVgsFtrb273XAwICyM/Pp6ioiKSkJLRaabkohBBnIiEhgUsvvZRt27bx2muvkZycTHS0zLoU81NihOe9tSQ05h5JaMxCW6ye+Rkb8s0+jkSIGZRxKVz3MPznTnj//yA4Bi7+pq+jEmJO0Wk1nJcayXmpkXznilwqWgcosdoosdqotA2wq6aLXTVdfP9FK4uTwtmYb6Y430R6jLTjEGK2qGjt574n91HTPohGA5+/OIP712Xjp5ONWrGwjIyMUFFRgcVioaGhwXtdp9ORnZ1NUVERWVlZMhdDCCGm2cqVK6mpqaGhoYFnn32Wu+66S15rxbx0pELjcM8IiqKi1cqh2rlCo6qqOpNPeLLTyheq1r4RVvz8dTQa2P3ttcQa5QStWGD2/BVe/Zrn55f/BpZ/1rfxCDFPNHQOsaXcxuYyG3ubeietZcWGsLHATHG+mfz4UOmVK4QPqKrKP99r5CevVOBwKcQa/fndzUtYlSmnIsXC4XK5qK6uxmKxUFVVhdvt9q6lpKRQVFREXl4egYGBPoxSCCHmv76+Ph544AFGR0dZtWoV69ev93VIQkw7l1th0fc241ZUdn97LaZQ2YP1tZPNG0iKdZbZNtZuallyhCQzxMK0/LMw1Alv/gJe/S8IioKC63wdlRBzXmp0MHdfmMHdF2bQ3j/KlvI2Sqw23q3torp9kOrXa/jT6zUkhAdSPFa5cW5qJDo5pSLEWdcz5ODrz1rYOvY+8NKcWH59QxFRIf4+jkyIs09RFBobGyktLaW8vJzR0VHvWkxMjHcuRnh4uO+CFEKIBSYsLIyrr76ap59+ml27dpGRkUF6erqvwxJiWul1WsyhARzuHeFQz7AkNOYQSWjMMiVWzwfZDXkmH0cihA9d/E0Y6oAPHvEMCQ8M97SkEkJMi9jQAD5xQQqfuCCFvmEnrx9so6SsjTeq2jncO8Kju+p5dFc9UcEG1ueZKM43szIzCn+9ztehCzHvvFfXxf1P7cfWP4pBp+Wbl+Xw6VWpUikl5j2bzUZpaSmlpaX09/d7rxuNRgoLCykqKsJkMsm/BSGE8JG8vDyWLVvG3r17eeGFF7j33nulQk7MO4kRgWMJjRHOSfF1NOJkSUJjFukbdvJeXRcg8zPEAqfRwOW/huEuz5Dwpz4Bd2zyDA8XQkyrsCA/rl2ayLVLExlxuHmruoMSq41t5W10DTl46v1mnnq/mRB/PZfkxFKcb+LiRbGE+MtbCCHOhMut8Mft1fxpRw2qCunRwfzx1qUUJIT5OjQhzpre3l5vEmPicG9/f3/y8vIoKioiJSVFhnsLIcQssXHjRhoaGuju7ua1117juuuke4KYXxIjgthd3y2DwecY2Y2YRXYcbMelqGSbQkiLDvZ1OEL4llbnGRI+0gP1b8LjN8CdJRCT7evIhJi3Ag26sXZTZpxuhd113ZRYbWwpt9HWb2fTgRY2HWjBoNeyOjOajflm1uWZiAw2+Dp0IeaUQz3D3P/Ufj5o7AHgxnMS+e+r8wmWRKGYh4aHhykvL8disdDU1OS9fmS4d2FhIVlZWfj5+fkwSiGEEFMxGAxce+21PProo1gsFnJycsjLy/N1WEJMmyODwQ/1DPs4EnEq5FPTLLKl3AbAhjypzhACAL0/3PIv+MdV0LIPHr/Ok9QIS/B1ZELMe346LauzolmdFc0Pr87nwKFeNlttbLG2Ud85xOuV7bxe2Y72OTgvNdKTCCkwkxAuZehCnMhrpa1841kL/aMuQvz1/PTaAq5ZIt/XxPzidDqpqqrCYrFQXV2NoijetdTUVAoLC2W4txBCzBFJSUmsXr2at99+m02bNpGUlITRaPR1WEJMiwRvQkMqNOYSSWjMEqNON28c7ABgQ77MzxDCy98IH/8PPFoMXTWepManX4OgSF9HJsSCodVqWJocwdLkCL65MYfq9kE2l9kosdqwtvSzu76b3fXd/OjlcgoTwijON7GxwExmrHzQEeKIEYebH71czpN7PCfUFyeF86dblpIcFeTjyISYHoqiUF9fT2lpKRUVFdjtdu+ayWSiqKiIgoICwsKkrZoQQsw1F110EVVVVbS1tbFp0yZuvfVWmXEk5oUjg8A7BuwfcaeYTSShMUvsqulk2OEmLiyAQumdLMRkwdHwiec8SY2OSnjiZvjUC2CQ1mxCzDSNRkO2yUi2yciX1mbR3D3MlvI2SspsvN/YTenhPkoP9/GbLVWkxwR7W1gtTgyTDz1iwTpoG+C+J/dS1TYIwD0XZfDVDdn46WROgJjbVFWltbXVOxdjcHDQuxYWFkZhYSGFhYWYTHJgSwgh5jK9Xs91113Hww8/TFVVFfv27WPZsmW+DkuIMxZr9AegXRIac4okNGaJLdY2ADbkmWTDR4ipRKR4khp/uwwO7YGnb4dbnwSd9FsWwpeSIoO4a3Uad61Oo3PQzrbyNkqsNnbVdFHXMcQDb9TywBu1mEMDKM43UZxvZnlaJHrZyBULgKqqPL67iZ+8XI7dpRBj9Od/blrMmqwYX4cmxBnp6enBYrFQWlpKZ2en93pAQAD5+fkUFRWRlJQkw72FEGIeMZlMXHrppWzdupXNmzeTlpZGRESEr8MS4owcSWh0DzlwuhU5cDRHaFRVVWfyCfv7+wkLC6Ovr4/Q0NCZfOpZy62oLP/pNrqGHPzrM+ezKjPa1yEJMXs17YbHrgHXCBTdDB97EOTDshCzzsCokx0HOyix2nijsp0hh9u7Fh7kx7pcT3JjTVY0AX46H0YqxNnRO+zgG89aKBk7tHLxohh+c+NiokP8fRyZEKdnaGgIq9VKaWkpzc3N3ut6vZ5FixZRWFhIZmYmer2cmRNCiPlKURT+/ve/09TURHJyMnfccYckr8Wcpigq2d99DZei8u63LiUuTOZ7+dLJ5g3k3eYs0DFgJy48AJeisjxN5gIIcULJ58NNj8GTt4Dl3xAUBcU/A6lsEmJWMQb4cfXieK5eHM+o082umk5KrDa2VbTTPeTgPx8e4j8fHiLIoOOi7Bg2Fpi5JCeW0ACpuhJz3+66Lu7/935a+0bx02n45mW5fHplKlqtfK8Sc4vD4eDgwYNYLBZqa2u9w701Gg1paWkUFhaSm5tLQECAjyMVQggxE7RaLR/72Md48MEHaWpq4r333mPlypW+DkuI06bVaogO8cfWP0p7v10SGnOEVGjMIn0jTsICZSNHiJNy4Cl4/nOen6/9Aaz5f76NRwhxUlxuhfcbeiix2thitdHSN+pd89NpWJERzcZ8M+vzTMQY5SS7mFtcboU/vV7Dn16vRlEhLTqYP926lAKZjybmELfbTX19PRaLhcrKShwOh3ctLi6OwsJCCgoK5LOcEEIsYB9++CGbNm1Cp9Nx9913y6wkMadd/eedWA718ddPncv6PPla9qWTzRtIQkMIMXe9+79Q8m3Pz6/6I5xzu2/jEUKcElVVKT3cR4nVRom1jZr28WGyGg2ckxzhHSqeHBXkw0iF+GgtvSPc/9R+9jR0A3D9skR+dE0+wf5SEC1mP1VVOXz4MKWlpZSVlTE0NORdCw8Pp6ioiMLCQmJiZP6LEEIIz/eNJ554gurqasxmM5/5zGek5aCYsz7zj/fZVtHOz64t5Lbzk30dzoImCQ0hxMKw7b9h5+9Ao/W0osq9ytcRCSFOU037oLdy48ChvklruXGhFOeb2FhgZpHJiEbazIlZZHOZjW88a6FvxEmIv56ffKyAjy1N8HVYQnykrq4u73Dv7u5u7/WgoCDvcO/ExER5zRVCCHGMgYEB/vKXvzAyMsKaNWtYu3atr0MS4rR867lSntzTxP3rsrh/Xbavw1nQZIaGEGJhWPsDGOqAfY/Df+6CTzwLaWt8HZUQ4jRkxoaQGZvJFy7JpKV3hC1jlRt7GrqpaO2norWf32+rJiUqyFu5sTQpXOYSCJ8Zdbr5ySvlPP5eEwCLE8P4461LSYkK9nFkQhzf4OAgZWVlWCwWWlpavNf1ej05OTkUFRWRkZGBTqfzYZRCCCFmO6PRyJVXXskzzzzDzp07yc7OJikpyddhCXHKYsdaHbcP2H0ciThZUqEhhJj73C545naofBkMRvj0KxC32NdRCSGmSfeQg20VbWyx2niruhOHS/GuxRr9WZ9nojjfzAXpURj0Wh9GKhaSg7YB7ntyL1VtnlZpn7sona+uXyRfg2JWstvtVFZWYrFYqKur48hHQI1GQ0ZGBoWFheTk5ODvL7OLhBBCnJpnn32W0tJSIiMjueeeezAYDL4OSYhT8vh7jXz3hTLW5Zr4v9vP9XU4C5q0nBJCLCzOUXj8emjcCcExcGcJRGX4OiohxDQbsrt4s6qDzWU2dlS2M2B3eddCA/SszTVRnG/iwuwYggxSiCqmn6qq/Gt3Ez9+uRy7SyE6xJ//uWkxF2bLbAExu7jdbmpqaigtLaWyshKXa/z1MiEhwTvcOyQkxIdRCiGEmOtGRkb4y1/+wsDAAOeddx5XXHGFr0MS4pRssdq4+58fsjgxjBe/uNrX4SxoktAQQiw8o33wtyugrRQiUj1JDaN5Rp66xzZE6Y5D9HWOoNNr0ftp0flp0fnp0Ou16Axj1/Se6971Cfd61nWT1scfR4tWq5Ee1kJMYHe5ebe2ixKrja3lbXQOOrxrAX5aLsyKoTjfzNrcWMKD5KSYOHO9ww6++Wwpm602AC7MjuG3Ny4mxiin2sXsoKoqzc3N3uHeIyMj3rXIyEjvcO+oqCgfRimEEGK+qa2t5Z///CcAn/jEJ8jMzPRxREKcvP3NvXzsf3cRHxbAO9+SWTC+JAkNIcTCNNAGj26AngYwFcIdL0Ng+Fl5KlVVaanuZf+2ZhosnWflOSbSaPAmN/T6CQmTI4kRw9FrR/38IxImR9+r99N5f63Ta2VOgZjV3IrK3qYeSspsbLbaONQzvomn02pYkR5Fcb6JDflmTKEBPoxUzFV76ru5/6l9tPSN4qfT8I2NOdy5Kk1eG8Ws0NHR4R3u3dvb670eHBxMQUEBRUVFxMfHy8EIIYQQZ82rr77Knj17MBqNfP7znycwMNDXIQlxUlp6R1j5i9fx02mo+sll8n7JhyShIYRYuLrr4JFiGGqHlFWeQeF+0/dmSnEr1O7rYP/WJtobBzwXNZBaGE3a4mgUt4rbqeB2KbiciufnTgWXS8HtdHt+fuTakfscnh/H71O8jzFbaHWaCYmRI4kP3XErTqZOqGjRG3Qffd/Ex9Zr0eqlOkWcPFVVKW/tp8TqmbtRaRuYtL40Odw7VDwtWoY3ixNzKyp/fr2GP2yvQlEhNSqIP966lKLEcF+HJha4/v5+73Bvm83mvW4wGLzDvdPS0mS4txBCiBnhcDh46KGH6OrqorCwkOuvv97XIQlxUhwuhezvvgbA3u+tJzJYqvt9RRIaQoiFrdUCf78C7P2w6Aq46THQnVk/fceoi4pdrRzY3sxA9yjgqZjIucDM4rVJRJinf2NUVVTcbuXYJIg3EeLG7VLHEiHu8eTJxETJUUkSz+93T064TEiqTEzCKMqMfos4oWOTKUe379J9ZDJlvPrEU93yUfcd+VGrkyG/c1lD5xAlVhslVht7m3onrWWbQtiYb2ZDvpn8+FBJnIlJWnpHuP/f+9lT3w3AdcsS+NE1BYT4y3wW4Rujo6NUVFRgsVior6/3XtdqtWRmZlJYWMiiRYtkIKsQQgifOHToEI888giqqnLDDTdQUFDg65CEOClLf7SFnmEnm+9fQ45Z9qt9RRIaQgjRsBP+eR247bD0E3D1nz19m07RYI8dy45mrG+34BjxDNQMCPGj8OJECi9KINA4fzcNFLcynjBxKrjGKkyOqT5xTqgw8SZJ3Lgc48mUicmTyQma4z/mbKHRak5QcXK8yhTdSSRhxpMrx71Pr0UjLW2mTVv/KFvKPZUb79Z24ZqQtEuMCGRDnpmNBWbOSYlAJ3/vC1qJ1cY3nrXQO+wk2KDjJ9cWcO3SRF+HJRYgl8tFTU0NFouFgwcP4na7vWtJSUkUFRWRl5dHcLBUnAkhhPC9119/nbfeeovAwEA+//nPYzQafR2SEB+p+HdvcbBtgMfuXM6F2TG+DmfBkoSGEEIAVL4C//4EqAqs/gqs+++T/q2dhwbZv62J6j1t3kqFcFMQS9Ylseh8M3qDtHA4m1RVRXGrJ5X4ODaZcqR6Zaq2X0dVsRz1+EeuK67ZU52i1WuOSqboPiKZMlXFyUe0B5vq3nne7qtv2Mn2yjZKrDberOpgdEISLTrEwLpcE8UFZlZmROGvl3/vC8Wo081PX6ngn+81AlCUGMYfb1lKqrQnEzNIURSampooLS3FarUyOjrqXYuOjvYO946IiPBhlEIIIcSxXC4XjzzyCK2trWRmZvLxj3983n6eEPPHJx/ZzdvVnfz2xsVcf44cYvIVSWgIIcQRex+Dl+7z/HzDT2HlF094e3NFN/u2NNJc0eO9Fp8VzpL1yaQWRMlp+QVCVdTxhMcxVSWetl3HTaYc3R7M6Z4ymTJe+XJU0sXhZma/O5+Aho9sy3VMu68TzVCZot3XkcTMVAmXmWr3NeJw82ZVB1usNrZVtNE/6vKuhfjruSQnluJ8ExcvipV2Q/NYddsA9z25zzt35e4L0/nahkUY9NJ2TsyMtrY2SktLKS0tpa+vz3vdaDR6h3ubzWbZGBJCCDGrtbe389BDD+F2u7nyyis599xzfR2SECf0/57ez3N7D/ONjTnce3GGr8NZsE42byCfyIUQ89+yT8FwF2z7b9jyHQiKgiW3HnObY9TF209VUfmeZ7CmRgMZ58SyZF0yplRJwC40Gq0GvUHns0ocxX1U4mOKGScu55EZKu4pKk5OUJly1AyVqZIxXirepIsvHN3u6yPbdh0nmTJ5TTdlgmalOYw1SRH86PJc9jb3seWgjS3l7bQP2Nl0oIVNB1ow6LWsyYymON/MujyTDIybJ1RV5ck9zfzoZSujToXoEAO/vWkJF0m5uZgBfX193iRGW1ub97q/vz+5ubkUFRWRmpqKViuJNSGEEHNDbGwsa9euZcuWLZSUlJCenk5kZKSvwxLiuGKM/gC0D4x+xJ1iNpCEhhBiYVh1Pwx1wrt/hhe/AEGRkF3sXW6r72fLo1b6O0bQaKDgokSWrEsiNDrQdzGLBU2r02Lw0TByVVVRXOqE+ScT2n0db9D8VPdOWD+SkJm6osU9Kfkysd2Xqqi47G5cdvcJIj474oA79XrQ+eFEZcStMKoouPf0ceD9PvZqKgkO8iMmNABzZCDGID90Bt1JVLSMJVkMnuqW47UC0+rmb7uv2aRv2Mm3nrfwaqknmb0mK5rf3rSYWGOAjyMT89nIyAjl5eWUlpbS0NDgva7VasnOzqawsJDs7Gz8/Px8F6QQQghxBi644AKqqqpoaGjg+eef59Of/rQk58WsdeS9f/uA3ceRiJMhCQ0hxMKg0cD6H3uSGpan4Onb4VMvoCSez74tjex5qR5FUQmJ8Gf9nfnEZ4X7OmIhfEaj0aDz81RG4IOcnqpMSKY4xpMg40kS9+TqEtfk6pMjFSXK0YmXo5Iw3mqVCWsupwIT2n25XQq4QAsEA8Ec9SGsX8HdP8zhQ8PT/xcxVbuv4wyQP/EsFd1Hzk45klyZuKZdAO31Pmjo5stP7edw7wh6rYb/Kl7EZ9ekL4g/u5h5TqeT6upqLBYL1dXVk4Z7p6SkUFhYSF5eHkFBQT6MUgghhJgeWq2Wj33sYzzwwAM0Nzeza9cu1qxZ4+uwhJhS7FiFRke/JDTmAkloCCEWDq0WrvkzjHRD9RYGH/sc2/T/y+EGBwCZ58Ry0W2LCAiW05BC+JJGq8HPoMPPoPNkEWaQqqooinpUi66pkyltPaMcaOyhvLmP5q4h9KoGHaBXISrQj9SIIBKMAYQa9N7HON4MFWUWtvvSHmn3dfSME/3kBIs3IXLCuSnHafd1giqWs1md4lZU/ndHDb/fVoWiQkpUEH+8ZSmLk8LP2nOKhUlRFBobG7FYLJSXl2O3j39Ijo2NpaioiIKCAsLDw30XpBBCCHGWhIeHc9lll/HCCy+wY8cOMjMziYuL83VYQhzDm9AYlITGXCAJDSHEwqLzgxv/Qe0fvs6OuvXYVQd6g4YLb1lEzoo4ae8ixAKn0WjQ6TTodFr4iI5DacAFJAHQMWBne0Ubm602dtV04nS7oGcEeiAuLIANeSaKC+JZnhqJ/gStxFRVPeGg+cnVJG7czqlnqJywLZhj8gyViT9X3OPlKYqiotjdOH3Q7gvwJjmmGiA/dcXJ1O2+jiRbjtzb5XDy01217LP1A3B5jonvFecQFmzAMeryVqfI9wNxulRVxWazeediDAwMeNdCQ0MpLCyksLAQs9nswyiFEEKImbF48WIqKyuprKzk+eef57Of/ay0VBSzTmzoWMupfpmhMRdoVFVVP/q26XOy08qFEOJscNrd7HymmvKdLQDE6qtZn/Is4ff+C0Jk+KsQ4sz1jzrZUdnOFmsbOw62M+wYTwhEBPmxNtfExnwzq7OiCfDzzdD541Hcytig+SNJkKPae00cTn9M4sU9OaEyIZFyvNZhJ2r3dTbU6N28FuRgVAt+Kqwb9iPfqUPD5OSFRsMU7bumbvelP+a+I8kU3dRJmElD7o+aoTK2ppGWV3NST0+PN4nR0dHhvR4QEEBeXh5FRUUkJydL/3AhhBALztDQEH/5y18YGhpi5cqVbNiwwdchCTHJoN1FwQ9KALD+sJhgf6kB8IWTzRtIQkMIsWB0NA2w5RErvW3DoIFlF0WyvOV2dP0NELcE7ngZ/I2+DlMIMY+MOt3srO6kxGpjW0UbPcNO71qQQcfFi2IozjdzSU4soQEL+6SaqqoobnVSRYmnmkQ9JmEyueJkiuoUp3tSwmXU6eb5nl7eHvHMOonX6LiBYMLdGu/vcbt809prKlqd5qgqE90pzk0ZT5Z81H0z3e5rvhkeHsZqtVJaWkpTU5P3uk6nIzs7m6KiIrKystDr5UOxEEKIhe3gwYM8+eSTANxxxx2kpqb6NiAhjpL3/c0MO9zs+NrFpEXPcO9jAUhCQwghvFRFZf/2Zt57oRbFrRIcZmDdp/NIzImEzmp4tBiGuyDtIvj4M6D393XIQoh5yOVW2NPQzRZrGyVWG6194+XMfjoNKzOiKc43sz7PRIxRXoemS037AF98Yh+VNk/bn8+sTuO/Ni7CXz+5OkZVVNzuKapJpkqYuNzHtPNyOU7U6uuoZMyESpUjv1aVGX1LfkInSnZM9XNv8uQkft+kqpSj75sj7b4cDgdVVVVYLBZqampQlPFkWFpamne4d0DAR/StE0IIIRaYF198kX379hEWFsa9994r3yvFrHLxr3fQ0DXM059bwfK0SF+HsyBJQkMIIYChPjvb/15Oc0UPAGmLo7n0k7kEhEw4CX14L/zjKnAMQt41cMPfQDu72sAIIeYXVVWxHOqjxGpjs9VGXceQd02jgXNTIijON1OcbyYpMsiHkc5dqqry7/eb+e9NVkadClHBBn5z42IuyYn1dWhTUtzHa+V1dPXJxOqVk5ybMrFy5TjzVs52u6+TdUy7L8N4q69jKk0MRypOJidJjhlkP+n3n6B12AnafSmKQn19PRaLhYqKChwOh3fNbDZ752LI5xshhBDi+Ox2Ow888AC9vb0sWbKEj33sY74OSQivmx58lz0N3fz5tqVcWRTv63AWJEloCCEWvAZLJ9sfq2B00IneT8vqm7LIWx0/9cnP2h3wrxtBccK5d8IV/+PZVRFCiBlQ0z5AyVjlhuVQ36S1vLhQivPNbCwwk20KmfWn12eDvhEn336+lFcsrQCszozmf25a7B32Jyabqt3XVPNRJlavnHBovcM9ZXLleMPtFdcsyaYAWr3G25ZL66fB7TfEoLaVAbUVF3bvff66IGJDUjCHpRIaEnFUkuTYdl+TkjFT3KvXa9HqZ391ihBCCHGmGhsb+dvf/gbALbfcQk5Ojo8jEsLjC//ayyulrXz/yjzuXJ3m63AWpJPNG0gzVyHEvONyuHnn2RpK3zwMQHRSCOvvzCcy7gQ9EDMugev/Cs98Gj54FLR+sP5H4CebX0KIsy8z1khmrJEvXJLJ4d4RtlhtlFht7Knvpry1n/LWfn63rYrUqCBP5UaBmSWJ4WhlePQxPmzs5ktP7udw7wh6rYavbljE5y5Ml7+rE9BoNOj0GnR6LYbAmX9+VVFPMGx+rDWXw33CZMp4ssR9nOqU4ydfJh7vUlwqI+ogo7p27Np23JoRb/WKRtHjPxpDwEgsemcoo2hoYAgYmvLPdTqmqhqZXGmiOzY5cpzZKEcqUo67bphcvaLVybByIYQQZ19KSgorV67knXfe4aWXXiIxMZGQkBBfhyWEt+1v+4D9I+4UviYVGkKIeaXr8CBbHrHS3eLZXFi8NokVH8tA53eSH9Lf/z945auen0dlwlV/hNRVZylaIYQ4se4hB9sq2igps/F2TSeOCYOrTaH+rM8zUZxv5oL0KPwW+GakW1F54I0afretGreikhQZyB9vWcrS5AhfhyZmOcWt0Nc3gLXMirW8jFZbi3dNp9OTHJ9GWmI2pshEcDN1cuS4bb/cH5mEmS002vFh9MedhTI2oP5UBs2fcG6K/qPbfQkhhJh/XC4XDz/8MO3t7SxatIhbbrlFqhSFz/3ljRp+tfkg1y1L4H9uWuLrcBYkaTklhFhQVFWl9I1DvPNsLW6XQmCogXW355KcH3XqD1bxsiepMWjz/PqcT8P6H0JA2PQGLYQQp2DQ7uLNgx1sttrYUdnOoN3lXQsN0LMu18SGfDMXZccQaFhYc4BsfaN85d/7ebeuC4CrF8fzk2sLCA3w+4jfKRYyh8NBZWUlFouF2tpajnws0mg0pKenU1hYSG5uLv7+/mctBlVVUVzqpBZcx68+OXaGyvHafh2/PZh70n2zst2XQedNkugNYwmWsVkqeoNu7NrYj8f5tZ9BhyFQjyFA7/kxUIefv042y4QQYhax2Ww8/PDDKIrCNddcw9KlS30dkljg/vPhIb72zAHWZEXzz7vO93U4C5IkNIQQC8Zwv4PXH6ugscyzkZVSGMWln8wlKNRw+g860gtbvw97/+H5tTEOrvgt5Fxx5gELIcQZsrvcvFPbxRarjS3WNrqGxgcUB/hpuSg7huJ8M2tzTIQFze9N/e0VbXztmQP0DDsJ9NPxo2vyueGcRNm4FFNyu93U1dVhsViorKzE6XR61+Lj4ykqKiI/Px+j0ejDKGeOqqjHVpVMSJp81KB5b3Ll6OqUE8xQOZJUcTlndhi9RgOGQD1+ATr8A/WTEx4BYwmQsWv+gccmRI6s6xZ4NZwQQkynnTt3sm3bNgwGA/feey8REVJZK3znraoOPvXoHnLMRjbff6Gvw1mQJKEhhFgQGq1dbP9HBSP9DnR6LSuvz6Tw4oTp28iqfxs2fQm66zy/zvsYXP5rCImdnscXQogz5FZUPmzsoWRs7sahnhHvml6r4YL0KIrzPdUbpnk0FNvucvPzVyv5+zsNgGd4+p9uW0pGjPRgFpOpqsqhQ4coLS2lrKyM4eFh71pERARFRUUUFhYSHR3twygXHlVVURR16mTKkXkojvEZKt4fHRN+PHrNqeCyu3E63DhGXNhHXDhG3KjK9H3k1flpvUmQyYkR3YQEyHiS5JjkiVSLCCGEl6Io/O1vf6O5uZmUlBRuv/12tFpJHAvfqGjt57I/vE1ksIG931vv63AWJEloCCHmNbdT4d0XajmwvRmAyPhgNtyVT1TCWdjIco7AG7+Ad/4EqhsCwqH4p7Dk457jfkIIMUuoqoq1pX9sqHgbB9sGJq0vTQ73DBXPN5MWHeyjKM9cTfsgX3pyH+Wt/QDcuSqNb1y2CH/9wmq1JU6ss7OT0tJSLBYLPT093utBQUEUFBRQVFREQsI0HoIQs5KqqricCo4R19h/nmSHY/RIwsOFY9Q9vj46+Zp97Ocuu3vaYjpSLeJNhBynYsR/YvXIxGTJ2O+RahEhxHzQ3d3NAw88gNPpZMOGDaxcudLXIYkFqmvQzjk/2QZA1U8uw6CX77MzTRIaQoh5q7t1iC2PWOk6NAhA4cWJrLwuA/3Z7hnfegBeus/zI0D6xXDl7yEy7ew+rxBCnKb6ziFv5ca+pt5Ja4tMRm/lRn586JzY1FVVlWc+OMQPXrIy4nQTGWzgNzcWcWmOydehiVliYGCAsrIySktLaWkZH+7t5+dHbm4uhYWFpKeno9NJ8kucGsWtjCc+RscTI/YRF87R8cSHY+TYhIh3/SxVixyb+JicBPE/XqstqRYRQswSH374IZs2bUKn03H33XdjMsl7OzHzFEUl+7uv4VJU3vnmpcSHB/o6pAVHEhpCiHlHVVWsb7ew65lqXE6FgBA/1n4ql9SiGWwR4XbBe/8LO34GrlHQB8Kl34Hz7wWdfubiEEKIU2TrG2Vruady4926LtwTNtUSIwK9lRvnpESg086+za3+USffeb6MTQc8m9QrM6L43c1L5lUbLXF67HY7FRUVWCwW6uvrJw33zszMpLCwkJycHAyGM5itJcQ0OLpaxD7iwjniHkuGHL9axD7inpAUceFyKNMW00dVi/gH6vALmNg66+h5I3r8AnVSLSKEOCOqqvLkk09SVVWFyWTis5/9LHq9fL4WM2/Fz7fT2jfKi19YxeKkcF+Hs+BIQkMIMa+MDDrY8c9K6g90ApCUF8na23MJDvP3TUBdtbDpy9DwNm5VQ2vQMuojL8dlCCM2NZ3Y1HQiE5LQyZswIcQs1DvsYHtFOyVWG29VdzDqHN8ciw4xsD7PU7mxMiNqVrRx2tvUw5ee3MehnhF0Wg1f3ZDN5y7MmJWJFzEzXC4XtbW1WCwWDh48iMvl8q4lJiZSWFhIQUEBwcFzt7WaEMdzbLWIJ+kxORFy9LrrmAqT6awW0R+ZLXJM0uPYBMhU16VaRAgxMDDAX/7yF0ZGRlizZg1r1671dUhiAbrmzzs5cKiPv37qXNbnSaXQTDvZvIHstAkhZr1Dld1s+1s5Q30OtDoNK67NYPGlSWh8uJE1pIukIfV+6uqTaKxqwK7ogDcm3aPz8yM6KRVTWgaxaenEpmYQnZKKn8FHSRghhBgTHmTg+nMSuf6cRIYdLt6q6qTEamN7RRudgw6e3NPMk3uaMfrruSQnluJ8MxcviiHYf2bfOiqKyoNv1fLbLVW4FZXEiED+eOtSliVHzGgcYnZQFIXm5mZKS0uxWq2MjIx416KiorzDvSMjI30YpRBnn1anJSBYS0Cw32k/hqqquBzKpITHMdUiU1SM2I9KlBypFnE5FVxOB8P9jtOOSapFhFjYjEYjV111FU8//TQ7d+4kMzOTlJQUX4clFpgYo2e/pn1g1MeRiBORCg0hxKzldins2VTH3i1NoEKEOYj1d+YTk2yc8VhURcFWV039vg+o3/cBttrqSesBBg1pAW0E6py020NotxtxuI/9MKXRaomMTxxLcmR4qjnSMvAPkhOkQgjfc7oV3qvrYnOZjS3lbXQM2L1rBr2WC7Oi2ZBvZl2uicjgs9u+p71/lK88vZ9dNV0AXFkUx8+uKyQ04PQ38MTc1N7ejsViobS0lL6+Pu/1kJAQ73DvuLg4OdkthA+43QrOY+aFTF0tcvQ8kYmJk+nclZiqWsST7NDjP2WyxPPrgCA/jFEB6GQIrBA+9fzzz3PgwAFCQ0O59957CQyUOQZi5nzruVKe3NPEl9dm8ZX12b4OZ8GRllNCiDmtt22YLY9Y6WgaACBvTTyrb8jCz3/mWp+MDg7SYNnrSWLs/5CR/r5J66b0TNKWnkvaknMxZ2ahrX0d9j0O1VtRHUP0OgNoHw2h3R1LuzaJtj6VkaGRKZ8r3BTnTW4cSXQEh8sJZCGE7yiKyr7mXu9Q8cauYe+aVgPnp0V5h4pP98C8HZXtfPWZA3QPOQj00/HDq/O58dxE2bBeQPr7+yktLaW0tBSbzea9bjAYyM3NpaioiLS0NLRa2XgUYq7zVot4q0COJDomJz0m/vrYFlrTM1tEo4GQyADCYwMJiw0iPDaIsNhAwmODMEYHSPWHEDPAbrfz0EMP0d3dTW5uLjfddJO8BxQz5ndbq/jD9mpuOz+Zn11b6OtwFhxJaAgh5iRVVal4p5W3n67GZXfjH6zn0k/kkr40Zkae3zE6gmXra9R88B4tVZWoyvgHI0NgEKlFS0lbei6pS84hJOI4LS2cI1D7OpS/BAdfA7snEaKqMKiPoT1yDe36NNr7oL2pgf6O9ikfJiQiclKCw5SWiTE6Rt7MCSFmnKqqHGwboKSsjRKrjfLW/knrRYlh3qHimbEhp/08dpebX752kEd31QOQGxfKn25dekaPKeaOkZER73DvhoYG73WtVktWVhaFhYUsWrQIPz+p0hFCHOvkqkU8iZGpqkVGBp247O7jPr5Gq8EY6T+W5BhPdITFBhIWEyjv0YWYRocPH+aRRx5BURSuuuoqzjnnHF+HJBaIf+1u5DvPl7Eu18T/3X6ur8NZcCShIYSYc0aHnLzxr4PU7vVs8CcsCmfdHXmERASc9edWFDdlO7bxztOPM9Tb470elZhM2tJzSV92HvHZuac+5NvlgIa3PMmNyldguHN8zWCE7A2MpGygXZ9Ke/Nh2hvqaK+vpbv1MFPV3gcEh3jmcaRleis6IuLi0Wp9P7RXCLFwNHUNs6XcU7nxQWPPpJerjJhgNhZ4khuFCWEnvcFT1zHIfU/uw9riSZZ8elUq39iYQ4CfvL7NZy6Xi6qqKkpLS6mqqsLtHt9MTE5OprCwkPz8fIKCgnwYpRBiIVBVleF+B33tI/S2D9PXPkJf+zC97SP0dQyfsAIkKMxAcl4kyXlRJOVGEhAiiVchztSuXbvYunUrer2ez33uc8TEzMwhR7GwbbHauPufH7I4MYwXv7ja1+EsOJLQEELMKS3VPWx9tJzBHjtarYbzr0lnyfpktDMw+Lth/4e8+fijdDY3Ap72T+dc8THSl51HaEzs9D2R4oamdz3JjYpNMNAyvqYPgMx1kHs1ZBfj0PjT0dhAe33NWJKjjs7mRhS365iH1fv7E5OS5pnLkeqp5ohKSkEvJ1iFEDOgfWCUbeXtlFhtvFPbidM9/tYyPiyADWOVG+elRqCfolWHqqr858ND/OAlK8MONxFBfvzmxsWszTXN5B9DzCBFUWhsbPQO97bbx2e1xMTEUFRUREFBARER0npRCDE7qKrKUK+Dvo7hSQmPIz+6XROSHRowpYaSlBdJSn4UsamhM/KZRoj5RlEUHn/8cerq6jCZTHzmM5+RKk1x1u1v7uVj/7uLuLAA3v3WWl+Hs+BIQkMIMSe43QofvNLAh681oKoQFhPI+rvyMaWe/deHjqYG3vznIzRa9gGe6ocLrr+VJcWXo9Of5TdKigIte6H8Rah4CXoaxte0fpB+kSe5kXMFBEcD4HY56Wxuor2+lvaGWtrr62hvrMM1YSPI+xA6PVFJyWOtqjyJjpjUNAwBMlBNCHH29I862VHpSW68cbCDYcf4afuIID/W5ZrYWGBmVWY0AX46BkadfOf5Ml464EnwrkiP4ve3LMEUevYr88TMUlWVtrY2LBYLZWVl9PePty0zGo0UFhZSWFiI2WyWti1CiDnF7VRoqe2lydpNc3kXXYeHJq37B+lJzIkkOd9TwRES4e+jSIWYewYGBnjggQcYHh7m/PPP57LLLvN1SGKea+kdYeUvXkev1VD1k8skIT3DJKEhhJj1+jpG2PqolbZ6z6ZGzgoza27OxhBwim2dTtFgdxe7nv4X1je2oaoKWp2epRuv5ILrbiEgxAd92lUV2srGKjdego7K8TWNFlJWeZIbuVdCaPyk36oobnpaW8aSHHWeio76OkaHBo99Ho2GiLiESUmO2LR0Ao3yWiyEmH6jTjdvV3dSYrWxraKN3mGndy3YoGNJUjiVtgG6hhzotBr+3/ps7rkoA518aJhXent7KS0txWKx0NHR4b3u7+9PXl4eRUVFpKSkyHBvIcS8Mdhjp6m8i+bybporurEPT66wjowPJjk/iuT8SOIzwtH5yeufECdSVVXFE088AcBtt91Gdna2jyMS85nDpZD93dcA2Pu99UQGG3wc0cIiCQ0hxKx2cLeNN588iHPUjSFQz8UfX0TWuWe3vYhzdJT3Nz3H+5ue9VY1ZK9Yw5pbbyfcZD6rz31KOqo8iY2Kl6D1wOS1xOWQdzXkXgURqVP+dlVVGejsoM3brqqW9vpaBnu6p7zfGB1DbGqGJ8mR5pnLERIRJSdkhRDTxuVW2FPfTYnVM3fD1j+5smxpcjg3nZvE+jwT0SFycnWuGx4epry8HIvFQlNTk/e6TqcjKyuLoqIisrKypG2EEGLeU9wK7Y0DNFm7aCrvpq2hHybswAQE+7HoAjN5q+KJjA/2XaBCzHKvvfYau3fvJigoiHvvvRej0ejrkMQ8tuzHW+kecrD5/jXkmGXveiZJQkMIMSvZR1y89eRBqva0ARCXGca6T+cRGnX2WiEpihvrG9vZ9fTjDI1t6sdl53DxJ+8iPjv3rD3vtOhp8MzbqNgEzbsnr5mLxpIb10DMR59SGertmZTgaGuopa/NNuW9gaFhY1UcYwPI09IJjzWjkRO0Qogz0N4/ylee3s+umi4Agv11DNnH21JpNHBeSiQb8k0U55tJipRB0HOF0+nk4MGDlJaWUl1djaKM95NPTU2lsLCQvLw8AgOl9aEQYuEaHXTSXNFNU3kXjdZuRvod3jVzehh5q+PJPCcWP3+dD6MUYvZxuVz89a9/pa2tjfT0dD7xiU9Idac4a4p/9xYH2wZ47M7lXJgtw+hnkiQ0hBCzjq2ujy2PWBnoGkWj1XDeFamcszEF7RRDYqdLw4G9noHfTQ0AhJnMXHjbHWSdv2ruVSD0t0Lly565G427QJ0wfDB60Vhy42owF3p2BU/C6NAgHQ11tDfU0TaW6Og+fAh14mOPMQQGeoeOx6ZlEJuWQVRCElqdfOASQny0HQfb+drTB+gachDgp+WHV+dz07lJ1HYMUmJto8Rqw3Kob9LvyYsLZWOBZ6h4tilk7r1uz3OKolBfX09paSnl5eU4HOMbcyaTyTvcOywszIdRCiHE7KS4FZrKuynf2UJDaReq4tmaMQToyFpuJn91PDHJcgpdiCM6Ojp46KGHcLlcrF+/nlWrVvk6JDFPffKR3bxd3clvblzMDeck+jqcBUUSGkKIWUNRVD58rYH3X2lAVVSMUQGsvzOfuIyzt8HR2dTAm48/SsOBvcCRgd+3sHjDFejnQ4uLoU44+Kpn7kbdG6CM96YnItXTkir3Gkg4B07x5IrTPkpnUyPtDbVjSY46OpsbcDudx9yr9zMQnZziSXCMta2KTk5Fb5A+k0IID7vLza82H+SRnfUA5JiN/Pm2pWTGHrtJc7h3hC1jban21HejTHiXmhoVRPFYcmNJYrgM6PMRVVVpbW31DvceHByf2RQWFuYd7m0ynd02kkIIMZ8M9dqpfK+V8p0t9HeOeq9HJ4WQvzqerOVm/APP7pxBIeaCDz/8kE2bNqHVarnrrrtISEjwdUhiHvp/T+/nub2H+frGRXz+4kxfh7OgSEJDCDErDHSPsvVRK601nlO3WeeZuOi2RWftDflgTzfvPP04ZTsmDvy+gvOvu4XAkHl6wmmkF6q3eCo3araDa2R8zRg/lty4ClJWgvb0qincLhfdh5vHKjk8g8c7GutwjIwcc69GqyUqMdlTyTGW5IhJTcc/SFrHCLHQ1HUM8qWn9lF2uB+AO1am8s3Lcgjw++jXou4hB9vKPZUbb9d04nCNV46ZQv3ZkOdJbpyfHonfWaz0Ex7d3d2UlpZSWlpKZ2en93pAQAD5+fkUFRWRlJQk7R+EEOIMqIrK4aoeyne2ULu/A8Xl2a7RG7RknhNL3qp4zBlhUrEoFixVVXnmmWcoLy8nIiKCe+65B39/mb8mptcvXqvkwTdr+fSqVH5wVb6vw1lQJKEhhPC56g/aeONfB3GMuPAL0HHRLdksuiDurDyXc3SUD15+nvdfehan3XOqKfv8Vay57Q7CzWfnOWclxxBUb/XM3KgqAcfA+FpQNORc4WlLlXYh6M+sikJVFHrbWie1q2qvr2VkoH/K+8PNcZ6WVWkZmMbaVgWFhZ9RDEKI2evZDw/xvRfLGHa4CQ/y49c3LGZ93umd2h+0u3jjYDsl1jZ2VLYzaHd518IC/VibE0txgZkLs2IINEgbvOkyNDSE1WrFYrFw6NAh73W9Xs+iRYsoLCwkMzMTvV5ODQshxHQbGXRQtbsN684WelqHvNcj4oLJWxXHogvMBIZIVbRYeEZGRnjwwQfp6+tj8eLFXHvttb4OScwzj+6s50cvl3NFURz/e9syX4ezoEhCQwjhM45RF28/XU3lO60AmNJCWX9nPmEx0z8IVFHcWN/czq5/Txj4nbWIiz75GRIWzfKB32ebc9TTjqriJah8BUZ7x9cCwiD7Mk/lRuZa8Jue/zeqqjLY3eVpV1VX6x1CPtDVMeX9IZFRkwaPm9IyMEbFyKkzIeawgVEn33/RyvP7DgNwQXokv795KeawgGl5fLvLzTs1XZRYbWwtb6NraHxuQ4CflouyY9hYYObSHBNhgfOgxeAMczgcVFZWUlpaSm1trXe4t0ajIS0tjaKiInJycggImJ7/n0IIIU5MVVXa6vux7myh5oM2XA7P67JWryF9SQx5q+NJzI5AI60YxQLS2NjI3//+d1RV5brrrqOoqMjXIYl5ZNOBFu57ch/LUyN5+p4Vvg5nQZGEhhDCJ9oa+tn6iJW+jhHQwLmXpXLuFanozkI7kAbLPt765yN0HBn4HWtizW13kH3BatkQP5rbCQ07PcmNipdhqH18zS8YstZ7hopnbQD/6W/NNdzf501uHPmxx9YCU3wLCggxTho8bkrLIMIcj0bamAgx6x1o7uVLT+2jsWsYnVbDV9Zlce/FmejO0iaLW1H5sLGHzWWeuRuHe8fb4Om1GlZkRLEh30xxnonYUNmAPx63201dXR2lpaVUVFTgnDAzKS4uzjvc22icp60bhRBijnCMuKh6v43ynS10NI1XYodGB5C7Kp7clXEEh0n7HbEw7NixgzfffBODwcA999xDZGSkr0MS88Tuui5ufvg9UqOCeOO/LvF1OAuKJDSEEDNKUVT2bWlkz0v1KIpKSIQ/6+/MIz4rYtqfq7OpgTf/9Tca9n8IgH9wMBdcdwtLiq+cHwO/zzbFDc17xpIbm6CveXxN5w8Zl3qSG4sug8Dp//93hGNkmI7GBk+7qgZPu6quQ00obvcx9/r5BxCTkjaW5EjHlJZJVGISOr38/xZiNlAUlb++XcevSw7iUlQSwgP5461LOCdl5j5YqqqKtaWfkrGh4lVt48OqNRpYmhROcb5n7kZqdPCMxTVbqarK4cOHsVgsWK1WhoYmtDOJiPAO946JifFhlEIIIY6no2mA8l0tVO1pwzHiacWo0WpIKYgif3U8yfmRaGXGlJjH3G43f//732lubiYhIYE777wTnU5aj4ozV985xCW/eYNggw7rjzb6OpwFRRIaQogZM9gzyra/l3P4YC8AGctiufjjiwgInt7N5qHeHnY9/Thlr2/1DvxeUnwFF1x3M4FGeT05LaoKLXs9iY3yl6C7dnxNq/fM2si9CnKuhJDYsx6Oy+mkq7lxfCZHQy0djQ24HPZj7tXp9UQlpYzN5fC0q4pJTsNP2qAIMaPaB0b56tMHeLvaMyj68kIzP7+2iLAg3yYc6zoGKbF6horvb+6dtJZjNnoqN/JN5MWFLqiqvq6uLiwWC6WlpXR3d3uvBwUFeYd7JyYmLqi/EyGEmMucDje1e9sp39lCa02f93pwuD+5K+PIXRlHaPT0t/4VYjbo7e3lwQcfZHR0lNWrV7Nu3TpfhyTmgSG7i/wflABg/WExwf4yL26mSEJDCDEjave1s+OfldiHXej9dVx4cxY5K+KmdSNkqoHfWeevZM1tdxBhjp+251nwVBXayz2JjYpN0G4dX9NoIXmFZ6B47pUQljhjYSmKm56Ww7TX145Vc3haVtmHh465V6PREhEXP6ldVWxqBgEhITMWrxALyZtVHXz16f10DjoI8NPyg6vyueW8pFm3GW7rG2VruY3NVhvv1XXjVsbf/iZFBlKcZ6a4wMyy5Iiz1h7LlwYHBykrK8NisdDS0uK97ufnR05ODoWFhWRkZMipRiGEmOO6W4co39XCwXdtjA6NtQ/UQFJuJHmr4klbHI1OL1UbYn6xWq0888wzAHzqU58iPT3dxxGJ+SDv+5sZdrjZ8bWLSZPq7hkjCQ0hxFnltLvZ+Z9qyt/2bIzEphhZf2c+4aagaXsORXFT/ubr7Pr3Pxk8MvA7cxEXffIuEnLypu15xHF01oy1pXoJWvZNXks4x5PcyLsaImf+DaOqqvR3tNFeXzepZdVQb8+U94fGmMbmcnjaVcWmphMcETnrNl2FmCscLoXfbDnIw2/VAZ6Khz/ftpTM2Nk/Y6F32MH2inZKrDberOrA7lK8a9Eh/qzPM1Gcb2JlRjSGObzpY7fbqaysxGKxUFdXx5G3/BqNhoyMDAoLC8nJycHfX3qtCyHEfON2KtQd6KB8ZwuHKsffHwca/Vh0QRx5q+KIMMsGnZg/XnrpJfbu3YvRaOSee+4hOFi+vsWZufjXO2joGubfd1/A+elRvg5nwZCEhhDirOloGmDLI1Z624ZBA8s2JLP8qvRpPe1z9MDv0BgTa267nUUr1sgmtC/0NnuqNipegqb3gAnfOkyFnrZUeVdDTI6nWb2PDPZ0jyU36rxJjr72tinvDQoLn1DFkU5sagZhJrN8fQnxERo6h/jSU/uwHPK0tfjUihS+fXkuAX5z73T/sMPFW1UdlFjb2FbRxsCoy7tm9NdzaW4sxflmLsqOmROl5m63m5qaGkpLS6msrMTlGv/zJCQkUFRURH5+PiFStSaEEAtGf+cI5btaqHynlaE+h/d6XGYY+avjyVgWi94w976HCzGRw+Hg4YcfprOzk0WLFnHLLbfI5zpxRm568F32NHTzp1uXctVi6QwyUyShIYSYdqqqcmB7M+8+X4viVgkOM7D203kk5Uzf0NfO5kbeevxR6o8M/A4K5vzrbmbpxqtk4PdsMdAGlS97khv1b4M6YYh3VNZ4ciNuiU+TG0eMDg562lQ1HJnLUUf34UOoqnLMvf5BwcSkpnlbVcWmZRAZn4hW2rAIAcDz+w7x3efLGHK4CQ/y41fXF7Eh3+zrsKaFw6XwXl0XJVYbW8rb6BgYn93jr9eyJiua4nwz63JNRAQbfBjpZKqq0tzc7B3uPTIy4l2LjIykqKiIwsJCoqLkZJkQQixkiluhsayL8l2tNJZ2cmQnyBCoZ9FyE3lr4olOnP2VlkIcT2trK//3f/+H2+3m8ssvZ/ny5b4OScxhX3hiL69YWvn+lXncuTrN1+EsGJLQEEJMuw83N/DeC572ImmLo7n0k7kEhExPkmGot4d3nv4Xpa9vGRv4rWPJhiu44PpbZOD3bDbcDQdf9VRv1L4O7vFTX4Qljyc3EpeDdva0bnHaR+lobBibx1FDe0MdnU0NuCecZj5C72cgOiV1UpIjOikFvWH2bGgKcbYN2l18/8Uyntt7GIDlaZH84ZYlxIXNzyGjiqKyr7nHO1S8sWvYu6bTalieGklxvokN+Wbiw33zd9DR0eEd7t3b2+u9HhwcTEFBAUVFRcTHx8vpRCGEEMcY7LFT+W4L5btaGega9V6PTTGStzqerHNNGAJnf2WiEEd79913KSkpQafTcffdd2MymXwdkpijfrjJyt92NXDPRRl887IcX4ezYEhCQwgxrQ6+18q2v1cAsOLaDJZuSJ6WTRKnfWzg94sTBn4vX8ma224nIi7hjB9fzKDRfqjeAuUvQs02cI5vABJi9gwTz70aUlaBbvZ9QHK7XHQdavJWcbQ31NLeUI9zdOSYe7U6HVEJSZ7h46npxKZlEJOSjn/Q9M2QEWK2KD3Ux31P7qWhaxitBu5fl80XLsmcl8Ozp6KqKpW2AUqsNkqsbVS09k9aX5wYxoZ8MxsLzGTEnN1WTv39/d7h3jabzXvdYDCQk5NDUVERaWlpMtxbCCHESVEVlUOVPVh3tlB/oAPF7dke0vvryDonlrzV8ZjSQiU5LuYMVVV54oknqK6uJiYmhrvvvhs/6fQgTsNf3qjhV5sPct2yBP7npiW+DmfBkISGEGLaNFd08/KfDqAoKkvWJ7Pq+swzfkxFcVP+1g52PfWYd+C3OTObiz55F4k5+Wf8+MLHHMNQux3KX4KqzWCfsAEYGAk5l0PuNZB+Eehn70BaVVHosbVOalfVXl/LyED/lPdHxMUTk+pJcpjSPNUcQaFhMxy1ENNDUVQe2VnPr0oqcbpV4sMC+MOtSzkvdfraDM5FTV3DY8kNGx829TDxnXRmbAjF+SaK880UJoRNywbQ6OgoFRUVWCwW6uvrvde1Wi0ZGRkUFRWxaNEiDFI1JoQQ4gyMDDiofM9G+c4Wz6zEMZHxweStimfRBWYCgmVjWMx+g4ODPPDAAwwNDXHuuedy5ZVX+jokMQf958NDfO2ZA6zJiuafd53v63AWDEloCCGmRUfzAM//di/OUTdZ58ay/s58NGd4KrexdD9vPv4oHQ2e9lWhMbGsuXVs4PcsakskponLDnVvemZuVL4CI93ja/6hkL3R05oqcx0YZn+Fg6qqDHR1TmpX1V5fx0BXx5T3h0RFe4eOe5Ic6RijYuSkm5jVOgbsfO2ZA7xZ5fm63phv5pfXFxEWJBsZE7UPjLK1vI0Saxvv1HTiUsbfVieEB7I+z5PcOC81Ar3u5L+/uVwuqqurKS0t5eDBg7jd47OKkpKSKCwsJD8/n+Dg4Gn98wghhBCqqtJa20f5zhZqPmzH7fTMndPptaQvjSFvdTwJWeFn/JlQiLOppqaGxx9/HICbb76Z3NxcH0ck5pq3qjr41KN7WGQyUvKVC30dzoIhCQ0hxBnr7xrh2V9+yHC/g4RF4Vz1xSXo/E4/4dDZ3Mhb//ob9fs+AMYGfl97k2fgt5wsXRjcLmjc5UluVLwMg+MtU/AL8iQ18q6BrA0QMLe+Rwz393krOI5Uc/S0Hp7y3gBj6FiSY7ySI8IcLwk9MSu8Xd3BV/59gM5BO/56Ld+/Ko/blk9Pm8H5rG/EyY7KdkqsNt442MGIczwJERlsYF1uLMX5ZlZlRhPgd2xLKEVRaGpqorS0FKvVyujoeE/z6Oho73DviIiIGfnzCCGEEPZhJ1V72ijf1UJn86D3emhMIHmr4shZEUdw2OytthYL25YtW3jnnXcIDAzknnvuISxMKufFyau09bPx928TGWxg7/fW+zqcBUMSGkKIMzI65OS5X39Ij22YyPhgrvvaMvxP82TuUG8P7zzzL0q3jw/8Xrzhci647hZpx7OQKQocet+T3Ch/Cfqaxtd0Bki/xDNQfNHlEDQ3W9w4RoZpb6wfS3J4Kjq6DjejTDhtfYRfQCAxKWljw8c9czmiEpPQ6eVEvJgZDpfCb7ce5KE3PdVzi0xG/nTbUrJNRh9HNveMOt28Xd1JidXGtoo2eoed3rVgg46LczzJjUsWxTDc101paSmlpaX09fV57zMajd7h3mazWRJKQgghfEZVVTqaBijf2ULV+204Rz3vZTVaDamFUeStjic5PwqtVG2IWcTlcvHII4/Q2tpKSkoKt99+O1o5QCZOUveQg2U/3gpA1U8uw6CXr52ZIAkNIcRpczndvPSH/bTW9BES4c/1Xz+HkIiAU34cp32UD195kT0v/sc7WDnzvBVc+PE7ZOC3mExVofXAeHKjq3p8TaOD1NWe5EbOVWA0+S7OaeByOOhsbhyfy1FfR0dTAy6H/Zh7dXo9UUkpY0mOjLHh46n4+Z/6v0chTqSxa4gvPbmPA4c8G+qfvCCF71yRO2UlgTg1LrfCnvpu71BxW/8oQdhJ13WToe8mQjPep9zf35/c3FyKiopITU2VD91CCCFmHceoi5oP26nY1YKtbnyuXEiEPzkr48hdGUdoVKAPIxRiXFdXFw8++CBOp5NLL72UCy+U1kHi5CiKSvZ3X8OlqLzzzUuJD5fXtZkgCQ0hxGlRFJUtfy2jdl8HhkA91/3XMqLiQ07pMVRFofztHex86jEGu7sAMGdkcdEn7iIxr+BshC3mE1WFjkqo2ORJbrSVTljUQPIFnpkbuVdBeLLPwpxOittNd8uh8bkc9XW0N9RhHx465l6NRktkQqK3isOT6EgnIPjU/p0KccSL+w/znefLGLS7CAv045fXF7GxwOzrsOadkZERrFYr736wjy7beDs6t6rhkBJGvRKFKSmNDQUJFOebSIyY/TOFhBBCLGxdhwcp39XCwd027EMuz0UNJOdFkrcqntTF0ehOYYaUEGfD/v37eeGFF9BoNNx5550kJSX5OiQxR6z4+XZa+0Z54QurWJIU7utwFgRJaAghTpmqqrz9dDWlOw6h1Wu4+ktLSMg+tV7dTWUHeOOfj0wa+L361tvJkYHf4nR11XqSGxWb4PAHk9fil0Lu1Z65G1EZvonvLFFVlb72trFKjvEB5EO9PVPeHxZr8lZxxKalY0rLJDhceu2L4xuyu/j+i1ae3XsIgOWpkfzuliUkyOmjaeN0OqmursZisVBdXT1puHdKSgrmtGyq7WFsreql9HDfpN+bHx/KxnwzxQVmsmJDpOWUEEKIWcvldFO3v4PynS0cPtjrvR5o9CNjWSxJuZEk5kRgCND7LkixYKmqyrPPPktZWRnh4eHcc889BARIxbv4aNf8eScHDvXx10+dy/q8ud0pYq6QhIYQ4pTt3dLIu8/VArDhM/lknXvyL9hdh5p561+PUrf3fQAMgUGcf+1NLLvsahn4LaZP3yHPMPGKl6DxHWDCt7DYvLHkxtWen8/Tzb/Bnu4JSY5a2htq6Wtvm/Le4PCISVUcprQMQmNMsjEqKDvcx31P7qO+cwitBr60NosvXpKJXk5RnjFFUWhsbMRisVBeXo7dPt5OLjY2lqKiIgoKCggPD5/0+w73jrDFamNzmY33G7pRJry8pUUHsyHfxMZ8M4sTw6VHuRBCiFmrt32Yil2tVLzbyki/w3tdq9VgzggjKS+S5LxIYpKMaOT7mZgho6OjPPjgg/T29lJQUMD1118vn4nER/rMPz5gW0UbP722gI+fn+LrcBYESWgIIU5J1R4bWx8tB2DVDZksWXdyrXyGent49z9PYNlegqqMDfxefzkXXC8Dv8VZNtgOla94khv1b4HiGl+LzPC0pMq7GuKXzdvkxhGjg4Pj7aoa6mirr6Wn5TCqqhxzr39wsCfBMdayypSWQUR8AlqtzEpYCFRV5ZGd9fxycyVOt0pcWAB/uGUpy9MifR3anKaqKjabzTvce2BgwLsWGhpKYWEhRUVFmEwnd1Cga9DOtoo2Sqxt7KzuxOEe/7dsCvVnQ56Z4nwz56dH4idJKCGEELOQ263QbO2m0dpFc3k3fR0jk9YDQvxIyo0kKdeT4AgO9/dRpGKhaG5u5tFHH0VVVa655hqWLl3q65DELPet50p5ck8TX16bxVfWZ/s6nAVBEhpCiJN2qLKbTX86gOJWWbw2idU3Zn3k73HaR9n76kvsefEZHCNHBn5fwJrbPk1kvAz8FjNspAcObvYkN2q2g3vCgO2wpLGZG1dD0nJYIBv3ztFROprqx+Zx1NJWX0tXcyNul+uYe/UGf2KSUye1q4pKSkHv5+eDyMXZ0jlo57+eOcCOgx0AFOeb+OX1RYQHSRXd6erp6fEmMTo6OrzXAwICyMvLo6ioiOTk5DMa7j0w6uSNgx2UWG3sqGxnyDHetios0I+1ubEU55u5MCuGQMPCeH0TQggx9/R1jNBc3kVTeTeHDvbgHHVPWo9KCB5LbkQRlxWG3k++p4np99Zbb/H666/j5+fH5z73OaKjo30dkpjFfre1ij9sr+bW5cn8/LpCX4ezIEhCQwhxUjoPDfL8bz7EMeom85xYNtyVf8LSX+/A73//k8GuTgBM6Vlc9Mk7ScqTF3gxC9gHoHqLZ+ZG1RZwThisHWKCnCs8yY3U1aBbWBv2bpeTrkPNtNd7EhztDXV0NNThtI8ec69WpyMqIYnYtExi08YGkKekYQiUQcVz0c7qTr7y9H46Buz467V878o8Pn5+spTan4bh4WGsViulpaU0NTV5r+t0OhYtWkRhYSFZWVno9dPfJ9zucvNOTReby2xsrWije2i8lUegn46LsmMoLjBxaY6JsMCF9fomhBBi7nC7Fdrq+mmu6KbJ2kV708CkTrI6Py1xGWHEpoZiGvtPKjjEdFAUhccee4yGhgbi4uK46667zsp7NjE//Gt3I995vox1ubH83+3n+TqcBUESGkKIjzTQPcqzv/yAoT4H8VnhXPWlxSc8CTPY3cWLv/kJttpqAIzRMay59XZyVl4oA7/F7OQcgdrXPcmNg6/C6IShu4ERsOhyT3Ij4xLQL8wPSYriptfW6klwjCU52utrGR0cOPZmjYYIc9yE4eOe1lXSXm72croVfruliofeqkVVISs2hD/ftoxFZqOvQ5tTHA4HVVVVWCwWampqUJTxFlBpaWkUFRWRm5s7owMm3YrKBw3dbLba2GJt43DveCsPvVbDiowoivPNbMgzERsqgy+FEELMXiODDg5V9tBU3k2ztYuhPscx9wSH+2NKDSU21UhsaiixKaH4B8pGtDh1/f39PPDAA4yMjLBy5Uo2bNjg65DELLW1vI3PPvYBixPDePGLq30dzoIgCQ0hxAmNDjl57jd76WkdIjI+mGu/uoyA4OOf5uzvbOeZH32H3rZWGfgt5iaXAxregvKXPLM3hjvH1wxGyN7gSW5krQdDsO/inAVUVWWgq2MsyTE+m2Owu2vK+41RMZ4qjtTxJIcxKlpO//tYU9cw9z21jwPNvQDcdn4y37siT9oSnSS32019fT2lpaVUVFTgcIxvrpjNZu9w79nwflZVVawt/Wwus1FitVHdPuhd02hgWXIExfkmivPNpEQt7Nc3IYQQs5uqqnS3DmGr7aO9oZ+2hgG6WwaZaucqwhzkreKITQ0lOiEEnZ8ctBMfrbKykqeeegqAT3ziE2RmZvo4IjEbHWju5Zr/3UVcWADvfmutr8NZECShIYQ4LpfTzaY/HqClupfgcH+u//o5GCOPf3qz19bKMz/5Dv0d7YTFmrjxez8lLNY8gxELMc0UNzS960luVGyCgZbxNX0AZK7zJDcWbYQAqT44Yriv19OuaqyKo72hll5b65T3BhpDJ1VxmNIyCDfFSTXXDHlx/2G+83wZg3YXoQF6fnl9EZcVxvk6rFlPVVVaWlooLS2lrKyMwcHxxEB4eDiFhYUUFhYSGxvrwyg/Wl3HICXWNkqsNvaPJbSOyDEb2ZBvZmO+mdw4oyQehRBCzHpOu5uOpgHaGvppb+ynvaGf/s4pWqbqNUQnhGDOCMOcHkZcRhghEVKlKKb28ssv88EHHxAcHMy9995LSEiIr0MSs0xL7wgrf/E6eq2Gqp9chvYE7dnF9JCEhhDiuN7+dxWWHYcwBOi47r/OISrh+N+4uw43858ff4fBnm4i4hK48Xs/xRglg7MmUhUVV/sw9tpeVAUMyUYMCSFo9LJxOycoCrTshfIXPUPFexrG17R+kH4x5F3taU8VLF/7R7MPD9HRUO8dPN7eUEfXoSbUCS15jjAEBhKTku6t5jClZRCZkIRO+tZOmyG7i/9+ycozHx4C4NyUCP5w61ISwgN9HNns1t3djcViobS0lK6u8UqkwMBA8vPzKSoqIikpaU5u/tv6RtlS7qnceK+uG7cy/tY/KTKQ4jwzGwvMLEuOkA9pQggh5oyRAYcnwTFWxdHe0M/okPOY+0Ii/YlLD/MmOaISQ9Dp5HOaAKfTycMPP0xHRweZmZncdtttaOXwlZjA4VLI/u5rAHz43XVEhSzMNtUzSRIaQogpHars5sXf7wfgii8UkVp4/A3ajqYG/vOT7zLc10tUYjI3fu+nBIdHzFCks5eqqri6RrHX9o7914dy9JtnnQZDQgiGlFD8U0IxJIeiC5X2XLOeqoKt1FO1UfESdFSOr2m0kLIK8q6BnCshVE67H4/TYaerqZH2hjraxtpVdTTW43Ye+yFT5+dHdFLKWCWHJ8kRnZyCn7+cpjtVZYf7+NKT+6jrHEKrgS9emsWXLs1ELx/apzQ4OIjVasVisXD48GHvdb1ez6JFiygqKiIjI2NeDYrsHXawraKdEquNt6o6sLvGE4/RIf6szzOxscDMivQoDJKUF0IIMYd4WqaOYqvrw1bXj62uj87mgWNaVekNWkypoZiPJDnSwggIOX7rZTG/tbW18de//hWXy0VxcTErVqzwdUhilln24610Dzl47ctryI2TfeyzTRIaQohj2EdcPPXj3Qx228lfE8/FH8857r1tdTX856ffY3RwgJjUdG74zo8X9OBfV+8o9po+7HWeJIb7qEF1Gj8thrQwNHotjsb+YxMcgC7C35PgSA7FkBKKnzkYjU5Ow85qHVVQ8aInwdF6YPJa4nJP5UbuVRCR6pPw5hLF7ab7cLO3iqO9wTOfwzEyfMy9Go2WyIREb7sqz2yOdAKCpQx8Kqqq8rddDfzitUocbgVzaAC/v2UJF6RH+Tq0Wcdut3Pw4EEsFgu1tbUceRus0WhIT0+nsLCQ3Nxc/P3n/+mrYYeLt6o62FxmY3tlOwOjLu+aMUDPpTmxbMw3c9GiGIIM8yepI4QQYuFwjLpobxzAVts3lujowz7sOua+CHOQp0VVZjjxWWGERgfOyapMcXr27NnDq6++ik6n4zOf+QxxcXJwTYzb+Pu3qLQN8Nidy7kwO8bX4cx7ktAQQhxj+2MVVL7TSmh0ADd/dzmGgKk3KFqqKnnu5z/APjxEXOYirvvWDwlYYP0k3QOOseRFH6O1vbi7jurRqtPgnxKKf0Y4/hlhGBKN3hZTqqri7h7F3tiPo7EfR+MAzrYhOOrVVuOnxZBkxJDiSXAYkozoTjCYXfhYT4MnsVH+EhzaM3nNXDSW3LgGYrJ9Et5cpCoKfe1tk9pVtdfXMtzXO+X9YbGmSZUcsWkZC75qrGvQzn/9x8Lrle0ArM8z8avri4gIloqwI9xuN7W1tZSWllJZWYlzQqVQfHw8RUVF5OfnYzQafRilbzlcCu/VdbHZamNreRsdA3bvmr9ey5qsGIrzTazLNcnXlhBCiDlLVVR62oax1fbRWteHrbaP3rZjD9cEhxmIzwofS3CEExkXjEbaMs5bqqry1FNPcfDgQaKiovjc5z6HwSDvd4THJx/ZzdvVnfzmxsXccE6ir8OZ9yShIYSYpP5AB68+UAoauPb/LSM+K3zK+w6Vl/HcL3+Ic3SEhJw8rv3Gf+MfFDSzwfqIqqiMWDsZ2NGMs2Vo8qIWDIlGbwLDPyUUjZ/upB9bGXXhaB7A0diPvWkAR1M/6qj7mPv0MYEYksfaVKUY0ccEyZvn2ai/FSpf9szdaNwF6oR5EdGLxpIbV4O5EOR01ylRVZWhnu7xdlVjiY7+jvYp7w+OiPQOHfdUcmQQGhO7IE7VvVPTyf3/3k/7gB2DXst3r8jlkxekLIg/+0dRVZVDhw5hsViwWq0MD49vVkRERFBUVERhYSHR0TIX52iKorKvuYfNZTZKrG00dY//3em0Gs5Pi6Q438yGfBNxYTKbRQghxNw2Muigra6f1to+Wmt6aWvoR3FP3ibzD9YTl+FJbsRnhhOdLHM45puhoSEefPBBBgYGWLp0Kddcc42vQxKzxP97ej/P7T3M1zcu4vMXZ/o6nHlPEhpCCK+RAQdP/mg3IwNOlqxPZtX1U78IN1j28eKvf4LLYSe5YDEf+6/v4Rcw//vYq6qKvaqHvi2NOA8Peq/7xQV7EhiZ4finhqI9TkXLaT2nouLqGB6r4vAkOFwdI8fcpwnQY0g2ehMchiQjWn9p/TGrDHVC5Sue6o26N0CZ0G4sItWT2Mi7BuKXgQyZO20jgwN0NNR5KjnG/utuPcwxjZGBgOAQYlLTiU3LwJSaTmxaJhHx8Wi1J5+EnM2cboXfba3igTdrUVXIjA3hT7culZ6uQGdnp3e4d09Pj/d6UFAQBQUFFBUVkZCQIEmfk6SqKhWtA5RYPUPFK20Dk9YXJ4VTnG+iON9MRszCquQUQggxP7kcbtrq+2mp6aWluhdbfT8u++SDaHp/Hea0UG+Cw5wZJgmOeaC+vp5//OMfANx4443k5+f7OCJxKgZ7urG+uZ0lG66Y1kO5v3itkgffrOWOlan899XyNXG2SUJDCAF4NiNKHi6jdl8HkfHB3Pitc9FPUVlQ++EeNv3u57idTtKWnsvV/+/b6BdAmaW9vo++kgYcDf0AaAw6QtYkELIiDl3IzP753UNOHE3jCQ5H8wCqU5l8kwb8zMHeNlX+yUZ0kQGyOTdbjPRCVYlnoHjNNnBNaFVmjPfM28i7GpJXwDzZXPclx+gIHY0NY/M4PDM5OpsbUdzH9kbW+/sTk5I23q4qNZ2opBT0fnOrzVtz9zBfemof+5p6Abh1eRLfvzKfQMPC/XoaGBigrKwMi8VCa2ur97qfnx85OTkUFRWRnp6OTrdw/46mS2PX0Fhyo429TT2T8olZsSEU55spzjdTkBAq35eEEELMC263QmfTIC3VvbTU9NJa03vMHI7Q6ACWX5lG1nIzWqmun9O2b9/O22+/jb+/P/feey/h4eG+DkmcpP/89Hs0Wvax7LKrueSOu6ftcR/dWc+PXi7nisI4/vfjy6btccXUJKEhhADg4G4b2/5Wjlar4YZvnktM8rE9wqt27+KVP/wKxe0m87wVXHn/19Hp59Ym36lyHB6kf0sDowfHTvDqNYSsiMd4cdKsmWOhuhWcrUM4mga88zjcvfZj7tOG+E1qU2VICDmldljiLHEMQfVWT3KjqgQc49U/BMdAzhWeBEfaRaCbHV9z84Hb5aSzuWmsVZUnydHeWIfLPsW/HZ2eqKTkSS2rYlLTMATMzjY6mw608O3nShmwuzAG6PnFdUVcUbQwhxaOjo5SUVFBaWkp9fX1k4Z7Z2RkUFRUxKJFixbEcG9faR8YZWt5G5vLbLxb24VLGf9IkRAeyIaxyo3zUiPRyeaOEEKIeUJVVLpbh7wJjkMVPYwOeSq0I+ODOf/qdNIWR0tif45yu908+uijHD58mKSkJO644w45FDMHtFYf5InvfhWAAGMo9zz4j2nb03rZ0sIXn9jH8tRInr5nxbQ8pjg+SWgIIRjssfPUj3djH3ax/Ko0zrsi7Zh7Kna+wWv/+z+oikLOqovY+PmvoNPP35ZGzvZh+rc2MlLa6bmg1RB8ngnjpcnow2b/xpe734690TOLw9HUj+PwIBzV4xWdBkN8CIZkz8Bx/5RQdHPgzzavOUc97agqXvK0pxrtHV8LCINFl3taU2VcAn6zczN9LlMUNz2tLd55HEdaVo0ODR57s0ZDRFzCUXM50gk0+u49y7DDxX+/ZOXpDw4BcE5KBH+4ZQmJEQtjvtERLpeLmpoaSktLOXjwIC7X+OnIxMRECgsLyc/PJyREWh/NtL4RJzsq2ymx2njjYAcjzvHWHJHBBtblxrKxwMzKjGgCJOEuhBBiHnHa3Vh2NLNvS5O3ciM2xcgFH8sgKTfSx9GJ09Hd3c2DDz6Iw+Hgoosu4pJLLvF1SOIjPP/LH1K3933vr6/6f98i+/xV0/LYu+u6uPnh90iNCuKN/5KvhbNNEhpCLHCqqrLpTwdoLu8mNsXI9V8/B+1RfT1Ld2xhy0N/AlUl/+J1bPjcffOmx/zRXD2j9G9rYnhvG6iABoIWxxC6LgV99NzdQFadCo6WQU+Co7Efe2M/yqDzmPt0Yf6e6o2xBIdfXDAa6fPqG24nNOz0JDcqXoahCcOu/YIhe4MnuZG1AfxlY/ZsUVWVgc4O2hrGZ3K019cy2NM95f3G6JjxdlVpnvkcIRFRZ/30nbWlj/ue3EddxxAaDXzxkky+vDYL/QL596soCs3NzVgsFsrLyxkZGZ81FBUV5R3uHRkpGwazxajTzVtVHZRY29he2Ubv8Pj3pGCDjotzYtmYb+aSnFhCZCaUEEKIecI+7GTf1iYOvH7IO3MjYVEEF1yTjjk9zMfRiVNlsVh47rnn0Gg03HHHHaSkpPg6JHEcbfW1PP7NL6PRaMlavoKq3btIW3ou133zv6fl8es7h7jkN28QZNBR/qON0/KY4vgkoSHEAlf25iHefLIKnZ+Wm79zHhHm4Enr+0pe5vVHHwRg8frLWXvnPWjm4cBi94CDgR3NDO5u9VYyBORFEbYhBb+j/k7mA1VVcffYPcmNJk+Sw9k65EniTKDx0+KXGOJpU5UciiHZOOMzQwSguKF5t2egePlL0H9ofE3nD5lrPcmNRRshMMJ3cS4gQ70948PHx6o5ettap7w3MDRsvJJjbC5HuCluWl5LVVXl7+808PNXK3G4FUyh/vz+5qWsyIg648eeC9rb273Dvfv6+rzXQ0JCvMO94+LipJ3DLOd0K7xf381mq40t1jZs/eNzhQw6LasyoyjON7Muz0R0iFQSCiGEmPuG+x18uLmBsrcOo7g8H8JSi6K54Jp0ohLksNJc8vzzz3PgwAFCQ0O59957CQycuwch57OXfvszqve8Q86qi1hxw2387SufQ6PRcvdf/kZI5Jl/dhqyu8j/QQkAZT8slgM5Z5kkNIRYwHrbh/n3T/bgciisvjGLxWuTJq1b39zO5r/8DoBzrriGiz75mXm3KaQMOxl46zCDuw57B2v7Z4YTuiEF/+SF9dqj2N04Dg2MV3E0DaCOTDE0OTpwUpsqfWwQGul7PnNUFVr2ehIbFS9Bd934mlYPaRd6khs5V0JIjO/iXIDsw0NjyY067wDyrsPNqIpyzL2GwEBiUiYkOdIyiIxPPKVWft1DDv7rmQNsr/RU76zLjeVXNywmMnh+Jx37+vq8w73b2tq81w0GA7m5uRQVFZGWloZ2HibfFwJFUbEc7mNzmY0tVht1nUPeNa0Gzk2NHBsqblpw7dSEEELMP/1dI3zwSgOV77aijnUIyD7PxPKr0giLke9zc4Hdbuehhx6iu7ub3Nxcbrrppnm3bzLXdTY38o+vfQGAO377F6ISk3ny+1+n5WA5q2+9nfM/duO0PE/+9zcz5HCz42sXkxY9/w7GziaS0BBigVIUlRd+u5fW2j4SssO55v6lkzal2xvqePK7X8PldHDuVddx4cc/Pa++KSt2N4PvHGbgzcOoo55Ne78kI2HFKQRkygl38Ayyc3WOeFtUOZr6cbWPHHOfxl/nSXAcGTiebEQbIKcRZoSqQnv5eHKjvXx8TaOF5BWe5EbuVRCW4Ls4FzCnw05nU4MnyTE2gLyjqQG3c4qWb35+RCelTmpXFZ2cip/h2BPp79R2cv9T+2kfsGPQa/nO5bl8akXKvHqdnmhkZISKigosFgsNDQ3e61qtlqysLAoLC8nOzsZgmN/JnIVGVVVq2gfZXGajpNxG2eH+SesFCaEU55nZWGAmMzZk3n79CyGEmP96bEPsfqme2r2egyparYbcVXGce3kaIRFSnTjbHT58mEceeQRFUbjqqqs455xzfB2SmOCVP/6ayl1vknX+Sq7+f98GoPT1LWx56I9ExCXw6d89OC3vIy/5zRvUdw7x77sv4Pz0hVEx7yuS0BBigdpb0si7z9fiF6Djlu8uJ3TCfAj78BCPf+t+em2tpC05h2u/8YN502ZKdSkM7m5lYEezd4aE3hRE2IZUAvIiZTPkIyjDTuzN41UcjuYBVMdRp8814GcK8rSoSvH8p48KkL/bmdBZMzZz4yVo2Td5LeFcyLvak+CITPNNfAIAt8tFd8uh8ZkcDZ6KDsfIFAlDrZbI+ERvJUdkSjr/btDw0K4mVBUyYoL5063LyIuff++VXC4X1dXVWCwWqqqqcLvHB0gnJydTVFREXl4eQUFyenGhaO4eZkt5GyVWGx80dKNM+HSSHh3MhrHKjcWJ4WilclAIIcQc1NE0wHsv1tFk7QJA56el6JJEzr0sFUOgHBqbzXbt2sXWrVvR6/XcfffdxMbG+jokAXS3HObv/+9eVFXhk7/8I7Gp6QA4RoZ54HOfxGW3c8sPf0VCTt4ZP9dND77LnoZu/nTrUq5aHH/GjyeOTxIaQixAXYcHefrn76O4VC75ZA55q8ZfaFVVZdP//JzqPe9gjI7hk7/4A4HGuf9vUHWrDO9to397E+5eOwC6yADC1qcQuDhGWiadJtWt4mwbmtSmyt09esx92mC9N8HhnxyKX2IIWsP8HCw/a/Q2eWZuVGyCpveYNCDFVDie3IjN8VmIYpyqKPS228YqOWpoH5vPMdI/PheiX2+kJGYdtgAzACsCurinIIDkTM9cjuDwuV9dpigKjY2NlJaWUl5ezujo+OtJTEyMd7h3eHi474IUs0LnoJ1tY8mNXTVdONzjyXVzaAAb8k0U55tZnhaJn25+HMoQQgixcLRU9/Lei7W01njeCwYa/bjgYxnkroiTz66zlKIoPP7449TV1WEymfjMZz6Dn5+fr8Na8Db/5fdY39xG+jnLufbr3z9q7XdY39xOwSUbKL7nS2f8XF94Yi+vWFr53pV53LVaDhGeTZLQEGeFq3uU0Zoe/GKD8E8N83U4YgK3S+E/v/yAzuZBUgujuPzzRZNOzn+w6TnefPxRdHo9t/zwV5gzs30Y7ZlTFZWRsk76tzbi6vCcftaGGghdm0zwuSY0sskx7dwDjgnDxgdwHB4A11HfQrQa/OKD8Z9YxREupdRnzYANKl/2tKZq2Anq+El3orPH21LFLQappJk1VFVlsKeL9vo6XvywkYfrDYyqegxuO5d2vUnWUO2k+0MiIr3zODxDyDMxRsfMieoom81GaWkppaWl9PePtxUyGo0UFhZSVFSEyWSaE38WMfMGRp28cbCDzVYbb1S2M+QYf40LD/JjbY6J4nwTF2bHEOAnyXQhhBBzg6qqNJZ1ses/NfS2DQMQk2xkzU1ZxGWG+zY4MaWBgQEeeOABhoeHOf/887nssst8HdKC1tdu45Ev342qKNz2098Sl7lo0vqh8jL+/cNv4hcQyL0P/RO/gIAzer4fbrLyt10NfO6idL51We4ZPZY4MUloiGnj6h1lxNLJcGknzuYB73VDWiihlyTjnxUuGxGzwO6X6vjg1QYCgv245fvLCQ4b30Q+VFHG0z/6NqqisPauz7Nkw+U+jPTMqKrKaFUP/SUNOFs8A0W1QXqMFycRsiIOjWxozBjVpeBoGfQkN5o88ziUfscx9+lCDd7khn9KKH5xwWj0knCadsPdcPBVT3Kjbge4J/y/CE/xJDbyrvG0qJonrebmsmGHix9tKuep95sBWJoczq+vysKvp8UzeHyskqOn9bBnpspRAkKMxKame5McsWkZRMTFo9X6/jWwt7fXm8Rob2/3Xvf39ycvL4+ioiJSUlJkuLc4JaNON+/UdrK5zMa2ina6h8Zf4wL9dFy8KIbifDOX5MQSFiinJoUQQsx+bpdC6RuHeP/lehyjnqR91nkmVlybgTHyzDZgxfSrqqriiSeeAOC2224jO3tuHxKdy7Y+/Gcs2zeTUrSUG77z42PWVVXl0S/fTW9bKxs//xXyL1p7Rs/3wBu1/HJzJdctS+B/blpyRo8lTkwSGuKMuPrsjJR2MmLpwNE0nsRAA4ZEI46WQXB7vnT8EkMIvSSZgNxIKZH0EVt9H8/96kNUFYo/W0DmOeM9HYd6e/jnN7/MUE83uasv5rIvfnXOJqDs9X30lTTgaPCc8tX46zCuSSBkdYIMq54FVFXF3WvHMVbBYW/sx9k6CEeN4kCvxZAYMtamyjN0XGeUgb/TarQPqrZ4Zm5UbwXXhBkOxjjIudLTmip5Jejk385MK2/p574n91LbMYRGA1+4OJMvr8uasn2OY3SEjob6SUmOruYmFLfrmHv1/v7EpqR7Bo+neio6opOS0enP/ubu8PAw5eXlWCwWmpqavNd1Oh3Z2dkUFhaSlZUl5fliWrjcCh809lBitVFSZqOlb7yFmZ9Ow4qMaIrzTazPMxFrlA0hIYQQs9twv4Pdm+oo39kCKuj9tCwtTmHphmT8pJ3vrPLaa6+xe/dugoKCuPfeezEajb4OacEZ6Ork/+77DIrbxc0//CWJOflT3vfec/9m17//SWJuATf/9y/O6Dmf/fAQX33mAGuyovnnXeef0WOJE5OEhjhl7n4HI6UdDJd2ejeMAU8SIzWMoKJoAgui0RkNuPvsDLx1iKE9NlSnZ7fSzxyE8ZIkAgtlbsFMcjrcPP3T9+ltGybrPBMb7hp/MVfcbv7zk+/SXF5KVGIyH//p/5xxqZ0vOA4N0LelEXtVj+eCXkvIyjiMFyWhC5bNsdlMcbhxHhrAPlbF4WjsRxk+diNWFxUw1qbKk+DwMwfL68h0cQxDzTZPcuPgZnBMSFIHRUHOFZ7WVGkXgV4SS2eTqqo89m4jP321AodLIdboz+9vXsLKzOhTehyX00lXc6N36HhbfS0djfW47PZj7tXq9EQnpYwlOdKJTcskNiVtWr4XOJ1OqqqqsFgsVFdXoyjj2cvU1FSKiorIzc0lMDDwjJ9LiONRVZWyw/2e5IbVRnX7oHdNo4FzkiMozjdTnG8mOUoGzQshhJi9OpoG2PlMNS3VvQCERPiz8vpMMs+JnbOHEucbl8vFX//6V9ra2khPT+cTn/iEVB3PsNf/9hD7Nm8iMa+Am39w/ERFf2cHf/3inaCq3PWHvxJujjvt53yrqoNPPbqHRSYjJV+58LQfR3w0SWiIk+IecDBS1smwpRNHQ9+k2bKG1FCCCqMJLIxBFzr1Jpd70MHgzhYG321BtXtKJPXRgRgvTiRoaazMMZgBb/+7CsuOQwSHGbjl++cTMGGD/+0n/s6eF/+DX0AgH//Z/xCVkOTDSE+ds32Y/q2NjJR2ei5oNQSfZyL00mR0YTKXYS5SVRVX58ikNlWu9uFJrz0AGoMOQ7IRQ7IR/5RQDMmhaAOlkuCMuexQ94YnuVH5Kox0j6/5h8GijZ7WVBlrwSAbf9Ope8jB1/9zgG0VnhZMa3Ni+fWNi4kMnp4kkqK46WlpGU9wjP1oHxo69maNhsi4hEntqmLTMggM+egTZoqiUF9fT2lpKRUVFdgnJFFMJhNFRUUUFBQQFiZztoRv1HYMjiU32jjQ3DtpLcdsZGOBJ7mRYzbK5pAQQohZR1VVavd2sOvZaga7Pe+z4jLDWHNTNjHJUg0wG3R0dPDwww/jdDpZt24dq1ev9nVIC8ZQbw//98W7cDkd3PDdn5BSuOSE9z/7s+/TcGAvF1x3M6tu/uRpP2+lrZ+Nv3+biCA/9n1/w2k/jvhoktAQJ+TsGKb3xVrstb2TkxjJRgKLYggsjEZ/ChvGyrCTwXdbGdx12Hv6Whfuj/GiRILPNaPxk8TG2XCospsXf78fgCvvW0xKfpR3reaD3bz4a08vwSvv/waLVqzxRYinxdU9Sv/2Job3tnm+PjUQtDiG0PUp6KPkpO98o4y4cDR7WlQ5mvpxNA14E6QT6WODPMmNFKNn2Hh0oGxGnQm3Cxp3QsUmqHgZBm3ja35BkLXeU7mRtQEC5Pv1mXi3tov7/72Ptn47Bp2Wb1+ew+0rU8/616+qqvR3tHvaVdWPt6wa6ume8v7QmNgJczkyMKVlEBwRCUBra6t3Lsbg4PgJ+LCwMO9w79jY2CkfVwhfae0bYYu1jRKrjd313biV8Te9yZFBY8kNE0uTItBKVaAQQohZxOVws29rE3s3N+JyKqCBvJVxnH9NBkHHOXAqZs6HH37Ipk2b0Gq13HXXXSQkJPg6pAXhjX8+wocvP09cdg63/ujXH/l5qvKdt3jlD78iJCqaz/75kdOeN9g95GDZj7cCUPWTyzDITNCzRhIa4rhUp5u2P+33nIoG/JKMnnZShdHow8+sBYVidzH0no2Btw+hDDoB0Br9MK5JJPj8OLT+0v9xuthHXDz1490MdtvJXxPPxR/P8a71ttl4/Jtfxj48xNLLruLSOz7nw0hPnnvAQf/rTQztsXlntATkRRG2IQU/c7CPoxMzRVVUnG3DOBo9LaocTf24ukaPuU8bpMcwoU2VIcmIVnrMnh5FgUN7PMmN8pegb3wGAjoDZFzqSW4sugyCIn0X5xzjciv8YXs1f95Rg6pCekwwf7p1Kfnxvq1eGOrt8SY42utraWuopa/Ndsx9ip8BYhNwhUViV8c/LAQGBnqHeyclJUmZvZgTeoYcbK9sZ3OZjberO7C7xlukxRj92ZBnojjfzAXpUfIhVQghxKwx0D3Ku8/XUv1+GwCGAB3nXp5G0SWJ6OTgqM+oqsozzzxDeXk5ERER3HPPPfj7SxeJs2m4v4+/fvFOXHY7137zB6QvPe8jf4/L4eChez7F6NAg13/7R6QuXnZaz60oKou+9xpOt8o737yU+HA5aHu2SEJDHFfPizUMvduKNsSPmHsW4xc9/f8QVaeboffbGHjzEO4+T5mkNkhPyKoEQlbGS+uYabD9sQoq32klNDqAm7+7HMPYUGyXw8GT3/sv2htqicvO4eYf/HxGBsKeCWXYycBbhxjc1eKdyeKfGU5YcSqGJCmrFZ72dhPbVDkODYLrqGnjWvCLCxlvU5USii7cX6o4TpWqQut+T2Kj4iXoqhlf0+ggbY0nuZFzJRhNPgtztjvUM8yXn9rPh42e2T83nZvIf1+dT5Bhdn7/Gx0apKOhjubqKg5WV2PrH8Sum/C9Q1HQD/bi19dFoNuJaWzwuGmsbVVkQhJanSQUxdwwZHfxVlUHm602Xq9oZ8A+PtvJGKBnbU4sGwvMXJgdM2v/zQohhFhYWmt6efvpajqaPPPwjFEBnH91OtnnmWT2oI+MjIzw4IMP0tfXR1FREdddd52vQ5rXdj71GLuffxpTeiYf/9nvTvpz/vZHH2B/ySssWrGGK+//xmk//4qfb6e1b5QXvrCKJUnhp/044sQkoSGmNFLZTdffrQBEfzqfgEVn96St6lIY3tdO/xvNuMdOWGv8dYSsjCdkVTy6ECmVPB31Bzp49YFS0MC1/28Z8Vnh3rUtD/2R0te3EGgM5ZO//CPGqFMbNjuTFLubwXcOM/DmIdRRT4shQ5KR0OJUAjLDfRucmNVUl4KzdWi8TVVjP+4+xzH3aY0G/MdaVBmSQzEkhKCRk7cnT1Who3IsubEJ2konLGogeYVn5kbuVRA+t2b0nE2vWFr55nMWBkZdGP31/PS6Qq5eHO/rsI7L4XBw8OBBLBYLtbW13uHeGo2GBJOJWGMgfgN9dDXW09ncgNvpPOYx9H4GolNSiU1Nx5SWSWxqOtHJqegN8n1ezG4Ol8K7dV1sLrOxtbyNzsHxuTABflrWZMWwMd/M2txYwoPk61kIIYTvqIpK5Xut7H6xjqGxzz7RSSGsvC6TpFypovaFxsZG/v73v6OqKtdddx1FRUW+DmleGh0c5K9f/DSOkRGu/tp3yDpvxUn/3ra6Gh7/1v3o/Pz43IOPndTcwKlc8+edHDjUx8OfPIcN+ebTegzx0SShIY7hHnTQ9vu9KINOQlbGE351xow9t+pWGSntoP/1Zm+rK42fluDz4zBemIAuVErzTtbIgIMnf7SbkQEnS9Yns+r6TO9a2RvbKHng96DReMrpipb6LtATUF0Kg7tbGdjR7G1NpjcFEVacSkBupJyoF6fF1Wv3JjfsTQM4Dw+CctS3OJ0GQ6IRQ4oR/+SxKg6jbFCdtK7asZkbL8HhDyevxS+DvKs91RtRM/f9ZTYZcbj50ctWntzTDMCSpHD+eMtSkqNm34B1t9tNXV2dd7i3c0KSIi4uzjvc22ic/Ibf7XLRfbh5vF1VfS0djXU4RkaOeQ6NVktUYvJYksMzlyMmNR3/oNn39yEEgFtR2dfUQ4nVxmarjebu8a9rnVbDBemRFOeb2ZBnxhx2Zm1ahRBCiNPldLixvN7M3s2NOMYOBiblRbLi2gxipMPBjHvjjTd44403MBgM3HPPPURGSnJpur37nyd555l/EZ2Uwqd+9Sc0p9DyVlVV/vn1++hoauDSO+9hafGVpxXDZ/7xAdsq2vjJxwr4xAUpp/UY4qNJQkNMoqoqXf8oZ7SyG70pCNMXl/pkULeqqIyWd9G/o9mz2Qig0xB8nhnjhYnoI+XD4YmoqkrJw2XU7usgMj6YG791Lno/T4uP9oY6nvzu13A5Hay86eOsuP5WH0d7LNWtMry3jf5tTd5WZLqoAMLWpxBYFCOlsmJaqU43jkODY1UcAzga+1GGjj1ZrosMwD95vIrDzxyMRidfix+p75BnmHjFS9D4DjDh7URs/lhy4yqIzYMFkKSsaO3nvif3UdM+iEYD916UwVfWZ+Onmz0VQaqqcvjwYUpLSykrK2NoaMi7FhERQWFhIYWFhcTExJza4yoKvW2t3qHj7WP/jQz0T3l/uDmO2NQMYtMyMKWmE5ueSVCob+eKCHE0VVWpaB2gxGqjxGqj0jYwaX1JUjjF+Z6h4ukxIT6KUgghxEI2Mujgg1cbKHvzMIpbBQ0sWm5m+dVphEZJj/+Z4na7+cc//kFTUxMJCQnceeed6KQV67SxDw/zf1+8k9GhQa748tfJWXnhKT/Gh6+8yBuP/RVTeiaf+PnvTyuObz9fyhO7m/jy2iy+sj77tB5DfDRJaIhJBt9rofeFWtBpiP3iUgxxvh2wrKoq9qoe+l9vxtE4tuGh1RC0NBbjxYn4xcjpzakc3G1j29/K0Wo13PDNc4lJ9py+sA8P8fi37qfX1kraknO49hs/OKWM9dmmKiojZZ30b2nE1ek57agLNWBcm0zwuSY0s2jDT8xfqqri7hqd0KZqAGfb0KR9eACNQTtWxeGp4PBPNqINmt1zaHxusB0qX/a0pmp4G5TxfvREZownN+KXzbvkhqqq/PO9Rn7ySgUOl0KM0Z/f37yEVZmzp91fV1cXFouF0tJSuru7vdeDgoLIz8+nqKiIxMTEaa2OU1WVwe4u2htqaa8fS3Q01DLQ2THl/SGRUZ4ER5qnisOUloExKkYq9sSs0dg1NJbcaPPOxjki2xQyltwwkx8fKl+3QgghZlRfxwi7X6yl+oN2AHR6LYWXJHLOxhQCguVzzEzo7e3lwQcfZHR0lNWrV7Nu3TpfhzRv7H7hGXY++Q8i4hO547f/i1Z76smi4f4+HrrndhS3i0/96k/EpKSd8mP8flsVv99Wza3Lk/n5dYWn/PvFyZGEhvBytg/T/qd9qE6FsCvTMa5O8HVIXqqq4qjvo//1Zuw1vZ6LGggsjMZ4SbLPEy+zyWDPKE/9eA/2YRfLr0rjvCs8L8CqqrLpf35O9Z53MEbH8Mlf/IFA4+z4t6WqKqMHe+gvacDZ6jkJrA3SY7wkiZAL4tD4yakF4VvKqAtH84C3TZWjsR/V7j7mPn1MoCe5MZbk0EcHSkXR8Qx3Q9VmT3Kj9nVwj/ejJyxpbObG1ZC0HE7jzehs0jPk4OvPWtha3gbAJYti+M2Ni4kK8X0bxcHBQcrKyrBYLLS0tHiv+/n5kZOTQ2FhIRkZGTN+emy4v4+Ohnra6mu8bat6bC2eeS1HCQgxEjs2dNyU5qnoiDDHz6qEvViY2vtH2VLeRonVxru1XbgmtDdMCA/0Vm6cmxqJTr5XCCGEmCHtjf2881wNhw/2AuAfpGfZxhSKLkn0dnYQZ4/VauWZZ54B4FOf+hTp6ek+jmjuc46O8tcv3snIQD8bP/8V8i9ae9qP9dJvf0b1nndYdvk1XHL7Z0/59/9rdyPfeb6Mdbmx/N/t5512HOLEJKEhAM+sgva/7MfZMoR/VjjRny6YtZtw9qZ+BnY0M1oxfno0IDeS0EuTMSzwPpCqqrLpTwdoLu8mNsXI9V8/B+1YVcMHm57jzccfRfv/2bvvMKnK64Hj3+nbZnvvvTIDSLMjiiIK2HssMfZuTIwmUaMpmmiMiT8jsScx9gaIAmLDSmdne++9z2yZfn9/3HWWdVEBd3e2vJ/n2Uefue/MnEWZufee95yjUnPhA38mJj3Ly9HKbNV99G2u9VTgKHQq9MfFEXBsHEoftZejE4QDk9wSzo5BuYqjTk5wfFNVtD+Fj1oeNj48h0OboEepExcJY9gsUL5ZbktV8QE4BkeOBURB9ulyciP5WFBNr91jX1d3cfur+2jps6JRKbhrZQ5XHpPs1Z3ZNpuN0tJSTCYT1dXVfHOKp1AoSEtLw2AwkJ2djU7n/YTL/uxDg7TX1dBeIyc42mur6Gqsx+0am1zU6HyISE4dleQIi09ApZ5e//8IM0ffoIOPytrYXNjGp+UdDDlG/r8N89dycm4UK/KiOTo9DJ1afE8IgiAIE0uSJOqLuvnyrUq6m+VNhQGhOpasSSVzcTTKKXo/aKZYv349e/bsISAggOuvvx5/f7FJ98fYvfEdPvnPMwRFRXPl3/6F8kdsxqres5O3/3w/vvpArl3770O+fviguI2r/7MLY3wQ62869rDjEL6fSGgIAPS+X0P/p40o/dRE3XbEtBi+bW/ux/JJA0MFnZ5WMLqMYAKXJaJLnZ09tgs/beTTl8tRaZRc8JtFhETLX4qNJYW89sCvkdxuTrryeuatON3LkYK90ULfljps5cPtGNRKAo6ORb80HpUodxWmIdeAw9OiylZnxtFoQXK4Ry9SgCbaf1SbKlWoj2g7sj/HEFR+KCc3yjaBrW/kmG8IZJ0mJzfSloF66n5XOV1u/vFRJf/3UQVuCVLD/fnHRfOZE+ed7yeXy0VlZSUFBQWUlpbidI60+4qLi8NoNJKXl0dAwPTq8e+02+lqrJcrOYYTHR31tTjttjFrVWo1YQlJRCanDSc5UolITEHjI+ZyCZNryO5iW0UHm4ta+bCknb6hkblNATo1y7IjWZEXxQlZkQToxOYOQRAEYeK43RJlX7eyY0M1/T3y+VNYfADHnZ9BXGaIl6Obuex2O0899RSdnZ1kZmZy0UUXiWvCw+S023nmlqsY6Onm5GtuxnjSih/1em6Xi6du/CkDPd2s+fmvyVhy9CE9P7+hlzOe+ILoQB++/vXhV4oI308kNASsVb10PlMAEoRdmoNv3tTp530wHO2DWD5pYHBfOwzfO9QmBxJ4YiK6jOBZ86XQ2z7Iq3/YgdPu5tjzMph7UgIAA709/PeuWxno6Sb7mKWcdvMvvPpn4mgfxLyllqHCLvkBpQL/xdEEnpgwLRJpgnCwJJcbR8vAqDZVrt6xN1mVARq0id+0qdKjjdOj0IhWOQA47VCzDUrWQelGGOwaOabVQ+YKuTVVxsmgnTq7mpp6h7jtlb3srJUTtucuiOf+NXn4T/KNSUmSaGhowGQyUVRUxNDQSBVRaGgoRqMRg8FAWFjYpMY10dwuFz0tTaMGj7fXVmMbHBizVqFQEhIbN6qSIzI5DZ9pltgRpi+Hy82Omm7PUPE288j3hFat5Lj0cFbkRbM8N4pQf60XIxUEQRBmMqfdhenjRnZvqsM+JG98yToymqPPTscvUHz/TITW1laefvppXC4Xp512GosXL/Z2SNPS3s3v8tFza9GHRfCzfzw1LhXZ2156gZ3r3iD1iEWc9av7Dum5LX1DHPXgR6iVCsr/sFJUO00QkdCY5dyDDtoe24PLbMd/cTQhZ2d4O6TD5uy2Yvm0gYFdbeCS/3fVxAUQeGICPjlhU7aF1nhwuyXefmQPrdV9xGUFc8at81EoFbhdLt74w29pKC4gLD6Ri//4V7Q+vl6J0dltxby1jsG97XJFjQL85kUSuDwRdZh3YhKEyebqs2EbruKw15uxN/V7Pq88VAq0sQHDVRx6dEmBItkH4HJC/ZdQskH+sbSMHFP7QvpJcuVG1qng470qvfcLWvjVmybMVicBOjV/PGsOZ8yb3JlUHR0dnuHevb29nsf9/f2ZM2cORqOR2NjYWZPwBzm509fe5hk+3l5TSVtNFYN9vQdcHxgRNTrJkZJGQEjo5AYtzDput0R+Yy+bi+S5GzWdI0k4pQIWJYdy6pxoTsmLJi5YnDsJgiAI48/a7+DrdVUUfd4MEmh91Rx5Rip5x8eJG7MT4Ouvv2bTpk2oVCquueYaoqKivB3StOJyOnj2lmuwdHVw4pXXMX/FqnF53e7mRp6//ToUCiXXPPnCIV0HOFxuMn7zPgC7f7t8SsxNnIlEQmMWkySJ7pdKGSroRB3uS+Qt81Fqp3/PXlefDcu2RgZ2tHravaij/AhcloCvMWJGJjb2bK7jq7er0PiouPCexQQOJwg+e+kFdqx7A42PL5f86VHC4hImPTaX2Y7543oGdrR6btz65IURdEoSmqips6NaELxBcrixN1mw11uG53GYcfc7xqxTBes8Laq0SYFoYvxRqGZxFYfbDU27oHid3Jqqt37kmFIDqSdA7hrIOh38J6f6wOpw8cC7xby0XY5lbkIwj184n8Qwv0l5f7PZTGFhIQUFBbS0jCR7tFot2dnZGI1GUlJSJn2491TX39MtJzmq5SqO9toq+trbDrjWLyiYyJThdlXJqUSmpBMUGTWrEkPC5JEkiYr2fjYXtrK5uJXCJvOo44a4IFbkRXHqnGjSI2f3DDlBEARh/LXW9PHpS2V0NvQDEJGoZ+nFWUQli/tz40mSJF566SUqKiqIiIjg6quvRqsVFTEHy/ThZj546nH8Q0K56h/PoB7HP7uX7/klzeUlHHfxFSw+49xDeu4Rv/+A7gE77996HDkx4u/MRBAJjVlsYHcbPa+Xg1JB5PVzZ9xAbVe/nf7Pm+n/qhnJJg9eVIf7ol8aj9/8SBTqmXEzsKupn9ce3InbKbHs0mxyj4kFoHLXdtY9/HsAVt32K7KOOm5S43IPOrB82kj/l82exJIuI5igU5Jn3P9rgjBeJEnC1W0dleBwtA545gR9Q6FRoomXqze0w0mOWTt7RpKg1QTF6+XKjc6ykWMKFSQfI1duZK+CwJgJCaGs1cLNL++hvE2+4LtuaRp3nJKJZoKTTlarlZKSEkwmEzU1NZ7HlUol6enpGAwGsrKyxEXRIbL298vJjZrK4SRHNd1NjUiSe8xanZ8/Eckpw0kOuZIjNDb+Rw0iFIQDaegeZEuxXLmxs7ab/a/MUiP8WZEXzYq8aObGB4kkmyAIgjAu3G6Jom1NfL2uWm5DpYA5x8Wx5IxUfGbrtccE6O/vZ+3atfT397Nw4UJWrRqfKoOZzu1y8dzt19LX1soJl13FgtPPHNfX/yZZEhIbz08fffKQzq9OfWwbpa0W/n3lYpZmRoxrXIJMJDRmKWfXEG1/34tkdxG4IonAZYneDmnCuAcd9H/VQv8XTbgH5V6QqmAd+qXx+C+Mnta96l1ON68/tIuuxn6SDWGcdoMRhUJBb1srL951K7bBAeavXM2JV1w78bEMOORZAXVm7LVm7I0WT0WGNlFP4IpkfNKCJzwOQZhp3DYn9oZ+7HVm7PVmbHUWJKtzzDp1uK8nuaFLCkQd6TcjK9J+UEfZcHJjvZzo8FBAwmI5uZGzGkKSfvRbSZLE/7bX8/t3i7E53UTodTx6/lyOy5i4k1an00lFRQUFBQWUlZXhcrk8xxISEjAajeTm5uLvLyrgxpPDZqWjrnZ4HodczdFZX4vLeYC/ixotEUkpRKakepIc4QlJ47pjTJjdOvttbB1ObnxR2YXdNZJsiw70YUVeFCvyolmcEop6NlfzCYIgCONioM/Gl29VUr5drmL11Ws4+ux0so6MFkn0cVJVVcV///tfAC644AJycnK8HNHUV7ztI95/4lF89YFc/X/PofHxGdfXtw0Osva6S3HabFz0+4eJzTz4/yaXPrudzyo6efhcI+ctnPxOKbOBSGjMQpJLouNf+djrLWiTA4m4xjgrbnq5bS4Gtrdg2dboaemi1GvQHxeP/5IYlLrpt5vy63VV7H6/Dh9/DRfeuxj/IB1Ou52X7/kl7bVVxGRmc8F9D47LUKT9fbOL3FYr7yC31fbhbB8as04T40/gKUn4ZIeKEx1BGCeSW8LZOTSSQKw3H/Dvn8JHhTZhuIojKRBtgh6lz+QOpfa67prhmRvroXHn6GMxc+XkRu4ZEH7o86N6B+3c9WYBm4paATghK4JHzptL+AT0SHW73dTX11NQUEBRURFWq9VzLDw83DPcOyQkZNzfW/huLqeDrsYGz9DxtpoqOmqrcdisY9YqVSpC4xL2a1eVRkRSKjq/yWlJJsxcFquDj8s62FzUyiel7QzYR5KcwX4aTsqOYkVeFMdnRuCjmX7nuoIgCMLU0VTWw6cvl9HTOghATHoQSy/KIiwuwMuRzQxbtmzhyy+/xMfHh+uvv56gIO/NBZzqJLebF+64ge7mRo696HKWnHnehLzP+088SvG2jzCceAqnXHvLQT/vjtfyeXNPI3eemsUNJ6RPSGyznUhozEJ9H9Rh+bAehY+KqFuPQB0yvlnMqU5yuBjY1Yblk0ZcfTYAlH5qAo6JI+DoWJS+0+OGX2t1H289vBtJghVXzyF9QSQAW/71Dwo+2oKvPpBL//wP9GHhP/q9JJeEo6V/VALDbRnb518d4YsuOQhtsrxDXBXmIxIZgjAJ3IMObPUWTxWHvcGCZP9WexwFaKL85ORGopzkUM+mv6PmZih5V05u1H0B+7cPisgeTm6sgag58AN/Jjtqurntlb0091nRqBT86tRsrjwmZdwHJba1tXmGe5vNI/3zAwICMBgMGI1GoqPFzripRHK76Wlt8bSrahtOdlgt5gOuD4mJJSI5bdQAcr9AcfEqHB6rw8UXlZ1sLmrlg+I2egZHztV8NSpOyIpgRV40y7IjCfIVrUIEQRCEQ+dyusn/sIGdG2tw2t0olArmnpTAotOT0c62zVPjzOl08txzz9Hc3ExSUhKXX345SqWotDyQ8u1fsOHRB9H5+XP1E89P2CahhuICXrv/brS+vly39r8HXQXy0PulrP20iiuOTuZ3a/ImJLbZTiQ0ZhlbnZmOtfkgQeiFWfjNi/R2SF4jOd0M7m3H8kkDzi55N6VCpyLg6FgCjolFFTB1W0M47C5e++NOetsGyVgUxSk/kz8gCz/ZyuYnHwOFgnN+/QDJxvmH/NqS042jfRBHywCO1gEczf0HvjmqUqCNH25vkxw4u3v4C8IUI7kkHK0Dwy2qzNjrLbi6D7Br3F/tSW7oEgPRxAeg1M6CHbwDnVC6UU5uVH8K7v0StCEpcmIjZw3ELRiV3HC5JR7/qIJ/fFiBW4KUcH8ev2g+c+LG7wZ0X18fBQUFmEwm2tvbPY/rdDpycnIwGo0kJyeLi5tpRJIkLF0dtNfIQ8e/SXL0d3UecH1AWPhIgiM5jciUVPRhESJxJRwSp8vNztoeNhe1sqWolea+ke8AjUrBUWnhrMiL4uTcKCL1s2tzkyAIgvDjWbqtfP5aBdX7OgDwD9Zx3PkZpM4X5yw/RldXF2vXrsXhcLBs2TKWLl3q7ZCmHEmS+N+vb6etupIjz76AYy64dELf69lbr6avrZVTb7idvKUnHdTznvu8hgfeLeZ0QwxPXHLEhMU3m4mExizitjpp+8deXN1W/OZFEHphtrdDmhIkl8RQQQfmjxtwtsmlkwqNEv8lMeiPj0MVOP7tQ36sba+WU/BxI/5BWi68dwk+/hraa6t5+be/wOmwc/T5l3DUORf94Ou4+u1y4mL/n45Bz+yL/Sl81HLiYrj6QhsfgEK0LhCEacNlscsVVvVm7HWWUXNuPJQKNLH+6IaTHNqkQNTBU+8zcFwN9UL5Zjm5UbkVnPslfgLj5HkbOWtoDpzLba8XsKOmG4BzjojngTPy8Nf9+J1oQ0NDFBcXYzKZqKur8zyuVCrJzMzEYDCQmZmJRiOSxjPJoLlvVLuq9ppKeltbDrjWRx+4X5IjlciUdEKiY1CIxJZwECRJoqCpj81FrWwqbKWqY8BzTKGABYkhnqHiiWGiDZogCIJw8GoLOvns1XLMnfI5dM7RMSz7SfasaGs+Ufbt28c777yDQqHgyiuvJCFBzGDYX61pL2/+8R7UWh1XP/HchFc3f/3mK3zx2osk5Bo4/74HD+o575qauemlvSxKDuH1646e0PhmK5HQmEW6XytjcE87qmAdUbcdMft6qf8AyS1hLenC/FEDjqZ++UGVAv+FUeiXJqAOnRq71xpKu1n/2D4AVt08l6S8MGyDA7x49230traQMm8BZ/3qvlE3OSSXhLNz0JO0sA//022xH/A9FD4qNDH+aGMC5H8m6GfvgGFBmKEkpxt78/Cw8Tp52PiBPhNUQdqRKo6kQDQx/ijUM/Qmqq0fKj+Qh4pXbAG7/F2wybWQXzmvpU/yJ0ADfzjTwJkLEn/UWzkcDsrLyykoKKCiomLUcO+kpCQMBgO5ubn4iRkLs4ptcJCOumraa6tpr5GrOboa65Hc7jFrNT6+RCSljJrLERafiEotzu+E71fZ3u+p3Mhv7Bt1LCcm0DNUPDtaL3bZCoIgCD/IaXexe1MduzfVIbklco+J4YRLRFLjcEmSxFtvvUVBQQHBwcFcd911+IzzwOvp7LX776ahuID5K1dz4hXXTvj7mTs7ePqmK0GS+Nk/niE4KvoHn7Ojppvz//UVyWF+fPLLZRMe42wkEhqzxKCpg+6XSkEBEdca0SWL/szfRZIkbOU9mD9qwF433PNaCX7zItEvS0AT4b2bS7YhJ688sJ3+Hht5x8dxwsVZSJLEhkcfpGLHl+jDI7jkvkdQ96s8SQtHywCOtkFwjr0ZAqAO80ET449mOHmhifFHFawTF7CCMMtIkoSr17bfsHELjpZ++PZHh1qJNj7A06ZKm6Sf0i36DpvDirX8I/6wuYYX25MBmKuo4h+ax0nys0PWaXL1RtqJoDm4Cwy3201tbS0FBQUUFxdjs9k8xyIjIzEajcyZM4fg4OAJ+IWE6cppt9PZUDdczVFFe001HXU1OB0HSECq1YQnJssJjuS04eHjyWh04iJYOLDm3iG2FLWyuaiNHbXduNwjl3xJYX7DlRtRzE8IGfc5QYIgCMLMUrGrjQ+eLUKSIO/4OJZelCnuKxwmq9XK2rVr6e3tJS8vj3PPPVf8WQLN5aW8fM8vUKpU/OwfzxAYHjEp7/vGH++hzrSXI8+5kGPO/8kPrq/tHOCERz7BT6ui+IFTJyHC2UckNGYBSZJoe3Q3zo4h9MsSCFqR7O2QpgVJkrDX9GH+uAFbRa/8oAJ8DeHolyWijfGf9Jg+fKGY0q9bCQz34YJfL0Ix6GTn22/w1dZXUSpULM+4ghDHgYeAK7RKNNH+o5MX0f4odaJtlCAIB+a2u7A3WLDvN3DcPegcs04V5jOqTZUmavpXdJW3Wbj5pb2UtVkAuNag4o6AzWjLN8BAx8hCbQBknCLP3Ug/GXQBo15HkiRaW1sxmUwUFhZisVg8xwIDAzEYDBgMBqKjf3injyB8w+1y0d3cOFzJUTk8n6Ma2+DAmLUKhZLQuPjhJIfcrioyORWfgIADvLIwm3UP2Nla0saWola2VXRi328zTKRex8m5cuXGkalhaGdqpZ4gCILwo5Rtb2XrC8UggeGEeI67IEPciD9MDQ0NPPfcc0iSxBlnnMH8+Yc+I3Wmeefh31O1azt5Jyzn1Otvm7T3Lf3iUzb+42H0YRFc9X/PoFR+/320AZuTvPs2A1B4/woCxqFNsTCaSGjMAo7WAdoe2wNqBbG/PVK0mjoM9gYL5o/qsZZ0ex7zyQkl8MREtAn6CX9/t91F5bZGPnijCoBlaXqCLHbazXV83PIyEhJHhJ1MRqA8bEgVrPNUW2hiAtDG+KMK9Zn2NxgFQfAuSZJwdg4NJzcs2OrMntlD+1PoVGgT9J42VdoEPUrf6fHdI0kSL+9o4IF3i7A63IQH6Hj0/Lkcnzm8+8ftgvqv5ZkbJRvA3DTyZLUPpJ0EuWvoiTySgop6TCYTnZ0jw599fHzIzc3FaDSSmJgohnsL40aSJPra2+QEx34tqwb7eg+4PigyylPFEZmSSlRKOv7BIZMbtDBlDdicfFrewabCVj4ubcdiG0lm633ULM+JYkVeFMdnRuCnnR6f74IgCMLkKP2qhQ//UwISzD0xgWPOSxdJjcO0bds2PvroIzQaDddeey3h4QfewDobdNbX8u9f3gQKBT999ElCY+Mn7b2ddjtrr7sU28AA5/zm9yQbfzi5lHfvJgbsLj66YympEWIj0XgTCY1ZoG9LLZaPGvDJDSP8slxvhzOt2Zv7sXzSwFBBJwz/jVAGatFE+KKO8EMd4Ytm+J+qIN1hJRA8g7qb+7E3y/8caB/kY7MTmwTpOiV5viqGnP1saf43Vlc/qYlHsPyMa9DG6tHE+E+bG4eCIEx/7kEH9gYLNk8VhwXJ7hq9SAHqSD85uTHcpkod7jvlLmz6Bh3c/baJ9wpaATg+M4K/njeXCP13DEaXJGjaAyXroHg9gz0tFJGJiWwaiPMsU6lUZGVlYTAYyMjIQC1mHAiTqL+7y5Pg+GYAubmj7YBr/YNDRqo4UuQh5IERUVPu76owuWxOF19VdbG5qJUPitvo7B9pd+ajUXJcRgSn5kVzUk4kwX4zsAWhIAiCcMiKv2jm4/+WAjD/5ESOOjtNnE8cBrfbzX/+8x9qa2uJiYnhZz/72ay9lnjv8Uco+fwTMpccw+qf3z3p77/12SfJ37KRnOOWcdpNd/zg+mWPfEJN5wCvXHMkR6aGTUKEs8vB5g1m59+WGUCSJPnmO+BnnL2Z3PGijQ0g7OIcHB2DWD5pZHBvG26zHZvZjq1q9FBFhUaJOtwX9XCyw5P0CPdFqVPJ/eq7rfKQ7uZ+HMPJC5d5dE9sSZIwDbqwSRDoq2LR8ni0sX58/uZjWF39hMUnsur3v0YjhkQJguAFSj8NPlmh+GSFAiC5JRytA542VbZ6M64uK862QZxtgwzsaB1+ntqT3NAmDldxaL3XAm9XbTe3vrKPpt4hNCoFd67I5mfHpnx/z3iFAnukgfJeHaaObCr7KnB7+s9LpNCAkRJyXNX4DCwE8xoYDILA2En5nQQBICA0jIDQMFKPWOR5bKjfQsd+VRzttdV0Nzcy0NtDzb7d1Ozb7Vmr8/eXKzmS5QRHZEoaIbFxP1hqL8wcOrWKE7IiOSErkj+cKbGnvofNha1sKmqlsWeID4rb+KC4DZVSwZGpoazIi+aU3Giig8S5qSAIwmyVe0wsbpfEpy+VsfeDepQqBUvOSBVJjUOkVCo5++yzefLJJ2lpaeHDDz9kxYoV3g5r0vW2tVL65TYAFp95nldiyFh8FPlbNtJUWnxQ6yP0Omo6B+iw2H54sTBhRIXGNGVvGaD978Ptpu45EqXo2zau3FYnjvZBnB1DODuGcHQM/3vXELi++6+MKlCL2+5CsroOeFwd5oMmNgBNbAD1Zjufvl+HUqngnF8tIDIpkM9eeoEd695A4+PLJX96lLC4hIn6FQVBEH40V78de50FW71ZruJo7Afnt6aNK5Fb5CXq5UqOpEBUwboJv+hxuSWe+LiSx7aW45YgOcyPf1w0H2N88Hc/x+WipqaGgoICSkpKsNtHEtHR0dHycO9YfwLrP5DbUrXsG/0C8YvkgeI5ayA0ZWJ+MUE4RA6rlY76GjnBUSMnOzob6nC7xs7NUet0RCQme1pWRaWkEZaQhFqj8ULkgrdIkkRxi5nNRfLcjdJWy6jj8xKCPUPFRasFQRCE2cn0cSOfvVoOwKLTk1m8OtXLEU1PpaWlvPLKKwBccsklZGRkeDmiybX1mSfI/+B9kucewTm/fsArMVgH+nniygsBuP7p/+EXGPS96296aQ/vmlq4Z1UuPztWXPONN1GhMcMNmeTBpT5ZoSKZMQGUPmp0iYHoEkf/5ZFcEq4e60iCY79kh3vAMVKFoVKgifJDExuANjYATaw89+Kb/1YDvTa+fmA7AAtOSyYyKZDKXdvZse4NAFZcd4tIZgiCMOWpArT45oXhmyeX2kpON46WAWzDg8bttWZcZjuOpn4cTf0MfNUCyC39dIl6z7BxbWwAinEcRNvSN8Ttr+7j62p5PtJZ8+P4/ZlzDji0TZIkmpubPcO9BwZGhi8HBwdjMBgwGo1ERESMPCl5Lhz/C+ipkxMbJeuhYTs07pR/PrgXog1yYiNnDURmj9vvJgiHSuPjQ2xmDrGZOZ7HXE4HXY0NtO03eLyjthqHzUpLRRktFWWetUqVirD4RHkmR7I8lyMyKQWtr583fh1hEigUCvJig8iLDeLnJ2dS2znA5iK5cmNvfS/7GuSfP28qJTMqYDi5EU1ebKDYoSsIgjBLGJfFI7klPn+9gp0ba1GqFCw8TdzcPVTZ2dksWrSInTt38s4773D99dcTEDA7Ngv093RT+MlWwHvVGQA+/gGExMTR09JEW3UlKfMWfO/6b9oWt1uskxGe8B3EnfBpSLSb8h6FSiG3mwr3hZzRx9yDDhydQyjUSjSRft95c06SJD76bym2QScRiXoWrEyit62VTU88CsD8lavJOuq4if5VBEEQxp1CrZSHhifoYXjWhLPX5klu2OrNOJoHcJvtDBV2MVTYJT9RrUAbp0ebpEeXKM/jUAUeXr/2LUWt3Pmmid5BB/5aFb8/cw5nHzF2sFx3dzcmk4mCggK6uro8j/v6+pKXl4fRaCQhIeH7b86FJMHRN8k/5hYofVdObtR+Aa0F8s/Hf4TwzOHkxmqImQvihp/gZSq1Rp6pkZwKy+TH3G4Xva0tw5UcVZ75HNZ+Cx11NXTU1VCEfNGJQkFIdOxwkiPV888f2tEmTE/J4f5cuzSNa5em0Wa2sqVYrtz4qqqL8rZ+ytsqefyjSuKCfT2VGwuTQ1Edxsw5QRAEYfqYe1ICLpebr96qYvv6GpQqJUesSPJ2WNPOKaecQl1dHe3t7bzzzjtcfPHFKJXjt9lrqtq98R1cDgcxmdnE58zxaizRaRn0tDTRWlX+gwmNSL3cerPDLFpOeZNoOTUN2Zv7af/HXlArh9tNiV7H00nRZ0188r8yVGol5/16IYHhGl65507aa6uIyczmgvseRKUWrR0EQZiZ3HYXjqZ+uYpjuJLDPTC29Y0q1GekTVViIJpofxSq7745ZnW4ePC9Ev79VR0Ac+ICefyiI0gJ9/es6e/vp6ioCJPJRFNTk+dxtVpNdnY2BoOB9PR0VKof+b060AVl78nJjaqPwe0YORacNNKWKn4RzIKLFWH6kiQJS1cH7TXVwzM55GRHf3fXAdfrwyI8yY2oVLmiIyA0TOzan6H6Bh18WNrG5qJWPi3vwOoYaTkY5q/l5NwoVuRFc3R6GDq1uF4RBEGYqXZvquXrd6oBOPqcdOafnOjliKaf9vZ2nnrqKZxOJytWrOCoo47ydkgTytrfz1M3/hSHdYgz77yXtAWLvRrPnvfW8fG/nyZ1wWLOuvPe71375u5G7ng9n2PTw3nxqiWTFOHsIVpOzWBDJrk6wzc7RCQzphlz5xBfvFEJwJI1qYTFBrB57d9pr63CVx/Iqlt/JZIZgiDMaEqtCl1KELoUeSe3JEm4uqwjbarqzDjaBnF1WxnqtjK0T26xqNAq0caPtKnSJepR+smfl5XtFm56aa+nz/vVx6XwyxXZaNVK7HY7paWlmEwmqqqq+GYfh0KhIDU1FaPRSHZ2Njqdbvx+Sf8wOOJS+cfaB+Wb5eRGxVborYOv/k/+0cdA9io5wZF0DKjEaZkwtSgUCgLDIwkMjyR90ZGexwf7euXB48NVHO21VfS2tmDp6sDS1UHVrq89a331gXKSY3gmR2RyKsFRMShEMm/aC/LTcPYR8Zx9RDxDdheflnewpaiVrSVtdA3YeWVnA6/sbCBAp2ZZdiQr8qI4ISvygO3/BEEQhOlrwanJuF0SOzbU8OWblSiVCuaeJFpoH4rIyEhWrFjBxo0b+eCDD0hKSiI2NtbbYU2YfZvfxWEdIjwxmdQjFnk7HKLSMgFoq6pAkqTv3YwTGShfN4qh4N4lzianGUmSGCyQb+74GiJ+YLUwlUhuiQ//XYLD5iImPYi5yxMwfbiZwo8/QKFQcvqtdxIYLv6bCoIwuygUI638/BdEAeC2OrE3WLDXmYcTHRYkmwtbdR+26j7Pc1XhPrznDw83dmB1SYT5a/nr+XM5Lj2M6uoqTCYTpaWlOBwjFRKxsbEYjUby8vLQ6/UT/wv6BIHxfPnHPgCVW+W5G2WbwNICO5+Wf/zCIOs0yD0DUpaC+vBabgnCZPALCiZ53gKS9yvJtw0O0FFbM6qSo6upgSGLmTrTXupMez1rtb6+RCSlEpmSSlRKOpHJqYTGJaBSi0uT6cpXq+LUOdGcOicah8vN9upuNhW1sKWojXaLjQ35zWzIb0arVnJcejgr8qJZnhtFqL/4rBMEQZgJFp2egtslseu9Wj5/vQKlSoHhhLFtX4XvtnDhQqqqqigtLeXNN9/kmmuuGd9NV1OEw2pl9/vrAVh8xrlTopI3MjkFhVLJQG8P/d1d6MO+u72/mKExNYirhmnG0TyAq8uKQqPEJzvU2+EIh8D0cSPNFb2odSpOujyHjtoqPnp+LQDHXPATkgzzvBugIAjCFKH0UeOTEYJPRgggJ4Sd7YP7tamy0NM5yF86u/m4U25XtQgV1zkddL27mUesTQw5Rk4wQ0JCMBqNGAwGwsO9OHtK6y8nLHLPAKcNqj+RKzdKN8JgF+z9r/yjC4KsU+XKjfTloPH1XsyCcJB0fv7E584hPnekB7LDbqOrvm5UkqOjvhb70BBNpUU0lRZ51qo0GsITkoeTHHK7qvCkZDTamXchP9NpVEqOzQjn2IxwHlgzh70NvWwpamVzUSu1XYN8WNrOh6XtKN+CxSmhrMiL5pS8aOKCxWedIAjCdLZ4tZzU2LO5jm2vlKNUKcg7Ls7bYU0bCoWCNWvW0NTURFdXF5s2beKMM87wdljjruCjzVgtZoKioqfM/FiNzofw+EQ66mtprSr/3oTGNzM0egYd2J1utN8xP1eYWGKGxjTT934Nlk8b8TWEE3ZJzg8/QZgSeloHePWPO3E53Cy9OIu0+XpevPs2zB3tpC1cwhl3/Ea0XhAEQThIu+u6ueWlvTT1WVEpYLWvlQRnJRblkGeNj6Qh1RVFdkgK8amJ6JKD0CXqUYX6TIldQKO4nFD3ORSvlweL97eNHNP4QcbJ8syNzBWgm4SqEkGYQC6nk+7mRrlV1TfDx2ursQ8NjlmrUCoJjY0f1a4qIjkVH/8AL0Qu/FiSJFHe1s+mQjm5UdxiHnXcGB/kGSqeHik+6wRBEKYjSZL48s1K9m1tAODEy7LJOXrmtk6aCDU1Nfz73/8G4Nxzz2XOHO8OzB5PLqeDZ265mv6uTpZfdSNzT17p7ZA8Nq/9B4Ufb2Hxmedx3EWXf+c6SZLI/O37OFwSX9x1otiQMc7EDI0ZSG43NTw/w+DFHabCIXG73Gx9oQSXw01Cbig5x0Txzl9+j7mjneCoGE694XaRzBAEQTgILrfEk59U8rcPynFJEKx2coyynGD3ABYlaNQaMiKSSFfFEdXhi9TngA4Y7GhlcHsrAMoADdrEQHnYeJIebZwehcbLn8EqNaSeIP+c9gg07pCTGyXroa8BitfJPyodpC2TkxtZK8FPVGoK049KrSYiMZmIxGTylp4EgOR209veSntNNe01lbTXykPIh8x9dDXW09VYT8lnH3teIygqmqjkNM9sjsjkVPyDQ7z1KwkHSaFQkBWtJytaz63LM2joHmTzcOXGrroeTI19mBr7eHhzGakR/pyaJ7ewMsQFTb1EtCAIgnBACoWCo89Jx+2WMH3UyCcvlhES7U90apC3Q5s2UlJSOO644/jss8/YsGEDcXFxhITMjPOc4s8+pr+rE//gEM954FQRnZZB4cdbaKuu/N51CoWCiAAdzX1WOiw2kdDwElGhMY3YGy20/98+FBolMfcciVIrBoJPB7veq2X7+mq0vmouuncxpq1v8tUbL6PW6rjo9w8TmZzq7RAFQRCmvLr2Xm58cSeF7XYAUpVdHKmpRaeUSE9Px2AwkJ2djVY70o/d1WfDVm/GXifP47A394PrW6c9KgXa2IDhYeN6dEmBqAKnSIsbSYLmvfLMjZL10LXfybVSDcnHyW2pclZDQKT34hSECSBJEv09XcNJjuGWVbXVmDvaD7jePyTUU8UROdyyKjAiUtwInyY6LDa2lrSxuaiVLyo7cez3WR0X7MuKvGhWGqJZkBiCUin+mwqCIEx1kiSx5ZkiKne3ExCi4/zfLMI3QMxNOlgul4vnn3+exsZG4uPj+elPf4pKNb3vAbrdLl74+Q30tDRx/E+uZNHqs70d0iht1ZW8ePdt+PgHcMOzL3/vOeQZT3xBfkMvT126gFPyoicxypnvYPMGIqExjfS+X0P/p434GsMJu1i0m5oOOhosvPHQLtwuieVX5KDVNfHWn+8HSeLUG26fchlpQRCEqcTpdFJZWcmrnxXzUpUKG2rUuDhSU8fSRF/mzpWHe/v7+x/U60kON/YmC/Y6y3Ciw4y73zFmnSpYhzYpEF2iHm1SIJoYfxQqL1dxSBK0l8iJjZIN0Fa430EFJB4FuWvk5EaQGMAozFxDFrOnTdU3bau6W5rkvyPf4uMfQGRKKhHJaZ65HCGxsSiV0/uGwExntjr4uLSdzUWtfFLWwaDd5TkWodexIi+KU/NiODI1FLW3P5sFQRCE72S3Onn9wV30tg2SmBfKqhvnohBJ6YPW09PD2rVrsdlsHH/88Zx44oneDulHKf/6czb87SF8/AO4+onn0Pr6eTukUVxOJ49fcR4uh4Mr//4UIdHf3Srtqn/vYmtJG384cw4/OTJpEqOc+Sas5dS2bdt4+OGH2b17Ny0tLbz99tuceeaZPyZW4SBIksSQqQMAX0OEl6MRDobL4ebDF4pxuyRS5oYTlaLgf3c/ApLE3JNXimSGIAjCAbjdbhoaGjCZTJiKSvjcEk6JKwqASI2NO44K4eQjLyE09NDbLSk0SnmWRnIQeuTvVle3FXu9xTNw3NE6gKvXxlBvB0P5HZ7naeL1I22qEgNR+WvG89c+iOAVEJUr/5xwF3RVycmN4vXQvAfqv5R/Nt0FsUcMJzfWQFja5MYpCBPMVx9IkmEeSYZ5nsfs1iE66mo9g8fba6rpbKjDOtBPfaGJ+kKTZ61apyMiKYXI5JG5HGEJSag1k/x3WvhOgT4azpgXxxnz4rA6XHxa3sGmwla2lrTRYbHx4tf1vPh1PcF+Gk7OiWKlIZpj0sPRqUWiShAEYSrR+qhZcfUc3vjzLuqLutm9uY6FK5O9Hda0ERISwqpVq3jzzTf57LPPSE1NJTk52dthHRZJktj+9usAzDt19ZRLZoDcFjUyKZWWyjJaqyq+N6EROVzR326xTVZ4wrccckJjYGCAuXPn8tOf/pRzzjlnImISDsDR2I+rx4ZCq8Qna2b0zpvpdmysoatpAJ8ADceen8r6R36LdaCf6PRMTrj8Gm+HJwiCMKW0t7djMpkoKCigr6+PXrcPnzrS6JHkk90L50fwu7OPwEczfuO/FAoF6jBf1GG++M2XWza5bU7sDf1yi6p6M7Y6C5LVib2mD3tNn+e56nDfUW2q1BF+k7vjLCwNjr1d/ultkIeJF6+H+q/kBEfzHtj6O4jMG0luRObIiRFBmGG0Pr7EZeUQlzVSwexyOuhsqB+V5Givq8Zps9FSXkpLealnrVKlJiwhkcjkVE8lR0RyClof0RPZ23w0quFB4dHYnW6+rOpkU2ErW4rb6B6w8/ruRl7f3UiATs2J2ZGsnBPN0qwI/LRiVKQgCMJUEB4fwPEXZvLxf0vZsb6amNQg4sQ9rYNmMBioqqpi3759vPXWW1x33XX4+U29ZMAPqcvfQ3ttFWqdjiNWrvZ2ON8pKi2dlsoy2qrKyTlm6Xeui9TLCY0Oi3WyQhO+5ZDP9FauXMnKlVNnCv1sMVgg7xL1yQkTszOmgdbqPvZurgPghEuy+PqN52irrsRHH8jq2+8SuwAFQRCAvr4+CgsLMZlMtLW1AXLXmBpFNF8747FLCsL8tTxy3lyWZU/OjAilTo1PejA+6cFyPG4JZ+cQ9jqzXMVRb8bZPoSzU/4Z3C3HrfBRycPGh9tUaRP0KH0m6YZacAIceb38Y2mDso1ycqNmG7QXyT+fPAhh6cMzN9ZA7HyR3BBmNJVaQ1SKXIXBMvkxt9tFT0vz8EyOkZZV1oF+Omqr6aitpuiTrfJihYKQmLhRSY7IlFR89aJlrrdo1UpOyIrkhKxI/nCmmx213WwubGVTUSttZhvr85tZn9+Mj0bJCZmRrJ4by4nZkfiKaydBEASvyj0mlpbKXkq/amXzs0Vc8JtF+AdNkZl108DKlSupr6+nu7ub9evXc8EFF0y7GWHb35GrM4wnnTqlz6Wi0zKBjbRWVXzvuki9DyDPABO8Y8KvtG02GzbbyH9gs9k80W8548jtpjoB8DOEezka4Yc47C62vlCMJEHmkigGe/dR8NEWUCg4/ZZfEhguBrcKgjB7DQ0NUVJSgslkora21vO4UqkkPjWDjy3RfFY3CMCx6eE8ev5cIgN9vBQtKJQKNJF+aCL98F8kD3xzDzqw1Vs8VRz2BguS1YWtvAdbec/wE0ET5e9pUaVLCkQV5jPxFx/6KFh4pfwz2A1l78szN6o+koeKf/43+ScocWSgeMISUIo+9MLMp1SqCItLICwugZxjTwDk82xLZwdtNZWjEh39Pd30NDfS09xI2ZfbPK+hD48YaVeVIg8gDwgJm3Y3FqY7tUrJ0WnhHJ0Wzn2r89jb0MumwhbeL2ylsWeITUVyosNPq+Lk3ChWG2M5LlO0pRIEQfCW4y/Kor3OQnfzAB88W8Sa2+ajFPM0DopOp+Pcc8/lmWeeobS0lN27d7Nw4UJvh3XQmspKaCwpRKlSs3DVWd4O53tFp2UA0FZThdvlQvkdg9i/qdAQLae8Z8ITGg8++CD333//RL/NjGZvsODqtaHQqkS7qWngq7er6Gsfwj9IS/YSFW/+6UkAjjn/JyQb53s5OkEQhMnndDqpqKjAZDJRXl6OyzUy4DUxMRGj0YhdH8ed75TQ2DOIWqngjlOyuPb41Cl5oaP00+CbHYpvtjzHQ3JJOFoH5ORGnRlbvQVXtxVH6wCO1gEGtrfKz/PXyNUbicPzOOIDUGgm8OaaXyjMv0T+sVmgfLM8d6PiA+irh6+fkH8CoiB7ldyaKulYUIlWLcLsoVAoCIyIJDAikozFR3seH+jtGVXF0V5bTW9bC5bODiydHVTt+tqz1jcwaKSSY/gnODIahUgUTgqlUsGCpBAWJIXw69NyKGo2s7GghQ35zTT2DLFuXzPr9jUT6KNmRV40q+fGcnRamBgoLgiCMIk0WhWnXjOH1x7cRVN5LzvfrWHJmlRvhzVtxMbGsnz5crZs2cKmTZtITEwkMnJ6bJbd8c5rAOQefyL6sKm9STskNg6Njy8O6xBdTQ1EJCYfcF3ENwkNs0hoeItCkiTpsJ+sUPzgUPADVWgkJCT84LRyYUTvu9X0f96E79wIwi7K9nY4wvdoLO1m3WP7ADjlqjQ+eeEBzB1tpC5YzJm/+K24sBUEYdZwu93U1dVRUFBAcXExVutIf9GIiAiMRiMGgwF9YBBrP63i0Q/KcbklEkJ9+ceF85mfOL0T+C6zXZ7BUW/GXmfB3mgB17dOuZQKNHEBI22qkgJRT0b5vWMIKj+Ukxtlm8A2MhsE3xDIOl1ObqSeAGrRDkAQvmEbHBiT5OhqbECS3GPWan195TZVyameJEdYXMJ37vQTxp8kSexr6GVDfgvvmppH7aIM89ey0hDNamMsi5JDp2TyXBAEYSYq39nKB88WA7Dq5rkk5YV5OaLpw+1287///Y+qqioiIyO5+uqr0UzxduYddTX8586bQaHgp4+uJTQ2ztsh/aBX77+LxuJCVlx3K3OWnXzANS19Qxz14EeolQrK/7BSnEeMI7PZTFBQ0A/mDSY8oXG4gQkyyS3R+ueduPpshF2ag2/e1M5mzmZ2q5OXH9hOf7eN3GOj6Wl8jZq9uwiKiuYnf3oMn4AAb4coCIIwoSRJoq2tDZPJRGFh4ag2k3q9HoPBgNFoJCoqCoVCQZvZyu2v7uPLqi4A1syN5Q9nzSHQZ2qfmB8OyenG3tQ/UsVRZ8FtsY9ZpwrSjWpTpYn1RzGRu4iddnnWRsk6KN0Ig10jx7R6yFwhJzfSl4PWf+LiEIRpymG30VlfOzJ4vLaKjvpaXA7HmLUqjYaIxOTheRxyy6rwxGQ0WpE4nGgut8TO2m425DfzfmEr3QMjn79RgTpON8Syem4M8xKCRfswQRCECfbpS2UUbmvCx1/D+b9ZhD7Ue+1lpxuLxcLatWsZGBhg8eLFnHbaad4O6Xtt/MfDlH7xKZlHHcfq237l7XAOyqcvPseuDW8x9+TTWH7VDQdc43C5yfzt+0gS7PrtcsIDxLnceDnYvIHoKTDF2RssuPqG201lhno7HOF77Hqvlv5uG/owHzTqvdTs3YVao2XNz38tkhmCIMxovb29FBQUYDKZ6Ojo8Dyu0+nIzc3FaDSSlJSEcr8qtQ9L2vjF6/n0DDrw1ah44Iw8zl0QP2NvJCnUSnRJcpKC4+Tkj6vXtt+wcQuOln5cfTaGTDbP7CzUSrTxAXKLqsRAtEl6VAHa8QtMrYWM5fLP6X+D+i/lgeKl74KlBQrfkH/UvvKanDVyksMnaPxiEIRpTKPVEZOeRUx6lucxl9NJd3Ojp5KjraaKjrpq7ENDtFZVjBo0qVAqCYtLGK7kSJfnciSnovMTCcTxpFIqODI1jCNTw7h/TR5fVnWxIb/ZM1D8uS9qeO6LGuJDfFk9N5ZVxhhyYwJn7HeSIAiCNx1zXjpttWY66i1seaaQM+84ApVoA3hQ9Ho9Z555Jv/73//YsWMHaWlpZGVl/fATvaC3tYWyLz8DYPEZ53o5moP3zRyN7xsMrlEpCfXT0jVgp8NiEwkNLzjkCo3+/n4qKysBmD9/Po8++ijLli0jNDSUxMTEH3y+qNA4NL0bquj/ohm/eRGEXijaTU1V3S0DvPr7HbjdEgtWwBev/g0kiRXX38acE5Z7OzxBEIRxNzg4SHFxMSaTifr6es/jKpWKzMxMDAYDGRkZY8qgbU4XD75Xygtf1gKQGxPI4xfPJy1CJH7ddhf2BstwFYf8T/egc8w6dZjPcHJD/tFE+aEY7zJntxuadkHxOrk1Ve/If2NUWrkdVc4ayD5dntUhCML3ktxuettbRyU52murGTL3HXB9cFSMXMUx3LIqKiUNv6DgyQ16FrA5XWwr72RDfjNbS9oYtI/MeEqN8Ge1MZbVc2NJjxTfUYIgCOOpr2OI1/60E/uQk3nLEzjm3AxvhzStbNq0ia+//hpfX1+uv/76KXl/9YOn/g/Th5tInreAc+6ePrOVe9taefaWq1Cq1Nz879dRf0dbr1Mf20Zpq4V/X7mYpZkRkxzlzDVhLac++eQTli1bNubxyy+/nBdeeGHcAhO+aTe1A1efnbDLcvHNFb0FpyJJklj32D6aynqIzVTRXLQWa78F40mncvI1N3k7PEEQhHHjcDgoKyujoKCAiooK3O6RvvHJyckYjUZycnLw9fU94POrOvq5+aW9FLfIrah+ekwyd63MRqcWPeUPRJIknJ1D2IcrOGx1Zpxtg2PWKXQqtAnyHA5dUiDaBD1K33EswpUkaDXJlRsl66GzfL83V0HyMXJyI2c16KPH730FYYaTJIn+7i7aa+V2VXKSowpLZ8cB1weEhHrmcchDyNPRh0eIKoJxMmR38WFpG+/mt/BRWTt258h3XE5MIKvnxrDaGEtCqJ8XoxQEQZg5qvd18P7aAgBWXmcgdZ64KXywnE4nzzzzDK2traSkpHDppZeOqob3tp7WZv59xw24nE4u+N1DxOfM8XZIB02SJP559SVYLWYu+eOjRKdnHnDdpc9u57OKTh4+18h5CxMmOcqZa1JmaBwOkdA4eLY6Mx1P5qPQqYj97ZEoNFPnw0kYUbGrjS3PFKFUS/j5rqezvoqo1AwuvP/PqLXj2BZEEATBC9xuNzU1NZhMJkpKSrDb9+s7HhWF0Whkzpw5BAV9dwsiSZJ4fXcj960rYsjhItRfy8PnGjkpJ2oyfoUZxT3owN5gwVZv8SQ6pP12FAOgAHWk36g2Vepw3/G76dleKic2StZDa8HoN05YPJLcCEkan/cThFlmyGIeTnBUykPIa6vpaWmSk4vf4hOgHzV4PDI5lZCYWJRKkSj+MSxWBx8Ut/GuqYVt5R043SN/9vMSglk9N5bTDTFEB4m+74IgCD/G529UkL+1Aa2vmvN/vYigiANvjBLG6uzs5F//+hcOh4Ply5dz7LHHejskQL72e+vB+6jN30OScT7n/ub33g7pkL35p3upzd/DSVdez7wVpx9wzR2v5fPmnkZ+uSKLG5elT3KEM5dIaMwAnnZT8yMJvWBq9sSb7exWJy/d9zUDfXYi4gpoKPwAnwA9lz70dwIjIr0dniAIwmGRJImWlhbPcO/+/n7PsaCgIM9w78jIH/6cM1sd/ObtQjbkNwNwdFoYf7tgHlGB4ibQeJDcEo62QTm5UWfGVm/G1WUds07pp/YkN7SJw1Uc2nG44dldDSUb5OqNpl2jj8XMlZMbuWdAuGgjIAg/ht06REdtjaeKo72miq7Getwu15i1Gp0PEUkp8jyOlDQik9MIT0hEpT5wywTh+/UM2Nlc1MoGUzNfVXXxTW5DoYBFyaGsnhvLaXOiCRP9swVBEA6Zy+Xmnb/uobXaTESinrN/eQRqjUjKH6w9e/awfv16lEolV155JfHx8d4OibKvPufdxx5CpVZz+SNPEBIT5+2QDtkXr/6Xr996lbylyzn1htsOuObPm0p58pMqrjg6md+tyZvcAGcwkdCY5iS3RMtDO3Cb7YRdnotvjmg3NRV98WYl+z6ox8e/g96mF0GSWPPzX5Ox5GhvhyYIgnDIuru7PcO9u7q6PI/7+vp6hnsnJCQcdDnz3voebnllLw3dQ6iUCn5+cibXLU1DNd7zHoRRXP127HUWbPVyksPe2A/7tU4BQAmamAC0iXq5kiMpEFWw7sdVcfQ1ycPEi9fLw8Wl/d4zIkeu2shdA1Fz5DuBgiD8KE6Hg66GOs88jvaaSjrqanHabWPWKlVqwhOSRiU5IpNS0PiI5PKh6LDYeL+whQ35zeys7fE8rlIqODotjNXGWFbkRRPkJ5JHgiAIB8vSbeW1P+7EOuBgzvFxLL1YbOg9WJIk8frrr1NcXExISAjXXnstPl78brcNDvLCz6+jv6ebI8+5iGPOv8RrsfwYlbu2s+7h3xOekMTljzxxwDXPf1HD/RuKOd0QwxOXHDHJEc5cIqExzdlq++hYa0LhM9xuSi3aTU01Xc39vPaHnbhcVlTSqwz2dX5v9lYQBGEqGhgYoKioCJPJRGNjo+dxtVpNVlYWBoOB9PR01OqDn8ngdkus3VbFo1vKcbol4kN8+cdF8zkiMWQifgXhB0hON46WAWx1ZnngeK0Zl9k+Zp0yUIsuUe8ZNq6NDTj884/+DijbKCc3aj4F937DzUNS5MRGzhqIWyCSG4IwjtxuFz3NTaMGj7fXVmEbGBi7WKEgNCbO064qajjR4RMgBmAfjObeITaaWthgasbUODLcXaNSsDQzgtVzY1meE4W/bhxnGgmCIMxQdUVdvPt4PgAn/yyXzEViLtvBGhoaYu3atfT19WE0Gjn77LO9Fssn/3ma3RvXERwVw+WPPDFt27D3d3fxr+svR6FQcvMLrx1wA8i7pmZuemkvi5JDeP06sal5vIiExjTXu76K/i+b8TsiktDzRXZ6qpEkiXV/20tTeS863af0te4mMCKKy/7yODo/MShQEISpzW63U1ZWhslkoqqqyjPcW6FQkJKSgtFoJDs7+7B297Sbrdz+2j6+qJQrPE43xvCnswwE+YrdqlOJs9cmJzfqzNjqzDiaB8D9rVNCtQJtnB5tkh5d4nAVh/4wLkqGeqB8s5zcqNwKrv12jwfGyZUbOWsg8UgQff8FYdxJkoS5o21k8PjwbI6B3p4Drg+MiBoeOp7mSXYEhIROctTTS23nABsL5MqN0laL53EfjZKTsqNYZYxhWXYkPqKNiiAIwnf6el0Vu9+vQ61Tcf7dCwmJ9vd2SNNGfX09zz//PJIkcdZZZzF37txJj6G9tpoX774Nye3m7LvvJ2XegkmPYTz967rL6O/p/s6h5jtqujn/X1+RFObHp79c5oUIZyaR0JjGJLdEy4M7cFvshF2Rh2+2uICYasp3tvLBs8VI7ipsfetAoeCC+x484IecIAjCVOByuaiurqagoICSkhIcDofnWExMjGe4t16vP+z3+Li0nTtez6d7wI6vRsXv1uRy/sKE8RtGLUwYt92Fo6lfruIYruRwDzjHrFOF+oyq4tBE+aNQHcJ/X1s/VGyRB4qXbwHHfrvG/SMge5Wc4Eg5HlQiCSYIE2mgt2e/Sg65mqOvrfWAa/2Cgver4kglMiWdoMgo8fl+AOVtFt7Nb2aDqYWazpHPOH+tilPyolk9N4Zj0yPQigp8QRCEUdwuN+v/vo+m8l5CY/05766FqMdj5tss8cknn/DJJ5+g1Wq57rrrCA2dvHuJktvNy/fdSUt5KZlLjmH1z++etPeeKO88/Aeqdn3N0kt/xsJVZ405Xts5wAmPfIKvRkXxAyvEOdE4EQmNacxW3UfHUyYUPmpif7tEtJuaYuxDTv73u68Z6OnBbf0fDls/i844l+MvvsLboQmCIIwiSRJNTU0UFBRQWFjIwH4tR0JCQjAYDBgMBiIiIn7U+9icLv6yqYxnP68BICcmkMcvmkd65OEnRwTvkiQJV5d1pE1VnRlH2yB866xRoVWiTRhJcOgS9CgPtne8YwiqPpaTG2XvgXWkZQs+wZB1mpzcSDsRNKLPvyBMButAPx211fvN5aiiu6kRSXKPWavz8yciOcXTqioyJY3Q2HiUKnHzCeTP0aJmMxtMzbyb30JT75DnWJCvhlPzolk9N5YjU0NRq8T1niAIAsBAn41X/7iTIbOduSclcOx5Gd4Oadpwu9288MIL1NfXExcXx5VXXolqkr6TTR9u5oOnHkfj48tP//Yk+tDwSXnfifT1W6/yxav/Jevo41l1651jjg/ZXfzxvWIi9T7cuCxdzIkcJyKhMY31rKtk4KsW/BZEEXpeprfDEb7l8zcq2PdBPZJjA/aBSiKSUrj4j4+i1oidpIIgTA1dXV2YTCYKCgro7u72PO7n50deXh5Go5H4+Phx2UVS3dHPzS/vpajZDMAVRydz18ps0VZjBnJbndgbLJ42VfZ6C5LNNWadOtIXbWKgZ9i4OtwXxQ+d4DvtUPuZnNwo3QgDHSPHtAGQcYo8dyP9ZNCJ/v6CMJkcNiud9XUjlRw11XTW1+Byjq3iUmu0RCSlyMPHh5Mc4QlJ07aH9niRJIk99b1syG9mY0ELHZaR1nvhAVpOM8Swem4sCxJDUIobIoIgzHK1BZ1sfMIECjjz9vnEZYo5fAert7eXtWvXYrVaOfbYY1m+fPmEv+eguY/nb78Oa7+FEy67igWnnznh7zkZavP38Oaf7iU4Koaf/eNpb4cza4iExjQluSVa/rQdd7+DsJ/m4Zsl2k1NJV1N/bz6x504hvJxDm5FpVbzkwcfIzwx2duhCYIwy/X391NYWIjJZKK5udnzuEajITs7G4PBQFpa2rjt0pEkiTf3NHHvukIG7S5C/DQ8fO5cludGjcvrC1Of5JZwtg/u16bKgrNzaMw6ha9ablM1PIdDm6BHqfue/w/dLqj/Wk5ulGwAc9PIMbUPpJ0kJzcyTwXf4PH/xQRB+EEup5PupoZRSY722moc1rGfAUqVirC4BHkeR3IqkSlpRCSlztq5cy63xI6abjaYmnm/oIWewf1aQAb5cPpwcsMYHyTaVwiCMGt9/N8Sir9oQR/mw4X3LEbro/Z2SNNGcXExr732GgCXXXYZqampE/p+m558jKJPthKRmMxPHvr7jKnUHOq38M+fXQTADc++jG+A6D4wGURCY5qyVffS8VQBCl81sb8R7aamEkmSeOfRvTSW1uDofxHJ7fjOXnqCIAiTwWazUVpaislkorq6mm++0hUKBWlpaRiNRrKystDpdOP6vharg9++U8i6fXLi5MjUUB67YD7RQaIt0Gzn6rdjr7dgrzdjq7PgaLQgOb7VqkYBmmh/uUVVUiDaRD2qUJ8D37hzu6F5j5zcKF4PPTUjx5QaSF0qt6XKXgX+07+0XRCmM8ntpretZVS7qvaaKoYs5gOuD4mJJSI5bdQAcr/AoEmO2rscLjdfVHayIb+FLUWtWGwjVS+JoX6snhvDKmMs2dF6kdwQBGFWsVudvPL7HVi6rOQeG8uyn2R7O6RpZcOGDezevZuAgACuv/56/P0nZsB6Y2kRr973KwAufOBh4rJyJuR9vOXZW66mt62Fc37ze5KN870dzqwgEhrTVM87lQx83YLfwihCzxXtpqaSsu2tfPBcIY7+V3E7W0jIM3Leb/+AQimSToIgTB6Xy0VlZSUFBQWUlpbi3K/lR1xcHEajkby8PAICJqYtz76GXm55eS/13YOolApuX57B9SeInqHCgUkuN46WAU+LKnudGVevbcw6ZYBmVIJDG6dHofnW96skQVuhXLVRvB46SkaOKZSQdIyc3MhZDYGxE/ybCYJwMCRJwtLVOZLgGK7msHR1HHB9QFj4SIJjuGWVPix8VtzMtzpcfFrewbumFrYWtzHkGGnplx4ZwGpjLKvmxpAWIdruCYIwOzSV9fDO3/YCcPqNRpINYvPKwbLb7Tz11FN0dnaSmZnJRRddNO7fpS6nkxfvupXOhjoMJ57CKdfeMq6vPxW8+/e/UPblNo698DKWnHW+t8OZFURCYxrav91U+JVz8BF9AqcM25CTl+77GnPbNpzWL9H5+XPZw48TGB7p7dAEQZgFJEmioaHBM9x7aGikpUdoaChGoxGDwUBYWNiExeB2Szz1WTWPbC7D6ZaIC/blHxfNY0GSaI0oHBpXnw1bvRl7nZzgsDf3g+tbp6MqBdq4gOE2VXp0SYGoAr9VadRZAcXr5ARHy77Rx+IXQc4aObkRmjKhv48gCIdu0Nw3qoqjvbaanpamA671DQwiKjWdqJR0olLTiEpJRx8eMaOTHIN2Jx+WtLMhv5lPyjqwu0Yq3XJjAlk9N5ZVxhgSQmdn2y5BEGaPz1+rIP+jBvyCtFx07xJ8/MXs0oPV2trK008/jcvlYuXKlSxZsmRcX3/nhrfY9uJz+OgDufJva/HVz7x7vLs2vMWnLz5H+qIjOeMXv/V2OLOCSGhMQ9aqXjqfLkDppybmN0tQqMTO/6nis9fK2bdlF3bLK4Cb0266g5zjlnk7LEEQZriOjg7PcO/e3l7P4/7+/syZMwej0UhsbOyE39Rpt1i547V8PqvoBOB0Qwx/OttAkK+4oBB+PMnhwt7Uj73OMlzJYcbd7xizThWsk6s4EvVokwLRxPiPnCv11MmJjZL10LB99BOjDZBzhjx3IyJrEn4jQRAOh31okPa6GnkeR00V7TWVdDU14Ha5xqz11QcSmZImJzqGkx2BEZEzMslhtjrYUtTGu6ZmPqvoxOUeuXyfnxjMamMspxtjiAoUbR8FQZh5nHYXr/1pJz2tg2QsjOSUq+Z4O6Rp5euvv2bTpk2oVCquvvpqoqOjx+V1zZ0dvPDz63HYrJxy3S0Ylp0yLq871TQWF/Lq/XcREBrGtU/+29vhzAoioTEN9bxdwcD2VvwXRRNyToa3wxGGdTZaePUPX2LrexHJ3UPmUcex6tY7Z+QFkyAI3mc2mz3DvVtbWz2Pa7VasrOzMRqNpKSkjNtw7x/ySVk7d7yWT9eAHR+Nkt+tzuOCRQniM1CYMJIk4eq2YhtuUWWvM+NoHYBvnbEqNEo08XL1hjZJHjqu8teAuQVK35WrN+q+AGm/GR7hmXLlRu4aiDaC+P9YEKY0p91OR30NbdVVtFVX0lZTSVdD3QGTHD4B+uHkRhpRaRnEZGShD51Z7Um6B+xsKmxlfX4T22u6+eZKXqGAJSmhrDLGsnJONGEB4zs7SxAEwZvaas28+ZfdSG6JU67KI2NhlLdDmjYkSeKll16ioqKCiIgIrr76arRa7Y9+3fV//RMVO74kNiuXC3/30IxtxW63DvF/V1yAJLm5du1/CAgR3QkmmkhoTDOSa7jd1ICD8J/NwSdDtJuaCiRJ4u1H9lBf8DYu2z78Q0K5/JEn8A3Qezs0QRBmEKvVSklJCSaTiZqakaHHSqWS9PR0DAYDWVlZ43LyebDsTjcPby7l6c/keLKj9fzfxfNJjxSff8Lkc9uc2Bss+1VxWJCszjHr1OG+aIfncOiSAlEHDKEof0+euVH9Cbj3q/wITpJbUuWeAXELYYZeiAnCTOO02+msr6WtpnI4yVFFZ30dbtfYz4SAsHBi07OIycgiJiObyNQ0NNqZcbO/3WxlY0EL75pa2F3X43lcpVRwTHo4q40xnJIXLaopBUGYEbavr2bXe7Xo/NVcdO8S/INmxmf5ZBgYGODJJ5+kv7+fJUuWsHLlyh/1etV7d/L2Q/ejUCq59M//ICIxeXwCnaJeuOMGuhrrOeOX95C+cHzbdgljiYTGNGOt7KHzmcLhdlNHolCJHYNTQenXLWx5+n0c/W8BcM7d95M8b4GXoxIEYSZwOp1UVFRQUFBAWVkZrv12myYkJGA0GsnNzcXf33/SY6vpHOCWl/dS0NQHwOVHJXH3aTn4aCanKkQQfojklnB2DI5qU+XsGBqzTuGjQps43KYqWonW9jXKineg8kNw7rdeHws5q+QER+LRoFJP3i8jCMKP5nQ46GqokxMc1ZW0VJXTWVeLtH+FFqBUqYhISiUmI4vY4SRHUFT0tK86bOwZZKOphQ2mZgqbzJ7HtSolS7MiWD03luU5kfhpxWebIAjTk8vp5o0/76KzoZ9kQxin3WCc9p/dk6myspIXX3wRgKuuuor4+PjDeh2Hzcq/f3Ejfe1tLFh1Fidc+rPxDHNK2vTPxyj6dCtHnn0Bx1xw6bi8ZslnH6Px9SNpzlw0PqJl5P5EQmOa6XmrgoEdrfgvjibkbNFuaiqwDTr4728/pq/5WZAGmLdiFSddeZ23wxIEYRpzu93U19djMpkoLi7GarV6joWHh3uGe4eEeK9K783djdyzrpBBu4tgPw0PnzuXk3NFWbcw9bkGHMNVHHKbKnuDBckx+mYmCtBE+aNN8EWrqUFn3oKq7g0UDsvIGr8wyD5dnruRcjyoJ68yShCE8WO3DsnJjYoyWipKaS4vZbCvd8w6X32gp4IjJiOL6LRMdH7Td9h2TecA7+Y3sz6/mYr2fs/jPholJ+VEsdoYywlZEWKTgiAI005XUz+vPbgTt1Ni2aXZ5B4T6+2QppW3336b/Px8IiMjueaaa1CrDz3J/cWr/+Xrt14lICycnz76JFof3wmIdGrZt3kjHz73JMnzFnDO3ff/6NeTJImnbriC/u4usWn6AA42byC2aEwBkktiqFAetOprmFl9Xqezr9dXY2nfBNIAIbHxHH/JFd4OSRCEaaqtrc0z3NtsHtk5qdfrPcO9o6O9u0O03+bknncKeXtvEwBHpoby2AXziQ4SO0aE6UHlr8E3OxTfbLm3reSScLQOYK83y1UcdWZcPTYcrQM4WgcYQA+cg9L/ArSRVrRSIbqeDWgH9qLY8x/Y8x/QBUHWqfLcjfSTQDPzL9oEYabQ+viSkGsgIdcAyDcQLJ0dNFeUepIc7TVVDFnMVO/ZSfWenfITFQrC4xOJHm5VFZuRRWh8Akrl9EgApIT7c/NJGdx8UgZlrRY25DezwdRMXZdcxbHR1IJep+bkvChWz43l2PRwNCrRck8QhKkvLC6AJatT+ertKj5/vYL4rBACw8W52cFasWIFFRUVtLe388UXX7B06dJDen53cyM71r0JwImXXzMrkhkA0WnypvPWqgokSfrR1+wddTX0d3eh1umIHz5HEQ6dSGhMAe5+O+pIP5ydQ+hSg70djgB0NFjI37IVt6MchVLFaTfdgUYnbuoJgnDwent7PcO929vbPY/rdDpyc3MxGAwkJyejnAJ9+02Nvdz88l7qugZRKRXcdlIGNyxLR6UUZdzC9KVQKdDGBaCNCyDgKHkHn8tsH0lw1FuwN1pwDzixDqixMg+YBwoJjX8POudutIO70eZvRW16FTR+kHGynNzIXAE6MU9GEKYThUJBYEQkgRGRZB99PCC3quqoraalopSWynKay0sxd7TR2VBHZ0MdhR9vAUDr60t0WqaniiMmIwu/wCBv/joHJStaT1Z0Fneckklhk5kNpmbezW+muc/KW3uaeGtPE8F+GlbOiWa1MZYlqWHiu18QhClt3smJ1Jo6aanq46P/lHDGbfNRiM+tg+Ln58fKlSt588032bZtG7m5uURERBzUcyVJ4sNn/4nb5SRl3gLSFx81wdFOHeFJKShVaqwWM+aONoIio3/U632zgSLJMA/1JM7InGlEy6kpxG1zodRNj50/M5nklnjtTx/RWPhPkGwcc/5POPKcC70dliAI08DQ0BBFRUUUFBRQV1fneVylUpGRkYHBYCAzMxONZmoM6HS7JZ75vJq/bCrD6ZaIC/bl7xfOY2FyqLdDE4RJITnd2Jv65RZVw4kOt8UxZp1K2Y2WQrTKUnTKEjTqJhTpSyF3DWSeCn7i74wgzBQDvT20VJbLSY6KMlory3HYrGPWBUfFeJIbMRnZRCSloDqM9h2Tze2W2FPfw7smeaB4Z7/NcyxCr+N0Qwyr58YwPyEEpbhJKAjCFNTbPsirf9iB0+7m2PMzmHtigrdDmjYkSeKll16ioqKCxMRErrjiioPaYFfyxae894+HUWu0XP7XfxIc9eNu6k83L959G23Vlay67VdkHXXcj3qtl+75BS3lpZx89U0Yl586ThHOHGKGhiAcptKvm3n/8d/jdjYQmZLJJX98GKVKJJoEQTgwh8NBeXk5BQUFlJeX43aP9OxPSkryDPf29Z1aJbkdFht3vJ7PtvIOAE4zRPPgWUaC/KZGskUQvEGSJFw9tlFVHI6WfnB/e6UNraICnbIEraocbXIIKuPJkL0KAiK9EbogCBPE7XLR1VhPS0WZp11Vd1PDmHVqjZbI1PRRA8f1YVO7nbDLLbG9uosNpmbeL2yld3AkoRsX7MvpxhhWG2OZExcohu8KgjClFH7ayKcvl6PSKLngN4sIifb3dkjTRm9vL0888QQOh4PTTz+dRYsWfe962+AAz99+HQO9PbN2w+/WZ54g/4P3Wbj6bJb+5MrDfp1Bcx9PXvMTkCSu+ecLU/48wRtEQkMQDoPT4eKZ255goHMLSrWWK/76f4REi0FTgiCM5na7qa2txWQyUVJSgs02srsxKioKg8GAwWAgKGhqtqP4tLyDO17bR2e/HR+NkvtW53HhogRxs0IQDsBtc2FvHB42Xm/BVmdGGnKOWadWNKNVlKANt6PNS0ez+GQUIWLHoCDMRNb+flqryj2zOFoqyrAO9I9ZFxAaNmrgeFRqOhqtzgsR/zC7080XlZ1syG9mS3Eb/baRz7nkMD9Wz41l9dxYMqNEuz1BELxPkiQ2PJ5PQ3E3kcmBnPPLI1CKeUAHbfv27bz//vtotVpuuumm770/++Fza9m3+V1CYuK47OH/Qz1Fug1MpoKPt7Bl7T+Iz53DBfc9dNivU/zZx7z/f38lIimFy/7y+DhGOHOIoeCCcBh2vlvIQOcnABx/8RUimSEIgockSbS2tmIymSgsLMRisXiOBQYGYjAYMBqNREVFeTHK72d3unlkSxlPbasGIDtaz+MXzSdD3JwQhO+k1KnwSQvGJy0YkFtTOjuHRhIc1Z04u5w4pVicUiyD7UA7KD4uRuu7FW28H7q5c9DmZaH0FafegjAT+AQEkDz3CJLnHgHI5wg9Lc2e5EZLRRkd9fLQz4rtX1Kx/UsAlCoVEUkpo5IcwVExU2JDgVatZFl2JMuyI7E6XHxS1sEGUzMflrRR2zXI4x9V8vhHlWRF6Vk9N4ZVxliSw8WOaEEQvEOhUHDipdm8/MAO2mvN7Nlcz8LTkr0d1rSxaNEiCgoKaGxsZOPGjVx44YUH/C6q2r2D/C3vAXDSz66flckMgOi0TADaqqtwu10olYfXxeWb+Rkp8xeOW2yzlajQEIRh1n4H/7rxLpzWMoKjU/jp3x477A8pQRBmjp6eHgoKCjCZTHR2dnoe9/HxIS8vD4PBQGJi4pQY7v19ajsHuOWVvZga+wC47Kgkfn1aDj4a8TknCD+We9CBrcGCvawRe0UT9k4NkvTtXdhu1AFWdMkhaLMT0SYFog73nRI3MgVBGH8Oq5W26kpPm6qWilIGenvGrPPRB8otqtLlJEd0egY6v6mTKBiwOdla0saG/Ba2lXdgd4304DPEBbHKGMOqubHEBU+t1pqCIMwOZdtb2fp8MUqVgnPvWkhEgtiodbDa29tZu3Ytbreb8847j7y8vFHHy776nPcefxi3y0Xe0uWcesNt3gl0CnC7XDz+0/Nx2mxc8dd/EhafeFiv8c+rL8Y2MMCF9/+FuOzcCYh0+hMtpwThEG14/B3KP38GUPCTh/5OVEqqt0MSBMFLBgYGKC4uxmQy0dAw0idbpVKRlZWF0WgkPT0d9TQY/gnwzt4mfvN2AQN2F8F+Gv5yjpFT8mbXIDdBmEySW8JR3YB91w7sNZ3YzKG4pJgx65Q+oE0OQZsUhC5JjyZej1IrkoyCMBNJkoSlq8OT3GiuKKO9uhKX81st7BQKwuISPBUcsRlZhMYnTImNVn1DDrYUtbLB1MIXlZ243CO3EhYkhbBmbiwrDdFE6n28GKUgCLOJJElseqqQ6r0dhMb6c/7di1BppvZGs6nko48+Ytu2bfj7+3PTTTd55j4Wffohm5/8O5LkJvuYpZx6w+2opsm170R55b47aSot5tQbbidv6UmH/PzGkkJe/d1d+ATouf7pF6fE9/pUJFpOCcIh6GrqoeLL1wDIOmqlSGYIwixkt9spKyujoKCAysrKUcO9U1JSMBqN5OTk4OMzfS7S+21O7l1XyFt7mgBYkhLKYxfOIyZI7KIUhImkUCrQpieiTR/evTXYjSt/M/Z9+dia7didmdilDNxWLdbSHqylw7u2laCJCUCXFIg2SY82MRBVsE5UcQjCDKBQKAgMjyQwPJKso44DwOlw0FFX7WlT1VJRSl97G12N9XQ11lP48RYAtL6+RKdleJIcMelZ+AUFT/rvEOSr4byFCZy3MIGufhvvF7ayIb+ZHbXd7K7rYXddD/dvKOLI1DBWz43l1LxoQvy1kx6nIAizh0Kh4ISLs2ip7KW7eYAd79Zw1Flp3g5r2jj++OMpLi6ms7OTLVu2cMYZZ7Bvy3t8+Ow/AZiz7BROvuZGcfMdiErNoKm0mNaqisNKaFTv3QVA8twjxJ/nOBAVGoIA/PtXD9NZ+ylqXTDX/+tptL7iZp8gzAYul4uamhpMJhOlpaXY7XbPsejoaIxGI3PmzJmW31cFjX3c/PIearsGUSrgtuWZ3LgsHZVS3BgVBK+ymqFiC1LRuzjKK7HZU7G7s7G7c3ARPma5MlArJzgSh5McsQEo1GLnoSDMVAO9PbRUlnvmcbRWluOwWcesC4qK9rSpis3IIiI5BZXaO73N28xWNppa2GBqZm99r+dxtVLBsRnhrDbGcnJeFIE+s7P3uiAIE696Xwfvry1AoYCzfrGAmLQgb4c0bdTV1fH8888DcFRKPIXvvQPA/JWrWXbZ1SimeGvlyVLy+Se89/gjxKRncfEf/3rIz//3L26ks6GO027+BTnHnjD+Ac4QouWUIByk0q8K2PjYrwGJE6/8JfNXLPV2SIIgTCBJkmhubvYM9x4YGPAcCw4O9gz3joiI8GKUh8/tlnjuixr+vKkUh0siNsiHv180n0XJod4OTRCEb7MPQtWHULweyjfhtGqxu3Owu3OwMQeHOxmkb11EqhVo4/Rok/ToEgPRJgWi0osd0IIwU7ndLroa6mmpKPPM4+huahizTqXREJWSPmrguD4sfNIrvBq6B3nX1MKG/GaKW8yex7VqJcuyIlg9N5YTsyPx04pmEYIgjK+tLxRT9nUrQRG+XPDbxWh0Yhf8wdqwYQMFmzag62wGYPGZ53HshZeJKuH99LQ08dxt16LSaLj5hdcOaROBubOdp2+8EoVCyfXP/A/fADHr5buIllOCcBBcLidbn3kCkAiKMohkhiDMYN3d3ZhMJgoKCujq6vI87uvry5w5czAYDCQkJEzrk7YOi41fvJ7Pp+UdAKycE81DZxsJ8hM7IgVhStL6Qc5q+cdpQ12zDXXxOvxK34Chp3BLOhxSOjbFPOy+x2IfisNtU2KvM2OvM9OP3E5OFeozXMWhR5sUiCbKH4Vq+n6WCYIwQqlUEZGUQkRSCsblpwJgHeintarCU8XRUlGGtd9Cc3kJzeUlnucGhISOtKnKyCIqNR2NbmJbZyaE+nH9CWlcf0IaVR39bMhvZkN+M1UdA2wuamNzURu+GhXLc6NYbYxhaVYEOrW46SgIwo933PkZNJX10NcxxFdvVXL8RVneDmlakCQJ/+5WTzIjeuHRHHfR5V6OauoJjo5F5++PbWCAzvo6olLTD/q51XvkdlMxmdkimTFORIWGMKt9+Pyr7Nv0X1BoufiPjxOTFuftkARBGEf9/f0UFRVhMploamryPK5Wq8nOzsZgMJCeno5KNf0vpD+r6OD2V/Pp7LehUyu5d3UuFy9OnNYJGkGYtVxOqP9Srtwo2QD9rQBIEjjVqdjDzsKuXYLdHIqjwwrfOptXaFVoEwLQJskVHLoEPUqR2BSEGUuSJHpbm4erOORZHB11NUj7zQMDUCiVRCSleNpUxWRkERwdO+HnCpIkUdpqkZMbpmYauoc8x/Q+albkRbPKGMMx6eFoVKK1iSAIh6+hpJv1f98HwJpb55GQI6rUv4/kdvPRC/9i3+aNAFijEnCGRXPNNdcQExPj5eimntf/8FvqC/ax/KobmXvyyoN+3tt/vp/qPTs59sLLWHLW+RMY4fQnWk4Jwg8wd3byzM3XIrltJM8/h3Pu+qm3QxIEYRzYbDbKysowmUxUVVXxzdecQqEgNTUVo9FIdnY2Op3Oy5GOD7vTzV8/KONfn1YDkBWl5/GL55MZJXZ+CMKM4HZD404oWS//9NaPHFNpcSetwB5xJnbmYGt2YK+3INlcY15GHemLNjFweOB4IOpwXxRipo4gzFgOm5W26kpPBUdzRSkDPd1j1vkE6D0VHDEZ2cSkZ6Lz85+wuCRJwtTYx4b8Zt41tdBqHpkPEuKnYaUhhtXGWBanhIq5X4IgHJZtL5dR8GkTASE6LrxnMTqxqeOA3G4XW9Y+TtGnW0Gh4OSrbqS020xxcTExMTFcddVVM2Lj33j67OV/s+Od15mz7BRWXHfLQT3HYbfxz59djNNu47K/PE5EUsoERzm9iYSGIPyA//3mPlord6PSxHDNk4/jp5/Y8mtBECaOy+WiqqqKgoICSktLcTgcnmOxsbEYjUby8vLQ62fWTf66rgFueWUf+Q29AFx6ZBK/OT0HH4048RSEGUmSoCVfrtooXgddFSPHFCpIPhYpZw3OsJOxdWrl1lT1FpydQ2NeSuGrRjfcokqbFIg2Xo9S9JoWhBlLkiQsXZ3DCQ65VVVbTSWu/c6ZAFAoCItLGJXkCItPQKkc/88Ht1tiV10PG/Kbea+gha4Bu+dYpF7H6cYYVhljOSIxWFScCoJw0Bw2F6/+YQd9HUNkHRnN8ityvR3SlONyOnn///5K2VefoVAqOfWG28k9bhkWi4UnnngCq9XKKaecwtFHH+3tUKeUih1fsv6vfyIiKYXL/vL4QT2neu9O3n7ofgLCwrnmiefF99kPEAkNQfgeFTu2s/6vvwcULD77Lo674BhvhyQIwiGSJInGxkYKCgooLCxkcHDQcyw0NBSDwYDBYCA8PNyLUU6cdfua+M3bhfTbnAT5avjzOUZOnRPt7bAEQZhM7aVy1Ubxemgr2O+AAhKWQO4ayFmNSx2Nvd6Cvd6Mrc6Mo7EfyTG6FQ0K0MT4yy2qkgLRJgaiCtGJiy5BmMFcTgcdtTWeNlUtlWX0tbWOWafx8SUmPWNkHkd6Fn5BweMai9Pl5qvqLt7Nb+H9whbMVqfnWFywL6vmypUbebGB4nNJEIQf1FLVx9uP7EaSYOV1BlLnRXg7pCnDabez4bGHqN69A6VKzapb7yRjyUjiYs+ePaxfvx61Ws0NN9xAaKho2/UNc2cHT9/4UxRKJTe/8NpBzaXa+uyT5G/ZiHH5qZx89U2TEOX0JhIagvAdHFYr/7rhGmwD3fgGL+Ha//sNKo3o1SoI00VnZ6dnuHdPT4/ncX9/f/Ly8jAajcTFxc3Yi90Bm5N71xXx5p5GABYnh/K3C+cRF+zr5cgEQfCq7urhyo310LRr9LGYecPJjTMgPB3J5cbRMoBteLi4vd6Cq9c25iWVeg26xMCRKo7YABTinEkQZrTBvl5aKstGKjkqK3BYx1Z5BUVFE5Oe5ZnHEZGcgko9Pm1d7E43n1V0sCG/mQ+K2xiwj7TRSw33Z9XcWFYbY8gQ7TUFQfgeX71dyZ7N9fjqNVx07xJ89Vpvh+R1DquVdX/9I3Wmvag1WlbfcTep8xeNWiNJEv/5z3+oqakhNTWVSy+9dMZeWx8qSZJYe+2lDPb1cuEDDxOXlfOD65+5+WeYO9o58857SFuwZJIinb5EQkMQvsOHzz3Dvs3vgFLPypseIveYJG+HJAjCD7BYLBQWFmIymWhpafE8rtFoyMnJwWAwkJqaOuN7fBY29XHzy3up6RxAqYBbTsrgpmXpqMUATUEQ9tfXCKUb5eRG/Zcg7VeNEZEznNxYA1F5MHyB6uyzycmN4QSHvbkfXN+6TFAp0MYNDxsfnsehChQ3BwRhJnO7XXQ1NtBSXupJdHQ11o9Zp9JoiEpJJyYj01PJoQ+L+NE3wYbsLj4ua+ddUzMflrRjc458nmVH61k9N5ZVxhiSwiZu7ocgCNOTy+Hm9Yd20tU0QOr8CE69Zs6svjFvGxzk7T//jqbSYjQ6H868814S5xgPuLarq4snn3wSp9PJmWeeybx58yY32CnsmwHfyy6/miNOO+N713Y21PHvX9yISqPhxmdeRuMjWt3/EJHQEIQD6Kir4T+/uhUkN+EpF3HZny4WAzEFYYqyWq2UlpZiMpmoqakZNdw7PT0dg8FAdnY2Wu3Mv5kmSRLPfl7DnzeV4nBJxAT58NgF81iSGubt0ARBmOr6O6D0Xbl6o+ZTcI+0cSE0FXJWy5UbcUd4khsAksOFvakfe50ZW53crsrd7xjz8qoQ3ahh45pofxQqcW4lCDOZdaCf1qoKzyyOlooyrP2WMev8Q0KHqziyiM3IJio1/UfdzOm3Odla3MaG/Ga2VXTg2C/pOjc+iFXGWE43xhArqlYFQRjW0WDhjYd24XZJLP9pLllLZmeL3iGLmbcevI/Wqgp0fv6cfffviM38/uqCzz//nK1bt+Lj48NNN91EQEDAJEU7tX31xst8+fr/yDn2BE67+Rffu3bHujf47KUXSJ63gHPuvn+SIpzeREJjupEk+UcpdtlOFMnt5r933UFHXQVKTQbn3XMv8Vkh3g5LEIT9OJ1OqqqqMJlMlJWV4XSO3HiLj4/3DPf29589u/A6+2388vV8Pi7rAGBFXhR/PsdIsN/MT+QIgjDOhnqgbJM8d6PyQ3Dt12YqMH44ubEaEo+Ebw0AliQJV7cVW73FU8nhaB2Ab11JKDRKtAn7DRtP0KPyH582NIIgTE2SJNHb1jJq4Hh7bTWSe/SsHoVSSURiyqiB4yExsYe1Y7pv0MHmolY2mJr5orIT936fRYuSQ1g9N5aVc2KI0Ot+7K8nCMI0t+u9Wravr0brq+aiexcTEDK7dsn3trbw1kO/o6elCR99IOf++gGiUtN/8Hkul4unn36a1tZW5s6dy1lnnTUJ0U59NXt38dZDvyMkJo4rH/vX96599Xd30VhSyIk/vZb5p66epAinN5HQmE4kCbbeB5Y2OPOfYy4ghfGxb8t7fPjsPwEtqYtv46w7jvd2SIIgAG63m4aGBgoKCigqKmJoaKRPc1hYGEajEYPBMCuHkX1R2cltr+6jw2JDq1Zyz6pcfrIkcVaXSguCME5s/VCxRU5ulG8Bx8DIMf9IyD5dbk2VfByoDpyQcNuc2Bss2Oss8jyOegvSfoN8v6GO8EWbGIg2SY8uKRB1hJ+okBWEGc5hs9JWUzXSqqq8lP6e7jHrfPwDPMmNmIwsotMz8fE/tF3AHRYbmwpb2JDfwo7akfdQKuDotHBWGWM4dU602AwiCLOU2+XmzYf30F5rJiE3lNU3z50111PN5SW885ffM2Qxow+L4Oy7f0d4wsG3XW9sbOSZZ55BqVTy85//XFRpAIPmPp68+hIAbnzule/8zrL29/PPqy9Gcru56vFnCIqcndVBh0okNKaT1kL41/EgucB4oUhqTID+nm6eu/VaHLYhNH7LuOQP1xIWJz6IBcGb2tvbPcO9+/r6PI8HBAQwZ84cjEYjMTExs+Zkc38Ol5tHPyhn7adVSBJkRAbw+MXzyY4W35uCIEwAxxBUfSS3pSp7D6wjn8n4BEPWaXJyI3UZaL57V6PklnB2DMoJjnq5isPZMXaYsMJHJbepStR7qjiUPuoJ+MUEQZhKLF2dtFSU0jzcpqq9uhKnwz5mXWhcgqdNVUxGFmEJiSgP8vq4pW+IjaYWNphayG/o9TyuVio4PjOC1XNjWJ4Thd5HVI4JwmzS0zrAq3/cicvhZulFmcxZGu/tkCZc+fYveP/xv+J02IlMSeOsX91HQMihbxJ8+umnaWpqYvny5Rx77LETEOn08/RNP8Pc0cZ59/yRxDlzD7im9MttbPz7XwiNS+Cnjz45yRFOXyKhMd0UvQ1v/EwkNSbIhr89RPnXn6NQRTF3xc856fI8b4ckCLNSX1+fZ7h3W1ub53GtVktOTg5Go5GUlBSUs7j9XkP3IDe/vJd9wxfhFy9J5J7Tc/HViu8EQRAmgdMOtdvkgeKlG2Gwc+SYNgAyTpGTG+kng+6HN4e4Bx2j2lTZGyxIjtFtaFCAJsofbZKc4NAlBaIK9ZmVCW1BmE1cTgcddbWjZnH0trWMWafR+RCdnklM+sjAcf/gH24dXN81yAZTMxvymyltHZnxoVMrOTE7klXGWE7MjhTnWIIwS+R/2MDnr1eg1iq58J7FBEX4eTukCSFJErvefZtt/3seJInUIxZx+q13ovU5vPlCe/bsYf369YSEhHDzzTfP6mv1b2x49EHKt3/BcRdfweIzzj3gmvf/768Uf/YxC1efzdKfXDnJEU5fIqExHRW9A29cOZzUuADOfFIkNcZB9d6dvP3Q/YAC35BLuezBNbOuZ6IgeNPQ0BAlJSWYTCZqa2s9jyuVSjIyMjAYDGRlZaHRiJ1y6/Ob+c1bBVhsTgJ91Dx0jpHTDDHeDksQhNnK7YL6r+TkRskGsDSPHFP7QPpyyFkDmSvAN/igXlJySThaB7DXm+U2VXVmXD22MeuU/prh5MZwFUdcAAqNOC8WhJlu0NznSW60VJTSWlWOfWhspVdgRNRwFYfcrioiORX195xLVrRZ2GBq4d38Zqo7R1rs+WlVnJwbxWpjLMdlhqNTi88ZQZipJLfEur/vpamsl5i0IM684wiUM6wFptvl4qPn/0X+B+8BMG/F6Sy74pqDrnI7ELvdzl//+ldsNhuXXXYZqamp4xXutPXNsO+MJUez5ue/HnPc7Xax9ppLGbKYOf/eP5GQZ/RClNOTSGhMV8Xr5KSG2wmG8+GstSKp8SM4bFZeuOMGzB3tqHQLOPLsyzjyzDRvhyUIM57T6aSiogKTyUR5eTkul8tzLDExEYPBQF5eHn5+M3NXzKEatDu5b10Rr+9uBGBhUgiPXTiP+BDx5yMIwhThdkPzHvlctWQ99NSOHFNqIHWpnNzIPh38ww/ppV1m+6gEh72pH1zfukRRKdDEBoy0qUoKRB0khv0KwkzndrvobmzwtKlqqSilq6lBnkO5H5VaTWRKmqeCIzYjG314xJhKL0mSKG4xsyG/hQ35zTT1jiRLAnRqsqP1ZETpyYwKICtK/vfwAK2oGBOEGcLcNcQrv9+Bw+riqLPTOOKUg58nMdXZrUO8+9ifqdm7CxQKTrj0Zxxx2hnj8vm1ceNGdu7cSW5uLueff/44RDu91ReaeP33v0YfHsE1Tzw/5nhzeSkv3/MLdH7+XP/0/1CpRWvVgyUSGtNZ8Xp446fDSY3z4My1oBL/8x+ObS+9wM51b4BCT1DsVVz2x6VofcWfpSBMBLfbTV1dHQUFBRQXF2O1Wj3HIiIiMBqNzJkzh5CQH24RMJsUNvVxyyt7qe4YQKGAm5elc8tJGahVopRXEIQpSpKgtUCu2ihZDx2lI8cUSkg6Rk5u5KyCwNhDf3mnG3tTv6dNla3ejNviGLNOFaQbaVOVGIgm1h+F+OwUhBnPNjhAa2WFPGx8uF3VkMU8Zp1/cMjogeOpGWh8Rir1JUlib0MvG/Kb2Whqod0ytloMIMRPQ2aUfvgnwPPvIf5iyLggTEfFXzTz8X9LUaoVnH/3ohkxX7W/u4u3//wA7bVVqDVaTrv5F2QsOXrcXr+1tZW1a9eK4eDDbIOD/N+VF4Akcf1TL+IXFDzq+Bev/pev33qVzCOPZfXtd3knyGlKJDSmu5IN8PoVclJjzrlw1r9EUuMQddTX8uJdt+J2udD4n8EJl67EuGzmD34ShMnW2tqKyWSisLAQs3nkYlKv12MwGDAajURFRYmdbd8iSRIvfFnLg++VYne5iQrU8dgF8zkqLczboQmCIByajnI5sVGyHlryRx+LXyQnN3LXQEjyYb28JEm4emwjVRz1Fhwt/fDtURwaJZr4AHRJgWgTA9Em6lEFiBuOgjDTSZJEX1vrqIHjHXXVuPerEAZQKJWEJyZ72lTFZGQREh2LQqnE5ZYob7NQ3mahoq2fsjYLFW0W6roHv10M4hEeoCMrOoCMSD1z4oIwxgeRFhGAaoa1sBGEmUaSJDb+00RdQRfhCQGc+6uFqNTTd0NER30tbz30O/q7OvENDOKsO+8lJiNr3N9HDAcf7fnbr6O7uZGzfnUfqUcsGnXsv7+6lfbaKk694Xbylp7kpQinJ5HQmGYkSWKgt4eAkNCRB0vehdcvH05qnANnPSWSGgdJcrt5+d5f0lJRhlKTTkTKBVx035Jp/SUlCFNJb28vBQUFFBQU0N7e7nlcp9ORm5uL0WgkKSlJDAz7Dl39Nn75homPSuU/u+U5UfzlXCOhYqefIAjTXU+tfA5bsh4ato8+Fm0cSW5E/LgLbbfNhb1xeNh4vQVbnRlpyDlmnTrcF23iyLBxdaQfCnGzURBmPIfdRnt1laeCo7myjP6uzjHrfPwDiM7IIiY9i9jMbOJz5qDWjpyPDdldVHX0Dyc7+j1Jj8aesXM9QJ7JMSc2CEO8nOAwxAWRHOY/4/r0C8J0N9Bn4+UHtmMbcLLwtGSWrJmecyFq8/ew4W8PYh8aIiQ2nrPv+h3BUdET8l5iOPho3wz9Purcizj6vEs8j/d3d/Gv6y8HhYLr//XfMdUbwvcTCY1pxNzZznuP/5X+7k6ueHTt6GFmpRvhtcvB7RBJjUOQ/8F7bH3mn6DQogu8nFOvPYr0BZHeDksQprXBwUGKi4sxmUzU19d7HlepVGRmZmIwGMjIyBDDvX/Al5Wd3PbqPtotNrRqJb89PYdLj0wSFSyCIMw85hYoHU5u1H4O0n4lFeFZcmIjZw1EG+BHfgZKbgln55Dcomo4yeFsHxyzTqFTyQmOxMDhSg49Sh9xbi0Is4Glq3O4TZXcqqqtqhKnwz5qjVqnI9l4BGkLl5B6xCL8AoMO+FoDNicV7XKCo6zVQkFTH4VNfQzaXWPW6n3UGOLkJMfc+GAMcUHEh/iKcz9B8LKKXW1seaYIhVLBOXcuICp5et2jNH24ma3PPIHkdhOfO4c1d/wG3wD9hL3f/sPBL730UtLSZvd82j3vb+DjF/5F6hGLOOtX93keN324mQ+eepzo9Ewu+eOjXoxwehIJjWnEYbXy7G3XMNDTzfE/uZJFq88evaD0PXjtMjmpkXc2nP20SGp8j/6ebl74+fXYBgdQ+y4jLmcp59y5QJwwCsJhcDgclJWVUVBQQEVFBW73yM2o5ORkDAYDubm5+Pr6ejHK6cHhcvPY1nL++UkVkgRpEf48ftER5MaK70JBEGaBgS4o2yjPiqv+RPVSx0sAAQAASURBVD6v/UZIMuSshpwzIG4BjNOOP/egA1vDSBWHvd6C9O2bjQrQRPnJLaq+GTYe5iPOGwVhFnA5nXTW19I8XMXRUGSiv7vLc1yhUBKblU3agiWkLVxCaOz3ty92uSWqO/oxNfZR0NRHfmMvxc1mbE73mLUhfhoM8cEcmRrKirxo0iJmdz96QfCWLc8UUrGrnZBoP87/9SLUWpW3Q/pBktvN56/+lx3vvA5AznHLOOXaW0Zvjp4gYjj4iObyEl6+55f4BQVz3b/+6zl3XPfIH6jc+TVHn3cJR517kZejnH5EQmOaKfz4Azav/Ts6P3+u/PtTY3eClL0Pr146nNQ4C85+RiQ1vsO7j/2Zsq8+Q6GKQqu/iLN/uZDY9GBvhyUI04bb7aampsYz3NtuH9m5FhUV5RnuHRR04B1rwlgN3YPc8spe9tb3AnDhogTuXZ2Ln1Z8jguCMAtZ+6B8MxSvg8oPwblf6xZ9rDxMPGcNJB0NyvG7sSC5JBxtA9jrzdjr5DZVrm7rmHVKf7UnwaFLDEQTH4ByGtzgEAThx5EkifaaKqp2b6dq1w7aa6tGHQ+JiSNtoZzciM3MRnkQn08Ol5vyNgsFjX2YmvowNfZS2mLB6R59GyYjMoAVedGsyItmTlygSKoKwiSxDjh4+YHtDPbZmXtSAseel+HtkL6X025n05OPUfblNgCOPOdCjj7vkkn7zBDDwUc4bFYev/x8JMnNtWv/Q0BIKE6Hg3/+7CIcNis/efAxolLTvR3mtCMSGtOM2+3ixbtvp6O2mnkrVnHSldeNXbR/UiP3TDjnGVCJ1i77q9m7i7ce+h2gQKu/hLQFuZx2vdHbYQnClCdJEi0tLZ7h3v39/Z5jQUFBGAwGDAYDUVFRXoxyenrX1MzdbxZgsTnR+6h58GwDq4yx3g5LEARharAPQOVWuXKjfDPYLSPH/MIh+3S5NVXy8aAe/zlDLot9eNj4cCVHkwWc37o8UirQxPqjSwxEmyTP41AF6cQNR0GY4cyd7VTt3kHVru00FBXgdo3M6fHVB5J6xCLSFi4hyTgfrc/BVytbHS7KWi3sre/hw9J2vqrqGpXgiAv25ZS8KFbkRbMoOVQMGReECVZb0MnGJ0yggDNvn09cZoi3QzqgIYuZdY/8gabSYpQqFSdfczNzTlg+6XE888wzNDY2ctJJJ3HcccdN+vtPJc/dfh09zY2cfff9pMxbQK1pL2/+8R78g0O49sl/o5jlc0YOh0hoTEP1hfm8/vvfoFAqufyRJwiLSxi7qGwTvHYpuOyQewac86xIagxz2Ky8cMeNmDvaUOkWoA04gYvuXUxItL+3QxOEKau7u5uCggJMJhNdXSMl9j4+PuTl5WE0GklISJj1A78Ox6DdyQMbinllZwMARyQG8/cL55MQ6uflyARBEKYoh1VuR1WyQW5PNdQzcswnCDJXysmNtBNBMzGtDiWnG3tzP/Y6y3Ciw4zbbB+zThWolVtUfZPkiA1AoRbflYIwU9kGB6nN30PV7u3U7NmJdWBk849KoyHzyGNZcNoZh7Ubt2/Iwcel7WwuauWTsg6GHCOt8cL8tSzPiWLFnCiOSQ9HpxbVYoIwET7+bwnFX7SgD/PhwnsWo51i87V6Wpt5+6Hf0dPSjNbXjzV3/JokwzyvxLJ3717WrVsnhoMDGx77M+VffcZxF1/B4jPO5eMXnmLP++uZs+xkVlx3q7fDm5ZEQmOaevsvD1C9ewepCxZz1p33HnhR+WZ49SdyUiNnDZz7nEhqAJ+99AI71r2BShOI2v8y5ixN4YSLs7wdliBMOQMDAxQVFWEymWhsbPQ8rlarycrKwmAwkJ6ejlo9tU7ippPiZjM3v7yHqo4BFAq48YR0bl2egUY1e0/2BEEQDonLIQ8SL9kgDxbvbxs5pvGHjJPl5EbGKaCbuAGYkiTh6rPJ1Rt1Fmz1ZhzN/fDtlvhqBdo4uXpDlyQPHVfpx7+iRBAE73M5nTSXFVO1ezuVu7bT19bqORafM4cjTj+DtAWLD6ol1bdZHS62lXewuaiNrSVt9A2NzBvy16pYlh3JirxolmVHEqAT5+qCMF7sViev/H4Hli4rucfEsOzSHG+H5NFcXsI7f/k9QxYz+vAIzr7rd4QnJHktHjEcfMT2t1/j81f+Q/YxSzn9ll/y7K1X09vawpqf/5qMJUd7O7xpSSQ0pqmupgb+/YsbkdxuzrvnjyTOmXvgheVb4NVL5KRG1umw9E6INo7bEMXppqO+lhfvuhW3y4XG/wx0+kx+8sCR+AfpvB2aIEwJdrud0tJSCgoKqKys5JuPfoVCQUpKCgaDgZycHHx8fLwc6fQmSRL//rKWP71Xit3lJipQx98umMfRaeHeDk0QBGH6crugYQeUrJcTHH0NI8dUOkg/SR4qnrUSfCe+TYTb7sLRaMFWP9ymqs6Me9A5Zp0q1Add0nAFR2Igmmh/FKJ1jCDMKJIk0VZdyZ731lH21We4XXJ1RXBUDPNXrmbOCcvR+h5eda7D5WZHTTebi1rZUtRGq3lk5o9WpeTYjHBW5EWxPCeKsABx3SsIP1ZTeQ/v/G0vSHD6jUaSDd6/hiv76nPef+KvuBwOolLTOfPOewkICR3393FJEo1WO7VDdqqHbNQM2jz/bLY5ODk8kEeyEggcrhL7Zjh4Tk4OF1xwwbjHM11U7d7BO395gLD4RNbc8Ruev/1alCo1Nz770mF/9s92IqExjX343Fr2bX6XiORUfvLg3757Z8f+SQ0A31BIOQ5ST4CUpRCaCrOgt6/kdvPyfXfSUl6Kzj8ThXYVi1alsHhVirdDEwSvcrlcVFdXYzKZKC0txeEY2eEVExPjGe6t10/cztbZpHvAzp1v5LO1pB2A5TmR/OXcuYT6ix26giAI40aSoHmPnNgoXg/d+w3tVaoh5Xi5gjl7FQRETFJIEs7OIezDCQ5bnRln+yB86ypLoVWhTdTLP0mB6BL0KP1ElbUgzBSW7k72bXoX09ZNnpZUOj9/5px4CkecuprAiMjDfm23WyK/sZfNRW1sLmqlpnPAc0ypgEXJoazIi+aUvCjiQ8RNNEE4XJ+/XkH+hw34BWq56N4l+AR453takiR2bXiLbf97HoDUBYtZdcudaH7EBkS3JNFkc1AzaKNmaCRhUTNko27Ijv0Hbg+n+up4zpBMtr8vbW1tPPnkkyiVSm6//fZZe0/B3NnB0zf+FIVSybEXXs5nLz1P4py5nHfPH70d2rQlEhrT2KC5j+duvQbb4AArrr/t+4f81H4BX/5D/uf+QxQBghIhdelwguN4CDj8E6ipLP+D99n6zBOoNDrUfpfhHxzGJQ8cOeV6HgrCZJAkiaamJkwmE0VFRQwMjFzshISEeIZ7R0RMzk2e2eKrqi5uf3UfrWYrWpWSX5+WzeVHJ4uBsYIgCBNJkqC9WE5slGyA9qKRYwolJB4lJzdyVkNQ3KSG5rY6sddbsNWZsdebsddbkGyuMevUkX5yFcdwkkMd7iuqOARhmnNYrRRt+4g9762jp6UJAIVSScbio1lw+hnEZv64VjaSJFHR3s/mwlY2F7dS2GQedXxOXCCn5kWzIi+a9MgAcT4qCIfAaXfx2p920tM6SMbCSE65as6kx+B2ufjo+bXkf/A+APNPXc0Jl191WG3seh1ONnea2djRy2c9Fobc330LWKtQkOSrJcVXR4qfjlRfHSm+cvXX7aX1NNkc+KmUPJadyJrIYDEcHPnz+J8/uwjrQD/R6Zm0VpZzwmVXseD0M70d2rQlEhrT3M4Nb7HtxefwDwnlZ4899cNZWJcDmvZAzafyMMWGHeB2jF4TmScnN1KXQtLRE9pveLIM9Pbw/O3XYRscwDfoJCTlXE64JIu84yb3olUQvK2zs5OCggIKCgro7u72PO7n5+cZ7h0fHy8uaMaZ0+Xm7x9W8H8fVyJJkBrhz+MXzScvNsjboQmCIMw+nZXDbanWQ/Pe0cfiFsjJjdw1chXzJJPcEs72QTnBUScnOJydQ2PWKf3UaBPk5IY2KRBtvB6lTgwBFoTpSHK7qdm3m90b36G+MN/zeEx6FkecfgaZS45Bqfrxf78bugfZUixXbuyq7Wb/+5Wp4f6ckhfNirwo5sYHoxQJU0H4QW21Zt78y24kt/T/7J1leBRnG4XvWY+7EELwENzdSoFCoUCRInUqX92pu7u7Ui9tcStavEiLS9CECHHdzWZ1Zr4fEyIkeJJNwtzXtdfuju2zkd2Z97zPOVxxW3ta94iotdd22opZ/MGbJO7aDoLAZTfcRvfR487rGNlOF39lF7Iku5BNBRbc5T4T9IJAMy8DzbxKBAtvRbRo7mWgscmA9jTjBTlON3fuP87GAqX77J6YcEYVZrJo4QICAwO5//77L9lw8D9efJKUA3sRNBpkSWL6+18SHKWOSV4oqqBRz3G7XHz/8J0UZmXSd9K19Lvm2vM7gNMKSZshca0icGTsrbheo4PGPaBpX2jSB5r0Au/q9+GraRZ/+BaH/lmPT3AT3NJEghv5MvXZXmjU4F2VSwCLxVIa7p2Wlla6XK/XExcXR8eOHWnZsiXaarhQUqlMan4xD8zaxfakfACm9GjC82Pb4W1Qu8NUVFRUPE5BitK1Eb8QkrdQwf8poqPStdFuLITFecyiVSxyKjZVyYpNlTOlCNynpI0LoG/ko1hUxSgihzbIqE5QUFGpZ2QnJbJ96QIOblyL6FYyd/xCwugxZjydh1+JVlc9tja5RQ5WxWeyfH8mG4/k4BTLPlMi/U1c0T6CEe0j6dU8GL16zayiclq2Lkzgv6XHMfromPZc71rJZ7Xk5TDvzZfIPp6AzmBk1H2P0LrXuQVLn7A7WZpdyJLsArYWWiu4Xrb1MTE6LJBRYQG08TGdVrQ4G25J5tWEND5PyQZgkJ+JLivn4XQ4uP7662nVqtUFHbe+s+b7r9jx10IAAiMbceuHX3u4ovqNKmg0AA5t3sjiD95AZzRy6wdf4RsccuEHs+ZA4npF3EhcB/nHK28TGqsIG036QJPeENq6TmdwJO7aztzXn0cQNBgDrwPCGHVXR5p3Vq10VBouDoeD+Ph49u7dS0JCQoVw75YtW9KpUyfatGmD0agGA9YkS/ak88TcPVjsbvyMOl6b0JExnaM8XZaKioqKSlVYMuDgYkXgSNwAcjnrp5DWZeJGoy4ePfeV3RKudCuO5JIujiQLYqGj0nYaPz2GGP+SwHF/DFG+CHp1YFJFpT5gLchn98ql7FqxFJu5EFACxAdedzOte/WrVrHSYnex9lA2y/dnsOZgFlZn2WdfoLeeoXERjGgfwaDYMEx6dQKUikp5RLfE7Df/IyeliKYdQxh9d6canUyQnZTI3DdeoCgvF++AQK5+7FkatWpzxn0Six0szi5gaXYhOy3FFdZ18fNmdFgAo8MCaeFdvWMDC7LyeehgCsWixIiEfTRPOXpJh4PvXbOCFV98BEC3K8cy5Ob/ebii+o0qaDQAZFlm1nOPkXY4nvaXDWPkXQ9W38HzjysXdClbFHuqnMOVt/EKLhE4eiu3xt1A71V9NVwELoedH2bcQ2FWJmHNBmIp7EmjVgGMf6SbOmNNpcEhiiJHjx5lz549HDp0CHfJrC6Axo0b06lTJ9q3b4+vr68Hq7w0sDlFXlq8n9+2pQDQNSaQj6Z2pUmwGr6ooqKiUi8ozoNDS5XcjYQ1IDrL1gXElIkb0b2gDlgnuAsdJeKGGUeyBdeJIjjV/1orYGjsi6Gkg8PY1A+tvzqxQUWlLuN2Otm/bjWbZ/+KtUDp9o2KbcvgG24lKjau2l/P7hL551gOy/dlsjI+kzxr2Wefl17LZW3CGNE+kiFx4QR4eSYEWUWlrpF7oog/Xv8XyS0z5IY42vWvmQlsx3dtZ9EHb+C02QiOimbCky8QEB5ZaTtZljlotZd2Yhyw2kvXCUDvAB9GhQUwKiyQaJOhRmo9SXyRjVv2JVKYnc3k7WtAo+GRSzQcPOPoYX55+mEAJj71Es06d/NwRfUbVdBoIKQdPshvz84AQeCGNz4kvFkNef5acyH13zKB48R2cNsrbqPRQaPOSgdH95shLLZmajkHNvz2A9vm/4l3QDCi5loEDEx6vAcRzdW/KZWGgSzLpKSklIZ722xlPtvBwcF06tSJjh07EhJyEZ1bKudFfLqZ+37bydGsIgQB7r6sJQ8Oi1Xb9VVUVFTqK3YzHFkBBxbA0VXgKje70TcS2l6l5G407Q/aumEnKLtEnKlFJWHjFpxJZiSrq9J22kBjibihiBz6SB8ErTrpR0WlruG02/hv0Vz+XTQXt0PpyIrtO5CB024iMKLygGZ1IEoy/x3PY9n+DFbsz+REQdl1hl4r0LdlKCPaRzC8XQThfmfJ8lRRaeDsWJHE5rnH0Bu1TH22F/6h1TvJd8/qZaz65jNkSaJJu46MfeRpTOUmKsqyzG6LjaXZBSzJLuSYraxzUytA/0BfRocFcmVoAOHG2hUjC11u7o1PxmfVYiLNebg6def5q0djqAMTQmqTE4fimfXcowDc+tHXBEY08nBF9RtV0GhAnMyJiOnQiUnPvFo7HQhup5K7kbIFUrZC8lYoyihbbwqAmxZDo041X8sp5CQf56cnHkASRaLaXkdeRgStuocz4vYOtV6Likp1k5WVVRruXVBQULrcx8eHDh060KlTJ6KiotROpFpElmV+2pLEK0vicbolwv2MvD+lC/1bhXq6NBUVFRWV6sJZrIga8Yvg8DJwmMvWeQVD3ChoOw5aDAZd3el+kGUZMc9eFjaeZMGVaa0QGQIg6DVlYeMxfhhi/NH6qLOwVVTqCkV5uWz64xf2rV0JsoxGq6PryKvoPWEKXr41N+NZlmX2p5lZti+D5fszOJJVVLpOEKB7TBAj2kcyon0kMSFqR7LKpYckycx/dwfpxwqJah3I1Q91RdBc/LW4LEls/P0nts3/E4B2A4dwxZ33o9XpkWSZ/wqtLMkuZElOAan2sokLBkFgULAfo8MCGBEaQLDesxMuJFnmrVXrsW9ag9nkzeFh4/imYwsia1lc8SSbZ//GP3/+AsD4J56nRdeeHq6ofqMKGg2IwqxMZj58J6LLxdWPPUvL7r1rvwhZhoJkRdzY+oXSweEdCtOXQtiZff2qtQxJYtbzj5N2OJ7Gcd3JzRyMRitw7Qu9CQhTT7BU6idms5l9+/axZ88eMjLKhEODwUDbtm3p2LEjzZs3V8O9PUC+1cljc/aw8kAmAJfHhfP2pE6E+NadwSwVFRUVlWrG7YCEdRC/AA4uBVte2TqjP8SOUDo3Wg0DQ907/5TsbpwpllKbKmeyGdkuVtpOF+ZVYlPlh7GpP7ow72oZpFFRUblwspMSWffzdyTt2QmAyceXPhOn0vmK0ej0NT9AeCy7iOX7M1i+P5PdKQUV1rVt5M+IklDxuEg/dYKVyiVDQVYxv7+yDbdTYsA1rek8tMlFHc/tdLLs8w849M96APpOmkbPCdPYUmhlcXYBf+UUkuUss5n20mi4PMSPq8ICGRbij5+ubo0LOJ1O3nznXUSng8Ud++KMbMzX7ZvRO/DSsMT+5emHyTiq2PgPmHojvcdP9nBF9RtV0GhgrP/1e/5dMJugqGhuevsTtDoPqrD2QvhhLKTvAr9GMP0vCG5eKy+9Z9UyVn79CXqTFyHN/kdBppZOQ6IZOMVz9lcqKheC3W7nwIED7N27l8TExNLlGo2GVq1a0bFjR9q0aYPBULPelyqnZ0tCLg/O2kWG2Y5Bq+HJUXHc3K+ZevGmoqKicikhuiFpE8QvhPjFFTuWdV7QepjSuRE7Akx189pGlmTc2cUlXRyKwOHOtlXaTjBplbDxmLJODo2xblhtqahcahzftZ11v8wkJ/k4AAERkQycdjOxffrX2rloeqGNFfszWb4/g62JeYjl8nuahniXdG5E0LVJEBpVDFVp4Oxbl8q63w6j1WuY8nRPgiJ9Lug4NouZ+W+/QtqhA2i0WqKuvY3NLTuzPKeQfHfZ5AM/rYYrQgMYHRbAZcH+eNdxm+OlS5eybds2siOimRPXA50AL7ZqzC2NQxv09XNxYQGf33GDMgkcaNN3IFc9+PjZdxRdis2/8dLLHDkbqqDRwHAUW/n2gf9hMxdy+fQ76DpyjGcLKs6D70dD1gEIjIHpyyCgcY2+pLUgn5kP34nDaqXdZVNJ2B2FwaTl+pf74uWnDvqq1H3cbjdHjhxh7969HDp0CFEsO2Fp0qQJnTp1ol27dvj4XNjJkUr14BYlPlp9hI/XHEWWoUWoDx9N60qHxgGeLk1FRUVFxZNIkpI5F79QCRUvTC5bpzVAiyFKoHibUeAd7Lk6zwHR6sKZXJbD4UyxILukihsJoI/0USyqSvI4tMGmBj0woaJSl5Akkf3rVrPp95+x5iudYo1i4xh8/a00btO2VmvJtzpZfTCLZfsy2HAkG4e77PMizM/I8HYRjGwfSZ8WIRh0dXvgVUXlQpBlmUUf7yblQB7hzfyZ+Gg3NOcpMuRnpDHn9RcozEhDNHqxZOS1HGpUNjk4WK9lZGgAo8MCGRDki7EeZVFkZmby+eefIwgCmaOvYa7FCcDkyCDebRODvoGKnvvXrWbZZ+8TEBFJYWYGwY2bMP29z8+8kyzDgnsgfQ9c9yf4q5kb5VEFjQbIrhVLWf3tZ5j8/Ln1w68w+Xi4fcuSCTNHQl4ChLRSOjV8w2vs5ZZ89DYHN60jvHlLRGES1nwXfa5uQfeRzWrsNVVULhZJkkhOTmbPnj0cOHAAu91eui40NLQ03DsoKMiDVaqcJDW/mAdm7WJ7Uj4Ak3tE8/yY9vioM1RVVFRUVMojy5C+u0zcyD1Stk7QQrMBirgRNwb8IjxX5zkiizKuDKtiU5VkxplsRsx3VNpO46tXujialnRxNPZF0Nct6wsVlYaGy27nv8Xz+HfhHFwO5Voitnd/Bl57M4GRtT8QZnW4WX84m2X7M/g7PguLo8wax8+kY2hcOCM7RDIoNgxvg3oOrdJwKMq389tL23Da3PQe25weo87NqcTiFln073+kfPkeOpuVQt9A5oy6kdzgcCIMOkaFBTI6LIA+Ab7o6vHA/7fffktKSgpDhgzhYIu2vHQsDVGGkaH+fNGuGaY63mVyISx6/w0Ob9lItyvHsuOvhQiChvt+/BO94QwW1atfhg3vKOeL1/6hdPuqlKIKGg0QSRT54dF7yTuRQo8xExh8/S2eLgkKUmDmlVCYAhEd4KZFNTIj7fiu7cx5/XkEQUP3sY+xb70T3yAj173YB51BvYhSqXtkZmayZ88e9u7di9lcFizq5+dXGu4dGRmpznKsQyzdm84Tc/ZgtrvxM+p4ZXwHxnWp2c4zFRUVFZUGgCxD9kElUPzAQsjcW26lADF9oO0Y5RYY47EyzxfR7MBRYlHlTDLjPFEE4imXjloBfZRvmU1VU390AWrOlIpKTVCUn8c/f/7Cvr9XIssSGq2OLiNG02fCFLz8PDO24nRLbE7IZfn+DFbszySnqEwINeo0DIoNY1qvJgxpE65e96g0CA5tzWDVzANoNAKTnuhBWEzVlkF5LjfLcgpZklVI+n//MGL1bHSim/Swxmy9+hYubxbNVWGBdPf3RtNA/jd27drF/PnzCQgI4IEHHmB1noXb9h/HIckMDvJjZsfmdd4663wQ3W4+v/06HMVWpr78Ngveehmbxcx1r71PZMvWVe/07zew5BHl8ZiPoPtNtVdwPUEVNBooCTv/Zd4bL6LV6bj5vS8IjIj0dEmQe0wRNYoyoXF3uGF+tXoIuxx2fphxD4VZmXQePobjB9riKHZz+Y1tadtPbc1SqTuYzWb27NnDnj17yMrKKl1uNBpp27YtnTp1olmzZmjqUevopYDNKfLS4gP8tk2xDunSJJCPpnYlJqTuBb2qqKioqNQDco8p4kb8IjjxX8V1UV2VQPG2YyG0lWfqu0Bkl4QzrUgRN5LMOJLNSBZXpe20AUYMJR0cxhh/9FE+CA1oAENFxdPkJB9n/S8zSdy1HQCjjw99xk+hy8gxtRIcfjpESWZncj7L92ewbH8GKXllWT19WgTz9Kh2dIxWLVxV6jeyLLPsq30k7MwmOMqHyU/2RKtXvuMyHS6W5hSyNLuAfwqKECWZXrs2MnjrcgCkdl0Yds/DdAkJapACn8vl4t1338Vut3PdddfRunVrNuZbuHFvIsWiRJ8AH37q1KLOhZpfKCcOxTPruUcx+flz11c/MefVZ0net4cr7rifjpdfUXmH+EXw+w2ADJc9BZedQ9bGJYgqaDRQZFlmzmvPkbRnJ7F9BjDmoSc8XZJCVjzMHAW2PGjaH66bDYbqGQzc8NsPbJv/J74hobQd+Ah712UT0tiHyU/3UsPHVOoMR44c4c8//8TpVLwiNRoNsbGxdOzYkdjYWPQevLhQOT0HM8zc9+tOjmQVIQhw5+CWPDw8Fr068KKioqKiUh0Upiph4vELIekfoNylV3g7RdhoN1Z5XM8GN2RZRsx34EwusalKMuNKt1Z4iwCCXoM+2hdjjH9p2LjWV82/U1G5WI7v2cn6n74l+2RweHgEA6bdRJu+Az0+WCrLMvHpFubuSOXHLUk4SzI3ru4SxYwRbYgOUicOqdRfbBYnv720FZvFRavLG3O8bxBLsgv5t9Ba+hUoSCKTty4jZvdmALpdOZbBN96KRtMwBvNPx19//cXWrVuJi4tj6tSpAPxbaOW6PccwuyU6+3nxW+eWBOvrvx3d1nl/sHHWj7Tu1Y+xjzzF2h+/ZvuSBXQdOYbLp99RcePkLfDjOCUIvNtNMObDenfeV1uogkYDJjv5OD89dj+yLDH1xbdoHNfO0yUppO2CH8aAwwwth8K030B3cS3nOSlJ/PT4/UiiyPD/PcqmeRKSW+aq+zrTtH1I9dStonIRyLLMli1bWLFiBbIsExkZSc+ePWnXrh1eXl6eLk/lNMiyzM9bknh5STxOt0SYn5H3J3dhQOtQT5emoqKiotJQKcqCg0sUcSNxPUhlvvMEt1QsqdqNhahu9fYiV3KIOFMt5bo4LMg2d6XtdKFeFcLGdeHeCOpEJRWV80aSRA6sX8OmWT9SdDI4vFUbBt1wC9Fx7T1cnUJqfjHvrjjMvJ0nADDoNEzv14y7h7QiwEud9KVS/zhWbGfJphS0c1KQge+H+pEaqvwtd/f35ko/I4F/fEPm3p0gCAy58Ta6jRrn2aJriaysLD777DMEQeChhx4qHffdYylm6u5j5LlE4nxM/NG5JeHG+v3/P/vVZ0nas5MhN99BtyvHlAaER7frwJTn3yjbMOsgfDcC7AXQZhRM/gm09V/QqSlUQaOBs+LLj9j79woiW8Vy7cvvINQVC5vkrfDTeHBZIe4quOZ70F7Yh5QsScx64QnSDh2gZY/eeAdP4Mi/mUTHBTH2gS4en3WioiKKIkuXLmX7dqXdu2vXrowePRqdTv1yqssUFDt5bPYeVhzIBGBImzDeuaYzIb6q57eKioqKSi1hy4dDyxRx4+hqEMsFcPtHl4kbTXpDPZ7NKUsy7hxbhbBxd5at0naCUasIHDGKwGGI8UNjUs+nVFTOFZfdzvYl89m2YHZpcHjrXv0YeO1NBDWqG5lwe1MLeW1pPJsTcgEI9NZz/+Wtub5PUwy6OjKeoaJSBbIsE2+1szi7gCXZhRyyKv9jY7cW0fm4k2J/HYF3tmF0VBB+VjPz3nyR7KREdAYjo+9/lFY9+3j4HdQu5cPBBw8eXLr8kNXO5F1HyXS6aeFl5M8uLWlsqp8dm6Lbzae3TMXlsHPj258QFtOMrOMJ/PT4/Rh9fLjn21nKmKU5Db4ZDuZUiO4FNy6oNjebhooqaDRwrAX5fHv/7bgcdkbd/yht+w8++061RcI6+OUa5cKs4zUw/ssLuhDbs3oZK7/6BL3RxJhH3mbp54kATH6q52mDl1RUaovi4mL+/PNPEhOVv8vhw4fTr18/VWir42xNyOXB33eRXmhHrxV44sq2TO/XTLWvU1FRUVHxHA4LHFmpiBuHVygTg07iEw5tr1IEjmYDL3iiUF1CKnbhSCnr4nCmWJCdUsWNBNCFe5eKG4YYf3RhXup5lorKWbAW5PPPn7+wd/WKkuBwLZ2vGEWfCVPx9vd8foUsy6w5lMXrSw9yJKsIgKYh3jw2Io5RHSPV/3GVOoMsy+y0FLMkW8nESLQ5S9fpBBgY5McoPz9cXx3GVuCkw+DGtO2rZ96bL1KUl4t3QCDjH3uOyFaxHnwXnuHUcPDyGaKJxQ4m7TrKCYeLaJOe2V1a0cyr/k0sTDt8kN+enYHJ14+7v/4FQaPB7XLx8U2TkESR2z/9Dn9fo2LNn7kPQlrDrSvAO9jTpdd5VEHjEmDLnFls+uNn/ELDmP7+F+gNdehD4PBymHWt0krf7UYY89F5tc5bC/KZ+fCdOKxWLrvxNlIOx3DiUAGxvSMYPr1utM6qXLrk5OTw66+/kpeXh8FgYOLEibRp08bTZamcAbco8dHfR/nk7yNIMjQP9eHjaV3p0NjzF3YqKioqKiqluGxw7G8lOPLQUrAXlq3zClKsCtqOgRZDQG/yXJ3ViCzKuDKtFWyqxDx7pe0ELx3GEnHDEOOHoYnaxaGicjpyUpLY8Ov3JOz4FwCjtw+9x0+m68gx6AyenxHtFiX+3J7KuysOk1OkdKh1iwnk6dFt6d5UHfBT8QyiLLOt0MqS7AKWZheS5nCVrjNqBIYE+zE6LJDhIf4ElmRApMTnsfDDXYiuRGTnX7iddoIbN2HCEy8QEB7hqbfiUaoKBy9Pqt3J5F3HSLA5iDDo+KNLK9r41K9zmq3z/2Tjbz/Qqmdfxs14unT5DzPuIScliasfeZyWB96E4xvANwJuXQlBTT1Ycf1BFTQuAVwOO989dCdFuTm07NGHMQ89gbYuWd3snwezbwFZgt53wcjXz1nUWPLR2xzctI7w5i0ZcO3TLP1sHxqdwHUv9sE/RM0lUPEcCQkJ/PHHH9jtdgICApg2bRqRkZGeLkvlDJwosPHgrJ38ezwfgIndonlpXHt8jHXo81JFRUVFReVU3E44vl4RN+IXQ3FO2TqDH8ReoYSKtx4OBh/P1VkDiBZnqbjhTDbjTC0Cd+UuDn2Ed4nA4Y+hqR+6ULWLQ0WlPEl7d7Hu5+/IPp4AgH9YOAOm3URc34F1wrba6nDz1foEvlqfgM0lAjCyfSSPXxlH89CG9bmmUjdxSTKbCiwszS5kaXYhOa6y3CdvrYZhIf6MDgtgWLA/PrqqnUdmv/49SbvmADKN4zpw9WPPYPLxraV3UDepKhy8PFkOF5N3H+Og1U6wXsvvnVvS0a/+WDHNee05ju/ewZCb/0e3K8eWLl/68TvEb1zDzX3shBT+p5yvTV8KjTp5sNr6hSpoXCKkHNjL3Neex+1yEtd/MFfe+zCauuSzu+tXmH+X8njQo3D5M2fd5fiu7cx5/XkEQcO0V95l7a955KVZ6TI8hv4TW9VwwSoqp+e///5j6dKlSJJEdHQ0U6dOxdf30j5Rqess25fO43P2Umhz4WvU8crVHbi6a93wEVZRUVFRUTlnJBGSN8OBhYrAYUkrW6czQathirjRZiSYGl73oeyWcKVbcSSbcSYrdlVigaPSdhpvHYYmJV0cTfwwRPui8a7/Nl0qKheDLEkc2LCGjbN+pChPya+IbNmawdffSnS7Dh6uTiHLbOf9VYf5/d8UJBl0GoEb+zZjxohYvA3qJCSV6sUuSqzPt7A4u4AVOWYK3GLpugCdlitC/bkqLJBBQX54aU8v/MmSxIZZP/LvgtkAaAztaH/Z9Vxxqzp4XT4c/OGHH8bPr7JtfJ7LzdTdx9hjseGv0/Brp5b0CKj7QqbodvPprdNw2W3c8OZHhDdrUbru34VzEFY+S4+QE6DRw/WzocVlniu2HqIKGpcQCTv+ZcE7ryCJIh0vv4Lh/7uvbs1M2vY1LJ2hPB76PAx8+LSbuhx2fnj0XgozM+h25VgiWl/Fmp8OYvTWcf3LfTH5qBckKrWPJEksX76crVu3AtCxY0fGjh2LXq/+PdZV7C6Rlxcf4JetyQB0jg7go2ldaRpS90+QVFRUVFRUzogkQdoOOLBAyd3IP162TqNXLpzbjVXsqXxCPVVljSOanTiTzYrIkWTBecIC7sqXtrpQL0XcKLnpG/kgqAHEKpcgLoedHUsXsnX+n7jsNgBa9ujDoOumExxVNyb8HM608PrSeNYcygagWYg3707urNpQqVw0VrfI6jwLS7ILWJVrxiqWdf2F6nWMDA1gdFgA/YN8MZxD95Lb6eSvT9/j8JaNAHQcOpEjO2IAgSvv6EiLrmE19VbqDd988w2pqakMHz6c/v37V7mN2S1y/Z4EthVa8dZq+LFjcwYE1e3M3PQjh/j1mUcw+fhy9ze/Vuh2y5v9BMH7PleeTPgGOl3joSrrL6qgcYlxaPNGlnz4FrIs0W3UOC678ba6JWps+hBWPqc8vvJt6P2/Kjfb8NsPbJv/J77BIVz/xif8+dpurIVO+k1sRdfhMbVYsIqKgt1uZ/bs2Rw9ehSAIUOGMGjQoLr1/6VSgUMZFu77bQeHM5WgwTsHt+Th4bEY1MELFRUVFZWGhiwrYZMHFiriRvbBsnWCBpr2h3bjIO4q8G/kuTprgdIujpKgcWeqBTG3chYHWgFDlK8ibpSIHLoQk3pup3LJYC3IZ/Ps39izehmypASHdxp2JX0nTasTweEA6w5n88ScPaQX2tEI8L9BLXloeGuMp7H8UVGpikKXmxW5ZpZmF7Imz4xdKhv+bGTUMyo0gNFhgfQO9EF7Ht8BxeZCFrz9CmmH49FodVxxx320HzyUzfOOsmN5Ml5+eqY+2xtvf8/n1XiS//77j8WLFxMWFsbdd9992u9ZqygyfW8i6/OLMGkEvunQnGEhdXe8eNuC2Wz49Xta9ujD1Y+Wc6HZ8yfMvQ2AdVnN6ffeFvSm+pUNUhdQBY1LkP3rVrPss/cB6DNxKv0nX+/hik5hzWuw7k3l8bhPoWvF+nJSkvjp8fuRRJGxjzxFYW4UWxck4Bdi4roX+qDVq4ORKrVLfn4+v/76K9nZ2eh0OsaPH0/79moofV1FlmV+2ZrMy4sP4HBLhPoaeX9KZwa2VmfHqKioqKhcImQfVoSN+IWQvrviuuheSudG27GXTDClaHXhTLXgTLbgSrXgTLEgFbsrbSd46Uotqgwx/hiifdH6XtoDUSoNn9zUFNb/OpOE7dsAMHh5K8HhV45BbzB6uDootLl4cdF+5u44AUBcpB/vTu5M+6i6Ibqo1E1ynG6W5xSyOLuAjflFuMoNeTY1GRgdFshVYQF08fdGcwFCdn76Cea+8QIFGekYvX0Y+8jTxHRQLKZEl8Sfb/xL7gkrLbqEMfKODpe0WG6z2Xj33Xdxu93cfvvtNG58+k4wuyjxv/3HWZFrRi8IfNauKWPCA2uv2PNg7uvPk7hrO5fdeDvdR49TFiashZ8ngeRid1FzVqU05tpX3qNR6zYerbU+ogoalyg7ly/m7+++AGDgtTfTa9wkD1dUDlmGFc/A5k+UGWMTv4EOE5VVksSsF54g7dABWvbozRV3PMbPz23BZRcZfks7YnupocsqtUtycjKzZs2iuLgYX19fpk2bdsYvYBXPUlDs5Ik5e1m2PwOAwbFhvDu5M6G+nr8YU1FRUVFR8Qj5x5W8jQMLIXVbxXWNOivCRtuxEBbrkfI8gSzLiHl2pYPj5C2tqEqrKm2wSRE4TlpVRfmiMaizw1UaHsn79rDu52/JSjwGgF9oGAOn3khc/8F1Ijh82b4Mnp63l1yrE71W4IGhrblzcEt0Z8g2ULm0SHc4S0O9NxcUIZVbF+ttYnRYAFeFB9LO5+K68VIP7mfBO69it5jxD4tgwhMvEBLdpMI22SkWZr/xH5IoM+zmtrTp07C7I8/G7Nmz2bdvHz179mT06NFn3NYlydwbn8SCrAI0wHtxTZjaKKR2Cj1HJFHkk1umVszPSN8DM0eB0wLtJzD7UGOS9u5i+P/updPQkZ4uud6hChqXMCfbnwCG3nIXXUac+UOjVpFlWPwQbJ8JGh1M+RnaXMme1ctY+dUn6I0mbn7vM3atLmDvmlTCYvy45okeCJpLV9VWqX12797NwoULEUWRyMhIpk2bRkCAOhOorrItMY8HZ+0krdCOXivw+Mg4bunfHI36uaGioqKioqJgToeDi5XcjaRNIJcb7gmLU4SNdmMhogNcYrNJZbeEK8NaQeRwZ9sqb6gBfaRPhTwOXZi3ep2i0iCQJYn4TevY+NuPWHKV/Irw5i257IZbadLe8wHHOUUOnp63l+X7MwHo0iSQdyd3pmWYr4crU/EUSTYHS7ILWZpdwH/m4grrOvl6MSpMsZNq7VM9lj8H/1nPsk/fQ3S7iWzZmqsfew6fwKAqt/1v6XG2LkzA4KVj6rO98Au+dG2Hjh49ys8//4zJZOKRRx45aw6pKMvMOJTCb+l5ALzSujG3Rdcdx4WMo4f55emHMfr4cPc3v6IpTIVvh0NRJjQbCNfPYd2sX/hv0Vy6jBjN0Fvu8nTJ9Y5z1Q10tViTSi3Ra9wkXHYbW+b+zurvPkdvMtF+8FBPl6UgCDD6PXAVw57f4Y8bsY6ZyfpffgKg/5TrkURf9q/bD0C/CS3ViwSVWmX79u0sWrQIgLZt2zJ+/HgMBtVyoC4iSjKf/H2UD1cfRpKV0MCPp3WjY7QqPqmoqKioqFTAvxH0ul25WXPg0FKlcyNhrZK7kX0Q1r8FQc2h7RgldyOqG9SB2dk1jaDTYIj2wxDtB32VZZLdXZrD4UwpwpliRrK4cKVZcaVZsW5VOkIFoxZDY98KIoc2QO0OVal/CBoN7QYOoXXvfuxYupBt8/8gK/EYf7z0FC2692LQddMJadzk7AeqIUJ9jXxxfXfm7TzB8wv3syulgNEfbeDxkXHc1LeZOpHpEuGw1c7S7AKWZBeyt6ii8NzD35vRYYGMCgugqVf1fQ7Lssy2BbPZ+NsPALTq2YdR981Abzy9SNFtRAyJe3LIOm5mzU/xjLm/yyVrPdWiRQv8/f0xm80cPnz4rBbeWkHg3TZN8NVq+Do1h2eOnKDILfJA04g68TNMObAXgOi2HdC4iuGXSYqYEd4epv4COiNhTZsDkJ2U6MlSGzxqh0YDRZZl1v7wNTv+WoggaLjqwceI7TPA02WVIbph9s0Qv4il6e2ILwghvFlLrnvtPVZ8e4BjO7KJaR/CmPs6e7pSlUuIgwcP8vvvvyPLMn369OGKK65AcwlcyNdH0gpsPPj7LrYlKjM3JnRrzEvjOuBrVHV6FRUVFRWVc8ZWAIeXK5kbR1eBu1yItn9jJUy83ViI6QuaS9duSZZlxEInzhRzqcDhSi1CdkmVttX6G0rDxk/mcmjU8xOVekZxYQGb5/zG7pV/IUsSgkZDp6Ej6XfNtXgHBHq0trQCG4/P2cOGIzkA9G0RwtvXdCI6yNujdalUP7Iss7/IxpJsJRPjSLGjdJ0G6Bvoy+iwAEaFBRJpPPPM/wtBdLtZ/d3n7F29HIBuo8Yx+IZb0JzD92F+hpXfX/0X0SUxaGosHS+Lrvb66gurV69mw4YNtGrViuuvP7esX1mWeft4Bu8dV7qy7m4SzrMtG3lc1Jj7xgsk7vyPy268je7ulbDzZ+V86bZV4B8FKELGj4/dh8HLm3tn/u7xmusbquWUCrIss/Krj9n79wo0Wh3jHn2aFl17erqsMtxOjn88hTlbXAjIXPvQnRA+iDlvbUcQYMozvQhprLaQqtQOSUlJ/PTTT7jdbrp27crYsWPVL546yvL9GTw2ew+FNhc+Bi2vjO/A+K6X7gmiioqKiopKteC0wpGVirhxeDk4i8rWeYdC3GhF3Gg+GLTVP3BU35BFGVdWMa5yVlWuTCucenUtgC7cW+kCiVE6QfSR3giq/79KPSD3RAobfv2BY/9tAcDg5UWvcdfQbfQ4jwaHy7LMz1uSeG3pQWwuEV+jjufGtOOa7tHqNVwDYH+RjdkZeSzNLiTJ7ixdrhcEBgb5clVYIFeEBhBqqDmx2FFczOIP3uD47h0IgobLbrqdbleOOa9j7F6dwsY/j6AzaJjyTC8Cwy9N0S0nJ4dPPvkEQRB46KGHzmss+PPkLF48lgbAjVEhvB4bjdZD/+OSKPLprdNw2oq5/n8TidjwICDA9KXQtF/pdqLbxUc3XoMkurnt428JCI/wSL31FVXQUAFAkkT++uQ9Dm5ah05vYMKTL9QJD0wAl9PBj4/cTUFWJl2DTjCkWT7zpJ9IT3bRtl8jLr+xradLVLlEyMzMZObMmdjtdmJjY5kyZQpa7aU7C7GuYneJvLoknp+2JAHQKTqAj6Z2pVmoj4crU1FRUVFRaWC47IodVfxCOLgE7AVl60wB0GaUYk3V8nLQe3mqyjqH5BRxpRaVWFUpN7HAUWk7Qa9BH3WKVVWQUR2IVamzpOzfw7qfvyMz4SgAviGhDJhyA+0GDvFocPjxHCuP/Lmb7Un5AAxrG85rEzoS7nfpZhbUV2RZZm2ehc9SstiQXyaomzQClwf7MyosgOEh/gToa77jzZKbw9w3XiAn+Tg6o5HR9z9Gqx69z/s4siSz4MOdnDhUQKOWAVz9SLdL1h7t22+/JSUlhWHDhjFgwPm5x/yclsujh1KQgQkRQXwYF4PeAz/HjGNH+OWphzB6eXF32+1obLnQ/0EY/mKlbX987D6ykxIZN+MZWvXsU+u11mdUQUOlFNHtZtH7r3Psv63ojSYmPfMKUbFxni6LjbN+ZOu8P/ANCubmzic4kaThr4In0ekFrnupL75B6kmISs1TUFDAt99+i8VioUmTJtxwww1qZkYd5HCmhft+3cmhTAsAdwxqwSNXtMGgU2c3qqioqKio1CiiC45vgPhFEL8YrFll6/Q+EHuFIm60vgKMfp6rs44iWpwVAsedqRZku1hpO42PvoLAYYj2ReOtdsKo1B1kSeLgpnVsmPUjlpyS4PBmLRl8wy3EdPCcVbQoyXy1PoH3Vx7GKUoEeet5fUJHRnZo5LGaVM4dpyQxP6uAz5OziLcqtodaAa4MDWBceBCXh/jhU4uTDbOOJzDvjRcoys/DJzCI8Y8/T0SLVhd8PHOujVkvb8NlF+k7viXdRjStxmrrDyezSkNDQ7nnnnvOW8Cfn5nPvfFJuGUYEerPl+2aYarlTsf/Fs1l3c/f0SJCw/jgdRDZEW77G3SVx4/++vQ9Dqz/m37XXEffSdNqtc76jipo1CPMdhe/bU0mPt3MB1O71shruJ1O5r31Esl7d2H08WHyc68T3qxFjbzWuZCTksRPj9+PJIqMfeQpWraL47enV1LgCKN78HL6PHYPBMZ4rD6VS4Pi4mK+++47cnJyCAsLY/r06Xh7X5ptoHUVWZb5bVsKLy3ej90lEepr4L3JXRgUG+bp0lRUVFRUVC49JBFStiqB4vGLwJxatk5rhFZDoe1YaDMSvII8V2cdRpZk3Dm2CgKHK90KYuXLcl2oVwWRQ9/IB0GdzKHiYVxOBzv/WsTWeX/gtBUD0KJbTyU4PNpz1/AHM8w8/PtuDqSbAbimezTPj22vZuzVUcxukZ/ScvkmNZt0hwsAb62G6xuFcFt0KDHVGOx9riTu/I9FH7yJy24jJDqGCU+8gH9Y+EUf98CmNNb8dBCNTmDykz0vSWt1u93OO++8g9vt5rbbbiM6+vwto1fkFHL7/uM4JJkBgb780LE5PrraE7vmvfkiCTv+ZXB4Aj3Cc+COdRBetbPMSfGjda9+jH3kqVqrsSGgChr1CIvdRbeXV+ISZf5+ZDAtwmrmw81ltzP7tedIO3QAL/8AprzwBiGNm9TIa50JWZL4/cUnOHHwAC179GbcjGfYvyGNdb8ewqQt4vqQOzCGRMAty8AvstbrU7k0cDqd/Pjjj6SmpuLv78+tt95KQECAp8tSKUdhsYsn5+1h6d4MAAbFhvHuNZ0J8/OcX6+KioqKiopKCbIMaTtKxI2FkJdQtk6jg+aDFHEjbjT4XvyAUENGdkk404twJltK7arEXHvlDbWCYlUV7Yshxh9DtC+6UC/VqkrFIxSbC9k8+zf2rPoLSRQRBA0dh15Bv2uuwyfQM4Km0y3x/qrDfLHuGLIMTYK9eH9yF3o0C/ZIPSqVOWF38nVqNj+n5VIkSgCEG3TcHh3GDVEhBNaCpVRV7F65lNXffYEsScR06MyYh5/E5FM9Y3OyLLPksz0k7c0ltIkvkx7vgfYSFKfnzJnD3r176dGjB1ddddUFHWNjvoWb9iZiFSW6+3vzS6cWtfI3I0kin06fgtNu5/pmO4kY/wz0ueu02yft2cXsV58hMKIRt370dY3X15BQBY16xvXfbGXj0RyeGd2W2wbWXOeEo9jKHy89RVbiMXyDgpnywpsERtZuK+ae1ctZ+dXH6I0mbn7vM0y+wfz87GZsFhcDx4XT6dC1UJAEYXFw81LwCanV+lQaPqIoMmvWLI4cOYLJZOKWW24hPFy90K5L/Hc8jwdm7eJEgQ2dRuCxkW24bUCLS9ZzVEVFRUVFpU4jy5B1oEzcyDpQtk7QQExfRdxoOwYCGnuuznqEaHXhKpfF4UyxIBW7K20neOkUgaN8Hoevap+qUnvkpaWy4dfvOfqvEhyuN3nRa+xEul91NXqjZ2yktyXm8dDvyrWERoC7LmvJA0NjVbtaD7K/yMbnyVnMz8rHXTIKGett4q6YMCZEBGH0UBaLLEls+O0H/l04B4D2g4cx/H/3oNVVr+WftdDBby9txWF102NUM3qP9ZxjiqdISEjgxx9/xGg0MmPGDPT6C/sZ7zBbuXZ3AgVukXY+Jn7v0pIwQ81aNGYePcjPT8/AoHFzzwg9mhsXwBn+ZovNhXx++3UA3PfDnxhMat7YuaIKGvWM7zYm8tLiA/RrGcKvt9dsYEyxuZA/XnyS3NRkfIKCmfT0y4Q2qR0fP2tBPjMfvhOH1crgG26lx1Xj2bYogX+XHCcgzItpz/dGa0mG764ESxpEdoKbFoFXYK3Up9LwkWWZ+fPns3v3bnQ6HTfeeCMxMaq9WV1BlGQ+XXOUD1YdRpKhaYg3H0/rSqfoQE+XpqKioqKionKu5BxVhI34hZC2s+K6xt0VcaPdWAi+9AZ0LhRZlhHz7BXzONKKKB0ZLIc2yFjRqirKF42h9mw5VC5NUuP3se6nb8k4dgQA3+AQ+k+5gXaDhqDR1P7fn9nu4oWF+5m74wQAHRsH8P6ULrQKv/TsfjyFLMuszy/is+Qs1uVbSpf3C/TlriZhDA3xR+PBDjOX08GyT9/n8JaNSl2Tr6PPhKk11vV25L9MVnyzH0EjMPHR7kQ0v7TGRCVJ4oMPPsBsNjNp0iQ6dOhwwceKL7Ixefcxsp1uWnoZ+b1LS6JNNSfm//fBPazbnEQLfzPj3/ntnCZnfHHnjVjz85j28ttExVZtTaVSGVXQqGck5VoZ/PZadBqBHc8Nx99Us+qitSCf2a88Q05KEiZfPyY88QKNWrep0dcEWPrxO8RvXEtYsxZc/9r72Irc/PzcFtwOkRG3d6BV95JZ8jlHYOaVYM2G6F5wwzwwqiceKhfPqlWr2LhxI4IgMHXqVNq0qfm/e5VzI73QxoOzdrE1MQ+A8V0b8/LVHVTfWxUVFRUVlfpMQbKSt3FgoZK/QbnLz4iOirDRdozSna1aJ50XsijhSrcqNlUldlXuLFvlDTWgj/CpIHLowr0R1M5XlWpGliQObd7Aht9+wJydBUDjuHZc9eAT+AZ5xvZp6d50npq3l4JiFya9hqdGteWGPk1Vq7YaxC3JLMwu4NPkTPYXKfZ5GmBMeCB3NQmni7/ncyuLzYXMf/tl0g8fRKPVMeKuB2g3cEiNv+6Kb/Zx5L8sgiK9mfxUT3SXmNj8999/s379elq2bMkNN9xwUcdKKHZwza6jnHC4aGzU80eXlrT0roGusJRtzHvhQRKKghk0rAc9b3/hnHab8/rzHN+1nWG33U3n4aOqv64Giipo1EOGvruWY9lWPruuG6M61rwNlK3Iwrw3XiD9yCH0RhPjHn2Gph271NjrHd+zkzmvPguCwHWvvEtkq1jW/nKQ/RvSiGjuz8THulc8qcjYB9+PBnsBNBsI1/0JerVNS+XC2bx5M8uXLwdg3LhxdO3a1cMVqZxkxf4MHpuzh4JiF94GLa9c3YEJ3c4/KExFRUVFRUWlDmPJgIOLFXHj+EaQxbJ1Ia1LxI2x0KizKm5cIJLdXZLDUVTSyWFGsrgqbScYtJWtqgLUnDKV6sHtdLJz+WK2zPkNp82GT1AwYx56ksZtPDNLOdNsZ8afu9lwJAeAwbFhvD2pE+H+nrHEaqgUixK/pefyRUo2KXYnAF4aDddFBXN7dBhNPRD0XRV5aSeY+8bzFGZmYPLxZeyMp2nSrmOtvLbd6uK3l7ZSXOik8+VNGDC5da28bl0hNzeXjz/+GEEQeOihhy56XPiE3cnkXcc4ZnMQqtfxR5eWtPOtxnFDRxHS5wP4bGsEDknPda++R2Sr2HPadf0vM/l34Rw6D7+SYbfdU301NXBUQaMe8uqSA3y9IZGJ3aJ5d3LnWnlNp93GgndeJXnvLrQ6HaMfeIzWvfpV++u4nA5+nHEvBZnpdBlxFUNvuZO8NCuzXt6KLMP4R7oR1Tqw8o4ntsMP48BpgdYjYMrPoFM9YT2BaHFii8/FfjAfRAmNrwGtnwGtnx6NnwGtvwGtrwGNnwGNse7NMti7dy9z5ii+mEOHDmXgwIEerkgFwO4SeX1pPD9sTgKgQ2N/Pp7WjeahPh6uTEVFRUVFRaVGsebC4b8UcSNhDYjOsnWBMSW2VOOgcY8z+lSrnBlZlhELnRWsqlwnLMhOqdK2Gn9DBYHDEO2LRu2UVbkI8tNPsOCdV8lNTUaj1XLZTbfT5YrRHumOkCSZHzcf5/W/DuJwSwR563l9QkdGdqjdTNGGSJ7LzczUHL49kU2eSxGqg/VabosOY3rjUII8FPRdFanx+1jwzqvYiywEhEcw/okXCGncpFZrOL43hyWf7gHg6oe60rhNUK2+vqf57rvvSE5OrrZxmWyni6m7j7G/yE6ATsvQEH9iTAZivAzEmAw09TISZdSjvZDPnYX3k/nPbH5O7IbBZOKe735Hoz238a74jWtZ+vE7NIqN49qX3zn/175EUQWNeoYo2lgbv59bf84kxMfAtqeHoa2lFmC3y8XSj97myLZ/EAQNI+56gPaDh1bra2yc9RNb5/2Ob1AwN7/3BUZvb5Z8tofje3Jo3jmUUXd1Ov3OxzfBzxPBbYN2V8PEb0Fbd74QGzLuHBu2/bnYDuTiTDZXcAg4E4JBWyZ0lNw0fvqS+3LLfPS10up+7NgxfvnlFyRJonfv3owcObJGTqLdeXbEIicakw7BqEVj1CIYtGo7/2k4mmXh3l93cjBD8VO9fWBzHh0Rp4b1qaioqKioXGrYC+HwCohfAEdWKef9J/FvXCZuNOmtihvVgCzKuLOLS22qnMkWXJnWyuf6AujCvTFE+2GI8cMQ7Yc+0htBq/4OVM4dp93G8i8+4vDmDQC0G3Q5w26/B73BM7P1j2RaeGDWLg6kmwG4pns0z49tr9rcXgApdidfpmTxS1oeNkkRSWNMBu6KCWdKZDDedeyzIn7TOpZ/9j6i202jVm24+rFn8Q4I9Egta34+yIGNafgFm5j6bC8MXpfO39+OHTtYuHAhISEh3HvvvdUyNlPgcnP9ngT+MxdXuV4nQLSpTOAoEzyUx8F6beU6Di6FWdPYntuYtVktaN6lOxOefPGca8pJSeKHGfegN3lx38zfEdTzl3NCFTTqEcXFiezcdTMOl50H1ryIxS4y9+5+dIupPZVWEkVWfPUx+9euAmDITbfTbdS4ajl2TkoSPz3+AJLoZuzDT9G6dz/SjuQz792dCBqBac/1IijyLLOxj66C36YpM7c6XwvjPlUvZmoAWZZxnSgqFTHcmRW/DPTRvni1D0Hra0AsciKanUhFLkSLE9HiRDI7kV2VZ3udFgE0vnq0vkqHR010faSlpfH999/jdDpp3749EydORFNNfzuS3Y3jaAH2I/nYjxQg5tmr3E4waBWBw6QtEzqMupL78svLCSFGbUVhxKRF0DcMcUSWZX7/N4UXFu3H7pII8THwzuTODGkT7unSVFRUVFRUVDyN0wpHVyuB4oeWKZ3aJ/GNVPI22l8NMX3BA0HDDRXJKeJKLSqxq1JuYoGj0naCXoM+6hSrqiCjmkegckZkWWb74nms//V7ZEkivFlLxj7yFAHhER6px+mWeH/VYb5YdwxZhibBXrw/uQs9mnkm56O+EV9k49PkLOZl5SOWjCh28PXi3phwrgoLRFfHrlllWWbb/D/ZOOtHAFr17Muo+x5Bb/Sc5ZjT7mbWy9uw5Npp278Rl99w6YRGOxwO3nnnHVwuF7feeitNmlRPh4xDkvg710yCzUmyzUGy3UmyzUmK3YnzLEPf/joNT7WI4ubGocqCoiz4rC8U5zDfOppjyWYGXnszvcZNOud6JFHkoxsnIrrd3Prh1wRGqt1g58K56gaXjgRYhzGZGqPVeiHbU+nWKJN1iaH8HZ9Vq4KGRqtlxJ0PYPLxZfuS+az54WtsRUX0u+baizo5lSWJVd98iiS6adG9F6169UWWZTbNOQZAuwFRZxczAFoNg0kz4Y8bYfevYPCGUe/UGW9dSZZJsTs5ZLVTJEroBAG9AHqNBr0goBNQ7jUChpJ7Zblyry95btBoMGqEC2uFu0BkUcKRWIhtfy72A7mIheXa/TUCxpYBeLULwdQuBN05+OpKDjeixYVUInKIFieSpZzocfLe6gIZJIsLyeLClW4943Gr7vo4RQA5pesjNzeXn3/+GafTSfPmzRk/fvxFiRmyKONMteAoETCcKWYor99oBLT+BmSniGQXQVK+NGWnqCyzVH3c80EwaiuLHoYqRBGTttxyXakoclJMEQwaj1x4FtpcPDV3L0v2pgMwsHUo707uTLif6l+roqKioqKiAhh8lCyNdmPBZVfsqPbPh0N/QVEG/Pu1cvMJU8SNdldD0/5qB/dFojFoMbYIwNgioHSZaKloVeVMtSDbRZxJZpxJ5rJ9ffVKF0d5qypvvSfehkodRRAEeoyZQHjzViz+8E2yjh/j5ycfZPT9j9Ksc7dar8eg0/D4yDiGtAnnod93kZJnY/KXm7n7slY8MKw1+jrWWVAXkGWZLYVWPknKYnVe2f//gEBf7m0azuAgvzopbIpuN6u++Yx9a1YA0H301Qy6fjoaDwviBpOOoTe1Zf77O4nflE6LLmE06xjq0ZpqC6PRSLt27di9eze7du2qNkHDqNFwZVhgpeWSLJPhcJFUInAk2R0k25wk250k2RxkOt2Y3RJPHU6lva8XPf29YeF9UJyDHNaeE8nKoE+T9ueXs6LRagmJbkrW8WNkJyWqgkY1o3Zo1BHy87eyY+e1bE7ryTf7bqBtI3/+eqD2Pf5lWWbrvD/Y9PtPAHQdOYYhN91+wa1Re/9ewYovP0JvNHHze5/hHxrO0e1ZLP96Hzqjlutf6oPP+YTP7fkT5t4OyNDvfhj+Uq2LGtlOFweL7By02om32jhotXPIascqnkdnwlnQCmAoETgMJSKIQVMieJQIIAaNgFFQ1us1AkaNpnQ7o0ZALyjiSOl+JcfRawSMCEQkWmieVIx8qADZ7i59bcGgwdQmWBEx2gTV2MWILMpI1lOEjuro+tCAxseAw0dkXtEmzG4r4T4hTOk9Bq8gnwpiiMZw9pMYd54d+5F8RcQ4WljhZwWgC/XC2DoQU2wQxhYBpT7DsiyDW0ZyuJEdisAhO8Sy546S5/ZTnle53F1ROKkOBEUkKu3+KN8xUmWHiA6NobwoUiKemLQI+nMTR7Yn5XH/b7s4UWBDpxGYMaIN/xvYAk0dm8GjoqKioqKiUgdxOyBhHRxYoASL2wvK1nmHQNxVii1V80GgVQfTawJZknHn2ErFDWeKRZmUJFYeUtCFelXo4tA38kFQbUVVAHNONovee42MY0dAEBgw5QZ6XX2NxwbDLXYXLyw8wJwdqQB0aRLIh1O70DREzfQDZdb76lwznyZnsb3EzkcArgoL5J6YcLr4e3u2wDPgKLay6P03SNqzE0HQMGT6/+g64ipPl1WBjX8eYffqFLz9DUx7rjcm30vj+ysxMZEffvgBo9HIjBkz0Os9975tosSjh1KYnZlPE5OBDdrNmJY+DFoDWaN/5ac3P0Rv8uLe72adc37GSZZ99gH7162iz8Rp9J98XQ29g4aF2qFRzwgK6k1k5NV0cK5EQCI+3UxagY2oQK9arUMQBPpMmILRx4e/v/uCncsW4bAWccWdD6DVnd+fS3FhAet//g6Aftdci39oOKJbYvN8pTuj6/CY8xMzADpdA65iWHQ//PMRGHzhssfP7xjniNUtcshqJ95q56DVRnyJiJHjcle5vUEQaO1jJEinwy3LuEpubqnssUuSS9e5ZRmXBC5Zwn3KNYAog02WsUlitb+v5kUiz+y307RAKh0jd3lp8W0Xgm+HUEytAhH0NT9bQdAq3Qxa/7OHvJd2fZhLRI/STg9X5a4PCeyWYpY4tmPWWPGXvBiW2xbb0hRspxxXMGhLrK70Fe2tfHS40q04jhTgzqm4l2DSYWodqIgYrYLQBVfdWSAIAugFtHoD+F7oT0lBEUekcqKIInJUeu4Qke2nPD+5vtxyZEAG2SEiOkQwn7WEMyNQuTuknLWWbNAwMzOfzxOzEGVo4mPkncGt6RIdgDvdWkFEOVdxREVFRUVFReUSQ2eE2CuUm/gBJJaIG/GLoTgXdvyg3LyCFHGjw0RF3FBtqaoNQSOgD/dGH+6NT3fFKkh2STjTi8oCx1MsuHPtuHNsuHNsFO/MUnbWCuijfDE28UNfInLoQkzqeV89R5ZlZNmFJLmQZSeS5EKSnCXLnEiyC5MxCoOhzMrJPzSMKS+8yd8zv2Dv3yvYOOtHMo4dYeTdD2H0rv3BcT+Tnncnd2ZIXBhPzd3LrpQCRn24gRfHdWBit8aX5N9ortPN6jwzK3IKWZNnKZ28adQITIkM5q4m4TT39kwGyrlizslm3psvkpN8HJ3RyFUPPE7L7r08XVYl+oxrQfL+XPIzilk36xAjbuvg6ZIAkCQX+fmbycxaSn7+P/j5daB1qyfx8qqeboqmTZuWDlofPHiQjh3Pr/uhOvHSang9NpqthVZ0eQkIO55SVgx9jtQMRcRrHNfuvMUMgLCmzQHISU6stnpVFFRBow7RqtWT5OT8TcvARI4WtGTNoSyu693UI7V0HXEVJm8f/vrsfQ5sWIPDVsxVDzyOznD2weeTrP3pW+zWIsKaNi/N49i3/gTmbBte/ga6DLvAD8LuNyneusufhLWvKfZT/e67sGOVQ5ZldltsLMwqYFlOIQm2yp6xoMxGaOploK2PF3E+JuJ8TbT18aKFl/GCvSLlcoKHQ5ZxSjJOScJZ8tghybhKnjtOWaesl3CWCCcn1596HLdLovc+M5ftK0YngU0nMLexjjUROvYEavHWORiNlWuKDPQN9K1V26uzoTHqlM6H0DMLfLIo4yws5tc/Z5GbXoS3wYtJnUfj5zZVEkBkl4TsFBXBIudUqaP8i4Mhxh9T6yCMrQMxRPvVeo6FIo5o0eq14Hdxx5JlWXnv9iq6RU4RSsrEEDeSU6xyn1JxxC4i2isLcNlIvIyNHSjrhqHjUasBn6XJZFdVoAYEg+4UUeSUbpFy3SEVnp+SR4JOuCQvQFRUVFRUVBo8Wr1iSdtqGIx+H5I2KrZU8YugOAd2/qTcfCOg/XjoMAmie9QZu9qGhKDXYIzxxxhTNotStLpwpVa0qpKsblwlgkfpvl46DNGn5HH4nv56U5YlJMmOKNpL7m2Ikg1JtCNKdiTRhijakCRHyXJb2bZSyWPRVrKtvdK+kuxCq/VCq/VFq/VGp/NBq1VuOq0PWq03Wl3JupLlWp0POq03Go0JjcZYxc1w0eejsiwq4oDkQpKdyJKzVCyQS5e7yi13IktlgoIkVXwuS46Kyys8LjlGOVGibPkpYkWJiHEumExN8PfviL9/Z/z9OuHn154r7rifyFax/P3dFxz9dzO/PJ3CuEeeJiS6egZMz5erOkXRNSaIh37fxbbEPGb8uZu1h7J49eqOBFwCFmpHi+0szzGzMqeQbYXWCgYB4QYdUyODuS06jHBj3f9ZZCYcZd5bL2HNz8MnMIjxjz9PRItWni6rSnQGLcOmt2P2m9s5+l8WLbpk0rqHZ7JlJMlNfsEWsjKXkJW9Are7oHSd3X6C3Ny1NG16F01j/odWe3GClkajoUuXLqxbt46dO3d6VNAA8NNp+bRNFNqZt2IU7WQ37ktYn3tIee81AJq0u7D6Tgoa2UmqoFHdqJZTdYzU1F94b9kG5h4dw5DYQGbe0t+j9RzbvpXF77+J2+WkSbuOjHv02XOaNZG0ZxezX30GBIFrX3mHRq3a4LC5+fmZzditLgZf24YOgxpfXHHr34a/X1Eej34Pet563oeQZZn9RYqIsTC7gOO2iidk4QYdcT6KYBHnayLOx4tYHyM+F6DMehJnqoX82UdwZSg5Faa4YALHtyJRJzM3M5/Zmfmk2MveeyOjngkRQUyKCKKtb+12CV0MkiQxe/ZsDhw4gMFgYPr06TRqVNmnUJZlpTvh1HyPEssrsciFLtikdGK0DERjUrXfqqhSHClnrbUmKY9ndiRR4BLx0gg83iSM0T7e4JQqWW3JjurvRkIrnGKjdWq+yKkh7CXWW6daa5l0qkWCioqKiopKfUASIWkT7JsLB+aDLb9sXWBT6DhJETci2nmsxIaIJLlLRIPyQoENUXKUigwusxlnbiGuvAKcZgvuIguS4EDWOJG0TmStE0nrAIOI7OUGgxtJ70QWHMpxJEWoqI9ULXQoYgfI5YQCZwWh4OTy6veerUk0aDQGNBo9gmBAELQ4nVlVbufj0wp//87I9nD+/fMfchNt6A3eXHn3Q7Tu3a/WKz+JKMl8se4Y7688jFuSiQow8f6ULvRuEeKxmmoCtySzrdDKitxCVuSYK03obO9r4oqQAK4IDaCznxeaeiIIJ+z4l8UfvInLYSckOoYJT76Af2i4p8s6K1sXJfDfkuMYfXRMe673+buZXCCyLJKfv5WsrKVkZS/H5corXafXBxMefiXBQf1JTf2R/IItAHh5xRAb+zyhIZdd1Gvn5eXx0UcfAfDQQw8REBBwlj1qmLVvwtrXKNT6Mq7P9/zcfyAL7puOvcjCtJffISo27rwPabOY+ey2awG4d+YfHulCq2+cq26gChp1DFkWmbP6NmasmoRBK7L7+dF4nYPPf02ScmAv8996CafNRkSL1kx48gW8/U//QeNyOvjx0XspyEiny4irGHrLnQBsnn+MHcuSCIr0ZuqzvdBcbNCWLMPqF2Hj+4AA47+AzlPPadf4kyJGVgHHyn1xe2kEhoUEMDY8kH6BvoQY6vdAtuQUMa9KpmhDKsig8dEROKYlXp3DKswUkmSZfwutzM7MZ2FWAYXussHl9r4mJkUEMz4iiMg6PBtDlmWWLl3Kv//+i0aj4frrr6dFixaeLuuSxO4SeeOvg3z/z3EA2kf589G0rrQMO733lizJyK7y1lglIon99B0klay1TnaWOGtaHKm6O+TUDpHyIewVhBVVHFFRUVFRUal53E4lUHzvbDi4BFzWsnXh7RRLqo6TIKiZx0qsSU5aASkdCrYzdzVUEiLKnle1f+m+Jctl2VXr708ZNPdCq/VCozGW3Huh1ZrQaExKp4XGhKb03oRW41Vyf3K5FxqtEW3JcQRBhygWI4rFuEUrotuKKCo3t1iMKBYhukvWld6KcbutSJKj3M1eo+9dEBTBQKMxoBEMCKWP9QglYkLF5WfaxlC6XKMp2a7CY0NJl0nJ/hWWl2xX4XHlsQuXy4zFshezeQ9myx7M5j04HBmVtpMlDcXZRoqzTEQ2GUSvkQ/i7R1Toz/LM7ErpYAHZ+3keG4xggB3X9aSB4fF1uvAcLNbZE2emZU5Zlblmikod92vFwQGBPkyPMSf4aEBNDGduztHXWHX8iX8PfNLZFkipmMXxj78JEbv+pGFIrolZr/5HzkpRTTtEMLoezrVmNuALIsUFPxHZtZSsrL+wuXKLV2n1wcTHjaC8PBRBAb2QqMpywjNzFrMkSOvlYqUYaHDad36Gby8oi+4lpkzZ5KUlMTll1/OoEGDLu6NXQyp2+Hb4SCLvNXlJd4LGMxwp5ku372F3mjinu9mnbcN/0m+vOsmivJymfLim0THta/mwhseqqBRjyks3MOQ93eTZw/mw4m+jOs52NMlkZlwlNmvPYfdYia4cRMGTLsRAQFZlpSTZUkufXz4nw0c/W8LRh8f+k++AZ3BgN0q8d9feiRJIK63g+BG7kr7yZJyT7nHVR3/1O1a5c6jieUfZAT2Bk8j09S+yv3S9Ca2+Ufwb2Ak6aaygVWdJNKhMIvuual0yEvHICq1+YWEEhwVTXDjaIKjogkIj7wgzzxPYT9WQMHcI7hzlRNqry5hBF7V4oxt3KCEfq3KNTMnI5+VuWZcJR8RGmBgkB8TI4MYHRZQ57pU1q9fz99//w3ApEmT6NChbnhPXmoczSrivt92Ep+uBHPcOqA5j41sg1FXe38vsiQjO08KHO4KXSCnLjt9OLu7RBypgRlxOqHMIuu0llolQexnem7UItTjCyoVFRUVFZVaw2mFw8tg7xw4sgKkcgPw0T2Vro3248Gv5m0+ZFkuHfRW7JEq3le2QyoTEBQxocxSqaK4ULJ/yXpJsiHLNTDJ4yycFBOU+/LigiImnPq8vOggSAbkApByZcRsCSlTBIsGQTKgEQ0IogGNZESjNWGM9q9oVVVLs5nPhbJciZMCh1P5nYn2U4QPBwiaKgWEiiKCvlQ0EAR9g7BUdTgyFYHj5M2yB7e7crCfn28nIiPHEB5+JSZT5c77msbqcPPiov388Z8SGN45OoAPp3alWWj9GCQ/SbEo8WZCOj8mZSA4HehEEZ3oJkyQGeDnxSBfEz29DXjJErLLjexyIbtdyr3LBbKMV5cu6MPrZqeDLEms//V7/ls0F4D2lw1j+O33XvAAtKfIPVHEH6//i+SWGXJDHO36R1XbsWVZprBwO5lZi8nKWobTWWYArdMFEh52BeERowkK7FMqYlSF211EYuJHpKR+jyyLaDQmmjW7m6Yxt6HRnP/n8M6dO1mwYAHBwcHcd999tff5JstgyYC8BMhPhA3vKo/bTyBh1OcM236YuF2bGLppCc06d2PiUy9d8EvNfeMFEnf+x+W33FnnQunrIqqgUc+57/vvWHQwgmHN9vDV/x6+oA+G6iY3NYXZrz1LUW7Oee+r874CnbEDkisVZ9Ef1VyZzIhGR+gQmIkoC8xPacdxqxI6lu8fzMFWHTnYsiM5IZGle2hFN82Tj9AmYR+tjsdjcJ3d+1Oj1RHUKKpE4GhSKnQERzXG4FV32sYku5vCvxKxblVmvWj9DQSOb4VX2/Nvkc13uVmUVcDszHy2FZbNamts1PNNh+Z09a8b73v79u0sWrQIgCuvvJLevXt7uKJLD1mW+eO/FF5YeACbSyTYx8C713RmSFzdPOk9V2SxRBw5U/C6XSzJGDmlW+SUZbKrJsQRTeW8kSryRM4qnhh1CNr6f3GsoqKioqJyVmz5StbG3tlwfAPIyvezLGiQWgxAbDsasdVgJL2+TFwQbVV0OZzsbrAhieUEhpM2S6d2NZRmP5whu63G0FQQGbRab6Wr4aSocHLdSXGh/LZVCA9l68sLF0qnRHUORsmyjGh24kxWcjicyRZcJyxVTjjR+BvKBI5oPwzRvqptbD1ClmVstuOYzXs5fmgp2emb8AotRig3dycwoCfhEaMJD78SoyG0VutbsiedJ+fuwWx3423Q8sLY9lzTPbpeiEvbC608sD+R4b/MZMKa5eikCxQ6tVp8Bw0i8JpJ+A4ahFBHxAKX08Ffn7zLka3/ANB/yg30Hj+5XvxuqmLHiiQ2zz2G3qhl6rO98D9LjujZkGWZvLyNJCS8h9myp3S5TudPWNgVRISPJiioLxrN+blxFBUd4tDhFyko2AqAl1dT2sS+QEjI+XVZOBwO3nnnHVwuF7fccgsxMdXYlSW6wZyqCBV5iSXixfGye1dxxe39ouDuf8AriF/Scln/0ZvEJh6g1YRpjJty3QWXseG3H9g2/086DR3J8P/de1Fv6VJAFTTqOav2H+e2n/YTZMxn7s1mmje/29MlAWDOzmLND19jzc8DjYAgaBAEoSQkWSD7eAKOYite/v5ENG+FRqvF5fQh+0RXQCAsei9e3sWgKdlPEBBKH2sQNEKFx5Q7/snXoqr9BJk2J74n1LwdUdDzdZun+TG0LwlaU2ntWlmmm2RnoFRMP9mBr0ClY588pizLmLOzyD2RQl5aKvlpJ3A7T+/Z6hscUtrNEdU6jpY9entE5LDF51Iw7yiiWRFofHpHEnBl82o5mU+yOZiTmc8vabmccLgwCAIvtW7MTVEhHj1ZOHjwIL///juyLDNw4ECGDh3qsVouVcx2F0/N3cviPekA9G8VwvuTuxDubzrLnpcWsigrIojzFGut03SHlM8jqdhNIoK7+sURQa+p0A2i5IxUFD2UdWd4XpJPonwnqKioqKioVD+yLOJ2W3G7LbhFC6K7SHlc7iaK1opdDJKjtLvhZB6DKNqQ3FZEVxGSZEfyQNOjMgPfqIRNn7RFOkUkqGShdKqgcIqlUlUWTA1lVj8onbjurOKywPEUi5ITeOqohgC6MO8KXRz6SG+1u7WekHHsCAvefxJTeBqhbR2YQgrKrdUQFNSbiPDRhIWNwGAIrpWa0gpsPPT7LrYmKhkDozs24rXxdTcw3CFJvJ2YwdfHTvDE959y2Y6tFTfQaBD0egSdTrnX60Ff8linr7BOsttxxMeX7qoNCyXw6vEETpyAoVmz2n1j5SguLGD+2y+TfuQQWp2OEXc+QNuBQzxWT3UgSTLz39tB+tFColoHcvVDXS/42io/fxsJCe9RUPgvABqNFxHhVxIePorg4P4lOT4XjizLZGYu4sjR10o7PsLCRhDb+hlMpnPvLpk/fz67du2iW7dujB079sILKkyFzZ9BzmFFtChIAsl9+u0FDQQ0geDmENwS+twNoUp4vCSKvH3rtehsVtZNvYdZY0fgfYHfHwf/Wc+SD9+iUas2XPvquxd0jEsJVdCo59hdIl1e/Au7W+DFfu8xefj3eHk18XRZZ2TvmhWs+OIjdEYj09/9HP8wZWb2oo93kbw/j5bdwhn5v5qxAUq1O1mSkU3nv+6gT+YGrBovrun8LrsD2jMg0I9x4YFcGRZAkP7CBvZlScKSm0NeicCRl5ZK3olUck+kUFxYUGl7ncFIy+69iOs/mGZduqPT1+xJjljkpGBRArbdypeILsRE0MTWGFsEVvtrmd0iD8Qn81dOIQCTIoJ4s020RyyokpKS+Omnn3C73XTt2pWxY8c2mIu1+sKO5Hzu/20nqfk2tBqBR66I5c5BLdGoA9o1iixKFTpBKokiVVlr2U+12lKe467+0wDBoKkoeBiqstA6e/eIKo6oqKioNDwkyYXbbcbtNuNym3G7zBWfn7yVLrfgFk+KFkWIYlGN16gRZTSSjFaS0UgCWoM/Wq9wNN4RJSLCyc6FcoJDJaGhZJuT4sSpmQ4a0xltPVTOHckp4jpRVEHkEAsqT0YT9Br0Ub4VraqCqrerRKX6yEtLZfYrz2LJzSYw2o9+N/egyLEJs3l36TaCoCU4qD/hEaMJC70Cvb5mx5hESebL9cd4b4USGN6oJDC8Tx0LDN9tKeb++GRSc/J4+Yt36Xr4AOh0RL3+On5XDFeEivO8fnckJFAwew6FCxYg5pZlLnj36EHApIn4jxiBxqusm0CWZWSXhKDT1Mj5fF5aKnPfeIHCzAxMPr6MnfE0Tdp1rPbX8QSF2cXMeuVf3A6RAde0pvPQ8xsLLCzcRULC++TlbwSUzKHGja+nWdM7MNRAd5PbbSEh8SNSU38otaFq3uxeYmJuOSe3mePHj/P9999jMBiYMWMGBsMFCC3FefD15Yp9VHm0BiUrK7gFBDVX7oNL7gOagK7q18pJPs4Pj96LS6fno+nPcGNMBG/EXlhWSO6JFL5/+C50RiP3ff8HGk3dsm+va6iCRgPg1h/+ZXV8FhNaLeLGnm46d/q6zp5sFRcWMPOhO7Fbixh0/S30HDMBgJT4PBZ+uAuNVuDaF3oTEFZ9XQvpDieLswpZkJXPf2alVcwoOfhp75MMKtiOw+BP8Q0LCWrStdpesyrsRUWlIkdOShIJ27eSn55Wut7o40Ns7/7E9b+M6Hbtq/XDS5ZlbLuzKVh4DKnYDQL4DozGf1gMmhoMk5dlmc9Tsnk1IQ1RhjY+Jr7t0IxW3rU3Iz8zM5OZM2dit9uJjY1lypQpaOtYrkdDRpJkPl93jPdWHkaUZJoEe/Hh1K50iwnydGkq54nslqoUOuRTO0Sq6hg5xW4LsSbEEe0pIexn6BY5nVhi0iLoVXFERUVFpTpQOiSKykQIV2GJ2HBSlCgsESQsFZ+7LbhchdVmuaTRGNBqfdHp/CretL5odT5lgoPGWC4A2lRlUPSpmQ9CVrxiSbVvNhQkl72oVzC0v1rJ3IjpCxp1tn9dRbQ4ywSOVOVetle22tH46EtsqnwxxPhjbO6PoFevKeoK5pxs5rz2HHknUjD5+TPhiecJbOythBlnLsFStL90W0EwEBIykIjwqwgLG4ZWW3OOCbtTCnjw910k5lgRBHh0RBvuvqxVjb3eueKUJD5IyuTDpEwCCvJ599M3aZaShMbHh+hPPsanb98LOq4sy8p5v9WF22yjaP06LMsWYt+9rdS2TzB6Y2zTH0OrQeATjWxzg1tGMGqV/7EYP4xNlewbzUV2taQe2MeCd17Bbi0iICKSCU+8QHDUhQdT10X2rT/Bul8PodVrmPJ0T4Iiz57bYrHEk5D4Pjk5qwEQBB1RUVNo1uxuTMbIs+x98RQVHeLQoedLO0K8vZvTJvYlgoP7nXE/SZL46KOPKCgoYPz48XTu3Pn8XtjthJ+uhqRNEBgDAx8pEy/8o+ACxuB2LlvE3zO/xL9tR54dPAWAnzo2Z3howHkfSxJFPr7pGtwuJ9Pf/5LgqMbnfYxLCVXQaAD8ujWZp+btpWXgcZ7q9R6dOn5BWNhwT5dVJX998i4HNqwhrGlzrnvtfbQ6HbIk88fr/5KTUkSnIdEMnBJ70a+T7XSxKKuAhVkFbC20lnYWC0DvAB/GRQQx2l9H+B9TIGULeIfA9L8grM1Fv/a5IssymQlHObhpHQf/Wa/Yc5XgGxRMm36DaDvgMsKbt7wogcpd6KBg3lHsB5Xj6yN9CJrUGkO030W/h3Nlc0ERd+w/TpbTja9Ww/txMYwJD6zx1y0oKODbb7/FYrHQpEkTbrjhhgtT8VUuiEyznYf/2MWmo8rMnDGdo3h1fAf8TXWz3Vql9igVR6rqBrGLZwxiL92mJNAdqZpPTwRFHCnt/qgiZF1j1J0inlSRR2LSKvZcdXSCgYqKisrZkGUZUSzG7VaECKVLorCcIGFR1rmq6JooESaqA63WF73OH50+AJ3OH53Or9LzMpHi5OMyAaNWMgZlGVL/VcSN/XPBWhaiin9j6DBBETcadQb1e6FOI0sy7lxbRauqdGulyRiCXoOxVSBebUMwxQWj9VevMTyNzWJm7hsvkHH0MHqjiXEznqFppy4AFBcnkpm5mMysJVitR0r30Wq9CQsdTkTkWIKDBtRIN5TV4ealRQf4/b8UAB4c1poHh138mMeFEl9k4/74ZPYW2YjOTOeTz94kICsTbWgoMV99ialdu9PuK8syss2NO89eehPzS+7z7LgLHFVOXJJs+biS/8GVtAm5uCxrVeMfjb7pAPRNeiMYKg/E68K9FAGxqT+GGD90Yd7nPPEofuNaln/+AaLbTaNWbbj6sWfxDgg8p33rE7Iss+jj3aQcyCO8qR8TH+uO5jSWR1brURISPyQra2nJEg2NIsfTvPl9te70IssyGZkLOHr0dZzOHEBDXNwrNI6acsb91q5dy9q1a2nevDk33XTT+bwgLLgXdv0MBj+4bSWEt724NwEsfO81jmz9hwFTb2RJh/58lZpNqF7Hml5tCDOc/7jHz08+RGbCEcY89ASxfQZcdH0NGVXQaABkFNrp8/pqBGTev+xpwvz86dNneY3ONLgQkvbuYvYrz4AgcO3L79CotSIeHNqawaqZBzCYtFz/cl+8/C7sZDDX6WZJdgELsgrYXFBEeef4nv4+jIsI5KqwQCKN5T5U7IXww1hI3wW+kXDLX4o6W8tIkkjqgf0c3LSWw1s34bCWBWsHNYoirv9g4voPPq/ZBLIkY92WQeFficgOEbQC/pfH4HdZtEc8YTMdLu7Yf5wtJaHh/4sO49mWUehraCZ0cXEx3333HTk5OYSFhTF9+nS8vevW/0RD5u+Dmcz4cw95Videei0vjqs/gXgq9QdZlsEtK90g9iryRUrD2U/NHyknppzcz+mG6o4cEai6W+RUa61TgtmrtNVSxREVFZULQBQdFUQGV6kAoYgRrlNsm04VJWT5AkNhy6HRmNDp/NHrA0pEBn/0unJihD5AEShO3vT+5Z77IQj1bBa86Ibj62HvHCVU3FFYti6kNXScpIgboZ6fpa1ybsguCWe6YlXlSrHgSCxELHRW2EYf7YtXXDCmtiHoo3zU72wP4bTbWPjuayTt2YlGq2P0/TMqDQoWFR0mM2sJmZmLsNmSSpfr9SFERIwmMvJq/P06Vfvv8It1x3jjr4OAZ0QNtyTzWUoWbydm4JJleqYm8tonb6ErLEDfNIaYb77B0KQJsizjzrXjzrEpYkWuHXd+iWCRZ1fGFs6CYNCi8dah8dEr997KvWDS4k7Zj3Xzcmzb1iO7nCXbG/DpfxlePYYjeLfElVqEO9de+bgmndLBEeOH4WQXxyk5oLIss3Xu72z642cAWvfux5X3PoLeUAvitocoyrfz20vbcNrc9B7bnB6jmldYb7Mlk5D4ERkZCzh5wRMRfhXNmz+Aj0/tj3+Vx+22cOjwi2RkzAOgZYsZNG1652n///Lz8/nwww8BePDBBwkMDDy3F9r0Iax8TsnDuPZPaD3somuXZZnPb78Om8XM1BffIqR1HFduP0y81c6wEH9+6tj8vD9Hln/xEfvWrKDPhCn0n3LDRdfYkFEFjQbC6I82sD/NzJ1dF9MzbAVNY+6gVavHLvq4sixT6BYJ0GkvrkvA6eSHR++hICOdLiNGM/SWu5TlLpFfn9+KJc9On6tb0H1ks/M6br7LzV/ZhSzIKmBjgaXCZICuft6MCw/kqvBAok1nEEmK8+D70ZB1AAJiFFEjwHNtiG6Xi+O7tnNw0zqObd9WIWQ8okUrRdzoNwjf4NP7b7pybOTPOYwz0QyAIcaPoEmx6MM9O6DvlmReS0jns5QsAHoF+PBl+6Y0MlbvjCan08mPP/5Iamoq/v7+3HrrrQQEnH/Ln8r543CLvPHXQWZuOg5Au0b+fHxtV1qG+Xq2MBWVs3DSv7eq7pAqLbVOdo44xSqttiqFjl4sGhAMulMC2EuED0NlUeRk8LqyvKJ4gk4VR1RU6guS5EYULbhc5rN3SpQIE+VFCUmqnA9wvgiCrlRs0JcTHcqeB5Q89ysnRASUCBO11CFRV3HZ4ehKpXPj8DJwlxuga9QZOl4D7SdAgGorUZ+QZRlXuhV7fB62g3m4Uip2I2n9DZjaKuKGqWWAak1Vy7hdLv765F0Ob9kIgsCwW++m8/ArK20nyzJm824yMueTmbkEl6vMMcHLqymREeOIjByLt3fzSvteKF+uO8brJaLGA0Nb89Dw2hE1jljt3B+fzE6LYsF9Z8phprz3OtjtmNq3p8lXX6ILCUGyu8n74zD2A7lnPJ7Gz4Au2IQu2IQ2yIgu2AtdsBFtsAmtrwFBd/YJlGJBAYWLl1AwezaOgwdLl+ujoggYPx6/kVchu/xwJptxJFlwpVqQXafMPhJA39gX7y7heHcJA5OGVd98yr41KwHoMWYCg669GeESsP07OVFYoxGY9EQPwmL8sNvTSTz+Cenps5FlJfQ6LHQ4zVs8iJ9vnIcrLkOWZY4lvEtS0ucANGkyndatnkIQqv69ff/99xw/fpwhQ4YwePDgs79A/GL4/XpAhivfgt53VEvdOSlJ/DDjHnQGI/fOnIVWpye+yMbI7YdxSDJvxEZzc+PzyyLZ8dci1nz/JS2692L8Y89VS50NFVXQaCC8t+IQH/19lGGxGqY1uxdB0NGr5yJ8fS/sCzLL4eL3jDxmpedxzOagT4APr8dG09bX6+w7V8GmP35my5xZ+AQFM/29zzF6K+2EO1cm88+co/gEGrnupT7ozyHPodDlZlmOmQVZ+azPt1TIqe3k68XY8EDGhgcS43UeF0+WTJg5EvISIKSVYj/lG36+b7PacdqKOfrfVg5uXMvxPTuRpZIvcEEgpkNn2g64jNa9+mEs6TyQRZmijakUrkwGt4Sg1+A/shm+faPqlCf8X9kF3B+fjEWUCNXr+KJ9UwYEVY8FliiKzJo1iyNHjmAymbjlllsID/f87/JS4Fh2Eff9upMD6YqQNr1/M564Mg6jTr2IU7m0qCCOnBrEforVVtXblBNPnDUkjlTKE6nCWuuULpGqrLbQCao4oqJyBmRZQhStJYLEKZ0SbkuJAFGWHXFSqHCVPK+eYGvhFEHCr9SuqfR5iYVT+c6Ik10VGo2X+n9eHTgscHCJIm4c+xtKu18EaNpP6dxodzV4B3uySpULQLQ4sR/Mwxafh+NIfoVB15PWVKa2wXjFhajWVLWEJIms/vZz9qxaBsCAqTfS6+prTvtZJkku8vI3kZGxgOzslRUyfPz9OxMZMY6IiNHVEpRcm6KGKMt8nZLNG4np2CUZf52GTxL30eSt18Htxqd/f6I/+hCNjw+uHBu5P+7HnWUDjYA+3BttiWihCzaVPQ4yVqtIJ8sy9v0HKJw7h8LFS5DMyrUkgoBP3z4ETJiI37ChCHoDrnQrzmQLjmQzziQzYn6ZaO+UHWyxLCY99yiCoOHy6XfQZcToaquzriPLMsu+2kfCzmxCm7roPH4LaemzkGWlCyYkeBAtWjyEv38nD1d6epKTv+PI0VcBiIwYR9u2b6LRVLZt2r17N/PmzSMoKIj777//zOco6bvhu5HgKoaet8God6rN+nHn8sX8/d0XxHTswjXPvFK6/KuULJ47moaXRmBFjza09jn3DNmUA3v548Un8QsN43+fzqyWOhsqqqDRQNiVUsDVn27Cz6jj+/HzKMhbSWBgL7p1/fWcL0DckszqPDO/pueyKtdcyfpQK8Bt0WHMaBaJ33kMUOaeSOHHR+9DEt0VfODsVhc/P7sZR7Gby29sS9t+jU57DItbZEWO0omxNs+Cs9yfY3tfE2PDghgbHkhz74uYAVaQAjOvhMIUCG8PNy+uUxcUxeZCDm/eSPymdaQdOlC6XKc30KJHb9p3HIT3fiPuNMXSydg6kKDxrdEF114A9/mQWOzg1n2JHLDa0QCPN2/EfU3D0VzEl4ssy8yfP5/du3ej0+m46aabaNKkdr0gL0VkWebP7ak8v2A/NpdIkLeed67pzNC2EZ4uTUWl3iNLJ8WRU/NFyuWPVBXM7iwnlJSsl50Xbx1TCa1w5iyR09hqlXWQlBNNzmE2n4pKbSPLMpJkLxMZygVbV+yUsJQTJpSg65OiRXX42Wm13uVEibKOCJ0uoELXRAXrJt1Jiyff085yVPEQ1lw4MB/2zVHCSU+i0UHLyxVLqrhRYKy9zDuV6kF2SdgTCrDH52GPz0MsrNglZWwdiO+AxphaB9WpCWcNEVmW+eePn9ky93cAuo8ex+Drbz3rbH2320p2zkoyMxaQl7+p1HpPELQEB/UnMvJqwsKGX5TF91frj/Ha0poVNY7bHDwQn8zWEsvnIUG+vLblb+wfvA+A/5gxRL36CoLBgP1wPrm/HkS2u9H4Gwi9oR2GJrX/+SPZ7VhWraZw7hys/2wuXa7x9yfgqtEETJiIqX270jEu0ezEtj+HrE2HWL3rB8yuHHSCnn7R42k1oB/e3cIxNPG7ZER5c34mq2a/gl/TVWh0ipARGNiLFi0eJiiwp4erOzfSM+YTH/84suwmJGQwHTt8Uul/zel08s477+B0Opk+fTpNmzat+mDmdPj6crCkQYshcN1s0FZfTs6i99/g8JaN9J98PX0mTi1dLsky1+5OYG2+hU6+Xizu3hrDOXYJ2YuK+PRW5Vj3fDsLk6/qdHE6VEGjgSBJMr1eW0VOkZPvb2yJnDURSbLTru3bNGo04Yz7JhQ7+C09lz8y8sh0ukuX9/T3YVpUMN39fXgrMZ0l2Yr/a4RBxwutGnN1eOBZvxhkWeaPF58kNX4fLbr15OrHnivdZ9PsI+xalUJIYx8mP90LzSkndFZRZGWOmYVZBazOM+MoF/zaxsfE2DClE+N81M6zkntMETWKMiGqG9y4AEx17++vMCuD+I3riN+whoL0dNoF9qNtQG80ghZR40bbL4CoUV3Q1PHWymJR4snDqfyeobT3Dg/x5+O2MQTqL+xLZuXKlWzatAlBEJg6dSpt2tReyPulitnu4pl5+1i4Ow2Avi1C+GBqFyL866aQpqJyKSNLMrLzzKHrlfNISjpKnOXyRhxuZGd1B44AOqFi3shpu0fK8kgqLVPFEZUqkCRnmehQwaqpLDuiqvyIk10Vsuy66BoEwYBeXyY06Mt1SSgihV8566ZThQm/KmcoqjQQClNh31zYN1uZSXoSnRe0GamIG62Hg+4Stu6qp5RaUx1UxA1nqqW061IX6oVv/yi8u0WgMardzDXJ9iULWPvj1wC0GziEK+58AK3u3K43Hc4csjIXk5G5ELO57P9Tq/UhPGwkjRpNIDCw1wWJxl+vT+DVpfEA3D+0NQ8Na10tA++yLPNzei7PH02jWJTw0Wp4sUUjhv30Lfk//ABA8PTphD86AwSBovUnKFyWCLJiVR1yfbs60UnkTD1B4bx5FMybizstvXS5sU0bAidOxH/MVeiCgshMOMq8N1/EWpCPt5c/g6InE+Aus+fWhXnh3S0C767h6AIb5ueo220hOfk7klO+K+3stOU2p03bR2nV/op6J+jk5Kxh7757kSQ7/v5d6dL5G/T6wArbLFiwgJ07d9K1a1fGjRtX+SDOYvh+FKTthNBYuHUleAVW3u4CkWWZz/93PTZzIVNefJPouPYV1mc6XAz59yB5LpF7Y8J5pmXUOR/7q3umY8nJZsrzbxDdrkO11dzQUAWNBsSMP3cze3sqtw1ozvUd1nMs4W30+mD69lmFXl8xP6BYlFiSXcAvabmlIc0AIXodkyODmNYohNhThIK/c808fSSVRJui9PYL9OW12MbE+ZzehmrfmpUs/+JDdEYjN7/zGQHhyoxtc46NX17YguSWueq+zjRtH1Ja19+5ZhZkFbAqtxBbORGjpZeRseGBjIsIPONrXjRZ8TBzFNjyIKYfXD8HDHUzTNqeWEjO7/uhQJk1kmI9yI7cVdhFKwHhEcT1v4y2Ay4jJLrudinIssyv6Xk8dSQVhyQTYzLwTYdmdPI7v5/5li1bWLZMaSkeN24cXbt2rYlyVcqxMzmf+2ftJCXPhlYj8PDwWO4c3BKtOttMRaXBc1IcqdpCq6xb5FzEk0p+yNWBTijrBjkZxn7q80rh7KdabClCiaBVP9M8jSyLuN1F5x9qXZInUd465EIRBG05K6aAkryIgHMItVZEC622YQ6iqFQzOUcUS6p9syH3aNlyYwC0G6OIG80HgUYdAK+PuPPsFP2ThvXfjNJgZcGkxadXJL59o9AFqROCaooD6/9m2ecfIEsSLbr15KoHH0dvPL+fd3FxIhkZC8nImI/Nnly63GSKJjLyahpFjsfbu9l5HbOCqHF5Kx4aHntRg89ZDhcPH0phVa5i29Q30IcPWjZC9+ILmJcsASD8sccIuWU6skskb84RbLuyAfDuEUHQ1a3q3KQQWZIo3rKFgtlzsKxahewsCRLX6zH378NmSxZut5vQmGaMf/x5/IJDcRwroHh7Jrb9uWXnmQIYWwbi3S0crw6haM7B7ryuI4rFpKT+RFLSV7jdBQD4+ralKGESB9c2wT/Mm6nP9EJfD0XTwsId7Np9G253IT4+renSeSYmU5mrS1JSEjNnzsRgMDBjxgwMhnIinCTB7JvhwALwCobbV0Nw9Yaf56Ym8/0jd6PTG7hn5u/o9JUnnvyVXcD0fccRgNldWtL/HG3W5731EgnbtzHk5jvoduWYaq27IaEKGg2Iv/amc9cvO2gR6sOqh/uxddsYiouP0rjxtcS1eRlZltltsfFrei7zMvOxiMoHuwYYEuzPtVHBDA/xP2MrlF2U+CIliw+TMrFJMjoBbo8O45FmkfieYkNVbC5k5kN3Yi+yMOi66fQcO7F03crv9nN4WybRcUFccW8n1uZbWJhVwPJcM8Vi2cBGMy8D48IVO6l2PqbaU5bTdsEPY8FRqLR9T5tVp2ZFSQ4R8/LjFG1OAxk0vnoCxrYgmxMc3LiWw1v/wWUvu3gPb96SdgOH0KbfIHyD6o6NVnn2WIq5bd9xku1OjBqBV1tHc12j4HP6ne/du5c5c+YAMHToUAYOHFjT5V7SSJLMl+sTeHfFIdySTONALz6a1pXuTYM8XZqKiko9RBZPiiOndoecEsReldWW8xRBpQbEEUGvqdAtUjGEvWLHyBmfG7WXrL2ILMuIorXKLokKIkQVooTLVVhNORKUZUVUCrgOKNcl4V9FvkQAWq13vZvhqFKPkWWlW2Pvn0r3hiWtbJ1POHSYoIgb0T2qzQtcpfaQHG6Kt2dR9E8a7pySazYBvNqH4Nu/McbmAWc+gMoFkbDjXxa99zpul5PGce24+rHnMPmcv52LLMsUFm4nPX0OmVlLK3xHBQR0p1HkBCIiRqPTndvg5TcbEnhliSJq3Hd5Kx6+QFFjSXYBjx5KIc8lYtQIPNm8EbcFe5N2//2KfZNOR9RrrxIwdizuAju5P8XjOlEEGoHAMS3w6dOozn/PiQUFFC5ZQuGcuRw/kcTOphHIgkBosYPBrToQPGIEvgMHovFRMlsluxvbvhys27NwJhaWHkcwaPHqGIp3t3CMzQPq3fmZKDo4kfYrx49/jsulBLh7e7eiRYsHCQ8bgdMmMuvlbRTlO+gwuDGDp9VP54qiosPs2j0dhyMDo7ERXbv8gI9PS0D5P/z444/Jy8vj6quvpkuXLmU7/v0KrH8bNHq4aaGSU1XN7FqxlNXffkZMh05c8+xrp93ukYPJ/JKeR5RRz98925yTG8mm339iy9zf6TDkCkbceX91lt2gUAWNBoTF7qLbyytxiTJ/PzKYIN0+duy8DhBwtviNV1ONHC13oR8hyFyucTFIdhAgunC73VXetFot/fv3Jzo6unTfZJuD54+m8VeO8qUQadDzQqsoxpWzofrr0/c4sP5vwmKacd3rH5S2dWYnW/jjtX8BSJwazQKNvVRcAYg26UtFjE6+HgwhTN4KP40HlxXajIbJP4DW8+3+9sP55M89glig+LF6d48gcHRzNN5ltbkcdo5t30b8hjUc370DSTzp+6khpqMSJt6qZ9/SMPG6QoHLzf3xyawomVEyOTKIN2Kb4K09vch27NgxfvnlFyRJonfv3owcObLOn4jVZ7LMdh7+Yzcbj+YAMLpTI14b35EAL8//b6ioqKjIolxR9Dhna62S5+WstXDXgDhi0FTMEjnFWqtSCLuxCvGkJH+kti++RdF+ih1TWZbEqZ0TFbIkSraR5YvPcNFovBSRQV+VKFEuX6JEiNCXs3RSciTq3wxFFRUkCZI3K10b++crXeQnCWwKHSZCx2sgop3HSlS5MGRJxn44n6KNJ3AcLShdrm/si2+/KLw7h9W52fL1ndSD+5n/5ks4iq2ExTRjwpMv4hsccvYdT4Mo2snOXkF6xlzy8jZxMjNJozESFjqcRo0mEBw84KzfPxcjapjdIs8cSeWPjHxAyRj9pG1TWtutpNxxJ/b9+xG8vYn+8EN8Bw7AkVhI7i/xSEUuND46gq9ti6ll4AX/DDzBka3/sPiDN5AkicbFTjoeSeHkf4pgMODTvz9+w4bhe/kQdEHKpDt3np3iHZlYd2Yh5tpLj6UNNOLdLRyfbhHoQmvQCaQakCQnaemzOX78UxyODAC8TDE0b/EAkRFjKvydpcTnsfDDXQCMvb8LTdrVzYmtZ8NmO8Gu3TdRXJyIXh9E587fEuDfGYB169axZs0amjVrxs0336zssPt3mPc/5fG4z6DrdTVS16IP3uTw5g30m3wdfSdOO+12VrfIsP8OkWhzMiEiiM/anSbvoxyHNm9k8QdvENGiNde//n51lt2gUAWNBsb132xl49EcnhndltsGtmD/gUc4nrGMh/gcs+CPVhJpnp1G24wkogpyONdLYb1ez7Rp02jRomKb1qpcM88cSeV4iQ1V/0BfXouNxjvpCH+8+CQIAtNeepuo2Dhcksz6PDM7vjiAd6qNPU0NLOijzIiIMuoZEx7IuLBAuvrXoRlwCevgl2tAdCizoCZ85bEWb6nYRcHiBIp3ZAGgDTISNKE1ptZnnhVfGia+cS1ph+NLl+v0Blr26E3bgZfRrHM3tLq6MSAtyTKfJGfxRkI6EtDOx8S3HZpXGfh+4sQJfvjhB5xOJ+3bt2fixIl1PjekPrPmUBYz/thNrtWJSa/hxbHtmdyjSd35f1VRUVGpRmRRqhSyXtoJUs5Wq1LeiOOUjhK7CGL1n0Yr4ojuDBZaFYURDDKS3oakL0bUWpWbpgi3XIQomnGdFCdKuidcJZZOJ4UJSXJefM2CThEdKggN/qe3ayq1clI6JzQaz3t6q6h4FNEFx9YonRsHlygTr04S3q5E3JgEQc08VqLKheHKtFK0KQ3rjqxSQV3jq8e3TyN8+jRC66t+/lUX2UmJzHntOawF+fiFhjHxyZeqxaLZ4cgkI2M+6RnzsFqPlC43GMKJjBxHo8gJ+PqePvy7vKhx75BWPHLF2UWNTfkW7o9P5oTDhQa4NyacGc0jIS2N5FtvxZWUjDY4mCZffoFXx44UbUmnYOExkGT0jXwIubFdvbM6O7x1E0s+fAtJFGk74DJG3PUAjr37sKxahWXVKlxJZXZgaDR49+yJ37Bh+A0bir5RI2RZxplkpnhHFsW7s0vt3wAMTf3x7haOd6cwNF7VFx59sciySEbGAhISP8JuTwHAaIykebP7aNRo4mlzttb/doi9607gE2hk2nO9MHrXjTGf88XpzGXX7luxWPai1XrTsePnhAQPoKCggA8++ACABx54gCDLIfhhDIhOGPAQDHuhRuqRZZkv7riB4sKCc8q52GG2Mnr7EWRgQ6+4s+YA56WdYOZDd6DTG7jvxz/RqDaTVaIKGg2M7zYm8tLiA/RrGcKvt/fB4czh0Y3v8YcwmWBXPnedSMJfI6DT6c7pptfr2b9/P8eOHUOr1TJlyhRiYyt+CdtFic9SsvgoKRO7JKOXRe5b8DXajFQ6DB2J16SbWJCVz9LsQoJTbFy7vgi3Bv4YF8KQFiGMDQukR4APmro6KHp4Ocy6FiQ3dL0BxnwEtTxobtuXQ/78o0hFLhDAt18U/lc0O+8AuYLMDA5uXMuBjWvJT0stXW7y86dNnwG0HTiEqNi4OjFAvTHfwp37k8hxufHTaviobQxXhgWWrs/NzeXbb7+luLiY5s2bc91116E7x3A3lfPD4RZ5a9khvt2YCEBcpB+fXNuVVuHn1katoqKicqkju6XTdIuUCCDlukVOdoyctNo6uY3kcOF2WZG0VkS9FUlXjKgrVgSK0nvrKc/Llss6RzW8EwGt4ItO46fcTooTBn/0hgB0xkAl+Fp7SneEXumc0Ghq0T5URaWh4yyGw8uUzI2jK5UBnJNE91QmY7UfD34RnqtR5bwRrS6s/2Zg/ScN0VzyO9UK+HSPwH9Y0zoR1twQKMjMYO7rz5GfnobJx5dxjz1bKdT3QpFlGYtlL+kZc8nMXIzLlV+6LjTkctq0ealCFkB5yosa9wxpyYwr2lT5vWkXJd5ITOfLlGxkoKnJwMdtY+gV6Iv90GFSbrsNd3Y2+uhoYr75Gn10DAWLjmHdWjKrv1MoQZNi612ORAUxY+AQRt79YIXBXlmWcRw+gmXVSiyrVuOIj6+wv6lDB/yGD8dv+DCMLVogu0RsB3Kxbs/CcSQfTo566gS82oXg3T0CU6sgj+WpybJEVtZfJCR+SHHxMQAMhlCaNb2bqKipZ83ncjlEfn9lG4XZNtr0jmTY9Prbyed2F7F3793k5W9CEPS0b/cOERFX8eOPP5KQkMCIXnH03fc0FOdA3FUw+acaG7fLPZHC9w/fpeRnfDcLneHsn8s37U1geY6Z6Y1DeT02+ozbSpLIxzdPxu1wcPN7nxPSuO5m4noSVdBoYCTlWhn89lp0GoEdzw3HbLMyYPtB7FoTd8ufMqPPU3h7Nz+vY7rdbmbPns3BgwfRaDRMnDiR9u0rf9kn2Rw8d/QEmetWMnzDIhxGE7NveJS0kuwJQZK5a6WZkAKR8IGRTLi2Ldr6clG7fx7MvgVkCXrfCSPfqBW/WrHIScGCY9j2KvY+ujAvgibFYmx6cf8TsiyTlXiM+I1rOLhpPdaCspOsgPAI2g64jLgBl3n8gzPd4eSO/UlsKwmuv6tJGE+3iMJmLeLbb7+loKCARo0acdNNN2Ey1a+ZJfWFhOwi7p+1k30nFBuwm/s144kr4zDp69fJr4qKioqnkWUZSbIp+RCuc8iPKLF0cpWzbjppZXExaEQvNC5vNC4vtG5vtC4fNG5vNC5vtFXdl9/GbULgDBeHguJLfbJrpHx+SJXh6yZdSWfJKVZbJq2SXVJfzhNVVDyNrQDiFym2VInrlWsWAEEDzQYqXRttx4CXmndWX5BFCdu+HIo2peFMtgBKppPvoGj8BjVGY1Qncl0sxeZC5r/1EulHDqHV6xl936O07l29XvuS5CQndw3p6XPJzV2LLLvRan1p3eoJoqKmVvk99+3GRF5efACoWtTYZynm3vhkDloV26TrG4XwQqsofHVairdvJ+Wuu5HMZoyxsTT55ms0XoHk/hKP87gZBPAf0Qy/wdH17jv28NZNLP7gTWRJqlLMqApnaiqWlUrnhm3HDiWfqARDixZK58bw4Zg6tEeyOCnemY11RybuzOLS7TR+ery7KpZU+kifGnt/5ZFlmZyc1SQkvk9R0UEAdLpAmjW9g+joG9Bqz90aKyOhkLlvb0eW4co7OtKia1hNlV3jSJKD/QdmkJW1FBCIjX2e/LzOLJn7G7dr/iRUyobITnDLMjDU3O9q98qlrPrmM5q078Tk506fn1GeDXkWrtl9DB+thp392uOvO/Pf7q9PP0L60UOMfuAx4voNqo6yGxyqoNEAGfruWo5lW/nsum78lnKQlV5BREsneF14AIMugE6dviAosOd5HVMURebNm8e+ffsQBIFx48ZVDN0pwVZk4cv7b0e0FrGq/2h2duxLsF7L6LBABiS7SJ1zHKO3jutf7ovJp561u+36FebfpTweOAOGPltjLyXLMrbd2RQsPIZU7AYN+A1ugv/lMQj66lWZJUkked+e04aJtx1wGbF9+uMfGl6tr3uuuCSZVxLS+DIlG4B+3nqGbF9HblYWQUFB3Hrrrfj6nn+Ym8qZkWWZuTtO8OyCfRQ7RQK99bw9qTPD26mz/FRUVC5dJMmhWDGVChKFJYLDyWWFFQQIt6vic1l2XXQNGo2xpPMhQAmx1iuPS0Oty3VGlA+11uv90Wr90GiUQTBZlsEtVQ5dL7XYqiKc3XlKh4m9bD+q+0pB4MxZIqcLXj9VNDGq4ojKJYYlU5mMtfdPOPFf2XKtAVoNh44TIfZKMNStLD2V0+NILKTwr8RSYUPjq8d/WFN8ekYgnCFrUOXsuBx2lnz0Nsf+2wqCwJCb/ke3K8fUyGsVWY8QH/8kZvNOAIKC+tI27jW8vGIqbXvSeQPg7sta8uiINkjAZ8lZvJWYgUuWCdXreC+uCVeEKiHylrVrOfHAg8gOB17dutHk888QLRpyfzqAWOhEMGkJnhqHV1z9y1K4EDHjVNw5OVj+/hvLylVYt2wBV9k5ma5RI/yGDsVv2DC8unfDneWgeHsmxbuzkKzu0u30UT54d4vAu0tYjdjAybJMXv4mEhLew2zeDYBW60tMzK3ENJl+zkHzp7J53jF2LE/Cy0/P1Gd7410NnV6S5MBuT8NmP4HdlordnorDkYmvb1siI6/GYKiZvzNZFjl0+CVOnPgZgJjoO9HM+pWWUgJurzB0d60H/6gaee2TLP7wLQ79s56+k66l3zXXntM+siwzeNshDhfbeblVY25vcmZhacX/27vv+DjKa+Hjv5nZvpJWXZZc5d7BDYOpxnQCCQk3kOSFkJBCSEICJDeFJKReUiA3PZBQkpsQSoAQAqbY9I4NNrZxt+Qqy1bXavvOPO8fs9qiYluyZEvmfPksuzs75dmVPJqdM+ecP/2Wtc8+zQkf+i9O/dgnB2LYxxwJaByDfvLEev78ci2nTcjnuWofScPBrSN0pnTcTHtwDZrmZNrUW6isvKRP67Usi//85z+sWmX/Af7ABz7A/Pnzc+Z57p47WPXUfygeNYbCG39IodvFKUX5kLS493tvEGqNsegjE5lzdvc/2sPCW3+GpV+zHy/5Hpx644BvwmyL0fLoVqIb7IZ/zko/RZdOxjVy8E/a99ZMHKB83AQmzD+BCfNPpHzc+CN+YuDx/a3c8F4tp69+lZFtjbi8Pq757GcoLh5+B2RDXTCa4LuPruPR1XUALKwu5teXz2FEQLJghBDDm1Jmukl1ItGWDjSkm1gnsjIk0s2v27P6SEQPvpGD0DQjFYDIzwQdnNnPM02tO0s1ZfebOFh5gaNBKYVKWAftJaJ67TeSGzQZ8OCIDprLkRsU8fSQPZLKDsmdnhs8wSHBETGMNNfCuoftslQNWaVXnH6YeqGduTHhTDCG2YVm70NKKSLrmmh/qpZkqqGxo8xL4LxqPNOLZb90GCzT5Ll7bufdZU8CMP+iD3Pax69CG4RyNUqZ7Nr1V7bV3IZlRdF1LxMm3MjoUVd2axyeHdT4+BnVrC1zsKLdzhw4vzTAL6aMptRlX6TQ9u9/U/ftm8A0yTv9dEb+6n+JbgrS/NAWSFo4yryUXDkdZ9nwC2RufuMVHv/1z1GWxfRTF3NuP4IZXZnBIB0vvkRw+XI6XnoJFc5kZBiFheSdeSb5Z52Fb+GJxLeHCb2zj+jG5kxPNF3DM6UI/7wKPFOL0RyH/7vS0rqCmppf0tr6lr0J3cvo0VcxdsxncDoLD2vdZsLinz9dQdOeEOOPL+O8z8886D6jp4BFJLqHaHQ30cgeYvF9vS6raU7Kys6mquoyiosWoWkD+29JKUXt9t9SW/trJm/tYHRdlAQOXp74bc78fwN/jq7rtu+45kpCrS189OZbGD191iEv+9c9jXxj826qvS5eXTjtgGX3Vz39OM/dfTvVc+bz4W9+fwBGfuyRgMYx6PVtTXzsz29gOCB0ZhUTVIJXzlyAZUV5b/3XaGh4CoBx477E+Oqv9ungx7IsnnrqKd56y97JnnvuuZx00kkANO7czv994zqUZXHpd37M2FnHp5d7+6ntvPFoDfklHj7x/RMxBjjL4Ih69dew7Hv24/N/Dgs/PyCrVUoRXrmP1idqUFETDI2CM8eQf8aoo3LlTWcz8Y2vvUjdpo0olSlzkV9axoR5C5kwfyGjp888Ig3FLcviLw88wM5Nm4gbDh4//hQ+f9x0rh1dJgfwA2j1rlauu28VO5vDGLrGV5dM4trFEzF0+YyFEEefUgrTDGVKM6WyInKfdyndlBWoMM2OARmHw5GPw8hkQ2Q3sU5nSjgCqeyJ3KbXhuGTv1sHoJRCxa1MoCPapd9ITnbIAbJHUrcBp2vpYIeeKquVGxTpIVjSU/DE4xiQEyBCHLJ979mBjXUPQWtW01xvEUz/kB3cGLPoiPcKFH2jTIvQm/W0P7sjfeW4a1wBgQuqcY+R8yb9pZTirUf/ySv3/x8AU08+nXO/8FUczsH5nhsOb2fDxm/T2vomAIHAXKZN/Sl+/4Sc+e56pYabV+8gOSUADp08Q+fHk0Zy2YhMEKv5r39l3y0/tdfzwYsZ8cMfEXy+juALdvNoz9Riii+fgu4ZfmXKBiOY0ZUVjRJ67XU7uPHss5htbenXNJ+PvNNOszM35p9EvCZK6J19JHZnjid1nwPv7DL88ypwjsrr8zFee/sattX8kubml+316S5GjvwEY8deg9tVOjBvEmjYFeShn67EMhVnXTWNKSfm9nFJJjtoan6ZxsZnaWl5nVis/qDr1HUvXu8oPJ6ReDyjcDmLaWx6jmBwXXoej2cUVZX/RWXVpXjcIwbs/QC0LPs8Ra/eD8DrY8bwwr5LuP76bw9qOfLmut3cc/01GE4nX7r7gUPqn9EplDSZ8/p7tCct/j57PGeV9L7P3r3xPR64+RvklZTy+T/8ZQBGfuyRgMYxKGFazLr5SaJJiC0s4x8nT2RxuX0Vu1IW22puY8eO2wGoKP8A06b9vE9X+ymlePbZZ3nllVcAWLx4MaeeeioP/+S77Fz3LhMXnMQHv3ZTev5IMM7fvvs6iajJ2Z+ezuQTBnYndlQ8/z/w4s/sx+feAid+4bB6aiSbo7Q8soXY1lYAnKPyKL508hGr0Xgw4fY2at5ZwbaVb7B9zSqSsUxjUbfPz7jj5zFx/kKq58zH7Rv4MSulWLp0KStWrMAwDJpPOYv7sOtGnl8a4NfTxhy0BqE4MMtS/OnlGm59ehNJSzGy0MuvLz+e+eMkA0YIMbBMM9olA6ItkzXRW6ZE1vMB6SOhe1OZEQVZ5ZkCOJz5uc9TmRI5Da4ded2uohRDk7IUKpHbdD0nSBJNYsXNTFCka7P2rOkqPgjBEUM7QHaII6uEVk/zdAmSSHBEHCqlYPcKO7jx3iMQasi8ll8FMz9sBzcqjz8iPQNF/1jRJMEXdxN8eQ8k7b+L3lmlBM4bh6Pk0Ovri1zvvfgsz9zxGyzTZMzM2Vx8402D8v0W7HMze+ruZ+vWn2GaHei6i+pxX2HMmM+g6w7eaQtx05Y9rAra2QNac4wby0v52qkTUssrGn71a5ruuAOA4k9+ktKv3kDLP7cSXd8EQP4Zoyg4ZxzaMLw4LSeYcdqZnPuFrwx4MKMrlUwSXvk2weV2341kfdZJfacT/4knkn/2WXhmnUh8u0lo1X6s9nh6FkeZ1y5JNbccR+DA59iCHRupqflfGhuXA6BpDqqqPsq4sdf22jT+cK1cup03H6vB5XVw+XdPwOlrprHxORoal9PS8iZKxXPmNwxfOljh9YzC4+18bN87nUU9BnCCwfeoq/sn9fseTfWAA9ApLTmDqqrLKCk5I10Ctd+2vwL/90GwktRUB6gd7STUUUhV1S3Mn3/O4a37ANYsf4plf/4do6bP5LKbf9rn5W/euoc7djWwuDif+46b0Ot8sXCY333qowBce9d9ePP6V27sWCYBjWPQvn37WHzPCsKtGmWTClhx9and5qmr+ycbN30HpZIECuYwe/btuPoQ/VVK8dJLL/H8888DMGvUCLYvexzD6eSq2/5IYUUmaPHyA5tZ8/xuysbk81/fnD8s/5h2oxQ88x14/Xf288nnwwd/D/6Svq3GUoTe2EvbU7WouAUOncA5Y8k7eSSaMTQ/p0Q8xs61q9m28k22vf0W4bbW9Gu6YTBq+iwmzrezNwaq78aLL76Y/l279NJLmTFjBn+ra+I7W/YQV4pxXhd3zaxmRp4cvPfH/mCUGx98l5e32M3nL5g1glsumU3AJ+UHhBDdWVYiKyAR7NLEut3uMdHteVtW2ab4wTdyEJrmwpkVjHA48lMBiewARdbrzuzn+ej6wNc9Fsc2ZSk7CyQd6EhmSmhFe8ggiXXPGOkMpqjE4QflunFomX4jvfQSSQdCPD1ki7gygROpyf8+YiZh+0uw9mG7qXgsc2UyJRNh5qV2cKN00tEbozigZFuM9md2EH5nn12uz9DIW1hJ/pIxGMOtZ+UQsf3dd3jsl7eQiEYoGzOOS771ffKLB+5K+a6i0To2bryJpuaXAPD6Z/Ck93r+3FQEQJ6hszDh4JVltWjALR+exeXzRlL/gx/S+uCDAJRdfz2BS6+g+W/rSdSHwaFR/JHJ+OYcnT6Yh2vT66/wxG+ObDCjK6UU0XXr0k3F4zU1mRc1De/cueQvWYJr4gkk6gwi7zVl/r5r4J5QiG9eBd4ZJeiuzNhDoW3U1P6a/fufSE3RqRxxCdXVX8brHT2o78lMmjz2x4eJ8xpF49dheGtzXvd6x1JWehYlpYvJ80/pNWBxyNszI+zf/xR1dQ/Q2rYiPd3lKqeq8iNUVv4XPt/Yvq+3eTP6neeihZuJTT6d+pM/yNZtvwLCmKab8dWfxuUqxrLiWCqOZcVRln1vWTEsFUdDp7BoIaUlZ/ap38cTv/kFG199kZMu/RiL/usTfR77jkiME9/YgAJeWTiVib7es0nu/PLVtO3fx399938YM3N2n7d1rJOAxjHGsixu+ds/+L1RjWtdK+PK83jhhtN7nLe55XXWrr2WZLIdj2cUxx13J3n+zMFqwkpQ21ZLTWsNoUSIqBklmoym7yPJCLv27mL37p2cuFLHF9Won+WmZjbp+UpjlZzy6lXoSqf17DXkV+sUeYoo8hRR7C6m0FNIsaeYIk8R7iFYE/qAlII3b7fLT5lxyBsBH74Dxp9xSIsnGsK0PLyF+PZ2wE4VLrp0Ms7S4XNSXlkWe7duYuvKN9m24g2a63bnvO70eDEMA80w0ve6YaAbDnRdR3c40HUD3dDtaenXM7emhGJHxG7YVV3gY2RBXuo1nVpPPr8sHk+D4cKlLK6J7OdsK5y1TQeaoafuDXtbDvs+d54uY8iaL33fOW5DTz8+FkqGvLBpP1/757s0dsTxOHVuvmgGly8YfUy8NyFEz5SySCY7ujS1zpRrSqSmJxPB3OepQIVphg++kYPSs/pH5Gc1te6aNZEJSGRnTei6W/ZTYthSZnZwJNlzCa2u2SKdWSXx3P4jgxMc0TN9Q1yd/UO6NmfPCpZ4enjuSpXjGqIX6IgeJKKwdZmdubH5KUhm9QyqPM4Obsz8MARGHb0xil7F94Zoe7KW2OYWADS3Qf7i0eSfXIXmlKzCvtpXu41//fT7hFpbyC8p48Pf+j6lo/t+4vVQKaXYvfdhNmz+MYYVJInBY1yCa8Rn+daEsZS5HPz0yY3c8VINTivJvfVPkP/Wy6DrjLj5ZnwLzqXp3vVYoSR6vpOSK6YP2xJk2cGMGacv4ZxrrjviwYyexLZtSwc3ouvW5bzmnjaNvDMW4xw9n/h+L4ntwfRrmsvAO6sUfVaCPdZfqa//F53ZxhXlH6C6+iv4/eMHbdyWFaOl5Q0aGp+lsfHZLqWkNAKBuZSVnkVp6Vn4fNWDdnwdCtVQt/dB9u59mESiOT29qGgRVVUfJVBwHPFEC4l4M/F4E4lEE/FE5+Nm4vFmEvEmktEm5qyqp6DDJOg3WHl8IdZhHWvoFBYuoKzsbMpKzzpgUEkpxZ++8Ek6WpoPK8hw5Zoanmlq5+qRpfxkcu9/Ux/9xY/ZtvINzrjys8y78IP92taxTAIax5iVK1fy5Zr91AYq8LxQDwpe++aZVBX2fJI8FKrh3TVX0xbayT7Lj1V6ObtiCTY0bWBLyxbih3AV5aytBczbXETIneRfp9eRdGR+Vc7efBUTmuaws3A9S6fdccD1+Bw+O9jhLsoEPVLBjpxpbnua3+kfGicz6tfCQ1dD4yZAg5Ovg8XfAUfPV38mmyKEV+2n/YXdkLTQXDqB86vxL6wc9tkrzXV72Pb2m2xb+Ua3vhv9kcgrJDpqAmgarsY63A113eaJuL0sPfNSasZOAWD2hpUseeVxHGbysLZ9KDRNJ1BeQfn4iYwYP5GK8ZOoGD9h0NKSB1I8afGLpzfy55ftqzKmjsjntx+bw6QKSWUUYqhTSmFZkZym1rlNrg/W6DrIQHRdNoy8HsoxpTIlHHZ/idwsic7n+RiGf8AbBArxfqRMZQc94gcordVDc/Z08CQry6SzbM1A0pz6AbJFUv1F0kGTnjJIUs9dxrA/Th5Wou2waakd3Nj2HKiskmtjT4aZH7H7bvQxO10MvuiWFtqW1pLYGwLACLgoOGccvjnl8m+oj9r27+PhW26mpW43br+fD37tO31qANwXzze1892te2gI1fMp/swC7N4afv8kpk37GYGC41BK8YMHVzDltz/i+MatKIeTUbfdilE8m5ZHt4KpcI7Mo+TK6QctdzRUbXr9ZZ74zS+GXDCjq0RdHcHlzxJcvpzwypVgZf5+OseOIe/kM3BUziHeXEQsXE/T+P/QNvIl0O19aUnBmUyYeiP5eVMHZXzxeDNNTS/Q0Pgszc0vY5qh9GuG4cMw57PjrfFEGo/nv/57CYXlR65ZvGXFaWx8jj1199Pc/Ap9+k6iFNM3dVC5P0bcqfPuwklYBWXouhtdc7FvfwOatheXKwZoFBQcT37eVDTdha470TUXum7fkskOGpuep6NjQ84m8vKmUVZ6NmVlZ5OXNy3nnGPL3j3c/dXPYzgcfPGeB3C6+vfv7MXmIJe9uw2/obN60Qzyeymf/uqD9/LGw/cx44yzOO8LX+3Xto5lEtA4hgSDQb5zz994YNYidBRz1od4b1cbP7lkJp9YmLmaIBgPsrF5IxubN7KhaQPrm9ZR21bbY0Vqv9PPpMJJFLoL8Tg89s3wpB+7QorgH5ejEkl2jy8gVJTHhLETWHLaEhL1Dt65oxk0ReEnWmjPb6Al2pK5xTKPk6rvJ5+dujMn0JEd+OgpEBJwBTAG649hPAxPfxvevsd+XjUHPnIXlExAKUViTweR95qIrG8iuS9zZat7UiFFl0zCUTx4TYuOlmiog2gwiGWZWMkklmVhmSaWmUzdd7llz5dMsr+lhVfWbcCyFKNLi5k5qhKVWoeyTMzUcso0SZgmjxVU8nDJWJSmMSbSzjU171AS7cjaRhLLtLo8TuZuv6dxpebvi6LKKju4UT2BigmTKB83AbfvyB0kHExtY4jr7lvF2j12WYFPnjSWb10wDY9cvSXEEWNZMbsUU9em1slgVqmmrpkTmSwJ1Y+/m13puicrEyLT4DrT1Lqge9NrRwFOZwGGkX/4tW+FEEOKMq0DNlnvsbRWtGupLTtogjnwXx01l57bS8TVpeG6x4HuTU3zdN5nP04FRobCBVHDSagJ1j9qBzd2vpaZrjtgwpl25sbUC8AtF8UMFcpShN9toP3p7Zitdu9DZ6WfwPnVeCYXHeXRDS+RYDuP/vxH1G3egOFwcP6XbmTKSd1LevfX9kiMm7fu4elGu2pDqdPBTeNHsNh4k82bv5+6kl1n7JjPMKbwSnZ//svE3nuPsMPNT0/8NN8//UwC79lZOd7ZpRRdOjmnvNFwMlyCGV0lm5vpeP55gsuWE3rtNVTcvijYzFOEP+SiY2EEZdhn23yNMynd+mG87eNxjS3AN7cc3+wydO/hH1OHw7U0NC6nseFZWtveJrvnnNtVQWnZEkpLl1BUeBK65uLfv17Fnk2tVE4I8KEb56IfhYBnJLKHvXv/yd69DxNPNOJ0luByFeN0FuNyleBylqQfO13F5K19Fu+Lv0dpBlzxL7TxudVo3nvvPR566H6mTX+HkpKNAIwd83kmTPharxdSRSK7aGhcTkPDMlpbV5D9uXk8I9PBjUBgPuueX86yP/2OUdNmctn3+94/o5NSitPe2siWcIwfTxrJZ0aV9Tjfljdf47Ff/g/l1RO44qe/7vf2jlUS0DiGPPTQQ/xUK2B3cTkfrShiyr4Ev3h6E0umlrP4hE28s/8dNjZvZFdwV4/LFzicVDqijHJaHF95Bounf4PRBWPRD3AF5dLf3caGl5+ncvJUZl92FY888giWZTFlylRcuydSv62daYsqOfPKab2uQylFMBGkNdpKc7Q5HexojjbTGm1NP84OhESSkT5/Phoahe5CijxFFLozpa46AyCdrxV7itOBEJfRxxrbG/4Dj30ZFQ4S0+cTGfkVog0lmG1ZmS46uKsD+OaPwHd8mXyp6sG+ffu45557iEajTJ48mcsuuwzDOPjBzEvNQa5Zv53mhEnAYfDbaWM4pzRw2ONRSqGU1S0IYiYSNO/ZTX3NFvbVbGFfzTbaG/Z1X4GmUVQ5MieLo3BEFU63B6fbjX4I722gPPLObr776DpCcZNCn5Off2Q258wYcfAFhRA5lDLtLIisrIjemlh39pNI95ZItmNZ0YNv5CA0zXGA0kyZrAiHkZeVRZHqM2HkYwy3Uo9CiGFDJa3cXiJxs3t2SFbD9e79RjLBkgENjmiksz50jwPN68DwO9D9TnSf0773OzF8jvRj3e+0M03kmB3adsO6R2DtP6F+TWa6wwtTzrODG5POBof8fRkKVMKi47U62p/fiYraV4a7JxUSOL8aV1XeUR7d8JGIx1j6m1vZuuJ10DTOuOIzh13+JZQ0+c3O/fxx537iSuHQ4OpRZdw4bgQFqau14/Fmtmz5MfX7/o3RBKW/92PUJzCKinjwg19lWmsZC7FPhBecPZb8M4dv2eDcYMZZnHPNl4dFMKMrsyNE28tPsnPnXTSP3YxKnU5ybdEIPFtAYeBU9JLZKHMsWudxuEPDO70E37wKPBOLDrlUo1ImrW3v0JgqJRUO1+S8npc3nbJSO4iRnz+z2+9Ge1OE+3/0FomoyUmXTGDuuYNXUu1QKKUO/Ptb8wL87cN2xuB5P4MTr+k2SzKZ5LbbbiMSCfOBizTa2v4GQHn5BUyfdutBv/vE4800Nj1HQ8Mymptfyfm+5nAU4oqfRMvWQqrGL+T4cy7q1/vsdM+eRr61eTfjvW5eWTgVvYf33lq/l7u+8lkMp5Pr/vrQET1vNBxIQOMYsXXrVn72+FP857hTcACvnjiNSFuM8371Mm6HzoKT/sG7javT81f6K5laPJVpJdOYVmzfyrxl7Njxe2pqfwVAaelZzJzxvxhGz1eW123ewH3f/TpoGp/4yS8ZMWESmzdv5oH7H8DTOob88GhcTo1zvzSWglI/htOFw+XGcLoP6eT0gUSSETsAEmvuMeujMwDSGrODJO3x9n5tx+/0U+TOZHz0FAiZUjSFCn8FVjRJdHMLkdW7iG5sQlmZrAvNqeOZUoRnRineKUXo0my5V62trdx1110Eg0FGjx7NFVdcgct16IGlumicz723nZXtdibMdWPK+e/qShxH6IqDcHsb+2u2sq92G/XbtrCvdivBxoYDLqMbBg6XG6fbjcPtxumy7x0uV/pxZlpqvm73rpz5nC77NYfbfj2qDL7/+Eb+tWoPAAuri/nV5cdTGRg+PVuEGEhKWZhmiEQiuxRTVhZED1kRmbJOQUyzYwBGodmlmbKDEjm9IvJzSjUZjvzUPPZzXfcO2y+uQghxqNLBkV6yQdJBk6h9b0Uz81qRpP04aoJ1GF9nHbod+MgKeug+B0b6cVYwJDWf5jjGy+o1brGzNtY9BE1bM9PdAZh+kR3cqD4NhuFJyWONGUoQfH4XHa/X2QFCDXxzyik4ZxyOQgk+HQrLMnn+L39i9dN2I+e551/M6Vde3eeT7kopHt3fyg+31bE3ZveJPL0onx9NGslkf89VG/a+9X80XfdTjFaFWQz+H30a96ozsBqjRFDc6ojzxWvmM3tU4WG9x6Mlt2fG8A1mJJNBdu76Czt33pn+nuCnmpLV1VgPvYfV3JKeV3N7cE+bh140C907Bc1ll6zW8534ji/HP68C54juZayTyQ6am1+hoXE5TU0vkEhkrVNzUlR0IqWlSygrXYLHU3XQMa9/tY7n/7YR3aHx0W8toGTkEA10tmyHPy2GSDMc93H40B+gl+9AS5cu5a233mLGjBmccorBho3fRqkEgcA8jpt9B07noWWpmWbE/qwbltHY9FzOZ20YeZSXn8eIig9SVLQQTev772soaXL8a+8RNC3+MXs8Z5Z0P++tLIvffuoyEtEIn7z194Pax2c4koDGMSAej/P7P/yBv1TPZl9BMZ8aWcotk0ehlOKUnz3PntYI11zYTEVR0g5iFE+j0FPY6/rq6x9jw8ZvYFlx8vNnMHv2n/C47Su4lVIkk0Gi0b088qNf0LijnnHzRzHzgyOIxfYTCTey+dmTKKw/nlleA0cvOxmlmSjNQmkmaGbWc/tG6rX0NN1CoVC6BZpKTVcoTdnPdfvALH2vAboCXUPpoDRFXFPESBLDJEqSKEkiJIioBGEVI0yckIrSYUXpsCIktCQmFqZmktRMTM3ExEo9tqcbymBOaCqLIycwrb0aQ2W+uOiuBF7zOTz663iKmtEu/SOMOXEgf/THnFAoxN13301TUxNlZWV86lOfwtePUk1xy+JH2+r48+5GAE4uzOP2GWMpcx2dQFK4rZV9NVvZV7OV+pqt7KvZQkdLs91Y/gjY5yrj6fKzaXMG0JTFyZF1nKa24soKojhc7m7BE6fbjcPpyjzOCqI4cpZ15SxzrDRMF0Ob3Uci2ktppvZ02aacXhLJdpKJYDpIQY/FFvvGMHxZ/SN6amqdyoxw5ncJVARwOPKkj4QQQhwBSilUwsoKeqQCIJEkVjiBFUpghhJY4SRWKJG+maFEvzNENLdxgMCHA6NLcET3OYdnjwOlYO/qVHDjEQhm9bzzl9uNxGdeCqPm93oCShwZyaYIbc/sIPJu6mIrh07+yVXkLx6N7hnaZSRDSZOGRJLGeJKGeIKGeJKGeJLGRJKEpfAZes7Nq2c91/Vur/t0HbeuY2gc8vcWpRQrHnuYl//xFwAmzF/IhV/+Ok6PJ2eepIKEUiQ7b5YioRR1sQQ/3lbHm212P4MxHhc/nDiSc0sLeh1D6LXX2H39DVhtbVgjPey/th2rCPwNs6na+QV+5cnjkT0tFPqcPPC5k5gyYniVftv8xis8/uvhHcwwzQi7d/+NHTv/lD7pnZc3jfHjr6e05Ew0TUOZJpF33iG4fDnBZctJ1GXtJw0D1/jZ6IUzMUpmoafO1Tmr/PjmVqBPN2kJv0xj43KaW95AqUz1D4ejkNLSMygtPYuS4lNwOPr281dKsfQPa9i+tonS0Xlc+o35GEMtGB8PwV3nwr61UDUXPvUkOHsv2V5XV8ef/vQnDMPga1/7GpHIKtauu5ZkMojXO47jj7sLn29cn4ZgWUna2t6moXEZDfufJhrL/Pzc7hFUVFzEiBEf6nNPlO9t2cOfdjdwZnE+/zhuQrfXlal465a/E4gWUfyZGZSPq+7T+o91EtA4Bixfvpy/b9jKUzNPxKNrvHXidMrd9onb7z66jr+9sYNPLBzDTy459AZWrW1vs2bNNSQSzbhcZfh81cRi9cRi+7GsKE0bA+x6sQrdZTLtsm04fSZm3EvdK19kQmga1e7h9UdooOx27eP1/HfZVLKLkolVzHWXMP+tvzKmaYd90ur0b8KpN4IxtA8Yj4Z4PM5f//pX9uzZQ0FBAVdffTWBwOGVi/r3/hZu2LiLkGkxwuXkjhljWVg4NK46UEphJhIk43ES8SjJWIxELEYy3nkfzzyOxUjEs+47H6fmT8bjXZa1p8VjMVa4p/Ba0QlYmkF+Msg5+5dTFasf1PemaXoPQRBX96ySHrNQPPa0A2aheHC43RgOCZwMd5aVyC3X1FNWRKItq3RTkGSyLZVVEcw5oO8vTXOm+kJ0lmRKNbXuWrqpS1NrRyowoeuScSeEEMcqpRQqbtkBjs7ARziJ1ZF6nh0MCSXT0/oVL9dA93Ypf9UtGOJIlcRKlcLyDLGeIJYFO1+3S1Kt/7d9NW2nwrF2M/FZ/wUV04/eGAXxXUFal9YQr7WrGOg+B/lnjiHvxMqjklkUNi1ebQmyMxpPBSySNCTsoEXn84h1+Beh9EYDdA0MNHQNdE3DIHWv2aWrDQ301P2Yze9y0jMPYphJGsqqeOLCKwn68kkodUjxT6+u85Wx5VwzuhyP0fPnrZSi+a9/Zf/PfwGWhee44yj69PfYVXM/DRMfQBlJnI5iqif9D19+xMfqXa2U5rn55zUnUV3a/cr+oWjzm6/y+K9+Nux6ZnSyrBh79tzP9h1/IB63L6T0+SYwfvxXKS87r9eLlpRSxDZsoH3ZMjqWLye2JSvDTdNwVE3CGjGayOwkHVM2EyvYkbO81zuWstKzKC09i0Bg7mH3tAu1xbj/h28RDSWYf8E4Fl48/rDWN6CUgoc+De89Av4y+NyLEBh5kEUUf/zjH9m/fz8XXnghCxYsoKNjM+++ezXRWB1OZzHHzb6DQGBuP4dk0dr2NvX1j7J//1KSyUw1GL9/MiNGfIgRFRcdUoZMbTjGojc3oIDXFk5jvC+TMRev66Dl4S0k9tjZPsWXTcE3p7xfYz5WSUBjmNu3bx+333EHD8w5nea8AF8eU85NEzL/cJ7ftJ9P3bOCyoCH1755Zp8OeCORnax+97OEw1tzpptxnQ33TyQZMZi42Mek08Zixkbx3sNTmRb1UOLQUUDBOaPIP30slpXEjMdIJqKY8ThmMk4yHsdMJLCS9s1MJOzeBMkkViKBSvUqUKbdKFpZFpgmylIo066lqywLrNS9qdAshbIUKMBO5LC/TKQea5YGCjRlp3BolpZ5rPTUzX6M0tEsHY3UvdLRlJF6zUg/R2lECnawvWg1b+S/ywp9P7viOha5n3OJ0jkhFGR+NMa8oqmMv+RutCJJF+tkmib33XcfW7duxev18ulPf5qysp4bI/XVllCUq9dtZ3M4iqHB9yZU8blRx37vkoZgjBv/+S4vbbavwDpnaik3nzMOn24eJHgSTQdP7EBJNCdg0nPwJEYiGkOpwfui0RNN0zNBjm4ZJK5uwZPeynH1FjjpzFoxnM5j/velv5SycssxZQUlMpkTbSQTwaxARXu694Rl9b0fUleaZtjBBiMfhzMrI8KR36V8U2Za5nkBuu6Wn68QQogBoyyFiibtwEdntkfYDniYWYERK5URYoYSqEiyfxvTNTvI4XNmBT4yQZGcaXmpoMiRahhsJmDb83ZwY+MTkAhlXiufngpuXApF447MeEQOpRTRDc20PVVLcr99PGYUewicNw7vrNJBPzYKJk2WN7XzeEMrzzUFDylg4dU1Sl1OylwOSp0OylwOylxOXLpG2LQyN8vKeR7p4fnhqqrfySVP/R1fNEx7XoCHz7+CxpLe+xI6UDi1JCd7GriubD+jfQW4XGW43GW4XaU4nUXpsjVWLEb9926m7d//BqDggx/EO+8Kwu/YAUJtQZjdo35DR8huelxW8TFuevYM1tbFqAp4ePCakxhV1PcqB0fSlrde4/Ff/QzLNJl+6mLOvfarwyaYYVkJ9u59mNrtvyMW2wuAxzOa8dXXMWLEB/tcfii+fTtty56i9cnHSK6vzXktUWURPU6hJozCY5xAQccCApNmkzdvBM5ReQP273Tr2/t5+s/r0HSNj3x9HhXVQ+Qc7Cu/guU3g+6AT/4Hxi46pMVef/11nn76aaqqqvjc5z4HQCzWwLtrPkMwuA5ddzF9+i+pKD//sIZnWTEam16gvv4xGhufy7rYTqOw8AQqR3yIsrLzcDp7/zz/35oalje185lRpfx40ihUwqL9uZ0EX9wNlkLzOCj8QDW+eRXynbULCWgMY5Zlcc899/BsTPHctPkUOHTeOnE6hc5MhDaaMJnzw2VEEiZLrzuV6VV9+yyTySANDcvRdScudwUedwVv/vMp3n7iMYoqR/LJW39H674YL/52NbMsC6+ugUun5OPT8E4tHui3POSYZoK9e9ewb99KWtveIxbdSpw91BFma8xgW1RnR1zH7BLgKDJNjneXctmJ32TR+PPf1zsmpRSPPvoo7777Lg6Hg09+8pOMHj16QLcRSpp8ffNuHtlnp4B+oCzA/04dQ75jeBw09dWLmxu48cHVNHbE8Th1br5oBpcvGNwmcUopLDOZDpB0BkLSwZNErHsgJZ1xEs/NQulcNt418GLfq0G8Qqsn2YGTruW1eivD5XT10NfE7cbh7GHZziCK03XE9wVKKUwz3L2pdapcUyIrSyLzup0lYS/TgR1FPjyGkZfuDdHZNyLzPCtrorOMU9Z8huF/X+9DhRBCDH/KVFiRzkCHnelhZgVCOoMiZigzj4qb/dqW5tRzsj3SgY8ujdCNzqwQn+Pwr9qPh2HzU3ZZqq3LwMzKsBy1wC5JNeMSyK84vO2IPlOmIrSynvZlO7A67J4OztH5FF5Qjbv68LLlu2pOJHm6sY0nGtp4qTlIPOsU0yiPk+PyfZS5nFnBCkfOc7+hD8gxn6UUEcsiaiosFEqBicJSYCqFwq40Z2FnXFjpacq+XlKBQ4NYwz7e/vUtdNTX4fB4WfSFL1A03k0ktIloxwYiHe8Ri2xD5+ABS00zcDqLcXcU4f9tA/q2EOgarquW4PJcglbnBA0KzhtH/mmjsKw422puZdeuuwFwe8bz+9X/j9d3ljKuxMeDnz+J8oLey/IcTVtXvMF//vcWLNNk2ilncN4Xrx8WwQylTOr3/Yfa2l8TiewE7HJD1eO+RGXlpX3O2o7Hm2lqeoGGxmdpbn4Z0wyht4LnXR3vuw5cm0HL+tqr5ZXhqDgeR9XxGMUTcJbbJal8c8txBA6/F84zd73HlhX7KBrh46PfXoDjSAW/e7NlOdx7KaDgwttgwWcOedGOjg5++ctfYlkW1157LeXldmaDaYZZ995XaWx8FtCYNPHbjBnz6QEZbiLRxv6Gp6iv/zetrW+mp+u6i9KSJYwYcTElJWeg67n9YV9obufyd2vIM3RWjhxN9NFtJBvsILN3ZgmFF0/EKDj0nrLvJxLQGMZWrlzJv594ggdOOIt2j59vVVfylXHdDwI/89cVLN+wn6+fO4UvLp54WNtsrtvDX7/2RSwzySXfvBmXbyJr/7SG6Q4NQ9PQSzyUfWomztL3d6PhYHAfu3e/SWPTalo7NlAbrWWH1caOKNTGDeJZB2KjLYuziqfzicU/o6JgCKX3HSHLli3j1VdfRdM0Lr/8cqZMmTIo21FK8Ze6Jr63ZQ8JpZjgdXPnzHFMyzt2flfjSYtbn9nEn16qAWBKRT6/+/gcJlUMr1qqB2Mmk7nZJamskkQ0EzjpKZMkN4iSeZyIZjJNOpdLxKJHPHCCpuUETHL6mvSWeeJy43DrGC4T3WWiOxPojiSaIw56HPQISougiGCpEKYKYZodOU2wlerfCZFsuu7JKtOU3eQ6FXhIl2oq6PF5fxqpCSGEEO9nKmF1D3zklMDKZIEMWD8QvxPD5zhwPxC/E93r6L0fSKQVNvzHbiZe+xJ0ZvhqOow71S5JNe0i8Bb2a6yif6yYScfLuwm+tBsVt38mnuklBM4bh7O8/1f7748lWNrYxtKGVl5t7cj5FZzgdXNhWYALywuZnecdNheoKKWIRuvo6HiPpn1rePWvr9G6Mw6aYtQp9ZROb82Z3+UqJT9vOnl5U1FYxGONxOMNxOONxOINJBJ25oVzm0bxnx0Y7RqWXxH5SDVlkeswEnmYRoS9s28nVlmLzzsOn68ar28clhmjbu8Ddu8GzcEzOz/IgxtOZVJFAQ987iSK/EPrROjWlW/yn1/egmUmmXry6Zz/pRuGfDBDKYv9DU9TU/OrdPUSp7OE6nHXUlX1MQzj0IMJ4XAtDY3LaWx4lta2t8muT+h2VVBaeialpUsoKloEwQjBF14guHw5oVdeRUWj6Xk1dwGOyuNwVM7BKJ+KZ1IpvnkVeGeUHDQLT5kKlTRRccvuLZWwH8eCcZ7/63qS4STVM0qYft5YHCVe9LyjUK2gaRv8eTFE22DulXDRb/rcg+m+++5j06ZNLFq0iHPOOSc9XSmTzZt/xO49f2PKlB8xauTHB3r0RKN11Nc/Rv2+RwmFtqSne71jmT3rj+TlZc55WUpxzqvrOX9NkI/uTNgl8PKcFH5wIr5ZpQM+tmOJBDSGqWAwyO9//3veKRrBS5OPp9Tp4M2TpuE3uu+8/vHmTr79r7XMHVPII9eefFjbfeSn36d21Uqq58xn5uLPs++BzVS77Ct2XFOKKP34VHS39IfoiWkmqK9fy67dr1K/8X7eCtWz3Oshotufn1MpTkTn3InncN4J38LtKjnKIx58namAAB/84AeZM2fOoG/znbYQn31vO3tiCby6xs+njOa/Rgz/bKLtjSGuu38Va3a3AXDFiWO56cJpeJxD+wBxKOsMnKSDI53luNKZJ9nluLIzSqJZwZYu/U86gy1ZfVAsK4HhMjHcVubebaYfOzofu1LTO+dLva47Dv/Ps7I0VNKFMl1gucHyoOFFx4eGD0P3Yxj56d4RLmcBTlcRTncRbncRLk9e914pTheaPsSaygkhhBDvUwftB9LZCL1LVki/EjEPtR+IFsTY/Rz61ofR9r6SOV9luGDi2XZJqsnngWtol885lpjBOO3LdxBaUW+fa9XBv2AEBWeNxcg/tJPju6Jxnmxo5YmGNt5qC+X8Ck33e7iwrJALywNM8XmGfBBDKUUstpf24Fra29cSbF9Le3AdyWRreh7LhF0vVdKyuRCAsScVMPfiRRQUzCA/fwZu94Hr3ltWgqYH/kbjT34JSRO9ugL3eVfi2DsJgETRfvYf/zc6nGsPaczt8QJe2bMAy5jGNy46m/KiSej64V/Bf7i2vf0Wj932P1hmkimLTuOCL92I3sP5q6FCKUVT0/Nsq/lfOjrWA+BwBBg79vOMHnUFhnHw/ZJSJq1t79DY+CyNjc8SDtfkvJ6XN53S0jMpK11Cnm8GJJUdZIibqKSVCjqYmMEIkbXvEVnzHrFN21BJC81wgeFCc/rQ80ag55Wj+4rQCzwYfic4dEiYWInMelTC6nNgW3MbOEo8OEq8qVvqcakHPX8QKgzEgnDn2dCwwc7gu+oJcPT993fjxo3cf//9+P1+brjhBoys3zWlFK1tKykqXDCQI+9GKUVHx0bq9z3K3r3/IpFoQte9TJv6P4wYcTEA0U3N7HpoE96gncnlm19B4QXV6D7p03gwEtAYph566CFWr1/PAyedR9Dh4seTRvKZUT33HKhvi3LiLc+iabDyprMoyevfH7OaVSv4109/gG44OPED38b7ToTSVPpx3pmjCZw1tvcrcUQ3yrLY/OpveWH93TyrRdngzhwgVplJzvD4uWDuVUwb/3FcruF/wr2rNWvW8MgjjwCwZMkSTj311CO27aZ4ki+u38ELLUEArqwq4UeTRuIepidfH121h5v+tZZQ3CTgdfLzS2dz7ozea7iKgaWUhWmGUo2q23rsJ5HIyojo2vjaNEMH38hBxwCYLqykEyvuwIw7MOM6yahGMqqRCCuSUQ0zbmDGdMyYgRk3SMZ0zLiBSmrAwO+/HT2V3nK5ey3f1VPj+F7Ld7kyr0ngRAghhBh46X4gWZkemfJXyZzgiJ0FkkRF+9sPBHRnHN1qwjAb0GlH19rRjSh6xSiM8cejV89Gz/em+4YcsX4g70OJ/WHanqwluiHVt8Glk3/aKPJOHYXu7v6514RjPNHQyuMNrbwbzO2RNiffZ2dilBVS7Tv6J9YPJBZvTAUt1tLevoZgcG264XM2TXPg90+0My/yp5Pnn86GZzfyxkP/BGDSwkWc/8UbcLoPXPZJJRLs++nPaLn3XgD8p52Jc8LHMVvsK/fzThtF4JyxaA4d04wSiewgHN5OOLKdcLiWSHg74Uhtj2PMMPD5xuD3TcTvn4jfPwmffwJ+3wQM48hUK6h5ZwWP3fYTzGSSySedyoVf/tqQDWYopWhpeY1tNb+kvX01AIbhZ3TFpxhZ/AkMy29nyMXNTIZDIpXtELcwYxHC7TuIBHcSC+1HJRS66UKzXOimG6dWjINCDOWDpGYHG5J9DzQMBM2po7l0NKdhP3bqtLfGCLXHKXAbuDp71B5g+c4gh1Fq33unlvS/RJJlwYNXwMbHIW8EfO4FKKjs16pM0+S2224jHA7zsY99bNAqgRyqRKKFdeu+SnPLKwCMLvssJes/SGSV/W93r1fjRzM8XL94MotL5Bz4oZCAxjC0detW/v73v/Pu6Im8Pn4mozxOXl047YAnYy/8zcu8V9fObf91HB+ZN6rP2zSTCf76tS/RsncPkyZeyLTEDLy6hqVrlH5iKr4Zkgp1OOIdzbz09E08t/8FnvPohFI/S4dSLLRinFJcyanzPkdlxfm4joHMja1bt/KPf/wDy7JYuHAh55133hG/OsdUil9ur+eX2/ehgOPyvfx5xjjGeIf2QXa2jliS7/17HY+8sweAE6qL+dVlx1NVeOyU0ToSlFJYVtQOMiSymlZ3Bie6BiUSbanXOwMYQQamj4Q/q39Edvmm7PJMBTidmccORwCns7OPxIFP6lum2aWZezy3DFfXclyx3Mbv3cp4dT7ukoFiJvt5IuMwOJypHie9BUCyy3gdoBF81/lzG8lL4EQIIYQ4GGVadvAjnAly5DRC78wMyQqOdJY46qte+4GkSmF1ZocMaD+Q95lYTRutT9aS2GVfCKbnOyk4eyy+uRVsisZ4PJWJsTGUVQ4HWBjw84HyQs4vDTDSM7TKHnVKJFppD65LBTDW0N6+Nt3kOZumGfj9kynIn0V+wSwK8mfi90/psdTQhpef5+nbf42ZTDJi4mQ+9PXv4i8s6nH7yeZm9nz1esJvvQVAwYeuwjJOQjM19HwnxR+dgmdSz8t2W1cySDi8nZbWFezaeSex+D57umXg0HsrL6vh8YxKBTlSN99E/P4JOBwDV7K4dtVK/n3rj+1gxomncOF1Xx+wYIYy7ayzzqBAJsiQynJI5JZV6h6ASGUwpKZ1uNazv+I+wvkbANBMF0U7zqZ4x/kYibwBGfNBaalAQ1aQQXNlPc6e7tQxWxqJ76ghtmUTZtN+lBkHM44yE+j+coyiatzTj8N/wgR8s0ox8l1oTh0cPfekiUeTrHluF8efPQYDjWRLlGRjhGRTlGRTJHWLYrZEe/wKrLkNAhdW418wou/neF78BTz/YztL76qlMPrwMiieeuop3njjDaZNm8Zll112WOsaCEqZ1Gz7X5reWkn5hitwJApAg7xFVfxqgpPb9zVzVkkBf5/9/itF3x8S0BhmEokEf/jDH6hvD/LgyRcQ0nR+NXU0l1ce+CT3vW/uYE9LhEvmjOxXPf2V/3mEF/9+N+MD85hbtARD00j6HIz8wnE4yyQFeCDVb3uL/7z0fZ5L1LDOnUkzG2EmOUOPc+KYaUyZfDllZWfjdg+/xnl79uzhL3/5C4lEgpkzZ/LhD38Y/SieJHy+qZ1r1++gJWlS6DD43fSxnDUMIuJrd7dx3f2rqG0MoWvwlSWT+dKZEzHep1lSlhXPCkR0BiHaMk2sc5paZ26JRGcficRhj0HXXTiyG1enekXkPE8HKgpyghQOR36fG8kNVZZl5jaEzw6idAue9BQk6SzJFc2dnsgNwJiJw/+Z9VU6cJLVyyQ3iOLJzUDpGjzplmniyS3TlVpuqNcSFkIIIQaSSpi5gY9U2SszFMfaX4dVvxOrtQ0r6cFSBZgEgP4dNx2oH4jhzw2OHLQfyPuEUorI2kZan9rO2mSc5yocPF/lYqcn87k4NDilMJ8LygKcXxagzDW0jmstK0kotJm2tlW0ta+irW0Vkcj2HubU8PkmUFAwk4L82RQUzCIvb1qfMhl2r1/Hv2/7CdGOIAVlFXz4mzdTMmpMzjzRDRvY/cUvkairQ/P5yD/vSyjL7nfqmVpM0aWTMPL6FwiyrAS1tb9h+47bAYvWaAFbQhfw0QUTicdqCIW2Egptsftu9MLjGcXoUVcycuT/61OPiK5qV79tBzMSCSYtXMSF1/03hqN/JcqtcIL43hCJ9K2DxL7wgGQ2RAtqaZz4CKFSu6yXZjko3LWY4toLccQL7Zk0coIJypEgSQcJmkiqViwjjtLjWEYcw+3CkzcKX8E4vPmj0F2O3gMTLgM9axoOrV8XeyqliG3eQnD5MoLPLCO2aVPO63rhOByj5pB32mIKzp2HZ2IRmtH/fZtKWnawIxXoMJuixGrbSOy1qw+4JxZS9OFJOIoPsTn9pifhvo8Byu6ZMe+T/R5bp/r6em6//XZ0XefGG2/E7/cf9joPh9keo+XRbUTXNwEQ8++h+fhHmXzaf9PknMGiNzegAa8tnDbks9mGAgloDDPPPvssL7/8MmsmH8drldVM8rl5fsFUHIN4kBVqbeGer36B6d6FTA7MB8Cs9DP687PRPdIvY7BYZpI3Xr6dJzb/Hy84QrQb9kl/XSkWJGOc6Esyo/o4qqouoKzsHHy+cUd3wIegqamJu+66i3A4zPjx4/n4xz+Oo58HNANpdzTOZ9dtZ1UwDMD1Yyv4WvUIjCFY09WyFHe/WsvPntpIwlRUBTz8+mNzWDBueJclU8q0Aw/pUk1tuc8PUL4pkWzHsiIH38hBaJqRFWDICjj0FIBwZj+3gxaHc7Av+i4dOOnW0yRqP0/0FFSJc6AG8ZmsE3vZzkDKkWY4nbkluQ5Qmis93enKLdOVDrR0KdMlgRMhhBDDkZmE7S/D2odQ6/+DisWxVAEWAcz8KVhVZ2CVzMfSCrNKYOU2TB+ofiBGnhNHmQ9nhQ9HuQ8jMAh15IcIUylWtoV4oqGNJxpa2RPLXFDiMhUnRTQuHl/GBZMrKHIe/e91neLxJtraV9sBjLZ3CAbXYprhbvN5vWPIz59FQcFsOwMjf/qAZCc01+3hXz/7Pq31e3H7/Fx0w7cYO+t4ANqffJK6b9+EikRwVI7CM+8aNEc5ODQKLxyP/8TKAfl9am1dyao1N2IldwOwKbiEK8/5BXneAGB/RqHQVkLhbYRCW1KBjq3E4/vT6/C4qxg//quMGPEhNK1vx43b332HR3/xI8xEgokLTuIDX/3GIQUzlKUwm6Op4EVHOoBhtsZ6XqAz0ODKChS4dDRHJoCg5wQTMkGFiKOW3cm7aUm+lFqVQUXBhxhT/nm8vqqcDAlLi9Pa+hYNjc/S2LicWKw+ZxCBwBxKS8+irHQJPt+Eo75PiO/aRXD5swSfeobImtWpGsU2Pb8S59h55J19FoUXn4yrcmCyT5Sl6Hi1jvZntqMSFppLJ3B+Nf6FlQcODDdshjuXQKwdFnwGLrxtQMYDcMcdd7B3717OO+88TjzxxMNen1Kqzz9bpRShFfW0La1FRU0wNDwn57G18CZC0Y1ompPJk77Lfzcu5LmWDj43qowfThp52GM91klAYxhpbGzkD3/4AyHDwYMnX0BEwZ0zxvGB8sJB3e5Tv/wN5TtKKPemrio4voyRH53yvr9S5Uhqa6njX8u/z7KW11mTdc40YJqcoWIcX2QxeuQ0ysrOpaz8XPL8U476H9CugsEgd911F62trVRWVnLVVVfhdg+dE8Axy+L7W+u4Z49dw/C0ojz+MH0cpa6hc2De2BHjxgff5cXNDQCcN2MEP/3ILAp9Rz+NWymFaYa6ZEl06SeRDkBkghXJhJ1FYZodAzIOw8jDmZMVkR2UCKSyJArSmRNOR6ask2H4hty/G3H0KcvKZI10C4Z0afyeVaKrW+ZJdoZJZ/Alax3JeC9f0gaR4XAcWgAkO4ukazDlEHqiDNUayUIIIYapZAy2LIN1D8GmpyCZdWFL5XEw81KY+WEIZEot99YPJCfokd0wvQ/9QDS3gbPcDm44K3w4Knw4y30Yhe5heWyZsBSvt3bweEMrTzW2sT+e+Rx8hs6SQB5n1ieY+1oD/ph9msh7XBmBc8biKDnypW8tK0FHaBNtbatob1tNW/s7RCI7u81nGHkECo6jIDCHQGAOgYLjcDoPraRTf4Tb2/j3rT+hbtN6dMPgrKu/QMWajTTdcQcArslzcU28As3lx1Hho+RjU3GOGNgryE0zzKurfkSi/UEAOpJlnDj3l1SULup1mUSijYaGp6mp/XX6pL3fP5mJE75OScniQ/qd3r5mFf/++Y9IJuJMXHBiKpjRc9aOSlpE1jYS29FOoq6DRH0YFe+5TJZR5MZZmYez0o+r0o+z0o9R5OnzualwuJaaml+xb/8T2JFOnREjPsj46uvwejPZNIlEC42NL9DY+CxNzS/l9D7UdS8lxadQWnoWpaVn4HIN3TLsyYYGgs89R9vjTxN5Z4UdIE7RvMW4Ji4g/9yzKbp0MY7Cw6/AkmiM0PLwZuK17QC4qgso/shkHKU97B8aNsN9l0FzDYxZBFf+GxwDd37jzTff5Mknn2TEiBF89nOfp7axg7V72mgNJ7j4uKpD6jG8OxrnqcY2nmxoY2V7iAUFfn40aSTT8g5tfxdZ30TT/9mN5Z2j8ii+dDLOEX6SyQ42bPgm+xuetGcsuoirWj6Gx+Fl9aIZ+B3yHepAJKAxjJimyYoVK/hNS5TnPIXMzvfy9LzJg3qQtHnpO6jn9uJ3FJBUFr4PTKD81L734BADZ826J3h0xa953tpDY1YN2CmJOKe44kwpg0BgHGXl51Bedi4FBccftLb+YItGo9xzzz3s27ePoqIirr76avLyjlANyj56ZF8LN27cRcSyqHQ7+fOMccwPHN3URICXtzRw/QPv0tgRw+3Q+e4HpvOJhWMG9N+/acZSAYis8kyJ9tygRLfMicxzpXqrz3rodN2Lw5F/gKBE5/OAHYhwpvpNOApwOPL6fOWQEEOFsqxM0KOnTJIeepz0mHnSQ9ClM4BytAInuuE4cJP3bmW6PIfU46RrkEUCJ0II8T4UC8LGpXZwY9tzYGUFIcYsglmXwvQPgb/vfQh76wditsVINkRI7AuRbIyC1fOpEs1l4Cj34kwHOvw4S732CdjDKPUyGGKWxYvNQZ5oaOOZxjZakpnj+gKHzjklAT5QVsjpxfl4U5UDkq1R2p/ZQXjVfvucsKGRd1IV+YtHY/gHvuSUZSWIRHYRDtcQDm8jFK4hHNpGsGNjj9naPt9EO3ARmEOg4Hj8/olH/LtCMh5n2f/+jKbnn2V0UzvlqYbp7tkX4Ky+GE3T8Z9USeEF1Xa5oUHyyntPU7f9O5R47SbvVVVXMHnSNw5YSss0o+ze/Ve277idZNI+MR0IzGfixP+mMDCv1+V2rFnNoz//IclEnAnzF3LR9d/sMZihEiahFfsIvrgbs63L8alDw1nhzwpc2EEM3Xt4FxtGIrup3f5b9u59BLB795SXX8D46q/g99slv8LhWhoal9PY8CytbW+n5wNwucopLT2TstKzKCo6CcM4xHJKQ4gZDBJ87nnaHn2S8MrXIZH57DVXHu6pJ1BwwTkUXHwGzuJAv7ejLEXozb20PVmLiltoTp2Cc8aSd/LITABq3cPw7y9DIgSB0fDZ5yCv/HDfIgBJ02JbQ4i3a/fz9ydeotH0EnQEiCQyP8+qgIc/XTmfmSNz36dSik3hKE81tLG0sY01wcz+ZURzkvoiA0PXuKqqlK9Xj6DwINlpSima/roe94RA7vtPvbZz151s3fpzwKJOm8DP1Y3cMGUenxo5dINkQ4EENIaZPdE4i97cQMxS3H/ceM4oHtzPZsWND1DprKLD7KDycycSOMSmVGLwJeJRnnj2Fp7e9ThvuGIkUye2XUqxKBnlhHyTESUaHk8FZWVnU152LoWFJxzxOv2JRIJ7772X7du34/f7ufrqqykuHtrlkTaGInxm3Xa2hmM4NPj+xJFcPbL0qFxhlTAtbntmM7e/uA2AyRV5/PZjc5kyonsqtGUlMpkP3ZpYt5PIyorIeZ4KYFjW4ZfW0TRnpnG1kd8lE6IzMyI/53kmSyIfXR86WTtCHIuUUiS7lOPq1iA+3iWTJJVh0mNflN4CL7GjEzhJB0UOFDzplkni6laSK2e+LvP3t/azEEKIQRZqgvWP2ifJdryama47YPxiO7gx9UJwD1zDY5W0SDZFSOwLk9wfJrEvTGJ/mGRjpPfa/rqGo8SDo9Sbc3OWetELjlz5qpBp8lxTkKUNrSxraqfDzJzoK3E6OL80wAVlAU4pysN1gJ6H8boO2p6sJbalFQDNY1CweAx5i+ySPX2VSLSnAhbbCIdrCYfs4EUksgOles6acTjyKSg4nkCBHcAoKDgep/PonEdK7N9PZOVKwitXEl6xgtiWrenXLF3HffwVeMacTFzFaBnfSuXiGYyYOHnQS4G+snkHy9/8LqeOtP9teLxjmTH9FwcMToCdsbFjx+3s2v1XLMs+vistPYsJE75Gnn9Szrw71q7m0Z/ZwYzx807g4hu+1S2YYcVMQm/uJfjSbqwOu4SZnu/EN6ccV5UduHCU+gY06BeN1bN9+x+oq3sw3TuxtORMxo+/nry8KbS1rbKDGI3PEg7X5CyblzeN0tIllJUuIT9/5lG/WHQgWdEowedeovWRpURWvIqKZVdN0DDKxuCZPpu8UxbgP30hrtGj+7x/SjZHaXlkC7GtrQC4xuRTdMk4nKv+B96ys5UYdyp85C7I71+P2IRpsXW/nXmxLnVbv7edaFbwopPXaTCjqoD9wRg7m8N4nDq/uPQ4Lpxdyar2MEtTmRg1kaxAD7Aw4Oe8iAPzb7W0jvPxl1kugj6dYqfBt8ZX8vHKkgOWLD9Yqarm5tdY995XSCSaCZLHo+6vc8+iTwzLLL8jRQIaw8yNG3dy795mTir088jxEwf9l7t9TxMbfvccEz53MqXVVYO6LdF/e/as5eHnf8yzkXXUuDJ/YEckk5yux5hVosjL03E4ApSWnkl52bkUF5866FcUWJbFQw89xPr163G5XHzqU5+isrJyULc5UDqSJjds2sVj+1sBuLi8kF9OGU3eIKb9KWWRTHakAxK1jc18699tvJcqz3nRtFY+u2AbBm3p3hHZDa57qgvbd1qXzIieghKdr6eyJBwF6YwKXffIH10hhF2GLpE4pHJcOeW7soMoB5o/q4E8R/YQFU3Xuzd876EM14HKcXXrh9ItcOJCNxyyPxVCiP5q2w3rHrEzN/a+m5nu8MDk8+zgxsSzwTk434eUaZFsimYCHfvDJPeFSDZFUT2cZOukuXQcJV4cZbnBDkehB93vPOyTvO1Jk2WNbTzR0Mbzze1EsrJLKt1OLkgFMRYG8vrUp1Mpi/CmelqXbSbe1Iqlx9AKwXtSMa5qD5aKYpoRLMu+N60olhnFtCL2vRkiEt1DOLyNeLyx1+3ouhe/bzw+/3h8vgn4fdX486bg9004aieaE3v22MGLlSsJv7WC+I4dgJ20EncFCPvKaR0xnsbCEXQU+vH4/TjjYeob3kSLNKOh4c0vYNzx8xg/Zz7jjpuHZ5CqGby4uYFf/uf/+H/T7qXY0wZojBlzNeOrbzhoP8BodC+1tb+hbu9D2FkLOpWVH2F89XV4PFXsXLeGf/3sByTjMcbPXcBFN3wbhzMTzLAiSTpeq6Pj1T1YYTswZRS6yT99FP75I/oV/DqYeLyRHTv+xO49f08HY4qLTmHs2GtIJttpbFxOY9MLJBLN6WU0zUlR4UJKy5ZQWrIEr/f90ctAJZO0L3uFtoeXEln9BlZHQ7d59LwiPDNm4V90Ar4T5uKZMQPddfDyUOkeEk/Uosf2Uuz+GW4t1bT8lBtg8U1gHNoFQ5G4ycb6dtbvbWd9XTvr6trZuLedWLL7ftXvMphRFWCk36Jx8zuM9Fn84MZrcbuctEUSfOm+d3h5s72/cU8soG18HnReKKxpnFaczwWlAc4uLaDM5WTdS3t4+YHNWKZCd+u8NTefJ0froGnMyvPyk0kjOaGw//92o9E6Vq+9llBwLRYajhHXcsa0rx5TQbSBJAGNYaQ2HOOUtzZgKvjP3EksGAJlcMTQYpkmr6/4P/6z7m5e0psJGpkd35xEnEWeONVlGg6nZtd8LDmd8rJzKClZPOBXsCilWLp0KStWrMAwDD7xiU8wfvz4Ad3GYFNKcdeeRr6/dQ9JBRN9bu6cOY6p/v7Xhg2Hd7C3/hFCoc2pck7BVE8J+3Fnt8I3987l/9ZfTtT04HOEuWrGP5hXseaQtmEY/h4CEPmpHhI9ZEmkSjY5nQUYhl/+YAohho104KSzrFbXAMiBMlCyAyOxHoInXUp/KdX7CajB0FPgpHsWiauX4Imn9/4n6fk8ONx2xokEToQQx7TGLbD2ITu40ZS5Wh53AKZdBLM+AuNOO+QTaodDWQqzPU6y0c7iSDZE7PumKMnmSHZ1m+400H0O9DwXRr4LPc+JkefCyHfa0/Kc6PkujDxXOvihlEVjLMSTDc0sbQzxalucRNaZnZFOkyX5Ic7Ma2GasxWlolhmBNOKYJqdj6PpQETX56YZxbIi6ZPFA8XtqsgKWozH57fv3e4RR/W7ilKKxI4d6eyL8IqVROsbCPsqCHvL7XtfBW0FI4h4ytC0AwfMEnqMsLOFqNFMglaU1YaRDFJREmD2zOOYsXARpaPHDujf6ec37ucr973ERyY+wikj3wTA55vA9Om/IFBw3EGXD4W2sq3mNhoangFA112MGvVJWjaM4+W//53qOfO5+Mab0sEMM5Sg45U9dLxWh4rZpcwcJR7yF4/Gd3w5mmPgf56JRBs7d/6ZXbv/mr7oryB/NoHC+YTD22hufh2lMtUJHI4ApSWLKS09k5KS0wakMfxwppQiunEn7c+8RnjFO8Rr1mO17ICuJaYdTjxTpuNbOA/f3Dl4jz8evaAAFY/bt1gMFY9jxWKoeAK17WU8q3+CrtqxlJ8W43qYMBXdCOMoL8e/8AR0f+Y8Z0Mwlg5c2Pdt1DaGeqzyl+d2MKOqgFkjA8waFWBGVYCqIi+tpklDLM6d9z9IS9Jk2sITcZaUUhOO8WxTG5H1rTi225kpWpmHJWeO46KRxSwpLuh2MWuspoatP/8Ta/NOp6nDDgBqo3385XgXO3327/GlFUV8Z0IVI9z9q4ximjHuXfnfjAw9DtjZUDOm3/q+/53siQQ0hpGkpXhwXzOr28P8fMrooz0cMcR1dDTyr2d+wPLGl1jlMlGpgyC/ZXG6lWBuIEFJoYama/ZVCEUnUl52LqVlZ+MegIZWL774Is8//zwAl156KTNnzjzsdR4tK9pCfO697eyNJfDqOrdNHc2HKw69/JppxmhoeJq6vQ/S0vL6AeeNJl3ct+kyXtmzAICpJfXcePI7VAacuUGKbuWa7CwJw8hH16UcihBCDCSlFGYyme5DkojHSES7BlGyAyDRbpkknZkqmeBLz71PjnjgRNNzMkN6zDzpWsrrgE3ku84vgRMhxBChlJ2tsfafdvZGsC7zmr8MZnzYztwYtSB9le4RHZ5pkWyOkmyMkGiIEN/fTLyhHaspgQoZaKoPGRMoIq4YTS6dvS4PjW6dZpdGk1vHcjVT4drAOPcKylwbsVztoA3c6R5dd6HrXrSkE8IGuulCM1043H5cZYU4fHkYugfd8Obcuz2VdvDCVz1kTt6Z7e1E1qwl9PYqGt5eS+vuNiJaIWFvOaFU8CLm6b2csoVFxN1K0hvClaewdAMrZGB0ePHG8tE48Mn8iCNIxNmC5QvhL4ax4ypYcMICxo0ee1jva/n6fXzh3reZXryGz83+Jx6jFU0zGDvmc1RXf/mQygC3ta1i67af09r6FoD9/bTtYuYt+SoeXxFme5zgy7sJvbE3nZXkqPBRsHg03lllg9JHJpnsYNeuv7Bz152piwXB5arAMDxEIjty5vV6x1BWejalpUsIBObJd+gDUAmTyMYGOl5YQXjF2yR2bsRs3oaKdxx8YQBNUTojSOmMDjQNoh2FNKsfYTmrUVaSyKYn2F63ks2lY9g+eS7bS8dSY3lpjvTcozPP52REqY/yUh+BYg/uQg8Jr05z0qQ5kaQ5YdKUSBI2D35MXe5yMK3N4p3X9pBIWkwo8/PnK+czvqx7pkXz3+9l349/jEJj98jTqRl/MabhRtcUHdMMfjW9ANPQ8Rk614+t4HOjy3AfoFxfb7aFo9z0xu+4ij/jJInXO47Zs/5IXt7kPq/rWCYBDSHeBzZtfp5HXvsFz5s72Jt1BUR1IsnpTo2pZVE8ns4DCo1AYB7lZedSVnYOXm/fm8CvW7eOhx56CIDzzz+fhQsXDsTbOKoa4gmuXb+Dl1vsP9pXjSzlBxOrDvgHKtixkbq6B6iv/zfJZFtqqkZx8SmUlizG6SxKNbW2syQ2Nxjc8FAttY1hdA2+fOYkvnzmRByGZEwIIcT7gVIKy0x270vSNdskOwOlhzJc2dkoiWjP5buUdWQDJ2hat9Jb3fqX9FaGq1vj+J6yTuz5DKdTAidCiIOzLNj5mp25sf5RiLRkXiscAzMvtYMbFTMGdRimGSYcrrUbXIdrU7cawuHtmGbWyUKlYSTyMGIBHPECjHgAR+fjWAGOeAAVL0GLFeONu9HpW/BDeaJYnhh4EyhfErwmmh80v4bu19DyHRh+F0aeG8PhRTc8GLoHw/Ci614Mo/OxO6fxttkRJ/jcLjre2Gs3T9fAN6+CwNljMQJDp3eeFUuSbAjR8c5a9r79Nvu27SLSbhKnkJCvkpB/BEln76VkYkaYqLcN3Rcnv9BJ+YgA4yeMZtrMyfj8vh6XiUSj1OzZxc499eyvb6G1IUS0xUK1G7hC+bjN3qsChJytRLyNOAIxyivzmDVjKvPnzs8p8XQwT62r54v/eAeP0cE3Fy2lyv0yAHn+KUyffiv5+dMPug6lFE1NL7Bt2y/oCNklhNzxkVTt/QyurdWQOh/tHJlHweLReKaX5DREHiimGWH3nr+zY/vtJJKtAGiao0vPFY1AYA6lpWdRVroEn2+CHC/0U7IlSmRTM6E31xN5exXm/i2YTduwsoPEAJqB4dUYubARf4WdKdO6o5T9G6uxXCW8sOAjPFxSwtZwvMdSfApQfgcq34mV77TvC5zgPvQy4A4Nip0OCjQI79uLNxFn4fRpjPT7OK04n3kFPnRNY83uVj7/t7fZ2xYl3+Pgtx+bwxlTchuUx2pr6XjuOUJvvklk5duETA+bJl9Oc4n9d8IfqcfQVvNSdRmrJ8/AMW4sP5w0irNL+95c/WPvbmNH0ypuMm7Da7Uyb979h5RB9X4iAQ0h3keSyTjPPP9Lnqx9hNedYWKpgwmHUixMwKKAh8riZvSsg4z8vBmUlJxOcfEpBAJz0PWD10iMRqPcf//9jB49miVLlgza+znSTKW4tbae/92xD4A5+T6+OKYcXbMbRWloYHagtz2N3vwoWuS99LLKOQKt+INQfDGaq8qeX7OXUUrxzNt7ePDFWpKmojjfxRc+MJXpYwrtdabnhUzYCTRNy32eepBeJmu57Hk6D9yy15fZRpd1Zr+3HtaZPZacbRxknZlltUMep5ZZqNdxHnCdcsAqhBBpZjLZQy+TzOPsQEi3QEov5bu6luxKxKJHNXDSU/+S7hkorh6DKJ0Bkm4ZKJ3LOI9c414hxCAzE7DteTtzY+MTkAhlXiubZpekmnkpFFf3exOxWAMdHRtTza47gxY1xGL1B1hKx+sdhc83HperFEP3ohvu1L2d1bAzWcDzoSKeDfrZELVPZutKEYgrTnHoLHG7OdHhoTjuwAolsIIJzI545j6U6Kx4e2g00P12qSs9v+t9quxVZxksnzN98jrZGKHt6e1E1tr16jWnTt4pI8k/fRS6Z/CujFdJC7MjgdURt++DccyOOInWKHu2b2ZXzQY6Wjsw4x5MvYSwr/fAhcIi7mghlhfCHYCSUj+jxlQwbcYkqkYNfJ/I/S1NbK3dzqZ169m7p5VEqxNPpIS8eEmP8yf0GEHPfix/OwVlDiZOHMWJJyykrLS8x/kBnlizl+vuX4VpKa5btJv5RXem+knoFOTPJFA4j8LAfAKBebjdZb2uRymTvRsfp/2F7fh3zkZT9s80WrQD48QkFQvOxOcbc1ifR08sK8bOXfewY/vtJM1gt9d13UtJ8SmUlp5FaekZuAagEoXIpUyL+I4g0S0tRDfUY4ZjgAMwcJrrKTZ/gkEjlnLTan6RZY4z+LvHZH0khhnLHCMqXUPlO9KBC0eeE7fXwK0UrkQcdzyGG4XX58JfFMCXn4cnlQ1R7HRQ7HRQ4jRS96nnLgf5hp4+XrvzzjvZvXs3Z599NieffHK397I/GOULf3+Ht3e0oGvwzfOn8tlTx/d4vKcSCSLr1hF64y22vL2PdWoOCacflMXo3c8zvvZxmvP9rJ4yndjceXz4gnMYP6nndfVkeVM7/29NDVVGkMemxBhVcVa/fj7HMgloCPE+tX//Vh5+7gc8F1zFRldmp1qStDhD87OwKoDLtZ3sQq6G4aOw8ASKi0+huOhk/P5Jve6Qk8kkhmEck1/2lzW28eUNO2lNpi45UYrJbOJ0nuVEXsWDXUM2iYO3WcDzLGEds1FaD1cSxE2ca1swGu1lzHIPiRmF4Bq85uMiO2iS/VzrEojJDtxovQRdugR7stbJQdap9bDOzHw9r7O3ceZsr5dxZo+nM/h1KO/9QOPsus4DjTNn2Z7G2UtQiux5UsvlvLf0NrSc510/n67rzCyv9TC+ntfZ2zjpYZ3Z2x+ocXaftw/j7PZZZoJ83cfY5XclNdPBfi96Wmfue+wtYNrzOjPzHXyc2evM+WwOcZy57/NA/x4O9DPsss4D/Hvo6T32/DPseZ3p93YI48xenn6MM/v3rD86AyeZXia9l+PKDZ5Ee20E31MQxTJ7LkswaDQtEzDp2hC+1/JdPQRPelw2KxvF6ULrR7kCIUQ/xcOw+Sk7c2PrMjAzdfYZOd/O2phxCeSP6HFxpUzC4VqCwfV0dGwg2LGBjo4NB2x07XQW4fNV4/ONT93G2ffeMd1K/yileK8jwhMNdmPvzeFo+jUdOKkwjwvK7Mbele5DaNZrKaxQAjMYx+roeh/PBAOCCaxwP4MfWf0+lFLEd7RjttjffTSvQf5po8k7pQrdaaAsBaZCmRYqaaFMBal7lbSn0fk49ZoVTWYFKzJBCzOYQEWSRMww2yM1NEZbiCUMTFVI0jmCpLOXslbKQtGM6WtHH+GgtLqE8ZNGM2PKJPJ8R7+Paf2+vbz+1pvUbqsj2GhhhAvIj5TjUD3/vMPONpKedjwBGDmylFkzZ1I1roz8Ei+6rvHYu3V89f5VWAquOjHAhyfcR0PDU93W4/WOIRCYR2FgHoHC+d0asbct20Hw2Z0AJCsb2Tf6XjoCq9IHEoWFC6mq/AhlZefhcPT/c4xG99LW9g5Nza9QX/8vlErkvO50llFWtoSy0rMoKjoJwzhwHxMxCJSCN2+HZ74DVpJI4QR+WP4dHt6eT7w9s09Vhkbl6HwunlLBpW4vrp0d6HtD6C0xiJvkHjFnWOFmrNA+dC+4qivIP2MWvuPHoR2kssXKlSt5/PHHKSsr49prr+3x2DaWNPneo+/xwMpdAFwyZyS3fHgWHueBz8+EmkK8dPc71Gyzfx890UambvoHxS2bMvOUlTPl0X+RX9J7mbr0e1SKk9/cQG0kzk8nj+KqkRKM62pQAxp/+MMf+MUvfsHevXuZMWMGv/rVrzj11FMHdGBCiMO3YuUDPPbu7byo7acl64/AjBickT+KaSNLsKwNWFZrznKGUYLXOxe/bz5e71ycTnsnm/2HIX3SqJf7Q5lnsObt6/osyyJuRohbUbaHgtyxex+F0ddZkHyCEmt3er4mfRRrnOewzrGYkF6Ihmancist/R1AAeH9ERpW7seMmqBrFM8qxl9dgKbZ8ynsYwFNs+/taSq9fGZa5zoV2Xvq7HWkX8+ev8s6s6dlllc9TCNrOwdep+phnUIIIYavnoNSWrdpmXkPFIjsPSiVWrLHdfYU3ARSf5zsPzqaUqj0895ulj2PUnb5mc5llGWXRkm9riwrPU0phda5jay/alrOH2CVGpPKKkvf+VhlPpv0fKT/sKbX2bl+pdB0HV3X0TUNXdPRdA1dN9B1LTVdz8yTunU+N3QdXTfQdB3D0FPL6ehZjw3Dfl3XcgNaOZ93zs+s96Bh5ufYc9Aw+3cmN5DY+zq1XtaZXryHdQ7kOLt/Hp3zHFogki7L9i/o3WWcB1ln1/d4KOPs6SKCnj/LntdJ13X2+Wd45LKED3mckTa0zU+irX8Utr8CykIjtQ/IH4lZMYlwWRmhfC9BZ4SQWU8otBmlYmT+rav01ny+avz+iamgRbX93Dcep7OIA7GUYnV7mMcb2niioZUd0cwJQaemcUpRHh8oK+Tc0gClrkHMdjAVVriHoEcwkwHR+Vqfgx9gf/iH+WVhX7yOXZFdBGNxkkkvplZG3F2B0ns4GaksnIlGNEcLjlKL/KmljJ0zjWkTJgyJwEVfRKNRVr6zgvXrN7N/bxiz3YMvWoov0XupG0szwRehoMxDMi/AozUtNOmKcxaO5BsfKKGt7W1a296mre1tOjo20vWH43AE7OBGYB6FhfPxG1Npf3QneaeNwj22ANOM0NCwjL17H6a55dX08obho7zsfCorP0Jh4QIO1OTdsuIEg+tpa19FW9s7tLW902NWk9tdwYgRl1Bedi75+TMPuE4xyKLt8NiX7VJ+wJPGIr4WupoQdgk1pUHJyDzOm13JVxeMo9zbcyDOSlrEt7cR3dxCfFeQRF0rViiO5ug5QGWFG1HxVowCN56Z1XjnTsRdmYdR5ElnikWjUW699VaSySSf/exnGTlyZI/rUkrxtzd28IP/rMe0FLNHBbjjinlUBnovA9dp+9pGXvzHJjpSQdvK/CY8W/7F6M1raCwuYeZzyylzHVppuD/vauC7W/cwyefmpROm9vviomPVoAU0HnjgAa644gr+8Ic/cPLJJ3PHHXdw5513sn79esaMOXiqmQQ0hDjyIuE2Hlv+Y5bVL2eFK4GV2mFOilnMrrsUv7+FwqK9FBXupSCwH8PIvRoyFCqkpaWS1pZK2trKsazuO2qFBYaFMiw0hwKHhXIoNENhGaB0hTIAHZQBlm6nH1o6WLqG0nUsTcPSNSxdx9Lsm6mlpms6pm5gYmBqOqZmP7Y0HRODpObAQiepOex5MDA1B0kMTOxpSTpfc6QfJ3Fgat2/IIxR27mFG/v0OSctnX9vu4Ana89CoVPpr+ea2fcwKn/vAZez98KZr1yZvXLuV7vu07su03X6gebpOn/qseqyzV621/M0Ul/tMl/xFHrWOjof61mvZb6mqtS0zLY7p2dPy3qsaaDs+56WI3ssmpY6F6bby2WNLz2vRuqrbGasWtbynfNmpuvpZbI/F3v9es709Jg0rct77jKP1vnZZF7XtMxje9upz1Hrafmu6+6cnjs+LWt9nT+PzrMBOeNLbUOD9OdNejvZ4yQVsOv8uQBa5mef/h3QtNznWZ97zu+Q1uV5+nPtYX2ql88iRWlal2la6tc8d33ZY0Dr8ruvpf79pN93Tz/3zkCllvO+7Z8h6eXT9znvhaz3mplPZZ0BUOn1Zc4LKJXZrj2Pyl3fIQQi7eeZ1zuXy7xPlRPsVHRZZ9b03tbZffmscaqe16kOsE4Oss4DBYX7Os7un2XuOnsaJwdZZ2/jFEKIYU0p+whcWTiUia4sDGWlptnTMzczPW/mNRMde1lDWanlTfs59nP7NXu+3O3Y82Rv135sT++6HaPbdPu5QqPNkU+zs4AWRwEtzgAtzgKasx7HeynTmwmaZD8/cJawQhG1Mn8FPLrG4uICLiwLcHZJAQHn0GtmrMzszI/cYEd2IMRsjaLiByhNaGhoho7m0CB13/m8PdnGqh0riYTBTBaQcIwg6ez53JGRDONM1uP0BcmrclI1exzTT11EQdHBr5QezrbWbOLNd96iZuce2tuSaDE/ebEyAtEyHKr3k6qmYeLxONB0Dc0ATVMoEiiiWERRVgT0JGgWaCaaZhHTY4T0KA7DwOHQcboN3G4HHq8Llxd0Rz1xaz2aYwcObxsOZwKPu4qKiguoKL8Ar2ckiXgTweA6gsE1tLevJdSxHkvFc7+1aQZ5/skEAnPwe0dTXHwaef4Jqa8Lqf+0zL04cvbXvgMPfpLyyE4SyuAnyU/wF/NcFBr55T7OnFXBV08Yx/hAz31lDkWyNUp4TT3htzYR39UIphvNX9YtiGVF27DCjWhYGCPK8cyYgLuqgCe3vcT67ZuYP38+H/jABw64rde3NXHtvW/TEk5QmufmjivmMm/swfcZ8WiSN/5dw9oXdoMCb76TwiXlOArauXjRgkN+r+1JkzmvvUfItHjwuAmcVtxLVtn71KAFNBYuXMjcuXP54x//mJ42bdo0PvShD3HLLbcM2MDEwSmlUJHI0R6GGGa271jJv1+9lRfjW5kXH0GZ9kFydwMJvN69+Hy78Pt34fE0pA/Md+hjuNX57XTAwA4K2MEBq6eyS8PYaLWDnyZuACs3BNCbpmgRt6+/im3BagBOr3yVyyc8gttIHGRJIYQ4fNkBy96Clz0HPrODpXR5DTto2GX+nPteX+9lmdQYDh4sPdjrB9peT/P2vo6s4mpZkw+8fPoUldb7GNP/17q+1nX5LsGx9PTsILCWFbjLBCEzQdjs5bsGN/X0e1SA0vT0GFQ6wJcJ7mYHfbsGYdNByaxgJ12D0+n3q6dWkwoQa5lAbzpAq3UJRud8HlkBZ6AzSKppuh0M0jKfZSZw2RlEzF5f7s9FZW2zc7x2kDATUNay3ndm7KSf5wRnU+vTNA2ltPSvedfgs4Y9ZqUUpmmhTAvTtLBME0tZmGbSrglvmumbMi2SpoVlmVjJJFb6NSv13CJpJbGSVuo1e5p93yVQmf7sM+9DS38mmcAsWa9nB3EzgdjUZ6dlB2Htx7phoBkOdIdhP9bt54ZhoDkMNN2RmkdHdxhomgMMHd1woBmdy9hZJpphoGkGmsOB2+dLj+NA2aU9BQ1zP4PU96del089sEywkmAl0a2E/VyZ6CoJlpmaZqGTRFMmmpVEs0w0TDTLQrOS6MpCTy2jWyZgoXdOT81nKBMtdQJeTz22T9zbr9sn7ZPoSqGROcGvZ53s11PTO9dhZD9HpU/i6+nlO1/LBAh0VM76jC7zpZ9nBQA6H+vKSgcG9KzfkGNZSPfQ4iig1VFAizPfvncUsDpvCo+Und3n9fkMnTOLCzi3NMAZRXn4HcfOdyoznKD9xT04Ai58x5WhOXQ0Q7ODGQc4IV2/cwf/+lWXC8KUhSveiENrwF0Yp3BcARMWzGD8zFkYxrHzmR2O2votvL7lZdbv2Mr+1hDxhAd/vJTCaDmBSDn58aJ+rTfiraMjsPXQF7BSVzCiYQFJzeQ/Ex7s17YPRkdPZ5ZBVsCDzozP7EAIZIIhWip7MXVM1uX19LMegimAnUHZ4zZSc+SMI7NuNM0+KsvZRk/bpst76bLd1N/h3raR/Rl0vpJ+vwd4f+m5s9bh2Bjnm3v/hleLU6eK+VL8OlYXTKWyKsicyp1U+Dp6+Pyz1qHp3T57rcdt534GGhreVpOqNXHK9rgJxEtxeavQjNyAnZUIEw3tZr+2jxX5u1hX0sHxvik4nQ50p4HuNNBchn1s4tLT01qTTv7+TiF72x0YuuLShTFOnGR2G0NPv1+xOoP9y9wkmu1jQEeBheHR0F0auhMMF+hODT11b6Tv7WmGS+e1jg5Mh+IzJy5kQumxHYDtq0EJaMTjcXw+H//85z+55JJL0tO/8pWvsHr1al588cVuy8RiMWKxWM7ARo8eLQGNAWCFw2yaO+9oD0O8j2ycN5ovfObnhzy/oRKkcyRUKvyhkhgqiaFMnFYydeVVEsNK4lAmDiuJwzJxmKl7K4lhZk0zc++diSSGZeJMpKYlkvbrSQtnPIkjab9mJJM4E6Y9LZHEmbAwEkmccRNHLIkrnsTofD1uotP7QXZPWtx5XLv4RpK6wXWrH+LUujV9/XiFEEIIIcRhUVSf0wiaSsfgND3zGE2l42aapuy4W9Z0qWYyOLKrxGFpWc+19PT0Yws7WN7DPOnpVi/TU/Pb68hM7zaP1fOyaGC4rNRNYbhTj1P3B/r9aNvhpe71/p0wFt29Nu+z6FYbztge8oN7GLmvDn88fvAFRZoF7C0yeG+Mky0jdfaUOIl4C3BY4LB0QEdDR1P2vf3cyJpmgNJwKTc+5cVlunFabpzKiUMZGEpPfWdWdGZ09PQVWrMcPDThgSP75sWAmRoay737XuN1bTrXF19CKO91XMamgy84CPwxB4vrxrGweQITzIkEvBPQu5SqUmacd2JP8Z153fvFdKUsF9G6/yIZnAWAs+hV3BVPoGkHyC5L0S2DuXvOZs6eszFU/7PpTvhiGQtmzer38seiQw1o9OlTb2xsxDRNKioqcqZXVFRQX9+93h3ALbfcwg9+8IO+bEYIMUSN2VDPb/7ybZzJJI6YiSORCiTE7UCCM2Y/dsWT6Emrz0GBoaPv4y6KdfDdt/5CSaSdikjLIIxJCCGEEEIcmIa7KJHTN2IgdZ4oVz2cLO/TifleTuqn13k4J/UPdrL/ICf1+zPOg733/hxbDz0K3dk9yNF5H2s7tNrp4tAsevvPR3sIw54OjGwxGdlics679jRFGzA4/yJNXSNclE+oMEA4P4+IP4+ox4eW0LjvsQRaNJPF2JkRqLT0LiR3WmqQPU4nd5lDXq7LdKufy+WMucfXtQOur8cxH+I4Djrmg4y/L59t5zymVsMvSheimrbzkZ139bBcDz/Xrp9zX3/G2WPOeT1OB5t51rmZ5U7QLI3JLaOYnJzESH0i+XkTMdwFWMkEi2oLQHfYfXZSt54eWwXvsl2zqGk/joJQJdO2maCrA3wmnRmtSTq0J3ljxKt4zVI846agW070pMO+mfbNSD02zM7pToykA8N0YphOvP5RiP7pVxipa3qgUqrXlMFvfetb3HDDDennnRka4vBpXi9T3nn7aA9DvM/MOdoDGMKmHO0BCCGEEOKYolINzTtvnadQMtPsqwgVVtZz+17ZK8jMk34td9nOs9GKVKN0MtvKvled86mu89jrsZSVWlX6NA+Knue1x6cy41I9zZM9hsw4u66n6zi3N6wHNLsshe5CMxygO9B0JxhOdMOFrrtAc6A7XOiGC81wohtuNIcbTXeiO1xohgvD4cEw3GgOF4bhRu9S2iZ1nkYIIYQQR1lbezvhd7dy/oQb+GBV6SEto5RCRU1e3NjInJELKSy/ul/b1rxe6e1yhPUpoFFaWophGN2yMfbv398ta6OT2+3G7Xb3f4SiV5qmofn633RHCCGEEEIIIYQQQgghhrMin4+iESP6vqAflpwsLRGGmz5VCXW5XMybN49ly5blTF+2bBmLFi0a0IEJIYQQQgghhBBCCCGEEEJ06nPJqRtuuIErrriC+fPnc9JJJ/GnP/2JnTt3cs011wzG+IQQQgghhBBCCCGEEEIIIfoe0Ljssstoamrihz/8IXv37mXmzJksXbqUsWPHDsb4hBBCCCGEEEIIIYQQQggh0FSmy9oR0d7eTiAQoK2tjYICqVEmhBBCCCGEEEIIIYQQQryfHWrcoE89NIQQQgghhBBCCCGEEEIIIY4GCWgIIYQQQgghhBBCCCGEEGLIk4CGEEIIIYQQQgghhBBCCCGGPAloCCGEEEIIIYQQQgghhBBiyJOAhhBCCCGEEEIIIYQQQgghhjwJaAghhBBCCCGEEEIIIYQQYsiTgIYQQgghhBBCCCGEEEIIIYY8CWgIIYQQQgghhBBCCCGEEGLIk4CGEEIIIYQQQgghhBBCCCGGPAloCCGEEEIIIYQQQgghhBBiyJOAhhBCCCGEEEIIIYQQQgghhjwJaAghhBBCCCGEEEIIIYQQYsiTgIYQQgghhBBCCCGEEEIIIYY8CWgIIYQQQgghhBBCCCGEEGLIk4CGEEIIIYQQQgghhBBCCCGGPAloCCGEEEIIIYQQQgghhBBiyJOAhhBCCCGEEEIIIYQQQgghhjwJaAghhBBCCCGEEEIIIYQQYsiTgIYQQgghhBBCCCGEEEIIIYY8CWgIIYQQQgghhBBCCCGEEGLIk4CGEEIIIYQQQgghhBBCCCGGPAloCCGEEEIIIYQQQgghhBBiyJOAhhBCCCGEEEIIIYQQQgghhjwJaAghhBBCCCGEEEIIIYQQYsiTgIYQQgghhBBCCCGEEEIIIYY8CWgIIYQQQgghhBBCCCGEEGLIk4CGEEIIIYQQQgghhBBCCCGGPMeR3qBSCoD29vYjvWkhhBBCCCGEEEIIIYQQQgwxnfGCzvhBb454QCMYDAIwevToI71pIYQQQgghhBBCCCGEEEIMUcFgkEAg0OvrmjpYyGOAWZZFXV0d+fn5aJp2JDc9pLW3tzN69Gh27dpFQUHB0R6OEOIYJPsZIcRgk/2MEGKwyX5GCDGYZB8jhBhssp/pnVKKYDBIVVUVut57p4wjnqGh6zqjRo060psdNgoKCuSXWQgxqGQ/I4QYbLKfEUIMNtnPCCEGk+xjhBCDTfYzPTtQZkYnaQouhBBCCCGEEEIIIYQQQoghTwIaQgghhBBCCCGEEEIIIYQY8iSgMUS43W5uvvlm3G730R6KEOIYJfsZIcRgk/2MEGKwyX5GCDGYZB8jhBhssp85fEe8KbgQQgghhBBCCCGEEEIIIURfSYaGEEIIIYQQQgghhBBCCCGGPAloCCGEEEIIIYQQQgghhBBiyJOAhhBCCCGEEEIIIYQQQgghhjwJaAghhBBCCCGEEEIIIYQQYsiTgIYQQgghhBBCCCGEEEIIIYY8CWgcQX/4wx+orq7G4/Ewb948Xn755QPO/+KLLzJv3jw8Hg/jx4/n9ttvP0IjFUIMV33ZzzzyyCOcffbZlJWVUVBQwEknncTTTz99BEcrhBiO+no80+nVV1/F4XBw/PHHD+4AhRDDWl/3MbFYjJtuuomxY8fidruZMGECd9999xEarRBiOOrrfubee+/luOOOw+fzUVlZyac+9SmampqO0GiFEMPNSy+9xEUXXURVVRWapvHoo48edBk5B9w3EtA4Qh544AG++tWvctNNN7Fq1SpOPfVUzj//fHbu3Nnj/LW1tVxwwQWceuqprFq1im9/+9tcd911PPzww0d45EKI4aKv+5mXXnqJs88+m6VLl/L222+zePFiLrroIlatWnWERy6EGC76up/p1NbWxpVXXsmSJUuO0EiFEMNRf/YxH/3oR3n22We566672LRpE/fddx9Tp049gqMWQgwnfd3PvPLKK1x55ZVcffXVvPfee/zzn/9kxYoVfOYznznCIxdCDBehUIjjjjuO3/3ud4c0v5wD7jtNKaWO9iDeDxYuXMjcuXP54x//mJ42bdo0PvShD3HLLbd0m/8b3/gGjz32GBs2bEhPu+aaa3j33Xd5/fXXj8iYhRDDS1/3Mz2ZMWMGl112Gd/73vcGa5hCiGGsv/uZyy+/nEmTJmEYBo8++iirV68+AqMVQgw3fd3HPPXUU1x++eXU1NRQXFx8JIcqhBim+rqfufXWW/nxpHB6AAAGDUlEQVTjH//Itm3b0tN++9vf8vOf/5xdu3YdkTELIYYvTdP417/+xYc+9KFe55FzwH0nGRpHQDwe5+233+acc87JmX7OOefw2muv9bjM66+/3m3+c889l5UrV5JIJAZtrEKI4ak/+5muLMsiGAzKCQEhRI/6u5+555572LZtGzfffPNgD1EIMYz1Zx/z2GOPMX/+fH7+858zcuRIJk+ezNe+9jUikciRGLIQYpjpz35m0aJF7N69m6VLl6KUYt++fTz00ENceOGFR2LIQoj3ATkH3HeOoz2A94PGxkZM06SioiJnekVFBfX19T0uU19f3+P8yWSSxsZGKisrB228Qojhpz/7ma5uu+02QqEQH/3oRwdjiEKIYa4/+5ktW7bwzW9+k5dffhmHQw47hRC9688+pqamhldeeQWPx8O//vUvGhsbufbaa2lubpY+GkKIbvqzn1m0aBH33nsvl112GdFolGQyycUXX8xvf/vbIzFkIcT7gJwD7jvJ0DiCNE3Lea6U6jbtYPP3NF0IITr1dT/T6b777uP73/8+DzzwAOXl5YM1PCHEMeBQ9zOmafLxj3+cH/zgB0yePPlIDU8IMcz15VjGsiw0TePee+/lhBNO4IILLuCXv/wlf/nLXyRLQwjRq77sZ9avX891113H9773Pd5++22eeuopamtrueaaa47EUIUQ7xNyDrhv5FK5I6C0tBTDMLpF/Pfv398tAtdpxIgRPc7vcDgoKSkZtLEKIYan/uxnOj3wwANcffXV/POf/+Sss84azGEKIYaxvu5ngsEgK1euZNWqVXzpS18C7JOPSikcDgfPPPMMZ5555hEZuxBi6OvPsUxlZSUjR44kEAikp02bNg2lFLt372bSpEmDOmYhxPDSn/3MLbfcwsknn8zXv/51AGbPno3f7+fUU0/lxz/+sVw5LYQ4bHIOuO8kQ+MIcLlczJs3j2XLluVMX7ZsGYsWLepxmZNOOqnb/M888wzz58/H6XQO2liFEMNTf/YzYGdmXHXVVfzjH/+QOrBCiAPq636moKCAtWvXsnr16vTtmmuuYcqUKaxevZqFCxceqaELIYaB/hzLnHzyydTV1dHR0ZGetnnzZnRdZ9SoUYM6XiHE8NOf/Uw4HEbXc0+dGYYBZK6gFkKIwyHngPtOAhpHyA033MCdd97J3XffzYYNG7j++uvZuXNnOk3xW9/6FldeeWV6/muuuYYdO3Zwww03sGHDBu6++27uuusuvva1rx2ttyCEGOL6up+57777uPLKK7nttts48cQTqa+vp76+nra2tqP1FoQQQ1xf9jO6rjNz5sycW3l5OR6Ph5kzZ+L3+4/mWxFCDEF9PZb5+Mc/TklJCZ/61KdYv349L730El//+tf59Kc/jdfrPVpvQwgxhPV1P3PRRRfxyCOP8Mc//pGamhpeffVVrrvuOk444QSqqqqO1tsQQgxhHR0d6Qu6AGpra1m9ejU7d+4E5BzwQJCSU0fIZZddRlNTEz/84Q/Zu3cvM2fOZOnSpYwdOxaAvXv3pn+xAaqrq1m6dCnXX389v//976mqquI3v/kNH/nIR47WWxBCDHF93c/ccccdJJNJvvjFL/LFL34xPf2Tn/wkf/nLX4708IUQw0Bf9zNCCNEXfd3H5OXlsWzZMr785S8zf/58SkpK+OhHP8qPf/zjo/UWhBBDXF/3M1dddRXBYJDf/e533HjjjRQWFnLmmWfys5/97Gi9BSHEELdy5UoWL16cfn7DDTcAmXMtcg748GlKcuSEEEIIIYQQQgghhBBCCDHESckpIYQQQgghhBBCCCGEEEIMeRLQEEIIIYQQQgghhBBCCCHEkCcBDSGEEEIIIYQQQgghhBBCDHkS0BBCCCGEEEIIIYQQQgghxJAnAQ0hhBBCCCGEEEIIIYQQQgx5EtAQQgghhBBCCCGEEEIIIcSQJwENIYQQQgghhBBCCCGEEEIMeRLQEEIIIYQQQgghhBBCCCHEkCcBDSGEEEIIIYQQQgghhBBCDHkS0BBCCCGEEEIIIYQQQgghxJAnAQ0hhBBCCCGEEEIIIYQQQgx5/x+INb7iE9iBwwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = plt.figure(figsize=(20,10))\n", "for offset,(time,coef) in decomp.items():\n", " plt.plot(time,coef)\n", "plt.legend(decomp.keys(),ncol=3)\n", "savefig(fig,\"Coefs_Vor4.pdf\")" ] }, { "cell_type": "code", "execution_count": 52, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.642311Z", "iopub.status.busy": "2024-04-30T08:46:18.642201Z", "iopub.status.idle": "2024-04-30T08:46:18.653890Z", "shell.execute_reply": "2024-04-30T08:46:18.653577Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Reconstruction error : 1.3322676295501878e-14\n" ] } ], "source": [ "T_interp, D5_interp = Interpolate(MakeRandomTensor(5),MakeRandomTensor(5))\n", "coefs,offsets = VoronoiDecomposition(D5_interp)\n", "print(\"Reconstruction error : \", LInfNorm(D5_interp - Reconstruct(coefs,offsets)))\n", "assert np.allclose(D5_interp, Reconstruct(coefs,offsets),atol=1e-5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**CPU vs GPU implementation.** The CPU decomposition is stable w.r.t the inputs, locally Lipschitz more precisely. In contrast, the GPU implementation is discontinuous. Indeed, the code devoted to the selection of the decomposition in cases of non-uniqueness requires double precision floating point arithmetic, and for this reason it was not ported to the GPU.\n", "\n", "" ] }, { "cell_type": "code", "execution_count": 53, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.655491Z", "iopub.status.busy": "2024-04-30T08:46:18.655369Z", "iopub.status.idle": "2024-04-30T08:46:18.995579Z", "shell.execute_reply": "2024-04-30T08:46:18.995288Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABjQAAAMtCAYAAAA4/JhmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdfVgTd7o//ncCSQgIQQyIofJgdVVWFxW1ao9FXQXrY8+vrrZ6KG5bW3dPq9by3VpcS2tXtLbfPmyt67rrsT3f2rrtQbt7jj2oPVLElVoPguVBq7YoykMRgfCQkITk8/uDkiUQcCaZZCZwv64rV+tkcs8NvPOZmUxmRsYYYyCEEEIIIYQQQgghhBBCCJEwudgNEEIIIYQQQgghhBBCCCGE3A0d0CCEEEIIIYQQQgghhBBCiOTRAQ1CCCGEEEIIIYQQQgghhEgeHdAghBBCCCGEEEIIIYQQQojk0QENQgghhBBCCCGEEEIIIYRIHh3QIIQQQgghhBBCCCGEEEKI5NEBDUIIIYQQQgghhBBCCCGESJ6/txdos9lQXV2N4OBgyGQyby+eEEIIIYQQQgghhBBCCCESwhhDS0sLdDod5PK+z8Pw+gGN6upqjBw50tuLJYQQQgghhBBCCCGEEEKIhN28eRP33HNPn897/YBGcHAwgM7GQkJCvL14QgghhBBCCCGEEEIIIYRISHNzM0aOHGk/ftAXrx/Q6LrMVEhICB3QIIQQQgghhBBCCCGEEEIIANz1NhV0U3BCCCGEEEIIIYQQQgghhEgeHdAghBBCCCGEEEIIIYQQQojk0QENQgghhBBCCCGEEEIIIYRIntfvocGFzWaD2WwWuw1CCCGEEEIIIYQQwpNCoYCfn5/YbRBCCBmAJHdAw2w2o6KiAjabTexWCCGEEEIIIYQQQogLQkNDERkZedebuxJCCCF8SOqABmMMNTU18PPzw8iRIyGX0xWxCCGEEEIIIYQQQnwFYwwGgwF1dXUAgBEjRojcESGEkIFEUgc0Ojo6YDAYoNPpEBgYKHY7hBBCCCGEEEIIIYQntVoNAKirq0NERARdfooQQohgJHUKhNVqBQAolUqROyGEEEIIIYQQQgghrur6oqrFYhG5E0IIIQOJpA5odKHrKxJCCCGEEEIIIYT4LvpshxBCiCdI8oAGIYQQQgghhBBCCCGEEEJId3RAgxBCCCGEEEIIIYQQQgghkkcHNARy584dRERE4Pr162K3MiBMmzYNR44cEbsNn0M59L66ujqEh4ejqqpK7FYki3LpWSaTCdHR0SgsLBS7FUmjHAqL1tOeRXkVFuXVNZRDz6L1t2sol9JQUlKCe+65B21tbWK3QgghZBCiAxoC2blzJ5YuXYrY2FgAwMWLF/Hoo49i5MiRUKvVGD9+PN555x3edcvKyvDwww8jNjYWMpkMb7/9tkv97d+/H3PmzEFISAhkMhmamppcqlNSUoKkpCSo1WpERUVh+/btYIzxrrN3717ExcUhICAAiYmJyM/Pd3h+27Zt2LJlC2w2m0t9DlY9cwgAGzduRGJiIlQqFSZNmiTYsk6fPo2lS5dCp9NBJpPhs88+c6lOY2MjUlNTodFooNFokJqayjufNTU1WL16NcaOHQu5XI5Nmza51Iszd3vvREREIDU1FZmZmYItc6DxZC6zs7MRHx8PlUqF+Ph4HD16lHcNk8mEZ599FlqtFkFBQVi2bBlu3brFu45Q42NPR44cQUpKCrRaLWQyGYqLix2eV6lUSE9PxwsvvOD2sgYyqedQiPV0e3s71q5di4kTJ8Lf3x8PPfQQ7xpdaD0tLqnnVUrjJpftEcqra6SeQ2d27NiBWbNmITAwEKGhoS7XycvLQ2JiIgICAjBq1Cjs27ePdw3GGF5++WXodDqo1WrMmTMHZWVl9udp/e0aX9zfcUbqPd/tvTRx4kRMnz4db731lnsNE0IIIS6gAxoCMBqNOHDgAJ588kn7tMLCQoSHh+PDDz9EWVkZtm7dihdffBF79uzhVdtgMGDUqFHYtWsXIiMjXe7RYDBg4cKFyMjIcLlGc3MzFixYAJ1Oh/Pnz+Pdd9/FG2+8gTfffJNXnb/85S/YtGkTtm7diqKiIsyePRsPPvggKisr7fMsXrwYer0ex48fd7nfwcZZDoHOnanHH38cq1atEnR5bW1tSEhI4J3pnlavXo3i4mLk5OQgJycHxcXFSE1N5VXDZDIhPDwcW7duRUJCglv99MTlvfPLX/4Shw4dQmNjo6DLHgg8mcuCggKsWrUKqampuHjxIlJTU7Fy5UqcO3eOV51Nmzbh6NGjOHz4MM6cOYPW1lYsWbIEVquVcw2hxkdn2tracP/992PXrl19zrNmzRrk5+fj0qVLbi9vIPKFHAqxnrZarVCr1diwYQPmz5/vch1aT4vLF/IqpXGTy/YI5ZU/X8ihM2azGb/4xS/wq1/9yuUaFRUVWLRoEWbPno2ioiJkZGRgw4YNyM7O5lVn9+7dePPNN7Fnzx6cP38ekZGRWLBgAVpaWuzz0PqbH1/d33FG6j1zeS/98pe/xB/+8AdeYz8hhBAiCOZler2eAWB6vb7Xc0ajkZWXlzOj0cgYY8xms7E2k0WUh81m4/wzZWdnM61We9f5fv3rX7O5c+dy/2X1EBMTw9566y2XX88YY7m5uQwAa2xs5P3avXv3Mo1Gw9rb2+3Tdu7cyXQ6Ha/f1/Tp09n69esdpo0bN45t2bLFYdratWtZamoq7z6FZrPZWEdHmygPIXOYmZnJEhISBPiN9AaAHT16lPfrysvLGQD21Vdf2acVFBQwAOzy5csu9ZKUlMQ2btzo0mv7c7f3TmxsLDtw4IDgy+2PzWZjVlOH1x9SyeXKlSvZwoULHaalpKSwRx55hHONpqYmplAo2OHDh+3TqqqqmFwuZzk5OZzrCDU+9qeiooIBYEVFRU6fnzNnDtu2bZsgy+LKZrMxc3uHKI+BlMPu3FlPd5eWlsaWL1/u0mt9bT3Nlc1mY23mNlEeAymvUh43+9sekUpebTYba+3o8PqD7+9U6jm8m4MHDzKNRuPSa3/zm9+wcePGOUx7+umn2YwZMzjXsNlsLDIyku3atcs+rb29nWk0GrZv3z6HecVYf/ck1jallLYr78bV/Z27kXrP/b2XTCYTU6lU7H/+53/6fH3Pz3gIIYSQ/vR33KA7f3EOo3BjtFgR/5I436Qq356CQCW3X8/p06cxderUu86n1+sRFhbmbmuiKSgoQFJSElQqlX1aSkoKXnzxRVy/fh1xcXF3rWE2m1FYWIgtW7Y4TE9OTsbZs2cdpk2fPh27d+8Wpnk32GxGfJk3UZRlz0kqgZ9fIKd5ueZQSgoKCqDRaHDffffZp82YMQMajQZnz57F2LFjReyOn+nTpyM/Px+PP/6415bJLDZUv3T27jMKTLd9FmRKP07zejKXBQUFeO655xympaSk8Lo0X2FhISwWC5KTk+3TdDodJkyYgLNnzyIlJYVzL+6Oj+7qyqA3dZht2L8xz6vL7PLUO0lQqAZGDqXEF9fTXBk7jLjvo/vuPqMHnFt9DoEK8dfng3nclEpeDTYb7j1d4vXlfvfARAT5cRszAenn0JMKCgoc8g109nfgwAFYLBYoFIq71qioqEBtba1DHZVKhaSkJJw9exZPP/20fboY6++exNqmBKSzXUn4UyqVSEhIQH5+PubNmyd2O4QQQgYRuuSUAK5fvw6dTtfvPAUFBfjkk08cNl59TW1tLYYPH+4wrevftbW1nGrU19fDarU6rdOzRlRUFCorK+l6xxxxyaHU1NbWIiIiotf0iIgIzpmSiqioKLo5oROezGVfYxKf7NTW1kKpVGLo0KFu13F3fHQXZbBvUs+hlNB6WnxSz6uvjpuUV36knkNP6qu/jo4O1NfXc67R9bqedZyNpbT+5sYX93cGOsovIYQQMUj6DA21wg/l27l9y8sTy+bKaDQiICCgz+fLysqwfPlyvPTSS1iwYIEQ7YlGJpM5/Jv9eOPGntNdqdNzmlqths1mg8lkglqtdqFbYcjlasxJ8v436bqWzdXdcuiq/Px8PPjgg/Z///GPf8SaNWsEq+8sO87y4GlZWVnIysqy/7u8vBzR0dGcX69Wq2EwGDzRWp9kCjl022d5dZldy+XKU7m098JhLHGFK3XcHR8PHTrkcND7v//7vzF79mzOyxcjg/5KOZ56J8mry+y+bK58NYdi8qX1NFdqfzXOrXb/Gv2uLpsrX82rGOMmH1LJa6Bcju8e8P6Zv4Fyft9jk3oO169fjw8//ND+79bWVsF6A7y/z+Pt9XdPYm1Tdi2bK1/c33nwwQftZ+DExMQ43BjeHZ7eR+NKCvklhBAy+Ej6gIZMJuN82ScxabXaPm8GXF5ejnnz5mHdunX47W9/6+XOhBUZGdnrG0V1dXUAen/7qC9arRZ+fn5O6/Ss0dDQgMDAQNE/JJHJZJwv+ySm/nLojqlTp6K4uNj+b65/ay4iIyPxww8/9Jp++/ZtQZfDxfr167Fy5Ur7v/l++6uhoQHh4eFCt9UvmUzG+RR9sXgql0DfYxKf7ERGRsJsNqOxsdHh28Z1dXWYNYv7jr0Q4+OyZcscLr8WFRXFefmAeBnketknMUk9h1Lii+tprmQyGefLPolJ6nmV0rjJh1TyKpPJeF36SSxSz+H27duRnp4udGsA+u7P398fw4YN41wD6DxTY8SIEQ51nI2l3l5/9+QL25SAb+7v/PnPf4bRaAQATpcr48qTPfPR0NCAe++9V5RlE0IIGbzoklMCmDx5MsrLy3tNLysrw9y5c5GWloYdO3aI0JmwZs6cidOnT8NsNtunnThxAjqdDrGxsZxqKJVKJCYm4uTJkw7TT5482WsnuLS0FFOmTHG778Girxy6S61WY/To0fZHcHCwYLVnzpwJvV6Pr7/+2j7t3Llz0Ov1vD4UEUJYWJjDz+nvz+9gamlpKSZPnuyh7nyXp3IJdOan51hy4sQJXtlJTEyEQqFwqFNTU4PS0lJedYQYH4ODgx0yyPdDN8pg36SeQymh9bT4pJ5XKY2bfFBe+ZF6DiMiIhzWmd7ob+rUqZw/kI6Li0NkZKRDHbPZjLy8PKdjKa2/ufHF/Z2oqCh73ZiYGMHqerJnPii/hBBCxEAHNASQkpKCsrIyh2+LdB3MWLBgATZv3oza2lrU1tbi9u3bvGqbzWYUFxejuLgYZrMZVVVVKC4uxrVr13jVqa2tdXhdSUkJiouL0dDQwLnG6tWroVKpsHbtWpSWluLo0aPIysrC5s2beZ1+vXnzZvz5z3/Gv/3bv+HSpUt47rnnUFlZifXr1zvMl5+f3+uGfKRvznIIANeuXUNxcTFqa2thNBod8uSO1tZWey2g8+aHxcXFqKys5Fxj/PjxWLhwIdatW4evvvoKX331FdatW4clS5bwviF4Vy+tra24ffs2iouLBdnh4fLeMRgMKCwspLw64clcbty4ESdOnMBrr72Gy5cv47XXXsMXX3yBTZs2ca6h0WjwxBNP4Pnnn8f//M//oKioCP/yL/+CiRMnYv78+ZzrCDU+OtPQ0OCQ52+//db+u+uOxsy+ST2HgDDraaDzzNCu1+n1eodxmitaT4tL6nmV2rjJdXuE8sqP1HPYl8rKSvvf32q1OmwfcrV+/XrcuHEDmzdvxqVLl/Bv//ZvOHDgAK8zQmQyGTZt2oSsrCwcPXoUpaWlWLt2LQIDA7F69WqHeSmb3Pni/k5fpN4zl/fS9evXUVVVxWvsJ4QQQgTBvEyv1zMATK/X93rOaDSy8vJyZjQavd2W22bMmMH27dtn/3dmZiYD0OsRExPj8DoA7ODBg33WraiocFonKSnJPs/BgwfZ3f6UffXTfdlJSUksLS2t3zrffPMNmz17NlOpVCwyMpK9/PLLzGaz9eo3Nze33zrvvfcei4mJYUqlkk2ZMoXl5eU5PH/r1i2mUCjYzZs3+61DHPXMIWOdf1dnf/uKigr7PHfLoTO5ublO63bPUGZmZq/M93Tnzh22Zs0aFhwczIKDg9maNWtYY2OjwzwxMTEsMzOz3zp3e7919dv95+aCy3vno48+YmPHjuVVdzDxZC4//fRTNnbsWKZQKNi4ceNYdna2w/Ncxkej0cieeeYZFhYWxtRqNVuyZAmrrKzs1a+3xseeun6Gno/u74mzZ8+y0NBQZjAYeNUeTKSeQ6HW0zExMU7rdKH1tG+Qel6lNG5y2R6hvLpG6jl0Ji0tzWl/3TPEZbvyyy+/ZJMnT2ZKpZLFxsayP/zhDw7Pc9mutNlsLDMzk0VGRjKVSsUeeOABVlJS4jAPrb/588X9HWek3jOX91JWVhZLSUnpt44vf8ZDCCHE+/o7btAdHdAQyLFjx9j48eOZ1Wrl/JqKigrm7+/Prly54tayMzMzHQ5wuComJob3BlNPubm5LDQ0lDU0NLhVJz09na1bt86tGoORmDl0Ji0t7a4fZtyNwWBgAQEB7NSpU27VOXjwIBs9ejQzm81u1XFm2rRp7NChQ4LXHShofOwk1PjozIoVK9iOHTsErzuQUA470XraN1BeO1FexTUQctiT1LYraf3N30Dc33FG6j23t7ezkSNHsjNnzvQ7ny9/xkMIIcT7uB7QkP4dt33EokWLcPXqVVRVVWHkyJGcXpOTk4OnnnoKY8aMcWvZx48fxzvvvONWjcuXLyM4OBiPPfaYW3VycnKQkZHhcJNIV0RERHjsRn8DmZg5dCYvLw+nT592u8a8efMwd+5ct+rk5OQgKytL0JvxAZ03d1yxYgUeffRRQesOJDQ+dhJqfOzJZDIhISEBzz33nKB1BxrKYSdaT/sGymsnyqu4fD2Hzkhpu5LW364ZiPs7zki95xs3bmDr1q24//77BeqKEEII4U7GGGPeXGBzczM0Gg30ej1CQkIcnmtvb0dFRQXi4uIQEBDgzbYIIYQQQgghhBBCiEDoMx5CCCF89HfcoDu6KTghhBBCCCGEEEIIIYQQQiSPDmgQQgghhBBCCCGEEEIIIUTy6IAGIYQQQgghhBBCCCGEEEIkjw5oEEIIIYQQQgghhBBCCCFE8uiABiGEEEIIIYQQQgghhBBCJI8OaBBCCCGEEEIIIYQQQgghRPLogIZA7ty5g4iICFy/fl3sVgYkk8mE6OhoFBYWit2KpFEOPYty6BrKpWdRLrmhHApr2rRpOHLkiNhtDFiUV2FRXl1DOfS+uro6hIeHo6qqSuxWJIty6Vm0XUkI6cIYwxd3mrGu9Dq2XLmF3DvNMNtsYrdFCAA6oCGYnTt3YunSpYiNjQUAXLx4EY8++ihGjhwJtVqN8ePH45133uFdt6ysDA8//DBiY2Mhk8nw9ttvu9SfyWTCs88+C61Wi6CgICxbtgy3bt3iXaekpARJSUlQq9WIiorC9u3bwRhzqafujhw5gpSUFGi1WshkMhQXFzs8r1KpkJ6ejhdeeMHtZQ1kPXMIABs3bkRiYiJUKhUmTZrkUl3KYSfKoWs8lcs//elPmD17NoYOHYqhQ4di/vz5+Prrr3nX2b9/P+bMmYOQkBDIZDI0NTW51E9PNTU1WL16NcaOHQu5XI5Nmza5VIdyKQxP5RAAsrOzER8fD5VKhfj4eBw9epR3DSHGx/b2dqxduxYTJ06Ev78/HnroId59dNm7dy/i4uIQEBCAxMRE5OfnOzy/bds2bNmyBTbaqfEIyit3p0+fxtKlS6HT6SCTyfDZZ5/1mofy6hqp59CZHTt2YNasWQgMDERoaKggNQHvbQtHREQgNTUVmZmZAnU+8DjLZWVlJZYuXYqgoCBotVps2LABZrOZV12h/sbOCJXLvLw8JCYmIiAgAKNGjcK+fft412CM4eWXX4ZOp4NarcacOXNQVlZmf562KwkhHTaGIz80Yt75b/Ev33yP/7zdhPer6vHoN98j/kwpniq7jiM/NEJv6RC7VTKI0QENARiNRhw4cABPPvmkfVphYSHCw8Px4YcfoqysDFu3bsWLL76IPXv28KptMBgwatQo7Nq1C5GRkS73uGnTJhw9ehSHDx/GmTNn0NraiiVLlsBqtXKu0dzcjAULFkCn0+H8+fN499138cYbb+DNN990ua8ubW1tuP/++7Fr164+51mzZg3y8/Nx6dIlt5c3EDnLIdC50fr4449j1apVLtemHP4D5ZAfT+byyy+/xKOPPorc3FwUFBQgOjoaycnJvL/VaDAYsHDhQmRkZLjcizMmkwnh4eHYunUrEhISXK5DuXSfJ3NYUFCAVatWITU1FRcvXkRqaipWrlyJc+fO8aojxPhotVqhVquxYcMGzJ8/n++PYveXv/wFmzZtwtatW1FUVITZs2fjwQcfRGVlpX2exYsXQ6/X4/jx4y4vhzhHeeWnra0NCQkJ/W5jU17584UcOmM2m/GLX/wCv/rVr9yu1Z03t4V/+ctf4tChQ2hsbBSi9QHFWS6tVisWL16MtrY2nDlzBocPH0Z2djaef/55XrWF+hs7I0QuKyoqsGjRIsyePRtFRUXIyMjAhg0bkJ2dzavO7t278eabb2LPnj04f/48IiMjsWDBArS0tNjnoe1KQgandqsN71fVY9a5S/h1+Q1camtHkJ8cT98Tjn8ZMQwRSn+0Wm34W10Tfl1+Az/9eylWFF3Dn2/dxs12fgeRCXEb8zK9Xs8AML1e3+s5o9HIysvLmdFo9HZbbsnOzmZarfau8/36179mc+fOdXk5MTEx7K233uL9uqamJqZQKNjhw4ft06qqqphcLmc5OTmc6+zdu5dpNBrW3t5un7Zz506m0+mYzWbj3ZczFRUVDAArKipy+vycOXPYtm3bBFnWQHO3HGZmZrKEhAS3l0M5pBzy4a1cMsZYR0cHCw4OZh988IFLr8/NzWUAWGNjoyD9dJeUlMQ2btzoVg3Kpes8mcOVK1eyhQsXOkxLSUlhjzzyCOcaQo2P3aWlpbHly5e79Nrp06ez9evXO0wbN24c27Jli8O0tWvXstTUVJeWQfpGeXUdAHb06FGnz1Fe+ZF6Du/m4MGDTKPRCFavO29sC8fGxrIDBw642+qA4yyXn3/+OZPL5ayqqso+7eOPP2YqlcrpZw5cuPo3vht3cvmb3/yGjRs3zmHa008/zWbMmMG5hs1mY5GRkWzXrl32ae3t7Uyj0bB9+/Y5zCvUdqWvfsZDyGCit3Sw31+vZRPOlLDhp4rY8FNFbHz+N+ytihrWaLbY57PabKywqZXtuFbFZn91yT5v12Pe15fYa99Xs4vNbYJ9NkMGn/6OG3TnL+KxlLtjDLAYxFm2IhCQyTjNevr0aUydOvWu8+n1eoSFhbnbGW+FhYWwWCxITk62T9PpdJgwYQLOnj2LlJQUTnUKCgqQlJQElUpln5aSkoIXX3wR169fR1xcnOC99zR9+vRel73wNMYYDCJdoiBQLodM4ByKhXIoPMYYLBaL15erUCgkmUuDwQCLxSLKOCsFYo2PHSaTV5fZxV+lkkQOCwoK8NxzzzlMS0lJ4XWpCqHGRyGYzWYUFhZiy5YtDtOTk5Nx9uxZh2nTp0/H7t27vdabuxhjYEajKMuWqdWUV5FJJa+MMRgt3M9kEYpa4cc5g4D0c+iL+Lx3utbpjz/+uFd6E2ubEnB/u7KgoAATJkyATqezT0tJSYHJZEJhYSHmzp0raL9iKSgocMgO0PlzHjhwABaLBQqF4q41KioqUFtb61BHpVIhKSkJZ8+exdNPP22fLpX9HUKI59w2W7D/5m28X1WPFmvnZ15RKgV+HR2BR0cMQ6Cf40V95DIZpmiCMEUThIx7dagwmHC8Xo+cej2+1rehrLUdZa3tePP6D9CpFEjWarBQG4JZoUOglNMFgoiwpH1Aw2IAsnR3n88TMqoBZRCnWa9fv+6wAeVMQUEBPvnkExw7dkyI7nipra2FUqnE0KFDHaYPHz4ctbW1vOp0v1ZpV42u57zxQXJUVJTXbwBnsNlw7+kSry6zy3cPTESQnx+nebnkUEyUQ+FZLBZkZWV5fbkZGRlQKpWc5vVmLrds2YKoqCi3Ll3iy8TIZYfJhN+nrfDqMrts+OA/oAgI4DSvJ3NYW1trH4O6uDKuCTE+CqG+vh5Wq5XTzxQVFYXKykrYbDbIfWAnhRmN+HZKoijLHnuhELLAQE7zUl49Qyp5NVqsiH/J+5e+Kt+egkAl910/qefQF/F570RFRaGoqMhrvYm1TQm4v13pLE9Dhw6FUqkcUJnq633T0dGB+vp6jBgxglONrtf1rHPjxg2HaVLZ3yGECO+G0YQ/3LyNwzV30G7rvBfpTwID8GxMBB6KGAqFnNtB5rhAFdZHR2B9dATumDvwxZ1mHK/XI7ehBdUmC96vqsf7VfUI9pNj3rAQLNRqMC8sGBqFtD+KJr5B+nufPsBoNCKgnw9VysrKsHz5crz00ktYsGCBFzvrH2OM1ze1APSan/14I2audQ4dOoQhQ4bYH3y/9aFWq2EwiHTWjsTdLYdSRTkc2LyVy927d+Pjjz/GkSNHRHkfdM/T+vXrvb58gHLZH0/n0NmYxHdcc0aoOq7g8jOp1WrYbDaYRDpLZ6CivHoG5ZUfqedw/fr1DuteoVRWVjrU9caH/H2Nr7RO762vXDrLjhhjkqdy2cXdfaD+6lAGCRn4LrUa8a/lNzDr3CW8X1WPdhtDYkggPpgYhy+nj8UvIsM4H8zoaZjSH6tGhOHfJsbh0j9NwP+bGId/GTEM4Up/tFht+GtdE3714303flFM990g7pP2YTFFYOeZEmItmyOtVtvnTdvKy8sxb948rFu3Dr/97W+F6o6XyMhImM1mNDY2OnwjqK6uDrNmzeJVp+e3XOrq6gD0/pZHX5YtW4b77rvP/u+oqCjOyweAhoYGhIeH83qNuwLlcnz3wESvLrP7srnqL4dSQDkUnkKhEPxG1lyXy5U3cvnGG28gKysLX3zxBX72s595dFl9KS4utv9/SEiIKD2IkUt/lQobPvgPry6z+7K58mQO+xqTuI5HXTWEGB+FoNVq4efnx+lnamhoQGBgINRqtTdbdJlMrcbYC4WiLZsryqtnSCWvaoUfyrd7/7JcagW3M367SD2H27dvR3p6utCtQafTOazThbyMJZ/3jrfX6WJtU3YtmytnuYyMjOx1Q/nGxkZYLBZemRKCp3IJ9P2+8ff3x7BhwzjXADrP1Oh+Rkdf63gp7O8QQtzX0mHFy9eqcKimwT5tblgwno0ejpmhQYIf/A3wk2OBVoMFWg12s3tQ1Gz48dJUzbhiaEd+YyvyG1vx26tV+OmQAKRoNVio1WDiEO6XaCVE2gc0ZDLOl30S0+TJk/Hhhx/2ml5WVoZ58+YhLS0NO3bsEKGzTomJiVAoFDh58iRWrlwJAKipqUFpaSmvawnPnDkTGRkZMJvN9tOCT5w4AZ1O1+sSQH0JDg5GcHAw75+hS2lpKSZPnuzy610hk8k4X/ZJTH3lUCooh8KTyWScT9EXi6dz+frrr+N3v/sdjh8/Luo9ZEaPHi3asruINT5yveyTmDyZw5kzZ+LkyZMO14M/ceIErw92hRofhaBUKpGYmIiTJ0/in//5n+3TT548ieXLlzvMW1paiilTpni1P3fIZDLOl30SE+XVM6SSV5lMxuvST2KReg4jIiIQEREheG/+/v4eW6fzee+UlpZizpw5HunDGV/YpgSc53LmzJnYsWMHampq7B/SnzhxAiqVComJ3r3MoKdyCXT+nP/5n//pMO3EiROYOnUq54NCcXFxiIyMxMmTJ+3bjGazGXl5eXjttdcc5pXK/g4hxD1fNjTj+cs3UWXqvE/S0vBQPBsTgZ8Fe2ebWC6TIVEThMRu993IqdfjON13g7hJ+lvTPqDrhsTdv21TVlaGuXPnIjk5GZs3b7Z/m8LPz4/XNx3MZjPKy8vt/19VVYXi4mIMGTKE88a2RqPBE088geeffx7Dhg1DWFgY0tPTMXHiRF7Xml+9ejVeeeUVrF27FhkZGbh69SqysrLw0ksvuX0UtaGhAZWVlaiu7jwj59tvvwXQ+S2Srm+SAEB+fj5effVVt5Y1UDnLIQBcu3YNra2tqK2thdFotH/rLD4+nvOOC+WQcugqT+Zy9+7d2LZtGz766CPExsbax1m+p/nX1taitrYW165dAwCUlJQgODgY0dHRbn8zs+vnam1txe3bt1FcXAylUon4+HjONSiX7vNkDjdu3IgHHngAr732GpYvX46//vWv+OKLL3DmzBnO/Qk1PgKdZ4aazWY0NDSgpaXF/jNNmjSJc43NmzcjNTUVU6dOxcyZM7F//35UVlb2upxafn5+rxuUEvdRXvnltbW11T5+A503vS0uLkZYWBiio6Pt0ymv/Eg9h32prKy0rzetVqu9v9GjR7t1CSBvbgsbDAYUFhaKdk8LKXOWy+TkZMTHxyM1NRWvv/46GhoakJ6ejnXr1vE6a1aIv3FfhMjl+vXrsWfPHmzevBnr1q1DQUEBDhw4gI8//phzHzKZDJs2bUJWVhbGjBmDMWPGICsrC4GBgVi9erXDvLRdSYhva+mw4pVr1fiw5g4AICZAibfGRWPWUOEvh8dHXKAKv4qOwK843ncjRavBz+m+G8QZ5mV6vZ4BYHq9vtdzRqORlZeXM6PR6O223DZjxgy2b98++78zMzMZgF6PmJgYh9cBYAcPHuyzbkVFhdM6SUlJ9nkOHjzI7vanNBqN7JlnnmFhYWFMrVazJUuWsMrKSod5kpKSWFpaWr91vvnmGzZ79mymUqlYZGQke/nll5nNZuvVb25ubr91eur6GXo+MjMz7fOcPXuWhYaGMoPBwKv2YNIzh4x1/l2d/W4rKirs81AOHX8GyqGwPJXLmJiYu/69uOSyr/G6+7K55NKZu60HcnNze/3cPVEuheGpHDLG2KeffsrGjh3LFAoFGzduHMvOznZ43pvjY1/viy5cx8f33nuPxcTEMKVSyaZMmcLy8vIcnr916xZTKBTs5s2b/dYhrqG8duKS165xtOej+7Ipr66Reg6dSUtLc9pf9wzFxMQ4rEO58Oa28EcffcTGjh3Lq7/BxFkub9y4wRYvXszUajULCwtjzzzzDGtvb3eYx1v7O84Ilcsvv/ySTZ48mSmVShYbG8v+8Ic/ODzPZbvSZrOxzMxMFhkZyVQqFXvggQdYSUmJwzxCblf68mc8hPiqvDvNbMrfS9nwU0Vs+Kki9uK3N1lrR4fYbfXL2GFlJ243secvVbIJZ0rsvQ8/VcSicovYiqKr7E8361il0SR2q8TD+jtu0B0d0BDIsWPH2Pjx45nVauX8moqKCubv78+uXLni1rIzMzMdNrRcFRMTc9edj7vJzc1loaGhrKGhwe1+elqxYgXbsWOH4HUHEsphJ8qhtFAu+3bw4EE2evRoZjab3apDubw7ymEnocbH9PR0tm7dOrdqkL5RXjtRXsU1EHLYk8FgYAEBAezUqVOC1xaq52nTprFDhw6539AARbnsmxS3K335Mx5CfE2LpYP9n8uV9gMB086WsTMNzWK3xZvVZmP/29TKfnetis3+6pLDwY3hp4rYz7++zHZ/X80uNrc5fLGVDAxcD2jQOTsCWbRoEa5evYqqqiqMHDmS02tycnLw1FNPYcyYMW4t+/jx43jnnXfcqnH58mUEBwfjsccec6tOTk4OMjIyHE5NF4LJZEJCQoLDtXZJb5TDTpRDaaFc9i0nJwdZWVm8bojZE+WSG8phJ6HGx4iICI/d+JRQXrtQXsXl6zl0Ji8vD/PmzcPcuXMFry1Ez3V1dVixYgUeffRRgboaeCiXfaPtSkIGrzONLdh0uRK32jvvlfHLKC1+O2oEgvylfz/Ynrrfd2PrvTp8bzDheLf7bpS2GlHaasT/vf4Douz33dBgZmgQ3XdjEJExxpg3F9jc3AyNRgO9Xt/rmpbt7e2oqKhAXFwcAnzgJqOEEEIIIYQQQgghpDf6jIcQz2rrsOLV72vwflU9AGBkgBJvjRuJfxoaLHJnnlFv7sAXd/Q4Ud+M3IYWGG02+3PBfnIs0GqQMWoE7gngdl8vIj39HTfojs7QIIQQQgghhBBCCCGEEB/x98YWPHf5JirbzQCANN0wbLtXhyE+eFYGV1qlPx4ZMQyPjBgGo9WG/MYWHK/X48SdZtw2d+DID404r2/DkcmjMZIOagxodECDEEIIIYQQQgghhBBCJK6tw4rffV+Dgz+elRGlUuDtcdGYHTYwz8roi9pPjmStBslaDWyMobDZgA2XbqDCaMbDRddwdPJoRNFBjQGLLi5GCCGEEEIIIYQQQgghEna2sRXzzn9rP5jxmG4Y8qaPG3QHM3qSy2SYpglC9qTRiFUrUdluxsPF11D949krZOChAxqEEEIIIYQQQgghhBAiQW1WK3579Rb+v+JruNFuRpRKgb8k3IvdY0cO6EtM8aULUCJ70mhEByhx3WjGiuLvUGuyiN0W8QA6oEEIIYQQQgghhBBCCCES81VTK35+/lv8+VbnWRlrRoThy+njkDTIz8roS1SAEtk/3kPje6MJDxddww90UGPAoQMahBBCCCGEEEIIIYQQIhEGqw0vXa3CPxddw3WjGTqVAh//bBT+77hoBNNZGf0aGaBE9qR7EaVS4DujCSuKr6GODmoMKHRAgxBCCCGEEEIIIYQQQiTg66ZWzD//Lfbfug0GYPWPZ2XMHRYidms+I1qtwpHJoxGlUuCqwYSHi6/htpkOagwUdEBDIHfu3EFERASuX78udisDwrRp03DkyBGx2/A5lENhUQ6FQbkUFuXSNZRDzzKZTIiOjkZhYaHYrQwIlFdh0bjpGsqh99XV1SE8PBxVVVVityJZlEvvo1wS4j1Gqw2Z16qwvOgavjeaMEKlwKGfjcKb46IRQmdl8BajViF78miM+PGgxori7+igxgBBBzQEsnPnTixduhSxsbH2aRs3bkRiYiJUKhUmTZrkUt2ysjI8/PDDiI2NhUwmw9tvv+1SHZPJhGeffRZarRZBQUFYtmwZbt26xbtOSUkJkpKSoFarERUVhe3bt4MxxrvO3r17ERcXh4CAACQmJiI/P9/h+W3btmHLli2w2Wy8aw9mznJYWVmJpUuXIigoCFqtFhs2bIDZbOZVl3JIOXSHp3IJANnZ2YiPj4dKpUJ8fDyOHj3Ku4aUcnn69GksXboUOp0OMpkMn332Wa95KJeuofHRPUeOHEFKSgq0Wi1kMhmKi4sdnlepVEhPT8cLL7zg9rKI9MfN/fv3Y86cOQgJCYFMJkNTUxPvGu3t7Vi7di0mTpwIf39/PPTQQ7xrADRuepKn9m+c4fJ3dJVQPXvjvRMREYHU1FRkZma63OdANxByefHiRTz66KMYOXIk1Go1xo8fj3feecelWu7msqGhAc8++yzGjh2LwMBAREdHY8OGDdDr9fZ5KJeEeMd5fRvmn/8Wf7zZeVbGI5Fh+HLaWPyczspwS6xahSOTRiNSqcC3be1YWfwd7pg7xG6LuIkOaAjAaDTiwIEDePLJJx2mM8bw+OOPY9WqVS7XNhgMGDVqFHbt2oXIyEiX62zatAlHjx7F4cOHcebMGbS2tmLJkiWwWq2cazQ3N2PBggXQ6XQ4f/483n33Xbzxxht48803efXyl7/8BZs2bcLWrVtRVFSE2bNn48EHH0RlZaV9nsWLF0Ov1+P48eO8ag9mznJotVqxePFitLW14cyZMzh8+DCys7Px/PPP86pNOaQcusqTuSwoKMCqVauQmpqKixcvIjU1FStXrsS5c+d41ZFSLtva2pCQkIA9e/b0OQ/lkj8aH/nl0Jm2tjbcf//92LVrV5/zrFmzBvn5+bh06ZLbyxvMfGHcNBgMWLhwITIyMni9rjur1Qq1Wo0NGzZg/vz5LtehcdMzPLl/4wyXv6OrhOjZm++dX/7ylzh06BAaGxtd7negGii5LCwsRHh4OD788EOUlZVh69atePHFF3kvR4hcVldXo7q6Gm+88QZKSkrw/vvvIycnB0888YTDfJRLQjzHaLXhlWtVWHbhKr4zmhCpVODDn43C2+OjoVH4i93egBAXqEL25HsxXOmPS23t+EXxNTRY6KCGT2NeptfrGQCm1+t7PWc0Gll5eTkzGo3ebsst2dnZTKvV9vl8ZmYmS0hIcHs5MTEx7K233uL9uqamJqZQKNjhw4ft06qqqphcLmc5OTmc6+zdu5dpNBrW3t5un7Zz506m0+mYzWbjXGf69Ols/fr1DtPGjRvHtmzZ4jBt7dq1LDU1lXPdwc5ZDj///HMml8tZVVWVfdrHH3/MVCqV0/cgF5RDwocnc7ly5Uq2cOFCh2kpKSnskUce4VxDarnsDgA7evSo0+col/zQ+Oh6DnuqqKhgAFhRUZHT5+fMmcO2bdsmyLIGK6mPm93l5uYyAKyxsdGl13dJS0tjy5cvd6sGYzRuCslb+zfO9Pd3dIc7PXv7vRMbG8sOHDjgUu2BbCDmssuvf/1rNnfuXF6vETqXXT755BOmVCqZxWJxmO5KLn31Mx5CvOV/m1rZ/V+Vs+GnitjwU0Xs2fLrrNFsufsLiUuutBrZhDMlbPipIvbzry+zBvpdS05/xw26k/QZGowxGCwGUR6Mx+UZTp8+jalTp3rwN+GewsJCWCwWJCcn26fpdDpMmDABZ8+e5VynoKAASUlJUKlU9mkpKSmorq7mfA1Ts9mMwsJCh14AIDk5uVcv06dP73UJIDEwxmAwd4jycDeHBQUFmDBhAnQ6nX1aSkoKTCaT169zTjkUHmMMVqvB6w+p5LKgoKDX3zAlJYVXnqSUSz6kkkvGGGxmqygPqeRQCL6aQ2ekkk1nGGOwmKyiPKSSVyHGTV8lmWwyBpjbvP9w4RKIUt6/8TZvv3e8nVextimF2K4cKPR6PcLCwni9xlO51Ov1CAkJgb+/4zfDJTOOEjIAtFttePW7aiy9cBXXDCYMV/rj3yfG4ffjYxBKZ2V4zJigAGRPGg2twh+lrUasKv4OTXSmhk+S9LvE2GHEfR/dJ8qyz60+h0BFIKd5r1+/7rCDKTW1tbVQKpUYOnSow/Thw4ejtraWV53u1yrtqtH1XFxc3F1r1NfXw2q12l/XXy9RUVGorKyEzWaDXC7esTejxYr4l8S5REH59hQEKrm9TZ3lsLa2ttfveujQoVAqlbz+9kKgHArPZjPiy7yJXl/unKQS+Pm5Pj4KlUtndVzJk1RyyYdUcsksNlS/JM4HobrtsyBTcrsxHo2PnsmhM1FRUZK9UWuH2Yb9G/NEWfZT7yRBoRI/r0KMm75KKuMmLAYgS4T9hoxqQBnEeXap7994m7ffO1FRUSgqKvJIbWfE2qYE3N+uHAgKCgrwySef4NixY7xe54lc3rlzB6+++iqefvrpXs95O5eEDFQXmtuw8VIlrhpMAIAVw4fid2Oi6ECGl/wkKAD/MflePFz0Hb5pNWLVxe/wScK9dHkvHyOtT+d8lNFoREBAgNht8MYYg0wm4/WanvN3faNGiDo9p6nVathsNphMJl61B6u+cujsb+PK395TKIcDm6dzyeVv6Aoxc8kF5ZIfGh+55/DQoUMYMmSI/cH3m5hqtRoGg4HXa4gjXx03pY7GTX48tX+Tn5/vMMYcOnRIsNoPPvigve5Pf/pTwep28eZ7h8ZS5wZiLsvKyrB8+XK89NJLWLBgAe/6QuayubkZixcvRnx8vNMbgFMuCXFPu9WG331XjSWFV3HVYEKE0h8fTIzDnng6K8PbxgWp8R+T7kWYwg8XW4xYdfF7NHdwv3chEZ+k3zFqfzXOreZ3ozUhl82VVquV9M2xIiMjYTab0djY6PDtz7q6OsyaNYtXnZ7f9qirqwOAXt8M6YtWq4Wfn5/TOj1rNDQ0IDAwEGo197+FJ6gVfijfniLasrlylsPIyMheN4VrbGyExWLh/DcTCuVQeHK5GnOSSkRZLleezGVfWeBbQyq55EMquZQp5NBt5/57EnrZXNH4yD2Hy5Ytw333/ePs2KioKM7LBzqzGR4ezus13uKvlOOpd5JEWzZXUh83fZVUxk0oAjvPlhBjuTx4av9m6tSpKC4utv9byOz9+c9/htFoBAAoFArB6gLef+94eywVa5uya9lcDbRclpeXY968eVi3bh1++9vf8q4tZC5bWlqwcOFCDBkyBEePHnX6HpLyOp4QqStqNmDjpUpcMbQDAB7+8ayMoXQgQzTjh6jx6aTR+EXxNRS3GJBx5Rb2xMeI3RbhSNJnaMhkMgQqAkV58PlWw+TJk1FeXu7B34R7EhMToVAocPLkSfu0mpoalJaW8vqgZObMmTh9+jTMZrN92okTJ6DT6Xpd4qIvSqUSiYmJDr0AwMmTJ3v1UlpaiilTpnDuz1NkMhkClf6iPNzN4cyZM1FaWoqamhr7tBMnTkClUiExMVGw3xEXlEPhyWQy+PkFev0hlVzOnDmz19/wxIkTvPIkpVzyIZVcymQyyJV+ojykkkMhSCmHwcHBGD16tP3B98Pf0tJSTJ48mddrvEUmk0Gh8hPlIZW8CjFu+iqpjJuQyTov/eTtB89vbHtq/0atVjuMMcHBwYLVjoqKsteNiRH2Awlvv3e8PZaKtU0pxHalEMTIZVlZGebOnYu0tDTs2LHDpdpC5bK5uRnJyclQKpX429/+1udZMFJexxMiVSabDVnfVWPJhSu4YmhHuNIfByfE4r34GDqYIQE/HaLGn3/aeVneY7f1MFptIndEOBPsNuQc9Xe3cqPRyMrLy5nRaPR2W2755ptvmL+/P2toaHCYfvXqVVZUVMSefvpp9pOf/IQVFRWxoqIiZjKZONc2mUz2140YMYKlp6ezoqIidvXqVV49rl+/nt1zzz3siy++YBcuXGDz5s1jCQkJrKOjg3ONpqYmNnz4cPboo4+ykpISduTIERYSEsLeeOMNXr0cPnyYKRQKduDAAVZeXs42bdrEgoKC2PXr1x3mS0pKYtu3b+dVezBzlsOOjg42YcIE9vOf/5xduHCBffHFF+yee+5hzzzzDK/alEPKoas8mcu///3vzM/Pj+3atYtdunSJ7dq1i/n7+7OvvvqKVx0p5bKlpcX+XgPA3nzzTVZUVMRu3LjhMB/lkh8aH/nl0Jk7d+6woqIiduzYMQaAHT58mBUVFbGamhqH+WJiYti///u/u728wcwXxs2amhpWVFTE/vSnPzEA7PTp06yoqIjduXOHV52ysjJWVFTEli5dyubMmWN/L/FB46ZneHL/xhmuf0dXCNGzN987bW1tTK1Ws9OnT/OqPRgMlFyWlpay8PBwtmbNGlZTU2N/1NXV8aojRC6bm5vZfffdxyZOnMiuXbvm0E/3bRBXc+mrn/EQIoQifRt74NwlNvxUERt+qoitL61gd8wWsdsiPdhsNpZ4tpQNP1XEPq9rFLudQa+/4wbd0QENgcyYMYPt27fPYVpSUhID0OtRUVFhnwcAO3jwYJ91KyoqnNZISkqyz3Pw4EF2t2NTRqORPfPMMywsLIyp1Wq2ZMkSVllZ2avftLS0fut88803bPbs2UylUrHIyEj28ssvM5vN1qvf3Nzcfuu89957LCYmhimVSjZlyhSWl5fn8PytW7eYQqFgN2/e7LcOceQshzdu3GCLFy9marWahYWFsWeeeYa1t7c7zEM5pBx6kqdyyRhjn376KRs7dixTKBRs3LhxLDs72+F5X8tlbm6u0/da92VTLl1D46Njv3cbH3vq+hl6PjIzM+3znD17loWGhjKDwcCrNulN6uNmZmam0zx0XzaXvMbExDit04XGTXF5av/GGS5/x8zMTBYTE8P75xCqZ2+9dz766CM2duxYvj/moDEQctlXDnrW8UYu+/oZe/7+XM2lL3/GQ4ir2q1WtvO7aqbL7TyQ8dP8EvZf9EG5pL105RYbfqqI/WvZ9bvPTDyKDmh42bFjx9j48eOZ1Wrl/JqKigrm7+/Prly54tayMzMzHT44cVVMTAzvjbyecnNzWWhoaK9vzfCVnp7O1q1b51aNwYhy2IlyKC2Uy06US3FRDjsJlUNnVqxYwXbs2CF43cGI8tqJxk1xiZlDZ9LS0u56kMwVUnvvTJs2jR06dMjtOgMV5ZIfsXPpy5/xEOKKi81tLKnbWRlPlVawehOdlSF1XzW2sOGnithPTn/DTDzWL0R4XA9o0AXbBLJo0SJcvXoVVVVVGDlyJKfX5OTk4KmnnsKYMWPcWvbx48fxzjvvuFXj8uXLCA4OxmOPPeZWnZycHGRkZDjc1NQVERERSE9Pd6vGYEQ57EQ5lBbKZSfKpbgoh52EymFPJpMJCQkJeO655wStO1hRXjvRuCkuMXPoTF5eHk6fPi14XSm9d+rq6rBixQo8+uijbtUZyCiX/FAuCfEOs82Gt67/gN9X/gArA4Yp/PHaT+7BkohQsVsjHEzVBCFc6Y/b5g78vbEVc4eFiN0SuQsZY4x5c4HNzc3QaDTQ6/UICXEMSHt7OyoqKhAXF9fnjagIIYQQQgghhBBCiLTRZzxkMPimxYCNlypxqa0dALA0PBQ7f3IPtEr6Drkv+c23N/Hv1XeQqhuG18dyO2BOhNffcYPu5F7siRBCCCGEEEIIIYQQQnya2WbD7ooaLCq8gktt7QhT+GH/T2PxpwmxdDDDBy0ODwUA/PdtPaze/e4/cQG9wwghhBBCCCGEEEIIIYSD0hYDNl6uRFlr51kZi8M12PWTexCuVIjcGXHVrNAhCPX3Q72lA1/r2zAzdIjYLZF+0BkahBBCCCGEEEIIIYQQ0g+LjeGNilosLLyCstbOszL2xcfgzz+NpYMZPk4hlyFZ23mJo89vN4nbDLkrOqBBCCGEEEIIIYQQQgghfShvNWJR4RW8cb0WHQxYpNUgb/o4PDR8KGQymdjtEQF0XXbq89t6ePmW04QnuuQUIYQQQgghhBBCCCGE9GCxMbxb+QPeuv4DLIxhqL8fsn5yDx6KCKUDGQNM0tBgBPrJUWWyoLjFiMkhgWK3RPpAZ2gQQgghhBBCCCGEEEJIN5dajVhceAW7K2phYQwLtSHImz4O/0xnZQxIAX5yzB9Gl53yBXRAgxBCCCGEEEIIIYQQQgB02Bjevl6L5P+9gm9ajQj198N746NxcEIcIlR0r4yBbJFWAwA4RpedkjQ6oCGQO3fuICIiAtevXxe7lQHJZDIhOjoahYWFYrciaZRDz6IcuoZyKaxp06bhyJEjYrfhcyiH3ldXV4fw8HBUVVWJ3YrPobwKi8ZN11AOPYu2K11DufQsyiUhwOU2IxZfuIJdP56VkfLjWRkPR4bRWRmDwPxhIVDJZfjeaMLltnax2yF9oAMaAtm5cyeWLl2K2NhY+7SNGzciMTERKpUKkyZNcqnun/70J8yePRtDhw7F0KFDMX/+fHz99de865hMJjz77LPQarUICgrCsmXLcOvWLZd66q6mpgarV6/G2LFjIZfLsWnTJpfqMMbw8ssvQ6fTQa1WY86cOSgrK7M/r1KpkJ6ejhdeeMHtngcyZzmsrKzE0qVLERQUBK1Wiw0bNsBsNvOqW1ZWhocffhixsbGQyWR4++23Xepv//79mDNnDkJCQiCTydDU1ORSnZ6EyuGRI0eQkpICrVYLmUyG4uJih+cph67xVC4BIDs7G/Hx8VCpVIiPj8fRo0d51xAqlyUlJUhKSoJarUZUVBS2b9/u0jc69u7di7i4OAQEBCAxMRH5+fkOz2/btg1btmyBzWZzqc/BSurjo9TX087c7b0TERGB1NRUZGZmCrbMwULq46YQeW1vb8fatWsxceJE+Pv746GHHuLdBwCcPn0aS5cuhU6ng0wmw2effdZrHho3XeOp/RtAOjl0hvZvpM2TueyJy/jCRWNjI1JTU6HRaKDRaJCamsp7e1OIXFosFrzwwguYOHEigoKCoNPp8Nhjj6G6uto+D+WSDGYdNobf3/gByeev4GKLERp/P+wZH433J8RhOJ2VMWgM8fdD0tBgAJ1naRBpogMaAjAajThw4ACefPJJh+mMMTz++ONYtWqVy7W//PJLPProo8jNzUVBQQGio6ORnJzM+9uOmzZtwtGjR3H48GGcOXMGra2tWLJkCaxWq8u9AZ07EuHh4di6dSsSEhJcrrN79268+eab2LNnD86fP4/IyEgsWLAALS0t9nnWrFmD/Px8XLp0ya2eBypnObRarVi8eDHa2tpw5swZHD58GNnZ2Xj++ed51TYYDBg1ahR27dqFyMhIl3s0GAxYuHAhMjIyXK7hjFA5bGtrw/33349du3b1OQ/lkB9P5rKgoACrVq1CamoqLl68iNTUVKxcuRLnzp3jVUeIXDY3N2PBggXQ6XQ4f/483n33Xbzxxht48803edX5y1/+gk2bNmHr1q0oKirC7Nmz8eCDD6KystI+z+LFi6HX63H8+HGX+x1sfGF8lPp62hku751f/vKXOHToEBobGwVd9kDmC+OmEHm1Wq1Qq9XYsGED5s+fz2v53bW1tSEhIQF79uzpcx4aN/nz5P6NlHLoDO3fSJcnc+kMl/GFi9WrV6O4uBg5OTnIyclBcXExUlNTedUQIpcGgwEXLlzAtm3bcOHCBRw5cgRXrlzBsmXLHOajXJLB6Nu2diy5cBVZ39fAzBgWDOs8K2MFnZUxKC0ODwVA99GQNOZler2eAWB6vb7Xc0ajkZWXlzOj0ejtttySnZ3NtFptn89nZmayhIQEQZbV0dHBgoOD2QcffMD5NU1NTUyhULDDhw/bp1VVVTG5XM5ycnIE6YsxxpKSktjGjRt5v85ms7HIyEi2a9cu+7T29nam0WjYvn37HOadM2cO27Ztm7utDkjOcvj5558zuVzOqqqq7NM+/vhjplKpnL4HuYiJiWFvvfWWO62y3NxcBoA1Nja6VccZV3PYXUVFBQPAioqKnD5POeTOk7lcuXIlW7hwocO0lJQU9sgjj7jUqzu53Lt3L9NoNKy9vd0+befOnUyn0zGbzca5zvTp09n69esdpo0bN45t2bLFYdratWtZamoq7z4HK6mPj1JfT9/N3d47sbGx7MCBA4Ivd6CS+rjpibympaWx5cuXu/Ta7gCwo0ePOn2Oxk1+PLl/I9UcOkP7N9Lizf3unvobX/pTXl7OALCvvvrKPq2goIABYJcvX3apFyHX519//TUDwG7cuOEwXahc+upnPGTwsFht7PfXa9nI3GI2/FQR+8npb9hfau7w2ocjA0+D2cJ0uUVs+Kki9n1b+91fQATT33GD7iR9hgZjDDaDQZQH43GZkNOnT2Pq1Kke/E38g8FggMViQVhYGOfXFBYWwmKxIDk52T5Np9NhwoQJOHv2rCfa5KWiogK1tbUO/alUKiQlJfXqb/r06b0uv+JxjAHmNnEebuawoKAAEyZMgE6ns09LSUmByWSi66K6QZQcOsEYQ5vV6vWHu+OjULksKChwGDe66ogxrhUUFCApKQkqlcqhl+rqas7XeDabzSgsLOz1MyUnJ0tjLHSCMQaz2SzKQyo5FILU19PuklJeLe3tojykklchxk1fzauUcmiwGLz+4JNBwLP7N4Mhh5Lfv+lBrG1KIbYrpa6goAAajQb33XeffdqMGTOg0WgkkVW9Xg+ZTIbQ0FCH6VLIJSGedrWtHcuKrmLHj2dl/DwsBF9OH4uVdFbGoDdU4Y/7Q4cAAI7RWRqS5C92A/1hRiO+nZIoyrLHXiiELDCQ07zXr1932MH0pC1btiAqKorXqfm1tbVQKpUYOnSow/Thw4ejtrZW6BZ56+ph+PDhDtOHDx+OGzduOEyLiory/g3gLAYgyzt/314yqgFlEKdZneWwtra21+916NChUCqVkvjb+ypRcuiEwWbDvadLvL7c7x6YiCA/P07zejKXzuqINa7V1tY6XMu5q5eu5+Li4u5ao76+HlarldPPFBUVhcrKSthsNsjl4n03wWKxICsrS5RlZ2RkQKlUcppX6uOj1NfT7oqKikJRUZHYbaDDZMLv01aIsuwNH/wHFAEBnOaV+rjpq3mVyrhp7DDivo/uu/uMAju3+hwCFdz2bQDP7t8MhhxKfv+mB7G2KQH3tyulrra2FhEREb2mR0REiJ7V9vZ2bNmyBatXr0ZISIjDc1LIJSGeYmUM+27exu6KGphsDCH+cmwfHYVVdCCDdLM4PBSnG1vxeb0ez8QMv/sLiFdJ+gwNX2E0GhHAcSfVHbt378bHH3+MI0eOCLI8xhivwXrIkCH2x/r1691efk89e3HWn1qthsFgEHzZA0FfOXT2N+b7t5cST+eQC8ohd57OJZdxw1uc9eJsuit1nI2FNpsNJpPJhU4HH18dH6Wyns7KynKo3f2eLlzQmMmPr46bUnrvOEPjJj+e3r+RSg5p/8a3eCqX+fn5Dlk4dOiQoPWluL1hsVjwyCOPwGazYe/evb2ep1ySgeqaoR3LLlzFq99Vw2RjmBsWjC+njcMjI4ZJejuGeN+DWg1kAC40G1Ddbha7HdKDpM/QkKnVGHtBnMviyNRqzvNqtVqP3+zyjTfeQFZWFr744gv87Gc/4/XayMhImM1mNDY2OnyLqa6uDrNmzeJcp7i42P7/Pb/B4Y6um6jW1tZixIgRDv31/FZTQ0MDwsPDBVs2J4rAzjMlxMDjm3TOchgZGdnrBouNjY2wWCy9fre+wlM55EOUHDoRKJfjuwcmirJcrjyZy8jIyF7fbHM2bnhDX70Avb+d2RetVgs/Pz9OP1NDQwMCAwOh5rGu8gSFQuHWzdTdXTZXUh8fpb6eXr9+PVauXGn/N99vx0plzPRXqbDhg/8QbdlcSX3cFCqv3iaVcVPtr8a51fxufi3Ucvnw5P6NlHI4aPdvehBrm7Jr2Vx5KpdTp051yIKQ2wGRkZH44Ycfek2/ffu2aPtjFosFK1euREVFBU6dOuU0+1LIJSFCsjKG/Tdv47WKGrTbGIL95HhlTBQepbMySB8iVApM1wThnL4Nn9fr8eQ9NCZKiaTP0JDJZJAHBory4DOgTZ48GeXl5R77Pbz++ut49dVXkZOT49I1QxMTE6FQKHDy5En7tJqaGpSWlvLa4B89erT94ey0WVfFxcUhMjLSoT+z2Yy8vLxe/ZWWlmLy5MmCLZsTmazzsk9iPNzM4cyZM1FaWoqamhr7tBMnTkClUiExUZzLubnLUznkQ5QcOiGTyRDk5+f1h7vjo1C5nDlzpsO40VVHjA/UZs6cidOnT8Ns/sc3N06cOAGdTtfrUlR9USqVSExM7PUznTx50ulYOGXKFLf7dpdMJoNSqRTlIZUcCkHq6+mwsDCH2v7+/L4PI6UxUxEQIMpDKnkVYtwUKq/eJqVxM1AR6PUH3w9rPLl/I6UcDtr9mx7E2qYUYrtSCGq12iELwcHBgtWeOXMm9Ho9vv76a/u0c+fOQa/XizJmdh3MuHr1Kr744gsMGzbM6XxSyCUhQvnO0I6HLlzDK99Vo93GMGdoML6cPg6r6awMcheLwjUAgM9v60XuhPQk6TM0fEVKSgpefPHFXt8QunbtGlpbW1FbWwuj0Wj/1kd8fDzn637v3r0b27Ztw0cffYTY2Fj7t5m6ToflQqPR4IknnsDzzz+PYcOGISwsDOnp6Zg4cSKve3H0pevnam1txe3bt1FcXAylUon4+HhOr5fJZNi0aROysrIwZswYjBkzBllZWQgMDMTq1asd5s3Pz8err77qds8DkbMcJicnIz4+HqmpqXj99dfR0NCA9PR0rFu3jte30Mxms33nwWw2o6qqCsXFxRgyZAhGjx7NuU5tbS1qa2tx7do1AEBJSQmCg4MRHR3N60b3zribQ6Dzm0iVlZWoru48I+fbb78F0PnNqq5v2gGUQz48mcuNGzfigQcewGuvvYbly5fjr3/9K7744gucOXOGV49C5HL16tV45ZVXsHbtWmRkZODq1avIysrCSy+9xGsjefPmzUhNTcXUqVMxc+ZM7N+/H5WVlb0ug5Gfn9/rhqqkb1IfH6W+nu4Ll/eOwWBAYWGhaPda8UVSHzeFzGt5eTnMZjMaGhrQ0tJiz+qkSZM412htbbVnEOi8GXNxcTHCwsIQHR1tn07jJj+e3L+RWg6dof0bafJkLp3hOr70Z/z48Vi4cCHWrVuHP/7xjwCAp556CkuWLMHYsWN59eNuLjs6OrBixQpcuHAB//Vf/wWr1Wr/fCEsLMzhd0W5JAOBlTH8+dZt7Py+86yMIX5yvDI6CqtH0FkZhJsHtRpkXqvGV02tqDd3QKukj9Elg3mZXq9nAJher+/1nNFoZOXl5cxoNHq7LbfNmDGD7du3z2FaUlISA9DrUVFRYZ8HADt48GCfdWNiYpzWyMzMtM9z8OBBdrc/pdFoZM888wwLCwtjarWaLVmyhFVWVvbqNy0tjeuP7PAz9HzExMTYn8/Nze31c/dks9lYZmYmi4yMZCqVij3wwAOspKTEYZ6zZ8+y0NBQZjAYePc4WDjL4Y0bN9jixYuZWq1mYWFh7JlnnmHt7e0O89wthxUVFU7/zklJSfZ5uOQwMzPTaZ3uyxYzh10/Q3/vN8ohf57KJWOMffrpp2zs2LFMoVCwcePGsezsbIfnvZnLb775hs2ePZupVCoWGRnJXn75ZWaz2ezPd72PcnNz+63z3nvvsZiYGKZUKtmUKVNYXl6ew/O3bt1iCoWC3bx5s986xJHUx0epr6ed4fLe+eijj9jYsWN59zzYSX3cFCqvfW3nduEybnblt+ej+7Jp3HSNp/ZvGJNWDp2h/Rvp8mQue+IyvmRmZjpkw5k7d+6wNWvWsODgYBYcHMzWrFnDGhsbHeaJiYlx2Odwxt1c9rXN0nOcFTKXvvwZD/Ft37W1s6WFV9jwU0Vs+Kki9ouiq+ym0SR2W8QHLTh/mQ0/VcQ+rKoXu5VBob/jBt3RAQ2BHDt2jI0fP55ZrVbOr6moqGD+/v7sypUrbi07MzPT4YMTV8XExPDeyOPi4MGDbPTo0cxsNrtVZ8WKFWzHjh0CdTUwUQ77RjkUD+WyU25uLgsNDWUNDQ1u1UlPT2fr1q1zq8ZgRDnsm1DjozPTpk1jhw4dErzuQEd57UTjprgoh32j7UrxiJlLZ9LS0lw6aNadwWBgAQEB7NSpU27VkWIuffkzHuKbrDYb219Zx2K/LGbDTxWxUXkX2b9X3Xb4ohkhfLxdUcuGnypijxZfE7uVQYHrAQ06V0YgixYtwtWrV1FVVYWRI0dyek1OTg6eeuopjBkzxq1lHz9+HO+8845bNS5fvozg4GA89thjbtVxJicnB1lZWbxu4NqTyWRCQkICnnvuOQE7G3goh32jHIqHctkpJycHGRkZDpdIcEVERATS09PdqjEYUQ77JsT46ExdXR1WrFiBRx99VNC6gwHltRONm+KiHPaNtivFI2YuncnLy8Pp06fdrjFv3jzMnTvXrTqUSzLYVRhMeO5yJb7StwEAZg8dgjfHRWNkgOuXniNkUbgGOytqkN/YCr2lAxoFfZQuBTLGGPPmApubm6HRaKDX63td87e9vR0VFRWIi4tDQECAN9sihBBCCCGEEEIIIQKhz3iIN9gYw79V1WPHdzUw2mwI9JMj814dHtPRTb+JMB44dxlXDO14b3w0Ho507/6vpH/9HTfoTu7FngghhBBCCCGEEEIIIcRtN4wmPFx8Db+9WgWjzYb7Q4cgd9pYpEVp6WAGEczicA0A4PN6vcidkC50QIMQQgghhBBCCCGEEOITbIzh327dxpyvv0VBUxvUcjl2/uQefDrpXsSoVWK3RwaYrgMap+40o81qFbkbAgB04S9CCCGEEEIIIYQQQojk3TCa8Nzlmzjb1AoAmBkahLfHRdOBDOIxPx2iRnSAEpXtZnzZ0ILF4aFitzTo0RkahBBCCCGEEEIIIYQQybIxhver6jH3/Lc429QKtVyOHWOikD1pNB3MIB4lk8mwqOuyU7fpslNSQGdoEEIIIYQQQgghhBBCJKnSaMLmyzdx5sezMmZogvD2+GjE0oEM4iVLwkOx7+ZtnKjXw2SzQSWncwTERL99QgghhBBCCCGEEEKIpDDG8MGPZ2WcaWqFWi7D78ZE4cjk0XQwg3jVlJBADFf6o8Vqw5nGVrHbGfTogAYhhBBCCCGEEEIIIUQybrabserid3jhyi20WW24TxOEU9PG4cl7wiGXycRujwwycpkMD/5474xjt5tE7YXQAQ3B3LlzBxEREbh+/brYrQxIJpMJ0dHRKCwsFLsVSaMcehbl0DWUS8+iXHJDOZSGkpIS3HPPPWhraxO7FUmjvHoWjZvcUA6FNW3aNBw5ckTsNnwe5VJYlEsiRYwx/L/qesz9+jJON3aelbF9tA5HJ49GXCCdlUHEs+TH+2jk1OvRYWMidzO40QENgezcuRNLly5FbGwsAODixYt49NFHMXLkSKjVaowfPx7vvPMO77p/+tOfMHv2bAwdOhRDhw7F/Pnz8fXXX/OuYzKZ8Oyzz0Kr1SIoKAjLli3DrVu3eNcpKSlBUlIS1Go1oqKisH37djDm/pv4yJEjSElJgVarhUwmQ3FxscPzKpUK6enpeOGFF9xe1kDWM4cAsHHjRiQmJkKlUmHSpEmCLev06dNYunQpdDodZDIZPvvsM5fq7NixA7NmzUJgYCBCQ0NdqlFTU4PVq1dj7NixkMvl2LRpk0t1GGN4+eWXodPpoFarMWfOHJSVldmfpxy6xlkuKysrsXTpUgQFBUGr1WLDhg0wm8286paVleHhhx9GbGwsZDIZ3n77bZf6E2p87EmoXNL4KAyp59AZIcZHZ8TseeLEiZg+fTreeustwZY5EEk9r/v378ecOXMQEhICmUyGpqYml+rQdqW0ST2HQqy/29vbsXbtWkycOBH+/v546KGHXOoFAPbu3Yu4uDgEBAQgMTER+fn5Ds9v27YNW7Zsgc1mc3kZxHO5BIDs7GzEx8dDpVIhPj4eR48e5fX6hoYGPPvssxg7diwCAwMRHR2NDRs2QK/ndwNZyiUZzG4YTXjk4vf4P9/eQqvVhumaIPzPtHF4amQEnZVBRDdDMwRhCj80WKw4p6fLTomJDmgIwGg04sCBA3jyySft0woLCxEeHo4PP/wQZWVl2Lp1K1588UXs2bOHV+0vv/wSjz76KHJzc1FQUIDo6GgkJyejqqqKV51Nmzbh6NGjOHz4MM6cOYPW1lYsWbIEVquVc43m5mYsWLAAOp0O58+fx7vvvos33ngDb775Jq9enGlra8P999+PXbt29TnPmjVrkJ+fj0uXLrm9vIHIWQ6Bzg/pH3/8caxatUrQ5bW1tSEhIYF3pnsym834xS9+gV/96lcu1zCZTAgPD8fWrVuRkJDgcp3du3fjzTffxJ49e3D+/HlERkZiwYIFaGlpsc9DOeTHWS6tVisWL16MtrY2nDlzBocPH0Z2djaef/55XrUNBgNGjRqFXbt2ITIy0uUehRgfnREqlzQ+us8XcuiMEOOjM2L3/Mtf/hJ/+MMf3H6PDVS+kFeDwYCFCxciIyPD5Rq0XSltvpBDIdbfVqsVarUaGzZswPz5813u5S9/+Qs2bdqErVu3oqioCLNnz8aDDz6IyspK+zyLFy+GXq/H8ePHXV7OYOfJXBYUFGDVqlVITU3FxYsXkZqaipUrV+LcuXOca1RXV6O6uhpvvPEGSkpK8P777yMnJwdPPPEEr14ol2QwsjKGP96sw5yvv0VeYwsC5DK8fG/nWRmj6KwMIhH+chlStJ1naRy7ze9gNREY8zK9Xs8AML1e3+s5o9HIysvLmdFo9HZbbsnOzmZarfau8/36179mc+fOdWtZHR0dLDg4mH3wwQecX9PU1MQUCgU7fPiwfVpVVRWTy+UsJyeHc529e/cyjUbD2tvb7dN27tzJdDods9lsnOv0p6KiggFgRUVFTp+fM2cO27ZtmyDLGmjulsPMzEyWkJDgkWUDYEePHnWrxsGDB5lGo3G7l6SkJLZx40ber7PZbCwyMpLt2rXLPq29vZ1pNBq2b98+h3kph9w5y+Xnn3/O5HI5q6qqsk/7+OOPmUqlcrpu4CImJoa99dZbvF8n1Ph4N67msjsaH10n9RzejVDjozNi9GwymZhKpWL/8z//I/hyBwJfymtubi4DwBobG3m/lrYrpU3qOfTE+jstLY0tX77cpddOnz6drV+/3mHauHHj2JYtWxymrV27lqWmprq0DOLZXK5cuZItXLjQYVpKSgp75JFH3Or5k08+YUqlklksFpde7+u59NXPeIh3lbcY2MLz37Lhp4rY8FNF7KELV9h3be13fyEhIjhxu4kNP1XEJv29lFkF2mYl/9DfcYPuJH2GBmMMFpNVlAfjcbr76dOnMXXq1LvOp9frERYW5s6vBAaDARaLhVedwsJCWCwWJCcn26fpdDpMmDABZ8+e5VynoKAASUlJUKn+cXQ8JSUF1dXVXruG6fTp03udJutpjDEYLAZRHp7IIXGuoqICtbW1Du8TlUqFpKSkXu8TMXLoDGMMBnOH1x/u5rKgoAATJkyATqezT0tJSYHJZPL69cyFGh+lQKzx0Wo1iPIYSDkcbJRKJRISEkTJq81sFeVBee1tMG9X2gwGrz/4ZBCQfg6ltP42m80oLCx06AUAkpOTJbsN2ZNY25RS2q4sKCjo9TdMSUlxO096vR4hISHw9/d3qw5fAyGXZOAz2Wx47fsaLPjfb1HUYkCwnxyvj70H2ZPorAwiXQ+EBWOInxw1JguKmw1itzNoeXetylOH2Yb9G/NEWfZT7yRBofLjNO/169cdNqCcKSgowCeffIJjx4651deWLVsQFRXF69TT2tpaKJVKDB061GH68OHDUVtby6tO92uVdtXoei4uLo5zLVdFRUV5/QZwxg4j7vvoPq8us8u51ecQqAjkNC+XHJK+db0XujLdZfjw4bhx44bDNDFy6IzRYkX8S94/Pbx8ewoCldxWH85yWVtb2+v3PHToUCiVSl5jkhCEGh+lQIxc2mxGfJk30avL7DInqQR+fq6Pj1LK4WAkRl6ZxYbql8Q5UKnbPgsypevblQMxr4N1u5IZjfh2SqJXlwkAYy8UQhbIbcwEpJ9DKa2/6+vrYbVanW5D9uwlKioKlZWVsNlskMul891CsbYpAelsVzqr426e7ty5g1dffRVPP/20yzVcNRBySQa28/o2bL5ciasGEwBgoTYEO39yD0aolCJ3Rkj/VHI5FgwLwdG6JvzXbT2maILEbmlQorWVAIxGIwICAvp8vqysDMuXL8dLL72EBQsWuLyc3bt34+OPP8aRI0f6XR5XjDHIeN5Uqef8Xd+o4Vrn0KFDGDJkiP3B95sgarUaBgMdAXXmbjl0VX5+vsPf7NChQ4IvQ0qcZbznNMohd33l0tmY4cqY5Cl8e+n+Hlm/fr0HO+sb5bJvUs/h+vXrHTIklMrKSoe6WVlZgtV2t2fKa9+knlch0XaldPlqDsXshes2pM1mg8lk8mZrA4anc8nlb8hVc3MzFi9ejPj4eGRmZrpUQwiUSyI1rR1WZFy5hWUXruKqwQStwh9/+mksDk6Io4MZxGcsCg8FAHxe38T7LFgiDEmfoeGvlOOpd5JEWzZXWq0WjY2NTp8rLy/HvHnzsG7dOvz2t791uZ833ngDWVlZ+OKLL/Czn/2M12sjIyNhNpvR2Njo8C2muro6zJo1i1ednt/mqKurA9D7W+19WbZsGe677x9nO0RFRXFePgA0NDQgPDyc12vcpfZX49xq7jeDE3rZXPWXQ3dMnToVxcXF9n9z/Vv7mq6bUtbW1mLEiBH26XV1db1+ZjFy6Ixa4Yfy7SmiLJcrZ7mMjIzsdYPFxsZGWCwWr+dLqPGx+3skJCREyBY5EyOXcrkac5JKvLrM7svmSuo53L59O9LT0wWvq9PpHLLp7mUvu3O354aGBtx7772C9cOFTCGHbjv397XQy+ZK6nkVymDdrpSp1Rh7wfuXCZOpuY+ZgPRzKNT6WwharRZ+fn5O8+xsGzIwMBBqnn8PTxNrm7Jr2Vx5Mpd9jUmuZLulpQULFy7EkCFDcPToUSgUCt413DUQckkGnv+504zffHsTVSYLAGBVZBheHq3DUIWkP5okpJd5YcEIkMtw3WhGeVs7fjqExk9vk/QZGjKZDAqVnygPPt/EmDx5MsrLy3tNLysrw9y5c5GWloYdO3a4/Ht4/fXX8eqrryInJ8eleyQkJiZCoVDg5MmT9mk1NTUoLS3ltcE/c+ZMnD59Gmaz2T7txIkT0Ol0vS4Z0Jfg4GCMHj3a/uC70VRaWorJkyfzeo27ZDIZAhWBojyEyKG71Gq1w98sODhY8GVIQVxcHCIjIx3eJ2azGXl5eb3eJ2Lk0BmZTIZApb/XH+7mcubMmSgtLUVNTY192okTJ6BSqZCY6N3LcAg1PnZ/j0RERHii1bsSa3z08wsU5TGQchgREeGQIaH4+/s71BXygIa7PYuVV7nST5THQMqrUAbzdqU8MNDrD77fMpd6DoVafwtBqVQiMTHRoRcAOHnypNNtyClTpnizPU7E2qaU0nblzJkze/0NT5w4wTtPzc3NSE5OhlKpxN/+9jePnEHPxUDIJRk46s0d+NfyG1jzzfeoMlkQHaDEJwn34p3x0XQwg/ikIH8/zA3r/CLjf9U1idvMIEUjhwBSUlLw4osvOnxDqOtgRnJyMjZv3mz/ZoSfnx+vb4Lt3r0b27Ztw0cffYTY2Fh7HT6XeNBoNHjiiSfw/PPPY9iwYQgLC0N6ejomTpzI614cq1evxiuvvIK1a9ciIyMDV69eRVZWFl566SW3T+1uaGhAZWUlqqurAQDffvstgM5vynR9cx7ovPzRq6++6tayBipnOQSAa9euobW1FbW1tTAajfZv68bHx0OpdP2UztbWVly7ds3+74qKChQXFyMsLAzR0dGc61RWVtr//lar1d7f6NGjeV3GpOt1ra2tuH37NoqLi6FUKhEfH8/p9TKZDJs2bUJWVhbGjBmDMWPGICsrC4GBgVi9erXDvJRD7pzlMjk5GfHx8UhNTcXrr7+OhoYGpKenY926dbzObjCbzfadWrPZjKqqKhQXF2PIkCGcP2AVanzsi7u5BGh8FILUc9gXocZHqfV8/fp1VFVVCfIeG4h8Ia+1tbWora21bweUlJQgODgY0dHRnA+c0XaltEk9h0Kuv8vLy2E2m9HQ0ICWlhb7uDVp0iTONTZv3ozU1FRMnToVM2fOxP79+1FZWdnrMpT5+fm9btJMuPNkLjdu3IgHHngAr732GpYvX46//vWv+OKLL3DmzBnONVpaWpCcnAyDwYAPP/wQzc3NaG5uBgCEh4fDz4/72SiUS+It7VYbGjs60GSxotFi7fb/HWjssKLJ0gF9hxUBcjlCFX7Q+Psh1N8fIf5+9n9rfvz/EH8/BMrl9vU4YwxHfmjEtmtVaLBYIQewbmQ4fhMXiSAe7wdCpGhRuAb/Xa/Hf9fr8cKoEXd/AREW8zK9Xs8AML1e3+s5o9HIysvLmdFo9HZbbpsxYwbbt2+f/d+ZmZkMQK9HTEyMw+sAsIMHD/ZZNyYmxmmdzMxM+zwHDx5kd/tTGo1G9swzz7CwsDCmVqvZkiVLWGVlpcM8SUlJLC0trd8633zzDZs9ezZTqVQsMjKSvfzyy8xms9mfr6ioYABYbm5uv3V66voZ+vs5z549y0JDQ5nBYOBVezDpmUPGOv+uzn63FRUV9nnulkNncnNzndbtnqHMzMxeme8pLS3NaZ3uGYqJiXHIgjN3e7919dv95+7JZrOxzMxMFhkZyVQqFXvggQdYSUmJwzyUQ/6c5fLGjRts8eLFTK1Ws7CwMPbMM8+w9vZ2h3nulsuu8abnIykpyT6PN8dHZ4TIJY2PwpB6Dp0RanyUWs9ZWVksJSWFd+3BROp57Ws7t/uyabvS90k9h0Ktv/va3+rZ791y+N5777GYmBimVCrZlClTWF5ensPzt27dYgqFgt28ebPfOqR/nsolY4x9+umnbOzYsUyhULBx48ax7Oxsh+fvlsu+9o96busNplz68mc8A0lbh5V9VF3PniypYP984Sqbe+4Sm/T3Uhb7ZTEbfqpI0Mc9ucXsp/kl7P6vytk/fVVunz7n3CVWqG8V+1dBiGCazBZ2T27ne+haG41xQunvuEF3dEBDIMeOHWPjx49nVquV82sqKiqYv78/u3LlilvLzszMdNgBcFVMTAzvD7V7ys3NZaGhoayhocHtfnpasWIF27Fjh+B1BxIxc+hMWlqaSx8Cd2cwGFhAQAA7deqUW3UOHjzIRo8ezcxms1t1KIf80fjYN8ql9wyEHPYk1PjojKd6bm9vZyNHjmRnzpwRvPZAMhDyStuVvo9y2EmoHKanp7N169a5VYNQLrv4Si59+TOegeBam5G9dOUWG3v6m34PQuhyi1j8jwchFv/vt2zNxe/YM+XX2bYrt9j/rahhf7pZx969Xst+d62K/Z/Lleyp0gq2qugaSzn/LZtRUMbG53/DdLnOa4/MLWZvVtQwE4/3LCG+4pHia2z4qSL2++u1YrcyYHA9oEGXnBLIokWLcPXqVVRVVWHkyJGcXpOTk4OnnnoKY8aMcWvZx48fxzvvvONWjcuXLyM4OBiPPfaYW3VycnKQkZHhcMkjIZhMJiQkJOC5554TtO5AI2YOncnLy8Pp06fdrjFv3jzMnTvXrTo5OTnIyspy66Z8lEPX0PjYN8ql9/h6Dp0Ranx0xlM937hxA1u3bsX9998veO2BxNfzStuVAwPlsJNQOYyIiEB6erpbNQjlsgvlkvSlw8Zw/I4eH1TV43Rjq336yAAlHh0RhlFqFUIVnZeNGqrww1CFP4b4ySF383KPjDG0WW1o6rCiucOKJkvnf38arMbIANcvdU2IlC0K1yC3oQXHbuvxbMxwsdsZVGSMMebNBTY3N0Oj0UCv1/e6pmV7ezsqKioQFxcn2s2zCCGEEEIIIYQQQoh76DMe76k1WfBh9R0cqrmDGpMFACAD8PNhIVgbpcXcsGD4uXnQghDi6LbZgp/9vQwMwP/OjMc9dPDObf0dN+iOztAghBBCCCGEEEIIIcSHMMZwprEV71fXI6deD+uPX1cepvDHmhFh+BfdMESrVeI2ScgAFq5U4D5NEL7St+G/b+uxbmS42C0NGnRAgxBCCCGEEEIIIYQQH9Bk6cAntQ349+o7uGYw2afP0AQhLUqLReEaqORyETskZPBYHB6Kr/RtOHa7iQ5oeBEd0CCEEEIIIYQQQgghRMKKmw34oLoen/3QCKOt83SMIX5yrIgMQ5puGMYPUYvcISGDz6JwDbZdq8I5fRtumy0IV7p+f0zCHR3QIIQQQgghhBBCCCFEYgxWG/5a14gPqu6guMVgnx4fFIC0KC0eHj4UQ/z9ROyQkMEtKkCJScGBKG4xIKdej1SdVuyWBgU6oEEIIYQQQgghhBBCiER8Z2jHv1fdweHaBug7rAAApUyGpRGhSNMNwzRNEGR0k29CJGFxuAbFLQYcq6MDGt5CBzQIIYQQQgghhBBCCBFRh43h+B093q+qR35jq316dIASj+mG4ZERw6BV0sd4hEjNonANdnxfgzNNLWiydCBUQe9TT6PfMCGEEEIIIYQQQgghIqgxmfFh9R0cqm5ArdkCAJABWDAsBGlRWswNC4aczsYgRLLuDQzAuKAAXG5rx8k7zfhFZJjYLQ14crEbGCju3LmDiIgIXL9+XexWBoRp06bhyJEjYrfhcyiHwqIcCoNyKSzKpWsoh8KiHHoW5VVYlFfXUA49y2QyITo6GoWFhWK34lMol55FufQexhjyG1rwRGkFphaU4/9e/wG1Zgu0Cn9sjBmOr2fG499/Ngo/HxZCBzMI8QGLwjUAgGO3m8RtZJCgAxoC2blzJ5YuXYrY2Fj7tMrKSixduhRBQUHQarXYsGEDzGYz79rZ2dmIj4+HSqVCfHw8jh49yrvG/v37MWfOHISEhEAmk6GpqYl3DQAoKSlBUlIS1Go1oqKisH37djDGeNU4ffo0li5dCp1OB5lMhs8++6zXPNu2bcOWLVtgs9lc6nOwcpbDjRs3IjExESqVCpMmTXKpbllZGR5++GHExsZCJpPh7bffdqmOlHIIAHv37kVcXBwCAgKQmJiI/Px8h+cph8KQ+vhoMpnw7LPPQqvVIigoCMuWLcOtW7d41Whvb8fatWsxceJE+Pv746GHHuLdRxfKpWdIPYdCjI+Uw4FjMKzPKa/S56kcOsNl/4CLxsZGpKamQqPRQKPRIDU11aV85uXlITExEQEBARg1ahT27dvHu8aRI0eQkpICrVYLmUyG4uJih+dVKhXS09Pxwgsv8K49mHkyl0Ksz53ZsWMHZs2ahcDAQISGhrpUo6amBqtXr8bYsWMhl8uxadMm3jUsFgteeOEFTJw4EUFBQdDpdHjsscdQXV1tn4dy6XlNlg788WYd/uncZfzi4nc4dlsPKwNmaIKwLz4GF2bF48VRIzAyQCl2q4QQHpaEhwIAvmxoQduP970hnkMHNARgNBpx4MABPPnkk/ZpVqsVixcvRltbG86cOYPDhw8jOzsbzz//PK/aBQUFWLVqFVJTU3Hx4kWkpqZi5cqVOHfuHK86BoMBCxcuREZGBq/Xddfc3IwFCxZAp9Ph/PnzePfdd/HGG2/gzTff5FWnra0NCQkJ2LNnT5/zLF68GHq9HsePH3e538HGWQ6Bzm9+PP7441i1apXLtQ0GA0aNGoVdu3YhMjLSrTpSyeFf/vIXbNq0CVu3bkVRURFmz56NBx98EJWVlfZ5KIfu84XxcdOmTTh69CgOHz6MM2fOoLW1FUuWLIHVyn0jxGq1Qq1WY8OGDZg/fz6v5XdHufQMX8ihEOMj5XBgGCzrc8qrtHkyh85w2T/gYvXq1SguLkZOTg5ycnJQXFyM1NRUXjUqKiqwaNEizJ49G0VFRcjIyMCGDRuQnZ3Nq05bWxvuv/9+7Nq1q8951qxZg/z8fFy6dIlX7cHKk7kUan3ujNlsxi9+8Qv86le/crmGyWRCeHg4tm7dioSEBJdqGAwGXLhwAdu2bcOFCxdw5MgRXLlyBcuWLXOYj3LpGUXNBmy6VInJZ8uQea0a3xlNGOInxy+jtMidNhafTRmDh4YPhVJOH9MR4ovGBwUgVq1Eu43hVEOL2O0MfMzL9Ho9A8D0en2v54xGIysvL2dGo9HbbbklOzubabVah2mff/45k8vlrKqqyj7t448/ZiqVyunP3peVK1eyhQsXOkxLSUlhjzzyiEu95ubmMgCssbGR92v37t3LNBoNa29vt0/buXMn0+l0zGazudQPAHb06FGnz61du5alpqa6VHcwcpbD7jIzM1lCQoLby4mJiWFvvfWWWzWkkMPp06ez9evXO0wbN24c27Jli8M0yqF7pD4+NjU1MYVCwQ4fPmyfVlVVxeRyOcvJyeFcp7u0tDS2fPlyl15LufQMqeewO3fGx+4oh75rsKzPu6O8So+3cuhMf/sH/SkvL2cA2FdffWWfVlBQwACwy5cvc67zm9/8ho0bN85h2tNPP81mzJjBuyfGGKuoqGAAWFFRkdPn58yZw7Zt2+ZS7cHGk7kUen3uzMGDB5lGo3G7TlJSEtu4caPbdRhj7Ouvv2YA2I0bNxymC5VLX/2MRyhtHVZ2qLqeJZ+/zIafKrI/5n19iX1w6zZrtXSI3SIhRECvXK1iw08VsadLK8RuxWf1d9ygO0kf+mWMwdLeLsqD8bh8zenTpzF16lSHaQUFBZgwYQJ0Op19WkpKCkwmE6/rURYUFCA5OdlhWkpKCs6ePcu5hlAKCgqQlJQElUrl0Et1dbVHrmE6ffr0XpcMEANjDDaDQZSHuzkciITIodlsRmFhYa/3VnJycq/3llRy6BRjgLnN+48BND4WFhbCYrE41NHpdJgwYYLXx1lfzCVjDG1WqygPWk97hi/mkCvGGMxmsygPWp97hi/mlTEGi8nq9QefDAK+mcOCggJoNBrcd9999mkzZsyARqPhNSb3Na7/7//+LywWi2D9dpFENsXaphRgu1IoA219zpVer4dMJut1KSxJ5NKHXTO0Y9vVW5h8tgybL9/ExRYjlDIZVgwfiv+aMgZfTB2Lx6K0CPL3E7tVQoiAlvx4H42Td5rRbqVLnXqSv9gN9KfDZMLv01aIsuwNH/wHFAEBnOa9fv26wwciAFBbW4vhw4c7TBs6dCiUSiVqa2s59+GszvDhw3nVEEptba3DtUq7eul6Li4uTtDlRUVFobKyEjabDXIRT7tkRiO+nZIoyrLHXiiELDCQ07zOcjgQCZHD+vp6WK1WTu8tqeTQKYsByBLhb55RDSiDOM0q9fGxtrYWSqUSQ4cOdauOEHwxlwabDfeeLhFl2d89MBFBftx2AqWeQynxxRxyZbFYkJWVJcqyMzIyoFRyuxb2YFmfC8EX89phtmH/xjyvL/epd5KgUHH/4MwXc1hbW4uIiIhe0yMiIgQZ1zs6OlBfX48RI0a43Wt3UVFR4t/gWqxtSsDt7UqhDLT1ORft7e3YsmULVq9ejZCQEIfnJJFLH2OxMeTU6/FBVT3ONLXap0cHKPGYbhgeGTEMWqWkP4IjhLhpUkggRqgUqDFZkN/YggVajdgtDVjS3/v0AUajEQFODn7IZLJe0xhjTqf3p+f8rtQQirNenE0Xglqths1mg8lkErz2QNRXDgcioXLI5b1FOXSPr46PUhtnKZfu8dUciolyKJ7BtD4XCuVVeJ7KYX5+PoYMGWJ/HDp0SND6nhzX+6rvLrVaDYPBIHjdgcjT46O76/P169c75FvKLBYLHnnkEdhsNuzdu7fX85RL7qrbzdhdUYOpBWVYV3YdZ5paIQeQPCwEH/1sFL6aMR7PxAyngxmEDAJymQyLfjyIcey2XuRuBjZJj6j+KhU2fPAfoi2bK61Wi8bGRodpkZGRvW4g1tjYCIvF0uubH/2JjIzs9a2Quro6XjWE0lcvADzST0NDAwIDA6FWqwWvzYdMrcbYC9wvPyL0srlylsOBSIgcarVa+Pn5cXpvSSWHTikCO7/VJsZyOZL6+BgZGQmz2YzGxkaHszTq6uowa9YsznWE4Iu5DJTL8d0DE0VbNldSz6GU+GIOuVIoFG7dxNrdZXM1WNbnQvDFvPor5XjqnSRRlsuHp3I4depUFBcX2/8t5FgZGRmJH374odf027dvCzKu+/v7Y9iwYW732VNDQwPCw8MFr8uLWNuUXcvmyJPjoxDr8+3btyM9PV3o1gRnsViwcuVKVFRU4NSpU73OzgAkkksJszGG/MZWfFBVj+N39LD+eOU0rcIf/6Ibhn/RDcM9AdzOzCSEDCyLwjU4UFWP4/V6dNgY/OW+/UU3qZL0GRoymQyKgABRHny+iTF58mSUl5c7TJs5cyZKS0tRU1Njn3bixAmoVCokJnK/fNHMmTNx8uRJh2knTpzw+gdtXb2cPn0aZrPZoRedTtfrEkBCKC0txZQpUwSvy5dMJoM8MFCUh7s5HIiEyKFSqURiYmKv99bJkyd7vbekkkOnZLLOU/S9/RhA42NiYiIUCoVDnZqaGpSWlnp9nPXFXMpkMgT5+YnyoPW0Z/hiDrmSyWRQKpWiPGh97hm+mFeZTAaFys/rD75nFngqh2q1GqNHj7Y/goODBas9c+ZM6PV6fP311/Zp586dg16v5zUm9zWuT506ldfBSa5KS0sxefJkwevyItY2pQDblUIRYn0eERHhkG8p6jqYcfXqVXzxxRd9HqSTRC4lqNHSgX2Vdfinc5ex6uJ3+Ly+82DGDE0Q9sXH4MKseGwZNYIOZhAyiN2nGYIwhR8aO6wo6Hb5OSIsSZ+h4StSUlLw4osvOnzDNzk5GfHx8UhNTcXrr7+OhoYGpKenY926dU6/AdGXjRs34oEHHsBrr72G5cuX469//Su++OILnDlzhlePtbW1qK2txbVr1wAAJSUlCA4ORnR0NMLCwjjVWL16NV555RWsXbsWGRkZuHr1KrKysvDSSy/x2klqbW219wEAFRUVKC4uRlhYGKKjo+3T8/Pze92YjfTNWQ4B4Nq1a2htbUVtbS2MRqP9W3Hx8fGcr+dtNpvtOw9msxlVVVUoLi7GkCFDeG2sSymHmzdvRmpqKqZOnYqZM2di//79qKysxPr16x3moxy6R+rjo0ajwRNPPIHnn38ew4YNQ1hYGNLT0zFx4kTMnz+f189aXl4Os9mMhoYGtLS02N9rkyZN4lyDcukZUs8hIMz4CFAOB4LBsj4HKK9S5skcOsN1/6A/48ePx8KFC7Fu3Tr88Y9/BAA89dRTWLJkCcaOHcu5l/Xr12PPnj3YvHkz1q1bh4KCAhw4cAAff/wxr5+poaEBlZWVqK7uPPPh22+/BdB5JkBkZKR9vvz8fLz66qu8ag9WnsylUOtzZyorK+15sFqt9v5Gjx7N69JUXa9rbW3F7du3UVxcDKVSifj4eE6v7+jowIoVK3DhwgX813/9F6xWq/2slLCwMIffFeXyHxhjKGox4IOqO/hrXSPabZ2nYwzxk2NlZBgeixqGcUG+cbYqIcTz/OUyPKjV4FBNA47V6zE7TLgvb5BumJfp9XoGgOn1+l7PGY1GVl5ezoxGo7fbctuMGTPYvn37HKbduHGDLV68mKnVahYWFsaeeeYZ1t7e7jAPAHbw4MF+a3/66ads7NixTKFQsHHjxrHs7GyH5w8ePMju9qfMzMxkAHo9ui87KSmJpaWl9Vvnm2++YbNnz2YqlYpFRkayl19+mdlsNvvzFRUVDADLzc3ts0Zubq7TXrov+9atW0yhULCbN2/22w9x5CyHSUlJTn/fFRUV9nnulsOuv2vPR1JSkn0eX8shY4y99957LCYmhimVSjZlyhSWl5fn8DzlUBhSHx+NRiN75plnWFhYGFOr1WzJkiWssrLSYR4uuYyJiXGa7y6US3FJPYdCjY+Uw4FhsKzPKa/S5qkcOsNl/yAzM5PFxMT0W+fOnTtszZo1LDg4mAUHB7M1a9awxsZGh3liYmJYZmZmv3W+/PJLNnnyZKZUKllsbCz7wx/+4LTf7j93T13vpZ6P7ss+e/YsCw0NZQaDod9+yD94MpdCrM+dSUtLc9pf97GNSy6d1ej+nrhbLvtaB/TsRchc+vJnPG0dVnaoqp4t+PoyG36qyP74+deX2b9X3Watlg6xWySESNQX9Xo2/FQR+9mZEmbt9lkVubv+jht0Rwc0BHLs2DE2fvx4ZrVaOb+moqKC+fv7sytXrri17MzMTIcdUVfFxMTw3vnoKTc3l4WGhrKGhga36qSnp7N169a5VWMwohx2ohxKC+WyE+VSXJTDTpRD30B57UR5FZeYOXQmLS3trgfJ7sZgMLCAgAB26tQpt+ocPHiQjR49mpnNZrfqrFixgu3YscOtGoPNQBgfexrIufTFz3iutBrZb6/cZGNOX7QfxIj+spj9a9l1dr6p1eGLdIQQ4ky71cpG53WOIV83tYrdjk/hekCDLjklkEWLFuHq1auoqqrCyJEjOb0mJycHTz31FMaMGePWso8fP4533nnHrRqXL19GcHAwHnvsMbfq5OTkICMjw+EUYFdERET4xA3VpIZy2IlyKC2Uy06US3FRDjtRDn0D5bUT5VVcYubQmby8PJw+fdrtGvPmzcPcuXPdqpOTk4OsrCy37qlhMpmQkJCA5557zq1eBhtfHx+doVyKz2JjyKnX4/2qevy92zXvYwKUeCxKi0ciwzBMSR+fEUK4UcnlSNZqkP1DI47dbsI0TZDYLQ04MsYY8+YCm5ubodFooNfre12jur29HRUVFYiLi0NAQIA32yKEEEIIIYQQQgghApH6ZzzV7Wb8v+o7+KjmDn4wdwAA5AAWaEOwVqdFUlgw5Dzu00gIIV2O3W7CE6XXER2gxLkZ43nd83Uw6++4QXd0iJkQQgghhBBCCCGEDHg2xnC6sQUfVN3BiTt6WH/8im+40h9rRgzDv+iG4Z4AbjeTJ4SQvswJC4ZaLkNluxmlrUZMDA4Uu6UBRe7Oi3fu3AmZTIZNmzYJ1A4hhBBCCCGEEEIIIcJpsHTgD5V1uP/cJTxy8Xv8d33nwYyZoUH4409jUDgzHltGjaCDGYQQQQT5+WHesM4zDD6/rRe5m4HH5TM0zp8/j/379+NnP/uZkP0QQgghhBBCCCGEEOIWxhiKmg14v7oef6trQrut83SMYD85VkaG4bEoLcYGSe9SWISQgWGRVoNjt/U4dluPF0aNELudAcWlAxqtra1Ys2YN/vSnP+F3v/ud0D0RQgghhBBCCCGEEMJbm9WKz35owgdV9fim1WifPmGIGmujtPjniFAE+fuJ2CEhZDCYPywECpkMVwztuNrWjjF0AFUwLh3Q+Nd//VcsXrwY8+fPv+sBDZPJBJPJZP93c3OzK4skhBBCCCGEEEIIIcSpK23t+PfqenxS24DmDhsAQCWXYVlEKNbqtJgSEkg35iWEeI1G4Y/ZQ4fgVEMLPr+tx0Y6oCEY3gc0Dh8+jAsXLuD8+fOc5t+5cydeeeUV3o0RQgghhBBCCCGEENIXi43hv+v1eL+qHmebWu3TY9VKPKbT4pERYQhTuHy1dUIIccvi8FCcamjBsdtN2Bg7XOx2Bgxeo/rNmzexceNGnDhxAgEB3I4qvfjii9i8ebP9383NzRg5ciS/LgkhhBBCCCGEEEIIAVDVbsaH1XdwqOYO6swdAAA5gGRtCNJ0WiSFBUNOZ2MQQkSWotXg/3x7E9+0GlFpNCFarRK7pQFBzmfmwsJC1NXVITExEf7+/vD390deXh5+//vfw9/fH1artddrVCoVQkJCHB4D0Z07dxAREYHr16+L3cqAMG3aNBw5ckTsNnwO5dCzTCYToqOjUVhYKHYrPoVy6VmUS24oh8Ki9bRnUV6FRXl1DeXQs2j97RrKpWdJPZc2xpB7pxlrS77HtIJyvHXjB9SZOxCh9MdzMcNxfmY83p84CnOHhdDBDEKIJGiV/pgROgQA8N/1epG7GTh4HdD4+c9/jpKSEhQXF9sfU6dOxZo1a1BcXAw/v8F7U6WdO3di6dKliI2NtU/buHEjEhMToVKpMGnSJJdrZ2dnIz4+HiqVCvHx8Th69CjvGvv378ecOXMQEhICmUyGpqYml3opKSlBUlIS1Go1oqKisH37djDGeNfZu3cv4uLiEBAQgMTEROTn5zs8v23bNmzZsgU2m82lPgcrqefQZDLh2WefhVarRVBQEJYtW4Zbt27xqtHe3o61a9di4sSJ8Pf3x0MPPcS7j74cOXIEKSkp0Gq1kMlkKC4udnhepVIhPT0dL7zwgmDLHAw8lcuysjI8/PDDiI2NhUwmw9tvv+1SHaHGx55qamqwevVqjB07FnK5HJs2bXKpDmMML7/8MnQ6HdRqNebMmYOysjL785RLbqQ+PgqRQ6HGx9OnT2Pp0qXQ6XSQyWT47LPPes1D62nPcpbXyspKLF26FEFBQdBqtdiwYQPMZjOvulIaN4Vcn9N2pWdIfdx0ZseOHZg1axYCAwMRGhrqcp28vDwkJiYiICAAo0aNwr59+3jXoO1Kz/DU+Ai4n8uGhgY8++yzGDt2LAIDAxEdHY0NGzZAr+f/AZZQ+909+WouGywd2FtZh1nnLuHRb75HTn0zbABmhQ7B/p/GonDmT/HCqBGIClCK3SohhPSyKFwDADh2mw5oCIXXAY3g4GBMmDDB4REUFIRhw4ZhwoQJnupR8oxGIw4cOIAnn3zSYTpjDI8//jhWrVrlcu2CggKsWrUKqampuHjxIlJTU7Fy5UqcO3eOVx2DwYCFCxciIyPD5V6am5uxYMEC6HQ6nD9/Hu+++y7eeOMNvPnmm7zq/OUvf8GmTZuwdetWFBUVYfbs2XjwwQdRWVlpn2fx4sXQ6/U4fvy4y/0ONr6Qw02bNuHo0aM4fPgwzpw5g9bWVixZssTp2V19sVqtUKvV2LBhA+bPn8/3R+lXW1sb7r//fuzatavPedasWYP8/HxcunRJ0GUPVJ7MpcFgwKhRo7Br1y5ERka6Vcfd8dEZk8mE8PBwbN26FQkJCS7X2b17N958803s2bMH58+fR2RkJBYsWICWlhb7PJTL/vnC+ChEDoUaH9va2pCQkIA9e/b0OQ+tpz3HWV6tVisWL16MtrY2nDlzBocPH0Z2djaef/55XrWlNG4KlVfarvQMXxg3nTGbzfjFL36BX/3qVy7XqKiowKJFizB79mwUFRUhIyMDGzZsQHZ2Nq86tF0pPE+Oj0Lksrq6GtXV1XjjjTdQUlKC999/Hzk5OXjiiSd49SLUfrczvpRLxhgK9W149tINTD5bhu3fVeO60YxgPzmeiNIib/o4HJk8GssiQqGQ09kYhBDpWqTtPKBxXt+GH0wWkbsZIJibkpKS2MaNGznPr9frGQCm1+t7PWc0Gll5eTkzGo3utuVV2dnZTKvV9vl8ZmYmS0hIcKn2ypUr2cKFCx2mpaSksEceecSlerm5uQwAa2xs5P3avXv3Mo1Gw9rb2+3Tdu7cyXQ6HbPZbJzrTJ8+na1fv95h2rhx49iWLVscpq1du5alpqby7nOwknoOm5qamEKhYIcPH7ZPq6qqYnK5nOXk5LjUV1paGlu+fLlLr+1PRUUFA8CKioqcPj9nzhy2bds2wZc7EHkyl93FxMSwt956y60a7oyPd8N3XdnFZrOxyMhItmvXLvu09vZ2ptFo2L59+xzmpVz2TerjY3dC5VCo8REAO3r0qNPnaD3tGc7y+vnnnzO5XM6qqqrs0z7++GOmUqmcblNzIaVx05280nalZ/jSuOnMwYMHmUajcem1v/nNb9i4ceMcpj399NNsxowZLtWj7UrheHJ89FQuP/nkE6ZUKpnFYuH8GqH2u/vjrVy68hlPa0cH+39V9Wz+15fZ8FNF9sf8ry+zD6vqWWtHh9t9EUKItz34v9+y4aeK2Pu3bovdiqT1d9ygO143BXfmyy+/dLdEnxhjYBZxTg2XKeSQcbzm4unTpzF16lSP9FFQUIDnnnvOYVpKSorLlwhwt5ekpCSoVP+4gU1KSgpefPFFXL9+HXFxcXetYTabUVhYiC1btjhMT05OxtmzZx2mTZ8+Hbt37xameTcwxtBhFieH/sqBk8PCwkJYLBYkJyfbp+l0OkyYMAFnz55FSkqKUO163PTp03tdzkIMjDEYO4xeX67aXy2JXA4GFRUVqK2tdXjfqFQqJCUl4ezZs3j66aft08XIJWMMRgv3M6yEpFb4SSKHUlpPe5tU1tNcMcZgs3l/zAQAudy9cbOgoAATJkyATqezT0tJSYHJZEJhYSHmzp0raL++wme3K00mry/XX6XinEFgcI+bBQUFDutdoLO/AwcOwGKxQKFQCLo8KWxXirVNCbi/XSnU+OipXOr1eoSEhMDfn/tHL0Lsd7tLjFx+29aOD6rq8WltA1qsnfvfKrkMyyNCsVanxeSQQF7jGCGESMkirQYXmg04drsJaVFasdvxeW4f0PAkZrGh+qWzd5/RA3TbZ0Gm5HZPkOvXrztsQAmptrYWw4cPd5g2fPhw1NbWemR5d+ul+7VKu3rpeo7LhlV9fT2sViunnykqKgqVlZWw2WyQy3ldHU1QHWYb9m/ME2XZT72TBIVqYOSwtrYWSqUSQ4cOdauOFERFRUniRoTGDiPu++g+ry/33OpzCFQEcprXk7kcDLreG87efzdu3HCYJkYujRYr4l8S5xIu5dtTEKjkthkj9fHRV0llPc2VzWbEl3kTRVn2nKQS+Pm5Pm46y9nQoUOhVCoHRdb64pPblSYTfp+2wuvL3fDBf0AREMB5/sE8bvbVX0dHB+rr6zFixAhBlyeF7UqxtikB97crhRofPZHLO3fu4NVXX3X4AgrXXtzd73aXt3Jpttnw3/V6vF9Vj4KmNvv0WLUSj+m0eGREGMIUkv7YihBCOFkcHorffV+Dvze1otHSgaE0trlF+nufPsBoNCKAxw4CXz2/hcAYE+2bCc56cTbdlTo9p6nVathsNphE+BabL/LVHIqR50OHDmHIkCH2B99vH6nVahgMBg91N7B4OpdS0T1P69evF7w+1zGTcumcr46PUkfrac/oK6/OMjVYsnY3tF0pPKmPm+vXr3dY9wpNqH0eLmj9zZ2nx0ch1+fNzc1YvHgx4uPjkZmZyfv17mZQ6vs7Ve1mvPZ9DRILyvF02Q0UNLVBDuBBrQaHE0bh7H3j8evoCDqYQQgZMOICVYgPCoCVAcfr6ebg7pL02kGmkEO3fZZoy+ZKq9WisbHRI31ERkb2+lZIXV1dr2+PeENfvQC9vz3cF61WCz8/P04/U0NDAwIDA6FWq93o2n3+SjmeeidJtGVzJfUcRkZGwmw2o7Gx0eEsjbq6Osya5d33+bJly3Dfff/4FlpUVBSv1zc0NCA8PFzotnhT+6txbrX7N9B0ZblceTKXUlJcXGz//5CQEMHqdt20t7a21uEboX2Nmd7OpVrhh/Lt4lwuTq3gdvYaIP3x0VdJZT3NlVyuxpykEtGWzZWzvEZGRva6MW1jYyMsFsugyFpffHK7UqXChg/+Q5Tl8iH1cXP79u1IT08XujUAfffn7++PYcOGCb48KWxXirVN2bVsrjw5Pgq5Pm9pacHChQsxZMgQHD16lPdlyoTY75bi/o6NMeQ1tOD96nqcrG9G10WdI5T+WDNiGP5FNwxRAUpBl0kIIVKyKDwU5W21+Py2Ho+MEH6bYjCR9gENmYzzZZ/ENHnyZHz44YceqT1z5kycPHnS4XqeJ06c8PoHwF29ZGRkwGw2Q6lU2nvR6XS9Tonti1KpRGJiIk6ePIl//ud/tk8/efIkli9f7jBvaWkppkyZIlj/rpLJZJwv+yQmqecwMTERCoUCJ0+exMqVKwEANTU1KC0t9fo1rYODgxEcHOzy60tLSzF58mQBO3KNTCbjfIq+WDyZSykZPXq0R+rGxcUhMjISJ0+etGfObDYjLy8Pr732msO8YuRSJpNxvuyTmKQ+PvoqqaynuZLJZJwv+yQmZ3mdOXMmduzYgZqaGvvBzRMnTkClUiExMVGMNiXBZ7crfeDMRamPmxEREYiIiPBEe5g5cyb+8z//02HaiRMnMHXqVMHvnwFIY7vSF7YpAc+Oj0Ktz5ubm5GSkgKVSoW//e1vLp3pJMR+t5T2d6yM4VD1HfypTo/rRrN9+v2hQ5AWpcWDWg0UcjrbkBAy8C0O1+CN67XIa2xBa4cVQ/yl/1mjVEn/Uwgf0HWDrp7fPL927RpaW1tRW1sLo9Fo/wZvfHy8fcPkbjZu3IgHHngAr732GpYvX46//vWv+OKLL3DmzBlePdbW1qK2thbXrl0DAJSUlCA4OBjR0dEICwvjVGP16tV45ZVXsHbtWmRkZODq1avIysrCSy+9xOtU3M2bNyM1NRVTp07FzJkzsX//flRWVva6TEt+fn6vG/KRvkk9hxqNBk888QSef/55DBs2DGFhYUhPT8fEiRMxf/58Xj9reXk5zGYzGhoa0NLSYv+ZJk2axKtOTw0NDaisrER1dTUA4NtvvwXQ+S2prm/KA53ZfPXVV91a1mDhyVyazWaUl5fb/7+qqgrFxcUYMmQIrwMMQoyPfen6uVpbW3H79m0UFxdDqVQiPj6e0+tlMhk2bdqErKwsjBkzBmPGjEFWVhYCAwOxevVqh3kpl32T+vgICJdDIcbH1tZWex9A583pi4uLERYWhujoaPt0Wk97hrO8JicnIz4+HqmpqXj99dfR0NCA9PR0rFu3jtdZYVIbN4XIK21XeoYvjJvOVFZW2rfnrFarvb/Ro0dzvjTV+vXrsWfPHmzevBnr1q1DQUEBDhw4gI8//phXL7RdKTxPjo9C5LKlpQXJyckwGAz48MMP0dzcjObmZgBAeHg4/Py4fXAl1H63M97KJWMMBqsNP7SbUWOy4A+363DLJkOIvxwrI8PwmE6LnwRJ/+AuIYQIaVxQAEapVfjeaMIXd5rx0PChd38RcY55mV6vZwCYXq/v9ZzRaGTl5eXMaDR6uy23zZgxg+3bt89hWlJSEgPQ61FRUWGfBwA7ePBgv7U//fRTNnbsWKZQKNi4ceNYdna2w/MHDx5kd/tTZmZmOu2l+7KTkpJYWlpav3W++eYbNnv2bKZSqVhkZCR7+eWXmc1msz9fUVHBALDc3Nx+67z33nssJiaGKZVKNmXKFJaXl+fw/K1bt5hCoWA3b97stw5xJPUcGo1G9swzz7CwsDCmVqvZkiVLWGVlZa9+75bDmJgYpz9TF6457KnrZ+j5yMzMtM9z9uxZFhoaygwGA6/ag5mnctn1d+75SEpKss/jzfHRGWd1Y2Ji7M/n5ub2+rl7stlsLDMzk0VGRjKVSsUeeOABVlJS4jAP5fLupD4+CpVDIcbHrlz2fHRfNq2nPctZXm/cuMEWL17M1Go1CwsLY8888wxrb293mMfXxk2h1ue0XekZUh83nUlLS3PaX/cMxcTEOGzbOfPll1+yyZMnM6VSyWJjY9kf/vAHh+e5rL9pu9IzPDU+MuZ+Lvtaf/bMijf3u3vydC47bDZWbzKzy61GVqxvY0W3G9jxC8Vs9dfl7FBVPWvt6OBdkxBCBpJXr1Wx4aeK2LrSCrFbkaT+jht0Rwc0BHLs2DE2fvx4ZrVaOb+moqKC+fv7sytXrri17MzMTIcdUVfFxMTcdSPvbnJzc1loaChraGhwq056ejpbt26dWzUGI8phJ6Fy6MyKFSvYjh07BK87kFEu+3bw4EE2evRoZjab3apDubw7ymEnWk/7BsprJ8qruAZCDnsyGAwsICCAnTp1yq06tP4Wz0DIpZTGR2dcyaWxw8puGk3sm+Y2VqzvfFxsbmPfNepZcWkpHbQjhJAfXdC3seGnilhc3kVm7OC+LhssuB7QoEtOCWTRokW4evUqqqqqMHLkSE6vycnJwVNPPYUxY8a4tezjx4/jnXfecavG5cuXERwcjMcee8ytOjk5OcjIyHA4Nd0VERERHrvR30BGOewkVA57MplMSEhIcLi2Lrk7ymXfcnJykJWV5dY1uSmX3FAOO9F62jdQXjtRXsXl6zl0Ji8vD/PmzcPcuXPdqkPrb/H4ei6lNj72xCeXNsag77DijrkDbVabfbpSLsMwhT/CFP7oMJtQIZe7faksQggZKCYFq6FTKVBtsuB0YwuStRqxW/JJMsYY8+YCm5ubodFooNfre13Tsr29HRUVFYiLi3Pp5lmEEEIIIYQQQgghxDPMNhvuWDrQYLGiw/bjx0kyQOPnh2FKfwzx+8cBDPqMhxBCevtbXRNC/f0wM3QIFHI64Ntdf8cNuqMzNAghhBBCCCGEEEKIU4wxtFhtuGPuQHOH1T7dXy7DMIUfwhT+UMrlInZICCG+Y1lEqNgt+Dw6oEEIIYQQQgghhBBCHHTYGBosHbhj6YDZ9o+Lewzxl2OYwh8h/n6Q0+WkCCGEeBkd0CCEEEIIIYQQQgghYIzBYO28rFRThxVdFymXy4AwhT+GKfwR4EdnYxBCCBEPHdAghBBCCCGEEEIIGcSsjKHxx7Mx2q3/OBtD7dd5Nkaowg9+dDYGIYQQCaADGoQQQgghhBBCCCGDkPHHszEaLR2w3+NbBoT6+0Gr9Eegn5+4DRJCCCE90AENQgghhBBCCCGEkEHCxhj0HVbcMXegzWqzT1fKZdAq/THU3x/+cjobgxBCiDTRAQ1CCCGEEEIIIYSQAc5s6zwbo8FsRUfXzTFkgMbfD8MU/hjiJ4eMLitFCCFE4uhOTgK5c+cOIiIicP36dbFbGZBMJhOio6NRWFgodiuSRjkU1rRp03DkyBGx2/B5lEvPovGRG8qhsGh8JIQQQnwDYwzNHVZ8bzDhUms76kwd6GAM/nIZhqv8MT4oALFqFYL9/ehgBiGEEJ9ABzQEsnPnTixduhSxsbH2aZWVlVi6dCmCgoKg1WqxYcMGmM1mXnXLysrw8MMPIzY2FjKZDG+//bZL/ZlMJjz77LPQarUICgrCsmXLcOvWLZdqdVdTU4PVq1dj7NixkMvl2LRpk0t1GGN4+eWXodPpoFarMWfOHJSVldmfV6lUSE9PxwsvvOB2zwOZsxxu3LgRiYmJUKlUmDRpksu1s7OzER8fD5VKhfj4eBw9epR3DaFyWFJSgqSkJKjVakRFRWH79u1gjN39hT3s3bsXcXFxCAgIQGJiIvLz8x2e37ZtG7Zs2QKbzdZHBcKF1HO5f/9+zJkzByEhIZDJZGhqauJdo729HWvXrsXEiRPh7++Phx56iHeNvhw5cgQpKSn/P3v3HR5VnbZx/Ds1vSeQRg+9F0FUwAoqdtcC6GLbXduqr11X17ZrL2tZ+9oFG/YCNpAqKr0IhJoOIb3MZMo57x+BQACpISfl/lxXroQzkzNP4DCZOff5PQ+JiYnYbDYWL15c73Y9P+6fpv57uiGOQ9Dzo4iIiNTyGyaba/ysqvKyobqGikAQgEinnQ5hbnpGhJIc4sZt12khERFpXvSbqwF4PB7+97//ccUVV9RtCwaDjB07lqqqKmbPns17773HlClTuOmmmw5o39XV1XTu3JmHH36Y5OTkg67xhhtu4JNPPuG9995j9uzZVFZWctpppxEMBg96n1B7gjopKYl//OMf9O/f/6D38+ijj/Lkk0/y3HPP8euvv5KcnMxJJ51ERUVF3X0mTJjArFmz+P333w+p5pZqT8ch1IZFl112GRdccMFB73vevHlccMEFXHzxxSxZsoSLL76Y888/n/nz5x/QfhriOCwvL+ekk04iNTWVX3/9lWeffZbHH3+cJ5988oBqef/997nhhhv4xz/+waJFixgxYgSnnHIKWVlZdfcZO3YsZWVlTJs27YD2LTs0h+Oyurqak08+mTvvvPOgawkGg4SFhXHddddx4oknHvR+9qSqqoqjjz6ahx9++A/vo+fHvWsOv6cb4jjU86OIiEjrZpomVYEgmzw1/F7loaDGj88wcdgg0e2ke0QoXcJDiXU5sWs1hoiINFdmIysrKzMBs6ysbLfbPB6PuXLlStPj8TR2WYdkypQpZmJiYr1tX3/9tWm3283c3Ny6bZMnTzZDQkL2+LPvjw4dOphPPfXUAX9faWmp6XK5zPfee69uW25urmm3282pU6ceVC17MmrUKPP6668/4O8zDMNMTk42H3744bptXq/XjImJMV988cV69z322GPNu++++1BLbZH2dBzu7J577jH79+9/UPs+//zzzZNPPrnetjFjxpgXXnjhfu+joY7D559/3oyJiTG9Xm/dtoceeshMTU01DcPY7/0MHTrUvPLKK+tt69Gjh3n77bfX23bJJZeYF1988X7vV+pr6sflzqZPn24CZklJyUF9/3YTJ040zzzzzEPax55s2LDBBMxFixbt8XY9P/6xpv57emeHchzq+VFERKR1ChiGWVjjM1dVVpuLy6rqPlZXesytNX4zcACvAxpScz3HIyIi1thbbrCzJr1CwzRNfD6fJR/mAbRnmDlzJkOGDKm3bd68efTp04fU1NS6bWPGjKGmpqbR+5wvWLAAv9/P6NGj67alpqbSp08f5s6d26i17MmGDRsoKCioV19ISAijRo3arb6hQ4fu1vbicDNNE7/Xa8nHoR6HDWXevHn1/n2g9ng+kOOnoY7DefPmMWrUKEJCQurVkpeXt9+98X0+HwsWLNjtZxo9enSTOOb2l2maGNXVjf7Rko7LlsSSY9U0wVdlzUcL+j3dUPT8KCIi0rp4ggY5Xh8rKz3kev14gyY2G8S7HHSNCKFbRCgJbicOrcYQEZEWxGl1AXvj9/t58MEHLXnsO++8E7fbvV/33bhxY70TIgAFBQW0bdu23ra4uDjcbjcFBQUNVuf+KCgowO12ExcXV29727ZtG72WPdlew65/X23btmXTpk31tqWlpTX6QNdATQ3PTPxToz7mdte9+RGu0ND9uu+ejsOGsqfj+UCPn4Y6DgsKCur1wN++j+23derUaZ/72Lp1K8FgcL9+prS0NLKysjAMA3sT6y9rejysHjS40R+3+8IF2MLD9+u+Tf24bEmseH7EXw0PHp5/3326Mw/cEft116b+e7qh6PlRRESk5TNMk7JAkCJfgKrgjllWIXYbCW4ncU4nTrsCDBERabn07rMBeDweQvdw0tm2h6sgTNPc43YrHGgtkZGRdR9XXnllg9ezay17qi8sLIzq6uoGf+yW4I+Ow4ayP/8+B+Ng9rOnWva0/WD2s6djzjAMampqDmjfUqu5HpdWePfdd+s9zx7ole96fvxjzfX39MHQ86OIiEjLYpomnmCQLTV+1ld7WVHpIcvjqw0zbBDjctA5PITuEaEkuV0KM0REpMVr0is0XC7XIQ3HPNTH3l+JiYmUlJTU25acnLzbYNqSkhL8fv9uVz0ebsnJyfh8PkpKSupdHb9lyxaOOuqo/d7P4sWL676Ojo5u0Pqg9urRlJSUevXt+ndVXFxMUlJSgz32/nCGhHDdmx816mPu/Nj7a0/HYUNJTk7e7crcPf377GsfDXEc/lEtsPsqnz+SmJiIw+HYr5+puLiY8PBwwsLC9rvGxmILC6P7wsZvjWM7gL+Lpn5cNiVnnHEGw4YNq/tzWlraAX2/Fc+PuMJrV0pYwbV/q4Sg6f+ebih6fhQREWn+TNPEZ5pUBoJUBA0qA0GCu3TadNltxLucxLscuLVKUkREWpkm/ZvPZrPhdrst+TiQKxkHDhzIypUr620bPnw4y5cvJz8/v27bt99+S0hICIMHN26LmMGDB+Nyufjuu+/qtuXn57N8+fIDOpGckZFR99GmTZsGq69Tp04kJyfXq8/n8/HTTz/tVt/y5csZOHBggz32/rDZbLhCQy35ONTjsKEMHz683r8P1B7PB3L8NNRxOHz4cGbOnInP56tXS2pq6m6tVv6I2+1m8ODBu/1M33333R6PuUGDBu13fY3JZrNhDw9v9I+WdFw2JVFRUfWeZw/0JLEVz4/YbLVtn6z4aEG/pxuKnh9FRESaJ79hUOIPkO2p4fcqL6sqveR4/ZT5a8MMuw2inHZSQlx0iwilZ0QoySEuhRkiItIqNekVGs3FmDFjuOOOO+pdeT569Gh69erFxRdfzGOPPUZxcTE333wzf/nLXw5odYPP56s7CePz+cjNzWXx4sVERkaSkZGxX/uIiYnh8ssv56abbiIhIYH4+Hhuvvlm+vbty4knnnjgP/Autq/cqKyspLCwkMWLF+N2u+nVq9d+fb/NZuOGG27gwQcfpGvXrnTt2pUHH3yQ8PBwxo8fX+++s2bN4oEHHjjkmluiPR2HAGvXrqWyspKCggI8Hk/dv1evXr32e07M9ddfz8iRI3nkkUc488wz+eyzz/j++++ZPXv2ftfXUMfh+PHjue+++7jkkku48847yczM5MEHH+Sf//znAZ1ov/HGG7n44osZMmQIw4cP5+WXXyYrK2u3dmqzZs3abTiu7L+mflxC7eqwgoIC1q5dC8CyZcuIioqiffv2xMfH7/d+Vq5cic/no7i4mIqKirqfacCAAQdUz66Ki4vJysoiL692JcTq1auB2qvxt69wAz0/7k1T/z0NDXMc6vlRRESkaTJNk6AJQUyC274OmCbVQYPKYBDvrkswbBBhtxPpdBDpsBPusGNvxi0xRUREGpTZyMrKykzALCsr2+02j8djrly50vR4PI1d1iE78sgjzRdffLHetk2bNpljx441w8LCzPj4ePPaa681vV5vvfsA5uuvv/6H+92wYYMJ7PYxatSouvu8/vrr5r7+KT0ej3nttdea8fHxZlhYmHnaaaeZWVlZ9e4zatQoc+LEifv18+76M+z60aFDh7rbp0+fbgLmhg0b/nAfhmGY99xzj5mcnGyGhISYI0eONJctW1bvPnPnzjVjY2PN6urqA66xtdjTcThq1Kg9/hvt/O+xr+PQNE3zww8/NLt37266XC6zR48e5pQpU+rd3pjH4dKlS80RI0aYISEhZnJysnnvvfeahmHU3b79/8306dP3up///ve/ZocOHUy3220OGjTI/Omnn+rdnpOTY7pcLjM7O3uv+5G9a+rH5T333LPHWnZ+7P05Ljt06LDH/Wy3v8flrrb/DLt+3HPPPXX30fPjvjX139MNdRzq+VFEROTwCBqG6QsGTU8gaFb6A2aZP2AW+/xmYY3PLPD6zFxPjZlV7TU3VHvNzCqPuarSY66oqDaXlleZi8v2/bGq0mPmemrMMn/ADOz0u7s5a87neEREpPHtLTfYmc00zV0uBTi8ysvLiYmJoaysbLcrIL1eLxs2bKBTp06HdYjs4fD1119z8803s3z5cuz7uexz48aNdO3alZUrV9K1a9eDfux7772XGTNmMGPGjIPeB0DHjh259957ueSSSw5pP7t64403+Pe//83KlSsPaDbJrs477zwGDhxo2VyV5kDHYa0ZM2Zw9tlns379+nqrAg7ULbfcQllZGS+//PJB70N0XG7XUMflnuj5cd90HNbS86OIiLRmhrljhURw29cB2G1b3dfs+NpogDMndhs4bDYcNnBgI8RhJ8phJ9LhaJHDvJvzOR4REWl8e8sNdqaWUw3k1FNPJTMzk9zcXNq1a7df3zN16lT++te/HtJJEoBp06bx9NNPH9I+Vq1aRVRUFH/+858PaT97MnXqVB588MFDCjNqamro378///d//9eAlbU8Og5rTZ06lTvvvPOQTxq3adOGm2+++ZD2ITout2uo43JXen7cPzoOa+n5UUREmjPTNDH4gwCC+mFEYOfbt31PQ1zOuSOUqA0mnGwLKHbaVvc11NumtlEiIiKHTis0RERERERERKRRmH8QQOxpVcT2YMLYHlBg1jZlPET7E0A4d719W3BxIHOpWjud4xERkQOhFRoiIiIiIiIi0uDMPQQQgd3aOe0ptKj9+pBta9nktLGXUGLn7bWfnTYbdhRKiIiINGcKNERERERERERamd3mSVA/dNgeUBgmBHYJJhpinoStbuXDjgBit4DiD9o5KZQQERFpvZpkoNHIXbBEREREREREmpXt8ySMP5gXsad2ToGd2jk17DwJtoUPew4gnOwhlFAg0eLp3I6IiBwOTSrQcDgcAPh8PsLCwiyuRkREREREROTw+aMh14E9zpM4vEOunTYb9u2zI9jXjIna7QolZG+qq6sBcLlcFlciIiItSZMKNJxOJ+Hh4RQWFuJyubDb7VaXJCIiIiIiIvKHts+TMNjRoim46zaoF0wY28IKAw59yLUN7NSukLDvMjfCTm3osHMQYa9r2/RHQ67NHZ/NPdcX3PYhsiemaVJdXc2WLVuIjY2tu3hVRESkITSpQMNms5GSksKGDRvYtGmT1eWIiIiIiIhIK2BuCx8ME8xtn7e3c6r9vPP2+rf/wTn/A2KjdqWEHdu2z7Xvj7cHEvbdbrdh2ymw2JnCBmkqYmNjSU5OtroMERFpYZpUoAHgdrvp2rUrPp/P6lJERERERESkmfAZBhWBIOUBg8pgkPJAkMpAkIqgQUUwSKXfoDwYrL3NH6QyuP1+Bh7DOOTHD7HZiHI6aj8cdqKcDiK3fY5y2olyOGs/b9/ucBDlqt0eardpyLW0KC6XSyszRETksGhygQaA3W4nNDTU6jJERERERESkkZimSbVhUOYPUhYIUhqoDSVK/UHKAgFKA8G627Z/bL+tLBDEaxzKOonaMCHSYSfG6SDW5SDG6STW6SDa6SDG5SDW6SBm+4fLucufHYSoZbKIiIjIYdckAw0RERERERFpfkzTpDJobAsftoUQ2z92Cip2vm1HaBHEf4hTrm1QL2TY/nWs01kvlIjeJbSIcTmIdjhw2rVKQkRERKQpU6AhIiIiIiIidYKmSXm9FRBBSgOBesHD9tvKt922c2BxqM2bnDZqAwenc6fVEtuCCZdz222Oerdt3xbldOw2U0JEREREWg4FGiIiIiIiIi2M3zB3Cxr2tTqiNBCgzF87c+JQhdhtO1ZKOLethKgXTOz5tling3CHXfMkRERERGSPFGiIiIiIiIg0QZ6gsVO7pvrtm3aeHbE9tNj59uoGCCXCHfbd5kTE7LRyon5Lp9q5Etv/HObQPAkRERERaXgKNERERERERA4D0zSp3j5Pol7wEKjXzqm8buXETu2bAkFqDmnIda1op50Yp3OPKyNinU6id5orUTdLYtuf3RpyLSIiIiJNjAINERERERGRP2CYJhWBnVY//EH7pj+aORE4xEzCDruththz+6bdQ4topwOHWjeJiIiISAuiQENERERERFq0gGHuWCERqG3VtOtw6z9q31QeCHKo6yRcNtse2jZtG2S9rU1T7B/cFumwa8i1iIiIiMg2CjRERERERKTJqzGMXQZY166OqL9aYs+hRWUDzJMIrRtyvfvqiOjtgcQut20PMMLtGnItIiIiItIQFGiIiIiIiMhhZ5omHsOsFzTsaXbEnm4rCwTwNMA8iYidhlxH79SqaefZEXXzJHZaORHtdBCqIdciIiIiIpZToCEiIiIiIg2iOmiwrtrL6iova6q8rKn2sr7aR0kgQJk/iM88tFDCBkQ76wcPMa76qyN2v81ZN+TaZdcqCRERERGR5kyBhoiIiIiIHJCqYJDMqhrWVNcGF9sDjCyvb5/zJhw26g+3djqIdu0UQmxbHVEXTOx0W5SGXIuIiIiItGoKNERERERE5A8Zpsmskkp+Kq6oDS6qvWR7fX94/3iXg27hoXSLCKV7RCgZ4aEkune0b4pwaJ6EiIiIiIgcHAUaIiIiIiKym2yvj/fyi3gvv5jcGv9utye6nHSL2BFcdAsPoXtEGIluvcUQEREREZHDQ+82REREREQEAG/QYOrWMibnFzOzpKKufVSM08FpSTH0iwqvDTHCQ0lQcCEiIiIiIo1M70JERERERFq5FZUeJuUV8fHmEkoCwbrtI+IiGZeSwCmJMYQ57BZWKCIiIiIiokBDRERERKRVKvMH+HhLKZPzi1ha4anbnhri4oLkeC5MiadDWIiFFYqIiIiIiNSnQENEREREpJUwTJO5pZVMzi/mq8JSvEZtUymXzcbJiTGMT4lnZHwUDg3tFhERERGRJkiBhoiIiIhIC5fn9fFBQTGT84vZ5PXVbe8REcr4lHjObRuvmRgiIiIiItLk6V2LiIiIiEgL5DMMvt1azqT8ImYUV2Bs2x7lsHN22zjGpSQwICoMm1ZjiIiIiIhIM6FAQ0RERESkBVlV5WFyXjEfbi6m2L9jwPfw2AjGpSRwWlIs4RrwLSIiIiIizZACDRERERGRZq4iEOSzLaVMyi9iYXl13fa2bicXJMczLiWBTuEa8C0iIiIiIs2bAg0RERERkWbINE3ml1UxKb+IL7aU4TFqm0o5bTA6IYYLU+I5Pj4ap10tpUREREREpGVQoCEiIiIi0oxsrvHXDfhe76mp2941PIRxKQmclxxHkttlYYUiIiIiIiKHhwINEREREZEmzm+Y/FBUO+D7h+Jygmbt9nCHnTPbxDI+JYEh0eEa8C0iIiIiIi2aAg0RERERkSZqbbWXSdsGfBf6AnXbj4iOYFxKPGe0iSXS6bCwQhERERERkcajQENEREREpAmpCgT5vLCUyfnF/FJWVbc90eXkvOQ4xqUk0C0i1MIKRURERKQxGYZJbqmHLRU1hLrshLudhLsdhLkdhLscOB12q0sUaTQKNERERERELGaaJgvKq5mcX8SnW0qpCtYO+LYDJyREMz4lnhMTYnBpwLeIiIhIi2UYJjklHjK3VJC5pZI1mytYu6WStVsqqfYF//D73E474dvCjTC3g3C3c9vn2o8wl5OIkO0ByE5hyPbbtwckLgcRIQpLpGlToCEiIiIiYpFCn5+PCkqYnF/Mmmpv3fZOYW7GpyRwXnI8ySEa8C0iIiLSkhiGSXZJNZmbK1mzpYK12z9vqcTrN/b4PS6HjbbRodQEDDy+INW+AMa2uWq+gIEvYFCKv0HrtNvgihGdufPUng26X5FDoUBDRERERKQRBQyTGSUVTM4vYtrWMgLb3oiG2W2ctm3A95ExERrwLSIiItLCrCus5KGvf2f22q1/GFy4HXY6J0XQtW0UXdtE0q1tJBltouiYEF5vtYRpmjvCDX+Q6poA1b4g1b4gHv9OX9d9DlC109e19wvudL/Ajvv7gwQNE8OEl2eup3dqNGcOSGusvyaRvVKgISIiIiLSCDZ6apicX8z7+cUU+HZcPTcwKpzxqfGc1SaOKA34FhEREWlxPL4gz03P5OWZ6/EHa69mcTvtdEmKrBdadGsbSfv48P1q82Sz2Qh1OQh1OYhr4HpN08QXNHjux7U8++Na7vp0OYM7xJEeF97AjyRy4BRoiIiIiIgcJtVBg6+2DfieW1pZtz3e5eBPbeMZlxJPz8gwCysUERERkcPFNE2+W7mZ+75YSW6pB4Bjuydx65gedE+OwtFE56PZbDZCnA6uP6ErszK3sji7lBs/WMLkvxzZZGuW1kOBhoiIiIhIAzJNkyUVHiblF/HJ5hIqtg34tgHHxkcxPiWBMYnRuO0asCgiIiLSUmUVVXPP58uZvroQgLTYMP55ei9G92rbbFqLOh12nr5wAKc+PYtfNhTz0sx1XH1shtVlSSunQENEREREpAEU+wNMKShhcn4RK6t2DPhuF+pmXEo8FyTHkxbqtrBCERERETncvP4gL/60judnrMMXMHA5bPxlRGeuPT6DcHfzOxXbISGCe87oza0fLeXJb9cwIiOJvukxVpclrVjz+18kIiIiItJEBE2TWSUVTMovZmphGT6ztidyiN3G2KRYxqfEc1RsJPZmchWeiIiIiBy86au3cO/nK9hUVA3A0RkJ3HdGHzLaRFpc2aE5b3A601dt4ZvlBVz//iK+/PsxzTKckZZBR56IiIiIyAHK8tTwXkHtgO/cmh0DvvtFhjEuNYGz28QS69JLbREREZHWIKekmvu/WMm3KzcD0DY6hLvG9uK0finNpr3U3thsNh48uy8Ls0pYX1jFv776nQfP7mt1WdJK6V2WiIiIiMh+8AYNvtlaxuT8ImaVVGJu2x7rdHBO2zjGp8TTJyrc0hpFREREpPH4AgavzFrPsz9m4vUbOOw2Lju6I9ef2I3IkJZ12jUuws2T5w9gwqvzmTQ/i+O6t+GkXm2tLktaoZb1P0tEREREpIEtr6hmUn4xH28uoTQQrNs+Mi6S8SkJnJwYQ6hDA75FREREWpM5a7dy92fLWV9YBcDQjvE8cFYfuidHWVzZ4XN0RiJ/GdGJV2Zt4LYpS+nfbgRtokKtLktaGQUaIiIiIiK7KPUH+HhzCZPzi1lW6anbnhbi4oKUeC5Mjqd9WIiFFYqIiIiIFQrKvDzw1Uq+WpoPQGKkmztP7cnZA9NaRHupfbl5THdmry3i9/xybvlwKW9cekSr+Lml6VCgISIiIiICGKbJnJJKJhcU81VhKTVGbVMpt83GyUkxjEuOZ2R8FA69YRMRERFpdfxBgzfmbOQ/36+hyhfEboOLj+zAjaO7ExPmsrq8RhPidPD0hQM4/dnZ/LSmkDfnbuSSoztZXZa0Igo0RERERKRVy/X6eL+gmPfyi8ny+uq294wIZXxKAue0jSPBrZfNIiIiIq3V/PVF/POzFazeXAHAwPaxPHBmH/qkxVhcmTW6tY3ijlN6cO8XK3nwm1UclZFIt7Ytt9WWNC16ZyYiIiIirU6NYTBtazmT84uYUVxRN+A7ymHn7LZxjEtJYEBUmJbPi4iIiLRiWyq8PPT1Kj5ZlAtAXLiL20/pwXmD22G3t+7XiROP6sj01YX8tKaQ6yYv4rNrjybE6bC6LGkFFGiIiIiISKvxe6WHyfnFfLS5mGL/jgHfw2MjGJ+SwNikWMI14FtERESkVQsEDd75eRNPfLuGipoANhuMG9qeW0Z3Jy7CbXV5TYLNZuOx8/px8n9msaqggsenreYfY3tZXZa0Ago0RERERKRFKw8E+XRzCZPyi1lcUV23Pdm9Y8B3p3AN+BYRERERWLCphLs/Xc7K/HIA+qbF8MBZfRjQLtbawpqgNlGhPHpuP6546zdembWBUd3acEzXRKvLkhZOgYaIiIiItDimaTKvtIrJBUV8uaUUz7YB304bjE6IYVxKPMfFR+Ns5a0CRERERKRWcZWPh7/5nQ9+ywEgJszFLWO6M25oexx6zfiHTuzVlvHD2jNpfhY3fbiYqdeP1CoWOawUaIiIiIhIi1FQ4+eDgmIm5xexwbNjwHfX8BDGpyTwp+Q4ktwuCysUERERkaYkaJi892sWj05dTZnHD8B5g9O5/ZQeJERqFe/+uGtsT35eX8T6wiru/GQZz08YpFl0ctgo0BARERGRZs1vmHxXVMbk/GJ+KCrH2LY9wmHnzDaxjE9JYHB0uN5UiYiIiEg9S3NKufvT5SzJKQOgZ0o0D5zZmyEd4y2urHkJdzt5+oKBnP38HL5ZXsCHC3I4f0g7q8uSFkqBhoiIiIg0S5lVXiblF/FhQQlb/YG67UNjIhiXEs8ZSbFEOB0WVigiIiIiTVFptY/Hpq1m0i9ZmCZEhTi5cXQ3Lj6yA06H3erymqW+6THcOLobj05dzX2fr2BYp3g6JERYXZa0QAo0RERERKTZqAoE+WxLKZPzi/m1vKpue5LbyfnJtQO+u0aEWlihiIiIiDRVhmHy0cIcHv5mFcVVte1Jzx6Yxh2n9KBNtF5DHqq/jezCjNWF/LKhmP97fzEfXXkUds0fkQamQENEREREmjTTNPmtvJpJ+UV8tqWU6mBtUymHDU6Ij2Z8SgInJETj0pslEREREfkDK/LK+OdnK1iwqQSArm0ieeCsPhzZOcHiyloOh93GUxcMYPSTP7Ewq5Tvf9/M6N7JVpclLYwCDRERERFpkgp9fj4oKOG9/CIyq2vqtncOC2FcSjznJ8fTNkQDvkVERETkj5V7/Tz57RremrcRw4Rwt4MbTuzKpUd3wqX2Ug0uLTaMiUd15PkZ63j2x7Wc1KutZtlJg1KgISIiIiJNit8w+c+mAp7ZtAW/aQIQZrdzepsYxqckMCwmQm+KRERERGSvTNPks8V5/Pvr3ymsqL04Zmy/FO4a25OUmDCLq2vZLj+mE6/P2ciy3DJmrCnkuO5trC5JWhAFGiIiIiLSZPxe6eH637NYWukBYGBUOONT4zmrTRxRGvAtIiIiIvthzeYK7v50OfM3FAPQOTGC+87szYiuSRZX1jokRIZw0ZHteWXWBp79IZNjuyXpgiRpMAo0RERERMRyQdPk+awtPLahAJ9pEud08FC3dM5sE6s3PyIiIiKyXyprAjzzQyavzd5AwDAJddn5+/FduWJEJ0J0cUyj+svIzrw1bxMLs0qZu66IozMSrS5JWggFGiIiIiJiqXXVXq7/PYvfyqsBOCkhmse7t9N8DBERERHZL6Zp8tWyfP715e8UlHsBGN2rLXef1ot28eEWV9c6tYkKZdzQ9rwxdyPP/JCpQEMajAINEREREbGEYZq8lruVf6/Lw2OYRDns3N81jQuT47UqQ0RERET2y7rCSu79fAWzMrcC0D4+nHvP6MXxPdpaXJn8bVRnJs3PYv6GYn7ZUMzQTvFWlyQtgAINEREREWl0WZ4abliVzdzSSgBGxkXyZI/2pIe6La5MRERERJoDjy/Isz9m8sqs9fiDJm6nnatGdeGqY7sQ6lJ7qaYgJSaMPw1JZ9L8LJ79MZO3Lx9mdUnSAijQEBEREZFGY5om7+YXc8/aXKqCBmF2O/dkpDIxNUGrMkRERERkn0zT5NuVm7n/i5XklnoAOLZ7Evee3puOiREWVye7umpUFz74NZtZmVtZmFXCoPZxVpckzZwCDRERERFpFPk1Pm5clc304goAhsVE8HTP9nQMC7G4MhERERFpDjYVVXHv5yuYvroQgLTYMP55ei9G92qri2OaqHbx4Zw9MI0PF+Tw7A+ZvH7pUKtLkmZOgYaIiIiIHFamaTJlcwn/yMylLBAkxG7jjk4p/KVdEg698RQRERGRffD6g7z40zqen7EOX8DA5bDxlxGdufb4DMLdOr3Z1F1zXAZTFuYwfXUhy3LK6JseY3VJ0ozpf7yIiEgrYRhBinKyyc9cTaDGi8PlxuFy4XS5cLjdOJ2uetucbjcOpwuH24XDWftnp8uN3aF+tLL/tvoC3Lo6m6+3lgEwICqcZ3q2p1tEqMWViYiIiEhzMH3VFu75fAVZxdUAHJ2RwH1n9CGjTaTFlcn+6pgYwRn9U/l0cR7P/pjJy38eYnVJ0owp0BAREWmhaqqryV+7mrzVv5O35nfyM1fj81Qf8n5tNjsOtwvnzoFIva+337ZTOLLt653vv/2+O77e0z7qf+10uWsf2+nCZrc3wN+SHE4bPTVcuGQdGz0+XDYbN3dM5pr2bXDatSpDRERERPYup6Sa+79YybcrNwPQNjqEu8b24rR+KWov1Qxde3wGny3J49uVm/k9v5yeKdFWlyTNlAINERGRFsA0Tcq2bCZvze91AcbWrE2YplHvfq7QMFIyuhEWHUPQ7yPo9xPw+7d9rv3zzl/X3ubDCAZ3eiyDQE0NgZqaxv4x67E7nHtYYbJrALJzUOLGuW21iWPb6pNdV6I4t93mdO20bZd91X12u7A7nHoz9QeWVVQzbsl6tvoDtA9183rfTvSODLO6LBERERFp4nwBg1dmrefZHzPx+g0cdhuXHd2R60/sRmSITmU2Vxltoji1bwpfLc3nuelr+e/4QVaXJM2UngVERESaIdM0KVi3htzfV5C7LcCoLivd7X4xbdqS2q0nqd17kdqtB4ntO2C3H3jLKMMI1gs/gn7fjiDE5yMY8BP0bdsW2LZtp0CkNiAJ7BSa+PYrSKnb97bvxTR31BQMYAQD+L2eQ/mrPGTbV41sb8u1PSipW33iduNwOndacbKHtl47Bybb7r9zsOJ07xKm7BLcNLU2YLNLKrhk2QYqgwZ9IsOY1K8zbUJcVpclIiIiIk3c7Myt/PPz5awvrAJgaKd4HjizD92ToyyuTBrC34/P4Kul+Xy9LJ+1WyrIaKN/VzlwCjRERESameqyUr59+VnW/Ta/3naH00mbzhmkdutJWreepHTrQWRcfIM8pt3uwB7iwBVi3dwD0zQxgoE/XlWyLfwI+H0EfX4C20KW2oBl56Blx7bdwxQfAX9gp9Bl9yAmGAjUqyuw7X5Wstnt9VeS1AUrbhyubWHKH6xK2S2I2f61e5cwZU/3d+/UFmxbG7DPtpTw95VZ+EyTo2MjeaNvJ6KcTStwEREREZGmpaDMywNfreSrpfkAJEa6ufPUnpw9ME0roluQHsnRjO7Vlm9Xbua/09fx1AUDrC5JmiEFGiIiIs3I2t/m8+1Lz+ApL8PhdNJxwBDSuvcktVtP2nbOwOl2W13iYWOz2WpPwjtduC3sXGQaBsFAYLcwZMdqkh0rTHYLX3y+et+7PXypC1sC2+7v820LZPw7hTQ+AoFAXUhTrw2YYeCv8eKv8Vr3FwMs6nsU3x91Cths9Mpew+jPf2CK3UFIeAQp3XrQvk8/0nv0xh0WbmmdIiIiItI0+IMGb8zZyH++X0OVL4jdBn8e3pH/O6kbMWFa4dsS/f34rny7cjOfLc7l+hO60jExwuqSpJmxmeZOvRsaQXl5OTExMZSVlREdreEvIiIi+8PnqWbGW6+y7MdvAUhs35FTr72JpA6dLK5MrGIEt7UB27ndV71VK/tq6+Xbc/iyPUz5gzZgO7btaANmArOPOJGfBx8LwMDlP3P8nK+w7+Flps1uJzmjG+1796Nd736kdu+Jyx3SuH95IiIiImK5n9cX8c/PlrNmcyUAA9vH8sCZfeiTFmNxZXK4Xfr6L0xfXcj5Q9J59E/9rS5Hmoj9zQ0UaIiIiDRxuatW8s3zT1K2uQBsNoacdjZHX3AxTpeuWBJrmaaJL+DnttU5vFdYDsB1SRH8JdqFEQjUrTqpKikme+UyslYsrT2Od+JwOknt1pN2ffrRvnd/kjO64nDq2BYRERFpqbZUeHno61V8sigXgPgIN7ef3IM/DU7Hbld7qdZgYVYJ5zw/F6fdxvSbj6VdvFZwiwINERGRZi8Y8DP3w0n8+tkUTNMgKjGJU665kXa9+lpdmggAnqDBlSs3Mm1rOXbgse7tmJCasNfvKduymewVS8lesZSs5UuoLCmud7szJIT0Hr1p17sf7fv0p22nLtjs9sP4U4iIiIhIYwgEDd7+eRNPfruGipoANhuMG9qeW8d0Jza85bbOlT276NX5zF67lQnD2vPvs/UeVxRoiIiINGtbszfx9XNPULhxPQC9R53AcZf8lZBw9ReVpqHUH2Disg3ML6si1G7jxV4dOTnpwNoDmKZJSX4e2SuWkLW8NuTwVJTXu0/bzl0ZddGltOvdryHLFxEREZFGtGBTMXd/uoKV+bWv9fqlx/DAmX3o3y7W2sLEMvPXF3HByz/jdtiZeetxJMeEWl2SWEyBhoiISDNkGgYLv/mCWZPfIOj3ExoVzUl/uYZuw462ujSROnleH+OWrmd1lZcYp4M3+3biyNjIQ96vaRhszckie/kSslYsJWvZkrpB550HHcHICZeSkN7+kB9HRERERBpHUWUND3+zig8X5AAQE+biljHdGTe0PQ61l2r1zn9pHr9sKOaSozpy7xm9rS5HLKZAQ0REpJkp31rItBeeImv5UgA6DRjM6CuvJzIu3uLKRHZYU+Vl3JJ15Nb4SXa7mNy/Mz0jww7LY1WXlTJvymSWfj8VIxjEZrPT5/iTOOq8Cfp/ISIiItKEBQ2Tyb9k8di01ZR5/ACcPySd207uQUJkiMXVSVMxO3MrF/1vPiFOO7NuO442UVql0Zop0BAREWkmTNNk1ewZ/PDai9RUV+EMCeHYiy+n34mnYLPpqiVpOhaUVXHR0vWUBIJkhIcwuX8X2oUe/n7HxXm5zJ78Jpm/zAVq52wMOe0cjjj9bNxhGiAoIiIi0pQsyS7l7s+WszSnDICeKdH866zeDO6gC1KkPtM0OeeFuSzKKuWvIztz56k9rS5JLKRAQ0REpBnwVFbw/avPs2beLABSMrpzyrU3EpeSZnFlIvV9X1TOX5ZvwGOYDIoO5+2+nUlwOxu1htxVK/np3dfIX7MKgPCYWI46bzx9jx+D3eFo1FpEREREpL7Sah+PTlvN5F+yME2ICnFy4+huXHxkB5wOu9XlSRM1fdUWLn3jV8LdDmbfdjzxERoQ31op0BAREWniNi5ZyLQX/kNlSTE2u53hfxrHsLPO14lZaXLezy/mxtVZBE04Pj6KV/p0JMKi49Q0TTJ/mcusSW9QWpAPQFxqOiPHX0KXIcO0qklERESkkRmGyUcLcnh46iqKq3wAnD0wjTtO7aEWQrJPpmlyxnNzWJZbxjXHdeGWMT2sLkksokBDRESkifLXeJn57hssnvYlAHEpaZx67U0kZ3SzuDKR+kzT5L9ZW/jX+trg4LzkOJ7s3h5XExjgGAz4WfLdVH6eMhlPRTkAaT16M+qiy0jp2t3i6kRERERahxV5Zdz96XIWZpUC0LVNJA+c1YcjOydYW5g0K9NWFPC3txcQGeJkzm3HExPusroksYACDRERkSaoYF0mXz/3BCV5OQAMGDOWkRMuxRWiK5ekaTFMk/vW5vFSTiEAV7VL4u4uqdib2AqImuoqfvnsIxZ+9RkBf+0Vgd2Gj2DEhX8mNjnF4upEREREWqZyr58nv13DW/M2YpgQ7nZww4ldufToTrjUXkoOkGGYnPrMLFYVVHDDiV254URd7NcaKdAQERFpQoxgkPmffMDPH7+HEQwSERfPyVdeT8cBg60uTWQ3PsPghlXZfLy5BIB7u6RyZfs2Fle1dxVFW5nz/jusmPkDmCZ2h5MBo0/lyHMvJCxKrzlFREREGoJpmny6OJd/f7WKrZU1AIztl8JdY3uSEhNmcXXSnH21NJ9rJi0kOtTJnNuPJypUqzRaGwUaIiIiTURJfi7fPPck+WtXA9DtyGM48YqrdZJVmqTKQJArlm9kRkkFThs83aM95ybHW13WftuycT0z332dTUsXARASHsHQs85j4Cmn43KHWFydiIiISPO1ZnMFd3+6nPkbigHonBjBfWf2ZkTXJIsrk5bAMExG/2cma7dUcsuY7lxzXIbVJUkjU6AhIiJiMdM0Wfr9VGa8/SqBmhpCwiM44bIr6XHMsRpcLE3SVl+ACUvXsaTCQ7jDzv96d+S4hOb5em3j0kXMfOc1CjdtACAqIYljLryYnscci83eutsgmKaJafoIBqsJBj3bPlfv5c9VBA0PNuxERGQQEdmdyIiuOBzhVv8oIiIi0ggqawI8/f0aXp+zkYBhEuqy8/fju3LFiE6EOB1WlyctyKeLcrnh/cXEhbuYfdvxRIQ4rS5JGpECDREREQtVlhTz7UvPsGHRbwC0692Pk6++gejEpt22R1qvTZ4axi1Zz3pPDfEuB+/068yg6AiryzokhhHk91kzmP3+21QWbQUgqWNnRk24jA79Blha2/4wzeBewoZtQUPQQ9DY5c9/8D1G0EMgWIVheDDN4CFWZyMsrB2REd1rA47IHkRGdCc8vAM2m05siIiItASmafLVsnz+9eXvFJR7ARjdqy13n9aLdvG6sEEaXiBocOKTP7GxqJo7T+3BX0d2sbokaUQKNERERCySOX8u377yHN6KchwuFyPGTWTQKWe0+qvCpelaUelh3JJ1bPEFSA918X7/LnQJbzmD6v2+GhZ+/Tm/fPohPk81AB0HDGbk+EtI6tDpkPZtmiaG4d09ZNg5VDD+IIjY6T61YUM1Rt39qzAMX0P8+Htls7lxOMJwOMK3fYThcETsvs0ejmHUUFm1hsrK1fj9RXvcn90eQkREBpERtSHH9rAjxJ142H8WERERaRiBoMFXy/J5YcY6VhVUANA+Ppx7z+jF8T3aWlydtHQf/JbNrR8tJTEyhNm3HUeoSxfLtBYKNERERBpZTXUV0994mRU//QDUXgl+6rU3kdiug8WVifyxOSUVXLJsAxVBg54RoUzu34XkkJY3gM8wfFSWbubXr95n9dzvwe7H7jLpNKgfPY4ZjivMsceWS8Y+w4lq4HC/nLbvEjjsEjzYw3E4w3HYdw4h6t/H7gjHuW27ffv3OMKw2w/u39rn20pl5eq6gKOqcjWVVZkYhmeP9w8P70J8/DEkxI8gLm6Y2lWJiIg0QR5fkA8XZPPyzPXklNT+To9wO7hiRGeuOraLTixLo/AHDY57fAY5JR7uOb0Xlx59aBcgSfOhQENERKQRZa9cxtTnn6K8cAvYbAw941yOOn8CDmfLOzEsLceXW0q5euUmfKbJkTERvNm3EzEu6/rU7vqytLp6A/5ACcGgByNYTWBPqxl2bb0UqN6pBdOO4ME0/Ye9frs9bM+Bg2PXsKH+bXZHGE5HRG3QsP0+9h33s9vdzWLujmkG8XiyqKxcQ2XV6tqgo2o11dUb2Tn0sdncxMYOJiF+BPHxI4mM7NEsfj4REZGWqqzaz9s/b+T1ORspqqpdIZoQ4ebSozty8ZEdiQnXexppXO/O38Q/PllOcnQoP916rGa1tBIKNERERBpBwO9nzvtv89uXn4BpEtOmLSdfcyPpPXpbXZrIXr2Zu5Xb1+RgAqcmxvB8rw6EOqxti2aaJhWVK9iy+Ws2b/karze7wR/DZnPWhQZm0ElVSSU1lTUYfjs2QkhIzyAxvSsuZ0Td/bYHDjuvdLBvDymcEdvCijBsNrWV2xO/v4ySknkUFc+kuGgW3pq8ere73YnbVm+MJD7+aNxqTyUiItIoCsq8/G/2eibNz6LKVztfKz0ujL+O7Mx5g9sR5tZJZLFGTSDIsY/NIL/My7/O6sNFR6rrQWugQENEROQwK9y0ga+fe4KtWRsB6HPcaI6beAXuMLVSkabLNE0e31jAExs3A/Dn1AQe6paOw6Ir5E3TpLJyFZu3fMWWLV/h8WTV3Wa3hxDibltvnsMeVzPUa8W0fTXErnMgtrdYcu/2+Gt/+5lZ775BSX4uAHEpqYwYdwkZQ4dr5UADM02T6uoNFBfPpKh4NiUlP+/WpioqsjfxCSOIjz+G2JghB90WS0RERPZsXWElL/+0no8X5eAP1p4W7JEcxVXHdmFs3xScFl/kIgLwxpwN3PvFStJiw5hxy7G4dFy2eAo0REREDhPDCLLgy0+Z8/7bBAMBwqJjGP3Xv5NxxJFWlyayV0HT5I41ObyVVzvQ+aaObbm5Y3Kjn7Q3TZOqqjXbQoyvqa7eUHeb3R5KYsJxtGl7KokJxzbarIVgIMCyH6Yxb8pkqstKAUjt3otRF11KareejVJDa2QYNZSWLaS4aBZFxbOorFxZ7/YQd1vS0saRmnohISFJFlUpIiLSMizOLuXFGeuYtrKA7WcDh3aK56pRXTi2e5Iu5JAmxesPcswj09laWcOj5/bj/CPaWV2SHGYKNERERA6Dsi2bmfr8U+T8vhyAzoOHMvqvfyciNs7iykT2zhs0uOb3TXxVWIYNeLhbOhPTGre1T2VVZl07qerqtXXb7XY3CQnH0qbNqSQmHI/TGdGode3M56nm18+n8NuXnxLw1QDQddhRjBg3kbiUNMvqai1qfFspLp5NcfEsiopm4vcXA2CzuWjb5lTS0y8mOnqATriIiIjshWGYFFbWkFNSTXaxh+ziauauK2Le+qK6+5zYsy1XHduZwR3iLaxUZO9embmef3/9Ox0SwvnhxlFaPdTCKdAQERFpQKZpsnLmj/z4+ov4PB5cIaEcO/Ev9D1+tE6sSZNX5g8wcdkGfi6rwm2z8XyvDpzWJrZRHrumZgt5ee+zectXVFVl1m232dwkJIykbZuxJCYej9MZ2Sj17K/K4iLmfPAuK2Z8j2ka2B0O+p14CsP/NI7w6Biry2sVDKOGLVumkZ3zFuXli+q2R0X1oV36n2nT5jQcjhALKxQREbGGaZoUV/nILvHUhRY5JdW1fy6uJqfUgy9g7PZ9TruNMwekceWoznRtG2VB5SIHptoX4JhHplNc5ePJ8/tzzqB0q0uSw0iBhoiISAOpLi/j+1f+S+YvcwFI7daTU665kdjkFIsrE9m3gho/45as4/cqL1EOO2/07cTRcYf/DWww6CEr61U2Zb1MMFgN1F5lnxA/gjZtx5KUeAJOZ9N/I701ayMzJ73BhkW/AeAOC2Pomecx6NQzcIWEWlxd61FevpScnHfYvOULDMMHgMsVT2rqBaSnjSc0NNXiCkVERBpWmcdfL6zIKaldaZG97evqbUO8/4jdBikxYbSLDyM9LpxOiRGcNTCNtNiwRvoJRBrGf6ev5bFpq+mcFMF3/zcKh10XFLZUCjREREQawPqFvzLtxaepLivF7nBw1HkTOOLMc7HbHVaXJrJP66q9XLBkHTleP23cTib370LvyMP7JtY0DQoKPmPd+sepqSkAIDp6AOlp40lMPAmXq3m+/stavoSf3nmNLRvWARAZn8DRF1xMr5HH6fmgEfl8ReTlfUhO7jvU1ORv22onKelE0tP/TFzskVo1JyIizUK1L7AjpCjeFljsFGCUewP73Efb6BDaxYWTHhdGu/jwel8nx4RqiLK0CBVeP8c8Mp0yj59nxw3k9P66kKWlUqAhIiJyCHxeDz+9/T+Wfj8VgIT09pxyzY207ZxhcWUi+2dheRUXLV1PsT9I57AQJvfvTIeww9uep6T0VzIz/01FxTIAQkPTyOhyK23ajG0RJ5lNw2DV3JnMfu8tygu3AJDUviMjJ1xKxwGDLa6udTGMAEVFP5Kd8xYlJfPqtkdEdCU97WKSk8+ydBaLiIhITSBIbomnXluo7asrcoqrKary7XMfCRFu0uPDaRdXu8pi+2qLdnFhpMaGEerSRRXSOjz9fSZPfb+G7m2j+Ob6Edi1SqNFUqAhIiJykPLWrOKb/z5BaUHt1b+DTj2TY8b9GZdbvdqleZheVM7lKzZSHTToHxXGu/26kOh2HrbH83iyyFz7CIWFtQGgwxFJxw5X0a7dpS1yxkHA52PRtC+Z/8n71FRVAdCh30BGTriUNh07W1xd61NZlUlOzjsUFHxc194sNLQdgwdNJjRUrQFFROTwCAQN8su8tSHFTmHF9rZQm8tr9rmP6FAn7eK3raqIC9/x9bbP4Yfx9ZtIc1Lm8XPMwz9SURPgxYsGc3KfZKtLksNAgYaIiMgBCgYC/Pzxe8z/+ANM0yAyIZGTr7qBDn0HWF2ayH77qKCYG1ZlETDh2Lgo/tenIxHOw3P1nt9fzsZN/yU7+y1M0wfYSUu9gE6dbyDEnXhYHrMp8VRWMP/j91k87UuCgQDYbPQacRxHX3AR0YltrC6v1QkEKsjPn8KmrFepqcknPDyDwYMm43bHW12aiIg0Q4ZhsqWiZlsbqN1nWOSXeQkaez+lFuZy0C6+flix80qLmDBXI/00Is3f49NW89z0tfROjebLvx/TIlaAS30KNERERA5AUW423zz3BJvXrwWg5zHHcvxlVxIaEWlxZSL778WsLdy7Lg+Ac9rG8Z8e7XDbG753smEEyMt7j/UbnsbvLwYgPu4Yuna9k8jI7g3+eE1d2ZYCZr/3Nqvm/ASAw+Vi0KlnMuys8wgJV9ujxubx5LJg4fnU1BQQHdWPgQPfxunUc7mIiNRnmiZFVb5tIYVntwHcuSUefEFjr/twO+y1IUW9VRY72kLFR7h10lWkgRRX+TjmkR+p9gV57ZIhHN+jrdUlSQNToCEiIrIfTNNk8bQvmfnO6wT8PkIjIjnhiqvpcdRIq0sT2W+GafKvdfk8n1071+Fv6Unck5GKvYHfQJumSVHRDDLXPkx1dW34Fx7eha4Zd5CQcGyrf8NesHYNP737GjkrlwMQGhXN8HMuoP/oU3E4dQVmY6qqWsuChRfi95cQF3cUA/q/it3e8tqfiYjIHzNNk3JPoP4Ki52+zinx4PEH97oPh91Gamwo6bHhdSst0ndacZEUGaJe/iKN6KGvf+elmesZ0C6WT64+qtW//2hpFGiIiIjsQ0XxVqa98DSbli4Canvgj7nqeqLiW36rHGk5/IbJ/63K4qPNJQDc3SWVq9slNfiL+8rK1WRmPkhxyWwAXK44One6gdTUC7DbdbJ+O9M0Wb/wV2a++zrFudkAxLZN4ZhxE+l25NF609WIysuXsnDRRQSDVSQljaFP72ew29WLXESkJamqCdSbYbF9hUX2tsHbFTWBvX6/zQbJ0aF1qyt2XWmRHB2K09Hwq11F5OAUVtQw4tEf8foN3r58KCO6JlldkjQgBRoiIiJ7sWruTH549Xm8VZU4XW5GXnQpA0aPxXYY2vOIHC5VwSB/Wb6RH4srcNjgye7tuSClYecF1Pi2sn79U+TlfQAY2Gwu2rWbSMcO1+By6bXcHzGCQZbP+I65H7xLVWlt2JSS0Z2RF19Geo/eFlfXehQXz2HxkiswTR+pKefTo8eDCpVERJoRrz9Yt7IiZ1tIsfNKi5Jq/z73kRgZUjdou90uMyxSY0MJOUyzxkTk8LjvixW8PmcjQzvG88GVw60uRxqQAg0REZE98FZW8sNrL9T1um/bOYNTrr2JhLR2FlcmcmCKfAEuWrqeRRXVhNltvNy7IyclxjTY/oPBGrKzX2fjphcIBisBSEo6mYwutxIe3qHBHqel83k9/PbFJ/z2xcf4a7wAdBlyJCMnXEJ8arrF1bUOWwqnsWzZtYBB+/Z/oWvG7VaXJCIi2/iDBnmlnt0Gbm+fa1FYUbPPfcSGu3assKgLLnYM4A5zK7AQaUkKyryMfHQ6vqDBe389kiM7J1hdkjQQBRoiIiK72LRsMVNf+A+VRVux2ewMO+d8jjznQhxOtSCR5iXb62PcknWsra4hzungnX6dGRzTMMOnTdNky5avWLvuUbzeXACiovrSretdxMYOaZDHaI2qSkuY++G7LPvxW0zDwGa30++Ekxn+p3FExMZZXV6Ll5f3Ib+vqg0yunS5lY4d/mZxRSIirUPQMCko95Kzy+Dt7JJqcks85Jd5MPZxVirC7aBdfHi9lRXbV1qkx4cRHarWlyKtzV2fLuOdn7M4qksCk/5ypNXlSANRoCEiIrKN31fD7MlvsfDrzwCITU7hlGtuIrVbD4srEzlwv1d6GLdkPQU+P2khLib370K3iNAG2XdZ2WIyM/9FWXntXJmQkGS6dLmF5LZnYLOpHVtDKMrJZtbkN1j323wAXKFhHHHGOQwZezau0Ib5d5Q925T1CmvXPgxAj+7/Ji3tQosrEhFp/kzTpLCypm52xfbVFdvbQuWVevAH937aKcRpr1tZsWOlxY4h3LHhLrULFJF6ckqqOfaxGQQMkylXDWdwh4ZtuyvWUKAhIiICbN6wjm+ee4KinCwA+p90CqMuulwnDqVZ+rm0kj8vW095wKB7RCiT+3UmNdR9yPv1eHJZt/4xNm/+AgC7PYyOHf5G+/ZX4HCEHfL+ZXfZK5cx853XKFiXCUBEXDxHnTeBPsediN2u1hiHy9p1j7Fp04uAnT59nqFtm1OsLklEpEkzTZPSav8uA7frBxc1AWOv+3DabaTt0hIqfadZFkmRIQosROSA3fbRUt7/LZtR3ZJ487KhVpcjDeCwBBovvPACL7zwAhs3bgSgd+/e/POf/+SUU/b/jYACDRERaQyGEeTXz6Yw98NJGMEA4TGxjLnyejoPOsLq0kQOytTCMq5cuRGvYTI0JoK3+nYi1nVo7dICgUo2bXqRrOzXMIwawEZKyrl06XwjISFtG6Zw+UOmYbD659nMnvwmZVs2A5CQ3p6RF11KpwFDdHLnMDBNk1Wr7yIv7z1sNhf9+79KQvwxVpclImKpCq9/p7BiR1CxfcVFZU1gr99vt0FKTFhdaLG9LdT28CI5OhSHXb/TRKRhbSqq4vgnfiJomHx2zdH0bxdrdUlyiA5LoPHFF1/gcDjIyMgA4M033+Sxxx5j0aJF9O7du0ELExEROVilmwv45r9Pkrd6JQAZRwznpL9eS3h0ww1MFmlM7+QVcevqbAxgTGI0L/bqSJjj4FtAmWaQvPyPWL/+SXy+rQDExg6jW9d/EBW1f6/ppOEE/H6WfPs1P3/8Ht7KCgDa9e7HqIsuo23nDIura3lMM8jyFTewZcvXOBzhDBzwNjExA6wuS0TksPH4guSW7phdsesA7tJq/z730SYqZLeB29tXWqTEhOF2qjWliDS+G99fzMeLcjmxZ1tenah5f81do7Wcio+P57HHHuPyyy/f4+01NTXU1NTUK6xdu3YKNEREpMGZpsny6d8x/c1X8Hs9uMPCOO6Sv9F71Am60lmaJdM0eWrTZh7dUADA+JR4Hu3WDuchXOVYXDyHzMx/U1m1GoCwsI50zbidxMQT9f/EYt7KSuZ/+gGLpn5B0F97cqnH0aM45sI/E9NGK2YakmHUsGTJXykumY3TGcPgQe8RGdnN6rJERA6KL2CQV7prWLFjAPfWypp97iMu3FUvrEiP32nwdlwYoS61QxSRpmddYSUnPvkTpglfXzeCXqk619ycHfZAIxgM8uGHHzJx4kQWLVpEr1699ni/e++9l/vuu2+37Qo0RESkIVWXlfLty8/WDdpN79mHk6/+P50ElGYraJrclZnL67m1Kyhu6NCW2zolH3ToUFW1jrVrH2Zr0Y8AOJ0xdOr0d9LTJmC3H/ocDmk45YVbmP3+2/w+azoADqeTgaecwbCzzic0MtLi6lqOQKCKRYsnUl6+iBB3WwYP/oCwsHSryxIR2U0gaFBQ7q3XFipnp8HbBeVe9nVmJyrEWdsSaltosb0t1PbPkSGH1sZSRMQqf5+8iC+W5HFq32SenzDY6nLkEBy2QGPZsmUMHz4cr9dLZGQkkyZN4tRTT/3D+2uFhoiIHG5rf5vPty89g6e8DIfTydEX/pnBY8/UYF1ptmoMg2tWbuLLwjJswL+6pnF5etJB7cvvL2H9hqfJzZ2EaQax2ZykpU2gc6frcLliG7RuaVib169l5ruvkbV8KQChEZEMO+cCBow5DafLZXF1LYPfX8qChRdSVZVJWFgHBg/+gBB3otVliUgrYxgmhZU1O9pA7dwaqqSa/FIvAWPvp25CXfZ6raB2bQsVE+bSSkwRaZFWF1Qw5j8zsdlg2g0j6dY2yuqS5CAdtkDD5/ORlZVFaWkpU6ZM4dVXX+Wnn376wxUaB1uYiIjIvvg81Ux/81WWT/8WgMT2HTn12ptI6tDJ4spEDl55IMilyzYwp7QSl83Gc73ac2abuAPej2H4yMl5mw0bnyMQKAcgMfFEumbcTni4/o80F6ZpsnHxAma++zpbszcBEJ3UlmPG/Zkew0dgs6tn+aHy1hSwYMEFeL05REb2ZNDASbhcep8iIg3HNE2Kq3z1Bm5nl1STXVxNbomHnFIPvoCx1324HXbS4sJq20HFbV9dsaMtVGKkW4GFiLRaV769gKkrCji2exKvX3KEng+bqUaboXHiiSfSpUsXXnrppQYtTEREZG9yV63km/8+QdmWzWCzMeS0szn6got11bI0a1tq/Ixfup7llR4iHXZe79OJEfEHdoWRaZoUbv2WtWsfxuPJAiAysiddM+4kPv6ow1G2NALDCLLipx+Y+/47VJYUA9C2c1dGXXQp7Xr3s7i65q+6eiMLFl6Az7eVmJghDBzwBg5HmNVliUgzUubx182syNkWVmwPLnJKPFT7gnv9fofdRkpMaO2qim1hxc4rLNpGhWI/hBlaIiIt2frCSsb8Zyb+oMlLFw9mTO9kq0uSg9BogcYJJ5xAu3bteOONNxq0MBERkT0JBvzM/XASv342BdM0iE5qw8lX/x/tevW1ujSRQ7KhuoYLlqwjy+sj0eVkUv/O9IsKP6B9lJcvI3Ptg5SW/gKA251El843kZJyDjabWrC1BH6vlwVff8Yvn32E3+sBoPOgIxg54VIS0ttbXF3zVlGxkgULxxEMVpKQcBz9+r6A3a6QXERqVfsCOwZu7xJWZBdXU+4N7PX7bTZoGxVaL6RoFxdOenzt55SYUJwOrboTETlYj01bxX+nryMtNozvbxxFmFvvf5qbwxJo3HnnnZxyyim0a9eOiooK3nvvPR5++GGmTp3KSSed1KCFiYiI7Gpr9ia+fu4JCjeuB6D3qBM47pK/ERJ+YCd9RZqaJRXVjF+yniJ/gA6hbt4f0IWOYSH7/f3emgLWr3uC/IJPABO7PYT27f9Ch/Z/xemMOHyFi2Wqy0qZ+9Fkln7/DaZhYLPZ6XP8SRx13gQi4+KtLq/ZKin9lcWLJ2IYNSS3PZNevR7HZtMJRpHWwOsPklvqqQso6gKLbV8XVfn2uY+ECDfpO7WBarctrEiPCyMtLowQp06uiYgcLtW+ACc9OZPcUg9/Pz6Dm0Z3t7okOUCHJdC4/PLL+eGHH8jPzycmJoZ+/fpx22237XeYcSCFiYiIbGcaBgu/+YJZk98g6PcTGhXN6L9cS9dhap8jzd/M4gouXb6BqqBB38gwJvXvTJJ7/64KDwar2bTpFTZlvYJh1F6tn9z2LLp0uYnQ0NTDWbY0EcV5Ocya9CZrf50HgDMkhCGnncMRZ5yDO1Qtkw7G1q3TWbrsSkwzQHr6n+nW9Z/qwyzSAviDBvml3tp2UDu3hiqp/by5vGaf+4gOddYLKnZuC5UWG0ZEiLMRfhIREfkjU5cXcOU7C3A77Ez7v5F0StTFXc1Jo7WcOlAKNERE5ECUby1k2gtPkbV8KQCdBg5hzJXXExF74EOSRZqaTzeX8Pffs/CbJiPiInmtTyei9uPqTdM0KCj4hHXrnqDGtxmAmJjBdO36D2Ki+x/usqUJylm1gpnvvEZ+5moAwmNiOeq8CfQ9fjR2h64IPlAFBZ+xYuWNAHTqdD2dO11ncUUisi9Bw2RLhZfs4t0Hb+eUeMgv82Ds4+xHuNtRt6Jie1ixPcBIjwsnJkxt6EREmjLTNLnk9V/5aU0hI7sl8ealGhDenCjQEBGRZs00TVbNnsEPr71ITXUVzpAQjr34CvqdeLJekEiL8GpOIXdl5gJwRptYnu3ZnhD7vlvblJTMJ3Ptv6moWAFAaGg7MjJuo02S/m+0dqZpkjl/DrMmvUnp5nwA4lPTGTHhUroMHqrj4wBl57zFmjX3AdCt6z9p126ixRWJtG6mabK10lcvpNh5CHduqQd/cO+nN9xOO+mxYX/YFio+wq3nShGRZm7D1irGPDUTX9DgxYsGc3IfDQhvLhRoiIhIs+WprOD7V59nzbxZAKRkdOeUa28kLiXN4spEDp1pmjy4Pp9ns7YAcFlaIv/qmoZ9HydQqqs3snbdIxQWfguAwxFJp45Xk55+CQ7H/s/bkJYvGPCz5LupzJsyGW9FOQDpPfsw6qLLSM7oZnF1zcv6Dc+wYcPTAPTu9STJyWdaXJFIy2WaJmUe/06toHZvC+X1G3vdh8NuIzU2tLYd1C4rLdrFh5MUGYLdrsBCRKSle+Lb1Tz741rSYsP47saRhLvVErA5UKAhIiLN0sbFC5j24tNUlhRjs9sZfu44hp19vlqmSIsQMExuXp3NewXFANzRKYXrOrTZ69Wgfn8ZGzf+l+yctzBNP2AnLW0cnTtdj9ud0EiVS3NUU13FL599xMKvPiPgrx1m2334CI4ZN5HYtrpSbX+YpsmazPvJyXkLm81Jv74vkph4nNVliTRblTWBHe2gimtDi+1f55Z4qKgJ7PX7bTZIjg6tCyt2XWmRHB2K07Hv1Y4iItKyeXxBTnzyJ3JLPVxzXBduGdPD6pJkPyjQEBGRZsVf42Xmu2+weNqXAMSlpnPqtTeR3KWrxZWJNIzqoMHfVmzku6Jy7MDj3dsxPvWPAwnD8JObN5kNG57B7y8BICFhFBldbicyUlfZy/4r31rI3A/eYcXMH8E0sTucDBgzliPPuYCwKL0e3xfTNFi58hYKNn+K3R7CwAFvERs7xOqyRJokrz9YN7sip94ci9oVFiXV/n3uIzEypG5mxa5toVJiQwnZj1lTIiIi01YU8Le3F+By2Jh2w0g6J0VaXZLsgwINERFpNgrWZfL1c09QkpcDwMCTT2fE+Im4QkItrkykYZT4A1y8dD2/lVcTarfxUu+OjEmM2eN9TdOkqGg6mWsforp6PQAREV3pmnEnCQkjG7NsaWG2bFzPzHdfZ9PSRQCEhEcw7OzzGXjy6Tjdboura9oMw8+yZVeztehHnM4oBg2cTFRUT6vLEml0/qBBXqnnD9tCFVbU7HMfseGueu2gdg4t0mLDCXMrsBARkUNnmiaXvvErM1YXMqJrIm9dpplyTZ0CDRERafKMYJD5n3zAzx+/hxEMEhkXz5irbqBj/0FWlybSYHK9Pi5cso7M6hpinA7e7tuJobF7vjqoonIVazMfpLhkDgAuVzydO/8fqSnnY7er76s0jI1LFjLzndcozNoIQFRiEsdc+Gd6Hj0K234Mpm+tgkEvixdfQmnZr7jdiQwe9D7h4R2tLkukQQUNk4JyLznFtQFF9k6rLHKKqyko92Ls4wxCZIizth3ULgO3t8+yiAp1Nc4PIyIird7GrVWM3jYg/IUJgzilb4rVJcleKNAQEZEmrSQ/l2+ee5L8tasB6HbkMZz4l2sIi4yyuDKRhrO6ysu4JevIq/GTEuJicv/O9IgI2+1+NTWFrF//JHn5HwEGNpub9u0upWPHq3A69X9CGp5hBPl91gxmv/82lUVbAWjTsQsjL7qUDn0HWFpbUxYIVLBg4XgqK1cSGprO4MHvExqieSTSfBiGydbKmnqzK3ZuC5VX6iGwj8QixGnfaXVF+G5fx4a7dAWsiIg0GU9+u5pnflxLSkwoP9w0SgPCmzAFGiIi0iSZpsnS76cy4+1XCdTUEBIewQmXXUmPY47Vm19pUX4tq+LipespDQTpGh7C5P5dSA+t39YnGPSSnf0aGze9SDBYBUCbNmPJ6HILYWHtrChbWhm/r4aFX3/OL59+iM9TDUCnAYMZOeFSEtt3tLa4JqrGt5UFC87H49lERERXBg96D5cr1uqyRIDa11kl1f76Kyu2hRXZJbWDt2sCxl734XLYSI2tXVmxfZbFzisukiJD9JpNRESaDY8vyElP/UROiYerju3CbSdrQHhTpUBDRESanMqSYr596Rk2LPoNgPZ9+jHmqv8jOjHJ4spEGta3W8v424qNeAyTwdHhvN2vM/GuHVcCmabJ5s1fsG7dY3hr8gCIju5P167/IDZmsFVlSytWXV7Gzx+/x5Jvv8YIBrHZ7PQ+9gSOOn8CUfGJVpfX5Hg8OSxYeAE1NQVERw9g4IC3cDojrC5LWokKr78uoNgeXOTsNMuiyhfc6/fbbZASE1avDVRteFH7ddvoUBx2BRYiItJyfLdyM3956zdcDhtTbxhJFw0Ib5IUaIgAhmlgt6kXtEhTkDl/Lt++8hzeinIcLhcjxl3CoFNOV792aXEm5xdx8+psgiacmBDNS707EOHYMeC0tGwBmZkPUl6+GICQkBQyutxK27anYdPvLLFYSUEesye9yZr5tXNcnO4QBo89iyPOOJeQ8HCLq2taKqsyWbDgQgKBUuLjjqF//5ex20OsLktaAI8vWDdwe3tbqOxiDzmltZ/LPP597qNNVMhuA7drW0KFkxIbisuh3zciItJ6mKbJ5W/+xo+rtmhAeBOmQENatYAR4InfnuCjNR8xvud4rh14LS67hs+JWKGmuorpb7zMip9+ACCpY2dOvfYmEtt1sLgykYZlmibPZW3h3+vzATg/OY4nurfHte0qV48nh7XrHmHLlq8BcDgi6NjhStq1uwyHI9SyukX2JG/NKn565zXyVq8EICw6huF/Gke/E07G4VTf4e3KyhazaPHFBIPVtGlzKn16/webzbHvb5RWrSYQJK/UW68V1I55FtVsrfTtcx/xEe66sCJ9l8HbabFhhLp0HIqIiOxsU1EVJz01E1/A4PkJgzhVA8KbHAUa0mpV+iq5ZeYtzM6dXbetX1I/HhnxCOlR6RZWJtL6ZK9cxtTnn6K8cAs2m50jzjyXo84bj8OpgFFaFsM0uWdtLq/k1A5XvrZ9G/7ROQWbzUYgUMHGjS+QnfM6huEDbKSmnEfnzjcSEqJ2a9J0mabJ2l/nMWvSm5Tk5wIQl5LKiHGXkDF0uK5q26a4eA6Ll1yOafpJTb2QHt3/pb+bVi4QNMgv8+6YYbHL4O3NFV729S48KtS5y8Dt7SstardFhChYFBEROVBPfreGZ37IJCUmlO9vHKXfp02MAg1plfIr87nmx2vILMkk1BHKxb0u5r3V71HhqyDKFcU9R93DmI5jrC5TpMUL+P3Mef9tfvvyEzBNYtq05eRrbiS9R2+rSxNpcDWGwfW/Z/HpllIA7s9I5a/t2mAYAfLyP2D9+qfw+4sBiIsbTteMfxAV1dPCikUOTDAQYNkP05j70SQ85WUApHbvxaiLLiW1m47l3FIPq9Z/CqX/BAw6dLiKjC43W12WHEaGYbKloqauLdT22RXbV1vkl3kJGnt/mx3mctQN3N65LVTtn8OJCdfFHyIiIg3N6w9y4pO1A8KvHNWF20/RgPCmRIGGtDrLCpfx9x//TpG3iMSwRJ47/jl6J/YmrzKP22bexuLCxQCc1+08bj3iVkKdau8hcjgUbtrA1889wdasjQD0OW40x028AneYeq9Ly1MZCHLZ8g3MLKnEZbPxdM/2nNM2jqKimWSufZCqqkwAwsM70zXjDhISjtOV29Js1VRX89sXU/jty08J+GoA6DrsKEaMm0hcSprF1TUe0zRZs7mSaSsK+HZlActzywEYmTaXib3fA8ATejUDe11NWmyYlaXKQTJNk+IqH9l1baB2DODOLfGQU+rBFzD2ug+3w05a3B8P3k6IcOv3gYiIiAW+X7mZK976DafdxtQbRpDRJsrqkmQbBRrSqkzbOI1/zP4HNcEausd157kTniM5Irnu9oAR4PnFz/PqslcxMcmIzeCxkY+REZdhYdUiLYthBFnw5afMef9tgoEAYdExjP7bdWQMGWZ1aSKHRaHPz4Sl61la4SHcYee1Ph0ZErKZtZkPUlQ8EwCnM5bOna4jLW08ds1ykhaiongrcz+YxIoZ32OaBnaHg/4nncqR515IeHSM1eUdFkHDZFFWCd+u3My0FQVsKqquu81ug46JEWwqqmZ0+2/5U7cvAHht+XiyvMcxrFMCR3ZO4MjO8aTHKdxvKso8/rqZFXWDt0s8dX+u9gX3+v0Ou42UmND6baF2WmHRJioEu12BhYiISFN0+Ru/8sOqLRydkcA7lw/TRQZNhAINaRVM0+TVZa/yzKJnABiZPpJHRz5KhCtij/f/Of9n7ph1B1s9Wwl1hHLb0Ns4t+u5euISOURlWzYz9fmnyPl9OQBdhgxj9F//TnhMrLWFiRwmmzw1XLhkHRs8PuJdDt7smUjU1hfIy3sP0wxis7lIT7+YTh2vxeVqmSd4RQqzNjLr3dfZsHgBAO6wcIae+ScGjT0TlzvE4uoOXU0gyNy1RXy7soDvVm5ha2VN3W1up50RGYmM6Z3MCT3bkBAZQoXXz2+bSsjd9DgpzikYpo3nl1zGoi39674vLTasLtw4snMC6XFheh16mFT7Aju1gtoRVmxvC1XhDez1+202aBsVWr8t1E4rLVJiQnE67I3004iIiEhDyiqq5sSnfsIXMHhu/EBO65dqdUmCAg1pBXxBH/fNu4/P130OwEU9L+LmITfjsDv2+n1FniL+MecfzMmdA8CYjmO4Z/g9RLm1xEzkQJmmycqZP/Lj6y/i83hwhYRy3CV/pc9xJ+kEjbRYyyqqGb90PYW+AO1CXTyZuIBg3hMEg5UAJCWNJqPLrYSHd7K4UpHGsWnZYma+8zpbNq4DIDIhkaPPv4heI4/Dvo/XZU1NudfPjNWFTFtRwIxVW6ja6Sr9qFAnJ/Row+jeyYzqlvSHQyRN02TVqjvJy/8AcLHafx/frUtnaU7ZbnMV0mLDGNYpflvIkUC7eAUc+8vrD5Jb6qlbXbHrAO6iKt8+95EY6SZtW1ixa1uo1NhQQpzN6/gVERGR/fef79fwn+8zaRsdwg83HUukBoRbToGGtGil3lKun349C7csxGFzcMfQO7igxwX7/f2GafDWird4euHTBMwAaZFpPDryUfol9TuMVYu0LNXlZXz/yn/J/GUuAKndenLKNTcSm5xicWUih8/skgouWbaByqBB91A/txgPEFazAoCoyN507XoncXFHWlylSOMzDYNVc35i1ntvUbG1EICk9h0ZOeFSOg4YbHF1+xYIGjzw5Uom/ZKFP7jj7VGbqBBG927LmN7JDOuUgNu5f1fkG0aA5Suuo7BwGg5HBIMGvoMjpBcLNpXw8/oifl5fxNKcMgK7BBypMaEM22kFR/v48FYbcPiDBvml3t0Hb29babG5vGaf+4gJc9WFFLu2hUqPCyPcrRMXIiIirZXXH2T0UzPJKq7m6mO7cOvJGhBuNQUa0mJtKNvAtT9cS1ZFFpGuSB4f9ThHpx19UPtaVriMW2feSk5lDk6bk78P+juX9L4Eu03Lx0X2Zv2iX5n2wtNUl5Vidzg46rwJHHHmuc3uSlyRA/H5llKuXbkJn2nS17GJ6wJ3EU41bncbunS5iZTks7HZ9H9AWreAz8eiaV8y/5P3qamqAqBDv4GMnHApbTp2tri6PfP6g1w3eRHfrtwMQOekCMb0TmZ0r7b0T4896DkIhlHD4iVXUFIyF5crjsGD3iMiYsf8tmpfgN82ljB/QxHz1xezJKe0XpgCkBwdWhduDOucQMeElhNwBA2TzeXeneZXVNdbbZFf5sHYxzvVcLdj24qKHSHF9pUW6XHhxIRpdpGIiIj8sanLC7jynQXEhrv4+Y4TCHXp/ZyVFGhIi/RL/i/cMOMGKnwVpEWm8dzxzx3yYO8KXwX3z7ufqRunAnBU6lH8+5h/kxiW2BAli7Qofq+Xn975H0u++waAhPT2nHLtTbTt1MXiykQOr9dyCvlHZi4mcIQ5j6t5mlC7gw7t/0qHDn/B4dCgX5GdeSrKmf/J+yya+hVGMAA2G71GHMfRF1xMdGKS1eXVqawJ8Le3f2PO2iLcTjvPXDiQk/skN9j+A4FKFi26mPKKpYSEJDNk8IeEhu65R3O1L8DCTaXM31C7gmNx9u4BR9vokNpwo1PtKo5OiRFNNuAwTZPCypp6IUXOTistcks9u/18u3I77buvsNjp67hwV5P9+UVERKTpCxomIx+dTm6ph6cvHMCZA9KsLqlVU6AhLc4nmZ9w/7z7CZgB+iX145njniEhLKFB9m2aJp+s/YSH5j+EN+glITSBB0c8yFGpRzXI/kVagrItm5ny0D2U5OUAMHjsmRxz4UScbrfFlYkcPqZp8vC6bJ7OLgbgRHMqE/kfqcln0qXzTYSGqsWayN6UbSlg1uS3WD13JgBOl5tBp57B0LPOIyQ8wtLaSqt9THz9V5ZklxLhdvDKxCEc1aXhL2jx+YpZsHAc1dVrCQ/vzOBB7+F27/s1rMcXZFHWthZVG4pZnFWKL2jUu0+bqJB6Lao6N2LAYZomZR5/3ZDtnQdubw8vvH5jr/tw2m2kxobRLr5+aLE9xEiMDDnoFTIiIiIi+2P7LI0jO8fz3l+HW11Oq6ZAQ1oMwzT4z8L/8Pry1wE4peMp3H/0/YQ6Qxv8sdaVruPmn25mbelabNi4rM9lXDPwGlx2LVeX1q0oJ4uP/nUXlSXFRMYncPLV/0eHvgOsLkvksPIHA1y3ZA6flMUA8CdzMpdEb6JbtzuJjtbMJZEDUbB2DT+9+xo5K5cDEBoVzfBzL6T/SafgcDb+66zN5V4u/t981myuJDbcxRuXDmVAu9jD9nhebz4LFpyPtyaPqKjeDBr4Lk5n1IHtwx9kYVYJP68vZv76IhZll+IL1A8MkqJC6g0Z75J08AGHaZqUVPvJK/WQW+oht8SzW1uoyprAXvdhs0FKdCjpuwzc3h5cJEeH4lBgISIiIhbKK/Vw9CM/Ypow/eZj6ZRo7UU3rZkCDWkx7p17L1MypwBwZf8rubr/1Yf1yjNvwMvjvz3O+6vfB6BfUj8eHfkoaZFadiatU8HaNUx56B68lRUkpLfn3H/cT1S8WrJJy5a3dS5XrdzI/GAvbGaQv7mmcHX3USQljVZ7E5GDZJom6xf+wsx336A4NxuA2LYpHDNuIt2OPLrR/m9tKqriov/NJ7vYQ9voEN65fBhd2x5YuHAwqqs38NuC8/H7i4mNHcaA/q/jcIQc9P68/iCLs0vrhowvzNo94EiMDGHYttUbwzvH0yUpsu7vuSYQpKDMS26ph7xSL3mlnrrwIm/bNo8/uM86kqJCaLdtZsWOlRa1X6fEhO33IHURERERq1zy+i/MWF3IlaO6cPspGg5uFQUa0iIs3LyQiVMnYsPGv4/5N6d3Ob3RHvu7Td9xz5x7qPBXEOWK4t6j7mV0x9GN9vgiTUHW8qV8+tgD+L0ekjO6cc7t9xIWpeduabmqqzewcM2T/KN4OKttvXDh59/Jm7io++nY7Qd/4lFEdjCCQZZP/445H7xDdVkpACkZ3Rl58WWk9+h9WB97dUEFF/1vPoUVNXRICOedy4fRLr7xZuCUVyxn4cIJBIOVJCaeSN8+/8VudzbIvr3+IEuyS2tXcGwoYsGmEmp2CzjcpMWGkV/mpbCyhv15J5gUFUJqbBhpsaF1baHSd5ploeGZIiIi0txtHw6eGBnCvDuOx+XQBRlWUKAhzZ5hGoz7ahwri1Zybtdzufeoexu9htzKXG6beRtLCpcAcF6387j1iFsPS7srkaZm7a8/8+XTjxD0+2nfpx9n3nwX7jANPpaWye8vZcOGZ1ma+xUPm3eQY+tApM3P673TGJG05wG+InJofF4Pv33xCb998TH+Gi8AGUccyYjxlxCfmt7gj7cwq4RLX/+VMo+fHslRvHXZUNpEN/5rupKS+SxecimGUUNK8jn07PkINlvDv2muCQRZkl3Gz+uL6gKOXWdahLrs28KKMFJjwmq/jgsjNTaUtNgwkmNCCXEqsBAREZGWzR80GP7Qj2ytrOHFiwZxch/NSrSCAg1p9j5d+yl3z7mbCFcEX579JYlh1rS48Rt+nl/8PP9b9j9MTDJiM3hs5GNkxGVYUo9IY1jx0w9Me/FpTMMg44gjGXvdrRr+LS2SYfjIyX2XDRueZUUgmee4kWJbIm1cNt4f0I2ekWFWlyjS4lWWFDPvw0ks+/FbTNPAZrfT74STGf6ncUTExjXIY8zO3Mpf3/6Nal+QQe1jef2SocSEWzcjrXDrDyxbdhWmGaRdu8vomnHnYW+5VRMIsjSnjOIqX22AERtGXLhLbfREREREgEemruKFGesY1S2JNy8banU5rZICDWnWqv3VjP1kLFs9W7lx8I1c2udSq0tiXt487ph1B0XeIkIdodw+9HbO6XqO3gRKi7Pwm8+Z/sbLAPQedQKj/3YddoeuzpSWxTRNtm79nsy1D1PlyeJzzmaK7QIMHGSEhzCpX2fah6nFlEhjKsrJYuakN1i/4BcAXKFhDD3jXAaPPQtX6MGvpJi6PJ/rJi/GFzQY0TWRly4eTLi7Ydo8HYr8/E9Y+fvNAHTufCOdOl5jcUUiIiIirdemoipGPTYDmw1m3Xoc6XHqUNHYFGhIs/bMwmd4ZdkrtItqx6dnforb0TSuDN/q2cpds+9iTt4cAMZ0HMM9w+8hyn34B0mKHG6maTLvo8nM+2gSAINOOYNj/3wFNrt6R0rLUlGxgszMBykp/ZkSYnnJfjPLzJ4AnNs2jke6pROpFisilslesZSf3nmdzeszAYiMi+eo8y+i97EnYLcf2P/ND37L5vYpSzFMOLVvMk9dMKBJtVDKyn6dzMx/AdC92/2kp0+wuCIRERGR1mv8Kz8zd10R153QlRtP6mZ1Oa2OAg1ptnIrcznjkzPwGT7+c9x/OKH9CVaXVI9hGry54k2eWfgMATNAWmQaj458lH5J/awuTeSgmYbB9LdeYdE3XwBw1PkTOPKcC7UCSVqUmprNrFv/JPn5UwCTZbYhvGS/kRIjhDC7nYe6pXFBcryOe5EmwDQMVs+bxazJb1FeuBmAhPT2jLzoUjoNGLJf/09fnbWef331OwAXDGnHg+f0xWFvev+/161/io0bnwNs9O79FMltT7e6JBEREZFW6fMleVw3eREpMaHMvu34JvnasSVToCHN1k0zbuLbTd8yNHkor45+tcmeWFpauJRbZ95KbmUuTpuT6wZdx8TeE7EfhqGOIoeTEQwy7cWnWTnzRwCOu+RvDDpFJ1Ok5QgGPWRlvcqmrJcJBqsJ4ODriLt5v7ovAL0iQnmpd0e6RjT+cGAR2buA38/iaV8y/+P38VZVAtC+Tz9GTriMtp33PM/MNE2e+m4Nz/y4FoC/juzMHaf0aLKvKU3TZM2a+8jJfRubzUn/fi+TkDDK6rJEREREWh2vP8iRD/1AabWf1y4ZwvE92lpdUquiQEOapQWbF3DJ1Euw2+x8cNoHdI/vbnVJe1Xhq+C+efcxbeM0AI5OPZp/HfMvywaYixyogM/Hl08/wrrf5mOz2zn56v+j14jjrC5LpEGYpkFBwWesW/84NTUFAHgjj+VZrmVxVe2JzYmpCdybkUaYQ2G0SFPmraxk/qcfsOibzwkGAgD0POZYjr7gYmLa7HijaRgm932xgjfnbQLgljHdufrYLk02zNjONA1WrLyRzZu/wG4PZeDAt4iNGWx1WSIiIiKtzv1frOS1ORsY3astL/95iNXltCoKNKTZMUyDC7+8kN+Lf+dP3f7EPcPvsbqk/WKaJh9nfszDvzyMN+glITSBh0Y8xPDU4VaXJrJXPk81nz72L7JXLMXhcnHaDbeTMWSY1WWJNIjS0t9Yk/kvKiqWARAamsbGpHu4v6ANZYEg0U47T3Zvz2ltYq0tVEQOSNmWzcx5/21+nz0DAIfTycBTzmDYWefjCAvnlg+X8OniPGw2uP/MPlx8ZAdrCz4AhuFj6dK/UVQ8E6czmsGD3iMysmlf3CMiIiLS0mRuruCkp2bisNuYd/vxtInWSv7GokBDmp1PMj/hn3P/SaQrki/P/pKEsASrSzog60rXcfNPN7O2dC02bFze93KuHnA1LrvL6tJEdlNdXsbHD93L5vWZuELDOOuWu2nfR3NgpPnzeLLIXPsIhYVTAXA4IklpdzX/843hrfxSAAZHh/NCrw60DwuxsFIRORSb16/lp3deI3vFUgBCIiLJancUH3k7Ync4eeL8/pw5IM3iKg9cMOhh0eI/U1a2ELc7iSGDPyAsrL3VZYmIiIi0Kue+MJcFm0q4ZUx3rjluz21OpeEp0JBmpcpfxdiPx1LkLeLmITczsfdEq0s6KN6Al8d+fYwP1nwAQP+k/jwy8hHSIpvfG2ppuSqKt/LRv+6mODeb0Khozr3jPpK7dLW6LJFD4veXs3HTf8nOfgvT9AF2UlPPx0i+lr+vKWNllReAa9u34bZOKbg03E2k2TNNkw2Lf2PG269RkpsNQLkzir5njuPcP52Gzd48W8n5/WUsXDiOyqrVhIW2Z/Dg9wkJaWN1WSIiIiKtxoe/ZXPLR0tpHx/OjJuPxa73j41if3OD5vkqX1qcV5a+QpG3iPZR7RnfY7zV5Ry0UGcodw+/mydGPUGUK4olhUs47/Pz+G7Td1aXJgJAaUE+7/3zNopzs4mMT+DCex9RmCHNmmEEyMl5h3k/n0BW1quYpo/4uGMYesQXLIm5kdOWFLKyykuCy8nkfp25q0uqwgyRFsJmsxHTtR+fdhzHD4nHUu2MIDpQwaYpL/PuP24ie+Uyq0s8KC5XDAMGvEFYaHs83iwWL74Ev7/M6rJEREREWo2x/VKICnGSVVzNvPVFVpcju1CgIZbLqcjhrZVvAXDzkJtxOZp/i6bRHUfz4Rkf0i+pHxX+Cm6ccSMPzHsAb8BrdWnSim3N2sh7995GeeFmYtumcOF9j5KQ3s7qskQOimmabC2awfxfxrJ6zT34/cWEh3ehf79XSej+Mrdlh3HDqmw8hsGIuEh+PKI7xyVoZahIS5JX6uH8l+axNK+CguT+nP7AMxx1/gRcoWFsXp/JB/fdwSeP3EdRTpbVpR6wkJA2DBz4Jm53GyqrVrNk6RUEg9VWlyUiIiLSKoS7nZw5MBWAyb80v9eSLZ1aTonlbpxxI99t+o5hKcN45aRXsNlazpWzfsPPfxf9l/8t/x8AGbEZPD7qcbrEdrG4MmltCtauYcpD9+CtrCCxXQf+dNe/iIiNs7oskYNSWbmazLUPUVw8CwCXK45OHW8gN/J0Xskt5pvCMgzAYYNbOibz9w5tcbSg3y0iAhu2VnHRq/PJLfWQGhPKW5cPI6NNJABVpSXMm/IeS7//BtMwsNns9Dn+JI46bwKRcfEWV35gKitXs2DhhQQC5STEj6Rfv5ew291WlyUiIiLS4i3PLeO0Z2fjdtj5+c4TiI/Qa7DDTTM0pFn4teBXLpt2GXabnQ9P/5Bucd2sLumwmJs7lztm30Gxt5hQRyi3D72dc7qe06LCG2m6slcs5ZNHH8Dv9ZCc0Y1z7riPsMgoq8sSOWA1vq1sWP8fcvPeBwxsNhcp6ZewIuLPvJpXyeKKHVcvHxsXxc2dkhkSE2FdwSJyWKzIK2Pia7+wtdJH58QI3r5iGGmxYbvdrzgvh1mT3mDtrz8D4AoJZcjpZzPk9HNwh+5+/6aqrGwhCxf9GcPw0LbNafTu/SQ2m8PqskRERERavNOencXy3HLuGtuTK0Z0trqcFk+BhjR5QSPIhV9d8/9kHAABAABJREFUyKriVZzf7XzuHn631SUdVls9W7lz1p3My58HwMkdT+afw/9JlFsnluXwWb/wV7548iECfh/t+/TjzJvvwh0WbnVZIgckGKwhO/t1Nm56gWCwEoDQhDP4JeJK3t4SIK/GD0CI3ca5beP4S3oSPSObz8lKEdl/v24s5rI3fqXCG6BXSjRvXT6UxMiQvX5PzqoVzHznNfIzVwMQHhPLUedNoO/xo7E7mkcwUFQ0kyVL/4pp+klLm0D3bvfpwhgRERGRw+ydnzdx16fLyWgTyXf/N1Kvvw4zBRrS5H2c+TH3zL2HKFcUX57zJfGhzasFwMEwTIM3VrzBswufJWAGSItM47GRj9E3qa/VpUkLtGrOT3zz3ycxgkE6Dx7K6TfcjtOtJZLSfJimyZYtX7F23aN4vbkAVESMYmb4NXxa4qI6aACQ6HJyaVoif05LIMnd/OcwiciezVi9hSvfWYDXb3BExzj+d8kRRIfu3/950zTJnD+HWZPepHRzPgDxqemMmHApXQYPbRZvTjdv/pLlK24ATDp2vIYunW+0uiQRERGRFq3C62fov3/A4w/y0ZXDGdKx5Z+7tJICDWnSKn2VjP1kLMXeYm4ecjMTe0+0uqRGtaRwCbfNvI3cylycNifXDbqOib0nYrfZrS5NWoil30/lu1f/C6ZJj6NHcfLV/4fD6bS6LJH9Vla2mMzMf1FWvggTWOsawY+hf2FWZQTbX7j0jAjlb+2SOLttHCF2PX+KtGRfLMnjxg8W4w+aHNs9iRcmDCbMfeCrK4IBP0u++4Z5U97DW1EOQHrPPoy66DKSM5p+69Oc3EmsXl27qrlr17to3+5SiysSERERadlu+XAJHy7I4dxB6Txxfn+ry2nRFGhIk/bUgqd4bflrdIzuyMdnfIzL0fquqC33lXPf3Pv4dtO3ABydejT/PubfJIQlWFyZNHe/fvExM995DYD+J53CCZddhU0ne6WZ8HhyWbf+MTZv/oIATn62Hcf37ovI9EXW3efEhGj+lp7EMXGRzeKqahE5NJPmZ/GPT5dhmnB6/1SeOK8/bueh/V6rqa7il08/ZOHXnxPw+wDoPnwEx4ybSGzb5IYo+7DZuPF51q1/AoBePR8jJeUciysSERERabkWbCrh3BfmEuqyM//OE4kJa33nMBuLAg1psrLLsznzszPxG36eO/45RrUbZXVJljFNk48yP+KRXx6hJlhDYlgiDx7zIMNTh1tdmjRDpmky94N3+Pnj9wE44sw/MWLcRJ3wlWYhEKhk06YXycp+jTLDzfeM4UfHWRQbtbMwwuw2zkuO5y/pSXSNCLW4WhFpLC/MWMcjU1cBMGFYe+4/sw8Oe8P9XivfWsjcD95hxcwfwTSxO5wMGDOWI8+5gLCopvlexTRN1q59iKzs/2GzOejb53mSkk60uiwRERGRFsk0Tcb8ZyZrNlfywJm9uXh4R6tLarEUaEiT9X/T/4/vs75neMpwXjrpJZ1sBTJLMrnlp1tYV7YOGzau6HsFVw24Cpddqa/sH9MwmP7mKyya+gUAx4ybyLCzzrO4KpF9M80geXkfsm79k2z0hzKV05htOw4ftc9/yW4Xl6UnclFqAvEutU0TaS1M0+SRqat58ad1AFx9bBduGdP9sL1u3LJxPTPffZ1NSxcBEBIewbCzz2fgyac3yflTpmny+++3kV8wBbvdzYD+rxMXd6TVZYmIiIi0SK/N3sD9X66kV0o0X113jM5lHiYKNKRJ+rXgVy6bdhl2m50pp08hIy7D6pKaDE/Aw6O/PspHaz4CoH9Sfx4d+SipkakWVyZNnREM8u1Lz7Dipx8AOOGyqxgwZqzFVYnsW3HxHNas+TfzqkP5htNYahtUd1u/yDD+1i6J09vE4lbLNJFWJWiY3PXpcib/kgXAHaf04G+jujTKY29cspCZ77xGYdZGAKISkzjmwj/T8+hRTa59o2EEWLb8GrZu/R6HI5JBA98hOrqv1WWJiIiItDglVT6GPfgDvqDB59ceTb/0WKtLapEUaEiTEzSCXPDlBawuWc0F3S/griPvsrqkJmnaxmncO/deKv2VRLmjuO+o+zipw0lWlyVNVMDv5+tnHiPzl7nY7HZOvvr/6DXiOKvLEtmrqqq1rMh8jM+LTaZyGjm29gDYgJMTY/hruySOjInQVS8irZAvYHDjB4v5cmk+Nhs8eHZfxg1t36g1GEaQ32fNYPb7b1NZtBWANp26MOqiy2jfp2kNggwGa1i85FJKS+fjcsUzeND7RER0trosERERkRbnusmL+HxJHuOGtuehc3QRyeGgQEOanI/WfMR98+4jyh3FV2d/RVxonNUlNVk5FTncNvM2lm5dCsAF3S/g5iE3E+pU33jZwe/18tkT/2bT0kU4nE5Ou+F2Mo5Quwlpuny+Yhase4m3Cyr53hxNuS0GgAiHjXEpCVyRnkTHsBCLqxQRq3h8Qa56dwEzVhfictj4zwUDGdsvxbJ6/L4aFn71Gb989iE+jweATgMGM3LCpSS272hZXbsKBCpYuOgiKiqWExKSwpDBHxAaqhW+IiIiIg1p7rqtjH9lPhFuB7/840QiQtQSuaEp0JAmpcJXwWmfnEaxt5hbj7iVi3tdbHVJTZ7f8PPcoud4bflrAHSN68rjIx+nc6yuuhPwVlXyySP3k7d6Ja6QUM685S469B1gdVkie2QYNUxfN4WXc4uYYxxJwFY7HyPVbeMv7VIYnxJPjOZjiLRqZR4/l7/xK79tKiHUZeeli4cwqluS1WUBUF1exs9T3mPJd19jBIPYbHZ6H3siR50/nqj4RKvLA8DnK2LBwguprl5PeHgXBg96D7c73uqyRERERFoM0zQ57vEZbCyq5tFz+3H+Ee2sLqnFUaAhTcqTvz3J6ytep2N0Rz4+82MNuz4Ac3PncsfsOyj2FhPqCOWOYXdwdsbZasXSilWXlfLRg/+kcON6QiIiOOf2e0nt1tPqskR2EzQMPt7wEy/nFLLM6Fa3vX94kKs7dWZsYixOu57LRFq7wooaJr72Cyvzy4kKdfL6JUcwpGPTOxlfkp/L7MlvsWb+HACc7hCGnHYWR5xxLu6wcIurA683j98WnEdNTQFRUX0ZNPAdnM5Iq8sSERERaTFemLGOR6auYmD7WD65+miry2lxFGhIk5FVnsWZn51JwAjw3xP+y8j0kVaX1Oxs9Wzlzll3Mi9/HgCndDyFu4ffTZQ7yuLKpLGVby3ko3/fTUleDuExsZx75/206ahVO9K0VAWDvLVhOa/mbiXXSADATpAToqq5PmMAQ2L13CUitXJKqrn4f7+wYWsViZEhvHXZUHqlNu33CHlrfuent18jb83vAIRFx3DUn8bT94QxOJzWrjarqlrHgoUX4vcXExd7JP37v4bDoVZ+IiIiIg2hsKKG4Q/9QMAwmXbDSLon671tQ1KgIU3G9T9ez4/ZP3J06tG8cOILWllwkAzT4PXlr/PsomcJmkHSI9N5bNRj9EnsY3Vp0khK8nP58F93UbG1kKjEJM6761/EpaRZXZZInfwaHy9v2sQ7ecVUmLUn0MKo5qyoQq7vMZKOkZqdJCI7rN1SycX/m09+mZe02DDeuWIYnRIjrC5rv5imydpf5zFr0huU5OcBEJeSxojxE8k4Yrilr3fLy5eycNFFBINVJCWeRJ8+z2G3q62fiIiISEO48u0FTF1RwCVHdeTeM3pbXU6LokBDmoT5+fO54tsrcNgcTDljCl1iu1hdUrO3eMtibpt5G3lVeThtTq4fdD1/7v1n7Da71aXJYVSYtZGP/nUX1WWlxKWk8ae7HiA6sY3VZYkAsLi8mpey8vm8sIwgtc9FbcwCzovK4qpep5IYkW5xhSLS1CzLKWPi679QXOUjo00kb18+lJSYMKvLOmDBQIBlP0xj7keT8JSXAZDWoxcjJ1xGarceltVVXDKPJUsuwzB8pKT8iZ49HtZFRSIiIiINYPrqLVz6+q/EhLmYf+cJhLocVpfUYijQEMsFjSDnfXkemSWZjOsxjjuH3Wl1SS1Gua+ce+fey3ebvgNgYJuB3HvUvXSOUeuhlig/czUfP3QP3qpKkjp04tw77yciVle6i7WCpsnUrWW8lL2FX8qq67b3MFdwbvhKJvQ4j/jYAdYVKCJN1s/ri7jizd+orAnQNy2GNy8bSnyE2+qyDklNdTW/fj6FBV99SsBXA0C3YUdzzPiJxCWnWlJTYeG3LF12DWDQvt3lZGTcoVBDRERE5BAFDZORj04nt9TDfy4YwFkD1TmjoSjQEMt9sPoDHvj5AaLd0Xx19lfEhsZaXVKLYpomH2V+xGO/PoYn4MFld/G3fn/jsj6X4XJo6HpLkbV8CZ8++gD+Gi8p3Xpwzm33EhqpAZ9incpAkMn5xbySU0iW1weAwwxwJHM4y/0Lo7tNoE3SKTppJiJ79MPvm7n63YXUBAyGdYrn1YlDiAptOa9bKoq3MveDd1k+43swTewOJ/1Hn8KR51xIeHRMo9eTl/8Rv/9+GwBdOt9Mx45XNXoNIiIiIi3Nf75fw3++z2RYp3je/9twq8tpMRRoiKXKfeWc9vFplNSUcPvQ25nQc4LVJbVY+ZX53P/z/czOnQ1ARmwG9x11H/2S+llcmRyqtb/N58v/PEzQ76d93wGcefM/cIc2v3Yc0jJkeWr4X+5WJuUVURE0AIg0KziBbxljn8ngTuNJT79Ew2dF5A99tjiXmz5YQsAwObFnG54bP6jFLtEvzNrIrHdfZ8PiBQC4w8IZetZ5DDr1DFzuxn2ezMr6H5lrHwSge/cHSE8b36iPLyIiItLS5JV6OOaRHzFM+O7/RtK1rYaDNwQFGmKpx399nDdXvkmnmE5MOWMKLnvLufKuKTJNk282fMPDvzxMSU0JNmxM6DmBvw/8O+GucKvLk4Pw++wZfPPfJzENg4wjjmTsdbfidDfvdhzS/JimyW/l1byUvYWvC8swtm1PIZdTzC84hll0TjuXzp2uw+1OtLRWEWna3p63kX9+vgLThLMHpvHon/rhcrT8+V+bli1m5juvs2XjOgAiExI55oKL6TniWOz2xgtz1q17nI2bXgBs9On9NG3bjm20xxYRERFpif761m98u3IzFx/ZgQfO6mN1OS2CAg2xzKbyTZz12VkEjADPn/A8I9JHWF1Sq1HiLeGxXx/ji/VfAJAakcrdw+/mmLRjLK5MDsSS777m+/+9AKZJrxHHMeaqG7A7WuYVrNI0+Q2TrwpLeSm7kEUVO+Zj9GUFJ5uf0o9FJMWPICPjDiIju1lYqYg0daZp8t/pa3n82zUATBzegXtO743d3nra0pmGwe9zfmL2e29RsbUQgKQOnRh50WV07DewcWowTVavvpvcvMnYbC7693uZhISRjfLYIiIiIi3RnLVbmfDqfCLcDn6+84QW1UbVKgo0xDJ///HvzMiewTFpx/DCiS9YXU6rNCd3DvfPu5+8qjwAxnYey21H3EZcqAZJN3W/fPYRsya9AcCAMWM5/pK/YbO3/CtYpWko8wd4J7+Y13IKya3xA+C2GRzNXEYbU2hPFhERXemacQcJCaMsrlZEmrpA0OD+L1fy1rxNAFx3Qlf+78SurXbGTsDnY9HUL5j/yQfUVFfx/+zdd1yV5f/H8deZHPYGGTJEQBBRwL135siZaVqa7V32a2tl2d7r21ZLzTTTTCtz7y0qSxkKsmTvcTjjvn9/YJSV5QAP43o+HjyA+9znvt+Hed/X5xoA/pFRDJxxGx4BHZr8/LJsJiHxEQoKfkGptCY6aimOjtemoCIIgiAIgtDayLLM8Hd2crqwmgU3dGZW3wBLR2rxREFDsIj9ufu5a/NdqBQq1oxfQwfHpr85E/5ZjbGGj45/xPKTy5FkCWcrZ57o+QRjAse02YaE5kyWZfas+JpD61YD0GviVPrddIv4XgnXRHpNHV9kF/JdXgk159fHcFGZGM5vDDatxpEKrK39CAx8mHae41AoxIghQRD+XXmNkfu/jWVPWhEA88aEcccAcV0IUFtZwYE1Kzn+289IZhMoFHQeOJR+N92CvWvTTt8nSQZOxN1FSclu1GpHYqJXYGcX2qTnFARBEARBaK2+2Z/Bc+sS6eBuy9a5g0QbzlUSBQ3hmjNJJm5cfyNpZWnMCJvBUz2fsnQkAYgvjOf5/c+TWpoKQD+ffjzX+zm87bwtnEz4nSxJbF38GSc2/QzAgJtn03P8FAunElo7WZbZX1bN59kF/FZUwe8XA8FWdYw0r6G7cR1ajFhZtSMw4EG8vCajFOshCYJwCc4UVnHH10c4U1SNjVbFuzd147rO7Swdq9kpy89jz4qvSd6/GwC1Rkv0mPH0HD8FKxvbJjuv2VxD7LFbqag4hlbrQfeYVVhbt2+y8wmCIAiCILRWlXojvV/ZSrXBzLLbe9E/WKwteTVEQUO45laeWsnCgwtxtHLk54k/42jlaOlIwnlGyciShCV8euJTDJIBa7U1D0U9xPRO01FdwwUphb+TzGY2fvIeJ3dvB4WC4bffS9cRoy0dS2jFZFlmbUEZn2QWEF9V27B9gJ2eYYaldKzbiALQaFwJDLgPb+/pqFRWlgssCEKLsie1iPuWH6VCb8LbUceXs3oQ7i2u+f/NubRkdi1bTPbJBACs7R3oPXk6XUeMQqVumkKy0VjG0djpVFenYG3tR0z0Kqys3JvkXIIgCIIgCK3Zc+sS+Gb/WUaGe/L5rd0tHadFEwUN4Zoqrytn7NqxlNWV8XTPp7k57GZLRxL+QXp5Oi/se4HYglgAAh0DubPLnVwfeD1qpdrC6doek8HAhvff4PSRAyiUSq6/fy5h/QdbOpbQiuXXGXnkVCbbSyoB0CkV3OCkZ1DtpzjV7AJArXbE3/9u2vvegkplY8m4giC0MEv3Z/DC+iTMkky0nxOf3dIdd3tREL0Usixz+ughdi9fTEluNgBO7bwYMH0Wwb36Ncn0BXV1+Rw5ehN6fRZ2dmFER32LRiPuzwRBEARBEC5HWkElw9/ZhVIBu54Ygq+zuI++UqKgIVxTbxx+g6VJSwlyDGL1DatF43gzJskSq1NW837s+1QYKgBob9+eO7vcydigsWjElDLXhEFfy7o3F5KZcAKVRsO4R58iKKaXpWMJrdjPhWU8npxFidGMTqngTo86+lR9iFy5DwCVyg6/9nPw85uDWm1v4bSCILQkRrPEi+uTWHqgfvHvSVE+vDKpCzqNGAV6uSSzmfhtm9j3/XJqyssA8ArpxKAZc/DpFN7o56upyeBo7E0YDEU4OsYQ1e1rVCrrRj+PIAiCIAhCazbjywPsTSvm3sFBPDmqk6XjtFiioCFcM+nl6UxaNwmTbOLT4Z/Sz6efpSMJl6DKUMV3yd/xTeI3lNaVAuBt683tXW5nQscJaFVaCydsvfRVVax57XnOpSaj0Vkz4fH5+EVEWjqW0EpVmszMS81hZV4JAKE6I4+ov8Gh8hcAlEod7X1vxc/vTrRaF0tGFQShBSqvMXLft0fZm1aMQgFPXNeJewZ1EAsiXiVDbQ1HNqzl8Po1mOrqAOjYow8Dbp6Ni7dPo56rsuoUsbHTMJkqcXUdTGSXT8WaSYIgCIIgCJdhY0Ie9yw7irONhv1PDxMde66QKGgI18wDWx9gZ/ZOBvoO5ONhH1s6jnCZaow1fJ/yPYsTFlOsLwbAw8aDORFzmBw8GZ1aZ+GErUt1WSk/vDyfwswMdLZ2THp6AV7BoZaOJbRSB8uqeOBkJll6Awpkxis2MlFaghoTCoUWH59pBPjfi5WVh6WjCoLQAp0+v/h3+vnFv9+7qRsjxeLfjaqqtIR93y8nYdtmZFlCoVQSOfx6+k6Zjo2jU6Odp6zsCMeOz0KS9Hh63kDn8LdRKJSNdnxBEARBEITWzGSWGPjGdnLL9bx9Y1cmx/haOlKLJAoawjWxL2cfd2+5G7VCzZrxawh0DLR0JOEK6U16fkj9gUUJiyioKQDAVefKbRG3cWPIjdhoxByAV6uisIDVL8+j9Fwutk7OTH72Jdz9AiwdS2iFDJLEm2dy+DirCAkFbnIB9/IBnTiJVuuOt9cUfHxuRqfztnRUQRBaqN2phdy/PJYKvQkfJ2u+nNWdMC9xbd9UirMz2bV8MWdiDwOg0VnT84bJxIydgMaqcTqfFBXvIC7ubmTZhK/PLYSEPC9G2giCIAiCIFyij7en8eZvyXT1dWTdA/0tHadFEgUNocmZJBNTfprC6fLTzAybyZM9n7R0JKERGMwGfkz7ka/ivyK3OhcAZytnbu18K9NCp2GntbNwwpapJDeH1QvnUVlciIO7B1PmLcS5nWhMFhrfiaJUHjyVS4rREYAB8nZuZRHtXXvi430Trq5DxFQigiBclW/2Z7Dg/OLfMf7OfHZLDG52YvHvayErMY6dyxaRfyYNADtnF/pOnUnnwcNQKq9+aoO8vJ9ITJoLyAQGPESHDg9f9TEFQRAEQRDaguKqOvq8ug2DWeLH+/vRrb2TpSO1OKKgITS5FadW8MrBV3CycmLDxA04WjlaOpLQiIySkQ2nN/BF/BdkVWYB4KB1YGbYTG4Ou1l8vy9DQcYZVr88n9qKcly8fZkybyH2rm6WjiW0ImaznryCjXyekcqi2oEYFVbYyZXco/mOST7BeHndiLV14865LghC22M0SyxYn8iyA5kATIr24dVJXbBSizmCryVZkji1fzd7VnxDRWE+AG7t/Rk44zYCusVc9aiK7OxlJKc8D0BI8Hzat599tZEFQRAEQRDahLkrj7PmWA6Tonx456Zulo7T4oiChtCkyuvKGbN2DOV15Tzb61mmdZpm6UhCEzFJJn5N/5Uv4r8gvTwdADuNHdM7TeeW8Ftw1jlbOGHzlpN8krWvvUBdTTUeAUFMfvZFbBxEMUhoHFVVKeTmriTx3Hb+Z76VeEU3AGI0mbwZZE8nzwEolWrLhhQEoVUoqzFw3/JY9p2uX/z7qVGduGugWPzbkkxGI8d/28DBNSvRV1cB4BcRycAZc/Ds0PGqjp2e/iFn0t8DIDz8bbzaTbjKtIIgCIIgCK3f8awyJny8F61Kyf6nh+IqRjFfFlHQEJrU64deZ9nJZXR06sj3475HLRrMWj2zZGZz5mY+j/uc1NJUAKzV1kwLncatnW/FzVqMOPirs3HH+fGtlzDV1eEdGs7EJ59DZyum7BKuniQZSTv9BllZizhIbxZxD1UKe7QKM8/6O3FXgGhkFAShcciyzIa4c7y0IYmCyjpstSremxbFiHBPS0cTztNXVXHwx1Uc+/UnzCYTAGEDhtD/pltwcPe4omPKskxq6kKyspegUKiI7PIpbm5DGzO2IAiCIAhCqzT+oz2cyC7n8etCuX/I1XUyaWtEQUNoMmfKzzB53WRMsonPRnxGX+++lo4kXEOSLLE9czufxX3GyZKTAOhUOqaETGF259l42ooGDoDUw/v5+b3XMZtM+EdGMf6xZ9HoGmfRTqFtq6srID7hQfLL41nCnexWDAGgi52Oj8MDCLEVP2eCIDSOM4VVPLcukT1pRQAEutnyycxoOrUT1/DNUXlBPnu++4ZTe3cCoNJoiBo1jl4TpqKzu/wOFbIskXTycfLyfkSptKJb1yU4O/ds7NiCIAiCIAityg9Hs3ns+xN4O+rY9cQQ1CqlpSO1GKKgITSZ+7bcx+6c3Qz2HcyHwz60dBzBQmRZZnfObj478RlxRXEAaJQaJgVPYk7EHLzt2u6C10m7trHxk/eQJYngXn0Z/eDjqDViEWbh6pWWHiIh8UFqDSW8q3iWY3RDCTzo78ljAZ5oleJCSRCEq6c3mvnf9jQ+3XkGg1lCq1Zy/+CO3D2oAzqNWC+jucs/k8bOZYvISqy/PtPZ2dN70k10HTnmsq9HJMlIfML9FBVtRaWyIyb6W+ztOzdFbEEQBEEQhFZBbzTT97VtlFQb+HRmDKMi2lk6UoshChpCk9iTs4d7t9yLWqlm7Q1rCXAMsHQkwcJkWWb/uf18duIzYgtiAVAr1NzQ8QbuiLiD9g7tLZzw2jr22wa2LfoUgM6DhjPy7gdRqkTjj3B1ZFkmM+tLTp9+E1k2s1zzGL+Y+qJTKlgW2YH+zvaWjigIQiuxI7mA539K5GxxDQADQ9x58YbOBLjZWjiZcDlkWSb92BF2LV9McXb9Iu6OHp70n3YroX0GoLiMArjZrOf4iTmUlR1Eo3Gle8xKbGwCmyq6IAiCIAhCi/f6xlN8suM0/Tq6svyO3paO02KIgobQ6IySkSk/TeFM+RluDb+Vx3s8bulIQjMiyzJH8o/w2YnPOJh3EACVQsWYDmO4o8sdBDq27htfWZY59OP37PnuGwCirh/HkFvvvKwGA0H4JyZTJUknn6KwcCMA++yf4uOqHgB82TmAsR5OFkwnCEJrca68lhfXJ/FrQh4A7Rx0PDcunOsj2ok1eVowyWwmYccW9n2/nOrSEgDaBQUzcOYc2od3ueTjmEyVxMbOoLIqEZ3Oh5joleh0Xk0VWxAEQRAEoUXLLq1h4BvbkWTYMncgHT1EJ8RLIQoaQqNbfnI5rx16DWcrZzZM2oCDVnz/hH92vOA4n8Z9yt6cvQAoUDAqYBR3Rd5FR+fWtyCSLMvs/nYJh3/6AYDek6fR98YZogFIuGpVVSnEJ9xPTc0ZFAoNeV6v89g5f2RgXgcvHvAXa9YIgnB1TGaJJfsyeHdzCtUGMyqlgtv6BvDIiBDsrNSWjic0EqNez5Gf13L4pzUY9bUAdIjpycCbb8PV99JG0xoMRRw5ehO1tRnY2gYTE70Cjca5KWMLgiAIgiC0WHd9c4RNSfnc2sefF8dHWDpOiyAKGkKjKq8rZ/Sa0VQYKpjfez5TQ6daOpLQAiQUJfDZic/Ykb0DqJ+K6sHoB5ndeTZKResYuSBJZrZ+9QlxW+p7zw+aOYfu4yZZOJXQGuTl/cTJU88gSbVYWbVD2eEjZqSoqJUkZnq58maoryiaCYJwVY5klDDvxwRO5VUCEO3nxMIJXQj3FtforVV1WSn7V68gbutGZElCoVTSZehI+t44A1un/y5O1NbmcDR2KnV1eTg4dCWq2zeo1Ze/4LggCIIgCEJrtzetiBlfHsRWq+LAM8Ow14m1Vf+LKGgIjerVg6/y7alvCXYOZtXYVaiVoseecOlOlZzi42MfNxQ2env15pX+r+Bu427ZYFfJbDKx8X/vcmrvTlAoGHHnA0QOu87SsYQWTpIMpKa9SnZ2/fRlLs79cOn4JuPjisgzGBnkbM+yyA5olKKYIQjClSmtNvDar6dYeSQLACcbDU9f34kbY9qjFH9b2oTinCx2f/s1p48cAEBjpaP7uEl0HzcRrc76X59bVZ3K0aPTMJnKcHbuS7euX6JUWl2L2IIgCIIgCC2GLMsMf2cnpwureXF8Z27tE2DpSM2eKGgIjeZM2Rkm/TQJs2zmi5Ff0NtLLGYjXD5ZllmbtpbXDr1GrakWZytnFvZfyEDfgZaOdkVMBgPr33uNM0cPoVSpuP6Bx+jUt2W+FqH50NflkZDwIOXlsQAE+N+Lh99DTDh+hsQqPSE2OjbEBOOgFgvNC4Jw+SRJ5vujWbz26ylKa4wATO3uy1PXh+Fiq7VwOsESsk8msGvZYs6lJQNg6+RM3xtnEDFkBErVxf/XlFec4NixmZjNNbi7j6JLxAcoFOJ/kyAIgiAIwp99vS+D539KJMjdli1zB4lZFv6DKGgIjeaeLfewN2cvQ9oP4YOhH1g6jtDCnSk7wxO7niC5tP7G+ZbwW3gk+hG0qpbTkGKoreHHNxeSlRiHWqNl3Nyn6RDdw9KxhBaupHQ/CQkPYzQWo1bbEx72Fs6uw5gVn87WkgrcNGp+iQnGz1r0ghUE4fKdPFfBvB8TOHq2FIBO7exZOCGC7gEuFk4mWJosy6Qc2MPuFV9Tnl+/KLyLT3sGzphNh+ieF73xLinZy/ETdyDLBry9ptKp0yviJl0QBEEQBOFPKvVGer+ylWqDmeV39KJfRzdLR2rWREFDaBS7sndx/9b7USvV/Dj+R/wd/C0dSWgF6sx1vHv0XZafXA5AmEsYrw98nUDHQAsn+2+1VZWsefV58tJS0FpbM+GJ52gf3sXSsYQWTJZlMjM/J+30W4CEnV0YXSI+xsbGn2dSslmUU4ROqWBNVEeiHWwtHVcQhBamqs7Ee5tTWLwvA7MkY6NV8ejwEGb3C0Cjah3rWQmNw2wycmLTL+z/4Tv0VfXrqviGRzBo5u20Cwr+x+cUFPxGfMIDgIS/39107PjENUwsCIIgCILQ/D23LoFv9p9lZLgnn9/a3dJxmjVR0BCumlEyMmndJDIqMpjdeTaPdX/M0pGEVmZH1g7m751PWV0Z1mprnu75NBM6Tmi2vfuqSkv44eX5FGWdRWdnz+RnXrzoDb4gXIrKyiRSUhdSVnYQAK92kwgNfRGVypovswuZl5oDwJedAxjr4WTBpIIgtDSyLPNrQh4vrk8ir0IPwPUR7XhuXDhejv++RoLQtumrqzi0bjWxv6zDbKyfmqxTv0H0n3YLjh7t/rZ/bu4qTp56GoCOQU/i73/XNc0rCIIgCILQnKXmVzLi3V0oFbD7yaH4OIlr8YsRBQ3hqi1LWsbrh1/HRefChokbsNfaWzqS0ArlV+fzzJ5nOJR3CIDrA69nfu/5ze7nrbwgn9UL51GWfw5bZxemPPsSbu3FiCXhytTVFXD6zDucO7cakFEqtQQHz8fHezoKhYJNReXMik9HBuYHeXO/n4elIwuC0IKcLa7muXWJ7EwpBMDPxYYF4zszJFT8LREuXUVRAXtXLiNp93aQZVRqNd2uG0uvSTdhbXfhddrZs5+Tdvp1AMI6vYq391RLRBYEQRAEQWiWbv7iAPtOF3Pf4CCeGNXJ0nGaLVHQEK5Kmb6M0WtHU2mo5Lk+z3FjyI2WjiS0YmbJzOLExXx07CPMshkfOx/eGPgGke6Rlo4GQHFOFqtfnk9VcRGOHp5MmfcyTp5/76EoCP/FbK4lM/NLzmZ+jtlcA4Cnx1iCgp7A2toHgLjKGsbHplErScz0cuXNUN9mO2pJEITmRW8089nOM3y8Iw2DSUKrUnLPoA7cN6QjOo1YsFm4Mvnpp9m1fDGZ8ccBsLK1pdfEm4i6bixq7R9roKWlvcHZzM8AJV0iPsLD4zrLBBYEQRAEQWhmNibkcc+yo7jYatn31FBxbX4RoqAhXJWXD7zMd8nfEeIcwqqxq1ApxS+a0PROFJ7gyV1PklOVg1qh5v6o+5kTMQelwnJzfOenn+aHV56jtqIcV18/Jj/7IvYuYhEn4fLIskRe/k+cPv0mdXX1C646OEQREvwMjo7RDfvl6g2MPppKnsHIIGd7lkV2QKMUxQxBEP7b7tRCnluXSHpRNQD9Orry0vgIOrjbWTiZ0BrIsszZE7HsXL6YoswMABzcPeh/0y106jcIhVKJLMucOvUMuedWoVBo6db1S1xc+lk2uCAIgiAIQjNgMksMfGM7ueV63r6xK5NjfC0dqVkSBQ3hiqWVpjFl/RTMspmvRn5FT6+elo4ktCGVhkpe3P8iGzM2AtDLqxev9H8FD5trP01G9qlE1r62AENtDZ4dOjLp6QXYODhe8xxCy1ZWdoTU1JepqIwDQGflTVDHJ/D0GHvByIsqk5nxx1JJrNITaqtjfXQwDmpRTBYE4d/lV+h5aUMSG+LOAeBub8X8seGMi/QSo7uERidJZpJ2bmPvqmVUlRQD4BEYxKCZc/CL6Iosm4lPeIjCwo2oVDZERS3D0aGrhVMLgiAIgiBY3sfb03jzt2S6tndi3f2i08c/EQUN4YrIssw9W+5hX+4+hvkN470h71k6ktAGybLMj2k/8uqhV6k11eJs5cxbg966psW1jONHWff2K5gMdfiGRTDhieewsrG5ZucXWr7a2kzSTr9JQcEvAKhUdgT430v79rNRqXQX7GuSZGbFp7O1pAJ3rZqfo4Pxs7ayRGxBEFoIk1nim/1neWdzClV1JpQKuLVPAHNHhuCg01g6ntDKGev0xP7yE4fWfY+hthaAwKjuDJxxGy4+7Thx4k5KSveiVjsRE/MddrbBFk4sCIIgCIJgWUVVdfR9dRsGs8SP9/ejW3snS0dqdkRBQ7giu7J3cf/W+9EoNawbv472Du0tHUlow9LL03li1xOcKjmFWqHm2d7PMiVkSpOfN+XgXn5+/00ks4nAbjGMm/s0Givdfz9REACTqZL0jI/JyvoaWTYASry9p9Khw6NYaf8+XZksyzyTmsPinCKslQp+iOpItIPttQ8uCEKLEZtZyry1CSSdqwCga3snXp4QQYSPGEUoXFs1FeUc+OE7Tmz+BclsRqFQ0nnwcHpPnkjK2YepqDiBlVU7YqJXNawVJQiCIAiC0FbNXXmcNcdymBTtwztTu1k6TrMjChrCZTOajUz6aRIZFRncFnEbc2PmWjqSIKA36Xlu73P8mvErADPDZvJY98dQK9VNcr7EnVv57ZP3kWWJkD4DGP3AXFRq0dNV+G+SZCI3dyVn0t/DaCwBwMW5P8HBz2BnF3rR532RVcj8tBwUwBedAxjr4XRtAguC0OKU1Rh4fWMy3x3ORJbBQafmyes7Mb2HH0qx3o5gQaXncti94mtSD+4DQG1lRcy461D5rqam9jTW1gHExKz8x8K+IAiCIAhCW3E8q4wJH+9Fq1Ky/+mhuNqJmRn+TBQ0hMu2NGkpbxx+AxedCz9P/Bk7rVhEUmgeZFnm87jP+ej4RwD09+nPGwPfwF5r36jnif31J7Yv+RyAiCEjGXHX/SiVYg0D4b9VV6eRkPgoVVVJANjYBBHc8WlcXQf/6xz2m4rKmRWfjgzMD/Lmfr9rv1aMIAjNnyzLrD6azau/nqKk2gDA5Ghfnh7dCTdxEyQ0I7kpJ9m5dBG5KScBcGhnTccbMpAUJdjZhRMT/S1qdeNevwmCIAiCILQkN3y0h7SCKv43I5rBoaIN4M9EQUO4LKX6UsasHUOloZIX+rzA5JDJlo4kCH+zKWMTz+55Fr1ZTwfHDnw09KNGmRZNlmUOrPmOfauWAxAzZgKDbrldLKYq/CdZlsnNXUlK6ktIkh612okOHR7Bx3saSuW/j+yJq6xhfGwatZLELd6uvBHiK37mBEH4m5T8SuatTeBQRv3Ir2APOxZOiKBXB1cLJxOEfybLMmmH9rN7xRJKz+WidTAQOikLlZUBR8ceRHVb8re1pARBEARBENqKtIJKPBx0Yt27fyAKGsJlWXhgISuTVxLqHMrKsStRiV7pQjOVWJzIQ1sfoqC2ACcrJ94d/C7d23W/4uPJsszOZYs4umEtAH1vnEHvydNEw7Lwn4zGck6eeobCwo0AuDj3Izz8Lays/ruHRa7ewOijqeQZjAxytmdZZAc0YroYQRD+pLrOxAdbU/lqTzomScZao+Lh4cHc3j8QjUpp6XiC8J/MJhNxWzeyf/UK0OTTcdxZVFYSdrqe9Oj9zX8W/gVBEARBEIS2RRQ0hEuWWprKlPVTkGSJRdctoke7HpaOJAj/qqCmgIe2PURicSJqpZr5veczKXjSZR9Hksxs+eJj4rdtAmDIrDuJHj2+seMKrVBp2WESEx+lru4cCoWaoA6P4ed3BwrFfzcyVpnMjD+WSmKVnlBbHeujg3FQiyKyIAj1ZFnmt8R8XlyfSG65HoCR4Z48f0NnfJysLZxOEC5fXU0Nh3/6gZNHlhEw8jRKtYyppCM9+y3C2UssFC4IgiAIgiDUEwUN4ZLIssxdm+/iwLkDDPcbzrtD3rV0JEG4JLWmWubvnc9vGb8BMCt8Fo/GPHrJo4vMJiO/fvQOyft3o1AoGXn3g0QMGdGUkYVWQJJMZGR8RHrGx4CEtbU/EZ3fw8Eh8pKeb5JkZsWns7WkAnetmp+jg/GzFvPfC4JQL6ukhud/SmTbqQIAfJ2tWXBDZ4aFeVo4mSBcvcriIvb/8hJKrw0olFCY4Iq7wxz6TJqOjYOjpeMJgiAIgiAIFiYKGsIl2ZG1gwe3PYhGqWHdhHW0t7/69QgE4VqRZZlPTnzCJyc+AWCg70BeH/D6fy5obzTUsf6dV0k/dgSlSs2Yh/6PkN79r0VkoQWrrc0mMelRystjAfBqN4mQkOdRq//95+3PnknJZlFOEdZKBT9EdSTawbap4gqC0ILUmcx8uTudD7elojdKaFQK7hrYgQeGBGOtFSO4hNYlJfELsvJfA+DcYTdKT/rTa+JUoq4fh0YrivyCIAiCIAhtlShoCP/JaDYy8aeJnK04y+0Rt/NIzCOWjiQIV2Rj+kbm7Z1HnbmOjk4d+XDoh/ja+/7jvnU1Nfz4xotkn0xArbXihseeIbBbzDVOLLQ0+fkbOJU8D5OpEpXKjk6hL9Gu3Q2XdYwvswuZl5qDAviicwBjPZyaJKsgCC3LvrQi5q9L4HRhNQB9Orjy0oQIOnpcerFUEFqarKwlpKS+VP/xbk+Kk1ywd3Wn300zCR8wBIVSrBMjCIIgCILQ1oiChvCfvk78mreOvIWrzpWfJ/2MrUb0FBZaroSiBB7a9hCFtYU4Wznz3pD3iPaMvmCfmopy1rz6AvlnUtFa2zDxyefwDYuwUGKhJTCZqklJfZFz51YD4OAQRUTnd7G2vrzRbJuKypkVn44MzA/y5n6//144XBCE1q2gUs8rP5/kx+O5ALjZWTFvTBjju3mjUCgsnE4Qmt6ZM++RnvEhoCD/YCjnjtf/3Lv7BzJw5hwCIqMsG1AQBEEQBEG4pkRBQ/hXJfoSxq4ZS6Wxkhf7vsjE4ImWjiQIVy2vOo+Htj3EyZKTqJVqnu/zPBM6TgCgqqSY1S/Ppzg7E2t7ByY/8yKeHTpaNrDQrFVUJpCY+Ag1NemAggD/ewkMfAilUnNZx4mrrGF8bBq1ksQt3q68EeIrGisFoQ0zSzLLD57lzd+SqdSbUCjglt7+PDYyFEfry/v7IggtmSzLpKQuIDt7KQqFGl31LcT+EE9dTf1opYCu0QyccRvu/oEWTioIgiAIgiBcC6KgIfyrl/a/xKqUVYS5hLFizIpLXkhZEJq7GmMN8/bOY/PZzQDcFnEbs71vYs0rz1FekI+dswtT5r2Mq69YL0b4Z7IskZm1iNOn30KWjVhZtaNz+Ns4O/e+7GPl6g2MPppKnsHIIGd7lkV2QKMUxQxBaKvisst4dm0C8TnlAET6OvLyhC508RULIgttkyxLJCY9Rn7+TyiVOsJD/kfS5hSO//YzktkECgWdBw6j300zsXd1s3RcQRAEQRAEoQmJgoZwUcklyUzdMBVJllh83WK6t+tu6UiC0KgkWeLj4x/zedznOFVqGHu0PeoaM06eXkyZ9xKOHu0sHVFopkymKhISHqS4ZBcA7m4jCAt7FY3G+bKPVWUyM/5YKolVekJtdayPDsZBLYrHgtAWldcaeeu3ZJYdPIssg71OzRPXhXJzL39UosgptHGSZCQu/h6Ki3egVtsTHbUCc7UTu7/7hpT9uwFQa7REjxlPz/FTsLIR0+QKgiAIgiC0RqKgIfwjWZa5c/OdHDx3kBH+I3hn8DuWjiQITWb1rsUkf/49OqOSGkcFNz/3OkG+4ZaOJTRTRmMFx0/MoaLiGEqlFcHB8/Dxnn5F00OZJJlZ8elsLanAXavml5gQ2uu0TZBaEITmTJZlfjyew8s/n6SoygDAxCgfnhkdhru9lYXTCULzYTbXcuz4bMrLj6DVuhETvRIbmwDOpSazc9kick4lAmBt70CfKdOJHD4KlVpM0SYIgiAIgtCaiIKG8I+2ZW7j4e0Po1VqWTdhHb72vpaOJAhNIjspgbVvLMBQW0ups5mNMbnYOjjx/pD36ebRzdLxhGbGaCzl2PFZVFYmolY7EtVtCQ4OkVd8vGdSslmUU4S1UsEPUR2JdhC9SQWhrUkrqGTejwkcOFMCQJC7LS9NiKBvkJg2RxD+idFYQeyxm6mqOolO50v3mFVYWXkiyzKnjx5i9/LFlORmA+DUzosBN88muGdfsS6VIAiCIAhCKyEKGsLfGMwGJqybQFZlFnd0uYOHox+2dCRBaBJnjh1m/duvYjIa8A2PoM99dzN3/+MklyajUWpY0HcB44LGWTqm0EzUGYo4duwWqqtT0GhciIpair1dpys+3pfZhcxLzUEBfBkRwBh3p0bLKghC81drMPPhtlS+2H0Go1lGp1Hy4NBg7hzQAa1aael4gtCs1dUVcjR2KrW1mdjaBhMT/R0ajRMAktlM/Lbf2Pf9t9SUlwHgFdKJQTNvxyc0zHKhBUEQBEGwGFmWKUg/TeKureSlphA9Zjyd+g60dCzhComChvA3SxKW8PbRt3GzdmPDxA3YakSPYaH1ObVvF79+9DaS2UyH6B6MffQpNForaow1PL37abZlbQPgji538GDUgygVonGpLdPX5XHs2C3U1JxBq/UgOmoptrYdr/h4m4rKmRWfjgzMD/Lmfj+PxgsrCEKzt/VkPs//lEh2aS0Awzp58MINnWnvYmPhZILQctTWZnHk6FQMhgIcHKKIjvoGleqP3yFDbQ2H16/lyIY1mOrqAAju2Zf+02fh4u1jqdiCIAiCIFxD1WWlnNy9ncRd2yjKzLjgsdC+Axl2+71Y29lbJpxwxURBQ7hAcW0xY9eOpcpYxUv9XmJCxwmWjiQIjS5u629s/uIjkGVC+w7k+vvnolKrGx6XZIkPj33Il/FfAjDMbxiv9H8FG41oaGqLamtzOHZ8JrW1mVhZeREdtQwbm4ArPl58ZQ3jj6VRY5a4xduVN0J8xTQYgtBG5JTVsuCnRDYl5QPg7ajj+Rs6MzLcU/wdEIQrUFWVzNHY6ZhM5bi4DKBr5OcolReuRVVVUsy+1d+SsG0zsiyhVKmIHD6KPpOnY+PoZJnggiAIgiA0GZPBwOmjh0jatZX040eRJQkAlUZDUPfe2Lu4EvvrT8iShK2zC9fd/RCBUd0tnFq4HKKgIVxgwf4FrE5ZTbhrOCvGrBC90oVW58iGtexc+hUAkcNGMeyOe1EqVf+47/rT63l+3/MYJSOdXDrx4dAPaWfb7lrGFSyspuYsx47NRF+Xi7XOj6iopVhbX/maQrl6A6OPppJnMDLI2Z5lkR3QKEUjpiC0dkazxFd70nl/Syq1RjNqpYLbBwTy8LBgbLTq/z6AIAgXVV4eS+yxW5GkWjw8RhPR+T0Uir9f2xVlnWX3t0s4E3sYAK21NT1umELMmPForHTXOrYgCIIgCI1IlmXy0lJI3LmVU/t2Uldd3fCYV3AonQcNI7TPQHR2dgDkpaXw68fvNKy7FTlsFINuvR2tztoi+YXLIwoaQoPkkmSmbpiKJEt8Peproj2jLR1JEBqNLMvs+/5bDvywAoDu4yYxcMZt/9kj9njBcR7e/jAl+hJcda58MPQDIt2vfBFooeWorj7NsWO3UGfIx8YmkKhuS9HpvK74eFUmM+OPpZJYpSfUVsf66GAc1P9cTBNaJ73RzPKDmRw9W4JGpUSnVmGlUaLTqNCplVhpVFidf69T12+3Ov9ep1Fhr1MT6mmPUhTBWpSDZ4qZ92MCqQVVAPQMcGHhxAhCPMXQdkFoLMXFuzkRdyeybMTHezqhoS9d9BovMyGOXcsXkX8mDQA7Zxf63jSTzoOGXbSTiyAIgiAIzVNlcRFJu7aRuGsbpeeLEwB2rm50HjiU8IFDcfH+506JRkMde1Z8Q+wv6wBw9GzHqPsexbdT52uSXbhyoqAhAPWNvXdsuoNDeYe4LuA63hr0lqUjCUKjkSWJHd98SeyvPwHQf9qt9Jxw4yVP75FblcsD2x4gtTQVrVLLS/1eYnSH0U0ZWbCwqqpkYo/dgtFYjK1tMFHdlmJl5X7FxzNJMrPi09laUoG7Vs0vMSG012n/+4lCq1BnMrPqcBYfbkujoLLuqo7Vwd2WWX0CmBzji52V6NnfnBVV1fHqL6f4Ibb+xsrFVsszo8OYHO0jppcShCaQn/8zCYkPAzIB/vcSFPR/F91XliRO7d/NnhXfUFFYPwWcm18AA2fcRkDXaPE7KgiCIAjNmLFOT9qh/STu2sbZ+ONwvslarbUiuFdfOg8cRvuILpfcUSEzIY6Nn7xLZVEhKBR0HzuRflNnotaKe/bmShQ0BAC2Zm7lke2PoFVqWT9xPd523paOJAiNQjKb2fTZhyTu3ALA0NvuJmrUuMs+TrWxmqd2PcWO7B0A3B15N/d1u09My9YKVVQmcOzYLEymMuzswonq9jVarctVHfOZlGwW5RRhrVTwQ1RHoh1sGymt0JyZzBJrYnN4f2sqOWX1iz/7OFkzs7c/GpWCOpNEndGM/vf3Rgm9yUzd+fd6o5k6k4TeWP94XoWeGoMZADsrNVNifJnVN4BAN/Hz1JxIksyKw5m8sTGZ8lojCgVM7+nHE9eF4mQjbooEoSnl5KzgVPI8AII7PoOf3+3/ur/JaOT4xvUcWLuyYWoKv4iuDJw5B8/AoCbPKwiCIAjCpZFlmZxTiSTu3EbKgd0YamsbHvMNiyB80FBCevXHyubK1j6tq6lh+9efk7ijvu3I1deP6x94TFwPNFOioCFgMBuYsG4CWZVZ3NnlTh6KfsjSkQShUZiMRn758E1SD+5DoVBy3b0P03nQsCs+nlky8/6x91mcsBiAEf4jWNhvoVgsvBUpLz/G8RO3YTJV4uDQlW5dF6PROF7VMb/MLmReag4K4MuIAMa4OzVKVqH5MksyG+JyeW9LKulF9Q1kng5WPDA0mJu6t0ervrJCaFWdiTWx2SzZl8GZwj/mhB0c6s6svgEMCnYX01FZWEJOOc/+mMCJrDIAwr0ceHliBFF+zpYNJghtSEbGJ5w+Uz/aPKzT63h7T/nP59RWVXJw7SqOb1yP2WQChYLw/oPpN+0WHNw8mjqyIAiCIAgXUV6QR+LObSTt3kZ5fl7DdkcPT8IHDiV84DCcPBtvrdO0IwfZ/PmH1JSXoVSp6DN5Oj0n3IhSJaalbE5EQUNgUcIi3j36Lu7W7myYuEE0zgqtgrFOz09vv0LGiVhUajVjHn6C4J59G+XYP6b9yIL9CzBJJsJcwvhw6Id42no2yrEFyyktPcSJuDswm6txdOxOt65folZf3Rz3m4rKmRWfjgzMD/Lmfj/RKNKaybLMb4l5vLM5hZT8+vUSXGy13Dc4iJm9/dFpGuciWJJk9qQV8fW+DLYlF/w+wppAN1tu7ePPlBhf7HWaRjmXcGkq9Ube3pTCN/szkOT6ETSPjQzhlt7+qFViJJ8gXEuyLJOW9iqZWV8BSiK7fIy7+8hLem55QR57vlvKqb07AVBpNERffwM9J9yIztauCVMLgiAIgvA7Q20NKQf2krhrK9lJCQ3bNTprQnr3I2LQcHw6haNQNs11dk1FOVu++JjUQ/sA8OoYyqj7H73oWhzCtScKGm1cUW0RY9eOpdpYzcJ+CxnfcbylIwnCVaurqWbt6wvIOZWE2sqK8f83j4DIqEY9R2x+LI9sf4TSulLcrd35YOgHRLhFNOo5hGunpGQvJ+LuQpL0ODv3oWvk56hUV1fcjausYXxsGrWSxC3errwR4ivm5G6lZFlmR0ohb29KJiGnAgAHnZq7BwUxu28Atk241sXZ4mq+2X+WVYezqKwzAWCrVTElxpdb+wYQ5C4a4JqSLMusjzvHwg1JDeujjOvqzfwxYXg46CycThDaLlmWOXnqKc6dW41CoaVbt0W4OPe55OfnnU5l17JFZCXFA6Czs6f3pGl0HTkatUYUjAVBEBqLLMvknU5BgQKPwCDRC74NkyWJzMQ4knZuJeXQPkx159ceVCjwi+hK50HDCO7RB43u2lxjy7LMyT072LboU+pqqlFrrRhw82yirhvTZIUU4dKJgkYb98K+F/gh9Qc6u3bm2zHfivUAhBavpqKcH155joL001jZ2DLxqRfwCQ1rknNlV2bz4LYHSStLw0plxcL+CxkVMKpJziU0naKi7cQn3IckGXB1HUSXiP+hUl3dRVKu3sDoo6nkGYwMcrZnWWQHNGIqoFZp3+ki3t6UwtGzpUB9MeH2/oHcPqADjtbXrtGrus7EmmM5fL0vg7SCqobtA0Pcmd3Xn8EhHmI6qkZ2prCK59YlsietCKgfIfPi+M4MCHa3cDJBEAAkyURCwgMUFm1GpbIlOmoZDg6Rl/x8WZZJP3aEXcsXU5ydCdRPb9F/+ixC+wwQnRQEQRCugmQ2k7x/N4fX/0BhRjoAap2O9mERtA/vQvvwLqLA0UaU5OaQtGsrSbu2U1lc2LDd2cuHzoOGETZgCA5ulru+rigq5LdP3ycz/jgAIX0GMObB/xM/mxYmChpt2KmSU0xdPxUZmW+u/4Yoj8btwS4I11plcRGrF86jJDcbawdHpjz7Eh4BHZr0nFWGKp7Y9QS7c3YDcG/Xe7m3673iJreFKCj8jYSEh5FlI25uw+kS8QFKpdVVHbPKZGb8sVQSq/SE2upYHx2Mg1pc7LQ2R8+W8vamZPadLgZAp1Eyq08Adw8KwsXWcgs/y7LM3rRiluzLYOup/IbpqAJcbbilTwA3dvfFQUxHdVX0RjP/257GpzvPYDBLaNVKHhjSkbsHdcBK/K4LQrNiNtdxIu52Skv3o9G4EBP9Hba2l7e4p2Q2k7BjC/u+X051aQkA7TqGMGjGHHzDxehcQRCEy2HQ15KwbRNHf15HRVEBAEaVhKSQsTJdeB2ltNLiHtKR4MieBER0wz0gEKVSXGu1BvrqKpL37SZx11bOpZxq2G5lY0to3wF0HjQcr+DQZtOuIksSxzf/wo6vv0Qym+g8aDjX3fOQGKlhQaKg0UbJssyc3+ZwJP8I1wdczxuD3rB0JEG4KqV5uaxeOI+KwgLsXd2ZMu+laza/oVky887Rd/gm6RsArgu4joX9FqJTi+lGmrO8/PUkJT2GLJvx8BhD5/C3USqvrqHXJMnMik9na0kF7lo1v8SE0F5nucZtofEl5JTz9qZktifX9x7SqBTc3NOP+4d0bHZTDGUW17D0QAYrD2dRoa+fjspGq2JytC+z+vrT0ePq1ohpi7YnF/D8ukQyS2qA+gXZF9zQGX9XWwsnEwThYkymKmKPzaSyMh4rq3Z0j/kenc77so9j1Os5smEth3/6AWOdHoCg7r0YMH02rr7tGzu2IAhCq1JdVsqxjRs4vuln6qrrRxPXas2cDKgkO0jCzakdpVnZuBeraVeso12JDq3pwsZiWavCOsALv86RdI0ZhG9QJ1HgaEEks5mzccdI3LmVtCMHMBuNACgUSgK6RtF58HCCYnqh1jbf++fUg/tY/95ryJJE1KhxDJl9V7MpurQ1oqDRRm05u4VHdzyKlcqK9RPW42XnZelIgnDFijIzWP3yfKrLSnFq58WN817Gwf3aL768JnUNL+1/CZNsorNrZz4Y+gEeNmIR6OYo99xqTp58CpBp124i4WGvo1Bc/cXwMynZLMopwlqp4IeojkQ7iEbO1iIlv5J3N6fwa0IeACqlginRvjw4rCO+zle33kpTqzGYWHt+OqrfFysH6N/Rjdl9AxjSyQOVmI7qX50rr+XF9UkN3/92DjqeHxfOqIh24iZGEFoAg6GEo7HTqKk5jY1NB2Kiv0Ordb2iY1WXlbJ/9bfEbf0NWZJQKJV0GTqSvjfOwNbJuZGTC4IgtGwluTkc3bCWxF1bGxqwy22MJHaoINffzLSIGczuPBtHK0cMZgNpZWkklyRzsiiJs6cTqTmTi2uhEs9/KHCYNGD2dcA9LITIHoOIDu2PRiVGIjc3RZkZJO7axsnd26kuK23Y7tben/BBwwjrPxg7ZxcLJrw8Sbu28evH7wDQa+JU+k+71cKJ2iZR0GiD6sx1jP9xPDlVOdwdeTcPRD1g6UiCcMXOpSWz5tUX0FdV4u4XwORnX7LozeThvMPM3TGXsroyPKw9+GDYB3R27WyxPMLfZed8S3LyfAC8vafRKfQlFI2wftCX2YXMS81BAXzROYCxHk5XfUzB8tKLqnl/SwrrTuQiy6BQwIRuPjw8LJgAt5ZVsJJlmf2n66ej2nIyH+n8lV17F2tm9Qngxu7tr+m6Hy2B0SyxZG8G725JocZgRqVUMKdfAA8PD8GuCRd7FwSh8en1uRw5OpW6unPY23cmOmo5avWVj1Qrzsli97dfc/rIAQA0Vjq6j5tE93ET0eqsGyu2IAhCi5SbcpLDP60h7cgBfp8DtdCpjvgO5eR5mZja6SZu73I7btZu/3ocSZbIqswiqSiRUyePkJ+cjHS2GOci5d8KHJU2JvS+Njh3CiIsqi9Rvt3xtfcVnU8soKainFN7d5G0ayv5Z9IatuvsHQjrP4jOA4fhERjUYr83x3/7ma2LPgGg//RZ9Jpwo4UTtT2ioNEGfRX/Fe/FvoeHtQfrJ67HRtO8e5YKwsVkJcax9o2XMOpr8QoOZdJTC9DZ2Vk6FlkVWTyw7QHOlJ9Bp9Lxcv+XGRkw0tKxBCAzazGpqQsB8PWdRUjw/Ea5iNpUVM6s+HRkYH6QN/f7iZE5LV12aQ0fbk1jdWw25vMt/6O7tOOR4SGEeLb8qZqySmpYduAs3x3Oory2vrectUbFxGgfZvcNaBWv8WodyShh3o8JnMqrBCDG35mFEyII8xLXpYLQUlVXn+Fo7E0YjSU4OfWiW9fFqFRXt3ZWdlICO5cvIi8tBQBbJ2f6Tp1BxOARYsFQQRDaFFmSOB17mCPrfyDnVFLD9kyPGhI6VFDsYmJC8ATu6XoP7WzbXdW58ivzOBq/k7QTh6hIzsAqT49S/uO+TlLIFDjVUeoFDiEBBIfF0NW9KxHuEThoxbVcUzCbTKQfO0Lizq2ciT2MZK6f8lapUtEhugfhg4bRIao7KnXr6EB1aN1qdn+7BIBhc+6l23VjLBuojREFjTamqLaIMWvGUGOq4ZX+rzAuaJylIwnCFTl99BDr330Vs9GIX0Qk4x+f36x6w1UaKnl85+Pszd0LwAPdHuCuSDG/oiVlZHzK6TNvAuDvdxdBQU80yvcjrrKG8bFp1EoSt3i78kaI6AXUkuVX6Pl4exorDmViNNdf+gzt5MHcESFE+DhaOF3jqzWY+fF4/XRUvzfcA/QNcmVW3wCGh3m2uemoSqoNvPbrSVYdyQbA2UbD09eHMSXGF2Ub+1oIQmtUUZlAbOwMzOYq3NyG0yXiY5TKqxtxJcsyKQf2sHvF15Tn109N5+rrx4CbZ9Mhuoe4LhAEodWSZZni7ExSD+7j5N6dlObWXz/JSgVp3pUkBFZQYW9idIfR3Nf1Pvwc/JokR11NNceP7iDhyG5KT6WhKNNf8LheYybXTU+uWy3KQDc6+Xeli1sXurh3IcQ5BM1VrqXYVsmyTEHGGZJ2buXk3p3UVpQ3POYRGETnQcPo1G8QNg6t7z4KYM93Szm4diUAo+57lM6Dhlk4UdshChptzPP7nmdN6hq6uHVh2ehlKBthmhVBuNZO7t3Jxo/fQTKbCerem7EPP9EsF44ySSbePvI2y04uA+D6wOt5se+LYrHwa0yWZdLTPyA94wMAAgMeIjDwoUZpXMjVGxh9NJU8g5FBzvYsi+yARjR4tkjFVXV8tusMX+/LoM4kAdCvoytzR4QS49/650SXZZmD6SUs2ZvBpqS8humofJ2tuaW3Pzf1aI+TTfP7O9uYJEnm+6NZvPrrKcpq6ketTOvRnidHdcLZtnW/dkFoa0pLD3L8xGwkyYBXu0mEhb3eKNNPmoxG4jb/wv4fvkNfVV8kbh/ehYEz59AuKPiqjy8IgtAcyLJM/pk0Ug/uJfXQfkrP5fzxmFZFYvsyEv3LqdWZGeY3jPu73U+w87X9G1iWn8fp44dJOrKbwlMpyAbTBY+X2hnIca8vcJS5y4S4h9HFvQuRbpF0ce+Ct613my1Gy7L8n6+9uqyUk7u3k7hrG0WZGQ3bbZ2cCRswhM4Dh+LmF9C0QZsBWZbZ/vXnHPt1PQqFkrGPPklIr36WjtUmiIJGG3Ky+CQ3bbgJGZml1y+lm0c3S0cShMsWt2Ujm7/8GGSZsAFDuO6eh1Gpm/c85quSV/HqwVcxySa6uHXh/SHv427jbulYbYIsy5w+/QZnMz8HIKjD4wQE3NMox64ymRl/LJXEKj2htjrWRwfjoBZTS7Q05bVGvtx9hkV70qk2mAHo7u/M3JEh9A369zl9W6vs0hqWHcjku8OZDQ37Oo2SiVE+zOobQKd2re+67OS5Cub9mMDRs/ULFXZqZ8/LEyOI8W85CxQKgnB5Cgu3EJ9wH7Jspn37OQR3fKbRGq/01VUc+vF7Yn/9qWER3E79BtF/2q04eng2yjkEQRCuJUkyk5t8ktRD+0k9tI/KosKGxxQqFXpfa445ZnPaswKjRqafdz8ejHqQzm6WX0/SbDJxLi2ZsydiSTt+mKL0M/CnFk6TUiLfpY4ct1py3fWU2RlxsXZpKG50cetChFsE9trmMSWrLMvozXpqTbX1b8baCz6vMdVQa6z94/Hzb3qT/m/bLnjO+X1MkglvO28CHAIIdAxsePOz9qEs6TRJu7aRfvwoslTfCUyl0RDUvTedBw0lIDK6zU23KEsSv332AYk7tqBUqZnwxHwCu8VYOlarJwoabYQsy9z2220czT/K6MDRvD7wdUtHEoTLdvinH9i1fDEAXUeMZtice1AoW8Yoo0PnDvHojkepMFTgaePJh0M/JMw1zNKxWjVZlklJfYns7K8BCA6eh1/72xrl2CZJZlZ8OltLKnDXqvk5Ohg/66ubg1u4tqrqTCzZm87nu85Qoa/vsdXFx5HHRoYwKMS9zfbI+jO90cxPx3NZvC+Dk+cqGrb37uDC7PPTUalVLeNv8MVU1Zl4d3MKS/ZlYJZkbLUqHh0Rwuy+AS3+tQmC8N/OnVtD0snHAejQYS6BAfc36vErigrY+91SkvbsAFlGpVbTbdQ4ek2cirVd82gYEwRBuBizyURWYhyph/aRdvgANeVlDY+prayQAp055phNgkMuRk19k2G0RzQPRT9EjGfzbdCtrazgbPxxzsYdI+NELFUlxRc8Xq0zk+tWe/5NT51WQoGCQMdAItwicLRyRKPUoFVp0Sq1aFVaNEoNGpWm4XOtUotGpblgP6NkbCgq/F5A+K9ig96k/8d9Za5RE60M7mVagnLsCMy1wcr0R7FC5eOMV69ouvYfQVC7UDSqi0/bJckSBrOBOnPd397Xmevwtff9zwXimzNJMvPz+2+ScmAPaq0Vk59egG94hKVjtWqioNFGbMrYxGM7H0On0rF+4vqrXoBJEK4lWZbZu3JZw9yEPcdPof/0WS2uwfFsxVke2PoAGRUZWKutebX/qwzzF3MsNgVZljiVPJ/c3O8ACA19CV+fmxvp2DLPpOawOKcIa6WCH6I6Eu1g2yjHFpqe3mhm6f6zfLLzNCXVBgBCPe2ZOzKEkeGeLe7vyrUgyzKHM0pZsi+d3xLzGxZJ93GyZmZvf6b1aN/ipmSSZZlfE/J4cX0SeRX1cyyP7tKO+WPD8XJsPusxCYLQ9DKzFpOauhCA0JAX8fWd0ejnyE8/za7li8mMPw6AztaOXhOn0m3UONQaMW+7IAj/zGQ0cvrIQSqKCuB8k9yfm+ZkWW7Y/o/bFAqUKtX5N3XDxyq1GqVSiVKt/vtjKjW1lRWkHTnA6aMHqauubji2lY0tVqE+JLoUsEMdh1lVfx57rT2jA0czMXgi4S7hLep6WpZlSnKyyDgRS8aJWLKTEjAZDX88DlS4yGQ4V5DjXkuhUx1yM+rzYqWywlptjbXaGp1a1/DxX99s1Db/vo/mj/2UCiVpmYmc3L2D0tgkFCW1Deer1plI86nmtE8VFXZ/TOOlUqjwtfdFq9L+Y8HCJJn+If0fnKycWDl2Jd523k31pWpyZpORn95+hTOxh9FaW3PjvJdp1zHE0rFaLVHQaCNm/DKDuMI47ul6D/d3a9yeR4LQlGRJYtuSzzn+2wYA+k+fRa8JN1o41ZWrMFTwfzv+j/3n9gPwUNRD3NHljhZ10dfcybKZpJNPkpe3FlASFvYq3l5TGu34X2QVMj8tBwXwRecAxno4NdqxhaZTZzKz8nAWH21Lo6CyDoAObrY8PDyYcZHeYrHnS5RbVsuyA2dZcSiT0vPTUVmplUzoVj8dVbh3879myyiq5rmfEtmVUj9Vgp+LDS+O78zgUA8LJxMEwVJOn3mHjIyPAQWdO79LO89xjX4OWZbJOBHLruWLG+Ybd3D3pP+0W+jUd2CLGXUsCELTK8nNIW7rRhJ3bkVfWfHfT2hCNo5OuHQJJc29jF9M+6kw168PpEBBL69eTOw4kaF+Q1vNOpEmg4HsU4kNozf+vD4EAFo1+Dlh9nfE6GdPnb0Sg2TAaDZe8N5gNmCUjBe8VyvVFy04/Nvbn4sQNmqbhuKDTqVDpWy86Z2MdXpSD+0ncedWMhNONBTG1Forgnv1JaT/AKT2jmRUniW9PJ30ivT69+Xp1Jpq/+Pof1CgQKfWoVVpsVJaUWuupdJQSRe3Lnw96ut/HenR3BkNdax9bQFZiXHo7Oy56flX28RaIpYgChptQJWhiv7f9ccsm9k8ZbMYnSG0GJLZzG+fvk/Srm2gUDBszr10Gzna0rGumkky8cbhN1hxagUAYzqMYUHfBVipxJRFV0uSjCQmPUZBwc8oFCrCw99u1EaJ34rKmR2fjgzMD/Lmfj/RANrcmcwSP8Rm88HWNHLK6i+0fZyseXh4MJOifMS0QldIbzSz/kQuS/ZlkJj7x412zwAXZvcLYGR485uOSm8089nOM3y8Iw2DSUKrUnLP4CDuGxyETtO25voVBOFCsiyTnPICOTnLUCjUdI38HFfXQU1yLkkyk7RzG3tXLqWqtAQAzw4dGThjDn4RkU1yTkEQmj+zyUjqof3EbdlIVmJcw3Y7Vzfah0XUd4BTKP7UEU4B5z+s36bgj4cUKFAgyxKSWUIymzCbzchmM2azCclsPv9mQjKdf/+n/VQqFR5hncjxMvBz3W7SKk435PG29WZCxwnc0PEGfOx8rsnXxpKqSoo5G3+cjBOxnI07Ru1fCkxOnl74d40mIDKK9p0jsbKxsVDSKyPLMjknE0nctZWUA3sw1P5RmPANi6DzoGGE9O6H1vrir0uWZQpqCjhbcRazbMZKZYWVyqq+YHH+/Z8/VivUF3TozKnKYer6qVQYKpgZNpMnez7ZpK+5qRlqa1i9cD7n0pKxdXLmphdew9mr9f+uXGuioNEG7Mrexf1b78fP3o+fJ/1s6TiCcElMRiM/v/8GaYf3o1Aquf6+RwkbMMTSsRrVylMrefXQq5hlM5Hukbw/5P0WPW+kpUlSHQkJD1NYtBmFQkNExPt4uF/XaMePq6xhfGwatZLELd6uvBHiK0bWNGNmSWb9iVze25JCRnENAJ4OVjwwNJiburdHq25eje0tlSzLHD1bypJ9GfyakNcwHZWXo46Zvf2Z3tMPl2YwHdXu1EKeW5dIelH9tAkDgt14cXwEgW5iujhBEOrJskRi4qPkF2xAqdQRFfUNTo5NNwe8sU5P7C8/cWjd9w0NSB2iezDg5tm4tfdvsvMKgtC8lOWdI27rRhJ2bKG2ohwAhUJJYFQMkcOvJzAqBuVV9MI3mo0XrMHwXwtD6016Msoz2JW9C5NcP02QlcqK4f7DmdhxIj3a9UCpaJvX0bIkUZBxpmF6qtyUk0hmc8PjSpUKr+BOBJwvcHh26NhsR9+VF+SRuHMbSbu3UZ6f17Dd0cOT8IHDCB84FCfPa9cZemfWTh7Y9gAA7wx+hxH+I67ZuZuCvqqKVQueojAzA3s3d6YteAMHN3dLx2pVREGjDXjr8Ft8nfQ1k4Mn80LfFywdRxD+k1GvZ93bL3M27hgqjYaxjzxFx+69LB2rSezP3c9jOx+j0lBJO9t2fDT0I0JdQi0dq8Uxm/XEJ9xHcfFOlEotXSL+h5tb4xXAcvQGRh9NId9gYpCzPcsiO6ARUxQ1S7IsszEhj3c2p5BaUAWAq62WewcHMbO3v+iJ34TyyvUsP3iWbw9mUnx+fRKtWsn4rt7M6htAhI/jNc+UX6HnxQ1J/Bx3DgAPeyvmjw1nbKSXKEgKgvA3kmQgLu5uikt2oVY7EB29Anu7Tk16zpryMvb/sIK4LRuRzGYUCiURQ4bT98YZ2Lm4Num5BUGwDLPJxOkjBzixZWPD2joAds4uRAwdSZehI3Fwqx8JbpJMlOpLqTRUUmGooMJQQaWhsuHt98//+liFoYJqQ3VDUeJKRLhGMDF4IqMCR+GgFe1yf2WorSEzMf786I1YyvLOXfC4zt4B/y7dCIiMwr9rFPYulu28aKitIeXAXhJ3bSU7KaFhu9bampDe/ek8cBg+ncItVoR55+g7LE5YjJ3GjpVjV+Ln4GeRHI2luqyUlS88Rem5HJy9fLjphdewdXK2dKxWQxQ02oCp66dysuQkrw94ndEdWv50PULrpq+uYu1rC8hNOYnGSsf4x+fh36WbpWM1qYzyDB7Y9gBnK85irbbm9QGvM8SvdY1GaUpmcw0n4u6itHQ/SqWOrpGf4+LSr9GOX2Uyc0NsKknVekJtdayPDsZB3XwbxWVJwpCeTu2JOGrjTlAbF0ddahoad3e0HYOwCuqIVccgrIKC0AYFobK3t3TkRiHLMjuSC3lrU3LDFEgOOjV3Dwpidt8AbK3UFk7YduiNZn6OO8eSfRnE55Q3bO8R4MysvgFc17kdmiaejspklvhm/1ne2ZxCVZ0JpQJm9Q1g7ogQ7HUtd15eQRCantlcw7Hjsygvj0Wrdad7zCqsrZu+UaUkN4c9K74m9dA+ANRWVnQfO5Ee4yb961QfgiC0HOUF+cRv+42E7ZupLiut36hQENA1msjhowiK7olSVX+fUaYvY0XyClacXEFpXelVn1utUF/SotDWamsctY4M8RtCiLNY0PhylOXnNRQ3MhNOXDB9E4Crr1/96I2u0fiEdUajbfopp2VJIjMxjsSdW0k9tA9TXf1agigU+EV0JWLQMDr27IPGyvJroJgkE7f/djuxBbF0cunE0uuXtvi1WSqKCln5wpNUFBbg7h/ItBffQKuztnSsVkEUNFq58rpyBnw3ABmZbTduw91GDHESmq+a8jJWvzyfwrPpWNnaMumpBXiHNG2vuOaivK6cx3Y+xsFzB1Gg4JGYR7it822iB/F/MJkqOX7iDsrLj6BS2dI18kucnXs23vElmVnx6WwtqcBdq+bn6GD8rJvXWiemkhJqT5yg9sQJ9HFx1MYnIFVWXvLz1Z6e9cWNvxQ7VE5OTRe6ke1LK+KtTcnEZpYBYKtVcXv/QG4f0AFHa9F4bSmyLBObWcbX+zL4Jf4cpvPTUbVz0DGztx/Te/rhatf4v0+xmaXMW5tA0rn6wla39k4snBBhkREigiC0TEZjObGx06mqTsZa50dMzEqsrK7Nulk5ySfZuewrzqWcAuoX5O0z5Wa6DB2JSi2K84LQ0khmM6djDxG3ZSMZJ2IbFlq2dXImYsgIugy9DkcPz4b9c6ty+SbpG9akrmlYaFmpUGKnscNB64C91v6P91YO2GvssdfaN3z++2P2GnvstHYNC0m35IWWWyKzycS51FMNi4vnnUlr+N4DqDVafMI6N0xP5drev1Hu/WVZpqa8jOLsLDITjpO0azuVxYUNjzt7+dB50DDCBgxpllMg5VfnM3XDVEr0JUwJmcLzfZ63dKSrVpqXy3fPPUFNeRnBvfoy7pGnmu1UZC2JKGi0ctsyt/Hw9ocJdAzkpwk/WTqOIFxURVEhqxfOo/RcDjaOTkx59iXc/QMtHeuaMkpGXj/0OiuTVwJwQ9ANPN/nebQqy88/3xwZjRUcP3EbFRXHUavt6dZ1MY6OUY12fFmWeSY1h8U5RVgrFfwQ1ZFoB8vOty/V1aFPSqovXJyIozYuDmN29t/2U+h06CI6Yx3ZFevISHSdQjEVF1OXdpq602kY0k5Td/o0pvz8i55L5eaGVVAQaldXFDbWKK1tUFpbo7SxRmljg8L6/DYb6/rt1tYo/vS5QqMBWeaCy4ffP5blCz6WZRkadpP/vt/5z+vf/fFYQnYpX+7O4FhmKQpkdGoFE7r5Mq1Hexyt1Vd2Lvhjn4bsf9+v4XX9JdNFzyXLDfupXV2xCg6+6Ne+Ncqv0LP8YCbfHsykqKq+Z5hWpWRcV29m9w2gi+/VFxvKagy8vjGZ7w5nIsvgaK3hyVGdmNajPUoxRZwgCJeprq6Ao0dvolafiZ1tKNHRK9Bork1hVJZl0g7tZ/eKJZSeywXA2duXATfPomP33qLDiyC0ABVFBcRv20TCtk1UlZY0bPePjKofjRHT64IiZXJJMosTF7MxfSNmuX5dhjCXMOZEzGG4/3DUSlHQbMlqKsrJTDhRP4LjROwFPxMAdi6u+EdG1U9PFRmFtf2/t4PKskxlcREl2ZkU52RTnJNJcXYWJTlZ6Ksu7NxmZWtLp74DCR84DK/g0Gb/P2Rf7j7u2XwPMjKv9H+FcUHjLB3pquWmnGTVgqcxm0z0mXIzfW+82dKRWjxR0GjlXj/0OstOLuOm0JuY13uepeMILYhsMGDIysKQmYlsMP7RGPfXxjr4U8PfvzQMXrD9wmOUV1awcfcmqmuqsbW2ZVT/4Tja2f/lGH89F3/L9M/nomGfv+e92DEuvp/858+v5Fx/2u9ieVNKkonNr++9427jRj+vfliprP7lGFd+rj9/P/7WiHs5x/j96/f71/JqziXL9cf582v6y35mnZHc0SkY3GtQ6lV4rQ/BqtD6so5xwev6h/1WRffh/eHjUMgSL/24nMGnEi58/mWeq/5rw0WP8cd+//B1Of+5VFcHpr/Pg6sNCsI6MhLrrpFYR0ZiFRxcX1D4D+bKSgyn64sbfy52GHNz//O5wtWxGzwYj8fmtrnCRp3JzC/x51iy7ywnssoatsf4109HdX3E36ejMpklDGYJg6n+rc504ecGs0RKfiVvb0qh5PzaHVNifHnq+k64NcEIEEEQ2o7a2kyOHJ2KwVCIo2M0Ud2+RqW6dtM/mU0m4rb8yv7VK6itrB915tMpnIEz5rSZUcyC0JJIkpn0Y0eI27KR9GNHkWUJAGsHRyKGjCBy6HU4tfNq2F+WZY7kH+GrhK/Ym7O3YXsfrz7cFnEbvb1EAbM1kmWZ4uzM89NTHSM7KQGT0fDHDgoF7Tp0xD8ymoCuUdg6u1CSk9VQsCg+X8Qw6mv/+QQKBU4e7XD3DyS07wCCYnqh1rasTpL/O/4/PjnxCdZqa1aMWUGQU5ClI121hO2b+e3T9wEYN/dpQno13jTZbZEoaLRyk36aRGppKm8NeovrAq6zdByhGTKVlmJIT8eQnk7dmTMYztR/bMjKArO5yc9fodNyqIMXBo0aW72BnmdysTY2/XmFlstsL1P8kAmTj4yyAlw/UKPJbdwhm3sjY5h/91xkpZK71yxn2uYNjXr8q6Fydsa6a1esu0aii4zEuksXVI38f1KqrqbuTDp1p9OQysuRamuRamrr39fWINfUItXUnP+8Frm25k+P1yLXXuTi+mIUij/e/vw5oPjT57IMRknG3FD8UaBWKdGolSgv5RgXPdf5D/mH5zd8fv7xSz3GP+T4fR9Dekb931elEqfJk3B74EE0ntdmKpPm5FhmKV/vy+Dn+HMYzfXfU3udGiu1CoPJ3FC0kC7jCjTE046FE7rQM9CliVILgtDWVFUlczR2GiZTBa4uA4mM/Ayl8to2DNXV1HD4p9Uc3fBjQ6NXSO/+DJg+64LGUUEQLKOyuIj4bZuI376JquKihu1+EZFEDr+ejj16o1L/0dnILJnZlrWNxQmLiS+KB+qnlRrpP5LbIm4j3DX8mr8GwXKMhjpyTiaSEXeMsydiKco6e0nPU6pUOLXzxtW3Pa4+7XHx9cPVpz3O3j7XZH2OpmSWzNy95W4OnjtIkGMQ3475FhtNy19Pasc3X3D053WorayY/uKbeAR0sHSkFksUNFqxEn0Jg1YOAmDnTTtx0Ymb+7ZKliSMWVkNBYu69D8KF+bS0os+T2ljgybAH+XvCxEqLtLg1/Dx7x8qzu98kQY9hQIFCopNdeyqLsIoyzipNAx08ESnUv9xrt+PcxXn+qNHy8UbIFEo/uVc/NEo2gjnUvx5+9/2u/BcpXVl/Jr+K+WGctRKLSMCRhLg6P+nvL/vf2Xn+tsx/vya/va1+adz/eVrc6nn+tt+/5D3b5nq3xsoJVn5HnpFPhrZkU6Kx7DG+4I8V3uueEnBdL2aWhRM10gs1Mnnd/nzfv9wjL+e65L2u8jX5iLnUlhZofb0bPY9tWRJqh9J8m9Fhst4DelF1by3JYWfTuQiy/WHmNDNh4eHBRPgZtlpwK5E3Zl0Ct99l8rNmwFQ6HS43DYb19tvR2VnZ+F0115BpZ5vD2ay/GAmhZV1/7qvUgFatRKtSolWrcJKrUSrVmKtUTG+mzdz+gc2+YLjgiC0PWXlRzl27FYkSY+nx1g6d34HhUJ1zXNUFhexd9UyEnduBVlGqVLTbeRoek26CRsHx2ueRxDaMkkyk3EilrgtGzlz9HDDaAydvQMRg4fTZeh1uHj7XPCcOnMd60+vZ0niEs5WnAXASmXFhI4TmBU+i/YO7a/56xCan6qS4vrixvk3o16Ps7cPrucLFi6+7XH18cOpnVerXlupqLaIqeunUlhbyLgO43i5/8vN/j74v0hmM2tee4Gzccewd3Nn5ivvYuPoZOlYLZIoaLRimzI28djOx+jo1JG149daOo5wDcmSRF1KCjWHDlNzuP7NXFZ20f3V3l5YBQSi7dABbYdArALrP1Z7eDTZP4yz8cdZ9+ZCjHV6vEPCmPjU8+hs215D3n8prytn7o65HMo7hAIFj3V/jFvDb23x/8ivRG1tDseOzaRWn4nOypuoqKXY2AQ06jly9AZGH00h32BikLM9yyI7oBFz71tMVkkNH25L5YfYHMznu+mP7tKOR4eHEOxpb+F0V68m9hgFb75J7bFjAKhcXHC7/z6cp069pCnDWhuDSSK1oBKVUnG+YKH84/35j9WiWCEIgoUUF+/kRNzdyLIRH58ZhIYssNj1WOHZdHYtX1y/wDBgZWNLzwk3EnX9uBbfK1cQmruq0hIStm8mfttvVBQWNGz3DY8gcvj1BPfsi/ov13EVhgpWJa9i+cnlFNXWj+Bw0DowrdM0bu50M67Wrtf0NQgtx+9TTLfVRaSP5B3h9k23I8kSL/R5gckhky0d6arpq6r4dt5cSs/l4tMpnBvnv3zBCC7h0oiCRiu28MBCViav5OZON/N0r6ctHUdoQrLZTF1yMtWHDlFz+Ai1R45gLi+/YB+FlRXawECsOgSiDfxT4SIgAKXNtR26l3b4ABveew2zyYR/ZBTjH3sWjU53TTO0JEbJyCsHX2F1ymoAJnacyPze89Go2s4/vZqaDI4duwV9XS7WOj+iopZhbe3z30+8DFUmMzfEppJUrSfUVsf66GAc1Ne+96VQv4D0R9vS+O5wZsNURMM6efDoiBAifFpXD1RZlqncsoXCt9/BkJEBgNbfH/e5c7EfOaJNFi8FQRCaq/z8DSQkPgLIBATcT1CHuRbNkxF3jF3LF1OYcQYAe1d3+t00k/ABQ9ps45cgNAVZkjgbf5y4LRtJO3KgfjQyoLO1I3zQMCKHjcLV9++jK/Kr81l2chnfp3xPtbEagHa27bg1/FYmB09uFVPoCEJT+zL+S96PfR+tUsvyMcvp5NLy15Aqzsni22cfw1BbQ5ehIxlx14Pivu8yiYJGKzb+x/GcKT/De4PfY5j/MEvHERqRbDKhP3mqfvTFoUPUHD2KVFl5wT5KGxuso6Ox6dkTmx7dsY6IaBY9fk/u3s6v/3sXWZLo2KMPYx5+4m89WIS/k2WZ5SeX8+aRN5FkiRjPGN4d/C7OOmdLR2ty1dWniT02E4OhABubDkRFLUVn1a5Rz2GSZG6NP8O2kkrctWp+iQmhva5lLZzWGhRX1fHpztN8s/8sdab6G8X+Hd2YOzKEaL/W/bMuG42UrV5N4UcfYy4uBsC6a1c8nngcm5gYC6cTBEEQfped8y3JyfMBCA6eh1/72yyaR5YkknZvZ+/KZVQWFwLgHtCBQTPm4B/ZzaLZBKGlqy4rJWHHFuK3/UZ5fl7Ddu/QcLoOH0Vw737/OCrqTNkZFicuZsOZDZgkEwAdnToyJ2IOowJHoVGK+19BuFSSLPHA1gfYnbMbP3s/Vo5diZ225c/ukX7sCGteXwCyzNDb7iZq1DhLR2pRREGjlSqqLWLIqiEoULB72m4crVpXj9a2RjaZ0CclUXPoENWHD1N7NBapquqCfZS2tlh3j8G2Rw9sevRAFx7eLAoYf3Z80y9sXfQJyDLhA4dy3T0Po1SJHvCXY0/OHh7f+ThVxip87Hz4eNjHBDkFWTpWk6mqSib22C0YjcXY2oYQFbUUK61bo55DlmWeTs1hSU4R1koFP0R1JNqh5a3L0JKV1xj5YvcZFu1Np8ZgBqC7vzOPjQylT1DbGoJvrqqmZNEiihcvblhc3W74MDzmzsWqg1g0ThAEoTlIz/iYM2feASA87E28vCZZOFH9orLHfl3PwbWrMNTWABDQNZqBM27D3T/QwukEoeWQJYnMxLj60RiHDyCZ6wsSVja2hA8cSuSw63DzC/jH5x4vOM5XCV+xI2tHw7YYzxjmRMxhgM8A0QNbEK5Qmb6MGzfcSF51HiP9R/LWoLdaxe/T4fVr2LVsEQqlksnPvIh/l26WjtRiiIJGK/Vr+q88sesJwlzCWDVulaXjCJdJNhqpTUig5vARag4dojY2Fqmm5oJ9lPb22MTEYNOjBzY9e6IL64SiGS8IdfDH79mz4msAul03lqGz7xJD4a/Q6bLTPLD1AbKrsrHT2PHGwDcY4DvA0rEaXUVFPMeOz8ZkKsPerjPdui1Bq3Vp9PN8nlXAc2m5KIAvIwIY4+7U6OcQ/llVnYnFe9L5fPcZKvX1N4tdfByZOzKEwSHureIi9UoZCwoo+uhjylavBkkClQqnG6fgMXcuKnFdJAiCYFGyLJOa9gpZWYtQKFR0ifgf7u7DLR0LgJqKcg6uWcnxTb/UN8QqFHQeNIx+U2di79q4nUIEoTWpqSgncccW4rZupCzvXMN2r+BQIodfT2if/mis/j5NsiRL7M7ezaKERcQW1K9ro0DBkPZDmNNlDl3du16z1yAIrdmJwhPM/nU2JtnE0z2f5uawmy0d6arJsszGj98hafd2dLZ2zHjlXZzaeVk6VosgChqt1IL9C1idsppbw2/l8R6PWzqO8B9kg6G+gHHo/BRSx48j/7WA4ej4pwJGD3SdOqFoAaMbZFlm94qvObyufv2HXhNvot9NM9t0Q2VjKNWXMnfHXI7kH0GpUPJ/3f+PmWGt5+taXh7L8RNzMJkqcXDoRreui9FoGv9/wW9F5cyOT0cG5gd5c7+fR6OfQ/i7WoOZpQcy+GTHaUprjACEetozd2QII8M9W83PcWOoS0uj4J13qdq2DQCrTp3w++pL1K5ta+SKIAhCcyPLEidPPsm5vDUolVq6dV2Cs3MvS8dqUJZ3jt0rviblwB4A1ForYsaMp8cNU7C6xuvnCUJzJcsy2ScTOLH5V9IO7cNsqu9go7W2Jqz/ECKHj8Ij4J9HyBrNRn5J/4UliUtIK0sDQK1Uc0PQDczqPIsOjmJkrSA0tqVJS3nj8BuolWqWXr+UCLcIS0e6aiaDgZULniIvLQVXXz+mv/SW+D99CZqkoPHqq6+yZs0aTp06hbW1NX379uX1118nNDS00YMJ/2zs2rGcrTjLR0M/YlD7QZaOI/yFZDCgP3GC6sOHqTl0mNrjx5H1+gv2UTk5YdOje8MIDKuQkBY3okGWJLYu+pQTm38BYOCM2+hxw2QLp2o9jGYjCw8uZE3qGgAmB0/m2V7PtvjFwktLD3Ei7g7M5mqcHHvQteuXqNWNP0fmicoaJsSmUStJzPRy5c1QX9GQ3sTqTGa+O5TFR9vTKKysA6CDmy2PjAhhbBcvlErx9b+Y6oOHyHnsMcxFRWgDAvBbvAiNl+i9IwiCYEmSZCI+4X6KiragUtkRHb0cB/vm1bhyLjWZncu+IudUEgDW9g70mTKdyOHXo2rGo7sFoSnVVlWStHMrcVs2UpKb3bDds0MwkcNH0anfQLQ66398brWxmtUpq1matJT8mnwAbDW2TA2ZyszwmXjYiA5SgtBUZFlm7o65bMncgretN6vGrWoVU+xXlZaw/OlHqCotoUN0D8Y/Pg+lsvl3YLakJilojBo1imnTptGjRw9MJhPPPvss8fHxJCUlYWt7afOSi4LGlcurzmPE6hEoFUr2TNuDvdbe0pHaPEmvp/b4ifpFvA+fL2AYDBfso3JxqS9enH+zCu7Y4goYf2Y2mfjtk/c4uWcHKBSMuON+IoePsnSsVkeWZZYmLeXto28jyRI92vXgnUHv4KRzsnS0K1JSspcTcXchSXqcnfvSNfIzVKrG752Qozcw+mgK+QYTg5ztWRbZAY1oTG8yRrPED0ez+WBrKrnl9cVbHydrHh4ezKQoH9Sqlvu37loyZGRwds4cTLnnUHt74b9oEdqAAEvHEgRBaNPM5jqOn7iNsrKDaDQudI9ZhY1N81qzQpZlTh85yK5vl1B6vvHW2cub/tNnEdyzr+jQIbQJsiyTk5xE3JaNpBzYg9lYP0pYo7MmrN8gIoePwrNDx4s+v7i2mOUnl7MyeSUVhgoA3KzdmBk2k6mhU0W7iyBcI5WGSqaun0p2VTaDfAfxwdAPUCpa/v1kXloKK194CpPRQM/xUxhw82xLR2rWrsmUU4WFhXh4eLBz504GDhzYqMGEv1t/ej3P7HmGCNcIVoxdYek4bZJUW0vt8eNUHzpEzeHD6E/EIZ+/YPqdys2tYQSGbc+eaIOCWs3NhMlgYMP7b3D6yAGUKhWj7p9LWD8xUqgp7crexRO7nqDaWE17+/Z8NPQjOji1rGHORUXbiU+4D0ky4Oo6mC4RH6NS/X2e2qtVZTJzQ2wqSdV6Qm11rI8OxkEtej80BbMks/5ELu9tSSGjuH4aPU8HKx4YGsxN3dujVbf8C89rzZibS+ac2zFkZKByc8Pvqy/RXcYIWEEQBKHxmUyVxB6bSWVlAjorb2JiVqLTeVs61t+YTSbit21i/+pvqSkvA8A7JIyBM+fgExpm2XCC0ET0VVUk7d5G3JaNFGdnNmz3CAgicvgowvoPQmt98Q5UWRVZLElcwrrT66gz148w9nfwZ3bn2YwLGoeVyqrJX4MgCBdKKk7ill9uwSAZeDTmUeZEzLF0pEZxcs8OfvnwLQBGP/h/hPUfbNlAzdg1KWikpaURHBxMfHw8ERH/PAS3rq6Ourq6C4K1b99eFDSuwPy98/kx7Udui7iNuTFzLR2nTZCqq6k5drx+BMahQ9QmJMBfChhqd3dsevZsWANDGxjYagoYf2bQ17LuzZfITIhDpdEw7tGnCYrpaelYbUJaaRoPbHuAnKoc7DR2vDXoLfr59LN0rEtSUPgbCQkPI8tG3N1GEBHxPkpl498cmCSZW+PPsK2kEnetml9iQmiv0zb6edo6SZL5LTGPdzankFpQBYCrrZZ7Bwcxs7c/Oo0oIF0NU1ERmXfcSd2pUygdHPD7/DOsu3WzdCxBEIQ2zWAo5mjsTdTUpGNjE0RM9HdotS6WjvWPDLU1HF6/hiMb1mI6fw8e3LMv/afPwsXbx8LpBOHqybLMudRTxG3ZSPL+PZgM9T/naisrOvUdSOTwUbQLCvnX+/HE4kQWJyxm89nNSLIEQBe3LsyJmMOQ9kNQielgBMGiViWv4qUDL6FSqFh03SKiPaMtHalR7P52CYfWrUat0XLTC6/RrmOIpSM1S01e0JBlmfHjx1NaWsru3bsvut8LL7zAggUL/rZdFDQu36gfRpFTlcMnwz+hv09/S8dplcxV1dQei61fwPvQYWoTE+H8AmK/U7dr11C8sO3RA42/f6ssYPyZvqqKNa89z7nUZDQ6ayY8Ph+/iEhLx2pTSvQlPLr9UWILYlEqlDzR4wlu7nRzs/7Zy8v7iaST/4csm/H0GEt4+FsolY2/DogsyzydmsOSnCKslQp+iOpItMOlTYMoXBpZltmeXMDbm1JIzK0fiu+gU3P3oCBm9w3A1krM1d1YzOXlZN19D7XHj6OwsaH9/z7GtndvS8cSBEFo0/T6XI4cvZG6ujzs7bsQHbWsSdYBayxVJcXs+345Cdu3IMsSSpWKyOGj6DN5OjaOTpaOJwiXra6mmpO7dxC35VcKMzMatrv5BRA5fBThA4ZgZXPx639Zltl/bj+LEhZx8NzBhu39ffozJ2IO3T27N+v7KkFoS2RZ5qndT/FL+i94WHvw/Q3f46Jrnh0JLockmVn35kLOxB7GztmFGa++h51zy39dja3JCxr3338/P//8M3v27MHX1/ei+4kRGo0jpyqHUT+MQq1Qs3f6Xmw0jT/3fFtkrqyk5ujR8yMwDqNPSgKz+YJ91N5e2PboiU3P+kW8Nb5ta4Hh6rJSVr88n6LMDHR29kx6+gW8OoppUCzBYDbw4v4XWXd6HQBTQ6byVK+n0DRBkeBqnTv3A0knnwIkvNpNIizsNRSKpunt9HlWAc+l5aIAvowIYIy7U5Ocp63am1bEW5uSOZZZBoCtVsXtAzpwe/9AHK2b389eayBVV5P94INU79uPQqvF5713sR861NKxBEEQ2rTq6jSOxk7DaCzF2bkPXSO/QtXMp6Qpysxg17dLSD92BACttTU9bphCzJjxaKwaf/pPQWhMsiyTfzqVE1s2cmrfzoZRR2qNltC+A4gcPgqv4E7/em9ukkxsPruZxQmLOVlyEgCVQsX1gdczu/NsQl3Efa0gNEc1xhqm/TyN9PJ0+nr35X/D/tcqRk/V1dTw7bzHKMnJwqtjKFOffxW1Vsws8WdNWtB48MEH+fHHH9m1axeBgZe3MJpYQ+PKrE1dy3P7nqOre1eWjV5m6TgtlrmigpojRxumkNKfPAmSdME+Gl/f8yMw6qeR0vq23eHZFYUFfL/wWcryzmHr5MyUZ1/CzS/A0rHaNFmWWZK4hHePvouMTK92vXh78Ns4WjlaOlqD7JxvSU6eD4CP93RCQ19E0USLeW0sLOe2hHRk4Lkgb+7z82iS87RFRzJKeHtTCvvPFAOg0yiZ1TeAuwcG4WIrLrqamlRXR85jj1G1ZSuoVHi/9hqO48ZaOpYgCEKbVlERR+yxmZjN1bi7jySi84colc1/lGJmwgl2LltEQfppAOycXeh700w6DxqGshU0EAmti9lkImn3No5v/JmCjNMN21182tN1xPWEDxiKzu7fR0jVmmr5Me1Hvk78mpyqHACs1dZMDp7MLeG34G3X/NbCEQThQqmlqdz8883ozXru63Yf93a919KRGkVpXi7fPjMXfXUVox96XKxL+xdNUtCQZZkHH3yQtWvXsmPHDoKDg5ssmHChZ3Y/w/oz67mzy508FP2QpeO0GOaysvoRGIcOUX34MHUnT8FffuQ1fn4N00fZ9OiBxltc3ACU5GazeuF8KosLcXD35MZ5C3Fq52XpWMJ5O7J28OSuJ6kx1eDv4M+HQz8k0PHyCsxNITNrMampCwFo7zub4OB5TTai6URlDRNi06iVJG7xduWNkLY1eqqpxGeX8/bmZHYkFwKgVSm5uZcf9w0OwsNB9Oa8lmSTiXPPPkv5up9AoaDd88/hPG2apWMJgiC0aSUl+zh+4nZk2YC311Q6dXqlRVx/yJLEqX272PPdN1QUFgD10/UMnHEbAV2jW8RrEFo3STKTvHcX+77/lrL8cwCoNBpCevUjcvgofDp1/s+f0/K6clacWsG3J7+ltK4UAGcrZ24Ou5lpodNw0jk19csQBKERrUtbx7y981Cg4PORn9Pbq3VMxXs2/jgVhQV0GTrS0lGanSYpaNx33318++23rFu3jtDQP4bmOTo6Ym1t3ajBhD/IssyI1SPIr8nn8xGf08e7j6UjtQjFXy2i4O23/zYCQxsQ8McIjJ490Hh6Wihh81WQcYbVL8+ntqIcF29fpsxbiL2rm6VjCX+RXJLMQ9seIrc6F3utPW8Petuifx8yMj7l9Jk3AfD3u5ugoMeb7OY4R29g9NEU8g0mBjvbszSyAxqluBG/Gsl5lbyzOZnfEvMBUCkVTO3uywNDg/FxurT/8ULjkyWJ/IUvU/rttwC4PzYXtzvvtHAqQRCEtq2wcBNx8fcDEn5+dxLc8SlLR7pkJoOBY79t4ODaldRVVwPgF9GVgTPn4BkYZOF0QlskyzJph/azd9UyirMzAbB2cKTHuElEDBmBtf1/txudqzrHN0nf8EPqD9SaagHwsfNhVudZTOg4AWu1uJYVhJbq+X3PsyZ1DS46F74f9z0eNi1/Voa9OXvZlrmNeb2brgNoS9UkBY2LfZEXL17M7NmzGzWY8IfMikzGrB2DWqlm3/R94p/xJSj9/nvy5j8HgLZDh/r1L34fgeHR8v/4NaWc5JOsfe0F6mqq8QgIYvKzL2Lj0HymMxIuVFxbzCPbH+F44XFUChVP9XyKaZ2ubQ9uWZZJT/+A9IwPAAgMfJjAgAeb7B9zlcnMDbGpJFXrCbXVsT46GAe1mC7hSp0prOK9Lamsj8tFlkGhgIndfHhoWDABbmJx9eZAlmUK33uf4s8+A8D1rrtwf/QRcfErCIJgQbm5qzl56kkAgoKeIMD/bgsnujy1VZUcXLOS479twGwygUJBeP/B9Jt2Cw5u4n5JaHqyLJNxIpa9K5eSfyYNACtbW3qMm0zU9ePQ6v673SOlNIXFCYv5Nf1XzHL9WpidXDoxJ2IOI/xHoG4BU8IJgvDv9CY9M36ZQUppCjGeMXw58ssW+7tdpi/jzSNv8tPpnwB4e9DbjAwQozT+rMkXBb9SoqBx+VanrGbB/gXEeMawZNQSS8dp9iq3bSP7gQdBknC96y485j5q6UgtRkbcMda9tRBTXR0+ncKZ+OTzWNmIBs3mrs5cx4J9C1h/Zj0A00Kn8WTPJ6/JP3lZljl9+g3OZn4ONP0NvUmSuTX+DNtKKnHXqvklJoT2OrGew5XIKqnhg62p/BCbjXT+SmBMFy8eGR5MsKe9ZcMJ/6j4yy8peOttAJxvno7nvHkolE2zPo0gCILw385mfkla2qsAdAp9GR+fljctYHlBHnu+W8qpvTuB+il+oq+/gZ4TbkRn++/rFAjClcpOSmDPym/IOZUEgMZKR/To8XQfN/E/f+5kWeZI/hEWJyxmd87uhu29vHoxJ2IOfbz6iE4fgtDKZJRncNOGm6gx1XBHlzt4OPphS0e6LLIss+nsJl45+Aol+hIUKJgRNoMHox7ERmNj6XjNiihotCJP7HyCXzN+5d6u93Jft/ssHadZqzl6lMw5tyPX1eE4eRJeCxe22ouZmpoajh8/Tnp6OtJfptW6lF/rv+5Tl5dD5fEDIElo3NvhEN0HhUp9Rce6GBsbG9q3b4+fnx9eXl6oVKJXfWORZZlFCYt4P/Z9ZGT6ePXhzUFvNuli4bIsk5L6EtnZXwMQHDwPv/a3Nen5nk7NYUlOEdZKBWuigolyEP/8L1deuZ6Ptqey8nAWRnP97+6wTh48OiKECB8xGqu5K/3uO/IWvAiyjMMN4/B+5RUU6pbZQ0kQBKE1SDv9FmfPfgIoiYj4AE+P6y0d6YrkpaWwc/kispMSANDZO9Bn0k10HTkalVpj4XRCa5GXlsKelUs5G3cMqC+gdRs5hp7jp2Dj6PSvz5Vkie2Z21mUsIi4ojgAlAolI/xHcFvEbXR27dzU8QVBsKCN6Rt5fNfjAHw87GMG+g60cKJLU1BTwMsHXmZb1jYAghyDWNBvAV3du1o4WfMkChqthCzLDFk1hGJ9MYuuW0SPdj0sHanZ0qekcHbmLUgVFdgNHozvRx+2ukYeWZbJzs7m8OHDJCYmYjabG+W46rIidOcyUABGe2f0PoGgaNpevxqNBl9fX/z8/PD398fX1xetVvS0v1pbM7fy9O6nqTXVEuAQwEfDPsLfwb/RzyPLEqeS55Ob+x0AoaEv4etzc6Of588+zyrgubRcFMCXEQGMcXdq0vO1NkVVdXy64zRLD5ylzlRfBO3f0Y25I0OI9nO2cDrhcpSv30DuU0+B2YzdsGH4vPM2SisrS8cSBEFok2RZJjl5Pjm5K1AoNHTt+iWuLv0tHeuKyLLMmdjD7Fq+mJKcLAAcPdsxYPosQnr3b7UdxYSmV5iZwb5Vy0g7fAAApUpFl6Ej6TXpJuxd/n2tRoPZwPrT61mSuISMigwAtEotEzpOYFbnWfg5+DV1fEEQmomXD7zMd8nf4WjlyPdjv8fLzsvSkS5KlmXWpq3lrcNvUWmsRK1Qc0fkHdzZ5U60KtH2dTGioNFKnCk7w/h147FSWbFv+j7xQ38RxtxcMqbfjCk/H+uoKPwWfYXyEheqbwnq6uqIi4vjyJEj5OfnN2xv164d3bp1w/ofXuul3HAoFAoyD+/j1G/1UxV5d40hfMxElErV3/a7VBfbV5ZlysrKyMzMJDMzE71ef8HjSqUSLy8v/Pz8Gt5sbcV0V1fiVMkpHtz2IHnVeThoHXhn8Dv08urVaMeXJBMnTz1FXt5aQEl42Gt4eU1utOP/k42F5dyWkI4MPBfkzX1+Ym7nS1VeY+Tz3adZvDeDGkN9EbS7vzOPjQylT5CrhdMJV6py23ZyHnkE2WDApk9v2n/0EUrxN1MQBMEiZNlMQuIjFBT8gkplQ1S3pTg6drN0rCsmmc0k7NjMvlXLqS4rBcCrYygDZ96Gb1iEhdMJLUnpuRz2ff8tp/btAllGoVASPnAIvSdPx8mz3b8+t9JQyarkVSw7uYyi2iIA7LX2TAudxs1hN+Nm/e+FEEEQWh+D2cCtv95KYnEikW6RLBm1BI2q+Y0izKrMYsG+BRzMOwhAhGsEC/otIMQ5xMLJmj9R0Gglvjv1HS8ffJle7Xrx5XVfWjpOs2QqLeXsjJkYzpxB2zGIgGXLUDk5WTpWo8jLy+Pw4cPEx8djMBgAUKvVRERE0L17d3x8fK64p5Qsyxxcu4q9K5cCEH39DQy+9Y5rMh+7JEkUFhY2FDfOnj1LRUXF3/Zzc3PDz8+PgIAAQkJC0Ol0TZ6ttSiqLeLhbQ8TVxSHWqHm6V5PMzV06lUfV5KMJCY9RkHBzygUKjqHv4On59hGSHxxJyprmBCbRq0kcYu3K2+E+IoegpegUm9k8d4Mvth9hkq9CYBIX0fmjghhUIi7+Bq2AtUHDpJ9331INTVYd+tG+88+ReUopg0TBEGwBEkycCLuLkpKdqNWOxIT/R12di274cKgr+XI+rUcWb8GY119Z6Sg7r0ZcPMsXH3aWzid0JzJssyJzb+yfcnnSOb669CQ3v3pe+MMXH3//Wen2ljNV/FfseLUCqqMVQB42Hhwa/itTAmZgq1GdOAQhLYsuzKbqRumUmmoZGbYTJ7s+aSlIzUwS2aWn1zOh8c+RG/Wo1PpeCDqAWaGzUSlFFOuXwpR0Ggl5u6Yy+azm3mg2wPc3bXpFtptqaSaGs7edhv6E3Go27UjYMW3aLya75CzS2E0GklMTOTIkSNkZ2c3bHd1daV79+4XHZFxOWRZZtfyxRxZvwaA3pOn0/fGmy3awPn76I2zZ8+SmZlJYWHhBY+rVCqCg4OJiIggJCRETE91CerMdTy39zl+Sf8FgJlhM3ms+2NXvFi4JJlISHyQwsJNKBQaIiLex8P9usaM/Dc5egOjj6aQbzAx2NmepZEd0ChFQ/y/qTWY+WZ/Bp/uPE1pjRGAUE975o4MYWS4pyhktDK1J06QedfdSOXlWHXqhN+XX6B2Ez0WBUEQLMFsriH22K1UVBzDSutJTMwqrK19LR3rqlWXlbLv++XEb9uELEkolEoih11Hnyk3Y+skpq0ULmQyGtm26BPit20CIKBrNP2nz8IzMOhfnyfJEj+d/on3Y99vGJER5BjEbRG3MTpwdLPshS0IgmVsz9zOQ9sfAuDdwe8y3H+4hRNBamkqz+97nviieAB6tuvJC31eoL2D6ABwOURBoxWQZInBKwdTWlfKN9d/Q5RHlKUjNSuy0UjWAw9QvXMXSkdHApYvw6pjR0vHumJFRUUcOXKE48ePN0zHpFQqCQsLo3v37gQEBDRKQ6Qkmdn65SfEbd0IwOBb7yBmzISrPm5jq66uJisri8zMTFJTUy8ocGg0Gjp16kRERARBQUGoW9laKY1JlmW+iP+CD499CEA/7368OehN7LX2l32slJSXyMpeglKppUvE/3BzG9LYcS9QZTJzQ2wqSdV6Qm11rI8OxkEtejVcTJ3JzHeHsvhoexqFlXUAdHCz5ZERIYzt4oVSFIJaLX1yCpm33465qAitvz9+ixeh8fa2dCxBEIQ2yWgs42jsNKqrU7G29icmZhVW2tZRaC7OzmL3iiWcPlI/hYZGZ02PcZPoPnYiGjGSWgCqSor56Z1XOJeaDAoFA6bPoscNk//zPvZE4QleO/gaCcX1i9L72fsxN2YuQ/yGoGzitR0FQWiZ3j7yNksSl2CnsWPV2FUWKxwYzUa+iP+CL+K/wCSZsNPY8Vj3x5gc/N9/+4S/EwWNViClNIXJP03GWm3N3ml7RY+EP5FlmXNPP0P5jz+i0OnwW7wIm6iWWfCpqKjgl19+4dSpUw3bHB0diYmJISoqCnv7y294vhizycSvH79D8r5doFAw8q4H6TJ0ZKMdv6nIskxBQQHx8fEkJCRQVlbW8JhOpyM8PJyIiAgCAgJQXoMps1qizWc38+yeZ6k11dLBsQMfDf3osv7h5+R8x6nkZwHoEvExHh6jmioqACZJ5tb4M2wrqcRdq+aXmBDa68SonH9iNEv8cDSbD7amklteXwz1dbbm4WHBTIzyQa0SvxNtgeHsWTJvm4MxNxe1lxd+i77CKjDQ0rEEQRDapLq6fI4cnYpen42dXRjRUd+i0bSee9+spHh2LVtE3ulUAGydXeh74wwiBg9HqRKdT9qq3JRT/PTOK1SXlmBla8uYh54gsFvMvz4nvzqf92LfY8OZDQDYamy5O/JuZoTNEOuHCoLwr4ySkTkb53C88DhhLmEsHb0UK5XVNc0QVxjH8/ueJ60sDYDB7Qczr9c8PG09r2mO1kQUNFqB5SeX89qh1+jr3ZfPRnxm6TjNSsHbb1P8xZegUuH70YfYD2nanuJNQZZl4uLi+PXXXxtGZISEhNC9e3c6duzY6A3zRkMdG959jTOxh1GqVIx+8P8I7TOgUc9xLciyTE5ODvHx8SQmJlJVVdXwmK2tLZ07d6ZLly74+op1Fv4qqTiJB7c9SEFNAY5Wjrw7+F16tOvxn88rLT3AseOzkGUTHQIfITDwwSbNKcsyT6fmsCSnCGulgjVRwUQ52DTpOVsisyTz04kc3tuSytniGgA8Hax4cGgwU7u3R6sWhYy2xnjuHJlzbseQno7K1RW/r75E16mTpWMJgiC0STU1GRyNvQmDoQhHx+5EdVuCSnV108Y2J7IkkXxgD3tWfE15QT4Arr5+DJxxG4FR3cV1eBsTv20TW7/6H2aTCVdfP8Y/Pg/ndhcfLVpnruObxG/4Iv4Lak21AEzoOIGHox8Wi30LgnDJ8qrzmLp+KqV1pUwNmcr8PvOvyXllWebbU9/y5uE3MctmXHQuPN3raa7zv078/7tKoqDRCjy87WG2ZW3j4eiHuaPLHZaO02wUL1lCwWuvA+D18ss4TZ5k4USXr6Kigg0bNpCSkgKAt7c348ePx9Ozaaq4htoafnzjJbKS4lFrtIx77Gk6RP13Q3ZzJ0kSZ8+eJSEhgaSkJGpraxsec3R0JCIigoiICNq1ayf+qZxXWFPIQ9seIqE4AbVCzTO9n+HGkBsvun9NzVkOH5mEyVSGp8dYOnd+r8m/lp9nFfBcWi4K4KuIAEa7OzXp+VoaSZLZmJjHO5tTSCuoL+i52mq5b0hHZvTyQ6cRPSPbMlNxMZl33EndyZMoHRxo/9mnLXYEoyAIQktXWXmS2GPTMZkqcXUdQmSXT1AqW9eoe5PRyIlNv3BgzXfoqyr/n737jou6/gM4/rrJ3hsBAVkiuEdq7rIcOcqt2R62956/dtnOhpVNM0fOzJFa7gmCHIpsWbI3HDe/vz/OMEvNARzj83w8eMB973v3fZ/Cje/7836/AQjs1p1hc27FJ7TttgMWLozJaOCP774icfN6AML6DWTMvQ+jtjv7YiRJktiWs413Dr1Dfm0+AD28evBU/6eI8YxpsbgFQWg/9uTv4e4tdyMh8eaQNxkXOq5Zj6c36Xll3yusTl8NwLXB1/LsgGdxtXVt1uN2FCKh0caZzCaGLh1Ktb6axWMX092ru7VDahWq1v1KweOPA+D1yCN43nmHlSO6OJIkkZiYyMaNG2loaEChUDB8+HAGDRqEopnKs7U11ax840UKM9JQ29kx+YkXCYhuf28WjUYjmZmZaDQaUlJS0Ov1jdd5eno2Jjc8xbBcGowNvLD7BTZkbwBgZtRMnuj3xL+GhRuNNRw8NIX6+nScnbrTu/cSFIrm7Y+8saSKWzRZSMALXfy5J8i7WY/XlkiSxB/Hi3l3cyrJBdUAuNipuGtYKDcNDMbBRsySESxM1dXk3j0PbXw8Mnt7Aj/5GIdBg6wdliAIQodUWXmIwwk3YTY34OMzgW7R7yJrhzMBGmpr2b96GYc3rsNkMAAQNXgYV86Yi4u3aL3RHtVVVrDu/TfJT0kGYPC0OQyYPA3ZOToNpFak8vaBt9lfaJnB4m3nzcN9H2ZcyDix+EwQhMvyyeFP+OLIF9gp7fjsqs/o43P+dneXqri+mIf/eJgjpUeQy+Q80ucR5kbPFc9hTUgkNNq4o2VHmf7rdBxUDuyasetfJxo7otpdu8mdNw8MBtzm3ojP00+3qSeNlq7KAKitKGfFq89RlpeDrZMzNzz9Mr5dwpvteK2FXq8nLS0NjUZDamoqJpOp8TpfX19iY2Pp1q0brq6u1gvSyv45LHyA3wDeHfYuLjYup643kXjkDsrKtmNj40u/viuxsWneD6OJNfVMik9HazYz19+DtyJE2zCw/F/tyShj/ubjHM6pBMDRRsmtg4O5bUgoLnbta6Wn0DTM9fXk3f8Adbt3I1Op6PT+ezhddZW1wxIEQeiQSkv/4EjS3UiSkYCAG4kIf7HdvsepLilm99IfOLrzDwAUSiU9r72OAZOnYefYdLMBBesqzEhjzbuvUVtWitrOjrH3P0aXPgPOum9lQyULEhawLHUZZsmMWq7mpm43cXvs7dirRFtZQRAun8ls4q7f72pMmE6LmMaDfR7EWd10552PlBzhoT8eokRbgpPaiflD5zOok1g01tREQqON+y75O+Yfms/QgKEsGLXA2uFYnTYpiRM33YxUX4/zuHH4v/P2OVd+tDbWqMoAqCouZPmrz1FVVIijmztTnnsVj4CgZjtea9XQ0EBKSgoajYaMjAz+/pQXGBhITEwM3bp1w9HR0YpRWs/WE1t5etfTaI1agpyC+HjUx4S6hJKW9jo5uV8jl9vSp/fPODvHNmsc+Q16xsalUqQ3MtzNiR+6h6KSt88P+hfjUHY58zcfZ19mOQC2Kjk3DQrmrqFdcHcQgxKF8zPr9RQ8+hg1v/8OCgX+r7+Gy8SJ1g5LEAShQyosXEvy0UcAiZDgBwgNfdDaITWroqwMdvy4iBxNIgC2Do4MmDyNntdeh1IlFmO0Zcnbt/L7l59gMhhw8w9g4mPP4tEp8F/7SZLE0uNL+fjwx1TrLdXFV3e+mkf6PEKAU0BLhy0IQjtXra/mnYPvNLaC8rTz5Kn+TzG68+jLXkSwKm0Vr+x7BYPZQBeXLnw08iOCnDve+bWWIBIabdy9W+9lR94OHuv7GDd1u8na4ViVLiuLE7NmY6qowGHQQAI//xyZum2cyKuurmbdunWkpaUBlqqMSZMm4e3dvG10yvJyWfHac9SWl+Hi48vU517Fxdu3WY/ZFtTV1XHs2DE0Gg3Z2dmN22UyGSEhIcTExNC1a1fs7NrPwMYLcbz8OA9se4CCugKcVE680WMcxqJFAMTEfIyP99hmPX6t0cSE+DSO1jUQ5WDL2t7hOCs79hyII3mVvLs5le2pJQCoFXJmDQjinhFd8HZq3rZfQvsiGY2cfO55qlavBsDnhedxnzXLukEJgiB0ULl5P5Ca+hIAEeHPExh4s1XjaW6SJJGdGM+OHxdRmnsCAGcvH66ccSNRg4a2mQVqgoXZZGL7j4uI/20NAKG9+zH2/sewsXf41756k57ndz/Pb1m/ARDmGsZT/Z9igN/ZqzgEQRCayoGTB/jfvv9xotryujM0YCjPDngWf0f/i74vg9nAu4feZfGxxQCMDBzJ60Nex0H17+c9oWmIhEYbZjQbufLnK6kz1LF0/FKiPaKtHZLVmOvrybphCvqsLGy7dSPou+9QOLb+J46/qjI2bNiATqdrsaoMgKLMdH55/QW0NdV4BAQx5dlXcHT3aNZjtkXV1dUkJyej0WjIz89v3C6XywkPDycmJobIyEjUbSR5drnKtGU88ucjVFYd5B4vHUoZLbJ60GiWmJuUybbyGrzUSn7rE0Ggbcf4Nz+blMJq3v89lU3JRQAo5TKm9g3k/pFh+Lt2rESb0HQks5mi19+g4scfAfB6+GE877rTylEJwnmYDKCvA4MWbF1ALVqSCO1HZtbHZGV9AEC36Pfw9W3/lXNms4nk7VvZs/RHaissVac+oWEMnX0rQTFiVmRbUF9dxfoP3yJHcwSAK26YwaAps86alKrSVfHAtgeIL45HKVPySN9HmBk1U7TRFgShxehMOr488iVfa77GaDZip7Tj3p73Mrvr7At+LqpsqOSx7Y81trGa12Med/e4G3k7nIPVmoiERhuWVJLErN9m4aR2Yuf0nSjkHXel8skXX6Jy6VKUPj6E/LICZRsY6GytqgyAvGMaVr31P/TaenxCw7nhmZexcxJ/Z/+lvLwcjUaDRqOhuLi4cbtKpSIiIoLY2FjCwsJQKtv3m/Dq2ix2HxiHGh2H6xVUuU7j+YEvoFY0T4JBkiSeTsvn2/xS7OQyVvYKp5dzxzxplVlSywdb0lh3pABJApkMJvfsxINXhdPZo/UncYXWT5IkSj/+mNJPPwPA447b8XrkkXbbw11oBerLoTzT8lV5AnS1YKi3JCr0dad+rgd97b9/NunPvC9bF3Dy+9uXLzj7W747nfru6AOK9v06LbQPkiSRmvYKeXnfIZMp6B77OZ6eI60dVosw6BqIW7+Gg2tXoNdqAcsq/yGzbsYzsLOVoxPOpTg7kzXzX6W6pBiVjS1j7n2E8AFn7xufW53LPVvvIbs6G0eVI+8Nf4+B/gNbOGJBEASLjMoM/rf3f8QXxwPQ1b0rLw166T8Xjh8vP86DfzxIfm0+dko73rjyDUZ1HtUSIXd4IqHRhn2d9DUfxH/AiMARfDTyI2uHYzU127aRd8+9AAR9swiHga37jZAkSSQkJLBx48bGqowRI0YwcODAZq/KAMhKiGPtu69j1OsIiI5h0uMvYGPfMU8OX47i4mKSkpLQaDRUVFQ0brexsaFr167ExsYSHBzcIv+nLclorOFQ3FTq6tLQK/15/kQVOrNEL+9evD/8fTzsmr7KZ2FuMS+kFyADvo4JZqyXa5Mfo7XLLa/no61p/BKfh/nUq/G4WD8euiqccB8xOFNoemWLvqH47bcBcJ0xHd8XXhAtP4RLp62wJCzKMqE8A8oyTiUxMizXXTYZcKEfVWTg6H06yRE6HPrfCeL3W2iFJMnM0aOPU1i0Grnchp49v8PNtZ+1w2ox9VWV7P1lCUe2bMRsMiGTyYkZcRWDps3B0c3d2uEJf5OyezubPv8Io16Hq48fEx97Fs+g4LPum1CcwAPbHqBCV4Gvgy+fjvqUcLfwlg1YEAThH8ySmZVpK3kv7j1q9DXIZXJmd53NfT3vw17173Nmm7M389zu59AatQQ4BvDRyI/Ec1kLEgmNNuzu3+9md8Funuz3JHOi51g7HKswlpSQOWEipooK3G+5BZ8nn7B2SOf1z6qMTp06MXHixBapygBI3beL9R/Nx2wyEtq7H+MffgqV2qZFjt1eSZJEQUFBY+VGTU1N43UODg5ER0cTExNDYGAg8jZ+skSSTCQeuYuysj9Qq73p128VcaUZPL79cWoMNfg5+PHxyI+JdI9ssmNuLKniFk0WEvBiF3/mBbXM30prUVjVwCd/pLH0YC4Gk+Vl+Kqu3jx8dQTd/F2sHJ3Q3lUsW0bhiy+BJOE8fjz+b7yOTAxoFc5HkiBnH2TtOJ2wKMsAbfn5b+fkB+5dwK0z2LpaWkep7EHtYPn66+ezbVM7gEINumqoPgk1J6GmEGoKLN+rT32vKYTaQjAb/338LiPh+i/BofVX+Aodj9lsICnpHkrLtqFQONKn9xKcnDpWq+Hygnx2LfmOtAN7AFDa2NB3/PX0u24yajuxMMuazGYTu5Z8z8G1vwAQ3KM34x54AltHx7Puvzl7M8/segadSUdX964sGLUAL3uvlgxZEAThvEq1pbx94G02ZG8AwM/Bj+eueI6hAUMBS+JjQcICFh5ZCMBAv4G8M+wdXGzE5/OWJBIabZTBbGDwksFojVpWXLeiSU8gthWSJJF7513U7dyJTVQUwcuWIm+lcwysXZUBoPnjdzZ/8TGSZCZy4BDG3PcICqU4MdWUzGYzOTk5aDQakpOT0Z4qkQdwdnYmJiaGmJgY/Pz82mT7lrT0N8jJ+Qq53IY+vX/G2dnSyzirKov7t93PieoTTVpmmVhTz6T4dLRmM3P9PXgrIqBN/rtditJaHZ/9mcEP+06gN5oBuDLMk0dGR9A7yM3K0QkdSdX69RQ8+RQYjTiOGEGnD95HbiMS4cI/lGVA4s9wZKmlbdTZOPqCeyh4hFqSFx5dLJfdQy1JiZZgNkN96ekkR/FR2P42GLWWao2p30DQFS0TiyBcBJOpgYSEm6msOohK5UHfPkuxtw+xdlgtLj/lKNsXL+JkagoA9i6uDJo6i9iR1yBvZ1XRbYG2tob1H77NiSOHAeg3cQpXzrgR+VlaYUuSxLfJ3/Je3HsADAsYxttD3z7rqmdBEITWYGfeTl7d9yoFdQUAjO48mvt63cd7h97jz7w/AZgbPZeH+zwsZv9YgUhotFEJxQncuOFGXG1c2T59e4ccNlP+42KKXn0VmY0NISuWYxPeOku7rF2VARD/2xr++O5LAGJHXcNVt99z1jeaQtMxmUxkZmai0Wg4duwYev3pPt8eHh6NyQ0vr7axIqng5AqOHXsSgG7dPsDX57ozrq/SVfH49sfZe3IvAPf2vJe7ut91yQmI/AY9Y+NSKdIbGe7mxA/dQ1HJ238yo7Jez8IdmXy7J5t6vQmAfsFuPDo6kitCm76dlyBciJo//yT/wYeQdDrsBwwgYMECFI5iZkuHV1cGySstiYz8Q6e3q50g8lrw7noqYXEqcWFz9tW6Vld0FJbNhbI0kCvhqpdg4H2WIUWC0IoYjTXExc+itvYotrad6NNnGbY2vtYOq8VJkkTagT3s/OlbKgtPAuDmH8DQWTfTpe+ADrP4xdpKc7JZM/81KotOolTbcM28B4kaNPSs+xrNRt7Y/wbLUpcBMDNqJk/2e7JDzwAVBKFtqDfU81niZ/xw9AdMkqlxu1qu5sVBLzKhywQrRtexiYRGG/VF4hd8kvAJV3e+mveGv2ftcFqcLj2drBumIOl0+Dz7LO43tr6WW62hKkOSJPauWMLeFT8B0Gf8ZIbNuVW80W9hBoOBtLQ0NBoNqampGI2n2134+PgQGxtLt27dcHNrnSvvKysPEX/4RiRJT3DwfXQJffis+xnNRuYfms/iY4sBGBU0iqf7P42Pg89FHa/WaGJCfBpH6xqIcrBlbe9wnJXt+wNPTYOBb3Zn8+WOTGp0lt+P7gEuPDo6kqHhnuJvVrC6uv0HyJs3D3N9PbY9uhP0xRcoXF2tHZbQ0ow6SN0IiUshbdPp9k0yhaVtU48ZEDnW0jKqLdHVwLoHQWNpmULUeJi4AOxcrRqWIPyTTl9KXNw0tNoTODiE06f3ElSq1vn+sbmZjAaObNnI3hVL0NZUA9ApqhvD5tyKX3jH617QktL272HDgvcw6Bpw9vJh4mPP4h0cetZ96wx1PLb9MXbl70KGjMf7Pc6crnPEe1tBENqUlPIUXtrzEsllyXjbe/PhiA+J8YyxdlgdmkhotFG3b7qd/YX7eWbAM8yMmmntcFqUWa8ne9p0dCkpOAwZQuDCL1rdG6KqqirWrVtHeno6YKnKmDRpUouuxpckie0/fEXc+jUADJ42hwHXT291/1YdjU6nIyUlBY1GQ0ZGBmazufG6gIAAYmJi6NatG05OrWPQs1abx8FDkzEYyvHyupbYmI+R/UdF2IrUFby27zWMkhE7pR13dr+TudFzUSv+uyWc0SwxNymTbeU1eKmV/NYngkDb1tlKrilo9Sa+35vN59szqKg3ABDl68QjV0dwdbSP+HsVWhVtUhK5t9+BqaoKm4gIgr7+CmUbqTITLsNfczGO/AzJq6Ch6vR1vt2hx0yInWIZtN2WSRIc+ho2Pg0mPbh2hmnfgX8va0cmCGfQavOIi5+OTleIs3NPevX8HqWy41bN6errOLBmBfHr12A0WCqiIwYOYciMubj6+lk5uvZFMpvZs3wx+1YuBSAopgfjH3oSO6ezn68pqivivm33kVKegq3CljeHvNkkbWkFQRCswWQ2caDwANEe0WJeRisgEhptkN6kZ9CSQehMOlZPXE0X1y7WDqlFFb39DuWLFqFwcyN07ZpWdTJFkiQOHz7Mpk2bGqsyRo4cycCBA1t0ILTZbOL3hQvQ/LEZgBE330nvMaIUrrWpr6/n2LFjJCUlkZ2d3bhdJpMRHBxMTEwMXbt2xd7eOitdjcY64uKmUlt3HCfHbvTp8zMKxYXFcqzsGG8ceIPDxZaeup2dO/NEvycaB2mdjSRJPJ2Wz7f5pdjJZazsFU4v5za2yvcC6YwmluzP4ZM/Miit1QEQ6unAw1dHMC7WD3kHaK8ltE0Nqank3nY7xpISVJ2D6LxoEapOnawdltAcyjIsMzGOLIWK7NPbnTtB7FRLNYZ3V6uF12zy42H5TVCZYxk2fu2b0PdW0YJKaFVq69KIi5uB0ViJu9tgevT4Erm8Y883qikrZffSH0nesRUkCblCSc/RY7nihhnnPOEuXDhdfR2/fTyfzPiDAPQZN4mhs2855+yS4+XHuWfrPRTXF+Nu684nIz8h1iu2JUMWBEEQ2jGR0GiDDhYe5NZNt+Jh68Ef0/7oUCt46/btI+eWW0GSCPh0AU4jR1o7pEatoSoDLOXXv338Lqn7diGTyRl99wPEDL+qRWMQLl5NTQ3JycloNBry8vIat8vlcsLCwoiJiSEyMhKbFhrGK0kSmuQHKS5ej1rtSb++q7C19b/o+/g181fei3uPUm0pAEMDhvJkvycJcg761/4Lc4t5Ib0AGfB1TDBjvVyb4JG0LgaTmRVxeXy8NY2CqgYAAtzseOiqCCb19Eep6HjzkIS2R5+TQ84tt2LIz0fp60vQoq+xCT17qwmhjakvt7RdOrIU8g6e3q52hK4ToMd0CB4C7b3vubYCVt8Dx3+zXI6dCuM/aL1zQIQOqao6kcOH52Ay1ePtNYaYmA+Rydr53+YFKM7OZOdP35KdGA+Ajb0D/SdNpdeY61CpO3bS51KV5eey5p1XqTiZj1Kl5uq77id6yIhz7r8rfxeP/vko9cZ6QlxC+HTUpwQ4BbRgxIIgCEJ7JxIabdCnCZ/yWeJnjAkew9vD3rZ2OC3GVFlJ5sRJGIuKcJ02Db//vWztkIDWU5UBYNA1sO69N8hKiEOuUDL+wScIHzCoRWMQLl9FRQUajQaNRkNRUVHjdqVSSUREBLGxsYSFhaFSqZothtzcb0lNewWZTEnv3j/h6tLnku+rVl/LF0e+4MejP2KUjKjkKm7qdhN3xN6BvcpSgbGxpIpbNFlIwItd/JkX1MZbl/yDySyxNjGfD7akcaKsHgAfZxvuHxnOtL6BqJUikSG0LYaiInJuvQ19RgYKd3eCvvoS2+hoa4clXAqjDlI3WZIYqZvAbGl/h0wOoSMslRhR40DdwVraSBLs+Qi2vAySCTwjYdr34B1l7cgEoVF5+W4SEm9HkvT4+08nKvK1DrXY7Xyyjxxmx4+LKDmRBYCThxdXzriRrlcOR9bCn9Hasoy4/fz28Xz0Wi1OHl5MfOxZfELDzrn/8tTlvLbvNUySiX6+/Xh/+PuiNYsgCILQ5ERCow26eePNxBXF8cLAF5gaMdXa4bQISZLIf/gRajZuRB0cTMjKX5BbqQ3P3/2zKiMgIICJEye2eFUGgK6+nlVvvUx+SjJKtQ0TH3uW4B69WzwOoWkVFxc3JjfKy8sbt9vY2BAVFUVsbCwhISFNOmjeMgR8NpJkJCL8eQIDb26S+82syuStA2+xp2APAN723jzW9zH8PIYy+XAGWrOZuf4evBUR0G4+jJvNEhuTC3nv91TSi2sB8HRUM294GLMHBGGrEisphbbLWF5O7u130HD0KHInJwK/+Bz73uJ1p02QJMg9AIlLTs3FqDx9nW8sdJ9hmYvh5Gu1EFuNE3tgxa1QcxJU9jD+fUuSRxBaieLijSRp7gfMdO58N2FdHrd2SK2G2Wzi2M4/2bX0B2rLLNXCXsGhDJt9K52797RqbK2dZDazb9VS9ixbDEBA1xiue/gp7F1cz7q/WTLzYfyHLNIsAuC60Ot4edDLqBTNtwBLEARB6LhEQqONaTA2MGjJIAxmA79O/pXOzp2tHVKLqFy1mpNPPw1KJcFLlmAXG2PVeFpTVQZAfXUVK994kaLMdNR29lz/1Et0ihIrZdsTSZIoKChAo9GQnJxMdXV143X29vZER0cTExNDUFDQZf0O6vSlHDwwAZ2+CG/vccR0+7BJkwuSJLEtdxvvHHyH/Np8TAp36vxfQydzZIS7Ez/EhqJsB/MjJEliW0ox725O5ehJy/+Vi52Ku4aFctPAYBxslFaOUBCahqmmhtx589AeikNmZ0fAxx/jeOVga4clnEt5JiT+NRcj6/R2Jz/oPs2SyPAR7x/+pbYEVt4OmX9aLve+Cca8DSpbq4YlCH/JL1hKSsozAISFPUXnoDusHFHrYtDriP9tLQdWL0evtVTKBvfsw9DZt+AVFGzd4FohvbaeDQveJ/3gXgB6XjOe4XNvR6E8+/tXnUnHs7ueZVP2JgDm9ZjHvB7z2s0CJUEQBKH1EQmNNmbfyX3csfkOvO292TJlS4d4k6DPzSVr4iTM9fV4PfQQnnffZdV4qqqqWLt2LRkZGYB1qzIAaspLWfHq85Tn52Ln5MwNz76CT0jHGhTf0ZjNZnJzcxuTG/X19Y3XOTk5ERMTQ0xMDP7+/hf1HGE2G0lIuImKyn3Y24fRr+9KlMrmaTHSYGzgc813vFvsj0EViFKfy20ux3ik111tuixdkiR2p5cxf/NxEnIrAXC0UXLblSHcNiQEZ1uxSk1of8xaLXkPPEjdzp3IVCr8352P8+jR1g5L+Et9uaUKI/FnyDtwervKAaInQPfpEDK0/c/FuFxmE2x/G7a/BUiWSpap34GHeM8ltA4nTnxBeoalHXHXqDfx9+8YlfwXo766in0rfyZx82+YTSZkMjndho9i0LTZOLl7Wju8VqHiZD5r5r9GWV4OCqWSq26/l5gRV597/4YKHtj2AAklCSjlSl4a+BITwya2YMSCIAhCRyQSGm3MR/Ef8WXSl4wPHc8bQ96wdjjNTjIaOTHnRrQJCdj17UPn775D1oStdS4qFkkiPj6eTZs2odfrrV6VAVBZVMiKV5+lqrgIR3cPpjz3Kh6dAq0Si2AdJpOJrKwsNBoNx44dQ6fTNV7n7u7emNzw9v7vmRTpGe9w4sTnKBQO9Ou7EgeHc/fHvVxGs8TcpEy2lddgixb7/KdRmMpws3Hjgd4PMDlsMoo2dnLtYHY58zcdZ3+WpTWYrUrOzYNCuGtoKG4OaitHJwjNS9LryX/iSWo2bgS5HL/XXsN18iRrh9VxGXWQttmSxEjbDCa9ZbtMDqHDocfMjjkXoymkb4WVd0B9Gdg4w8QFlsSQILQC6elvcSJnISAnNuYTvL2vsXZIrVJFYQG7fvqO1P27AVCqbegzbhL9JtyATStoa2wtWYcPsf6jd9DV1+Ho5s6ER5/FLzzynPufqD7BPVvuIacmByeVEx+M+ID+fv1bMGJBEAShoxIJjTZmzm9zSCxJ5H+D/sfk8MnWDqfZlSxYQOnHnyB3dCRk9WrUAZ2sEkdlZSXr1q1rNVUZAKW5J1jx2vPUVZTj6uPHlOdexcXbx2rxCNZnMBhIT09Ho9Fw/PhxjEZj43Xe3t7ExsbSrVs33N3d/3XbkpLfOZJ0NwAx3T7Cx2dcs8UpSRJPp+XzbX4pdnIZK3uF01CbyJsH3iSzKhOAaI9onhnwDD28ejRbHE0lMbeSd39PZUdqCQBqhZxZA4K4Z0QXvJ1EOxKh45BMJk6+8AJVv6wEwOe553CfM9vKUXUgkgR5By1JjOSVoK04fZ1PLPSYDrFTxVyMplBdAMtvgdx9lstX3ANXvQxKkbwWrEuSJFJSnqHg5DJkMjU9e3yFu7toA3guBakpbP9xEQXHjwJg5+zCwCkz6T7q2nO2V2qPJEniwJoV7Pr5e5Ak/CO6MuHRZ3BwdTvnbeKL4nngjweo0lXRybETn476lFDX0BaMWhAEQejIREKjDak31DN4yWCMkpEN128gwCnA2iE1K21CAtmz54DJhP87b+Ny3XUtHsM/qzKUSiUjR47kiiuusFpVBkBheiq/vPEiDbU1eAZ25oZnX8HR7d8nqYWOS6fTkZqaSlJSEunp6ZjN5sbrOnXqRGxsLNHR0Tg7O1Nfn82BgxMxmWoJDLyFiPDnmjW2hbnFvJBegAz4OiaYsV6uABjMBpYcW8JniZ9Ra7AM0J7QZQIP93kYT7vW1wYgpbCadzen8vvRIgCUchlT+wZy/8gw/F3trBydIFiHZDZT/NZblH/3PQBeDz2Ix113dYgWmVZTngVHlsGRny0zMv7i6Avdp1rmYvhad/ZYu2QywNaXYc/HlssB/WDKN+AqKmUF65IkE0maBygp2YhC4UDvXj/i7Nzd2mG1WpIkkX5oHzsXf0vFyXwA3Pz8GTLzZsL6D2z3r1+GhgY2fv4hqXt3AtB91LWMvPUuFMpzt0ndkLWBZ3c9i8FsIMYjho9Hfdwq36sLgiAI7ZdIaLQhtfpaVqatJK0yjVcGv2LtcJqVqbaOrOuvx5CTg/O4cXR6d36Lx3C2qoxJkybh6WndN2u5yUdY9fYrGBq0+IZFcP3TL2Pn6GTVmITWTavVcuzYMZKSksjOzubvT+chIZ0I6vwTZnMOLi596N1rMXJ588152FhSxS2aLCTgxS7+zAv6dyusUm0pH8R9wJqMNQA4qhy5u8fdzOo6C1UzxnahMkpq+WBLGr8eKUCSQC6DSb068eCocDp7iPYtgiBJEqULPqX0k08AcL/tVrwfe6zdnxRqUdqKU3Mxlp6uEgBQ2UPXCZZqjJBhYi5GS0hZD6vnQUMV2LnB9V9C+Ln7zQtCSzCbdSQm3kF5xW5UKjf69P65WVuJtgcmo5GkbZvZu+In6qsqAfCP6MrQObfSKbKrdYNrJpVFhayd/yolOdnIFUpG3nIXPa4ec879JUnia83XfBj/IQCjgkbxxpA3sFOKhTyCIAhCyxIJDaFVKnj2Wap+WYnS34/Q1atRtODvQGutygDIjD/IuvfewGjQE9itO5Mefw61Xcft8ypcvJqaGo4ePYpGoyE3N4eIyD34+GSi19tSWXEf0dGDiIqKwsbGpsmPnVhTz6T4dLRmM3P9PXgrIuC8JzgTSxJ5Y/8bJJclAxDqEspT/Z9ioP/AJo/tQuSW1/Ph1jRWxudhPvWKOC7Wj4evDifMWyQVBeGfyr/7jqI33gTAddo0fF98wWpzsNoFox7Sf7e0lErdeHouBrJTczFmQNR4sHG0ZpQdU0U2LLsJTiZYLg95DIY/DYqO07JGaH2MxjoOJ9xIdXUiNja+9Om9DDs767TvbUv02noOrv2FQ7+uxqi3zKYLHzCIITNvws2v/fz7nTiSwK8fvkVDbQ32Lq5MeOQZOkVFn3N/g9nAq/teZWWapa3kjdE38mifR9vczDtBEAShfRAJDaHVqd68mfwHHgSZjKDvvsWhf8sNFqusrGTt2rVkZlpaNgQGBjJx4kSrV2UApOzZwYZP3sVsMhHapz/XPfQUSrXo1SxcurT0ReTkvIYkyUg6chVVVZa+6kqlkoiICGJiYggPD0eluvyqiPwGPWPjUinSGxnu5sQP3UNRyf97tbZZMrMqbRUfxn9Ihc7SD/6qoKt4vN/j+Dv6X3ZcF+JklZZPtqWz9GAuxlOZjKu6+vDI1RFE+4vXJ0E4n8pffuHk8y+A2Yzz2LH4v/UmsiZ4TukwJAnyDlnaSWlWgrb89HXe3U7PxXBumedD4TyMOtj0DBz8ynI5eAjc8DU4iflmgvUYDBUciptBfX069vYh9On9M2q19T/XtAW15WXsXraY5D+3IElm5AoF3a8aw8ApM7F3drF2eJdMkiTi1q9mx4/fIElmfMMimPDoMzi5n/v3okZfw6N/Psrek3uRy+Q82e9JZnWd1YJRC4IgCMKZREJDaFUMRUVkTZiIqaoKjzvuwPvRR1rkuJIkERcXx+bNmxurMkaNGsWAAQOsXpUBcGTrRn7/cgFIElGDh3HtPQ93qEF1QtOrrj7CobjpSJKesC5PYG9/PRqNBo1GQ1lZWeN+arWaqKgoYmNjCQ0NRXEJq6trjSYmxKdxtK6BKAdb1vYOx1l5cfdTpavi04RP+fn4z5glMzYKG26LuY1bYm7BVtk8g7dLa3V89mcGP+w7gd5omUEyJNyTR0dH0jPQtVmOKQjtUfXGjeQ//gQYDDgOG0anDz9Abts8f7ftRkW2ZS5G4s9QnnF6u6OPJYHRYwb4xlotPOE8klbA2gfAUGf5/7rhawgZYu2ohA6soeEkcXHTaNAV4OTUjd69FqNUisrSC1Wak82On74l6/AhANR2dvSfOJXeYyegsmlbr2UGXQO/L/yEY7v+BKDbsKu46vZ7zrtIrrCukHu23kNaRRp2SjveHvo2wwOHt0zAgiAIgnAOIqEhtBqS2Uzu7bdTt2cvttHRBP+8BFkLVCDU1NSwatWqVlmVAXBo3Uq2/7gIgO5XXcuo2+YhF6W9wmUwGCo4cGACDboCvDyvJjb2s8bWT5IkUVhY2JjcqKqqarydnZ0d0dHRxMTE0Llz5wtK9hnNEnOTMtlWXoOXWslvfSIItL30v+vUilTe2P8Gh4osHyo7OXbi8b6PMzJoZJP156+s17NwRybf7M5GazAB0D/YnUdHRzAg1KNJjiEIHU3tjh3k3f8Akk6Hff/+BHz6KQpHMXPmDNpKOLraMhcjZ8/p7Sp7SyupHtMhZLhoY9QWlKTC8pug+CjI5DDiWbjyEWgFi2SEjqm+PotDcdMwGMpxdR1Azx6LUCja1sl4a8vRJLL9x0UUZ1mSzI7uHgyefiPRQ0e0ic9m1SXFrJn/GsXZGcjkckbcdAc9rxl/3vfPR8uOct/W+yjRluBp58knoz6hm0e3FoxaEARBEM5OJDSEVqPs228pfvMtZDY2OL7/Lu59+2Ln5NysQ0RNJhOLFi0iPz+/1VVlSJLEnmU/sm/lUgD6TbiBIbNuFkNVhcsiSSYSEm+jvHwndnad6d9vzTlX6ZnNZvLy8tBoNCQnJ1NXV9d4nZOTE926dSMmJoZOnTqd9fdSkiSeTsvn2/xS7OQyVvYKp5fz5c98kSSJTdmbmH9oPkX1RQAM8h/Ek/2fJNQl9JLvt6bBwKJd2Xy1M5ManRGAHgEuPDo6kiHhnuJvTxAuU/3Bg+TePQ9zXR22sbEELvwCpZubtcOyLpMB0rdYKjGObwCT7tQVMggZaqnE6Hod2IjV1G2Ovh7WPwqJP1kuh4+GyV+Avbt14xI6rJqaZOLiZ2Ey1eLpeRWxMQuQy0WC9GJIZjMpu7eza+kPVJcUA+AVFMzQ2bcQ3LOPlaM7t9zkI6x7/020NdXYOTlz3cNPEdit+3lvsyNvB49tfwytUUuYaxifjvoUP0e/FopYEARBEM5PJDSEVqHh+HGyp0xFMhg4FuxPlosdACobW1y8fXDx8cXF29fyc+N3n8su8922bRs7duzAxsaG22+/HS8vr6Z4OJdNMpv547svObxxHQBXzphL/0lTxQlV4bJlZn1EVtaHyOW29O37C06OURd0O5PJRHZ2NhqNhmPHjtHQ0NB4nZubGzExMcTExODjc7pX+MLcYl5IL0AGfB0TzFgv1yZ9LPWGer5K+opvk7/FYDaglCmZ3XU2d/e4G0f1hQ/Frdcb+X7vCT7fnkFlvQGAKF8nHh0dyVVdvcXfnSA0Ia0mmdzbb8dUWYlNeDiBX3+Fytvb2mG1LEmCgnhLEkPzC9SfbvOHV1dLEiN2Kri0n+GzHVr8D/DbY2BsAJdAmPotBPS1dlRCB1VRcYCExJsxm3X4+k4muuvbyGTWX8jV1hj1eg5v+pX9q5aiO7Xgp3P3XgydfQvewZe+uKapSZJEwqZf+eO7L5HMZryDuzDxsWdx9jr/6+7PKT/zxoE3MEtmrvC7gveGv4eTWiTWBUEQWpokSeJ8xDmIhIZgdWadjuwpU9GlpVHt78suT3uUtrYY9XrLh/7zsHdxtSQ7vE4lOnx8cPW2JD8cPTzOW/6bnZ3Nt99+C8CUKVOIiYlpyod1ycwmE5u/+Jjk7VsAGHnr3fS6ZryVoxLag7Ky7SQk3gZIRHedj5/f5Eu6H6PRSEZGBklJSRw/fhyDwdB4nZeXFzExMRQHduGBE6VIwAtd/LknqPlOWOZU5/D2wbfZnrcdAE87Tx7u8zDjQ8cjP8+HdJ3RxJL9OXzyRwaltZZV0aFeDjxydQRjY/yQX8DQckEQLp4uPZ2cW2/DWFyMKiiIoEWLUAd0gJP3lTlwZKmlpVRZ2untDt6n5mJMB9/uID60tD+FSbDsJss8FLkKRr8CA+4W/9eCVZSUbiUpaR6SZCIw8BbCw54VJ0sukbammv2rlnJ443rMJiPIZEQPGcHg6XNw9rRust6o17Plq08bP1N2vXI4V99533kXBJolM+8deo/vjn4HwPXh1/PcFc+hkqtaJGZBEAThTCkpz2E01REa8iD29sHWDqdVEQkNweoKX3+diu9/QHJ0ZGuQB5KjIzfN/wQHNw+qS4qpKi6kqrjo1PfTP+v+1v7mbOQKJc5eXv+o7PDF1ccXG2dXFn3/PdXV1fTs2ZNJkya1zIP9D0aDgd8+foe0/XuQyeVcO+8hooeOtHZYQjug1eZx4OBEjMZKOnWaRVTkK01yv3q9ntTUVJKSkkhPT8dkMlHi6MKankMwKpSMlhv4qEc4rq6uTXK889mRt4O3DrxFTk0OAD28evDMgGeI9og+Yz+DycyKuDw+3ppGQZWl0iTQ3Y4HR0Uwqac/SoVYqSgIzU2fl0fOLbdiyM1F6eND0DeLsAltPatam0xDFRxdY0linNh1ervSDqLGWaoxQkeIuRgdQUM1rL3fMicFIHoiTPgYbF2sGpbQMZ0sXM3Ro48CEBryMCEh91k5oratqriQnUu+5/ieHQAoVCp6j53IgElTsbFv+XlRNWWlrH33NQoz0pDJ5Aydcwt9xk06b+JKa9TyzM5n2JJjSYA80OsBbo+9XSS7BEEQrKShoYA9e0ciSQb69lmOi0tva4fUqoiEhmBVtbt2k3v77QDERwRSaKe+4IqEhtpaS4KjpIiqor8nPYqoLinCZDSe9XYS0NApFKOzOyqziWhnW9x9/c5IfDh7eaNUtexKFENDA2vefY0TRw6jUCoZ9+AThPcf1KIxCO2TyaQjLn4aNTUanJxi6dtnKXK5TZMfR6vVsvNoCvdVGKlWqAgoL2KMZh8KSaJz587ExMQQHR2Ng0PzfbDTm/R8f/R7Fh5ZiNaoRYaMGyJu4IFeD+CsdmVNQj4fbEkjp7weAF9nW+4fFcbUPoGolSKRIQgtyVBUTM5tt6JPz0Dh5kbgV19i160dDBs1GSBjGyQusczFMP7Vok8GIUOg+6m5GLbi/W2HI0lwYCFsehbMBnAPhanfgd/5e9kLQnPIzf2W1DTLApfIiP8REDDbyhG1fYXpqWxfvIi8oxoAbJ2cGXj9dHqMHotC2TKfLfNTjrL2vdepr6rE1tGJ8Q8+SefuPc97mzJtGQ9se4AjpUdQyVW8OvhVxoaObZF4BUEQhLM7nvoSeXk/4OY2kN69frR2OK2OSGgIVmOsqCBzwgRMJaWUhodwwF5OYHQsU59/DdllDuU2m03UlpdTXVxE5d8rO4oKOVlTR7WrN0hm7LNTUDTU//sOZDIc3T0a21f9c46Hg6tbk65WaairZdVb/6Pg+FGUNjZMeuz5/3zjKQgXKuX48+Tn/4RS6Ur/fmuxs2ue1i61RhMT4tM4WtdAhJ2al2W1ZCVryMnJadxHJpPRpUsXYmJiiIqKwtb28ubgnEtRXRHvxr3LhqwNSJIMtbYfisqJlFRZ2tB5Oqq5Z3gYswYEYas6d2s6QRCal7Gigtw77qRBo0Hu6EjgF59j36f1DlY9J0mCgsOWllJJK6C+9PR1XlHQfTp0nwYuAdaLUWg98g7B8puhKhcUNjD2Heg9V7SgElpcZuYHZGV/DMjoFv0evr4TrB1SmydJEpnxB9ix+FvK83MBcPXx48qZNxFxxeBmrXhI/H0D2775ArPJiGdQMBMfew5XH9/z3iazKpN7ttxDfm0+LjYufDjiQ/r4tMHXYUEQhHZEpy9lz56hmM06evX8AXd3sdj5n0RCQ7AKSZLIu/9+ardsxezjzWZvBxR29tw0/xNcvM//putylJaW8sUXX2AwGBjUry9dfL3/3c6qqBCDruG896NU2+Ds5Y3rP4eV+1h+VtvaXXBM9VWVrHj9BUqyM7FxcOD6p17CP6Lr5T5UQQCgsHAtyUcfBmT07PE1Hh7DmuU4RrPE3KRMtpXX4KVW8lufCAJt1QBUVVWh0WjQaDScPHmy8TYKhYLw8HBiY2MJDw9HrVY3aUySJPHF3j18uCUDbb2H5ZhKHTOv8OCZ0YOxV4sWL4LQGphqa8m7ex71hw4hs7XF75X/4XLdddYO68JU5kLSMsuA79LU09sdvCxzMbpPB78e4kS18G/15bDqbkjbZLncYyaMexfULd+eRui4JEkiNe1l8vJ+QCZT0r37F3h6DLd2WO2C2WRC88fv7F72I/VVlQD4hUUy9MZbCYhq2mpEk9HAtkVfcGTrRgAirriSa+c9hOo/Fg4dLDzIg388SI2+hkCnQD4d9SnBLsFNGpsgCIJw8dLT3+JEzkKcnXvRt89y0f7vLERCQ7CKiuXLKXz+BVAq2RsZRIVS1uzDr41GI1999RWFhYWEhIRw4403Ij9LJYgkSWirq6j6q7rjH+2sakpLkCTzeY9l5+zSmORw9fHF2cvnVPLDBycPL+QKy4rwmrJSlr/6HBUFedi7uHLDM//DO7gd9hAXrKKuLp2DhyZjMtUTHHwfXUIfbpbjSJLE02n5fJtfip1cxspe4fRytj/rvqWlpSQnJ5OUlERp6ekVzGq1msjISGJiYujSpQtK5aUnGyRJYld6KfM3p5KYWwmAjUpC7b4LyWULMoWOMSFjeLTPo/g4+FzycQRBaDrmhgbyHnyQuu2W/uPO112H7wvPo3BysnJkZ9FQbZmLcWQpZO88vV1pa5mL0X0GdBkp5mII/81sht0fwLZXQDKDV1eY9j14RVg7MqEDkSQzyUcfpahoLXK5Lb16foera19rh9Vu6Bu0HFq3ikPrVjYumuvS9wqGzr4Zd//Lr9qrrShn3XtvUJB6DGQyrpwxl/4Tp/znya91Get4Yc8LGM1Genj14KORH+Fu637Z8QiCIAiXx2CoZPeeoZhMdfTo/iWenmKu7tmIhIbQ4nRZWWRdfwOSVsvJHtEcRtdkrabOZ/PmzezZswc7OzvmzZt3yb9XJqORmtKSxiRH5d8qO6qKC2morTnv7WVyOc5e3tg7u1Kam42hoQFbRyeuvuNeAqJjsXNyFtlX4bKZTPUcPHQ9dXVpuLkNpFfP75DJmqe10sLcYl5IL0AGfB0TzFgv1/+8jSRJFBUVNVZuVFZWNl5nZ2dH165diYmJITg4+KyJx3M5kFXO/M3HOZBVbrkvlYKbBgVz19BQUNTx0eGP+CX1FyQk7JR23Nn9TuZGz0WtaNrqEEEQLp5kNFK6cCGlCz4FkwlVp074v/M29r1bwQA8k9EyF+PIz5Cy/m9zMYDgIZZKjOiJYi6GcGmyd8GK26C2EFQOMOEjiJ1i7aiEDsRsNnAk6W7Kyv5EqXSmd+8lODlGWTusdqW2opy9y38iadtmJMmMTC6n+6hrGThlJg6ubpd0nyfTj7N2/mvUVpRjY+/AuAceJ6TX+ZNRkiTxxZEvWJCwAIDRnUfz2pWvYatsnjawgiAIwsXJzPqIrKwPcXTsSv9+68T5wXMQCQ2hRUkGA9mzZtOQlIQpPIxNdmZUtnbN3moqIyODH374AYAZM2YQFdV8b9B19XWnKzqKCqn8+7Dy4sJzDiv/i9rO7qxtrFy8fXHx8kH5t7Y8kiRhNhkxG02YjEbMJiMmkxGz0YjJaLJcPrVdrlDiFRTcWB0itF+SJHH06GMUFq1Grfamf/912Kg9m+VYG0uquEWThQS80MWfe4K8L/o+JEkiLy8PjUZDcnIytbW1jdc5OjrSrVs3YmJiCAgIOOeLeWJuJe/+nsqO1BIA1Ao5s68I4p7hYXg5nTkAPbksmTf2v0FiSSIAnZ0782S/JxkSMOSiYxcEoenVHz5MweNPYMjLA7kcz3nz8Jx3N7LLqNy6JJIEJxMt7aQ0K6Cu5PR1nhGn52K4BrVsXEL7VFsMv9wGWZYqJfreBte8DipxklFoGSaTlsMJN1NVdQi12pM+vZdhb9/Z2mG1O2V5uez46Rsy4w4AoLK1o9+E6+k7bvJ/toj6O80fv7PlqwWYjEbcOwUy6fHncPM7/5w8g8nAy3tfZk3GGgBuibmFh3o/hFzWfIsKBUEQhAtnNNaye89QjMYqYrp9hI/POGuH1GqJhIbQooo/+ICyz79A5uTEn118qZPMzd5qqq6ujs8++4za2lr69u3L+PHNd6z/IpnNZMYf5LeP56Nv0GLv4kpAVDdqKyuoLi6ktqL8P+9DbWeP2WRJVphNpos6vo29A0GxPQjp2Zfgnr1xcm+ek9yCdeXn/0zK8WeRyRT06vkjbm79m+U4iTX1TIpPR2s2M9ffg7cizp1wuFBms5ns7Gw0Gg1Hjx6loeH0KmhXV1diYmKIiYnBx8cHmUzGsZPVvPd7Kr8fLQJAKZcxrV8g940Iw9/13LNszJKZ9ZnreS/uPUq1ltZXwwOG80S/Jwh0DrysxyAIwuUz1dZS9MorVK1ZC4Bdz574v/M26sAW+PusyoMjyywtpUpSTm+397Ssmu8+Hfx7ibkYQtMzm+DPN2HHO4Bkmb8y9TtwD7F2ZEIHYTBUE394JrW1KdjaBtK3z1JsbER7zuaQezSJHT8uojAjDQAHN3cGTZ1NzIirkMvPvQDNZDSy/YevObxxHQBh/a5gzL2PoLY7e7vXv1Trq3nkj0fYX7gfhUzBMwOeYVrktKZ7QIIgCMJlO3FiIekZb2FvH8oVAzY2W5eN9kAkNIQWUx8Xx4kb54LZzIlBfUmuq2j2VlOSJLFkyRJSU1Px8vLijjvuaPLBwxcjR3OE1W//D4OuAb/wSK5/6mVsHR0brzfodVQXF1NVUtjYwuqvdlaVxUUYGrT/eQy5QoFcqUShUCJXKFAolciVSnT1dejq6s7Y1ysomOCefQjp2Qf/yK4olKomf8xCy6qpSeZQ3BTMZj1dujxBcOe7muU4+Q16xsalUqQ3MtzNiR+6h6KSN+3JPaPRSGZmJklJSaSkpGAwGBqvk7n4kSzrzIFCS1JPLoNJvTrx0KgIgjzO/4Hu72r1tXye+DmLjy3GKBlRy9Xc1O0mbo+9HXvVhd+PIAjNo+rX9RS+/DLmmhrkDg74vvA8zhMmNH3pta4Gjq6FxCWW9j+cetursIGosZa5GGGjQCFeJ4UWkLYFVt4B2nKwcYHJn1nmswhCC9DpSoiLn4ZWm4ODQwR9ei9BpXK1dljtkmQ2c3zvTnb9/D1VxZbFOR4BQQydcwshPfv+67WuvrqKde+/Qd5RDQCDps7miuun/+dn6fzafO7dci8ZVRnYK+2ZP2y+qEwWBEFoZUymBvbsHYZeX0rXrm/h7yfaj56PSGgILcJUU0PWxEkYCgow9uvDZn0lKhvbZm81tX//fjZs2IBCoeCOO+7A17f5jvVfMuL2s+79NzEZDATF9GDi48+htj33CvJ/kiQJbU01DbW1KJR/S1o0flcgVyjPeZLHbDZRlJFOVsIhshPiOZmRammncYrazo6gmNPVG86eF986SLAuo7GGAwcnoNXm4Okxku7dv0DWDCXktUYTE+LTOFrXQKSDLet6h+OsbN6VA3q9nrS0NHbEJbMytYF0ozsSlt/1rg713NrPh9EDe+Di4nJJ959ZmcmbB95k78m9APg6+PJo30e5pvM1omelIFiZIT+f/CeeRBsXB4DzuHH4vvgCist9f2gyQuafliRGynow/m3RQOfB0GPGqbkYl/a8IgiXpSoPlt8CeZa2NAy8D656SSTVhBah1eZyKG4aen0xLs696NXrexQKsdCjuRgNBhI3r2ffLz/TUGdpvRrYrTvD5tyKT2gYAEWZ6ax59zVqSktQ29kx5r7HCOs74D/vO7k0mXu33ktZQxne9t58OupTIt0jm/XxCIIgCBcvN+8HUlNfwta2EwOv2IpcLt7znY9IaAgtIv+JJ6heuw6Fnx+b/Z3RGY3N3mqqqKiIhQsXYjKZuPbaa7niiiua7Vj/5diuP9mw4D0ks5mwflcw7oEnzpiFYQ311VWcOHKY7IQ4shLj0VZXnXG9R0CQpXqjRx+8gkPEsPJWTpIkkjT3UFKyGVvbTvTvt7ZZVtMZzRJzkzLZVl6Dl1rJb30iCLRt/t/lk1VaPtmWztKDuRjNlpejKCc9kfo03GT1jfsFBQURExNDdHQ0jn+rfroQkiSxLWcb7xx6h/zafAD6+/bnqf5PEe4W3nQPRhCEiyaZTJQtXEjJJwssA8P9/S0Dw/v0ucg7kqDwCCQuhaTlUFd8+jqPcOgxHWKngZvoGy+0AiYD/P4i7LMM7yXwCpiyCFzO3ydfEJpCbe1x4uJnYjRW4e4+hB7dFyKXW/fzS3vXUFvL/tXLOLxxHaZTlclRg4fh2yWCXUu+w2jQ4+bnz8THnscj4L9bMG7N2crTO59Ga9QS4RbBglEL8HWw3gI/QRAE4ezMZj179o5EpztJZMT/CAiYbe2QWj2R0BCaXdX69RQ8+hjI5aSPHExqSUGzt5oyGAwsXLiQkpISwsLCmD17ttVOxif+/htbvv4MJInoISO4Zt5DrW4wt2Q2U5SVcbp6I+04kmQ+Yx+VrV3jcHJXn1NDyk99OXt7o1LbnOPehZaQk7OItPTXkMlU9O2zDGfn7k1+DEmSeDotn2/zS7GTy1jZK5xezs27Wq+kRsdnf2bw4/4T6I2W38kh4Z48OjqSnoGu1NXVcfToUTQaDSdOnGi8nUwmIyQkhNjYWKKiorCzu/BqqAZjA99ovuFrzdfoTDoUMgUzomZwT897cFaL1yNBsCZtQgL5jz+BITcX5HI87roTr3vuQab6jxVMVfmQtMySyCg5dnq7vQfE3GCpxvDvLeZiCK3TsXWw+h7QVVt+Z6//0tICTRCaWVVVPPGH52I2a/H2HktMtw9EP+8WUF1SzK6lP3Bs5x9nbO8c24vxDz+JrcP5F+3oTDreO/QeP6X8BMDgToOZP3Q+juqLW+wjCIIgtIyCguUcS3kKtdqbQQP/RKEQ59f+i0hoCM3KUFBA5sRJmGtqMIy+it+Lslqk1dT69es5ePAgDg4OzJs376JXajeVA2tWsPOnbwHoMXoco265q9mSOE1JW1tzqnojnhxNIjVlJf95Gwc3d0uyw9sHZ29fXH18GxMgjm7ubeJxt1WVVXHEx89CkoxERLxIYMDcZjnOwtxiXkgvQAZ8HRPMWC/XZjkOQGW9ni92ZPLt7my0BsucjP7B7jw6OoIBoR5nvU1VVRXJycloNBoKCgoatysUCsLCwoiNjSUiIuKC5+jk1+Yz/+B8tuRsAcDd1p0Hez/IpLBJyJuhlZcgCBfGVFtL0auvUbV6NQC2PbrT6Z13UAcFnbmjrsZyIjjxZ8jawRlzMSLHWJIYYVeJFj5C21CeCctuslQYIYNhT8CwJ+E8w4MFoSmUle0k8cgdSJKBTv4ziYx8RVRttwBtTTUr33yJwvTUxm029g5cccMMel4zHuU5EvlpFWk8seMJ0ivTAZjTdQ6P9n0UpVzZInELgiAIF0eSTOzdNxqtNpuwsKfpHHS7tUNqE0RCQ2g2kslEzs23UH/wIKquXfnNEQx6fbO1mtLn16LPrSbXqYqly5cCMGfOHMLCwpr8WP9FkiR2/fw9B1YvB2DA5GkMnn5jm33zb9TrqSoporq4iMrivwaWF50aWl6IXnv+YeUKlQpnL5/TFR6nvrucSnrY2Du00CNpf/T6cg4cvA6drvDUyrmPmuX3bGNJFbdospCAF7r4c09Q88xYqWkwsGhXNl/tzKRGZwSgR6Arj42O4Mowzwt+bGVlZSQnJ5OUlERJyemEnEqlIjIykpiYGMLCwlAq//vD3d6Cvbx54E0yqzIBiPGI4ZkBzxDrFXsJj1AQhKZS/dtvnHzxJcvAcHt7PO64Hdcp16OsSrJUYqT8CobTLekIGnR6Loadq9XiFoRLZmiAjU9B3DeWy6HD4fqvwNHLqmEJ7V9R0Xo0yQ8CEsGd76FLl0etHVK7VnIiizXzX6WquAiVjS29x1xHRtwBSnMt1cjOXj5cOXMuUQOHNC4akySJJSlLePfQu+jNetxt3Xntyte4stOV1nwogiAIwn8oLFpHcvJDKJWuDB60A6VSnB+7ECKhITSb0i+/pOTd95DZ2XFs5CAy87KbrdWUobCO4k8TqdXXs8p2Pw0YGDhwINdcc02THudCSGYz2779goRN6wEYMutm+k+c0uJxtBRJkmioraGqqNCS7Pgr0VFUaEmClBQjmc3nvQ9bR6czEhxenUMI6zMAla1tCz2KtkmSzCQk3kp5+U7s7UPo13c1SmXTVyMl1tQzKT4drdnMXH8P3ooIaPKkSb3eyPd7T/D59gwq60/1DPZ14tHRkVzV1fuyjldUVIRGo0Gj0VBRUdG43dbWlq5duxITE0NISAjy8zwvGcwGfjr2E58lfkadoQ6ASWGTeKDXA3jZixNJgmAthvx88p98EnP6PlyC63Hp3IDSznR6B48w6D4Duk8Ft2CrxSkITSpxKfz6kCVh5+gLU7+BzoOsHZXQzuXnLyHl+HMAhIc9S1DQrVaOqH06vncXGz97H6NOh4u3DxMfew6vziGYzSaSt29lz9Ifqa0oB8AnNJxhc27BPrQTL+55ke152wEY0mkI/xv8PzztPK35UARBEIT/IElmDhwYT23dcUJDHiIk5H5rh9RmiISG0Cy0yclkz5gJBgP6GVPZciy+2VpNmeoMFC9IwFiuZYM6gQJ5OR5mR2bEjsdjfBhyu5YrrzWbTGz87ANLv1OZjKtum0ePq8e22PFbI7PJRE1ZKVXFhVQWFVJdUkRlUeGp6o6ifw0j/4vK1o6IAYOJHjqSwOgY0bLqLLKyPiEz633kclv69V2Jo2Nkkx8jv0HP2LhUivRGhrs58UP3UFTypktmNBhMLDmQw4I/Miit1QHQxcuBh6+OYGyMH/ImPJYkSeTn56PRaEhOTqampqbxOgcHB7p160ZMTAwBAQHnTG6Uakt5P+591masBUAhUzDAbwDXBl/LqM6jxIwNQWhp9eVIG59GduTnxk1GnZzqE7Y0yGOwnzwP53FjkYsEudDeFKfAsrlQehxkChj1Agx6AMT7JaEZZWd/RkbmfACiu76Nn98NVo6o/TCbTez++QcOrFkBQOfuvRj34BPYOTqdsZ+hoYG439ZwYM0KDA1a8j217O1TRa1Ch1qu5pG+jzAralab7QwgCILQkZSUbOFI0l0oFI4MHrQDlcrF2iG1GSKhITQ5s1ZL1vU3oM/KwnboENZqSzE2U6spyWSm9GsNuswqNE757DOkoJQpmNTQD1fJAbmTGrdJXbDr1vyrU4x6Pb9++DYZh/Yhk8sZc+8jdL1yeLMft63Ta+tPVXUUnUp6nCQrIY6qosLGfZw8vYgeMpLooSNx9+9kxWhbj/LyPRxOuAkw07XrW/j7NX0VUK3RxIT4NI7WNRDpYMu63uE4K5umV7fBZGb5oTw+3pbGyaoGAALd7XhwVASTe3VC0YSJjLMxm83k5OSQlJTE0aNH0f6tbZqLiwsxMTHExMTg6+t71g+ECcUJvBf3HoeLDzduU8lVDOk0hDEhYxgWOAw75YUPIhcE4RIcWwe/PgJ1xSCTQ9R4dK6DKPszm+r1G5H0egAUrq64Tp2C6/QZqAPEa4jQjuhq4deHLQPvASLGwOTPwM7NunEJ7ZYkSaSnv0FO7tfIZApiYxbg5XW1tcNq8xpqa1n/8TtkJ8QB0Pe66xky8ybkinO/764sL+a5NY+wXZ4IgGuNitttJnLDlPtxdHNvkbgFQRCESydJEofibqC6OpHOne8mrMvj1g6pTREJDaHJnXz5ZSqX/IzS25vEwX04kZnabK2mKtakU7f3JFXqBlaq9mEymRg/fjyx7uFUrEzDWGo5SWkX64nrhC4onC5sGPDF0jdoWfPOq+RoElGoVFz38FN06TOgWY7VEUiSRP7xoxzdsY3je3ai157uge4XEUW3oSOJHDgUWysNe7c2na6I/Qeuw2Aow89vKtFd32zyY5glids02WworcJLreS3PhEE2l7+34/JLLEmIZ8PtqSRU275f/VzseX+keFM7RuAStHyK0tNJhOZmZloNBqOHTuG/tRJUAAPDw9iYmKIjY3F0/PfidGc6hw2Zm9kQ9aGxuGLAHZKO4YHDmdsyFgG+Q9CrWie5x5B6JBqS2DD45C8ynLZMxImfQoBfRt3MVZUULliBRVLlmAsOGnZKJfjOHw4brNn4TBokFi9KrQPkgRx38KGJ8GkA9cgmPotdOpj7ciEdkqSJI6lPMXJkyuQy9X07PENbm5XWDusNqs09wRr5r9KZeFJlGobRt/9AF0HDzvvbTIqM3hyx5McrzgOwBXacMK2N6A0y1HZ2NL3usn0ve561LZicY0gCEJrVV6+m8MJc5HLbRk8aDtqtWgTeDFEQkNoUjV//EHevHsA0N19O1v3/tFsraZqD5ykcmU6EhKbAo6RV3qSLl26MGfOHGQyGZLBTPXWHGp25IIZZHZKXMeHYt/78vrx/1NDbS0r33qJk6kpqGztmPT48wTFdG+y++/oDHodGYf2c3T7VrITDyNJlnkcCqWSLn0GED1sFME9eqO4gOHO7YHZbORwwo1UVh7A0SGSvn1/QaFo+g8r72UX8nZWIWqZjFW9wujjcnmDqcxmiQ2aQt77/TgZJZYZFJ6ONtw7ogsz+wdhq2qayo/LZTAYSEtLQ6PRkJqaitFobLzO19e3sXLD1dX1X7dNq0hjQ9YGNmRtIK82r3G7k9qJqztfzbXB19Lftz8Keet4rILQ5kgSaH6B3x4Hbbmlzc6VD8OwJ0Bpc/abmEzU/vknFYsXU7dnb+N2dUgIbrNm4TJ5EooOmhwX2pmCBFh+E1Rkg0IN17wO/W4HkbgTmoHZbESjuY+S0t9RKBzp3etHnJ1jrR1Wm5N2cC8bPnkPQ4MWJ08vJj72HD4hXc65vyRJLE9dztsH30Zn0uFm48Yrg19hWOAw8lKS2fHjIk6mWZIc9i6uDJo6m9iRo89b6SEIgiBYR1z8LCor9xMYcDMREc9bO5w2RyQ0hCZjLC0lc8JETOXlOEydwqoTRzHqdM3SakqXXUXJl0lgksjqVs/WjL2oVCruvffef51o1OfXUvFLKoYCy0lUm3BX3CaHo3S//H7adZUV/PLa85TkZGPr4Mj1T7+MX3jTzzEQLGoryknZ9SfJO7ZRmpPduN3exZWowcPoNmwU3sGh1guwBaRnvMOJE5+jUDjSv99q7O1DmvwYm0uruCkpCwl4LzKQWf4el3xfkiSx9Vgx7/6eyrGT1QC42qu4e1gX5g7sjL269SaiGhoaOH78OBqNhoyMDMx/G24fGBjYmNxwcDgz2SNJEppSDRuyN7ApaxPF2uLG6zxsPRgdPJpRQaPo6tFVzNwQhAtVfRLWPwLHf7Nc9omFSQvAr8cF34UuM5OKn5ZQtWoV5jrLewKZvT0uEyfgPmsWNuHhzRG5ILQcbSWsuRdSfrVcjrkBrvsQbJzOezNBuBQmk47ExFupqNyHSuVOn94/4+Bw7pPxwmmS2cyeFUvY98sSAAKjYxn/8FPYO5+7d3pFQwUv7nmRP3L/AGCQ/yBeHfwqXvZep+9Xkkjbv5udP31HZZGlOtHdP4Ahs2+hS5/+ojJREAShlaisPERc/HRkMhWDBv6Bra2ftUNqc0RCQ2gSkiSRe/fd1G3fgU1EBId6RJCbeqxZWk0ZKxso/jgBc50BY5Q9PxVsQq/XM2bMGAYMOHubJ8lkpmZnPtVbToBRQqaW43JNMA4D/ZFdYq/+6tJiVrz6HBUnC7B3cWXKc6/iFRR8GY9MuFCSJFFyIoujO7ZybNd26qsqG68Liu3JgEnTCOwW2+7etJeWbiPxyB0AxMR8jI930w+cT69vYMyhVGpMZm7u5MmbEQGXdD+SJLErvZT5m1NJzK0EwMlGyW1DQrjtyhCcbFVNGHXzq6+v5+jRo2g0GrKzsxu3q9Vqhg8fzoABA1CcZfWbyWwivjieDVkb+P3E71TqKs+4vpNjJyLdIolyjyLS3fLdz8Gv3f3uCsIlkyRIWAwbnwFdFchVMOxJuPIhUFza84ipto6qtWuoWPwT+oyMxu32AwbgNnsWTiNHIusgVX9COyRJsHcBbHkRzEbwCINp34NPN2tHJrRDRmMN8YfnUFOjwcbGj759lmFr62/tsFo1XX09Gxa8S8ah/QD0HjOBoXNuPW+1+d6CvTy761lKtCWo5Coe7P0gN0bfiFx29s/YJqOBxN83sPeXn2mosSwoCugaw7A5t+IbFtH0D0oQBEG4KAmJt1JWth1//+l0jXrd2uG0SSKhITSJ8p9+ouh/ryBTq2l4+D62blzTLK2mzHoTJZ8lYjhZh9LXnq2eKaSlpxEQEMCtt96K/D8SJ4aSeipWpqHPsryxUwc54XZDOCqfi2unU16Qz4pXn6OmrARnL2+mPPcqbr7izbs1mIxGThw5TPL2raQf3IvZZALALzySAZOnEdq7faxG0mrzOHBwAkZjFQEBc4mMeLHJj1FjNDE2LpW0eh0DXBxY3rML6ktIRp6s0vL48iPsSi8FwE6l4ObBwdw5JBQ3h7Y/S6K6upqjR49y+PBhioqKAPD09GTMmDF06XLulYkGs4F9BfvYmL2RuKI48mvzz7qfk9rpX0mOLi5dUF3iyVtBaLMqc2Ddg5CxzXLZvzdMXAA+0U1y95IkUb9/PxWLf6Jm61Y4VYWl9PXFbcZ0XKdORelx6RVqgmBVOfthxS1QnQ9KOxj3LvSabe2ohHZIry8jLn4G9fWZ2NuH0qf3z6jV4rnzbMoL8ljzzquUF+ShUKm4+o776DZs1Dn3P15+nI8Pf8z2vO0AhLiE8PbQt4lyj7qg4+nq6ziwejnxv63FaLDMiIscOIQrZ96Eq0/TtoMWBEEQLkx1jYaDBycCcgZesQV7+87WDqlNEgkN4bLpMjLIuv4GJJ0O5/vuZcWBP5ql1ZQkSZT/lII2qRS5g4riq1Ws3rgOhULBXXfdhbe394Xdj1mi7kAhVRuykHQmUMhwHhmE0/AAZBcwkLg4O5NfXn+B+qpK3PwDmPLsKzh7ev3n7YTmV11SzMF1v5C0bTMmgwEAr6Bg+k+aSsTAK5G30dkFZrOOuLgZVNccwdm5B316/4xc3rSJAbMkcYsmi02l1fjZqNjcNwIv9cWfQP/zeDGPLEukvE6PWilnzoDOzBveBS+ns/e3b8vMZjMJCQls2bKF+nrLgPOuXbtyzTXXnHXGxj9V6apIrUjlePlxUspTOF5xnPTKdIxm47/2VcqVdHHpQjfPbowLGUc/337tIlEnCGdlNkPcIvj9RdDXgtIWRjwLV9wDiuapnDAUFFCxdBmVy5djKi8HQKZS4TTmWtxnz8a2e3fxNye0PXVlsPIOyNhqudxrDox5B9T21o1LaHcaGgo4FDcNne4kTk6x9O71A0qlaHX2d5nxB1n/0TvotfU4unsw8dFnz1ktkVWVxYKEBWzK3gSAQqZgasRUHun7CHbKi5+dV11awp5lP5K8YxtIEnKFkp7XjOOK66dj5yTOtQiCILSkI0n3UlKyEV+fiXTr9p61w2mzREJDuCySXk/WjBnojh7DYfAg9gZ4kpeS3Cytpqq35lD9+wlQyHC4MYwv135PfX09I0aMYNiwYRd9f8ZKHZWr02lIsZy4UAU64TEjEqXHud8k5h8/xqq3XkJXV4d3cBduePZ/5+11KlhHXWUFcetXk7D5NwwNWgBcff3oP3Eq0UNHoFC2rZXux1NfIi/vB5RKF/r3W4edXacmP8Y7WSd5N7sIG7mM1b3C6eV8cSc7jCYz729JZcEflvYtMZ2c+WRmb4I9L2+YeFug1Wr5888/OXDgAJIkoVQqufLKKxk8eDAq1cX9rhlMBjKrMkkpT2lMcqSUp1Cjrzljv87OnZkSPoUJYRNwt3VvyocjCNZVlgFrH4ATuyyXgwbChE/AM6xFDm/W66nZuJHyxYtpSDzSuN22WzfcZs/GeewY5LaXP4NLEFqM2Qw734U/XwfJDN7dLC2oWuhvSug46uoyiYufjsFQjpvrFfTosQiFov0taLlYkiSxf9Uydi/7ESSJTlHRXPfw0zi4uv1r3/zafD5L+Ix1meswS5aqwTEhY7inxz0EuwRfdizF2ZnsWPwNJ44cBsDG3oEBk6fR69rrUKrbfhW1IAhCa1dXl86+/dcCEgP6b8DRUbQBvFQioSFcluL58yn76msUrq7UPXwf21YuaZZWU9rkMsp+OAqA6/VhbMrdQ1JSEt7e3tx5550oL7HXtSRJaBNLqFidgdRgRGajwG1SGPa9/l3tceJIAqvnv4JRp8M/MprJT76ArYPjZT0uoXk11NZyeNM64n9bS0Ot5YSwo4cn/a67ntiRo1HZtP6TUkVFv6JJfhCAHt2/wtNzRJMfY2NJFTdrsgD4ICqQGX4X1yagqLqB+5cc5kCWJTk4d2Bnnh3XFRtl26yIuVRFRUVs2LChccaGq6sr11xzDVFRUZe1sluSJE7WnSSlPIVd+bv4Les36gyWgcZKuZKrgq5iasRUUbUhtH2Hf4T1j4FRCyoHuOol6Hc7NOHiiIuhTUqiYvFPVP/2G5Le0qpD4eqK69QpuE6fgTqg6ZPLgtBsMrfDL7dBXQmonWDix9BtsrWjEtqZ6uok4g/PwWSqxcvzamJiPkEu77gzifQNWjZ++j5p+/cA0OPqsYy4+Y5/La4qqS9h4ZGFrEhb0VipOzxwOPf1vI9I98gmjys7MZ4dPy6iJCcbACdPL66cMZeug4c16YJEQRAE4UzJRx+lsHA1Xl6j6R77mbXDadNEQkO4ZHX7D5Bz880gSbi98j+Wrvu5WVpNGQrrKP40EUlvwmGgHyVdzfz000/IZDJuu+02AgIubWjx3xkrGyj/+Tj6bMtsDfve3rhO7ILcxvIGPO3gXtZ/8BYmo5HO3Xsx8dFnUYkVmm2GvkHLkS0bOfTrKuoqLCfd7Zyc6TNuEj1Gj221ian6+iwOHJyIyVRH5853E9bl8SY/RmpdA2PiUqkzmbmtkyevXeQQ8B2pJTy8NIGyOj2ONkrevCGW8d077jwZSZJITk5m8+bNVFdbnk+6dOnCtddei5dX07SmqzfUsyFrAytSV6Ap0zRu7+zcmRvCb2Bi2ERRtSG0LZIEf74B29+yXA4ZChM+Brdgq4b1F2NFBZUrVlCxZAnGgpOWjXI5jsOH4zZ7Fg6DBolkotA2VJ+0JDVO7LZc7n8XjH4VlGJlttB0Kir2kZB4C2azHj+/KXSNerNDPkdWFp5kzfxXKc09gVyhZNRt8+g+6poz92moZJFmEUtSltBgagDgCr8ruL/X/XT36t6s8ZnNJo7t/JNdS3+gtswy9847uAtD59xC59iezXpsQRCEjkirzWHvvquQJBP9+q7G2TnW2iG1aSKhIVwSU1UVmRMnYSwsxGXKDexUGsk7pmnyVlOmOgPFCxIwlTdgE+qC05xwPv38M6qrqxk4cCDXXHPNf9/JBZJMEjV/5FC9NQckUHrY4j4zivTMg2z87AMks5nwAYMYe//jKC+yjYzQOhj1epK3b+Xg2hVUFVuGOavt7Ol17Xh6j5mAvYurdQP8G5NJy6FDN1BbdxxX1wH06vl9k69wqzaaGHMolQytjoGuDizrEYZKfmEfOE1miQ+2pPLJH+lIEnT1c+bT2b0J6QAtpi6EXq9n586d7NmzB5PJhFwuZ8CAAQwbNgzbJkyGHis7xorUFazPWi+qNoS2yWSAdQ9Bwo+Wy0Mft8zLaIW/t5LJRO2ff1KxeDF1e/Y2bleHhOA2axYukyehcGydCXJBaGQywh+vwq73LZc79YGp34JrkFXDEtqXkpLfSdLciySZCAq8jbCwpzvU+5HsxHjWf/g2DXW1OLi5M+GRp/GP6Np4fa2+lu+Pfs/3R79vfP/W06snD/R+gH6+/Vo0VoNeR/z6NRxYsxy91tKqN6RnH4bOvgXPoOAWjUUQBKE9S0l5jvyCJXi4D6Vnz2+sHU6bJxIawkWTJImCRx+l+rcNqDoHUXPPHWz76dsmbzUlmcyUfq1Bl1mFwt0W73t7svHPzRw8eBA3NzfmzZuHuhl6feqyqyj/+TimSh1pNfHEl/4OQLdhVzH6rvuRKzpWG532yGwykbJnBwdWL6csLwcApdqG2FGj6Tv++lYx5P3osSc5eXIFarUn/futw8bmwobeXyizJDE3KYstZdV0slGx8SKGgBdXN/DAz4fZl2mpdpk9IIjnx0djqxJ/G/9UXl7Oxo0bSU1NBcDR0ZGrrrqK7t27I2/Ckn5RtSG0SboaWHaTZWCxTA7j3oO+t1g7qguiy8yk4qclVK1ahbnOcjJKbm+P88QJuM+ahU14uJUjFIT/kLoJVt4JDZVg6wrXL4SIplsoJAgnT/7C0WNPANAl9DGCg+dZOaLmJ0kSh9atZOdP3yFJZvzCIpnw6DM4ulvauWqNWpakLGGRZhFVuioAurp35b5e9zGk0xCrJn3qq6vY98vPJP7+G2aTCZlMTrfhoxg0bTZO7p5Wi0sQBKE9aNAVsmfPCCRJT5/eS3F17WvtkNo8kdAQLlrVmjUUPPkUKBR4fPIRS75Z0CytpirWpFO39yQytQLve3pQoCvlm28sWcy5c+cSGhraZMf6J1Odnh1vLyQ+ZSMAUUGDuObZR1C6ijZT7YlkNpN+aB/7Vy2jKDMdALlCSfTQkfSfNAU3X+u0TiooWMGxlCcBOb16fY+728AmP8ZbmSd5/0QRtnIZa3qH08PpwoaA70or5aGlhymt1eOgVvDGDd2Z0KPjtpi6UGlpaWzYsIHycksSKDAwkOuvvx43t38PhLxcZ6vaUMgUOKodUcqUKOWWL5Vcdcb3f/6slClRKVR42nkS6BRIkFMQQc5B+Dv6o5KLKjXhMtUUwuKpUHgEVPYw5RuIvNbaUV00U20dVWvXULH4J/QZGY3b7QcMwG32LJxGjkR2iXO+BKHZVebA8pshP85y+cqHYcRzoBC/s0LTyMlZRFr6awBERr5CQKdZVo6o+Rh0DWz6/COO79kBQMyI0Yy6bR5KlQq9Sc+K1BV8mfQlpVpLe6dQl1Du7XkvV3W+Crms9cytqDiZz64l35O639KaTqm2oc+4SfSbcAM29hf2eUEQBEE4U2raq+TmfoOra3/69F5i7XDaBZHQEC6KPi+PrImTMNfV4fnA/WwrzmmWVlO1B05SudJygtnjxmiUEc58/vnnlJWV0atXLyZOnNgkxzkbSZLY+dO3HFz7CwDd3AfTzXkwCkc1blMjsIsSq5zbG0mSOJGUwP5VS8k7alndLpPJiRh4JQMmT8OrBcuta2pTOHToesxmHaGhjxASfG+TH2N9SSW3abIB+LhrEFN9//t32mSW+HBrGh9vS0OSIMrXiU9n9ybUS7RXuVBGo5F9+/axfft2DAYDtra2TJw4ka5du/73jS9BvaGejdkbWX58+RlVG5dLIVPg7+hPkFMQgU6BdHbuTJCz5ecAxwCUcmWHaishXIKSVPjxBqjKAXtPmL3M0vamDZMkifr9B6hYvJiarVvBbAZA6euL24zpuE6ditLDw8pRCsJZGPWw+Tk48IXlcufBcMPX4Oxn3biEdiMj412yT3wKyIjp9iE+PuOsHVKTqyouYs27r1GSnYlcoWDEzXfR4+oxmCQT6zLW8VniZ5yss8xg6uTYiXt63sO4kHEo5K23urkg9Rjbf1hEQeoxAOycXRg4ZSbdR12LQiTqBUEQLpheX8ruPcMxm7X07PEtHh5DrB1SuyASGsIFk4xGTsy9CW18PHa9e1MxZxrbvvsSlY0tc9/5BFefpmk1pcuuouTLJDBJOF/dGedRQWzdupWdO3fi6OjIvffei52dXZMc65/MZhNbv/6MI1sslRnD5txKjwHXUr4kBcNJy0pnx8H+uIwJQaZsPStphKaTn3KU/auXkXX4UOO20D79GTBpGv4RUc16bKOxhgMHJ6HVZuPhPpQePb5G1sQrtlLqtIyNS6PeZObOAC/+F97pP29TXNPAg0sS2JtZBsDM/oG8eF030WLqElVWVrJ8+XLy8/MBGDBgAFdffTXKZvxwWFhXSL2hHoPZgFEyYjQbMZhO/2w0Gy3Xmc+8bDAbKKovIqc6h5yaHHKrcxuHVp6NXCbH196XIOcggp2DiXKPIso9ijC3MGwUNs32+IQ25MReWDLD0ubGPRTm/GL53o4YCgqoWLqMyuXLMZ2qypKpVDiNuRb32bOx7d5dJP2E1id5Fay5H/Q14OBlSWqEDrN2VEI7IEkSx48/T37BEmQyFT26L8TDY6i1w2oyOZpE1n3wFg011di7uHLdw0/hHxXNpuxNfJrwKdnV2QB423lzV4+7mBw2GZWibVS6SpJE+sG97PzpWypOFgDg5ufPkJk3E9Z/oHgtEwRBuACpqa+Qm/ctzs496NvnF/Hc2UREQkO4YKWffUbJhx8hd3DA46uFLH7/tSZvNWXWGSl85xDmWgN2sZ64z4qiqKiIhQsXYjabmTZtGtHR0U1yrH8yGY1s/PR9UnZvB5mMq++4l+6jLO0vJIOZqg1Z1O6xvJFT+TngPjMKlbcou22virMz2b96Oan7dsGpp7+gmO70nzSNoJgeTf4iJEkSmuQHKC7+DRsbX/r3W4da3bTVQJUGI2PiUsnS6rnS1ZGfe3RB+R9DwPekl/LAzwmU1uqwVyt4fXIsk3r9dxJEOD+j0cjWrVvZu9cyWNjf35+pU6c2SwuqpiRJEiXaksYER2OioyaXE9Un0Bq1Z72dQqYgxCWESPdIotyiLN/do3Czbd2PV2hiR9fAL3eASQed+sKspeDQfvtym/V6ajZupHzxYhoSjzRut+3WDbfZs3EeOwa5rWhlKbQipemw/CYo0ljm2gx5FK64B+xFdbJweSTJhCb5YYqL1yOX29G71/e4uPS2dliXRZIkDm9Yy58/fI1kNuMTGsaER54hTpvMJwmfkFphmZ/mZuPGbbG3MT1yOrbKtvmcbzIaSdq6iT0rfkJbbZn94R8ZzbA5t5wx7FwQBEE4k1abz959VyFJenr1/B5398HWDqndEAkN4YJojxwhe+YsMJnwe/MNNiXsa5ZWUzXbc6nakI3SwxbvB3sjKeCrr77i5MmTdO3alenTpzfJcf7JoNfx6/tvkhl/ELlCwZj7HiVq0L9XDmmPlVGxIhVznRGZSo7rhC7Y9/URGdZ2rLwgjwNrVnBs5x+YTSYA/MIi6T95Gl1692uy3/3cvO9JTX0ZmUxJn95LmvxDnkmSmHMkkz/KawiwVbGpTyQe6nNXBJjNEp/8kc4HW1IxSxDp48SC2b0J8xYtpprS8ePHWbVqFQ0NDdjY2DBp0qRma0HV3CRJoqyhjJzqHE5UnyCzKpOU8hRSylOo1FWe9Tbe9t5EuUcR6RbZWM0R4BTQqnpJC01k32ew8WlAgshxcMNXoO44iwK0SUlULP6J6t9+Q9LrAVC4uuI6dQqu02egDhCJYqGVMGjht8fh8A+Wywo1dL0Oet8EwUOgid73CB2P2awn8cidlJfvRKl0oU/vJTg6Rlo7rEti0OvY8uUCju7YBkDXISNwHt+Pz5K/4EipJYHtpHLipm43MSd6Dg4qB2uG22R09fUcXPsLcetXY9TrAAgfMIghM2/CzU+8jgmCIPzT0WNPcfLkctzcBtK714/WDqddEQkN4T+Z6+rIvP56DCdycB47huKrh7Pt24VN3mpKMpg4+dZBzLUG3KZE4NDXh927d/P7779ja2vLvffei5OTU5Mc6+/02npWv/MquclHUKrUXPfI04T27nfO/U3VOsqXpaJLrwTArrsnbpPDkduJXqLtWXVpMQfXrkSzbTNGg+VklGdQMP0nTSXyiiuRKy69/VJVdSJxcdORJAPh4c8RFHhLU4Xd6PWMAj7KKcZOLmNt73BizzMEvKxWx8PLEtmRWgLAtL4BvDwhBju1aDHVHCorK1mxYgV5eXlAy7SgakmSJFFcX8zxiuONCY7j5cfJqck56/72Snsi3SOJcIs43bLKNazNrmrs8Mxm+P152PuJ5XK/22HM29CK+4Y3J2NFBZUrVlCxZAnGAks/deRyHIcPx232LBwGDmyyRLkgXBbNL7D7QziZeHqbWwj0ngs9Z4OTj/ViE9osk6mew4fnUlV9GLXam759lmFnF2jtsC5KdWkJa999naLMNGRyOWGTr2W180EOFlna1dop7ZjddTY3d7sZFxsXK0fbPGrKS9mzbDGaP7eAJCFXKOhx9ViuuGEG9s7t8zELgiBcrLq6TPbtvwYw07fPClxcelk7pHZFJDSE/3Ty+eepXL4CpZ8fHgs/54dXnm7yVlMAtXsKqFybgcLVBt/H+1JeWcFnn32G0Whk4sSJ9OrV9H/8+gYtv7z+IgXHj6KytWPyky8QGB37n7eTzBI1O/Ko3nwCzBIKVxvcZ0Zh01n8rrZ3dZUVxP+2hoTN69FrLe11XH386DdxCtFDR6JUXVxPXIOhkgMHJ9DQkI+X17XExnzS5BU/64oruSM5G4DPojsz2efcbX7iTpRz7+LDFFY3YKuS8+qkWKb0CWjSeIR/M5lMbN26lT179gDg5+fH1KlTcXdvv20+6gx1pFakNiY4jpcfJ60yDZ1J96995TI5Ic4hja2q/vrubtt+/33aBUMDrL7b0psfYNSLcOXDIKoakUwmav/8k4rFi6nbs7dxuzokBLeZM3GZPAlFMyziEISLVpAA8d/BkeWW+RoAMgVEjrFUbYSN6rAJSuHSGAyVxMXPpK4uFTu7IPr0XoaNjZe1w7ogecc0rHv/TeqrKlE52HNimCObOQiASq5iWuQ0bo+9HU+79ttO8e9KcrLZufgbshLiAFDb2dN/4hR6j52AykYsRBEEoWNL0txPcfFveHpeRY/uX1g7nHZHJDSE86rZsoW8++4HmYzAbxaxfuPqZmk1JRnNFL5zEFOVHtdJXXAY4Md3331HdnY2oaGh3HjjjU1+ktfQ0MDKN18i75gGG3sHpjz7Cr5hERd1H/rcGsqWpGAqbwA5OI/qjNOIQGT/MZdAaPsaams5vGkd8RvW0VBTDYCjuwf9rrue2JHXoLqAvuiSZCbxyJ2Ulf2BnV1n+vdbg1LZtCewjtc1MCYulXqTmbsDvXgp7Ozl4JIk8fWuLN7ckILRLBHq5cCns3sT5Suef1tSamoqq1atQqvVYmNjw8SJE5ttblBrZDQbya7K5niFJcHxV0VHha7irPt723n/K8kR6BQoWla1BtoK+Hk2nNgNchVM+hS6T7N2VK2SLjOTip+WULVqFea6OgBk9va4TJyA+6xZ2ISHWzlCQQD0dZbkZNx3kHfg9HbnAOg1x/Ll2rZW2gvWo9MVcyhuGg0NuTg6dqV3r59QqVrve05Jkkj8fQN/fPsFZpMJvYcNa2MzqLU3oZApmBQ2ibu634Wfo5+1Q7WKE0kJ7PjxG4qzMwBw9PBk8LQ5RA8dgVwkPAVB6ICqazQcPDgRkDGg//o222KxNRMJDeGcDEXFZE2ciKmyEo/bbyM/JpJt33zR5K2mAOoOFlLxSxpyJzV+T/Qj/shh1q1bh0qlYt68eU2+Stmga2D12/8jR3MEtZ09U557Bb+wS3uCMTcYqVydTn2CpT2POsQF9xmRKF1smjJkoZXSN2hJ2rqJQ+tWUltRDoCdkzO9x06k5zXjsHU498yJ7BNfkJHxNnK5mr59fsHJqWlPXFcbTYw5lEqGVnfeIeBVWgNPrEhkU3IRAOO7+/HmDd1xtGkfLY/amqqqKlasWEFubi4A/fv3Z/To0e2mBdXF+msQ+V+VHCnlKRyvOE5OdQ4S/35rYqe0a2xX9dcQ8jC3MOyUdlaIvoOqzIXFU6AkBWycYfqPEDrM2lG1eqbaOqrXraV88WL06RmN2+0HDMBt1iycRo1E1kGfB4RWpvgYxH8PiUssyUsAZBB2FfS5CSKuBcXFVawKHU99/Qni4qej15fg4tKHXj2/Q6Fofa/VRoOBbYs+I2nbZgCy/OvYFVuGWQFjQsZwT8976Ozc2cpRWp9kNnNs93Z2/fw9NaWWz8VeQcEMnX0LwT37WDk6QRCElpWQeCtlZdvx9ZlIt27vWTucdkkkNISzksxmcu+4k7rdu7GJ7orbhx/w/bMPN0urKckkUfjeIUxlDbiMC0Hq4cyCBQvQ6XRcc801DBw4sMmOBWDU61n9ziucOHIYla0dU579H/4Rlz+Ety6+iMrVGUh6E3J7JW43hGPXrWOUGwuWDztHt2/lwNoVVBUVApay657XjKPP2InYu7iesX9FxQEOJ8xBkkxERb1OJ/+mHXhvliRu1WSxsbSaTjYqNvWNxPMsQ8A1+VXcszienPJ6VAoZz4+P5sYrOotB91ZmMpnYtm0bu3fvBjpGC6qLVW+oJ7Ui1ZLkqLAkO1IrUs/ZsirYObixiiPKLYoI94gO0xKiRZ08AounQm0hOPnD7OXgG2PtqNoUSZKo33+AisWLqdm2DUwmAJS+vrjNmI7r1KkoPTysHKUgYGkrl/IrxH0L2TtPb3fwhp4zoecc8Lq46mehY6mpTSE+fiZGYzUeHsPpHvs5cnnrSYbVlpfxy/yXKc3IxIxEXFQlySHVjAwayb297iXCrXX8fkuS1Greuxv1eg5vXMf+VcvQ1VuqDjt378XQ2bfgHRxq5egEQRCaX0XlQeLjZyCTKbliwGbs7UXSuzmIhIZwVuXff0/R628gs7EheMVy1iz+ullaTQHUJxRT/vNx5PZKfJ/qz7KVy0lJSaFTp07cdtttyJvwWEaDgTXzXyU7IQ6VjS3XP/MyAVHdmu7+S7WU/ZyCIa8WAIcBvriOD0WmEqW2HYXZZOL43p3sX7WMsjzL0GOl2obYUaPpO/56nD290OlLOXDgOvT6Ynx9JxHddX6Tfwj5ILuQN7MKsZHLWNMrnJ7OZw4BlySJJQdyeWldMnqjmU6udnw6uzc9Al2bNA7h8vyzBdWECRPo1q3pnrPaG6PZSE51jqVVVcXpio7yhvKz7u9p50mkeySjgkYxsctE1Ap1C0fczmRsg6VzLX32vaNh9gpwOXubuwtlMBuo1lVTo6+hWl9Ntf7Uz7rqMy7XGeoIcQmhp1dPYr1icVK3j/kThpMnqVi6lMplyzGVW36PZSoVTtdei/vsWdj26NFqTmIJHVxZhqVqI+EnqCs+vT3wCks7qm6TwebcVatCx1VZeYjDCTdhNjfg43Md3aLfQ9YKWkemaPbz63tvIavTo1Oa2N6rlOAevbm/1/3EeLauRL0kSejMErUmM/UmE3Umc+OXQgbeahW+NiqcFPIWe83Q1lSzb+VSEjatx2wygkxG9JARDJ5+I86ebWNmiiAIwsWSJIm4+BlUVR2iU6dZREW+Yu2Q2i2R0BD+peF4KtlTpyLp9fi88Dwn3J2ardWUZJYo+iAeY3E9zqM7UxulZOHChcjlcu666y58fHya7Fgmo4G1775OZvxBlGobrn/6pQsaAH6xJKOZqt9PULs9DwCljz0eM6NQ+To0+bGE1ksym8mIO8D+VUspzEgDQK5QEj10GK4991BbH4+DQzj9+q5EobD/j3u7OH+UVTPrSCYS8F5kILP8z1zJW6838twqDSsP5wMwKsqbd6f1wNVenMxtjf7Zgqpfv36MHj0a1UUOoO+oJEmiVFva2Krqr9ZVJ6pPnNGyytvem5u73cyUiCmiPdWlSPwZ1twLZiMED7G0mbJzvaCbGs1GEooT2JG/g6SSJCp1lY0JDK1Re9GhyJAR5hZGT6+e9PTuSU+vngQ6BbbpE/9mvZ6ajRupWPwT2sTExu223brhNns2zmPHIL+A2U2C0OxMBkjdBId/hLTNIFkqjFA5QMxk6DUXAvtDG/57FJpeWdl2Eo/ciSQZCeh0IxERL1rtObtaX82in15Dv1GDQpJR4ainaLQ3dw17iL6+fVs0ljK9kf1VteyvqqNEb6TW+PdkxZk/Gy/gbI2dXI6vjRKfUwkOH7UKH5u/flbia6PCV63CQdl0i/EqiwrZteQ7ju+1VHEpVWp6j51A/0lTsbEXn48FQWhfSsv+JDHxNuRyGwYO3IatTdOdPxXOJBIawhnMOh3ZU6ehS03FcdgwHF96ge+fvL9ZWk0BaDWllP14DJmNAr+n+rNu83oOHz5MTEwMU6ZMabLjmIxGfv3gTdIP7kOpUjP5qRcJiunRZPd/Ng2pFZQvO4651gBKOa7jQnC4wq9Nn1ARLp4kSeQkJbJ/9TJyk4/g27cY3z5lSCYlEZ0/JyhiRJMe74RWxzWHUqk0mrjR34N3Is8c0JleXMO8H+NJK65FIZfx2OhI7hoailwMsm/VTCYTf/zxB7t27QLA19eXqVOn4iHazlyyekM9aZVpxBXFsfjYYorrLSuK3W3duTH6RmZEzsBRLVYT/ydJgp3vwrZTq49iplgGgCvPP0eqvKGc3fm72aSBKeIAAQAASURBVJG3g90Fu6nR15x3fyeVE05qJ5xtnHFWW76c1E6Wn22csVHYcLz8OAklCeTW5P7r9u627vTw6kEv71709O5JtEc0Noq2OetKm6Sh4qefqF6/HkmvB0Dh6orrlBtwnTETdcDlVcUIQpOpPglHfrYkN8rST2/3CLdUbfSYCU5Nt3hJaNsKi9aRnPwwIBESfD+hoQ+16PHrDfUsTv6RhJ+XEZplSRCXBykYPe9BhoaMaJHPcMU6A3uratlbWcfeylqO1zVc9H3YyeU4KCxfjko5erNEsd5IldF0wffhoJDje5Zkx1+JEF8bFd5qFfaKC6+kOZl+nO0/LCI/JRkAWydnBt4wgx5Xj0GhFIt0BEFo+yTJzIGDE6mtPUpQ0O2Ehz1t7ZDaNZHQEM5Q9MablH/3HQp3d0JWr2Llp+81W6spSZIo/iQBQ34tTiMCUQ/14d1338VoNHLrrbcSFBTUJMcxm0ys//BtUvfvRqFSMenx5wnu0btJ7vu/mGr1VCxPpeG4ZWCibbQHbjeEo3AQb9o6otQjP5Jb+iIA2Vv8qcxwIbR3PwZMntYkc1zqTWYmxKehqdXSy8me1b3DsPnb3+yahHyeXplEvd6Et5MNH8/sxYBQcUK8LUlLS2PVqlXU19ejVquZMGECMTGtq+1BW6Q36VmTsYavk74mv9ZSueSkdmJW1CzmdJ2Dq62rdQNsrUxG+O0xiPvGcnnwgzDqJTjLewVJkjhWfoydeTsbKzH+XiHjauPKlZ2u5Aq/K/C297YkLlSWZIWjyhGF/MJXi5ZqS0ksSSSxOJHDxYdJLkvGYDacsY9SriTaI/qMKg4v+7bVAsNYUUHlihVULFmCseCkZaNMhuOIEbjNnoXDwIFN+r5NEC6ZJEHOPktiI3klGOot22UKiLgGet0I4VeLQeICeXmLOZ76AgAR4c8TGHhzsx9TZ9Kx/Phyvj/4FT33KvGpsEUC/K4ZxMybn2rS9sf/lN+gZ29lLftOJTAytP+eAxZhb8tAVwe62NvgoFDgoJBjr5DjqFDgoDyVuPjbdsU5Ei/1JjPFegOFOsuX5WcjRae2/fW91mS+4PidlfIzqj3+nuzwVSvxObXd9lTiQ5IkMuIOsHPxN5QXWLoZuPr4ceXMm4i4YrBY+CcIQptWVLQeTfIDKBSODB70JyqVm7VDatdEQkNoVLtrN7m33w5AwGefkq6rZds3X6C0seGmdxY0aaspgIbj5ZR+k4xMJcf3qf7sTzzI5s2b8fHx4e67726SNzRmk4nfPnmX43t2oFAqmfjYc4T0atlSYUmSqN1dQNWGLDBJKJzVuE2PxLaLa4vGIVhXQ0MBBw5OwGCowN35OvJ3+XF83y7Lh3wgMDqWAZOnExR7af3QJUni/mM5rCiqwEOl5Pe+EfjbWlpINRhMvPLrURbvt8z0GNTFgw9n9MLLqW2uTu7oqqurWbFiBTk5lv/Pvn37cs0114gWVE3AaDayIWsDXyV9RWZVJgB2SjumR07npm43iSHif6evgxW3QeoGQAZj3oYBd56xS52hjn0F+9iRv4OdeTsp0ZaccX2UexRDOg1haMBQYj1jLyppcVGhmvQcLTtKYkkiCcUJHC4+TFlD2b/26+TYqTG50dO7J2GuYSjlymaJqSlJJhO127dT8eNi6vbsadyuDgnBbeZMXCZPQuHUPmaKCO2ArgaSV0H8D5B34PR2B2/oMcOS3BCDxDu0rKxPyMx6H4DorvPx85vcLMcxmA2sSV/DF0e+wJBfzsh4LxwalMht1Ix/4AnC+17RpMeTJImcBj17Kmsbkxg5Dfoz9pEB3RztuMLVgYGujgxwccRT3bKvQ7VGU2Nyo1hvtCRA9AaKdH9PfBjRmi888eGmVFiqPdQqvG2U+KiUmLLTKd3zJ6qSkzjW19DFz5+Rc25u0vmWgiAILcVsNrL/wLXU12cREvIQoSH3Wzukdk8kNATAssova8JEjCUluM6cgd1dd/LdE/dZWk3dche9rr2uSY8nSRIlnx9Bf6Iaxys74Tw2mI8//piKigrGjx9P376Xn3Qwm01sXPA+x3b9iVyhZMKjT9Olz4AmiP7S6PNrKf85BWOJFmTgNDwQ56uCkF1Eqa7QNpnNeuLiZ1FdfRgnpxj69lmGXG5DeUE+B9eu4OiObZhNljJw37AIBkyaRpc+/S9qZe3XeSU8m5aPQgbLenRhsJvl5FVOWT33/BSHJr8amQzuHxHGg1dFoBAtpto0k8nEn3/+yc6dln7EogVV0zJLZrbmbGXhkYWklKcAoJaruT78em6NuRU/Rz8rR2hltSWwZDrkx4HSFm74Crpa3iecqD7Bjrwd7MjbQVxR3BmVEXZKOwb6DWRIwBCGdBqCj4N1Ws1IkkR+bT4JJQkkFFu+0irTMEtnnpyxV9oT6xXbmODo7tUdZ3Xrfk+qy8yk4qclVK1ahbmuDgCZvT0uEyfgPmsWNuHhVo5QEP6m5LilaiNxCdT9LeEZOMCS2Og2CWxEMq6jkSSJtPTXyM39BplMQWzsZ3h5jmqy+zeZTWzI3sBnCZ+RU5NDlzwHBmk8UJhluPl3YtLjz+PuH3DZx5EkifR6Hfv+1kLqpO7MakGFDGId7Rl4KoHR38UBV1UbSKRLEjUmM0V/q+z4e7Lj71UfOvOFn0ay09bhIZkI9vIg0NnpdNurU4kQX7UKL7UKlfgcIwhCK1NQsIxjKU+jUrkzaOAfKJWidXFzEwkNwfLB/oEHqPl9C+rQUIKXL2PF/FfIO9o8raYAdJmVlCxMAoUMvyf7kVWcy48//oiNjQ2PPvooavXlDSeWzGY2ff4hydu3IlcoGP/wU4T3G9hE0V86s95E5doM6g8VAaAOcsJ9RhRKdzHIsz1LTXuV3NxvUCqd6N9vHXZ2Z861qC4t5tCvq0jauhmj3lJq7hnYmf6TphI5cAhyxflXLR+orOX6hHSMErzUxZ+7g7wB2JxcyKPLE6lpMOJmr+L96T0ZHundPA9SsIr09HRWrlwpWlA1E0mS2Jm/k4VHFpJYYhnErJQpua7LddwWexudnTtbOUIrKMuAH2+Aiiywc8Mw/UcOqRXsyNvBzvydnKg+ccbuQU5BDA0YypCAIfT16YtacXmv7/9n77zDoyrTPnxPy6T3BqEGCCWk07uACkpTRDoqomBfse66u+7up7u6rrqKqwJWpEkHQURA6T0NCJBCgJDeJmV6Oef7Y2JiKApkkknCua+LK5l3zrznGRjmvOd9nuf3ayy0Zi2nSk+RUpJCanEqqSWpaC3aesfIkNHFt0s9L44OXh2apUSGTauj6rstlK9YgTnrfO24e//++M2YgdeokciUzX/TTOI2wWaxG4gnfXO1kXjkfRA/257kaIb/1yQaB1EUOHv2FQoKNyCXq4mN+Qo/v34NnFPkp5yf+CjlI7IqspAJMCSzDV3O269LXfr0Z+xTL6B2d7+l+QVRJF1n5FBN98WRSi0lZmu9Y1QyGbFedQmMvj4eeDrQgLu5IYoilVZbTYeHtZ60VdEvXR81Py03uNskAwJdlLXJjpAaaavQX6Svan4PdFFeV35LQkJCwpHYbCYOHxmFyVRAt66v0aHDXGeHdFsgJTQkqFi3joI//wVUKjqtXsW5y9mNKjUFUPLZKUxZFXgMaIPfpK6sXLmSjIwM+vfvz9ixYxs0tygI/LjkI07//CMyuZxxz71MxIAhDorcMehPlqDZkIlotCFTK/C7vyvuMdJGc2ukuHgHp04/CUB01KcEBd153WP1lRUkfr+ZlB3bMBvs+tI+IaH0m/AAvYaPQnkNSaEik4U7T6RTbLYyMdiXT3t1xCqIvLMjnSX77JI58R18+WhGPG193RrhHUo4m6qqKtavX8+lS/aNZEmCyvGIosjxwuMsObmEo4VHAZDL5IwLH8cLfV7A39XfyRE2EbknYOWDoC9D5xHIf3sOZUvlWfRWfe0hSrmShJAEhoUNY1i7YXTy6eS8eBuATbCRXZldr4sjpzrnquP81H7EBMfUdnFEBkTiqmw+RQqiKKI/egzNypVU794NNd2AytBQ/KZNxXfKFJRSZ5dEc6K6EFJXQ/I3VxiJd/2Vkbjj700kmh+CYOXU6acoLd2FQuFJQvxKvLxuXo5IFEUO5R9iUfIi0srshtQBojeTznTDdqkUgIEPTGfg5Ok3VcRnE0XStAYO10hIHa3QobnCeFstl5Hg7cEAXw8G+XoS7+1xU0batwuiKFJusZF+OYefdu4gK78ArYcXei8/VF26Y/IPothil8Ky3eCulBwIdlERor7C0NxFRbC6zuMjQKVELiU+JCQkGkDO5S/JzHwDtTqUgQN+QqGQpL2bAimhcZtjvniR7PsnI+r1BL2wEOX4cY0qNQVgyqmi5ONUkEPoi32plhn44IMPAHj66acJDLx1jXJRFNn9+cek7tyOTCbnnmdfpMegYY4K3aFYy42Urz6HOacaAPeEEHwndEGubr1VOrcbev1Fjh2fiM2mpUOHeXTr+scbep1RpyVlxzaSvt+MoboKAE8/f/qMv5/oUWNQudo3y8yCwAMp5zlWqaOHhyvbErpRrbXw9MokTlyyG9E/OqQzr4zpgYtSunlqzdhsNvbu3cu+ffsACAkJYcqUKQ36PpW4NinFKSw9tZR9ufa/a1+1L6/2e5V7Ot/TLCv1HYFNsJFz4lPa7Xgdlc1CmosLT4UGUVbTPRboFljrhTGw7UA8VB5OjrhxKDOU2X04aro4TpeexizU1z9XypT0DOhJTFBMrR+Hs6S1rsRSUIDm22+pWLMWW3k5ADKVCq8xY/CfOQPXmFvzcJKQaBREES4ftXdtpG0Ei11CDZkCut1lT25E3C0ZibdybDYTKamPUFFxFJXKnz4Ja3B373zDr08sSuTDpA9JKk4C7NKHM/0n4Lo1C21pKSpXN8Y+9Tzd+g363bksgsjJan1NAkPHsUot1VcYaLsr5PT19mCgrwcDfD2J83ZH3Yim4q2Vy2kn2bv8S4qyMwH7fdCgB2fRc/hINDaxprPDeoWvh73bo9hkpdhs4UYdPpQyCPmVtNX1uj78lArpGikhIXEVVquWQ4fvwGIpp0f3NwkLm+bskG4bpITGbYxosXBx5iyMJ0/i3rcv7b/4nLX//EujSk0BlH6dhvFsOe7xwfg/2J2dO3dy8OBBwsPDmTNnzi3PK4oiP325mJQdW0EmY+xTC+k19A4HRu54RJtI1e5LVP98GURQBrrhP70HLmGS3l5Lx2YzciJxClrtGXx8+hAftxy5/OZuui1GIyd37+DE1g1oy+0Gtq5e3iSMnUDsmHH8I6+CL/JK8VbK+SGhO3l5VTy3OoVynRkvtZJ3pkQzpvdtrvV/m3GlBNX48eOJiopydlitklMlp3j98Otkauw328PbDefPA/5MqEfrqByuNFVyKP8Q+3L3EXh6M38oykMB7HNz5aXgILoERzO0nT2J0dO/J3LZ7bdhY7FZOFt+1t7BUWI3Gy81lF51XBuPNrUdHLHBsUT4RTjVbFwwm6n+4QfKV6zAmHqydtw1MhK/mTPxvmcsctfm02XSkhGtVmwVFVjLyrGVl2EtK0e0WPC6YwQKX19nh9dyMFVD2iZ718blo3XjHkG/MhLv7rTwJBoXq7WapOSZVFen4apuS0LCGlxdf3t9m1aaxqLkRRzMPwjYfbCm9pjKHdpeHPriS6xmE76hbZj44p8JbH9t+UiTIJBcpa818D5epUN/RQLDSyGnv68nA3zsHRhRXu6Sv4ODEAWB9MP72b9qGVUldrnmgHYdGDbrETrH9vnN5IJNFCk1W+uZmf+S7Cj8ldRVqdnKjW5yuchkvylx9ctzPlLiQ0LituLChY/IvvA+bm4dGdB/x03v+UjcOlJC4zam5MMPKf34E+ReXoRv3sTpk4mNLjVlztdS/GEyyCBkYQL4qnj//ffR6/VMnTqVnj173vLch9au4PC6VSCTMeaJPxA53HHmcY2NKbuC8m/TsVWaQSHDZ0wnPAeHIZMWxC2Ws+f+RH7+t6hU/vTr9x2u6lv//2S1WDiz7yeOb15HRVEBAOci+/Hd0AkAfNW7M+dSi/hgdyaiCL3aePPxzHg6BbbOKmmJ3+ZKCaqEhATGjBkjSVA1Ahabhc9Pf87ik4uxClY8VZ4s7LOQB7o90OJuZkVRJKsiq9bQO7UkFZtg5VlNJY9V2jvFjrTpTvEdrzK4/XAC3CSZoisRRZF8XX6tRFVqSSrpmvSrzMbdlG5EBUbVdnHEBMXgo/ZxSsyGU6fRrFxJ1bZtiGZ7t4nC1xffBybjO206Lu3CnBJXc0cwGDCeOYO1rAxbeTnW8nJsZeVYy8vq/bRVVNg7Da5A7u6O7/Rp+D/0EKpgSXL0pijJsCc2UleDrrhuvF1fe2Kj9/2SkXgrxGwuJTFpGnr9Bdzdu9InYTUqld9Vx2Vpsvgo5SN25+wG7F1z93W7j3m955G5+QdOfLcBgE6xCdz7zEu4etYVkeltAklVOg7VSEglVemvMrT2UyoY4OvJgBoPjEhPN8mnoZGxWiyk7NjK0Q3fYtTZva069I5m2My5hIR3bdDcFkGkxHztZEehqe73covt9yerwVUuq5W3ujLZ8WvpK0+FvMWtFSUkJOpjsVRw8NBwbDYtkZH/JTTE8Qo3EtdHSmjcpuiTkrg0azYIAm3f/Q9iQnyjS00BlK08i+FkKW7RgQTM6ElqaiobN27E29ub5557DsXvmB9fD5vVwsfzZmA2GBg970li7rzHwZE3PoLeQvn6TIxp9kp8dYQf/lMiUHg1TwNVietTULCRM2dfBGTExX6Nv/9gh8wr2GykHznAxt27+XjgeKxKFf2SD2LVhnJGb6+mnd6vPa+Pj8RVJUmX3c5IElRNS5Ymi9cPvc7JUnu1e7/Qfvxt4N9o793eyZH9NgargeOFx2uTGAW6gtrnlKLI+5VmRmjsVZG2Ea+iGP6qZMp7k+gtervZeE0XR2pJKtXm6quOC/cJr5Woig2OpZN3pybd6LBqNFSsW4dm1Sqs+TWfA5kMzzvuwG/mDDwGDmyUrt2WiO7IEfJf/SPWwsIbe4FcjsLPD6W/P4qAAGxlpZgy7d4QMhcXfCbfT8Cjj+LSrl0jRt0K+cVIPHk5ZOz4lZG4u91IPG4WdBgofWe1IgyGPBKTHsRkKsTbO4a42GUolfaERE5VDp+kfsK27G2IiMiQMS58HE/EPkGgzJdtH/ybSyeTAeg38QEGT5uNXoBjlTqO1EhIpVTrsVyx5RGoUjLQ17PWxLu7h6vkt+AkjFotRzetIfmH77BZLAD0HDKCIdPm4B3UuIlhsyBQ/IvEldlCgclC8TW6Pq70UPkt3BXymmSHsp7k1a+THiEuSjxasWm8hERLJyvrbS7lLMHTswf9+n6H7DbsWHcmUkLjNsSm1XJh4iQseXl4TxhP27feYs3//anRpaYsJXqK3ksEEYKfi8eljQdLly4lLy+PkSNHMmzYrXtdXDqZwro3/4y7jy8LPl3WYm+6RVFEd7SQiq3ZYBWQe6rwf7A7rhFXVyBJNE+02gyOn7gfQTDQufNzhHd+1qHzayxW7jqRzmWjhU4lhVQdq0Sv9EQpWJgVVMazM8fg31aqqJWwc/78eTZs2IBOp8PFxYVx48YRHR3t7LBaJTbBxoqzK1iUvAijzYirwpWn455mVs9ZKOTN52Y0X5tfm8A4VngMk81U+5xaoaZvaF9GBfdl3Ilvcc05Ytern/ChfXNQosEIokB2RZ3ZeGpJKherLl51nI/apza5ERMUQ+/A3rgp3Ro9PtFmQ7tnD5oVK9AdOlw77tK5M37Tp+Nz3yQUXrdn9btgNlPy/n8p//JLABT+/rh06IAiIKAmWeGPMiAQZYA/Cv8A+8+AABQ+Psh+VbAjiiK6ffso/XQxhmT7BisKBT7j7iXgscdQd21YxfFtSXURpK6yJzfKMuvG/bvYv7tiZ0hG4q0EnS6LxKRpWCwa/PwGEdr1DZae/oqNmRux1SS17ux4J0/FPkUX3y6U5Fxk83/eoLKoEKVaTZuZj3OmS2+OVOg4pdVfZTDdRq2ql8Do4qaWquibGVUlxRxYvYyzB/YAoFCpiBsznv6THqzXceMMjDaBotouD7uXR+EVPh9FZgtV1ht1+ABPhfyKJIeKULWypuvDPhbsopLM5iUkmhiTqYhDh0ciCEZiopcSGDjS2SHddkgJjRZGVUkxbl7etabAt0L+K69SuXkzqrZt6bx5EycP7ml0qSmA8rUZ6BOLcO3pT+BDkeTn57NkyRLkcjkLFy7EswELkJ++XEzyD9/R+447uXvBcw6M2jlYCnWUrTqHtUgPgOewMHzu6oRMMnZu1litOo6fuA+9/jz+fkOIjf0CmcxxG5k2UWTWyWx+Lq/GDxmmn/MRzALBMj2jL28hwKIBmYyIAUPoP2kKwZ3CHXZuiZZLdXU169ev5+LFiwDEx8czduxYSYKqkbhcfZm/H/o7RwvtOu9RgVH8Y9A/6OrnnE1Kq2AlpTiFfXn72J+7n6yKrHrPt/Fow7B2wxjWbhh9Q/viptfAiilQdBpcPOHBr6HraKfEfrtQbiznZMlJkouTSSlOIa0srV6iCeyyKd39u9fr4mhsvxZTdjaalauo3LgRQWc3ZJa5u+MzcQL+M2ag7tatUc/fnDBmZJD/0suY0tMB8J02lZCXX0bu7n7Lc4qiiOHECUoXL0F34EDtuNedowl4fD5uUb0bHPdtxy9G4snfwOkrjcTvtEtSSUbiLZ6qqpPsOTGTHRoLh3UutV0VQ8KG8EzcM/QK6AXAiQP72Lf4A0SzCb2PP2vumkFJQP3vzQ6uLgyskZAa5OtJB1cXKYHRQijKzmLfii/IOW3vjnX19GLA/VOJuetelM18jauz2Sg2WeslOew/rbVSVwVmy1WeLb+Fj1JxzWTHr7s9QtQqyaReQsJBnEt/nby85fj4xJMQv0a6djgBKaHRgrBZLax47QUsRgNjn1pI24ib95uo2r6dvOcXglxOx2+WYQ5r2yRSU9ZyI4X/OQ4CBD0Zg7qDN5s3byY5OZmoqCgmT558y3OLoshnz8yjqqSICS++Rre+Ax0YufMQLTYqtl1Ad8Qu/aAK88R/eg9UgY1foSlx84iiSNqZ5ykq+g61Swj9+m3BxcWx8j5vZRfw30tFyAUR5eFi5ForE2La8q/7o6i8lMWxzWs5f6LOLLNzXB/63zeVsO637k0j0ToQBIG9e/eyd+9eAIKDg5kyZQpBQUFOjqx1IooiGzI38J8T/0Fr0aKUK3k8+nHm9Z6Hqgk20sqN5RzIO8D+3P0czD9YT+JIIVMQExRTm8To6tu1bgFedAZWPABVeeAZAjPWQNvYRo9Xoj4Wm4Vz5edquzhSilMoNhRfdVyoR2id2XhQLBH+EagawYjQptVRuWUzmhUrMZ8/Xzvu3q8ffjNn4jVqJDKl80zOGxNRENB88w3F776HaDaj8PenzRtv4DXyDoeex3DqNGVLllC9c2ftmMfgwQTMfxz3vn2lm+RbwaSFtI32ro3LR+rGJSPxFk2lqZKv0r5i+ZllGG12359eXv68Mvh9wnyjOFyh5XB5FRXfbyDimN1H41JYOFvunIbR1Z2u7moG+Ng7MAb4ehLmKkn7tmREUeRCygn2r/iK0st27zif4BCGTJtD94FDW6xqwy9orbZ6fh5Fv5K9+vVPg3DjW3X+Knvio1bm6lf+Hr/4fQS7qCRzewmJ38BgyOHwkTsRRSvxcSvx8+vv7JBuS6SERguiPD+PtW+8hrasFJlMTt+Jkxk0ZQYK5Y3dvFoKCsieOAmhqoqABfMJevbZJpGaAtBsykJ3pAB1V1+C5kWh1+t57733sFqtzJ07lw4dOtzy3KU5F/n6padRqFQ89dmqBnWvNEcMaaVo1mci6K3IXOT4TuyKR0KIs8OSuILc3BWkZ/wVmUxBfNxKfH37OHT+7SUVPHL6IgCqk+W4FZv4y/hezOrfod5GR8mlCxzbvI70Q/sRa4xo2/XqTf9JD9IxOk7aFLnNyc7OZv369eh0OlQqFePHj5ckqBqRIl0Rbxx5gz25ewDo5teNfwz6B70DHVt5LYoiZ8vPsi/X3oVxqvQUInXLNl+1L0PChjCs3TAGtR10bQPqC/th9UwwVUJAN5i1Hvw6OjROiVvjF7Px1OLU2iRHhiajVl7lF1wVrvQO7F2b4IgJisHX1dehceiPHkOzYgXVP/0ENvv5laGh+E19EN8pU1C2Ip8eS1ExBX/8I7pDhwDwHD6cNm++0ajv0ZSVRdnSz6jcurX279ctLo6A+Y/jOXy4dA2/VUoyIGU5pKy6tpF45H3gKt1vNmd0Fh3Lzyzn67SvqbbYk/Th3u1pq3anXN2f8y6DyLV6oDYZuHf3Orrk2LupzicMx3v8gwwM8GagjyfB6uZduS9xawiCjbQ9uzm4Zjk6TTkAoV26MWzWXNr3inJydI2LKIpUWW31kh2/7vr4pfOj2Gy5yuT+twhQKe3dHld0evzye4haSZBKhVJKfEjchqSdeYHCwk34+w8lLvYrZ4dz2yIlNFoYRp2Wn79czJn9PwMQ1LEzY59aSFDHzr/5OlEQyHlkLvqjR3GNiqLTyhWk7P6hSaSmbFUmCt4+DjaRoMejUIf7cujQIX788UdCQkJYsGBBg27Qjm5cw4HVy+gc14f7X/2b4wJvRlgrTWi+TceUXQmA57B2+IzphExaQDQLqqpOciJxKqJopmvXV+nY4TGHzp+pMzD6WDomQHFJS+ciMx/PjCe6ne91X6MpyOP4lvWk7f0JwWYFILhTF/qMv4+IAUNQtNJqWonfp7q6mg0bNnDhwgUA4uLiGDt2LC4uUpViYyCKIj9c/IF/Hf0XGpMGuUzOA90eoLt/d4LdgwlyDyLYLRh/V/+b8trQWXQczj/M/rz97M/dT4mhpN7zPf17MrTdUIa1G0bvgN6/PfepdbDpCbCZof0AmL4K3P1v9S1LNAF6i57TpafrujhKUq5pNt7Zp3O9Lo5OPp2QO8Cw0FJQgObbb6lYsxZbuX3zCJUK7zFj8J85A9eYmBa9+V6140cK//pXbJWVyFxdCXn1FXynTm2y92TOzaPs88+oXL8B0WyvQlf36EHg44/hdffd9Tw5JG4CmwUyd9YYif8gGYm3AIxWI9+mf8vnpz5HY9IA4OHWEZPfFAoU0fX+rQI0RUz9cTUemhJkKhVDHn2KfndIkom3ExajkcRtmzi2ZT0WowGA8IR+DJvxMAHtbr2AsjUgiiIVVlt9iasa2atfJz+KzdZaGbffQwYEuShrOzuuJXEV6qIiwEWJQvpelWglaLUZHD12DyDSt88mvL1bd9K0OSMlNFoomUcPsXPpRxiqq5ArlAyeOos+4+9Dfp0Ni7LPP6f4nf8gc3Oj84b1GNxcm0RqCqBiazbaA3m4dPQmaEE0oiiyaNEiNBoN48ePJyEhoUHzr/zLixRknGP0vCeJufMeB0Xd/BAFkardOVTvzgHALToQ/yndkaladittS8diqeTY8QkYjbkEBo4mOupTh254FOlNDD14hiqlDFm5ibFaBe9PicHH/cYqzKrLSjmxdSMnd/+A1WTXZPcKDCLhnklEjbwTF7db1/+WaLkIgsC+ffvYs2cPIElQNQUao4a3jr3F9xe+v+bzcpmcQNdAAt0DCXazJzp+SXYEuQcR5BaEUq7kcP5h9uXtI7EoEatgrX29m9KNgW0GMqzdMIa2G0qwe/DvByWKcGgR7PyL/XHPCXD/UlC1rk7H2wFBFLhQeaE2uZFSnHJNs3FvF29igmJqExy9A3vjrrr164BgNlP9ww+Ur1iBMfVk7bg6IgK3hHjcIiNxjYxE3bUrsmauaQ5g02opevOfVG7cCIBrZCRt33kHdfhvFw41FpbiYsq//pqKVasR9HZfNZeOHQl4bB4+EyYgkxLRt051EZxcbU9ulGbUjf9iJB4zHbzbOC++2xyz1cziM2tZeeYztKZSAKzKUPQ+92Ny7w8yOQoZRHu6E6nIJjR5CYqfjAgWOV4BQUx88TVCwp3jXSXhfHQVGg6vX83JXdsRBQGZTE7UyLsY9OBMPHz9nB1es0YQRTQW21WyVr8kQn6dBLHd4A6hQgbBLr8yNHf5dadH3e8BKkWLLoaQuD04eXIBJaU7CQoaQ3TU/5wdzm2NlNBowegqNOxc+lGtZn7biJ6Meep5/ELb1jvOeOYMF6ZOA4uF0H/8Hd8HHmgyqSmbzkLhW8cQLQKBj0Ti2t2fzMxMVqxYgVqt5oUXXmhQVbC+soJP5s8GUeTxj7/CK6D1SB1cD11SEZp1mSCIuHTyJnBOL+Q3uLkt4VhEUeTkqQWUlu7C1bU9/fpuQaVy3PdVRmEV4w6lU+WnQma08YKbNy8M73pLCz1DdRWpP35P8o6t6CsrAFB7eBAzeixxY8bj6R/gsLglWg5XSlCNGzeOmJgYZ4fVqjmYd5DdObsp0ZdQYiihRF9CqbEUQbxx48df6ODVoTaB0SekDy6Km7ieCjb44Y9wbLH9cf8n4O434Sa6RCSaNxqjptZsPLUkldOlpzHajPWOUcgUdrPxX3VxhHqE3tp15tRpNCtXUrVtW21XwS/IXFxQ9+iBW297gsM1MhJ1ly7NKsmhT0oi/+VXsOTmglxOwOOPEfTkk80iaWCrqKB8+Qo033yDrdLerasMDSVg7lx8pzyA3E3yV7tlRBFyj0PSMrvnhllrH5fJodtd9uRGt7tB6fzPQWtGEEXO6Ywc0FSyLXsb53NXIrPa5cFsigD0PpMQPIcR5+NVa+Ld19sDd7mMIxu+5dDaFQB4tNEz9pmn6djlfme+HYlmQnl+LvtXfkXWcbuPjkrtSp/x99Fn/P24uErfmw3BJoqUW6z1ZK3sHR413R41iZASs5UbXeEmeLuzOLIT7SRvG4lmSmVlMicSHwDk9O//PZ4e3Zwd0m2NlNBo4YiiSNre3fz81WLMBgNKtZrhsx4l5s6xyGQyBIOBCw9MwXz+PJ6jRtHuo0Wk7NjaJFJTAJU7LlL982VUYZ4EPx2LTCZj5cqVZGRk0L9/f8aOHdug+U/v2cWOT/5LcKcuzH77AwdF3fwxZmko++YsosmGMsiNwEd6o/SXKmqbmks5S8nKeguZzIU+CWsc2m64MTmXhSeyMXT1BkHk321DmdOz4ZWCVrOZM/t+4sTWjWgK8gCQK5T0HDqCvuPvv+3bsW9HJAkq52MTbJQbyyk2FFOiL6FYX0ypoZRifXFt0qNYX4zOoiMmOIZhYXZD704+nW7thBYDbHgMzn5nf3z3P2HgUw57PxLNE4tgIaM8g+TiZFJKUkguTqZYf7XZeLB7MLFBscQFxxEbHEt3/+43ZTZu1WjQHTqEMe0MxrQ0jGfOIFRfLYclU6tR9+he08XRG9feNUmOJpZEFC0WSj7+mLLFS0AQULVtS9t/v417H8d6YTkCQadDs2Yt5V98gbXELjOn8PPD/6GH8JsxHYV0z9QwTFo4s8netZFzuG7cPbDOSDy4h9PCa01YBZHTWgNHKrQcrtRyVFONvvoYHpXrUVrs61NB7k1I6BTuDr+fIf5+xHt74KaoK8IzG/Rs/997tZvVHfsF4Bt9ALnShdiYz/D3H+yU9ybR/Mg9l8a+5V9QkGn3VvHw9WPQlJn0vuNO5JKEX6NiFURKLddOdhTWdHsUmiyUWayIQKBKyee9O9Hf19PZoUtI1EMUbRw/cT/V1adpEzqZXr3+7eyQbnukhEYroaqkmB8+fp/LZ04B0CkmnrsWPIvuo0/QrFyJIiiQ8C1b0JqMTSY1JRisFLx1DNFkI2BWT9x6B6LRaPjgA3vi4emnnyawgcaKW979J5nHDjFg8nQGPzjTEWG3GCyFOkq/PI2t0ozcU0Xgw5G4tPNydli3DRUVJ0hKnoEo2uje/f9oFzbDIfMaLTb+/t0ZlmcVYekTADIZf+kYylPhjk08ioLA+cRjHP9uA/npZ2rHw+P70mfcfbTrFSW1/N5GCILA/v372bNnD6IoEhQUxJQpUwgOvgHZIomWhb4cVk2Dy0dB4QL3LYbeUiXr7UqhrrCeTNW58nPXNBuPDIys7eKICYrBz/XGJTtEQcCSk4MhLa0uyZGWhqDVXnWszMUFZUgIyuBglEFBKIODUAUH2x/XjgUj9/S8pWuUKIqIFguCToeo12MtKaHwzX9iPGVfP/tMnEjIn19D4dW811OCyUTlps2UffYZlsuXAZB7euI3Ywb+D81BGSB1XTaY0ixI/gZSV4G2qG68XV9710bk/ZKR+E1gFgROVhs4XKHlUIWW45U6tDYBRBEXYyruFetQWS4BoFZ6Ma7bLP4QMwdf9bU3NTUFeWz+z5uU5eagUCoZNe9Jeo8Yxem0P1Bc/D0KhTtxsd/g4xPbhO9SojkjiiKZRw+yf+XXVBQVAOAf1p5hMx8mPL6fdN/jZC4bzTxy6gKntQZUMhlvdgtjTljrV9+QaDnk5q0kPf0vKBSeDBy4G7WL9Pl0NlJCoxUhCgLJP3zH/pVfY7WYaWu2EXv2IgDtly7FY/CgJpOaAqj6KYeqHy+hDHEn5Ll4ZHIZO3fu5ODBg4SHhzNnzpwGzW81m/l43gwsJiMz//k+oV1uv3YvW6WJ0i/TsBTqkKnk+M/siVsPyci1sTGbSzl2bAImcxEhIeOJ7PW+QxbBl8p0PLE8iTSNDtPAIHBR8GCIHx/07NCoi+z8jLOc+G4jmccP26UXgJDwbvSdcD/d+g2SKpduIy5cuMD69evRarWoVCruvfdeYmNjnR2WhKPQXITlk6EsC1x9YNoq6CRVsErUobfoSStLI7UktVaqqtJUedVxnbw71fPiCPcNvymz8auSHKdP2zs5rpHkuBYyNzd7siMoGGVwEMqgIERBRDDoEfV6BJ0eQf+rPwZD7e9YrVfNJ/fxoc3fXse7gZ3DTY1otVK1fTtlS5ZgyswCQObqiu+UKQTMfQRVG8kDosHYrJD1KyPxX7yLVO7Qa5I9udFxkGQkfgVGm0BSlZ4jlVoOV2g5UanHINQXnvGxpONXtR6d7iwA7kp3ZveazZzIOXi7XP/+Pzv5ON9/+B9Meh2efv5MeOE12nTrDoAgmEhNfZxyzQGUSl8S4lfh6RnReG9UosVhs1pI3bmdw+tXY6yuAqBdr94MnzmX0K7SZ8WZ6Gw2nj93mS3FFQDMaRvAG93CcGnEPSsJiRvBbC7n8JHRWK2VRHT7K+3bP+TskCSQEhqtkrK8y+x891/0+HEfaquNit49ifniS9IP7WsyqSnBZKPw7WMIeiv+07rjHhuMxWLhvffew2AwMHXqVHr27Nmgc1xISWTDv17H08+fxz/+qlGTM80ZwWilbMVZTJkVIAPfSV3x7C/dwDYWomgjJeURyjUHcXfvQt8+G1EqPRo87w+nC3hp7UmqLFaEAcFYvFREe7qxOb5bvfb6xkRTkEfitk2k7dmN1WLXP/cJDiHmznvoNWykZKJ3m6DVatmwYQPZ2dkAxMbGcs8990gSVC2d/GRY8SDoisGnPcxcJ0mnSPwugihwseoiqcWptV0c2ZXZVx3n5eJlT3DUdHFEBUbdtNm4KAhY8guwFhdhLS7GWlyCtaQYa3Exll8eFxdfU77qVpCp1cjd3HCLjyf0r39BFdp46+LGRhQEtD//TOmni2u7TVAq8Zk4gYB581B3do6peatDWwypq+2dG/WMxMN/ZSTe9vqvb8XobDYSK/UcrrAnMJKr9ZiE+tsH/ioFA3w86Sy/zNmcrzlVfAwAtULNtO7TmBs1F3/X6xdmiaLIsc3rOLB6GYgibSN6MuGFP121PrVadSSnPERVVTJqlxASEtbg5tbO8W9aokVj0us4tmktSd9vqb3v6T5oGEOmzWnUfRKJ30YURRblFPOv7AJEoL+PB5/17kSQS/Px3JK4/Th79o/kF6zB07MnfftsQi5vWnlUiWsjJTRaIaIocnnBE+j27qXa1YWD3cJw9fPHbDQ0idQUQPX+XCq3XUAR4Erowj7IFDJSU1PZuHEj3t7ePPfccygaWPW96/NPSP1xG9GjxnDn4087KPKWiWgT0GzIQp9ob4n3GtEe77s6IpNL1WKOJjv7Ay5c/BC53I2+fTY0uOrLYhN4a/s5Pj9wARHw6R9Csa8Sf5WCHX26094Jpmj6qkpSdmwlece22solmVxO59gEIoePIjyhP8pmZOQq4XgkCapWRuZOWPMQWHQQEgUz14K3lPiWuDUqTZWklqTWSlWdLj2NwWqod4xaoWZc+Djm9JpDuG+4Q88vGAxYS0pqkh41yY6SEmQKJXJ3d/sfD/fa32VubsjdPeqPu7k1uVdHUyCKIvojRyj9dDH6o0ftgzIZXmPuJvDxx3FtYDGRRA2/GIknfwOnN9Q3Eu96pz25ETGmVRuJV1ttHKvU1SYwUqv1WK/YLQh2UdYYeHsy0NcDmSmH/6X8j58v/wyAUqZkcsRkHot6jBCPkN88n8Vo5IdP/kvGkQMARI8aw8i581Eor70etVgqSEyahk6XiZtbRxIS1kjyIBLXpKq0hENrlpO27ycQReQKJXFj7qX//dNw82ze8oOtmZ2llTx55hLVNoEwtYovozoT7XVzhRISEo6gzggcEuK/xde3+Xms3a5ICY1WiGb1agr/9ndkKhVe/32XH7dtoDzPrq/bFFJTokWg4N/HEarN+E3uhkdfe4XD0qVLycvLY+TIkQwbNqxh5xBFlj41l+qyEia9/Fe6JPRzROgtGlEUqd6dQ9WuHADcY4PweyACmfL27FxpDMrKD5CS8jAg0qvnf2jT5r4GzZdfYeDplUkk5VQAMHBEB35W25ADq2K6MNzfuYtoi8nI2QN7OL1nFwUZ52rHXT296DF4OL1HjCa4cxdJc7YVc/HiRdatW1crQXXPPfcQFxfn7LAkboakZfDdH0C0QfgIePAbSfddwqFYBAsZmgxSilNILU4luSSZQl1h7fNDw4byUORD9AuVNMqbEn1yMmVLlqL9+efaMY/hwwicvwD3eOl73GGYdZC2qcZI/FDdeK2R+CwIbvmJJI3FytEKHYdrJKROVxsQrjgmTK2ql8AId1Mjk8m4VHWJ/6X8jx8u/ICIiFwmZ1z4OJ6IeYJ2Xr/fOVFRVMjm/7xBac5F5AolIx+ZT8ydvy8PZzQVkpg4FaMxF0/PXiTEr0SplDaoJa5N8cVs9q34kksnkwFQe3jQf9KDxI0Zj1LqUnYKmTojD5+6wHmDCVe5jPd7dOC+EEkxQKLpsBuB30d1dZpkBN4MkRIarQxTdjYX7p+MaDQS/OorBDz8MBazicPrVlF0PoO75j+HT/BvV8A0FO2RfCo2nUfhoyb0pT7IlHLy8/NZsmQJcrmchQsX4ul5bYO3G6X4YjbfvPIsShc1T36+EpWL2kHRt3x0J4rQbMgEQUQd7kPA7F7I3VpfFWJTYzQVcuzYeCyWctq2nUrPHv9s0Hx70ot5/tsUNHoLXq5KFkzqyVsVGiyiyGvhbXimY+P+P71ZyvNzSdu7mzP7fkJbXlY7HtihE5HDR9FzyAhJkqqVcqUEVUxMDPfee68kQdXcEUXY8xbsfcv+OGY6jP+wVVcMSzQPRFEkqTiJZWnL+Pnyz4jYbyF6+PdgTq85jOk0BpVC6vJrKozp6ZQtWUrV9u1Q42Hg3rcvAfPn4zF4kJRkciSlWZCyHFJWgbYuqUdYAsTNht732/2LWgAlZgtHKnQcqenAOKszcuVmQEdXFwb6etb88aC9q0u9z1OBtoBPT37K5qzN2EQbAHd1vIunYp+64c6tSydT2PrB2xi11bj7+DJh4Z8I69Hrht+HXn+BE4lTsVjK8PXpS2zsVygUrjf8eonbj4upSexb/gUlORcB8A4KZsjU2fQYPPy2lbh2JpUWK0+eyWF3uV014KkOwfwpvA0K6dol0QTk5q4gPeOvKJVeDBywCxep069ZISU0WhGi2czFadMxnjmDx6CBtP/ssya/6Io2gcJ3TmCrMOE7PhzPwWEAbNq0iZSUFKKiopg8eXKDz3Nk/WoOrllOeEI/7nv5rw2er7VhzNBQtuIsosmGMsSdwEciUfpKi/dbRRAsJCXPpLIyEU/PXvRJWIdCcWtJNJsg8sGuDBb9nIUoQmRbb954MIa52ZcpMFm4N8iHzyI7NdsNBkGwkXMyhdN7dpF14gg2iwWokaSK60PvEaMJj+97XQkAiZaJIAgcOHCAn3/+GVEUCQwM5MEHH5QkqJorNou9KyNluf3x0Bdh5J8l01qJJudS1SWWn1nO5vOba2Wpgt2Cmd5zOlMipuCjbhmbu60B86VLlH32ORWbNkHNtds1MpKA+Y/jNXq0tFHnSGxWyNpll6T6tZG40g0iJ9UYiQ9uVt/JhSZLrXzU4QotmXrTVcd0c1fXdF94MsDHg7bXkUUtNZSy9ORS1masxSLYP2vD2g3j6din6RlwY90qoiiSuG0T+5Z/iSgKhHaNYMILf8LL/+Y3k6qrz5CYNB2bTUtgwEiioj5GLpfWqRLXRxBsnN2/hwPffoO2rBSA4M5dGD5rLh16xzg3uNsQmyjydnYBH+YUA3CHvxef9OqIr0oq2pRoPMzmshoj8CoiIl6nfbs5zg5J4gqkhEYrovjd9yhbuhSFjw+dt2xBFdL0G026E0Vo1mUg91TR5pW+yFQK9Ho97733Hlarlblz59KhQ4cGn2fFawspzMrgzsefJnrUGAdE3vow52sp/SoNocqM3MuFwEcicWnbsM6Y25XMrH+Rk/MZCoUn/fpuxt290y3NU1Jt4g/fJnMwy97hMKN/B/50b09mp13gcIWObu5qvk+IwEvZMH+ZpsKo1ZJ+eB9pe3ZTkJVeO+7m5U3PISOIHDGa4E6O1U6XcC4XL15k/fr1VFdXo1Qquffee4mNjW22CbjbEpMW1j5k30yTyeHed6HPXGdHJXGbU2mqZE36GlaeW0mpwb455KZ0Y1LXSczuOZv23u2dHOHtg6WwkPIvv0SzZi2iwZ5kcunShcDHH8P7nnuQSR5ZjkVbDCe/haRvoLRurYRfZ4ibCbEznWIknmMwceRXHhgXDearjunh4VqvA+P3THkrTZV8cfoLVp1bVZvA7Bfaj2finiE2OPaGY7OYjOxc8hFnD+wBIHL4aEbPe7JBsj+aiuOkpDyEIJgIDZlEr17vIJNJSTyJ38ZiNpG0bTPHNq/FXPN92Tk2gWEzHyGwQyfnBncbsqlIw/PncjAIIuFuar6K6kyEh1S0KdE4nDn7KgUFa/H07EXfPhslI/BmiJTQaCXojh0j56GHQRQJ+/ADvO+6q8ljEAWRovcSsZYa8BnbCa/h9pvTQ4cO8eOPPxISEsKCBQsavPGlq9Dw6fzZAMz/dBmefv4Njr21Yq0wUfrlaaxFemQuCnzGdsKjXxtkCmnz8UYpKdnJyVMLAIjq/THBwXff0jzHLpTz9MokiqtNuKkU/Ov+KCbFhfF6Vh6LL5fgqZCzPSGCbi10UVaWm1MrSaWr0NSOB3XsTOTw0fQcOgJ3b6kStzWg0+nYsGED58+fByA6Opp7770XtVqS/nM61UWwcgoUpILKHR74ErpLSX+J5oPZZmb7he0sO7OMDE0GADJkjOwwkociHyI2SEqQNhXW8nLKv/kGzfIVCNXVAKjCwgiY9yg+99+PXPpOdyyiCLknfmUkbv87RyaHLqMgfjZEjG0UWUBRFLlgMNfrwMgzWeodIwd6e7rVeGB40N/XE/8brH7WWXQsO7OMZWnL0FrsBunRgdE8E/8MA9oMuKlYq0qK2fyfNym+eB6ZXM4dDz1G7N3jHPK9UFr6MydPLUAUrbRr9xAR3f4ifd9I3BD6qkqOrF9N6s7vEWw2ZDI5kSNGMejBmbfUNSRx65yq1vPwqQvkmSx4KuR83KsjdwVK95gSjqWyMokTiVMASEhYg69PgpMjkrgWUkKjFWCrqiJ74iSsBQX4TL6ftm++6ZQ49KkllK86h8xNSZtX+yJXKxEEgUWLFqHRaBg/fjwJCQ3/Ijj104/8uPhDQsK7Metf7zsg8taNYLRStvwspqwKAJQh7viOC8e1m+R38HsYDDkcOz4Bq7Wa9u0fIaLbn296DkEQWbI/m3d2pGMTRLoGe/LJzHi6hXixqUjDgjOXAPiidyfuCfJ18DtoegSbjYsnk0jbs5vzJ45gs9plFuQKBeHxfYkcPprOcX1QKKUKh5aMIAgcPHiQn376qVaCasqUKYSENC/vl9uKkgxYMRkqcuxmtDPWQDtp8S3RPBFFkSMFR1h2ZhkH8g7UjkcHRvNE7BMMbjtY2mhsImxaLZpVqyj/6mtsZfYOUkVgIAGPPIzv1GkoPD2cHGErxKyDM5vtRuKXDtaNuwdA9FS730bIjftEXIkoiqTrjfU8MIrM1nrHKGQQ4+Ve24HRz8cD75vsEDZajaw+t5rPT39OhakCgAi/CJ6Je4bh7Ybf9P/hy2kn+e79tzBUV+Hm5c34hX+kfa+om5rj9ygs3EzamYUAdO78B8I7P+PQ+SVaN5rCfA6s/JqMo/b/t0oXNX3GTaLvhMm4uLk7ObrbhxKzhcdOX+RIpQ4Z8ErnUJ7rGCKtGyQcgijaOH78Pqq1abRp8wC9er7t7JAkroOU0GgF5L3wIlXbtqHq0IHwjRuQezT9jYcoiBR/mISlUI/36A54j+4IQGZmJitWrECtVvPCCy84xER20zv/x/kTRxn04EwGTp7e4PluB0SbiO5YAVU7LyHo7Tc0rj388bm3M6ogafF1LWw2E4lJD1JdfRpv7zgS4lcil9/c57dSb+GFtSnsOmvX+5wU25Y374vCQ63krNbAPYmZGASBZzsE86cuTS830NgYtNWcO7iXtD27KcrOrB138/ah19ARRA4fTVDHzk6MUKKhXLp0iXXr1tVKUN1zzz3ExcVJNxRNzaXDsGoaGCvAPxxmrbf/lJBoAWRpsvjm7DdsPb8Vs2CXvenfpj8LExbSK+DWN3Ulbg7BaKRi/XrKPv8ca34BAHIfH/xnzsRv9iyUflIhTKNQdt6e2EhZWd9IvG28vWuj9+TfNRIXRJGzOmO9Doxyi63eMS4yGfHe7jUdGJ708XbH4xYlTi02C+sz17Pk5BJKDCUAdPLuxFOxT3FXp7uQ36SUkyiKpOzYys9fL0UUBII7dWHiS6/hHdg48smXc5eRkfF3AEkXXeKWyM84y95vviA/4yxgv7cZ9MAMokbdLRVtNREWQeQvWXl8lWeXsbwv2Jf3enTATSFJyUk0jNzc5aRnvI5S6c3AATslI/BmjJTQaOFUfvcd+S+9DAoFnVauwC3GOSZVhjNllC07g0ytoM0rfZG72zVWV65cSUZGBgMGDGDMmIbLXljMJj5+dAZWs4nZb38o6fPfJILeQtXuHLSHC0AQQS7Dc1BbvEd1QO4mLb5+zbn0v5KXtwKVyo9+fbfg6npzCYeTuRU8uSKJXI0BF6Wcv42PZHq/9shkMiotVu5OzOCiwcxwPy9WxoSjaOUbwKU5Fzm9dzdn9/+MvrKidjy4cxcih4+mx+BhkiRVC0Wn07Fx40aysrIASYKqyTmzGdY/BjYThPWBGd+Ch7Twlmh5lBpK+fL0l6w6t6rWSHhc+DieiXuGtp6tL+nfXBEtFiq3bqNsyRLMFy4AIHN3x+/BB/F/5BGnePTdFtiscH63XZIqffuvjMRdodfEGiPxISCXYxVETmkNtd0XRyt1VFrrJzDc5DISvD1qJaTivT0avNFnFaxszd7Kp6mfkqfNA6CtR1sWxCxgfJfxKG9BX9xqNrPr849J27MLgJ5DRnDn40+jUjeuBGv2hQ+5cOEDACJ7vU9o6IRGPZ9E60MURbKOH2b/yq/QFOQD4NcmjKEzH6ZrnwFScU8T8U1+KX/MyMUqQpyXO19FdSZELXlBSdwaZnMph4/cidVaRfeIv9Ou3SxnhyTxG0gJjRaMOTePC5MmIWi1BD7zNEFPPeWUOERRpPjjVCyXq/Ea3g6fsfaKa41Gwwcf2BeKTz/9NIGBDd9gyU46zsa3/45XQBCP/e8LaaFwi1hK9FRuu4DxXDkAcncl3nd1xKOv5K8BUFi4hbQzzwMyYmM+JyBg+A2/VhRFlh+5xP9tPYvZJtDB352PZ8bTO8y+WS+IIg+dusDOsirauarYkdCdAJfbJ5lks1q5mJpE2p5dnE88hmD7RZJKSZc+/eySVLEJyBUtwxhdwo4gCBw6dIjdu3cjiiIBAQFMmTKF0NBQZ4fWujnyKfzwKiBC93tg8ufgInXdSbRscqtzWZS8iO8vfA+ASq5iZs+ZzIuah49aSnw3FaLNRvXOXZQuWYzpjL0KWaZS4XPffQQ8Ng+X9pKRe6OhLbEbiSd/AyXnMMuUpHp153DoHRxucwfH5EHohPq35h4KOf18PGolpGK83HCRO6ZSWRAFfrz0I/9L/h8Xqy4CEOgWyOPRjzO522RcFLfWgV9dVsqW9/5JYVYGMpmcYbMeIeHeSU1yfyeKIhmZ/yA3dxkymZLoqE8JDLyj0c8r0fqwWa2c2r2DQ+tWYqiqBCCsRy+GzZxL24geTo7u9uCAppp5py9SYbXRVq3i66jORHlJ62GJm+fM2VcoKFiHl2ckfftuRCaT9iSaM1JCo4Ui2mxceughDCcScYuLo+M3y5A5qb3RmKmh9PPTyFRyQl/pi8LTvqjduXMnBw8eJDw8nDlzHNPKu3PpR5zc9QMxd97D6HlPOmTO2xljhoaKrdlYi/WA5K8BoNNlcfzEfdhsejp1eoou4Qtv+LVak5U/bjjFd6n2Kp27eoXwzpQYfNzqqkTevVDIOxcLUctlfBffjejbeLGlr6rk3MF9pO3ZRfHF87Xj7j6+9Bo2ksjhowhs39GJEUrcLFdKUI0dO5b4+Hgp+exoBAF2/gUOf2R/3OdRuOcdkEuLbonWQ1pZGu+deI9jhccA8Hbx5vHox5nWYxpqhdQB1lSIoojuwAFKP12MITHRPiiX433vvQQ8Ng/XiAjnBtgKMdoEEqtq/C+KCkjUCxhk9e/zfAQD/V1FBoZ1YoC/L1Gebijljr3WiqLIvtx9LEpeRLom3X5etQ+P9n6UaT2m4aZ0u+W5886dYct7/0RfWYGrpxfjnnuFjtGxDor8xhBFgTNnXqKwaBNyuZq42GX4+vZp0hgkWg8mvZ7jW9aTuG0TVrMJgIj+gxky4yH8QqUuw8YmW29izqlssvQm3ORy/terQ6vwpzQX6NAnF2GrMCF3VSJzUyJ3VSJ3U1zxuG4cpVy697oFKioTSUx8EIA+Cevw8YlzckQSv4eU0GihlH66mJL//he5hwedN210apVU8eKTmC9U4jmoLb4TugBgsVh47733MBgMTJs2jR49Gl6dIIoiS558GG15Gfe/+jc6x0kLTkdwTX+Nnv743BuOKvDWb1RaIjabnuMn7keny8TPdwBxcctuOCufXljNEysSyS7RoZTLeHVsDx4d0rneYmJnaSVzTl1ABD7o0YGpbfwb6Z20PIovZpO2dzdnD+yprW4CCAnvRu8Ro+k+eBhunl5OjFDiRtHpdGzatInMTLtvSlRUFOPGjZMkqByF1QQbF0DaBvvj0X+DwX8A6cZFohUiiiIH8g7wXuJ7ZFXYZe3aerTlmfhnuKfzPTet1S/RMPQnTlC6eAm6/ftrxzxHjSJw/uO4RUc7MbKWjc5m40SlnsMVWo5UaEmq0mO+4tbbX6lgoEzDwMJ9DLywgR66CygQwM3fbiQePxtCIh0W07GCY3yY/CGpJakAeKg8eKjXQ8zuNRtPF88GzZ26czs/fbkYwWYlqEMnJr70Z3yCndPRKQgWTp16ktKyn1AqvYiPW4WXV0+nxCLROqguL+XQmhWc3rMLRBG5QknMXWMZcP80SV63kam0WJmfdok9mmoA/hTehmc6BLe4zX2bzoIhpRhdUjGWPO3NT6CQ1SU4vFSow31x7eaLS3svZE3sMfLLNnJz/zcQBCvHT9yHVnuGNm2m0KvnW84OSeIGkBIaLRDDqdNcnD4drFba/Otf+N43yWmxmC5WUvLpSVDICH25L0of+4ZVSkoKmzZtwtvbm+eeew6FA+RjirKzWP7HP6BSu/LkZytROsBgXKKOq/w1FDI8B94+/hqiKHLm7EsUFm7ExSWIfn2/Q60OuqHXrk/M5bVNpzBaBEK9XfloRhx9OtVPVlzQmxiTmEGl1cbDYYG8FdGuMd5Gi8dmtXAhOZG0vbvITjqOYLNrQiuUSrr0GUDvEaPpGB0nSVI1cyQJqkbCoIHVs+DSAZCrYOL/IGaqs6OSkGh0bIKNLee38FHyRxQbigHo6d+ThX0WMqDNACdHd/thSEujbMlSqn/8EWpuEd0HDiBw/nzc+/dv9hsXzqbKauNYpa7WwPtktR7rFXfaIS7KWgPvgb6eRLir6/5ey85Dygq7kXh1Qd2L2sZBXI2RuJvvLcWWWpLKoqRFHC08CoCrwpXpPaYzt/dcfF1vbc5fsFkt/PTFYk7u/gGAiIFDGbPgOVSujeuX8btx2YykpDxMReVxXFwCSYj/Fnf3Tk6NSaLlU5Jzkf0rvuRCir2zzcXNnX6TphB/zwRULlKRT2NhFUT+mpXHFzVm4Q+E+PGf7u1xbeZm4aJNxJhRjj6xCMPZcrDVXBQUMtx6+uPSyQfRZEMwWBGMVsSan4LRPiYarQgGK/zGrq1MrUDdxZ7cUHfzQxng2mQSf819XXA5dxkZGX+vMQLfhYtLgLNDkrgBpIRGC0PQ67lw/2TMFy/iNWYMYe+/59Qvh5IvTmPK0ODRLxS/+7vVji9dupS8vDxGjhzJsGHDHHKuQ2tXcnjdSrr2HcDEF//skDklrsZSrKdyWzbGdA0Acg8lvuO64B7Xuk0g8/K/5dy5PwFy4uOW4+fX/3dfY7TY+NuWNFYfvwzA0G6B/HdqLAGe9RepOpuNcYmZnNUZ6ePtzoa4rg7TNW7N6CsrOHtgL2l7dlKSc7F23MPPn15D7yBy+GgC2kka3s2ZnJwc1q1bR1VVFQqFgrFjx5KQkNDsF7XNkuJzsPYhKDkHam+Y+g2Ej3B2VBISTYrBamD5meV8fvpzdBYdAIPDBvN8/PN09+/u5OhuP0zZ2ZQtWUrld99BTQGCa0w0gfPn4zliBDJprQNAucXKsYq6BMZprQHhimPC1Kpa/4uBvp50dnP5/WulzQrnf/qVkbjFPq50hZ4T7F0bNUbiv0d6eTqLkhexN3evfQq5kge6PcDj0Y8T5H5jBT6/hVZTznfv/Yv8jLMgkzF0+kP0nTC52awHrNZqEpOmo9WexdW1HX0S1qBWhzg7LIlWwKVTKexb/mWtvK5nQCBDps6m59ARyCWp0Ebjq7xSXsvMxSZCH293vozqTJBL8zMLtxTp0J0oQp9cjKC11I6rwjzxiA/GLTYYhceNxS2KIqLZhmCw1SY4rKUGjJkaTFkVtWocv6DwU+PazQ91N19cu/gid2+cv5/m3qVhMpdy5MhorNZqukf8g3btZjo7JIkbREpotDAK/vo6FWvWoAwJIXzzJhS+vk6LxZxbTfFHKSCH0Bf6oAywyxPl5eWxdOlS5HI5CxcuxNOzYW3Jv7D8j3+gKDuLuxc8R+877nTInBLXx5hebvfXKDEA4B4XjO+kLsjVra9bo7r6DCcSJyMIZrqEv0SnTgt+9zUXS3U8uSKJMwVVyGTwh1ERPD2yK4or9ItFUeTJM5fYWFxBkIuSH/tE0EYtdRfdLEUXzpO2dxdnD+zFWF1VO96ma3ciR4yi+6BhuHo45rtGwrHo9Xo2btxYK0HVu3dvxo0bh6uTKzJbDIWnYd87cGYzIIJXW5i5FkJ7OzsyCQmnUW4sZ3HqYtakr8EqWpEhY2r3qTyf8DzuqtvXm8pZmHPzKP/iCyrWrUM0mwFQR0QQ8PjjeI+522k+f86ixGzhcEWNB0aFlrM641XHdHJzqU1eDPDxoINbAyu2daV2I/Gkb6DkbN24b0eImwWxM8Dn6u7gC5UX+F/K/9hxcQcAcpmcCV0msCBmAWGeYQ2LqYaCzHS2vPsmWk05ag8P7n3mpWYpHWwyl5KY+CAGwyU8PLqREL8alcrX2WFJtAJEQeDswb0cWL2M6tISAII6dmbYrLl0ipZ0+huLfeXVPJZ2kUqrjTC1im+iw+nl6XxJbUFvQZ9agi6xCEtunaSU3FOFe2ww7gkhuLTxcOg5RUHEkq/FmFmBKVOD6VJVXRcIgAxU7bxw7eaLa1c/XDp4IVPeHkUJZ868REHhBry8IunbRzICb0lICY0WhDEjgwsTJoJMRocvv8BjgHNb7Eu/OYMxrQz3uGD8p9ZVxW3atImUlBSioqKYPHmyQ85VXV7KkiceBpmMJxZ/g7uPr0PmlfhtRJtA9c+XqdqdAyIoA1zxn9YDl/atx8vAaq3m2PEJGAw5BAaMJDp6MbLf0eTefqqAl9edpNpkJcDDhQ+mxTGkW+A1j11yuZi/ZuWjlMG62K4M8JU23RuCzWohO/E4p/fu4kLyCUTBXuOoUKno2ncgvYePokN0rFTx1BBsFihJh4IU+2a6aLN3BLh61/z0qfndp/6Yyu26Pg6CIHD48GF27dqFKIr4+/szZcoU2rRp07TvrSWRn2JPZJzbWjfWYxyM/Tf4OGaTSUKipZNTlcMHSR/w46UfAejo3ZF/Dvkn0UGSn4MzsJaUUP7112hWrUbQ2TtoVB06EDDvUXwmTULeSuVi841mjtRISB2p0JKpN111TDd3dV0Cw9ej8YpbRBHykuxdG6fXg+mXIhAZdBlp79rofg95xlI+SfmE77K/QxDta6kxncbwZOyTdPbp7LBwTv+8k12f/Q+b1UpAuw5MfPE1/No032uYwZBLYuKDmMxFeHvHER+3DIVCSpJKOAar2UzyD99xdOMaTHr7d2TH6DiGzXyE4E7hTo6udXJeb2T2yQtkG0y4K+R80qsjdwc2vZeJaBMxZmrsklJnyuqSCXIZrj398UgIwbW7X5N5XAhmG6bsSkyZGoyZFViL9fWel7koUIf71MlTBbk12w6LhlBRcYLEJLt8b5+E9fj4xDo3IImbQkpotDC0+w9gPHOGwPmPOzUOS6GOov8mgQxC/hCPKsSeQdbr9bz33ntYrVbmzp1Lhw4dHHK+1J3b2fXZ/2jTrTsz3njXIXNK3Dimi5WUr07HVmECuQyfuzvhOTQMmbxlX9REUeTU6acpKfkBV9cw+vXd8puVWGarwFvbz/HFwQsA9O3kx6Lp8YT6XLvS/JBGy5TULGwivNEtjHntGt6yL1GHrkLD2f0/c3rPLspyc2rHPf0D6DVsJJHDR+HfVvIq+U2sZig+AwWp9gRGQSoUpYH16mrS30WurEt8uPrUJTp+lQTRGGwcP5mOxihikbsRP3A4PeMGIHP1tb9OKWkKk3sC9v4bMnfUDMgg8j4Y9qJDDV8lJFoTh/MP8+eDf6ZYX4xCpuDx6Md5LPoxVPLmJy9xO2CrrESzciXlXy/DVlEBgDI4GP+5j+D34IPI3VvuBrEoiuQYzTXJC3sS45LRXO8YGdDTw7XWA2OAr4dzpE7Ment3X8oKuGg3ci9RyFkSEMw6DzXWGrH1Ee1G8HTc0w6VbbNZrexZ9hkpO+xJ+a59BzD2qYW4uDX/f3utNoPEpOlYrRX4+w8lJnoxcrm0PpFwHIbqKo5s+JaUHdsQbFaQyYgcNpLBU2fjFXDtIjmJW6fCYuWxtIvs12iRAX/u0pYn2wc1yQa9pViPLrEIfVIxQnXdtULVxgP3hBDcY4NQeDo/2W+tNGHKrKiRp9Ig6K6Qp/JR26Wpuvmh7up7wzJYV9Kc/DTsRuAT0WrP0bbNg/Ts+S9nhyRxk0gJDYlbomz1OQwpJbj1DiBgVq/a8UOHDvHjjz8SGhrK/PnzHfZltfHtv5OddJwh0+bQ/74HHTKnxM0h6C1oNmZhOGU32FJ388V/SncU3s6/AN8qOZe/JDPzDWQyFQkJ3+LjHXPdY/MrDDy1MonknAoA5g8L58W7u6O6ThVFgcnMncczKLVYmRzix0c9OzSbi3drQxRFirKzSNu7m3MH92LUVtc+1yaiB71HjKb7wKGo3R3butvisBihOM2etMhPsf8sPgM289XHqr0hNBraxICLOxirwFhpr/Ss/b3S/rupCsQr1cBvEYX6ioTIlUmRa41710+eKFqotMmlw7Dv33Y9dACZHKKmwNAXIEjyBpCQ+D0qTZW8efRNtl/YDkDvgN78c+g/HVptLnFzCHo9mjVrKP/iS6zFdjN3ha8v/g/NwW/GDBQ+TV8le7OIoki2wcThiroOjDyTpd4xciDKy40Bvp4M8vWkn48HfqrmdS2qKEjmi0Nvsqr6HMaa9egAg4Fn5CFExz0CvR+4ZSPxK9FXVvDd+2+Re/Y0AIMenMmA+6a2KE+VysoUklNmY7PpCQ6+h96R/5VkSCQcTkVRIQdWfU36YXvCUalyIf7eifSb+IB03+JgLILIa5m5LMsvA2BqqD//7t4OdSN8LwkGK/rUEvSJRZgv192Xyj2UdZJSbZuvaoMoiFgKdLXeG6YLlVfLU7X1rPXfUHf0vmF5qubkp3H58tdkZP4DpdKnxgjc39khSdwkUkJD4qaxlhoofPcEiBD8TBwuYfYvY0EQWLRoERqNhvHjx5OQkOCQ81lMRj5+dAZWi5k573xEUIdODplX4uYRRRH98SIqvjuPaBGQe6jwmxKBW4+W9+VfWZlMYtI0RNFKRMTrtG8357rH7kkv5vlvU9DoLXi7Knn3wVju7HV9o0CTIHB/chaJVXoiPV35Lj4C9yZqH73dsVosZCceJW3vbi4kJyLWbLQrXdR06zeQyOGj6dA7ukXdVDeY9O2w5y0oOg2C9ernXX2gTaw9edE21v67X+cbMhEF7PIWZm1dcqNe8uNXP2ufr0Q0VqHXFGLVluKKGTXXSKrcKiqP6yc86v1+neddvG78vTcUUYSLB2Dv27XVs8gUEDMdhi6EgC5NE4eERCvi++zveePoG1Sbq3FVuLKwz0KmdZ/WLG6eb1cEs5nKTZso++xzLDn2jkq5hwd+M6bj/9BDKAObT0WyIIpk6I31EhjF5vrXTqUMYr3cazsw+vl44KVsnpvdWrOWZWeWsezMMnQWu8RNjFcnnjUq6Jd14Goj8bhZ0GnoLV8Hi7Kz2PyfN6kuK8HFzY2xT79I1z79HfV2mpSy8gOkps5DFC20bTuNHt3fkL5HJBqFgqx09n7zBXnn0gBw8/JmwOTpxNw5BoVS6jR0FKIo8kVeKX/JzEMA+vt48HnvzgS6NDwBLQoipqwKdIlFGNJKwfqLpBS4dvfHo08Irt39W6QvhWC2Yb5YhTFDgzFTg7XoCnkqlRx1uA/qbn64dvNFGez+m9+VzSGpYTKXcvjwKGw2Ld27/x/twmY4LRaJW0dKaEjcNOXrMtCfKMK1ux+Bj9SZkmZmZrJixQrUajUvvPACLg7Syc06cZTN7/wf3kHBzFv0ubSQbAZYivWUrzqHpcB+Y+Q5uC0+Yzu3mAu0xaLh6LHxmEwFNVVXH17zc2UTRP67K4OPfs5CFCEqzIePZ8bT3v+32+VfTr/MsvwyfJQKdvSJoFNDjR4lbgmtprxWkqo873LtuFdAEJHDR9Jr+Cj8Qts6McJGxqCB7a/CydV1Y27+dUmLXxIYvh2v633R2Fy+fJl169ZRVanBXW7jruEDiI7oiMxUXb8jxFR5RVLkGh0jVoODopKB2uv3u0Fqf/f91e+/+Im4//bfqSjaOzH2vQM5h+1jchXEzYQhz4NfJwe9FwmJ25NCXSF/OfgXjhQcAWBw28H8Y/A/CHYPdnJktzei1UrVDzsoW7wYU2YmADK1Gt8HHiBg7iOowpreW8EmipzRGmrlo45Uaim32Oodo5bLiKtJYAzy9STexx0PRfNMYPyCwWpg1blVfHH6CypNlQD08O/BM3HPMDRsqH3dqyuFk2vsfhvFZ+pe/DtG4tfj7P6f+XHxIqwWM35twpj40p8JCGvv6LfWpBQVb+f06WcBgY4dn6BrlxedHZJEK0UURc4nHmP/ii8pz88FwDe0DUOnP0S3/oOlPRAHsqe8isfTLlJlFWjv6sKyqM70vEWzcEuJHn1iMfqkImxVdQVayhB3PPqE4B4bjMKr5SpaXAtblcluLp5ll6gStPW7FlVtPPAa3g63qCBkimt/bp2d1Dh77k/k53+Ll1cUffuslzrwWihSQkPiprBWGCl85wTYRIKeiEHdse7fZsWKFWRmZjJgwADGjBnjsHP+uPhDTv30I7F3j2PU3AUOm1eiYYgWgcrtF9AeygfsFy7/6T1QBTdvbVxRFEg9OY+ysr24uXWiX99NKJVXm5yXVJt4bnUyh87b21JnDejAn+/thavqty92KwvKWHjuMjJgeXQ4owKk7y9nI4oiheczSNuzm3OH9mKqMSoFCOvRi8jho+k+cEiL0HW+YdK3w3d/AG2hXbpowJPQf4F9Y6KZ3RDp9Xo2bdpERkYGAL169WLChAm4ul7bm+a62Cw3lvy46vlf/X4t+a1bQaa4IsnhWz8hkpcIeSfsxypcIP4hGPwc+LbsjR8JieaEIAqsOreK9xPfx2Qz4e3izV8H/pW7O93t7NBue0RBQLtnL6WLP8WYetI+qFTiM348AY89hjq88WTCrILISa2+NoFxtFJLlbW+bKKbXEYfH49aE+84L3dcW0inrdlmZl3GOpaeWkqpwS4T29mnM0/FPsWdHe9ELrvG+xBFyE+CpOsYicfNgh73XtfnSrDZ2LfiSxK3bQIgPL4v9zzzYquRzMnLW8259NcA6Nr1j3TsMM/JEUm0ZgSbjVM//cihtSvQV1YA0KZbd4bPepSwHr1++8USN0yGzsicU9lcNJjxrDELv/MGzcIFoxX9yRL0J4ow5/xKUspdiVtMEB4JIajCPG+LJJQoilgK9TXm4hq7PFVNd4rCT43XsHa4J4Qgd7l6D8VZfhoGQy6Hj4xCFK0kxH+Lr2+fJo9BwjFICQ2Jm0KzOQvd4QLU4T4EPR5dN67R8MEHHwDw9NNPE+ig1nFREFj8xEPoKjRM/tM/6BQT75B5JRyH4WwZmnUZCDorMpUc3wldcO8T0mwv4Bcu/o/s7PeQy9X06bMBL88eVx1zNLuMZ1YlU1xtwt1Fwb/uj2Ji7O9XDaZU6ZmYnIlJEHm5cygLO4U2xluQaABWs5nziUc5vWcXl1KT6ySp1Goi+g0icsSdtO/Vu+VKUunL4YdX4eS39scB3WDSx9C+n3Pj+h1EUeTIkSPs3LkTQRDw8/NjypQptG3bxB00FuNNdIZU/uqYXyVHbtRPROkKfebCoGfBu03jvi8JiduY7IpsXt3/KmfLzwJwb/i9/Kn/n/B2ke4vnI0oiuiPHqNsyWJ0h2q61WQyvO66i4DHH8MtMrLB5zALAilVeg5X6DhSqeVYpQ6drf73tKdCTl8fDwbVJDCivdxwaWHrAKtgZcv5LXya+ikFugIAwjzDeDL2Se7tfC8K+Q1Wn5r1cHYLJC+vk0IEcPOD6Kn25EZoVO2wobqKrf99m5zTqQAMuH8qg6bMbLnrqOtw8dJizp//NwA9e7xN27YPODkiidaO2aDnxNaNHP9uA1aTCYCufQcydMZD+Le98c4pietTbrEy7/RFDlXYzcJf79KW+dcxCxcFEdP5CvSJRRjSyhAtNdcRmV1Syj0hGLeeAS1GsaKxEPQWtIcL0B7KqzUWl3so8RwUhufANsjd6yTUnNWlcfbca+Tnr8bPbxDxcd806bklHIuU0JC4YWzVZgrePg5WgcB5vXHt6lf73M6dOzl48CDh4eHMmXN9L4KbpTArgxWvLcTFzY0nlq5EqZI0JJsjtioz5WvSMWVVAOAWHYjffd2QuzUvQ8RyzWGSk+cAwjVvRgRBZPG+bP7zYzo2QSQixJOPZ8bTNfjqDo4rKTVbuftEOnkmC3cFePNVVGfkzTSpI2GnuryUs/v3cHrPLjQ1rd0A3kHB9Bo2isjho/ANaUFJqXPfw9Y/gLbI3pUx6BkY8UdQ3VoLtTPIzc1l7dq1VFZWolAouPvuu+nbt2+zTZBehSiCWff7XiIuHhA/Bzwl+RsJiabAYrPw6clP+ezUZwiiQIh7CG8OeZP+bVqmtn9rxHDyJKWLl6Ddvbt2zGPoUALnP457nxuvnjTYBJKqdLUeGIlVOoxC/dtYX6WC/r4eDPCxJzB6e7qhlLeQ68wVCKLADxd+4OPUj7lUdQmAYLdg5sfM576u96FSNODeqTwbkldAykqozq8bbxMLcbMo9unL5kWLqCopQqV2ZcxTzxPRf3DD3lAzJjPrLXJylgJyoqI+IjhI6vaSaHy0mnIOrV3B6Z92IooCMrmc6NFjGfTAdNx9fJ0dXovHLAj8KSOP5QV2VYaZbfz5V0S72qS2tdSALqkIfWIxtkpT7euUwW54JITiHheMwrt1SUo5AsFsQ59YRPW+XGwa+9+bzEWOR782eA4JQ+lr7/hr6qSG0ZjPocMjEUUL8fGr8fPt2yTnlWgcpISGxA1T8f0FtPtycengRdATMbVfOhaLhffeew+DwcC0adPo0ePqivdb5eCa5RxZv5qI/oMZv/CPDptXwvGIgkj1vlyqfrwEgojCV43/9B71ZMmciclUzLHj4zGbS2nT5gF69Xy73vMVejMvrEll97liAO6PC+ON+3rjfgMmYVZBZPrJ8+zXaAl3U/NDnwi8m6k5pMTViKJIQWY6aXt3kX5oPyZ9nSRVu169iRw+mogBg3FxbaaJAX05bH8FTq2xPw6MgEmfQLuW2T5rMBjYtGkT6enpQAMkqCQkJCSuIKU4hdcOvEZOtd2YelbPWTwX/xyuSun7pblgzMigbOlnVG3bBoK9AtYtIYHABfPxGDLkqk0PndXG8SpdrYRUcpUe8xW3rQEqJQN86ySkenq4tviiE1EU+fnyz3yU8hGZGrsfiZ/aj0ejHmVq96mO/UwLNjj/MyQvsxdPCBbSqwL5IT8Cq6jAx9+HSa++QWDHxpMKaw6Iosi5c38iv2ANMpkLsTGf4+8/yNlhSdwmlOXmsG/Fl2QnHQdA5epGvwmTSRg3CZVauoY1BFEUWZpbwt+y8hGAER5ufGDzRJZaivliVe1xMlcl7rE1klLtbg9JqYYi2kQMp0qo3ptb67+KXIZ7bBBew9uhCvFo0qTGufS/kJe3Ej+/gcTHLW/080k0LlJCQ+KGsOksFL59HNFsI+ChXrj1DKh9LiUlhU2bNuHj48Nzzz2H3IEtxstefoaSSxcY8+TzRA4f5bB5JRoP8+Vqyladw1ZuBDl4j+qI1x3tkTmx8k0QrCSnzKai4hieHt3p02c9CkXd5nTq5QqeXJFEXoUBF6Wcv0+IZFrf9jd8UX3jfD4f5RTjJpfzfUK3WzYVk3A+FrOJrONHSNuzi0unUuwV94BK7UrEgCFEjhhFux6RzUdK4exW2Po86IprujKerenKaNk3Ns1GgkpCQqLVobfo+c+J/7A2Yy0AvQJ68fWYr6WkRjPDnJND2edfULlhA6LFbjiq7tUT9eMLOBPfl8NVBg5XaDmp1WO74i41xEVZm7wY6OtJN3d1q9l4EkWRwwWH+Sj5I06VngLAU+XJQ5EPMbvXbDxUjetbIVSXcPDT/+PYiWwAOnpouDfsHG4BbSG2xki8FftBCYKV02nPUlKyA4XCg/i45Xh7R//+CyUkHMTltJPsXf4FRdlZAHj6+TPowVlEjhiF/Eal5SSuQhREDqfkc/bgZYYVWnCz1TwhA9cIP9wTQuySUqpmcg/YwhBFEVOGhuq9uZiyK2vHXXv64zWiPS4d7IoYjXmtrtedEbcKP7/mLcks8ftICQ2JG6Jy5yWqd+egauNB8LNx9b5oli5dSl5eHiNHjmTYsGEOO2dVaTFLn5qLTCZnwZJvcPe+MZMmCecjGK1UbD6PPtne7eDS2Rv/aT1Q+lzbTLCxyTr/DpcufYpC4UG/vptxd7dXkImiyDdHLvF/W89gsYl0DHDnfzPi6R1245+1rcUVzEu7CMCnvToyKcTvt18g0WKoKi3h7P6fSdu7C01BndSCT0gokcNG0WvYSHyCQ5wTnL4ctr8Mp+wbcgR2r+nKSHBOPI1Ebm4u69ato6KiAoVCwV133UW/fv1azcaUhISE89iXu4/XDrxGhamCByIe4PWBrzs7JIlrUJxXyO6t2zlYUEJq526cb9cR4YqignauKgb4eNZ6YHRyc2mV14nk4mQ+TPqQE0UnAHBTujGz50wejnwYH3Xj3ycZtVq2LXqHiymJAPS9YwhD2hYiT7vCSDx8BMTPhu73tvgCi2shCCZSUueh0RxCpfInIX41Hh5dnB2WxG2EKAicO7yfA6uWUVVSBEBg+44Mm/kInWITWuX3X2NhLTOgSypGn1iEraJOUuqCh5wf27lw5x3hDOsU8BszSNwsppwqqvfmYjxTBjW7zC6dvPG+syOuXXwb7bzn0l8nL285vr79SYhf2WjnkWg6pISGxO8iGK0UvHUc0WjFf0YP3KODap/Ly8tj6dKlKBQKnn/+eTw9PR123pQd29j9xSe07d6L6f/4t8PmlWg6dElFVGw6j2i2IXNT4j+5G269HWMYf6OUlv5E6snHAOgd+SEhIfcCoDVZeXX9SbaetBsn3h0ZwjtTYvB2vXGt4XSdkXsSM9DZBBa0D+JvXX/fOFyi5SGKIvkZ50jbs5P0w/sxGwy1z7WPjKb3iNF06zcIVVNJIl3ZlTH4ORj+aqvcNAC7BNXmzZs5d+4cAD179mTChAm4uUmdUBISEg3jUP4hFuxcgIjIO8PfYUynMc4O6ban2GThcKW2VkLqnM541TFhxQXEZJ4lrqSAEQP7EjlpAvJWLEt4tuwsi5IXsT/PbtKtkquY2n0qj0Y9SqBb06yrSy9fYvM7b1BRVIDSRc3dC56lx+Dh9ifNejj7HSR/U99I3NW3zki8TevqYrBatSQnz6aq+iRqdSh9Etbi6ip1kUo0LVaLhZQdWzm64VuMOi0AHXpHM2zmXELCuzo5uuaLYLJhOFWKLrEQ84VfS0opcI8JwhodyGMVJRyp0iMH/tEtjEfDAqVEkYOxlOip3ptrL4K1iSCXEfR4FOpOjk/QG40FNd0ZZuLjVuDnN8Dh55BoeqSEhsTvUrXnMlU/XEQZ5EbI8wn1pIM2bdpESkoKUVFRTJ482aHnXf+v17mYksjQGQ/Tb+IDv/8CiWaJtdRA2epzWHLtiyyP/qH4jgtHpmr8lliDIY9jx8djtVbSrt1sukf8DYBzhVU8uTyJ7FIdSrmMV8f24NEhnW9qkVJttTE2MYMsvYlBvp6sienSYg0lJW4ci8lI5rHDpO3ZRU7ayTpJKlc3ug8cQuSI0YR179U4C15dmb0r4/Q6++OgHjDpYwhrXV0Z10IURY4ePcqPP/6IIAj4+voyZcoUwsKkJKKEhETD+DDpQ5aeWoqnypM149bQ3rv1yuU0R/KNZg5XaDlcoeNIpZYsvemqYyLcXRng68EgX0/6quS4blxH2ZdfYSstBUAREID/ww/hN306CgcWVzmb7IpsPkr5iJ2XdgKgkCmY1HUSC2IWEOoR2mRxZB47xPb/vY/FaMA7KJiJL/6Z4E7h1z64/AKk1BiJV+XVjYdGQ/wciHoA3FpHN7PZXE5i0nT0+izc3cNJiF+Ni4tUyS3R9Bi1Wo5uWkPy9i3YrFYAeg69gyFTZ+MdFOzk6JoHoiBiulCJPrEIw+lSRLPdowkZqLv54ZEQjFuvgNo9CpMg8Ep6LqsLywGY0zaAN7u1QyXd7zscW5UJzcYsjGfLkXu7EPJsHApPxxqtp2f8jdzcb/D17UdC/CqHzi3hPKSEhsRvIphtFL59HEFnwW9KBB4JdfIqer2e9957D6vVyty5c+nQoYPDzms2Gvj40enYrFYefvdjAto5bm6Jpke0ClTuvIR2by4AyhB3Aqb3QBXaeDq/gmAmMWkaVVWpeHtFk5CwGrlczbrEXP686RRGi0AbH1c+mhFHQkf/m5tbFJl7+gI/lFbRVq1iR58IglxuvLNDonVQVVLMmX0/kbZ3NxVFBbXjviFtiBw+il7DR+Id6KCbiDNbYNtC0JXUdGX8AUa8CkrnyLg5i7y8PNauXUtFRQVyuZy77rqL/v37SxVTEhISt4xVsDJ3x1ySi5OJDIjkm7HfoFJI1/TGQBRFcoxmDlXUdWDkGM31jpEBvTxdGejryQAfTwb4ehLoorxqLsFopHLjRsqWfoYl3y4LKffywm/WTPznzEHp13I3zXOrc/kk9RO2Zm9FEAVkyBjbeSxPxj5JR++OTRaHKAgcWreKI+vtmz/tI6MZ94dXbkwGWLBB9s+Q9A2c2waC3QcFhRp6jrd3bXQeDs3Fk+wWMRoLSEx8EKMpHy+vSOLjVqBUejk7LInblMriIg6sXsa5g3sBUKhUxI0ZT/9JD+LaipK9N4O13Ig+qQhdUrHd47MGZaAb7gnBuMeHXFcWWxRFPrlcwv+dz0cEhvh6srR3J/xUV1+TJBqGYLJS/FEK1hID6i4+BD4a5TAPVqOpkMOH70AQzMTFfoO//yCHzCvhfKSEhsRvUn0gj8qt2Sj8XQl9IQGZom7RefDgQXbu3EloaCjz58936IZS5rFDbHn3n/iEhPLoB0ulzapWgjFTQ/madIRqCyhl+N4bjseANo3y75ue8Xdyc5ehVPrQr+93yJShvL45jW9PXAZgWEQQ/50ai7/HzWf/P7hYxL8uFOAik7Epvivx3o1rwCjRvBFFkbxzaaTt3U364QNYjDWSVDIZHXrH0Hv4KLr2G4hKfQtyGLoy+P5FSNtgf3wbdWVcD4PBwJYtWzh79iwAPXr0YOLEiZIElYSExC1TqCvkge8eoNJUyexes3m578vODqlVIIoi5w2mug6MCi35Jku9YxQyiPJ0Z4CvBwN9Penv44HvTWwWiRYLldu2Ubb0M8znzwMgc3PD78Ep+D/yCKrQputkaChFuiKWnFzChswNWEV7lfXI9iN5Ou5puvl1a9JYTHo933/0H7ITjwEQP3YCw2bNRaG8hY08XZnd8yv5Gyg6XTfu0wHiZtYYibfc4jW9/gInEh/EYinH17c/sTFfolDcXgUnEs2Louws9i7/gstpJwFw9fRiwP1TibnrXpSq1p+wF8x2SSl9YlE9A2qZ2i4p5Z4QgksHrxveg/ixtJInzlxCZxMId1OzLLozXd1br8yhs7AU6Sj+XwqiWcDrjvb43N3JIfP+si/k49OHhPjV0t5iK0JKaEhcF9EqUPjv49iqzPje1xXP/m1qnxMEgUWLFqHRaBg/fjwJCY7dXPvhk/+StmcX8fdM5I6HHnPo3BLOxaY1o1mbgTFdA4BrT3/8HohA4eG4xVVR8fecPv0MADHRn1FNP55Ynsi5wmrkMnh+dARP3dEV+S1k/feUVzE9NRsReLd7e2a2lVrLJeowGw1kHj1E2t7dtTcRAC5u7nQfNJTI4aNpG9HjxhZSZzbD1oWgLwWZAob8AYa/ctt1ZVwLURQ5duwYO3bsqJWgeuCBB2jXrp2zQ5OQkGih/JzzM8/+/CwAi0YuYkT7Ec4NqAUiiiLpeiOHNHUSUiVma71jVDIZsV7uDPT1YICvJ/18PPBUNlyGVBQEqnftomzxEoxpaTUnU+E7aSIB8+bh0rHpOhtulnJjOZ+f+pxv07/FZLNLbg1qO4hn4p6hd2Dvpo8nP5fN77xBeX4uCpWKOx97msjhoxo+sShCQYq9a+PUOjD9stFYYyQeNwt6jGuRnmBV1adJSpqJzaYlMHA0Ub3/h1wuVXFLOA9RFLmQfIJ9K76kLDcHAJ/gEIZMm0P3gUORtfDuqCsRRRHzxSp0J4ownCpFNNvsT8hA3cUXj4QQXCMDkLvc2vXmrNbA7FPZ5Bot+CgVLInsxHB/qRvL0ehTiilfnQ5AwEO9cOvZsL0Wk6mIQ4dH1HRnLMPff7AjwpRoJkgJDYnroj1aQMXGLOTeLrR5uS8yZd1FLzMzkxUrVqBWq3nhhRdwcXGcxp0oCHy6YA76ygqm/OVNOvSOcdjcEs0DURTRHsyncvsFsIkovF3wm9od1y6+DZ5br7/AseOTsNm0dOy4gAz9LF5edxKtyUqgpwsfTotjUNdbM1C8ZDAx5kQGGquNmW38ebdHy60mk2h8KosLSdtrl6SqKimqHfdrE2aXpBo2Eq+Aa3wWdaU1XRkb7Y+De8HE/0FYfBNF3nK4UoLqzjvvZMCAAVLljYSExC3x9rG3WX52OT5qH9aNX9ekPgUtkV86MA5qtBys0HJIo6XUUj+B4SqXEe/tUeuBEe/tgbui8TbSRFFEd/AQZYsXoz9+3D4ol+M9diwBjz+Ga/fujXbum6XKXMXXaV+z/Mxy9FY9APHB8TwT9wx9Qvs4Jabzicf4ftF/MBv0ePoHMPGF1wjtGuH4E1kMcHYrJC+DC/vqxl19IfrBGiPxlnUPqNEcJSX1EQTBRJvQ++nZ821ksta1aSzR8hBsNk7v2cWhtSvQaex+EKFdujFs1lza94pycnQNx1phRJ9YjC6pCFtZnaSUIsAVj/gQ3BOCUfo6JklaYrYw99RFjlfpUMjgjW7teCTs1vYVJK6PZnMWusMFyFyVhDwbh9L/1v/9MjL+j8u5X+HjE09C/BrpHrGVISU0JK6JaBMpfPcEtnIjPuPC8RpS33h1xYoVZGZmMmDAAMaMGePQc+dnnGPVX15E7e7BE0tX3Fprs0SLwJynpXz1OawlBpCB14j2eI/uUE/a7Gaw2QycODEZrS4db5++bMv7E18dsktM9evkz6IZcYR439oFUW8TmJCUyWmtgVgvdzbFdcW1EW/IJVoPoiCQe/a0XZLqyAGsphrDU5mMjlGx9B4xmi59B6ByUduTGNteAH2ZvStj6EIY9pLUlfEbSBJUEhISjsJsMzN7+2zOlJ0hPjiez+/+HKVUZV3LLx4YvyQwDmq0FJrrS0i5yWX09bEnLwb4ehLn7Y7aSZXA+qQkShcvRre3bsPc8447CJz/OG6xsU6JCUBv0bPy3Eq+PP0lVeYqAHoF9OKZuGcY3HawUzZcREHg6MY1HFy7AkSRsB69GP/8H/HwbQIvEs1Fu4l48gqoyq0bD42GuNl2I3H3m/O7cxYlpbs5deoJRNFG+/Zz6db1T9IGmkSzwGI0cmLbRo5v2VArjxue0I9hMx5ucX6lgtmGIa3MLil1vgJqdiplLgrcogPxSAjBpZN3o/zfMwkCL6ZfZm2hXW3ikbBA/q9rGErJLNxhiFaB4sUnsVyuRhXmSfCCGGSqm19HmEzFNd0ZJmJjvybAf0gjRCvhTKSEhsQ10SUXo/k2HbmHitBX+tZrzdNoNHzwwQcAPPPMMwQEOFZyZ/+qrzm2aS3dBw5l3B9ecejcEs0PwWyjYst59CfsFewuHbzwn9bjljLxZ86+QkHBOhRKf5ac/RuHLtjHFwzvwot3RaC8xQSEKIo8czaHdUUaAlRKfuwTQZir47qSJG4fzAY9GUcPkbZnF7ln63SkfT2VjOtWQoixZiw4Eib9D9rGOSnSloUoihw/fpwdO3Zgs9nw8fFhypQpkgSVhITETXO56jJTtk5BZ9HxWNRjPBv/rLNDcip5RjMHK7Qc0FRzUKMl7woPDLVcRoK3B4N9PRns59wExvUwnj1L6ZIlVP+wwy57BLj370/g/MdxHziwyTacTTYTa9PXsvTUUsqN9krpLj5deDruaUZ1GOW0jW+zQc8PH/+XzGOHAIi5617ueGgeCmUTa+0LNsjeY/faOLcNbDWG8Qo19BxXYyQ+otkbiRcUbOTM2RcBCA9fSOdOTzk5IgmJOnQVGg6vW8XJ3T8gCgIymZyokXcx6MGZTZPAvEVEUcR8qQp9YjH6kyWIJlvtc+pwH9wTQnCLCrxlSambjeWjnGL+mV2ACAz382JxZMeb8n+S+G2sFUaKP0xG0Fvx6BeK3/037yOVkfkmly9/gY93HAkJa6XkcitESmhIXIUoiBT9NxFrsQHvuzvhfUf7es/v3LmTgwcP0qVLF2bPnu3w83/94lOUXr7EPU+/QM+hdzh8fonmif5kCZoNmYhGGzK1Ar/7u+IeE3zDr8/PX8fZc68Acj459QwnCrrg46bi3SkxjO4V0qDYvsgt4U+ZeciBNbFdGOIn6WVKNJyKwgLS9u7GeHQZA90TcVdaEUQ4aYrE0v9Zeg6/E09/yaPlZsjPz2ft2rVoNBpJgkpCQuKW+eHCD7y07yVkyFh852IGth3o7JCaFL1NYNGlIjYWa7hoMNd7TimD+F8lMBK8PXBrIR2rpuwLlH3+GZWbt4DVLo3lGh1N4PzH8bzjjkbTlLcIFrZkbeHTk59SqCsEoJ1nO56MfZJ7Ot+DQt74G3DXo6KwgE3v/B9luTkolEpGzn2C6FF3Oy2eWvTlcHLNNYzE20NsjZG4X/P1Rcm5/CWZmW8A0D3iH7RrN9PJEUlI1Kcs7zL7V37N+RNHAFCpXekz/j76jL8fF9fm0+VsrTChTy5Cn1iMtdRQO67wd8UjPhj3+JAGSRI1hO0lFTx5JgeDINDVXc2yqHDC3aWuekdhzNBQ+uVpEMFvSgQeCTe+p2Myl3Lo0HAEwUhszJcEBAxrxEglnIWU0JC4Cv2pUspXnEXmqqDNq/2Qu9Zlmi0WC++99x4Gg4Fp06bRo0cPh567sriIz555FJlczhNLV+DmKW0c305Yy42Urz6HOacaAPeEEHwndEGu/u0bvWrtOU6cuB9BMLEx8162Xrib6HY+/G9GPO393RsU07EKLfenZGEV4fUubXmiw40nWSQkfhNtsV1e6uwWAKoUIWy92JECrX0hLJPJ6RgTZ5ekSuiP0oFeRa0Zo9HIli1bOHPmDADdu3dn4sSJuLs37LtAQkLi9uJvh/7G+sz1BLgGsG7COgLdbg+d7F1lVfwxI5fLRnsiQw7EeLkz2M+TIX6e9PXxwEPhvA14R2DJz6fsiy+pWLsWsUYGUt2tKwGPP4732LHIHCR3K4gC2y9s5+OUj8mptpvyBrsHsyBmAZO6TkIlb+IOiCu4mJLI1g//jUmnw8PPnwkL/0jbiJ5OjekqRBEKUu2JjZNrrzASH26XpGqmRuLns9/n4sWPABmRke8TGjLe2SE1L0TRLrFaXQBVBaAtAo9ACOkNPu1AKkZpEnLPnmbf8i8pyLIbMXv4+jFoykx633Encid914sWu6SULrEIU1bFrySl5LhFBeGREIxLJx9kzUDm6XS1nodOXSDPZMFXqeCz3p2k4kcHUrXrElW7ckApJ/ipWFzaeNzQ6zIz/0nO5c/x9o6lT8I6qbitlSIlNCTqIYoixYuSseTr8BrZHp+7OtV7PiUlhU2bNuHj48Nzzz2H3MGVTEnbv+PnrxbTrmdvpv7tLYfOLdEyEG0iVbsvUf3zZRBBGeiG//QeuIR5XvN4q7Waw0cnYjZd4lRpTz5Ims/sgZ157d6eqJUNW4QVmSzcdSKdIrOVCcG+LO7VUboYSjQcUYTT6+H7l8BQbvfKGPYiDH0Rk9lKxpEDpO3dRd65M7UvcfXwpPvg4fQeMZrQLjffcnu7cS0JqgceeID27dv//oslJCQkAIPVwIxtM8iqyGJgm4F8euenyFuxwW+hycKfM3PZWmLfMA5Tq/hzl7aMCvDGu4HrqeaKtayM8q+XoVm5EkGrBUDVrh0B8+bhc98k5Opbq7QVRZGfLv/ER8kfkVWRBYC/qz/zoubxYPcHUSucW8EriiLHt6znwKpliKJAm27dmbDwT82/K7TWSPwbuLC3btzVB6JqjMTbxjotvCsRRZH0jL+Rl7ccmUxJTPQSAgKGOzuspsGkhepCqM63/6zKv+JxAWgL62TFrsTVx57YCIm0/wztDUE9wUUqTmkMRFEk48gB9q/6msoiexeZf1h77n32JYI7hTdZDObL1egTi9CnliAa6ySlXDr74PGLpNTvFDo6g2KThYdPXyCpSo9SBv/s1o45klm4QxAFkdKv0jBlaFAGuBL8TFy9gutrYTaXcrCmOyMm5nMCA0Y0TbASTY6U0JCoh+FcOWVfpSFzkRP6Sj8UHvUrh5YuXUpeXh6jRo1i6NChDj//ujf/wqWTyQyfNZc+4+93+PwSLQdTdgXl36ZjqzSDQobPmE54Dg6rV4khiiJ7jy7Apt9FudGXdxL/yF8mDGJ8TNsGn98sCDyQcp5jlTq6e7jyfXw3PFrpDb1EE6Ithm0L4ex39schvWHSx9Am5qpDNQV5pO39ibR9u9GWldaOd+07gBFz5uETHNpUUbdYrpSgGj16NAObUC9dQkKiZXO+4jzTtk7DaDPyXPxzzIua5+yQHI5NFPkyr5S3sgvQ2gQUMnisXRAvdQq9bdY9tqoqNCtXUf7119g0dqNXZVAQ/nPn4vfgFOQeN1YRKooih/MPsyh5EafL7DJJXi5ePBL5CDN7zsRd5fzNWIvRyI5PPyD98H4Aokbexci5T6BUObdb5Ka5rpF4VI2R+JRmYSQuigJpZxZSVPQdcrkrcXHL8PVJcHZYt47NYu+kqCqwd1b88qfe40IwVd34nB5B4BUKniH215acA8F69XEyOfh3sSc5QntDSJT9d6mbw2HYrBZSf/yew+tXY9RW4+LmxoSFr9ExOrbxzlllQpdUjD6xCGvJrySlfNW4J4TgER+MMqD5SGBdD6NNYGH6ZTYU2a8hj7UL5PUuklm4I7DpLBR/mIyt0oRrZAABs3r+5r1cZtZb5OQsxdsrmj59Nkj3fa0YKaEhUYsoipR8koo5pxrPYWH43lM/G5+Xl8fSpUtRKBQ8//zzeHpeu2L+VjHp9Xw8bwaCzcoj7y/Gv22YQ+eXaHkIegvl6zMxppUBoI7ww39KBAovFwRBZNWe9wjlY6yCnNXn/8if73+QLkGO+Vy+lpHL53mleCnk7OjTXdLDlGgYtV0ZL4JBA3IlDHsJhiwE5W9LSQmCjcunT3F6z07SD+9HFASUKhf6TJhMv4mTUambn8xCc8JoNPLdd9+RlpYGQEREBJMmTZIkqCQkJG6IjZkb+euhv6KQKfhyzJfEBcc5OySHkVqt56X0y5ystm8ixXu780739kR6Nv/No8ZAMBioWLuOsi++wFpor1JW+PjgN2c2/jNnovD1ve5rk4qS+DD5QxKLEgFwU7oxq+csHu79MN4uzeNetrK4iM3/eYOSSxeQKxSMfGQ+0aPHtuzNnloj8eVwbuuvjMRd7FJU8bOdbiQuCGZOnlpAWdlelEpv4uNX4eXpWNnmBiOKdt+S63ZU1PzUlVCr//N7uHiCVxt7ssK7rf2nV1vwblMz3saexLhyHWw1Q2k6FKVB4Sn7z6LTNee+Bq4+ENYHIu6GiDHN2lulpWDUatny3j+5nHYSuULB3U/8gV4O9DYVLQKGs2XoThRhytTUSUqp5Lj1DsS9Twjqzs1DUupmEEWRDy4V8dYF+/XjDn8vFkd2arVdjk2J+XI1xZ+mgk3E557OeA1rd+3jzGU13RkGYqI/IzBQ8uRtzUgJDYlajOcrKF16CpQy2rzcD4V3/cXFpk2bSElJISoqismTJzv8/BlHDvDd+2/h1yaMuf9d7PD5JVomoiiiO1pIxdZssArIPVXIJoTz7qld3BnyN5RyG2e0jzBvzB9xc3HMYmFtYTnPnLVrHS+L6sxdgT4OmVfiNqW6yN6VcW6r/XFIVE1XRvRNT1V6+RI/f7WYnNMnAfAKDGLE7Efp1n9wy96QaGREUeTEiRP88MMPkgSVhITETSGKIn888Ee2ZW8j1COUtePW4uvq6+ywGoTWauPtCwV8nluKAHgr5fwpvC2z2wagkK4liGYzlVu2ULp0KZZL9vWg3N0d3+nTCHj4YZRBQbXHppWlsSh5EQfzDgLgIndhao+pPNr7UQLcmo+EU87pVL7779sYq6tw9/Fl/POv0q5nb2eH5Vj05XBqLSR9A0Wn6sabgZG4zWYgOWUOlZVJuLgEkRD/Le7uTRSLWferpMS1OipquiquJ/90JXJlXaLil8TEr5MUvzxWO9hHoLrIntgoOl2T7DhtT3xc2c0R1NOe3Og+Ftr1Bbm0mXwrWC0Wfvj4fdIP7QNg6IyH6Tth8i3fb4iiiCVXi+4XSSlD3b+bSyfvOkmp35ETaglsLa7gmbOXMAgi3dzVfBMdTic3qTiyoWgP51Ox+TzIIWheNOrwq/dosrL+zaWcxXh5RdG3z0bp/riV02gJjX379vHOO++QmJhIQUEBGzduZNKkSQ4PTMJxlCw9iel8JR4D2+A3sWu95/R6Pe+99x5Wq5VHH320UTaBtn/0Lmf2/0zCuPsYMftRh88v0bKxFOooW3WOk0XV/FNZwhMD/02gWzkm5VDGDPnCYX4up6v1jEvKxCiILOwUwsud2zhkXonbEFGEU+tg+0u/6sp4GYYuBMWtSzuIokjmsUPsWfYZ1aX2arUOvaO54+H5BLaXqtJ+i4KCAtauXUt5eTlyuZxRo0YxcOBAh/tBSUhItC50Fh1Tt07lUtUlRrQfwYd3fNgib5JFUeT70kr+nJlHgckCwKRgX/7RNYxgdQuTHGoCRJuN6h07KF28BFO63TBX5uKC7wOT0Tw4iiUF69iVswsApUzJpG6TmB89n1CP5iMJKYoiSd9vYe/yzxEFgZDwbkx44U94Bwb9/otbMvkp9q6NU2vAWFk33nk4xM9xipG4xVJJUtJ0tLp03Fw7kJDwLWp18K1PaLPYpUyvl6So+kX+qfL35/oF98BfJShqOiqu7LBwD3Bqx0s9rCa7RFX2XsjYATmHQazzXsDNH7rdZU9wdB1l7+aQuGFEQWDvii9J3LoRgLgx4xnx0DzkN5EkslWb0ScVo0sswlqsrx1X+KhxTwjGIz4EZWDr6wo8WWMWXmCy4KdU8Hnvzgzyc6zCye2GKIqUf5uOIaUEuZeKkGfjUXjVFWGbzeUcOjwcm01PdPQSggJHOTFaiaag0RIa27dv5+DBg8THxzN58mQpodHMMV2qouSTVJDLCH25D0rf+gu8gwcPsnPnTkJDQ5k/f77Db+IEwcYnj8/GWF3Fg6//i/a9ohw6v0TLRxRFvjpwgX9+n8aC2KXEBqWBKYRB8ZtwC2nAzcCv0Fis3H0igxyjmVH+3nwT3Rl5C9ywkGgGVBfC1oWQvs3+ODTa3pUR6rjvNovJyLHN6zm+ZR02iwWZXE7cmPEMfGA6rh7Sgvl6XEuCauLEiXjcoEa6hITE7cm58nPM2DYDi2Dhlb6vMKvXLGeHdFNcNpr5U0YuO8vs2vYdXV14K6IddwRI91m/hyiKaPfupezTxVy4mMLaoXIORMoQZTJkyBgXPo4nYp6gvXfz6vqzmE3sWvIRZ/b/DEDk8FGMnvcUSpfflrpsVViM9g7Z5G/s0lS/4CQjcZOpmMTEqRiMOXh4RJAQvxqV6opNdlG0F8JcT/bpl8faYm5Y/knlcUUXxTVkoDxDQNnCq8j15XD+J8j4ATJ3grGi7jm5EjoMtHduRIyBgC5OC7OlkbhtM3u++QxEkW79BjH2mRdQuVz/syJa7ZJS+sRijBnlINQ8oZTj3jsA94QQ1F18W5yk1M1SaLLw0KlsUqsNKGXw74j2zGjbfDr3WiKC2UbxRylYi/W4dPYhaF4UMoX9c5R1/h0uXfoUL69I+vbZ3CILTyRujiaRnJLJZFJCo5lT+lUaxnPluPcJwf+BiHrPCYLAokWL0Gg0jB8/noQExxuZ5Z5L49vXX8HVw5Mnlq5ArpBaQyXqqDZaeHX9KbadKmBsp508EPEdCCo6Hv0zbqbO+E7sint8cIMuWjZRZNbJbH4ur6ajqws7+kTgq2r5La8STYwowsk1sP1l+02UXAXDX4YhzzeoK+O3qCwuZM+yz8g6fgQAdx9fhkyfQ+/ho5E1lwq6ZoYoiiQmJrJ9+3ZsNhsqlYr4+HgGDBiAn5+fs8OTkJBopqw6t4p/Hv0nSrmS5WOXExkY6eyQfheLILIkt4T/XCjEIAioZDKe6hDMcx1DcFNI14gbpVBXyOLUxWzM3IgNewV4v3MCUw+I9IodTcD8+bj1bj6fh6rSEra8+yZF2VnI5HJGzJlH3Jjxt/cGj+aS3Ug8ZQVUXq4bb0ojcbMeY2kSGYlPIteV4yMLJcz7DuTakvpJC5vpxuaTK8EztCZBcQ3Zp1+SF2rv288422aFy0ftyY2MH6A0o/7zAd3qfDc6DGi0dXprIf3wfrZ/9C42q5WwHr2Y+NJfcPOskxUTRRFLvg7diUIMqSUI+l9JSnX0xj0hGPfooFYhKXUz6G0CfziXw5biCgDmtw/ir13aSvKODcBSrKf4oxREsw2v4e3wGdsZi0XDwUPDsdl0REctJihotLPDlGgCmk1Cw2QyYTLVXbirqqpo3769lNBoAsx5WooXJYMMQl7og+qKlr/MzExWrFiBq6srCxcuxKURqnr2rfiS41vW02PwcO599iWHzy/RcjlbUMWTK5K4UKqjp/95XuizCBkCER3+jutP0Ziy7W3UbjFB+N3X9ZYXSW9nF/D+pSLc5DK2JkTctoaYEg2guhC2Pg/p39sft4mBiR9DaNNoVF9MTeLnr5ZQnp8LQGjXCEY+Mp82Xbs3yflbIgUFBWzevJnCGvNXmUxGr169GDRoEGFhYU6OTkJCorkhiiLP73me3Tm7aefZjqV3LaWd17WNKZsDJyp1vJR+mbM6IwADfDz4d/f2RHg0rdROS6bMUMZnpz5jTfoazILdY2Bw2GAe97qH4OU7qd65q/ZYj8GDCVwwH7c+fZyaOMg9c5ot7/8LQ1Ulrl7ejP/Dq3ToffO+Xa0WQYALe+xeG9cyEo+bBeEjbs57wWYFXfE1pJ+u8K4w3oT8k5v/r7oo2tTvqPilw8I9sPnIPzV3ys7bZakyfoBLB+t7b7j6QNfREDHWLk3V2ImtFsrlM6fY/M4bmPQ6/MPaM/mPf8fD1Rd9SjH6xCIshb+SlPJ2wT0+BPeEYFRB7k6M2vmIosi7F4v4z0X7/cYof28+jeyIl2QWfsvoT5ZQvvIcAAGze5Hv+iUXL32Cl2ckfftK3Rm3C80mofG3v/2Nv//971eNSwmNxqdsxVkMp0pxiwkiYHqPq55fsWIFmZmZDBgwgDFjxjRKDF8ufILyvMvc++xL9Bg8vFHOIdHyWHP8Mn/Z/P/snXd4FOX6hu/tm9303klIBQKEhI7YUMEKNgR7x4Ye9VjOsf0sR4+No2AD7IqCjWJDEStNIPSSXkjvm7J9d+b3x4SESDFAeua+rlxhZnfn+xKyOzPf+z7Pswe7SyAhwMG/xv4X0V1DaOgMhg55CURo+rWYxp+KQACVvx7/WUnooo/vM2N1dQPX7ykA4PUh0VwaKl/EyhwHogi7lrWoMhokVcbpD8Gkf3R7t5fb5WT791+z8ctPcVitAKSccTanzLoWo6+sPDgSoiiSn5/Phg0byMvLa90/aNAgJk6cSEJCgpyxISMj00qDvYGZX8+kzFyGl8aLJyY+wdSYqT09rXaYnC7+k1/OR2W1APhrVDwWF86sUH/5Jr+DNNgb+GDvB3y8/2OsLul8mh6Szt2j7iYtJK31efbcXGoXL6bhm2/BLSk3PNLSCJxzK8ZTT+3W37coiuz48Vt+/WAxgttNUMxgpt//CD7BId02hz6HpU7KO9v+IVT8NUj8Shg5Gzx8j55P0VQm/dtcBaJw1GHaoTGAVxgugyc1jhzsWhFNQAphCbeh8I6UihWeod2e8TGgsDW0WFP9ADk/gqW27TGFEqLGQ9I0Sb0RmDjw1C3HoOZAIV/99ym8rT7E+6cTqh3U5nymVuAxLBBjegi6+P5vKXW8rKis5x+ZB7AJIklGPR8Oj2WQHBZ+wpi+zqN5fRmCp5X8U/6JWzAzYvibBAWd09NTk+kmek1BQ1Zo9AzOKguV/8sAEUL+kYYmtL2HeH19Pa+++ioAc+fOJSCg8z3/TBXlvHPPLShVKm5fvET2fpfB6nDz2Mo9fJEhdZqfkRTA7cMX0NS4CaMxgTGjv0Klauv0sBc1UvdpJm6THZTgfXYMXqdFdugiKs9iY9rWbJrcArdEBvJ0Qu/ttJTphTSWS6qM7O+l7bCRMONNCOlZ2wmzqZ4/Pnmfvb+tBUDrYSAufSyh8YmExiUQFDP4mN63A5WKigo2btzI7t27EQRpYSIwMJAJEyYwYsQINBrZjkBGRgbKmst48PcH2Vm9E4DLEy/nwTEPolf37AKkKIosrzLxeE4pNU6p+/iKUH8ejwsnQDuwbD5OFIvTwsf7P+b9ve/T5GgCICUghbmj5jIhfMJRCxSOkhJq33mHhi+/QnRIHf+65GQC59yK1znnoOhiO12X08nad95gzy9rAEiedBrnzJmLRicvih8Vp7W9oqI0Awr/gKpMEJzHfzyFqkVBEXpk26eDygq9T+sCeW3t7+zcdSui6CQi4kqSEp+Si47djeCGkq0t1lQ/QNXe9o/7xUjKjcSpMGgSqAdQBs1fcJQ1Y9laiXl7JaK1LXxdDFDiN3kwhhGBKA3ytfKx2N5o4frd+VQ6XPhrVLyXEss4X3n960QQXQLVi3ZRpnmf2riv8TQmM3bsN/Jn6ACi1xQ0TnRiMidH3WdZWLZVoR8aQOC1Qw97fM2aNaxfv564uDiuueaaLplDxrcr+fXDxUSnjODyx57tkjFk+g551c3cuWQbmRVNKBVw39mJTBv0DUVFr6FSGRgzejlGY/xhrxOsLuqX52DdVQOALs4H/yuSUHkffdHW7HJzbkYO2RYb432MfJ4aj0buJJHpCKIIO5fC6ocOUWU8DJPu6VUevGXZ+/n5vYVU5ue2269UqQiMjiE0LoHQ+ETC4hLxj4xCeTz2Cv2YhoYGNm/ezNatW1ubLYxGI2PHjmXMmDEYDANbOi8jIwNOwckbO97gnd3vICIS7xvPi6e+SLzf4dco3UGBxc5D2cX8Xt8MQIJBx/OJUUz0kxdKOoLdbWdZ5jLe2fMOdbY6AOJ947lr1F2cGXVmhxdInFVV1L3/AfVLlyJaJPsV7aBBBNx6Cz4XXoiiC6x7m+tqWfXys5TnZqFQKDn1qutJv+DigbuoI7jBXN3e6umvioqm8vaB0R1BoZRsnkJHQPBQ6d+H2kAZA4/PpqqFyspv2LP3H4BITMydxA2+77iPIdOJ1BdJqo3s1VDwe5slGYDWC+LPlJQbCedI/+f9HHezA8uOaslSqtzcul/pqabYlsWuwl9oFhqYdvs9DJl8Rg/OtO9QZnNw/e4CdjVb0SgUvJgUyawwOSz8RLDWVrEp40wEtZXYpkcZPP2Gnp6STDciFzQGMK5aKxUvbwUBgu9KRRvp1e5xp9PJvHnzsFqtzJo1i+Tkw+2oOoPPn/43B/bs4vRrbyH9/OldMoZM3+CbXWU89MUuzA43gZ465s9OJcl3Hzt23giIDBv6P0JDLzrq60VRxJJRiWllHqJTQGlQ43dZIh5DD79AEEWRW/cW8XW1iVCthh9HJxKs6z0L0TK9mMZy+OYf0o0OQPgoKSsj5PCicG9AENwc2LOL8pxMKnKzqcjLwdJgOux5Gp2ekMHxhMQlENai5PAOChm4CyKAzWZj+/btbNy4kcbGRgA0Gg2jRo1i/Pjx+PvL9nQyMgOdjWUb+dcf/6LWVotepeehsQ9xacKl3fbZaRcEXj9QxatFldgFEZ1SwT8GhXBHdDA62S7vb3EKTpbnLGfhroVUWaoAiPaK5o7UO5gWMw3VCRb63SYTdR8voe6jjxAapNwEdWgoATfeiO/ll6H06JystrLs/ax6+VnMpnr0Rk/Ov+dBYkam/f0L+yKiKDWRtCtS/DWrogKaK0F0//3xANQefwnTDm1fpECA3F8ka9GGA22vCxkuZW2MmNkpeQslpZ+QlfUYAAkJjxIdJS/K9QrszZD/S0v2xg+StVgrCogcIyk3ks6Vilz95JpZdAvYMusxZ1Riy6wDoWUpUKXAY2gAhtEh6OP9cAsuvn99Htkb/wDg1KtuYPSFlwzoe4eOYna7uXv/Ab6tls4Pd0QF80hcmBwWfpzk579CQeECtE2RxGx8Cv9LkzCOCe3pacl0E11W0GhubiY3V+oIHTVqFPPmzeOMM87A39+f6OjoTpuYzIlTvzwH858V6BL9CLrx8NDaHTt2sGLFCnx8fLjnnnu6xEPcZm7mzVuuQnC7uenVxfiGhnX6GDK9H7vLzbPf7ueDjUUAjI3157XZo/DW1rF5y0U4nfVERFxJctLTHTqes9pC3aeZOMukLhLjhDB8zxuMQtP2N/zGgSqeyitDo1CwfFQ8o32MRzucjIyEKMLOT2H1w9INtUorqTIm3gOqvmPlIYoiTbXVVORmU56bTWVeDhX5uTht1sOe6+HlTXTKSBLHTyJ21OgBa13hdrvZt28f69evbxcgHh8fT0JCAgkJCfj5yRklMjIDlRprDY+ue5T1ZesBmBozlScmPIGX1utvXnlyrK9v4qHsEnItkpLsND8v/psYSaxBthT8O9yCm+8KvuONHW9Q0ixZnIYaQ7ltxG1cFH8RGmXnNLm4m82YPvuM2vfexV0tqYhVfn74X3cdflfORnUS97m71q5m7TtvIbhdBEYNYvo/H+2791JOW1thoqmsfYHi0AKG6/BrlSOiUIJnyF+sn/4SqO0VCnrfji1CCwIU/AbbP4b9X4O7xSpbpYXk81uCxM84IYXGQQoL3yAv/2UAhg55kbCwS074WDJdgCBA+XapsJH1PVTsav+4T7RU3EicBjGn9MkMFEe5GcvWCiw7qhHMbbZrmkhPjOkhGEYGHWYpJQoCv338LhnfrgBg1LQLOf26m2XVdwcQRJEXCyr4X1ElAFMDvXl9yCA85bDwDuF0NrJh46m4XE3E8X+of4wBtYLg21PRRsjq1IFAlxU0fv31V84443DJ2XXXXcf777/faROTOTHcDXbKX9gCbpGgOSPQxfoc9pxFixZRVlbGlClTmDx5cpfMI3P9b3w7/0X8I6K4Yd6bXTKGTO+mpN7CnUu2sbOkpTvh9DjuOzsRpcLNtm2zaWjcjpfXMNLTPkel6vgNuugSaFhdSPO6UgA0oQb8ZyejCTGyrr6JmTvyEID/JkZyfUT/lwvLnCSNZfD1PZIEHSA8DWa8AcFDenZenYQguKkvK6U8N7tVxVFdVIDgdrU+R63TMTh1NIkTTmHwqDFo9H3vRu1kEUWRgoICNmzY0Nq0cZCAgAASEhKIj49n0KBBct6GjMwAQxAFPtj7AfO3zccluojwjOCFU19gRNCITh+r1uHiybxSPquoByBIq+ap+AhmBPvKnbF/gyiK/HTgJ17f/jp5DXkA+Ov9uXXErVyeeDlaVdf44wt2Ow3LV1D79ts4S6QCitLTE7+rrsL/2mtQH0dOodvl5Jf3F7FzjZTflTBuItPuuBetvnNUH52K4AZzzV+KFEewgbLWd/yYet/2KoqDuRXe4W0FDM/gkyouHBNLHez5ErZ/BOU72/Z7R0pB4qlXgn/scR9WFEVyc5/jQPE7KBQqhqe8QVDQWZ04cZlOpaEUclqUG/m/gsvW9pjGIBW4klqsqbx6b8e42+zEuqMKc0ZlazMggNJTg2FUMMb0kMNyVo9Exrcr+PXDtwEpw+fcu+6Tixod5KvKeu7NPIBdEBlq1PPBiMFE6QduVktHyS+YT0HBqxiNCYwd/S11H2Viy6xD5a8nZO4olB59p+FQ5sToFsupE0EuaHQtpq/zaF5fhjbWm+A5Iw97vLS0lMWLF6NSqbj33nvx9OyaCue3818kc/1vjLnoUk69SpbWDjR+zqzk3mU7abA68fHQ8L8rRnJmcggAOTnPcqD4HdRqL8aOWYWHx98ru46ELauOus+zEZqdKDRKzOcNYoa7njqnmytC/XklOUq++Zc5OqIIOz6B1f8Ce4sq44x/w4S5fUqVcSK4HA4qC/LI3bKR7E3raayubH1MrdURm5pO4vhJDE4bg9Zj4GVKVFdXk5mZSU5ODsXFxRx6maTRaIiJiWktcMjWVDIyA4dd1bt48PcHKW0uRa1Qc3fa3Vw37DqUipNXOguiyNKKOp7OLaPe5UYBXBMewCODw/DR9O9z0skiiiLrStexYPsC9tftB8Bb680NKTdwZfKVGDTdcx4TXS4av/uOmkWLcORKBRWFXo/v5ZcTcOMNaMKOrbAwm+pZNe85yrL2gULBKVdcw9gZl3f/tawogr3xL7ZPR7CBaqrouP2TSteipPiLisIrrP2/Nb2ocFO+S1Jt7FrWPpMj9lQYdQ0MufC45iuKAvv3P0R5xVcolVpSR76Hn9/4zp+3TOfisEh5GweDxZvK2j8eniYpNxKnQtjIHremEt0ituw6LFsrsWbWgfsQS6lkf8lSKtEPher4zluZG37n+9deRnC7GXbaFKbedg8K2fqwQ2xrMHPdngKqHS4CNWreHx4rO0gcA5erifUbTsXlaiRl2HxCQs5HsDipXLAdd70d/RB/Aq4ZikLOR+3XyAWNAYi72UHF81sQnQKBN6agTzzcJmPFihXs2LGD4cOHc+mll3bJPAS3mzdvuQqbuZkrnnyeyORhXTKOTO/D5RZ4eU02b/4q3ciNjPLl9StHEekn3UxWVf/A7t13ADBi+FsEBZ19UuO5mxzUfZZFY56JW8Ya2OejYrhBz6rRiXgc54WazACioVRSZeSukbYj0qWsjOCuyRPqzYiiSFVBHlmb1pG9aR0NlRWtj6k0GmJGppM0fhKD08ehG4CB2Varlfz8fHJzc8nNzaWpqand4wEBAa32VLJ6Q0am/9PoaOTJDU/yY5Gk6psUPolnTnmGQI8TV4RmmW08lFXMpgapg3aoUc+LSVGkywsef8uWii0s2L6A7VXbATCoDVwz9BquHXYt3tqeuc8UBYHmn3+m5q2F2PbskXZqNPhMv4jAm29GGxNz2GsqcrNZ+fJ/aK6rRWcwct7cfzI4bUznT85lPzyXolVhcUjBwmnp2PEUSjAG/yWr4gg2UB5+Pb7Qe8I4bZD1rVTcyPsFaFk60fnA8MskS6rwUR36+QTBxe49d1JT8xMqlSdpoz7G23t4185fpvMQRcmO6qA1Vdm29o97hbVYU50rFb603Xfd7Kw0Y95aiWV7FULzIZZSEZ4Y04LxSA1GZTy5a9ScPzfw9Sv/RRQEhk+Zytk33ykXNTpIic3Bdbvz2dtsQ6tQ8HJyFJeHyk1RR6KgYAH5Ba9gNCYwbux3KFqaRhwlTVS9uRPcIt7TYvA+PaqHZyrTlcgFjQFIw+pCmn4tRhPpSfCdqYd19FgsFubNm4fL5eKmm24iKqprPgSK9+3msyf/hd7Lm9sXfSRLEgcIVY025n66nT8L6gC4fmIM/z5vCFq1dBKyWIrYvOUi3O5moqNuIiHh350yriiI3P17Jp+LdnwcAp/scZFySdIR7dZkBjiiKN2Q/vBvqftwAKkyOoIoilQV5pPz53qyN62jvrytC02lVjNoZBpJ408hbvQ4dIaBt9AmiiKVlZXk5ua2qjcEQWh9XK1WExsbS3x8PPHx8QQch82IjIxM30EURb7M+ZL/bv4vdredQI9Anj3lWSaETziu41jdAq8UVfLGgSqcooiHUskDsaHcEhmERu48PCZ7avYwf9t8NpZvBECn0jEraRY3Dr8Rf33vWCQSRRHLxo3ULFyE5c8/pZ1KJd7TphJw663ok6Umir2/rWXN4tdwO534R0Qx/Z+P4h8ecXyDCQJYao5QpDgkq6KxDKx1HT+m3ufIiorWgkWYVMwYSNdPpgOw41PY8bH074OEpEiFjeEzwXjsc7/bbWfHzhswmf5Eo/EnPW0ZRuPgLp64TJfQVClZ1mavlopdzjZbJ9R6iD2txZpqKvgc53u6AwgWJ5ad1ZKlVElz636lUbKUMqSHoA3r3Ov1zPW/8d2ClxFFgdSp53PmDbfJjggdxOxyc9f+A3xfI9lx3x0dzMODw1DKv79WDlVnDBv2CqEhF7Z7vPnPckzLc0EBgTcPRx/n2zMTlely5ILGAEOwOCl/fgui3U3ANUPxGHb4xdT69etZs2YNoaGhzJkzp8tOPr9+9A4Z3yxn6OQzOPeu+7tkDJnexYa8Gu7+dAc1zXaMWhXPXzaCC0aEtz7udtvJyLicpua9+PikkzZqCcpOCmX8uKyWf2YVowRez3YxpsAKCvA6MxrvM6NRqOSLBBmgoaRFlfGTtD2AVRkdQRRFag4Ukr1pHVmb1lNfVtL6mEqjIX7MBFJOm0L0iNQBW7S22Wyt6o2cnJzD1Bv+/v6t6o2YmBhZvSEj08/Irc/lgd8fINeUiwIFN6TcwEVxFxHtHf23wdO/1DbycHYJRTYHAOcEePOfxEjZW/tvyK7P5rXtr/FL8S8AqJVqLk24lFtH3EqwIbiHZ3d0LNu3U7toMc2//NK6z3DqqWTFR7E7YxMAcaPHce6d9x+uhrQ1HqVIcYiyorkCBBcdQqX7S5HiKEWLbuwu73MIAhT+LjXJ7FvVPkg86TzJkiru6EHiLlcT27ZfTVPTHvS6cNLTl6HXhx/xuTJ9BKcNCte1WFOthobi9o+HDpeUG4nTJEXPCSobRLeILbdespTaV9tmKaVUoE/2x5gegj75+C2ljoe9v61l9ZuvgCiSfv50TrvmZrmo0UEEUeS/+eXMP1AFwHmBPiwYGo1RNTDvpf5KQcFr5Bf8D4MhnvHjvkOhaP97EUWR+s+zsWyrQumpIeTuUai8O57FKtN3kAsaA4zGtQdoXFOEJtRA8N1ph3nKCYLAggULqK+v56KLLiItLa3L5vLuP+ZQX17Khfc+TOL4U7psHJmeRxBEXv8ll//9lI0gQnKoF29clcbgoPbZLPszH6GsbCkajT9jx6xCrz+2j3BH2dZgZsb2XByiyCODw7gzNADTyjws26SLBG2MN/6zklD7DryQY5kWRFEKd/zhkRZVhg7OfATG3zmwugpPAlEUqS0uIvvP9WRtXEddadtNmqd/AENPPZNhp511/B2l/QhRFKmqqiInJ4fc3FwOHDhwmHojJiamtcAhqzdkZPoHVpeVF7e8yOfZn7fuUyvVxHjHkOCbQLxfPPG+0leEZwQ1ToHHc0tZWWUCIEyn4T8JEZwb6CMvCB2DosYiXt/xOqsLViMiolQouWDwBdw+8nYivSJ7enodxpaVRe3CRVSv+ZHt0UHUeUpFg9HDoph8VgrK5oo2RcVBayhH898c9SAKKTD7iEWKQ7b7sv1Tb8RaD7u/OEKQeERLkPhVRwwSdzhqydg2C4slH4MhjvS0pWi1vUNdJHOSiCJU7ZMKG1mroWQLrVZlICmbEs+RihuDzwDd32eaOqssmDMqsWyrQmhytO7XhBkxpIdgSA1C5dl9BfHdP//IjwvnAzBm+mVMnn2dfA47Dj6vqOP+zGIcokich46bIgO5NMSvX2VmiaLImtpGnskrR6OERweHc0bA0dd/JXXGabhcDQwb+j9CQy864vMEh5vqN3bgrLCgjfEm6JbhXVrAk+kZ5ILGAEKwu6l4fjOCxYX/7CQMIw/vUMrOzuaTTz5Br9dz3333odV2zQmvrqyE9+69DaVKzR1vfzIgPdcHCnVmB/cu28Fv2dUAXJ4eyVPTU/DQtq+kl1esYN+++wEFqanvE+DfOUWuaoeTc7ZmU253cl6gD++kxLReSFl2VFG/PBfR7kahV+N3aTyG4UGdMq5MH6KhBFbdDXlrpe2I0TDjDQhK6tl59WEOZm7s+fUnMtf/hq25TZUQnjiEYadPIWnC5AFpSXUoNpuNgoKC1gJHY2Nju8f9/Pxag8VjYmK67JwsIyPTPawpWsMHez8gpz4Hi+vw/AERBS7vqTT5XIpboUeByHm+Tv4dF8lgrzB5IegolDeX89aut1iZuxJ3SwD1OYPO4c7UOxns20ttegQBLLV/UVS0BWtXllWzcpeOJqcWjdLFueHZJHjVHvuYOp+WgsRfsipaixZhUjFDJSsBe5TyXbBjiRQkbq1v2x8zWVJtDL2oXZC4zVbG1oyZ2O3leHkNJ23Ux6jVf7+4LdPHMNe0WVPl/gyOQxS9Ki0MnQHT/nuYXZlgcWLZVYMloxJHcdtrlEY1htRgDGkhaCN67u9lx4/fsfadNwAYf+lsJs28qsfm0hfZ0mDmht0F1DgldZ2HUsGFwb5cEx7IaG9Dn74uyDbbeCK3lF/q2qvXp/h782RCOPGGw5tNCwvfIC//ZQyGOMaP+/4wdcahOKstVL22A9HuxnNyBL7n99LrAZkTRi5o9DHshQ0oDRpUvjqU2uOTnDX9XkLDdwWoAz0IuS/9MHUGwJIlS8jJyWH8+PFMmzats6Z9GFu+/orfP36XQSNGcdkjT3fZODI9y7YD9dy1ZBtlDTZ0aiVPz0hh5ujDM1mam7PZsvUSBMFKbMzdDB58T6eM7xJELt+Zy0aTmQSDju/SE/FSt3/fuGqt1C3Nar0ANI4NxeeCwcf9/pLpg4gibPtQUmU4mlpUGY/ChDuPKv+XOX5cTif5GX+y97e1FGzPQBQlRYJaqyNh7ASGnXYW0SkjBnxg4EH1xkFrqr+qN1Qq1WHqjb58EyMjM5ARRZFyczm5plzpqz6XHY2N7FafiVMr3XCr7fl41r2LxlkEgKfGk3jfeOJ840jwS2hVdAR4DFwlV421hsW7FvN59uc4BSng9tTIU7kr9S6GBAzpuYnZm9qHZ7cUKdopKpoqQHAe8eX7G4L4sTwBl6jCV2NlenQ2vloFjlobLrMCp1UFhmA8TpmKx+RzUfhFgWdIhzq4ZXoRThtkfSepNg4LEr+0JUg8DRQKzOY8MrbNwumsw89vAqkj30GplC1U+i0uBxStl4LFs7+H+kJpv2cITH8dMe4s7LkmzBmVWPfWgOugpRTokw5aSvmjUPeOa+tt363klw8WAzDpimsYf8kVPTyjvkWD08XnlfV8XFZLptnWuj/RoOea8AAuC/XDrw+pNkxOFy8XVvBuaQ1uEbQKBbdEBeESRd4pqcYlgloBN0YEcV9MCL4tP5vL1dyizjAxbOg8QkOn/+1Y1j011H68H4CAq4fgkRLYpT+bTPciFzT6EKIoUvb4BkSntMCh8FCj9tGh8tWh8tGi8tFJX77Sd7WPFoVGWpQTnW7Kn9+C0OzE77IEjKNDDzt+XV0d8+dLksC5c+d2qdXFsv97mJL9ezjj+jmknXvh379Apk8hiiLvrS/k2e/24xJEYgONvHFVGkPCDn8vu1xmtmy9BIslF3+/SaSmvnfMSvvx8ERuKQuLq/FUKfk+PZEE45EtpUS3QOOaAzT9VgwiqIM98J+VjDZcvjHst5iK4eu7Ie9naTtyLEx/HYISe3Ze/Zzm+jr2//ELe379qZ0llVdAEMNOO5Ohp03BL1T2hwaw2+3tsjf+qt7w9fVtVW/ExsbK6g0ZmT6K2eXmhcIK3i6pxi2CQQmX+zUzSNhDfoNU7ChqLMIlHjn7wE/n186y6mDRw0fn080/SffRYG/g3T3v8mnmp1hdVgDGho5l7qi5pAandt3ALgc0Vx6lSHFwu6J9Z/UxUYAxqFVBIRhD+GOvna07SwGIHZLIeXf+A31gFCgUuOrqqPvoI+o/XoLQksekiYgg4Jab8bn4YpQ6eYG7z2Iqhp2fSsWNQ4PEg4dJhY0RV9DoLmXb9qtxu80EBU0lZdh8lMq+s4gpc4KIIpRmwIo7cFY1Y3FPwaK6ELejTcWjDjFgHB2CITUYlVfvvB7csupLfl/yHgCnXn0jYy68pIdn1PcQRZFtjRY+KqtlZVU9VkFaotUpFVwQ5MvV4QGM9zH22oYntyiypKyW/xaUU+eU1JTTAr15Ii6CWIN0/sqz2Hgyt4wfa6X7Hj+1igdiQ7k2PJCSAwvJy38RgyGW8eN+6PCakembfJrXlaLQqQieOwpNoMffv0imTyAXNPoQgt1N1es7cDfYEe3uDr1GaVSj8tGBSomzuAmVr47QB0Yf0T/uxx9/ZMOGDcTFxXHNNdd09vRbsTY38eYtVyEKAjcveAef4JAuG0um+2m0OXnoi118v6cCgPOHh/HfS4fjpT9c3i6KIvv23U9F5Up02hDGjl2FVts5VfMVlfXctk/qanw3JYbzgnz/9jW2XBN1y7Ikz1G1At9zYzFODO+1FwUyJ4AowrYP4IdHpQUHtV5SZYy/Q1ZldCOiKFKRl83eX9eSueE37GZz62MRyUMZdvpZJI0/Ba2HbEcI0u+rurq61ZqqqKjoMPXGoEGDWgscgYGB8ueWjEwfYHV1A4/klFBqlzr1Lwzy5emECEJ17a+ZnG4nBY0F5JnyyKnPIc+UR64pl+KmYkSOfIsWbAgmwTeBON844n3jSfBLYLDPYAyavvu5anaa+XDfh3y490OanVJmxIjAEcxNm8v4sPEnfmBRbLF/OlqRouXLXN3xY+q824dnex9i/+QVLm17hrTaP1mbm/j21Rco2rUdgLEzLmfSFVejPMK1ibupifpPl1L3/vu46+oAUAUFEnD9DfhecQUqz4Ft59inEQQo/EMqbBwaJK7UQPJ5NCWMZqvpDQTRSXjYTJKTn5XP9/0cwebCsrMay9ZyHMVt18tKhRmP4T4YT01BE+HZJ/4ONn25lPWffQzAGdffStq5R84/kPl7Gl1uvqys5+OyGvY2t6k24g06rgoLYGaoPwHa3lPw3FDfzGO5Ja1zTTToeTohgtP8vY74/N/qmng8t5SsFkXKMA+Rf9tvBreJoUNeIizs4g6PLboFqhfvxlHYiCbUQNAdqbIbRz9BLmj0UQSbC3eDHbfJjqvlu7vBIe1r2T6o5DgU3+lxeE44vPvV6XQyb948rFYrs2bNIjk5ucvmvv+PX/jutZcJjBrEdS+93mXjyHQ/+8oauWNJBoW1FjQqBY+cN4TrJsYc9QKrpPQTsrIeQ6FQkTbqE3x9R3fKPPY3WzkvIwerIDA3OphH4jre8e02O6n/IhvbfukGUZ/sj99lCd0aoCbTRZgOSFkZ+b9I21HjJFVGYELPzmuA43I4yN26ib2/raVo5/Y2SyqdjsSxExl2+tlEDU0Z8JZUh2K32ykoKGhVbzQ0NLR73NfXt9WaSlZvyMj0PkptDh7JKWF1jdSBGK3X8lxiJFOOEYR5JKwuK/kN+VKBoz6XHJNU7Cg3lx/1NRGeEYcFkcf6xKJV9d7PCZvLxtLMpbyz5x1MdhMAiX6JzB01l9MiTzv2Qp7D3L4o0diSWdGaXVEOzRXgdhz9GIei1BySSxF29GDt47B/qi4qYOVLz9BQVYlap2Pa7feSNOHvs+QEqxXTl19R+847uMql/3Oljw/+V1+N39VXofbz6/AcZHoh1nrY8yVs+wjKd7Tudhv9OeBvozxUR1DSbSTEP9xzc5TpEkRBxJ7XYim1pxZcLes6CtBHChgaFuJh/wGFUoTTH4ZT7gNV71m8Phbrl33Epq+WAXDWzXcw8uzzenhGfRtRFNnRZOXjshqWV5mwuKW/Fa1CwblBPlwR6k+6t6HHgsSLbQ6eyi3j62oTAD4tiovrwwNRH8EC/1BcgsjH5bW8UFDORMeXzOYjGpXhpIz5ngTj8TlpuBvtVM7fjtDsxJAWjN/liX2iCChzbOSCRj9FFEVEqwvXwSKHyQ5KMI4OPWJ2xo4dO1ixYgU+Pj7cc889KLtw4eibV54na+MfjJ1xOZNnX9dl48h0H6Io8tnWYh5fuRe7SyDC14PXr0ojNcr3qK9pbNrD1q2XI4oO4uMeYtCgWztlLg1OF9MysimwOjjVz5NPR8ahOs6TlSiKmDeWY/ouH1wiSi8t/lckoo+Xbwz7JKIIGe/Dj4+1qTKmPA7jbpNVGb2Mproa9v/xK3t+/Yn6spLW/d5BwQw9dQrDTpuCb8jhlokDGVEUqampaafecLvbVJwH1RsHCxyyekNGpudwCSJvl1TzQmEFFreAWgF3RAXzj5hQDEdQT58oTY4m8kx5kqLDlNOa01FrO3KotEqhIto7up1tVbxfPNFe0ah70NLG6XbyVc5XLNy1kGqrpI6I8Y7hztQ7OSfqDJTm6kMCtQ8tUhzcLgd749+McgjGoCMoKv6ybQiATvwMzd60ju/f+B8uux2f4BCm//NRggbFHtcxRIeDhm++pXbRIhyFhQAoDAb8rrgC/xuuRxMc3GnzlekhKnbD9o8PCxKv99HgGnEJQZNfAW3fVV/JSDhrrFgyKrFsq8LdYG/drw42YEwPwTAqGJW3Fix18O19sHe59ITIMXDxQgiI66GZdxxRFPnjk/fZsupLAM657W6Gn3FOD8+qf9DscrO8qp6PymrZ1WRt91iUXstwTw+GeXqQ4iV9j9BpuuyewOx281pRFW8WV2ETRJTAtRGBPBATetzKkVpbI5s3nY5WaOAt7mKj8gxuigji3kPyNTqCLc9Ezdu7QQTfi+PxHBd2nD+VTG9DLmjIALBo0SLKysqYMmUKkydP7rJx3C4nb95yNXaLmdlPv0h4Yg8G9sl0ChaHi8dW7OXLbdLi45nJwcybORJfw9E7/ZzORjZvuQibrZjAwLMYMfytTjmZCqLIdbsLWFPbSKReww/pSScltXSUm6n7dD+uKisowOu0SLzPHnREyzaZXorpAKyaC/m/SttR41tUGfE9Oi2ZYyOKIuU5Wez97SeyNvyB3dImsY8cmsKw084icfwktHrZA/Wv2O12CgsLWwscJpOp3eM+Pj7t1Bs62XNdRqZb2NZg5oHs4la7hXE+Rp5PiiTZ2H2fY/W2+nZB5LkmSdXRdJTMB41SQ6xPbKtl1cF8jgjPCJSKLroWEkVczVV8m/0Fb+Z8RqldUsyGK/XcpvDnQrMFdWNFi/1TB29PtV6HKCoOFijC21tCeYaAuvtUKoLgZsNnS/hz+WcARA9P5YJ7HsTD68Tve0W3m6Y1P1GzaCH2fVIIqkKjwefSSwi46Sa0UVGdMneZHsRll4LEt32EmPczipb3gKDRoxwxG0ZdAxFpnVp0k+laBJsL6+4azBmVOArbCrAKvRpDahDG9BA0kUewlBJF2P05fPtPsDeAxgjTnoW063r9/78oivz6wWK2fb8KFArOvfM+hk4+o6en1a/Y1WTh47Ja1tY2ttpa/hVftUoqcHh6MMxL+p5g0KP5G+XEsRBFkeVVJp7JK6OsZdxJvp48kxDBEM8Tu94pKlpEbt7zqHVRvOO5mB/rpPtCf42KB2LDuCYs4G/VHgdp/LWYxtWFoFIQfPtItJFHtryS6RvIBQ0ZSktLWbx4MSqVivvuuw+jset8V4t27+CLZx7F4OPLnLc+OKIvrEzfIbeqmTuWZJBd2YxSAf+cmsRtp8ahPMYJRRRFdu++neqaNej1kYwdswqNpnOCK18uqODFwgr0SgWr0hIY4XXynUqCw03DN/mYN0uZIJooLwJmJaEOkBdSezWiCFvfhTWPg6MZ1B4tqow5siqjj+F02Mndsom9v/5E0e4d0v8toNHpSRw/iWGnn0Vk8jDZkuoIHFRvHLSm+qt6Q6lUtlNvBAUFyeoNGZlOptHl5tn8cj4orUFEWkB4PC6cWWH+KHvB+00URaqt1a2WVbmm3NaMjoOB23/FQ+1BnE/cYWHkwYbgv7d/OoaiQmgqY42rntd9PCnQStkSgS43t5oauLSpmcPKDUr1ISqKI9g+HdzW9a4FC5u5me8WvETB9q0ApF9wMadeeT1KVedcn4iiiPmPP6h5ayHWbduknSoV3uefR+Att6BLkK02+wUNJdT+fCeGrN/xsB1iNR00BNKugRFXgLFzsgllOhdRELHnN2DJqMS6p6bNKlwB+kQ/DOkheAwJQKHpwLWtqRhW3C5lrwAkngsXzQfP3q3MEkWRte+8yc4136FQKDnv7n+SPPHUnp5Wv6Te6WJvs5W9zVb2NFvZ22Ql22LDdYQVXq1CQbJRT6JRj06pwC2CGxFBlJpH3Ujh3oIIAqL0+CHbVQ5Xa+5FlF7L/8WHc16gzwnfX7jdFtZvOA2ns44hyc8THn4Zv9Y18kRuWes4SUY9T8UfPY/jUERBpPajfdj216Hy0xEydxRKw+FZrzJ9A7mgIcOKFSvYsWMHI0aM4JJLLunSsX55fxHbvl/FsNPPYtrt/+jSsWS6llU7y/jXl7swO9wEeelYMHsU4wcH/O3rig68TW7ucygUWkanf4a39/BOmc+amgau3V2ACLyaHM0VYf6dctyDWHbXUP9lDqLNhUKnwm9GPIZRvftCccBSXwSr7oKC36Xt6AmSKqMPyLBljk1TbQ37fv+Zvb/9RH15Wet+n+CQVksqn+CQHpxh78bhcLTL3jiaeiM+Pp7BgwfL6g0ZmZNAFEVWVpl4PLeUKocLgMtD/XgiLoLAXhTUeTQEUaCsuaxN0dGi6shvyMcp/KXbUxTxFwQGK3SkagNJVHkSrdAQ4hbwcVjRNLdYQ9kbjjiWCPzhoWeBny+ZOqls4SOI3OTyYJZHNB7e4W1B2ofaQBkCoI8Vs2tLiln50tPUl5eh1mg5Z85chnRhZ7JlyxZqFi3G/Mcfrfs8z5pC4Jw5eAzvnGtwmZ5DFEWyMh/Fsv9DwischNQKKA7mwSg1kDQNRl0LcWf2mYyF/oyr1op5WxWWjErJErwFdZAHhvQQjKOCUfmcwLWXIMDG1+Dnp6U8IEMgTH8Nks7txNl3PqIgsGbxa+z++UcUSiUX3vswCWMn9vS0BgR2QSDbbJMKHM1W9jRJ35vch+fwHi8eSiX/GBTCnKgg9CfpbHFw7Uivj2LC+DUolVLxwSWIfFRey4sF5dQ5pWatcwK8eSI+nDiD/pjHFCxOKl/bgbvOhiE9BP/LE09qjjI9h1zQGOBYLBbmzZuHy+XipptuIqoLpciiKPLOPbfQUFnBRff/Wz5Z9VHsLjfPfLOfjzYVATB+sD/zZ48i2OvYJw4Ak2kr27ZfiSi6SUp8isjIqzplTvuarVy0LYdmt8B14QE8n9Q1f8cuk426pVmtcmBDWjC+0+NQ6uQbhF6BIEDGe+1VGWc9AWPn9LkFD5ljI4oiZdmZLZZUv+OwtnURRw0bwbDTppA4bhIa/d9/Lg1URFGktra21ZqqsLDwMPVGdHQ0CQkJxMfHExz8N53XMjIyrRRZ7TycXcIvdZKVU5yHjueTIjnFr3cpBTqEKIKtARpLoaEUd8MBmqr3Y6nNQWwoRmuuwdvWjE7s2CKIS63D5RmM2jsStU8Um3Vq5ptz2GmrBMCo9uC6IddwTcoNeGqPL/Szt5O7ZRPfv/4yDqsVr4Agpv/zEUIGd48FpnXvXmoXLqJpzZpWpaNx4gQCbp2DYdxY+fO9DyOKbvbs/QdVVd+hdesYrZuJR+avULa97UleYZB6JaReJTf4dDOC3d1iKVWBo+BQSykVhpFBGNJD0EZ5dc57sGIPfHUrVO2VttOug6nPgq73fpaKgsDqN/7Hvj9+QalSc9H9/yYufWxPT2tAIooiB2wO9jZbybXYEUVQKkCpUKACVArFYdsKBahQoFJI2yqFgnE+RkJ0J696cLutLeqMWoYkP0d4+MzDnmNyuphXWMm7pdW4RNAoFNwYGch9g0KOGYRuL2qk+s2dAATdMRJdtLzm3BeRCxoDnPXr17NmzRpCQ0OZM2dOl17M1pYc4P3770ClVnPHO5/K3ud9kOI6C3d+so1dJVKH3V1nxPOPsxJQd6Dy7nDUsnnLRdjtFYSEXMiwof/rlL+3CruT8zKyKbM7mejrydKRg9F24eK16BZp+uUAjWsPgAjqAD3+s5Nl/8Wepr5QyspoVWVMlDqT5Ju2fo/TbiN380b2/PoTB/buarOk0nuQNOEUhp02hYjkYfJizd/gcDgoLCxsVW/U19e3e9zb27td9oZeLhbJyByGQxB480A1/yuqwCaI6JQK7o4O4a5Bwej6UmG9Lh82LIDC9VIhw9HcoZe5DP40e/hSo9FRqhTId1vJcTdTpVZTpVJRpVZhViha/d21Si0OQeom1yg1TIudxtxRcwkz9q+gTlEQ2PjlUjZ+8QkgZUFd+I+HMfj4dvtc7Hl51C5+m4avv4aWIrZHaioBc27F8/TT5XNlH0UQHOzcdSt1dX+gVvuQnvYpns3OQ4LE69qePGiSlLUx9CLQdp3V9EBGFEQchQ2Yt7ZYSjnaLKV08b4YR4fgMTQAhaYLbHCdNvjlGdjwGiCCXyxc+g5Epnf+WJ2EILj5bsHLZG34HZVazYwHHiMmtffOV6Z7OHDgXXJy/4NeH8mE8T+1qjOORI7ZxpN5ZfxUKxUN/TUqHooN46pj5GvUfZaFZVsVmghPgu9MRXES2SEyPYNc0BjACILA/PnzMZlMXHTRRaSlpXXpeJtXfsEfn7xPTGo6l/7ryS4dS6bz+WlfJfd9toNGmwtfg4b/XZHKGUkds1wSRTc7dtxIXf06DIbBjBm9HLX65DtFzC43M7bnsrvZSoJBx9dpCfgeoxLfmdgLG6hbmiXJhZUKfKbG4Dk5Qj4RdjeCABnvwo+Pg9MsqzIGOI01Vez77Wf2/rYWU2V5637fkDCGnTaFoaediXegbBXXEf6q3nC5XK2PHVRvHCxwyOoNGRnYaGrmwaxiciySjchkP0+eT4xisKEPWbdV7Yc/5sGeL+CvigsPP/COBJ8I8I5o+X7Itnc4qA//WS1OCwUNBVI+R30uO6t3sq9uH46Dtjh/QYGCSK/I1lyOBL8E4nzjiPWORaPqez7XdouF71+fR97WTQCMmnYhp11zEyp1z6p7HSWl1L37LqYvvkB0SP8XuqQkAm69Be9p01B0Up6HTPfhdlvYtv1aGhu3o9UGMzr9Mzw8olqCxL+H7R9B7lpoCRJH6wXDL20JEk/v9UHSfQFXnQ3LtkrM26pw19la96sDJUspQ1ow6hOxlDoRCv6A5bdBY4mUN3TGv2HSP3ptlqDb5eLbV18gZ/MG1BotFz/8BNEpI3t6WjI9hNttY8PG03E4qklOfpaI8Cs69Lpfaht5PLe09Vos2ajn6fgIJh8hX8Pd5KDipa2Idje+l8TjObZ/NVMMBOSCxgAmOzubTz75BL1ez3333YdWe1jUXqfy6eMPUpa1jyk33k7q1PO7dCyZzsPlFnjxxywW/pYPQGqUL69flUaEb8cVNvkF8ykoeBWlUs+Y0V/h6Zl00vNyiyLX7y5gTW0jARo136UnMMijexcNBIuT+uW5WHfXAKBL8MV/ZhIqr659L8m0UF8IK+9qC8EbNAkuWiCrMmQQRZHSzL3s/W0tWRvX4bS1WFIpFESnjCTltCnEj52ARierDDqC0+mksLCwtcBRV1fX7vGD6o2D2RuyekNmIFHndPFUbhlLK6T3RaBGzZPx4VwS4td3Cn2l2+CPlyHzm7Z98WfDmJulc6p3+El3chc0FPDGjjdYXbgaAKVCySkRpzAyaCQ11hryTHnk1OdQb68/4uvVCjWDvAcdFkQe5RWFqpcu0NWVlbLypWeoKy1GpdFw1s13knL6WT09rXa4qqup++AD6j/5FMFiAUAzKJqAm2/GZ/p0lF18fyjTuTidJjK2zcZszsbDI5r0tM/Q6YLantBQAjs/lZQb9YVt+4OGwKirpSBxz6DDjitzdASHZCllyajEnt+WE6TQHWIpFd1JllLHi9UE3/wD9i6XtmMmw8ULpUJ0L8TtcrJq3nPkZ2xGrdNx6b+eJHJISk9PS6YHOFD8Hjk5z6DXR7SoMzp+LnIKIh+W1fBSQQX1LkmJODXQmyfiIg5rMmlaV0rDN/koDWpC/zlaDgjvY8gFjQHMkiVLyMnJYcKECUydOrVLx7I0NvDWrdcgigK3vP6u3CHbRyius3D/5zvZXCDdpN8wKYZ/nTsErbrjne+1devYseN6QGTokBcJCzv54HlRFHkkp5R3S2vQKxV8lRpPmk/PSKZFUcSypRLT13mITgGlUYPfzEQ8kjo3lFzmEAQBtr4Da56QVBkaA5z1fzDmFlmVIXMYTpuN7D/Xs/e3tRTv3dW6X+thIGniZIaddhbhicl9Z+GxF1BbW9tqTXUk9UZUVFRr9kZISIj8u5Xpl4iiyGcV9TyZV9oaSHlNeACPDA7rNrXoSVO4Hv54CfJ+btmhkGxoTrkPwlM7ZYiy5jLe3Pkmq/JWIbSoPs6NOZc7Uu8gxifmsOfXWmsPCyLPNeXS7Dyy7ZVOpWOwz2DifeOJ840jwS+BeN94woxhPfrZk799C9/Nfwm7xYynfwAX3f9vwuJPvqGnq3A3NFC3ZAn1H3yIu0FalFWHhBBw4w34Xn45SoOhh2co01Hs9kq2ZlyBzVaMp+cQ0kZ9gkbzl/UUQYCi9ZJqY99KcLWoCZRqKUh61DUQN0UOEj8KoijiKGzEnFGJdVcNoqMlg0wBujhfjOkh6IcFoNT2gmKrKMKOJfDdg9J9k4ef1AA25MKentkRcTmdrHzpGQp3ZKDRe3DZI08Rnjikp6cl04243fYWdUYVyUnPEBEx+4SOU+908XJhBe+V1uBuyde4KTKQew/J1xDdApXzt+OqtGAcH4bfjO7JtToezGYzOp0OdQ8rO3sjckFjgFJXV8f8+fMBmDt3LgEBAV063t7f1rL6jf8RNCiWa19Y0KVjyZw8dpebxb/ns+DnXOwuAU+dmhcuG8F5w49PhmezV7B584U4nXWEh81kyJDnOmV+i4qreDy3DIC3h8VwQbBvpxz3ZHBWWaj7JBNnhRkAz0nh+Jwbi+I4ij8yHaCuQFJlFK2TtgedAtMXgP/gnp2XTJ+goaqSvb+tZd/va2moqmzdH5E8jKm334NfaHgPzq5vclC9cbDA8Vf1hpeXV6t6Iy4uTlZvyPQLcsw2HsouYYNJWmRPNup5MSmKMT3UXHFciCLk/iQpMg5slPYpVDBiJpxyLwR1zqJ7taWaRbsW8UXOF7gEqeh5euTp3DXqLpL8j28MURSptFS2FjhyTDnkmfLIM+Vhc9uO+BqjxkicT9xhio5Aj8AuLXSIosjmFZ+zbtlHIIqEJw7hovv/jdHXr8vG7EwEs5n6zz+n7t33cFVVAaDy9cX/umvxu+oqVPJ9eZ/AYikkY9sVOBw1+PiMZlTq+6hUR1HX2xpgz5ew7SMo29a23ysMRs6WlBuy+hkAl8mGJaMK87ZK3LVtnz2qAD3GtBAM6cGofXvpdU5NLnx5E5TvkLbTb5ACw7W9r1jpdNhZ8fxTHNizE62Hgcsf+w+hcQk9PS2ZbqK4+AOyc55CrwtnwoS1x6XOOBLZZhtP5paxtq4tX+Ph2DCuCg9ApVBgyzNRs3g3KCD4rlFoI07eGr0z+eSTT6ipqeHiiy8mKiqqp6fTq5ALGgOUH3/8kQ0bNhAXF8c111zT5eOtmvcsOX9uYPyls5g08+ouH0/mxFmXU8PjK/eQXyMtzE+MC+DZi4cTE3h8N+mC4GTb9qtpaNiKp+dQRqd/jkp18hd4q6sbuGFPASLwWFw4d0b3HrWP6BRo+L6A5g1SsUUTZsT/ymQ0Qb3vQrHPIQiw5W346QlwWiRVxtlPweibZFWGzHEjCgIlmXvZ++tPZG1ch8thR63VMfnK6xk19XwU8t/UCVNXV9da3CgoKGin3lAoFO3UG6GhobJ6Q6ZPYXULzC+q5LUDVThFEQ+lgvtjQpkTFYymt2doCQJkfi0VMsp3SvtUWmmxctI94BfTKcOYbCbe3fMun2Z+2lpsGBc2jrmj5jIyqHP90AVRoLSptLXAkWPKIdeUS0FDQWsR5a/46HzaFTgO5nT46HxOej4Om5Uf3niF7D/XAzDirGmcecMcVOq+Z2EhOBw0LF9B7dtv4ywuBkBpNOJ35ZX4X3ct6sDAHp6hzN/R1JzJtm2zcLmaCAg4gxHD3zxmqC4AlXslO6qdS48QJH41DJ0+4ILEBYcb695ayVIqz9QaQaLQqvAYEYhxdAjaQd5943rG5ZACw9e/Km0HJkqB4WEjenZeR8Bps/HVf/+Pkv170BmNzHz8OYJj5Aa2/o7bbWfjxjOwOypJSnqayIgrO+3YP9c28sQh+RpDjHreTYkl1qCj9pP9WHfVoB3kTdBtI3rN+zknJ4clS5agVCq54447CJTPve2QCxoDEKfTybx587BarcyePZukpK6VP7ucTt64+UqcNitX/WceofGJXTqezIlR2Wjj6W/28c0uKUg3yEvHo+cP4aKR4Sf0gZ6T+18OHFiMSuXJ2DErMRhiTnqOOxotXLw9F6sgcG14AM8nRvaak82hWPfXUv9FNoLZhUKjxPeiOAyjZduVE6Yuv0WVIS0QEDNZkkr7x/bsvGT6BQ1Vlfy48FUO7JHsqCKHpjD1tn/gGxLawzPr+zidToqKiloLHLW1te0e9/T0bA0WHzx4MB4eHc9mkpHpbn6ra+Kh7GIKrVKA8hR/b55LjCC6m/O7jhu3E3Z/AevmQU22tE9jgNE3woS7wLtzQjCbHc18uO9DPtz3IWan1BQzMmgkd4+6m7FhYztljI7iFJwUNxa3FjgO2lYdaDrQanv1V4I8gojzjWstcBy0sDJqOrZ4a6qsYOVLz1BzoBClSs2ZN8xh5NnnduaP1SOILheN36+mdtFC7Dm5ACh0Onwvu4yAG29AE9E7vfhlJEymrWzfcR2CYCMk5CKGDX0ZhaIDTRsuO2SvllQbeWvh4PtG6wUpl0iWVJGj+22QuCiKOIoasWRUYdlVjWh3tz6mi/PBkBaCx/DA3mEpdSLk/SIFhjdXSIXts56Ecbf1uiYxh9XCF88+Tnl2Jnovb654/FkCo2N6eloyXUhxyYdkZz+JThfKxAk/o1R27jWWUxD5oCVfw+RyM8LLg2/TElE0Oah8aSuiU8BvZiLGtJBOHfdEcLvdvPnmm9TU1DB+/HimTZvW01PqdcgFjQHI9u3bWblyJT4+Ptxzzz0ou/jEVbhzG18++zhGXz/mvPmB3Pnay3C5BT7cWMS8Ndk0210oFXDthBjuOycRb/2JdZRVV//Ert1zABie8jrBwSf/4Vtsc3BeRjbVDhdn+Hvx0fDBqHtxN6S70U7dZ9nYc00AeIwIxO/iBJQesvdhhxEE2LwI1j7ZosowwtlPyqoMmU5HFAR2/rSa3z9+F6fdhkan59SrbmDk2efK56xOpL6+vjVYvKCgAKfT2frYoeqNtLQ0jMaB1QEq03upsjt5IreU5VUmAEK1Gp5JiOD8IJ/e3ajgtEm+6etfBVORtE/vA2PnSAtXxs6xm7W6rHya+Snv7nmXBruUvZDsn8zcUXOZHDG5V/2O7G47BQ0F5NS3KTryTHmUNpce9TXhxvDDbKtifWLRq9tUx4W7tvPtK89jMzdj8PHlovv+TUTy0O74kboNURBo/vVXat5aiG1XSx6VWo3PhRcScMvN6AbLndO9lZraX9m1aw6i6CIy8hoSE544vvdlQyns/OQIQeLJLUHis/pNkLjLZMeyvRJLRhWuGmvrfpW/HmNaMIa0ENT+vdRS6ngx10gNY9nfS9vxZ8GMN8Gz97gfANgtZr545lEq8nIw+Pgy84nnCIiQbXf6I4JgZ8PGM7HbK0hKfJLIyK5zdimzOThzSxYml5sHYkK5PzaUxl+LaVxdiNJLQ+j9o1Hqe3bdZtOmTaxevRqDwcDcuXPlxq8jIBc0BiCLFi2irKyMKVOmMHny5C4fb+27b7Hjh28YfuY5nDPn7i4fT6bjZBTV8eiKvewvl/wEU6N8eWZGCikRJy67t1qL2bzlIlyuRqIirycx8bGTnmejy82F23LIMtsYYtSzKi0BL3Xv74gRBZGm30to/LEIBBGVrw7/2cnoBsmfaX9LbZ50kX1gg7QdMxmmv9ZplhgyMkfCVFnBD2+9Qsm+PQBEp4zgnDn34BPc8106/Q2Xy9VOvVFTU9P6mFarZfz48UyYMEG+eJf5e0QRHM2gUErKg05aQBdEkY/KavlPfhmNLgElcGNkIA/FhvXuaxB7M2S8DxsWSN23AIZAmHAnjLkZ9J1zDeJwO/gi+wsW715MjVV6/8b6xHJn6p2cPehslB3pAu8lWJwW8kx55JqkfI7c+lzyTHlUWauO+HylQkm0VzRxPoOJyVbj/jUbRJGQuASm//MRvPz7ryWEKIpY/vyTmoULsWzcJO1UKPA65xwCbr0Fj2HDenaCMkekomIVe/fdB4jExtzN4MH3HP9BWoPEP24JEm9Z8FeqIXGapNqIP6vPBYmLTslSypxRKTWitVpKKfEYHoQxPRhtjA+KXtxId8KIomTp++OjUjC8MUgqaiSc3dMza4etuZnPnv431YX5GP38ueKJ5/ALk9Vh/Y2Sko/Jyn6iy9QZf+Wrynru2FeEWgHfpScy3ENP5SvbcNVY8TwlAt8Leq5QbzabWbBgATabjQsuuIDRo0f32Fx6M3JBY4BRWlrK4sWLUalU3HfffV3eASmKIm/PvYnG6iqmP/AY8aPHdel4Mh2jzuzg+e8zWbZV8sT18dDw8LnJXDE6CuVJXKy53XYyts2kqWkP3t6jSE/75KRDnJyCyFW78vi9vplQrYZv0xOI0J/cMbsbR3ETtZ9m4q6zgRK8pwzC64yo/nlhfLIIAmxeCD89Kd0oaYxwzlOQfqOsypDpFkRBYMeP3/L7J+/jstvR6D047eobGXHWtF7VadzfqK+vJzc3l4yMDCoqpEVYnU7HxIkTGTdunBwmPlBx2aGpHJoqoLFM+t7U8r2xvO2xFosjQCpqaI1/+W6Qzidaw+GPR42D2PYNPvuarTyQVUxGowWAEV4evJgUxUivXpyJZTVJqsZNb7Z533tHwMS7Ie3aTgt+dQkuvs77mrd2vkWZWcoMi/CM4PaRt3P+4PNRK/vWYuaxaLA3tLOsOvhlsptQuRVM3B1AXJl0L5UT0cyWEQ1E+8WQ4Jsg2Vf5xZPgm0CEZwQqZS8ugp0g1p07qVm0mOa1a1v3GSdPJvC2ORjS03twZjJH4uBiIUBiwmNERV1/4gc7GCS+/WMozWjb7xkKqbMh9WoIjD+5CXchoijiKG7CsrUSy872llLaWB+Mo0PwSAlEqet/79sjUrlPCgyv2idtj7sdzvo/0PSeay9LYwOfP/0INQcK8QwIZNb//RefYNketr9wqDojMfEJoiKv7fIxRVHklr2FfFPdQJJRz4+jExFzTNS8txeUEHJPGpqQnlGMf/PNN2zdupWQkBDmzJnT5a46fRW5oDHAWL58OTt37mTEiBFccsklXT5e9YFCPnzgLtQaLXe88wkaXe85KQ5EBEHks63F/Hd1JiaLZPUxc3QkD01LJsDz5CvgmVmPU1q6BLXal3Fjv0avDz+p44miyP1ZxXxSXodBpWTlqHiG9+bFhGMg2FyYVuRi2VENSBfL/rOSUPv0cu/t7qQ2D1beCQc2Stuxp8JFr4HfoJ6dl8yApL6ijB/efIXSTOnmbtCIUZwzZy7egb1Lit/fEEWRzMxMfvnlF6qqpO5oDw8PJk2axNixY9Fq+1ZBW6YDOK1QsQfKtkPl7rbCRWNZ+1DariT9ejjnP5jVHrxUUMGikmrcIniqlDw8OIwbIgJR9daCZnM1bHodNr8NjiZpn/9gOOVeyQpG3TnvGUEU+KHwB97Y8QaFjYUABHsEc+uIW7kk4RI0qr4XfH0iiKJIUUkWq//3IubSSkQFlIzRsym0BLPLfMTX6FQ6BvsMbpfNkeCbQKgxtF8Uym1Z2dQuXkzjd99JjSmAx+h0AufMwXjKKf3iZ+wvFBQsIL/gFQCGDn2ZsNAZJ3/Qyn1SYWPXUrAckpUVPVGypBo2o9cEibsb7Ji3V2HJqMRVfYillK8OQ3oIxrRg1AEDVBnqtMKaJ6TGMoCQ4XDp2xCc3LPzOgRLg4ll//cwdWUleAeFcMX/PSdfl/cTSko/ISvrMXTaECZM+AWVqnvWSGocLk7fnEmN08Vd0cE8GhdOzYf7sO2rRRfnQ+DNw7v9HFZRUcHChQsRRZHrr7+emJiYbh2/LyEXNAYQZrOZefPm4Xa7uemmm4iK6nrvwT+Xf8a6pR8yOG0MFz/0RJePJ3N09pY18OiKPWw/YAIgOdSL/1ycQvog/045viRlvheAkSPfITDg9JM+5vyiSp7NL0cJvD88lnMCT9wKq7dgzqjEtDIP0eFG4aHG/9IEPFL6rzVBhxDc8OdCWPuUpMrQesI5T0P6Df02bFCmbyAKAtu+/5p1n36Ay+lA6+HB6dfeQsoZZ8sLNF2MIAjs3buXX3/9tTVM3Gg0csoppzB69Gg0moGxeNrvcNmhcq9UvCjbDmU7pI5Q0X3016h0UnC11yFf7bZDpS8Ah1n6clrAYZGUGw5Lyz7z4fuaKyTrFMDsE8MdSY/wg0ciABcE+fB0QgRhul5aRGsogfXzYdsHklUIQPBQmHw/DJ3RabYvoijya/GvvLbjNbLrpVBxP50fNw2/iSuSrmiXJTEQKN67i6//91+sTY14eHlz4X3/ImrocERRpMJccVgQeX5DPna3/YjHMmqM7bI5DmZ1BOgD+uQ5xnHgALVvv0PD8uWILRlJuqFDCLx1Dl7nnC1nUvUCRFEkJ+cZikveR6FQMWL4WwQGntk5B3c5pDyGw4LEPVuCxK/tkSBx0Slg3ddiKZVT32YppVHikRKIYXQIuth+ail1ImSthpV3SMUptQdMe7ZX3ZM119fx2ZMPU19ehm9IGDP/77l+bfPXl7BaS6ms+gaHowZBsCMIjpbv9qNsH9znwOVqRBRdJ68eOwG+rzZxw55ClMDKtARGuVVUzNsKLhH/K5MxjOi+jCBRFPnggw8oLCxk6NChzJw5s9vG7ovIBY0BxPr161mzZg1hYWHceuut3XKh/Mkj91Oem8VZN9/JyLPP7fLxZI7MRxsLeWLVXgQRjFoV952TxHUTBqFWdc6Nhdmcx5atM3C7LcQMuoO4uPtP+pgrKuu5bZ8UYvmfhAhuiuwfYXMArhortUszcZY0A2AcF4rvBYNRaAaIrPlQanIlVUZxiw9z7Glw0QJZlSHTq6grK+WHN1+hLHs/ADGp6Zxz61y8AuQbqK7G7Xaze/dufvvtN+rr6wHw8vJi8uTJpKWloVb3H3ubfofbCVX7DylebJeKGYLz8OcagyA8DcJGgm90+4KFh1+XLqTUZK5FufJ2/K2VuFDxTtz1xE19hLOCOyc0u9OpzYN1/4OdS9t+lxHpMPmfko99Jy4abyrfxIJtC9hVI4VAe2o8uW7YdVwz9BqMmt7Rcd1diKLI9tXf8OuHixEFgeCYOKb/8xG8g47dHewW3JQ0l7QWOA4GkRc2FOISXUd8ja/Ot7XIkeDXYl/lG4+Prm809jgrK6l7733qly1DtEpd8NrBgwm45RZ8LjgfhVyQ7lFEUWDfvgeoqFyBUqkjdeT7+PmN7dxBGkph56ctQeIFbfsDkyTVxshZXRo+LYoizpJmzBmVWHZUI9ra3mvaGG+M6SF4DA/s8dDfXktTBSy/DfJ/kbaTL5Duzwyd0wh5sjTV1rDs/x6ioaoSv/BIrnjiOYy+fj09rQGJKLqprf2NktJPqK39ldaK4Qng4TGIcWO/Q6Xq/kaJufuL+LyinlgPLT+NScL1cwlNaw+g8tEScv9olNruWafZv38/y5YtQ6VScdddd+HnJ/9dHwu5oDFAEASB+fPnYzKZuOiii0hLS+vyMc2met667VoQRW598325ct5DbC2s44pFm3ALIucPD+OxC4YS6tN5Jwm328KWrZdgNufg5zueUaM+RKE4uQ/8zaZmLt+Zh10QuTUyiKcS+l/ol+gSaFhTRPNvJQCoQwwEzE5GEzpAFggEt+Tz/fPTUmep1hPOeUay/eglHUAyMociCG62fbuSdcs+wu10ojMYOfOGOQw9tZM6G2WOidvtZseOHfz22280NjYC4OPjw6mnnkpqaioq1QAsCPdGmqth2/tSh2fFbjhSZ7qHP4SPav/lHd7tn/0uQeTd0mqeL6hAbWvg+dx5zKj6WXowYjRcsggC4rp1Tsekch/88TLs/aqt8zlmsqTIGHx6p/7+dlTtYMH2BWyu2AyAh9qDK5Ov5IaUG/rMonpn4nI4+OntN9j7208ADDnldM6+9a6TstJ1up0UNhaSZ8prDSLPNeVS3FSMeJQFoWCP4FYVx8GvON84DJreacfqqq+n/qOPqPt4CULL57Y6PIyAm27C99JLUcrZSD2GIDjZvedOamrWolJ5kp72CV5eXRDoLoptQeJ7V3R5kLi70YFlexXmjEpcVZbW/SofHYb0YIxpIagDB6il1PEiCJKd4U9PSsVzr3C4ZKFkCdwLaKiqZNmTD9NUU01AZDQzn3gOg/fAOz/1FHZ7JWVln1Fatgy7vbx1v5/fBLy9RqBUalEqdX/50rb/rjrkMYUWvT60y4PAj0aD08XpW7Iotzu5KSKQZ2LDqJiXgbvejtcZUfhMjenyOTidTl5//XVMJhOTJ09mypQpXT5mX0cuaAwQMjMzWbp0KXq9nvvuu69bPKh3//IjP741n5DB8Vz93CtdPp7M4dQ22zl//joqGm1MTw3nlStSO1WZI4oi+/Y/QEXFcrTaIMaO+Rqd7uSUFAUWO+dvy6bO6WZaoDfvpMT2Xt/qTsCWXU/dZ1kIzU5QK/E9Pxbj+LA+aTXQYWpyWlQZf0rbg8+Ai+ZLXbkyMr2c2tJiVr/xPypyJeuV9POnc+rVN6Lsh4GvvRGXy8W2bdv4/fffaW6WVG5+fn6cdtppjBgxQg7N6ylKMqRA6r1fgdvRtl/nA+Gp7YsXvtE9Xrje3mjhwaxidjdLi2tjvI28kBTJkPxv4Nv7wd4ghYhPe04K1O7J+ZZkSIWMrG/b9iWcIykyosd16lD7a/ezYPsC/ij9AwCNUsPMpJncPPxmAj0GZmNSU20Nq17+DxV5OSgUSk69+gbSz5/RZddpVpeVgoaCw8LIy83lR31NhGfEYUHksT6xaFW9wy7N3dyMaelSat//AHdNDQCqgAD8r78Ov9mzUXl69vAMByZut40dO2/AZNqMRhPA6PRlGAyxXTegrQH2fNUSJL61bb9nCIycLRU3TiBIXHQJWPfXYsmowpZdBy31XtRKDCkBGNJD0MX5ypZSJ0rZDikwvDYXUEj5TGf8G3pBbpKpopxlTz5Mc10tQYNiufzxZ/Hw9OrpafVbRFGgrm49pWWfUFOzFrHFLlSt9iU87FIiImZ37WdIF/NrXSOzduYD8EVqHOlldmo/2g8qBSH3pqPp4mLoH3/8wdq1a/Hy8uKuu+5Cp5OzVv8OuaDRD3E6nVRUVFBaWkpJSQmlpaWtNg0TJkxg6tSp3TKPlS89Q+6WTUy47EomXn5lt4wp04YgiFz//hZ+z64mLsjIqrtOwajrXFltadkyMjP/DShJG/Uxfn4nd2NdZLUzc0ceRTYHI708+GpUPMYB0HXrbnZQ/3k2tizpfaofGoDfpQmojD1/odipCG7Y9Ab8/EyLKsMLpj4Dadf1+OKWjMzxILjdbPpqKRu/+BSAwWljOG/uA+gMvbNLtj/idDrZsmUL69atw2KRujBjYmK4/PLLMRoHiNKtp3HZYe9yqZBRmtG2P2K0pLYbNBH8YjvVAulkaXS5+W9+Oe+V1iACPmoVj8aFcVVYAMqD5yFTsWS1UbRO2k46T7LaMHbjgr4oQuE6+OMlyP+1ZacChk6XFBlhIzp1uHxTPq/teI01RWsAUClUzIifwZwRcwjzDOvUsfoSpZn7WDXvWSwNJvSeXlxwz0MMGpHaI3NpdjST15DXzroqtz6XWlvtEZ+vUqiI9o4+LKMj2isatbJnbHYEmw3Tl19S+847uMqkAo3S2xu/q67E/9prUcvWGt2Oy9XEtm1X0dS8F70+gvS0Zej13fCer9wHO5ZItlTtgsQnSJZUQ2eA7uiFLlEUcZZKllLWndUIlkMspQZ5Y0gPxjAiSLaU6izszbD6Ydj+kbQdniYFhvcCFWNdWQnL/u9hLA0mQgbHc9mjz6A3ykXSzsThqKGs/EvKSpditR1o3e/jM5rIiCsJCprWbSHeXc2DWcV8WFZLhE7DL2OSsH+UiT27Hn2SHwHXD+uyZobGxkYWLFiA0+nk4osvZuTIkV0yTn9DLmj0cQRBoK6urrVwUVpaSkVFBYIgHPbckJAQrrzySnx8ul6K53I4eP3m2bjsdq5+7hVCBh9/t4XMyfHazzm89GM2eo2SlXeeQlJo53YrNDXtY2vGpQiCg7jBDxATc9tJHW9/s5VZO/OodLiI1mv5Ji2BYF0/W9A/BqIg0ryhjIbvC8AtovLW4ndFEvo4356eWudQnS0FzJVskbbjzoQL54NvVM/OS0bmJMja+AerX/8fLqeDwKhBzHjwcXyCQ3p6WgMKu93O5s2b+eOPP3A4HPj4+DBr1izCwgbuImyX01AKW9+FjPfBInVbo9JCyqUw9hYpz6GXIYoiX1c38FhOCZUOaeHrshA/nogPJ0h7hGsNwQ0bX4O1T0tWG8ZgmP46JJ7T1ROFnDVSIeOgilGhghFXSF2xQYmdOlxJUwlv7nyTb/K/QRAFFCg4N/Zc7ki9g0HeAzvLauea7/n5vYUIbhdB0TFMf+BRfIJDe3pah1Fvq29VceSZ8sipl0LJGx2NR3y+Rqkh1ie2LZ/DR1J1RHhGoFR0T/FRdDpp+OZbahctwlEg5SsoPDzwmzkT/xtvQBMin0e7E4ejhq0ZV2C1FmI0JpCe9ikaTTcVl1wOyF4tqTZy17QPEh92saSQixzT2vjkbnJg2VGFJaMSZ8UhllLeWgxpIRjSg9EEyc0lXcbe5fD1PZLaRusJ570k5aH0cGNabckBlj35L6yNDYTFJ3HpI0/LTUYniSiKmEx/UlL6CdXVPyKKUmaXWu1FaOjFRITPxtOzc69JegNml5sztmRxwObgyjB/ng8IpPKVbeAWCbh2KB5DuyZfbfny5ezcuZPIyEhuvPFGWXHeQeSCRh+jubm5nfKirKwMm8122PMMBgORkZFERES0fnl4dJ9fZMH2rXz13//D0z+AW994v3/b5/RCNuTVcPXbfyKI8NLlI7ksPbJTj+9yNbF5y3Ss1iICAk5n5IjFKE7iJmhLg5mrd+XT4HKTbNSzdGQcoQOomHEojtJm6pZm4qq2ggK8To/C+6xoFJ0U4N7tCG7Y+LqkynDbQecNU/8jycrlzwWZfkB5bhYrX3wGs6keD28fpv/zUSKShvT0tAYcVVVVLF26lLq6OtRqNdOnT2f48OE9Pa3+w0Ef9M2LYP830GIzgHcEjL5RUtp5npzlZFdRZLXzr+wSfq5rAmCwh47nEyOZ7N+BRo+K3fDlLVC9X9oefZOU96Tt5IUSwQ37V0nWUhW7pX0qHaRdAxPvBr/OLS5UmitZtGsRX+V81RpMfWbUmdw16i4S/BI6day+hsvp5Jf3FrJr7WoAEidMZtpt96DpQ3kPoihSba2WlBz1Ugj5waKH9WCGwV/wUHu0FjcOVXUEG4K77D5OdLtp+mktNQvfwr6v5T2m0eA7YwYBN9+EdtDALqp1J1ZrKRnbZmK3V+DtPZJRqR+iVndzl3tjWVuQeF1+624xYCi2sNswNwzHlmc+xFJKgcewQIzpIejiZUupbsNUDF/dCgc2SNvDL4fzXwZ9z+ZXVBcV8NlT/8bW3ERE8lAu+deTaPVyXsrxIooiVdXfk5//ChZLXut+b++RRIRfSUjI+ahU/fv3utHUzCXbcxGBj4bHMnZLHU2/laDy1xN6bzoKTeeuy5SUlPD2228DcPPNNxMZ2blrd/0ZuaDRh2hubuall146bL9arSYsLKxdAcPX17dHiwg/vf0GO9d8x4izpnH2LXf12DwGIlVNNs57dR01zXZmjo7khcs6V64miiK799xFdfVq9Lpwxo5ddVJdPGtrG7l5TwFWQWS0t4GPRwzGVzOw5cGCw41pVR6WrZUAaKO98J+VjNq/79xMA0dQZUyRsjJ85JO0TP+iqbaG5S88RXVhPiq1mqm33cOQyWf09LQGHFarlS+//JLc3FwAJk6cyJQpU+TA8JPBYYZdn8HmxVC1t23/oFNg3K2QdH6nhbl2Nk5B5K3iKuYVVmAVRLQKBXMHBTM3OgT98TQJOG2w9knJMhEgIB4uWQwRaSc/SbcTdn8Of8yD2hxpn8YIY26ECXeBV+cqAupsdbyz+x2WZS3D3hLYPjF8InNHzSUlMKVTx+qLNNfX8fW85yjL3g8KBZNnX8eYiy7tN41ZgihQbi4nt16yrDpY6Mg35eMQHEd8jZfWq12BI8FPyurw1/t32rxEUcS8bj01C9/CurXFvk6pxPu88wi45Rb0Sf2vC7g30mzOISNjFi6XCX+/SYwcubhnAnpFEYo24Fj3DZYssDgnIdC2WK4NcmOYEI9hVChKj955/un3CG7pvPXrc1KDg280XPoORI3t0WlV5ufy+TOPYDebiRo6nIsffgKNro/dP/cgZnM+2dlPUlcvWW6qVAZCQ6YTETEbL69hPTy77uWJ3FIWFlcTrFXzy8gE7PN3IDQ68D57EN5TOi/3UxRF3nnnHUpKShg5ciQXX3xxpx17ICAXNPoYr7zyChqNhoiIiNYCRnBwcK+6WRdFkUV33kBzbQ0XP/QEg9PG9PSUBgxuQeSqtzexKb+OpBAvVtw5CQ9t5/5tHCh+j5ycZ1AoNKSnL8PH+8QLJssr65m7vwiXCGf4e/F2SsyAyMzoKJad1dR/lYNod6PQqfC7JAHDyN7ZAdsOwQ0bFsAvzx6iynhW8sTtJ4sCMjJ/xWmz8d1rL5G7ZRMA4y6+gkkzr0IhS4a7FUEQ+Pnnn1m3TroZGzx4MJdddhkG2Xrg+KgrgC1vS37ZtgZpn8YAI2bC2FshpHff2G42NfNAdglZZknFPMnXk+eTIok3nMTCRt4vsOIOaCoDpRrG3QbBQ8EYBMYAMARK/+6IesNpgx0fw/pXwdTiR633kY457jYwdN5iMUCjo5EP9n7Ax/s+xuKSbFrSgtOYO2ouo0NHd+pYfZXynCxWvfwfmuvr0BmNnH/3g8Sm9j77tK7AJbgobiqWLKtasjlyTbkUNRbhPqjG+gv+en8SfBOI94snzjeuNZTcS3tyFreWrVupWbQI8+9/tO7zPPNMAufciofsKd7lNDTuZPv2q3G7LQQHnUtKyqsoFN13b+ZudmDZUS1ZSpWbW/crVU0YWY1BtRaNsuSQIPGrIXBgq8p6lOLNUmC46YBkj3j6w1LOk7Ln7ufLc7P44plHcVitDBoxihkPPIZaq+2x+fQF3G4LBYVvcODA24iiE6VSy6DoOURH34RaPTBD1q1ugXO2ZpFjsTMj2Jd5LgN1n2ah0CgJuS8dtV/nFMp27drFV199hUajYe7cufLa93EiFzT6GC6XC7W6d3ciVBbk8fHD96DW6rjjnU/QaPtHQFBf4OUfs1jwcy5GrYpVc08hLqhzpcINDdvJ2DYLUXSRmPA4UVHXnfCx3i2p5pGcUkTg4mBfXh0SjVZe+DsMV52NuqWZOA5IVhmG9BB8L4pDqeulhZ/qLGnBp3SrtB1/lpSV4RPRs/OSkekGREFg3dIP2bzyCwASx01i2p33yt1hPcCePXtYuXIlTqcTPz8/Zs2aRYjsy35sBAHyf4Y/F0HOj0DLpb9frJSNkXolePTu0N56p4tn8spYUl4HgL9GxZPxEVwW4tc5XfaWOvj2PslH/GhoDC3FjQCpwPHXf5urYNOb0CypMDEGwYQ7JTsrfefe81icFj7J/IT39rzXmqkwNGAoc0fNZVL4pH6jPDhZ9vyyhp/efh23y0VAZDTT//kIfmHydYvD7aCwsbBdEHmeKY+SphJEjrw0EGoMbS1wHFR1DPYdjIf6+CxKbPv2UbNoMU0//CB17AOG8eMJnHMrhvHj5b/dLqSubj07dt6MKDoID5tJcvKzXfr7Ft0Ctsx6zBmV2DLrQGj521Ip8BgWgCE9BH28H4raTMmOaufStvwmgKjxkj3f3wSJy3QRtgb49n5JbQgQPREuWdSjOYmlmfv48tnHcdptxI4azUX3P4JaMzDtrI+FKIpU1/xITvYz2OxlAAQEnE5iwuMYDLLl37ZGMxduy8EtwsKh0UxYUYKjoAGPlAACrh560se32+289tprNDU1MWXKFCZPntwJsx5YyAUNmU5n4xefsuHzJcSNHs+MBx7t6ekMGH7Lrub69zYjivDqrFSmp3bujZjTWc+fmy/Ebi8nOPg8UobNP6GLW1EUebmwkpcKKwC4ISKQ/yREoJRvTI6K6BZpXFtE0y/FIII60AP/2cloI3rRRbvbBRsXwC/PtagyfGDas5B6lazKkBlw7P1tLT8uXIDgdhEyOJ7pDzyKl39gT09rwFFRUcHSpUsxmUxoNBpmzJjBsGG9W1nQI9gaYMensGUx1Oa27Y8/S1JjxJ8NvbzhQBRFPq+s5/9yS6lzSh3lV4X582hcOH5HsbEURZH6+npUKhU+Psfh/S2KsG8FZH4nLaqZa8BSC+ZqcB/ZtueIeEfCpLulTKlOzuSwu+18nvU5i3cvps4mFXfifOK4a9RdTImeIi8Gt+B2ufj1w7fZ8cM3AMSPGc+5d96H1kNWdB0Li9NCQUNBay7HQVVHpaXyiM9XoCDSK7KddVW8Xzyx3rFoVMdeZLTnF1D79ts0rFoFLinvRT9yBIFz5uB5+umyCrKLqKr6gd177gIEBkXPIT7+wU4fw1FuxpJRiWV7FYLZ2bpfE+mJMT0Ew8gglIYj/H24HJDzg1TcyPnx8CDxUddI1kfy51z3snOZVPB3NEuKwwtflf4/eojivbv46r9P4nLYiRs9ngvvfRhVL28M7k4slkKyc56itvY3APT6CBITHiMw8Cz5GuEQns8v539FlfhrVPwcHY3rrV0gQOBNKegTTq7J5+eff+b333/H19eXO++8E41cdDtu5IKGTKfz8b/upTI/h3Pm3M3wM8/p6ekMCMobrJw/fx11ZgdXj4/mmRmdG4QqigI7d91Mbe1veHjEMHbMihOSHwqiyKM5pbxbKnXV3B8Twj9jQuWTZgex5ZmoX5aFu9EBKgU+02LxnBTe8yF4VZmw4nYo2yZtJ5wDF7wiqzJkBjQlmXtZ9dJ/sDY14unnz4wHHydkcHxPT2vAYbFY+PzzzykoKABg8uTJnHHGGSjlRTDps3vLYqnb1dEs7dN5S4XosbdAQFzPzq+D5FpsPJxVwjqT9DMkGfW8kBjJON/Di/6CIFBSUkJWVhaZmZnU1tYCEBUVRUpKCkOHDsXL6wTtFUQR7E1tRQ5zzZH/7XZI1l0jZoG6c20wnIKTVbmreGvXW1SYpcaRSM9I7ki9g/Niz0PVgzYgvQ1Lg4mvX/kvJfv2ADBx5lWMv/gKeYH8JGh0NJJvyie7PrtdEPnBotpfUSlUDPIe1FrgOFjsiPKKQq1sv/DoLCuj9t33MH3+OaJdyn/RJSQQcOuteJ87DYW8UNnplJYtIzPz3wDExz3EoEG3nvQx3WYn1h1VmLdV4Sxtbt2v9NRgSAvGmBaCJtTY8QM2lsPOT2D7EqhrCzAmMFGyoxoxC7xkdWa3UZcPX94MpS1ZOKOugXOfB+1x/J92IkW7drD8hSdxO50kjj+F8+9+AOUAt7d2u20UFb1F0YGFCIIDhULLoOibiYm5o9+HfZ8IDkHg3Ixs9jbbmBrozSsFIuYNZWhjfQieM+KEj1tfX8/rr7+Oy+Vi5syZDB168oqPgYhc0JDpVJrrall4u2RDdNvCjzD69m5rgv6A0y0we9EmthbVkxLhzRe3TUSv6dwTdWHhG+Tlv4xSqWP06K/w8kw+7mM4BIF79h9geZUJgP8kRHBTZB/Ig+hluM1O6r/MwbZPWoTRJ/nhd3kiKs8e8AZ1u2DDfCkQzu1oUWU8J9mSyEUqGRlMlRWseOEpaksOoNbqOO+u+0kYN7GnpzXgcLvd/PTTT2zcuBGAhIQELrnkEjw8BuCNm+CGrO9h8yIo+K1tf1CyVMQYMavPWHbY3AILDlSyoKgKhyjioVRwX0woc6KC2llYOp1OCgoKyMzMJCsrC7P5EF92pRJBEFq3FQoFMTExDB8+nCFDhvSZvxFBFPi+4Hve2PEGB5qkTI5gQzC3jbyNGfEz0Cjlrr9DqczPZeVL/6Gpthqthwfnzf0ncenjenpa/ZZaa21bPocpVyp21OfS5Gw64vO1Si2DfQcT5xsnBZG3ZHWEGcMQauuo++BD6j/5BKHlvayJiiLg5pvxuXgGStkrv1MpKlpIbt4LAAxJfo7w8JnHfQzRLWLLrsOSUYl1fx24D7GUGuIvWUol+qNQncS9gyjCgY2SamPvcnBKWUEoVJA4TSpuJJwNf6MIkukE3E7p3vCPeYAIAfFSYHh4ao9Mp2D7Vla+9Axul4vkSadx7l33oRygxf2amp/Jyn4Km60YAH+/U0hK+j8MhtgenlnvZl+zlalbs3GKIm+FhTL6/RxQQtgj41EZT+wz5bPPPmPfvn3ExMRw3XXXyQ2+J4hc0Ojv1ORC1rctsvhamL0UAruuQ3TX2tWsWfQaofGJXPWfeV02jkwbz323n4W/5+OlU/PN3acwKKBzOyDq6zexbfs1gMCQ5OcJD7/suI9hcQvcvKeAn+uaUCtg/pBBXBIiF7tOFFEUMf9ZjumbAnAJKD01+M9MQp/Yjb/Tqv0tqozt0nbCOZK02Du8++YgI9MHsFvMfPPqCxTukLrVTpl1LWNnXC5fuPYAu3btYtWqVbhcLvz9/Zk9ezZBQQOksG6pg20fwJZ3oaElhFqhhKTzJFup2FP7VCF6XX0TD2aVkG+VOrXP9PfiucRIBnlIuW1Wq5WcnBwyMzPJycnB6WyzM9HpdCQmJpKUlER8fDwOh4N9+/axe/duSktLW5+nVCqJj48nJSWFpKQkdLrelwkniiI/F//Ma9tfI9ck2YX56/25efjNzEyaiU7V++bc0+z74xfWLFyAy+nALyyC6Q88SkBEz3m9D1REUaTSUimpOOrb8jnyTHnY3LYjvsagNrQWOZI0kQz5tRDDVz8jmhoAUAcH43/DDfjNvBylsWc6wjsLURBxN9pxVVtxVVlw1lhBEFFoVSg0ShRaFUqtCoVW+vfB/e32aQ75fhKf77m5z1N0YBGgZHjKawQHT+3Q65yVZsxbWyylmg+xlIrwxJgWjEdq8AkvBh4TW6NU1Nj+MZRsbtvvGQIjZ0Hq1RCU2PnjyrSn4A/46lZoKgOlBqY8DhPu6hELy9ytf/L1vGcR3G6GnXYWU2+7e0Cp8azWYrJznqamZi0AOl0oCQmPEhw0Tb4f6SDziyp5Nr8cL5WSX7Y6oMqK3xVJGEcFH/exCgsLef/991EoFMyZM4fQ0NAumPHAQC5o9DcEQZL4ZX4DWd9BTXb7x5MvgFlLumz45S88RX7GZibNvJrxl87qsnFkJNbsq+SWD6Xw5beuTmNaSlinHt9ur2LzlgtxOGoIC72UoUNfOO5jmJwurtlVwJZGMx5KBYtTYjkrQH5PdwbOCjO1n2biqpS6kDxPjcDnnBgU6i68QHO7YP0r8NvzbaqMc/8LI2f3qcUwGZnuRHC7+fWjt9n+/dcADJ18BmfPuVsOKOwBysrKWLp0KY2NjWi1Wi655BKSk49fddhnKN8pqTF2fwGulkVCDz9Iuw7G3AS+0T07v+Ok2uHkydwyvqisByBEq+bphEguDPKhsbGRzMxMMjMzKSoqaqe88PLyIjk5meTkZAYNGoT6KPY09fX17Nmzhz179lBZ2ZYHoFarSUpKIiUlhYSEhKO+vrsQRZGNZRtZsH0Be2olyyQvjRfXp1zP1UOuxqCRMyD+iuB28/uS98j4dgUAg9PGcN7cf6Iz9O2F7/6GIAqUNpW2z+cw5VLQUIBLcB32fJ1D5Pw9Os7b5MS7QVo0F7098bp6NuHX3YTqePJxegDB4ZaKFtUWnC3fXdVWXDVWRKfw9wfoAAqdCk2YEW24J5pwTzThRjQhBhSqjt0viKJIZua/KSv/DIVCS+rIt/H3n3Tkn8fixLKzGnNGJc6SQyyljBoMo4IxpIegDevG91xVJuxoCRI3V7ftjxovqTaGXdxnVIl9EksdrJorrU0BDD4DLn4LvLp/ATf7z/V888rziILAiCnTOOuWO/v9Yr7bbefAgUUUFr2JINhRKNRER91ETMydqNXyue94cAkiF23PYVujhWeLRc7Z14zH8EACrhpyXMcRBIFFixZRUVHB6NGjueCCC7poxgMDuaDRH3DaJNuAzG8hezU0HxLIptRA7GSIOQV+fkYKzbppjRSU1dnTsNt44+arcDnsXPP8fIJjBnf6GDJtFNdZOH/+HzTaXNw4KZbHL+xc3z1BcLF9x7WYTH/iaUxi9Ogvj9tXscLuZNbOPDLNNnzUKj4aHsvYI3hay5w4otON6dsCzJvKAanryX92MprALrDJqNwnqTLKd0jbCVPhwldkVYaMTAfZueY71r77FqIgEJ44hOn/fASDj29PT2vA0dzczOeff05RUREAp59+Oqeeemr/ydVwOWD/KqmQUfxn2/7QETBuDqRcCpq+YaV0EEEUWVJeyzN55TS43CiAGyICeWBQMAcy9/Pnn39SVlbW7jXBwcEkJSWRnJxMeHj4cS9cVFVVtRY36uraMgB0Oh1DhgwhJSWF2NhYVN3sx72tchvzt88no1JSfXmoPbh6yNVcN+w6fHS9e/G2p7A0NvDtqy9wYM9OAMZfcgUTL79qQHXo9nWcgpPixuJWJUeuKZec+hwONB1AEAXULpHJe0VmbBQIk+qd2LQKdk8Op276JKJiRhDvF0+cTxye2u69FxFFEXeDo7VY4TxYtKi24m6wH/2FSgXqAD3qIAOaIA8UGiWCU0B0uBEdB7+7ERwCotPdbr/gEMB1jIKISoEm1CgVOiJaCh1hRpTaI3+eiaKb3Xvuprp6NSqVgVGjPsbHe6T0mFvEllMvWUrtq22zlFIq0A/xx5gegj7Jr8MFlC7B7YTsQ4PE3dJ+jRFSDgaJj5Obs7oCUYSM92H1v8BlBUMATH8DkqZ1+1T2r/+N7xe8jCgKpE69gDNvmNNvixq1tb+Rlf0kVqt0revnO56kpCcxGuU8vxMl12LjrM2ZDDa5+XCTBYVORfhj44+rmTQjI4Ovv/4avV7P3LlzMfZxNWFPIxc0+iqWOulknPkt5K4FZ5sfMDpvySMy6Tzpu77l5mblXbD9Ixg0Ca7/ttNP2HkZf7LihafxCgjiltff7bcnh96AwyVw+Vsb2FnSQGqUL5/NmYC2k7vyc/NeoqjoTVQqI2NGr8BoPL4CVYHFzhU78zhgcxCsVbN0ZBxDPfvWAkpfwrq3hvovcxAsLhRaJb7T4zGkBXfO+9DtlFQZvz4PglP6TDn3BRhxhXzhLyNznBTt2sHXrzyH3WzGOyiEix98jMDomJ6e1oDD7Xbzww8/sHmzZEeRlJTExRdfjF6v7+GZnQRNFdKiwdb3oFkKhEaphqEzJFupqLF98jN7f7OVB7NK2NIoXesO9/TgP7EhuLL3sWnTJhobG1ufGx0dTXJyMklJSQQEBHTK+KIoUl5ezu7du9m7d2+78QwGA0OHDmX48OFERUV1aVFsb+1eFmxfwPrS9YCUMzAzaSY3D7+ZAI/O+Vn7I1WF+ax86T80Vlei0emZdue9JI47cne5TN/D7rZT2FAoKTnqc8mrzcZz/W5O+7mGQS0N+Q4V/DJSwapxSqp9FYQZw1qDyBN8E4jzjWOwz2D06pP7/Bccblw11sMVFzVWRMfRiwtKoxp1kAF1oAeaIAPqIA/py19/UkUAURARnW7c9XYcpc04y5pxlJlxljcj2tyHv0CBNIdwT7ThxhY1h2erLZQg2Nm58xbq6tejVvuSGv0x4n49lm1VCE2O1sNowowY0kMwpAb1TMbf39FYDruWSsWN2ty2/QEJkmpj5Gw5SLwrqM6CL26Cyt3S9thb4eynur3BYu9va1n95isgiqSfP4PTrrmpX61b2WxlZOc8Q3X1DwBotcEkJPybkOAL+tXP2ROIosjC4iqezC3jh9/M+NtFAm9M6bDtt9VqZcGCBVgsFqZNm8b48eO7eMb9H7mg0ZewNcKOJVIRo2hDW2cBgFc4JJ8nFTFiJoP6CBcPDSUwPw3cdrjqC6nY0Yn8uGgBu9f+QOrU85ly4+2demyZ9vzfqr28v6EQHw8N3959CpF+nWstUFPzCzt33QxAyrD5hIScf1yv39tsZdbOPKodLgbptXyWGtfqay3Tdbga7NQtzcJRIHkJe6QG4TcjHqX+JKwxKve2qDKkrkYSp8EFr4B359qbycgMJOrKSlj+/JOYKsrRenhw/j0PMnjUmJ6e1oBk+/btfPPNN7jdbgIDA5k1axaBgYE9Pa2OI4pQvFlSY+xbKRWdQfIKH30jpF/fI9YOnYHFLTCvsIK3iqtwiWBQKflHuB9JhVls27IFu13qbPb09GTcuHGMGjUKT8+u7bwWBIHi4mJ2797Nvn37sFgsrY95e3szbNgwhg8fTlhYWKctHOTW5/L6jtf56cBPAKgVamYkzGDOiDmEGvvm/213kbnhd35481VcDju+IWFM/+cjcgF5gGB2mCn47nMc732CR5YUgOtWwrqhClZMUFIa2P79qVQoifKKIt43njjfOCmI3DeeQT6D0Cjb7CFFUURodLRTWRz8t9vUAbVFoAfqYElxcbCI0SU5EsdAFEXcdTapuFHWVug4tChxKCofbWtxQ+GnoGT/EjQlYXg0xLU+R2lUY0htsZQK7yNqfFGEA5tagsS/ah8knnAOpF0jfZeDxDsPlx1+ehI2vS5tBw+VAsNDOtdp4u84mPsKMHb6ZZwyu++HMguCgwMH3qGg8DUEwYZCoSIq8npiY+eiVnv19PT6DTa3QOqGvdyx08wlJU6M48Pwm9Ex1csPP/zAxo0bCQwM5Pbbb+92hW9/RC5o9CWsJngxDg76hwYPaytihI/qWNfdD4/AxtcgZDjM+b3TQplEQWDhHddjrq/j0n89SUxqeqccV+Zwvttdzh1LtgHwznWjmTKkcztIrNZSNm+5EJergcjIa0hK/L/jev0mUzPX7s6n0SUw1Khn6cg4gnXyhWB3IQoiTb8W0/hTEQig8tfjPysJXfRxfo66nbDuFSkrQ3CC3rdFlTGzT3b4ysj0NqxNjXw97zmK9+1GoVBy2jU3kXbeRX3+hqovUlJSwrJly2hqakKn03HppZeSmNjLA0OdVtjzpVTIOFhwBskXfOwtMOSiIze39BF+qm3kX9klFNukBbYzvfScXZZLyc7tuN1SQ09AQACTJk1ixIgRPZJp4Xa7KSgoYM+ePezfv7+1wALg7+9PSkoKKSkpBAcff2AkQHFjMW/sfINv879FRESBgvMHn88dI+8gylsOsT4WguBm3dKP2LLyCwBiRqZx/t0Pou/igpdM70MURSybt1C7cCHmDRukfQoFjeOS2TptEBm+JnJMOTTYG9q9TitoCHcEE+MMZ5gikXjXIELtAXg36VE6j36eVhpa1BZBHm1Fi05QW3QH7iZHm4qjrBlHWTPu2iMHtAOIiLiMdXiNiMd7bAyaECMKZR+9hrE3SUHi2z5qHyRuDJaCxEddDUFJPTe//kbOT7DiNinXRKWDqf+BMTd36z3mjh++Ze27bwIw4bIrmXj5ld02dmdTV7eerOz/w2LJB8DXdyxJif+Hp6f8N9sVPJ5Tyt7t5by6zYrKR0tXaZq1AAEAAElEQVTow2P/9v6tpqaGN954A0EQuOqqq0hISOim2fZv5IJGX+PHx6ROu6TzwD/2+F9vqYNXR4K9ES55G0Zc3inTqsjLYcm/70Wj9+COtz+Rg067iMIaMxcsWEez3cVtp8Xx8LmdG2QqCA4yts2msXEH3l4jSE9filLZcWXFjzUN3Lq3EJsgMs7HyIfDY/HR9Gxw5kDFXtRI3aeZUreYUoH32YPwOi2yYzcaFXskVUbFLmk76Ty44H99tstXRqa34nY5WfvOm+z++UcARkyZxpk33oaqhwOHByJNTU189tlnFBdLnbxTpkzhlFNO6X0FJtMB2PIObPsQrC25Dmo9DL8MxtwC4ak9Or2TpcLu5NGcEr6plhYXQ9RKLqguQrMro/U5UVFRTJo0icTExF6Te+J0OsnNzWXPnj1kZWXhcrWFF4eEhLQWN/z8/t6WoMJcwcJdC1mRswKXKB3nrOizuDP1TuL9ZO/rv8PW3My381+gcKfU/DNm+mWcMusalEq5E3KgY921i5pFi2j+aW3rPuPks/CecRU2L3/qy6pxVpnRmMBo0aPkyJ//btxUaGupNzbj9ANtsBHfiGCiBg0mLCii9503ThBntQXznxVYtlchmJ1/+3yFRokmzNgaPK4N95SKHJre8TndYaqzJNXGzk/bB4lHjpVUG8MuBp3c8X7SNFfBijsgd420nXguTH8djN1noZjx7Qp+/fBtAE6ZdS3jLp7ZbWN3BjZbOTm5z1JV9R0AWm0g8fH/IjRker/5HOqNZJttnL1xPz/90oyHG4LnjkIbceyGiSVLlpCTk0NCQgJXXXVVN820/yMXNPoYFoeL2mYHUf4nYTH0+4tSQLhfDNy5pVM6+NZ/toRNX35KwtiJXHT/v0/6eDKH43AJXPzGevaWNTI2xp9PbhmHupM7fbKyn6Kk5APUah/GjlmFh0dkh1/7eUUd/8g8gFuEswO8WTgsBkMv70Tq7whWF/XLc7DuqgFAF+eD/xVJqLyPUqRyO+GPedJnxEFVxnkvwvDLZVWGjEwXIYoiGd+u4LeP3wVRJDplBBfc+y88POWb5e7G5XLx/fffk5EhLZ4PHTqU6dOno9P1sGWiKELB75IaI+s7EFu82H2iYcxNkHYtGPx7do4nidnt5p2SGuYXVdLsFlACE00VJO3egkaQFBnJyclMnDiR6Ojonp3s32C328nKymLPnj3k5uYiCG3e+ZGRkaSkpDBs2DC8vNq/x2uttby9+20+y/oMhyApUyZFTGLuqLkMCxjWrT9DX6WmuIiVLz6DqbIctVbH1NvuJnnSaT09LZkeRnQKuGpbrKGqrNjzK7HnViC6dCiO4d+v8FAjBqhp8rRS7lFLnuoAO9372GrfgVm0HPE1Ro1Ryuc4+OUnfQ/QB/SJBUbB5sKyqxrL1kocB5pa9ysNajxGBmEcHYo6yANXlYXmwiLKd3+N1hSCvjkGhfsIDY1KBZpgj1bLKm1LseOk7HC7C7dTyizd/rEUKN4aJG6QihqjroHo8fI90skgivDnQljzGLgd4BkKF78FcWd02xQ2r/yCPz55H4DTrr6R0Rde0m1jnyiC4KS4+D0KChfgdlsAJZGR1zA49h9oNPLaaXcwY1sOl/5awxlVLrzPisb7rEFHfW5OTg5LlixBqVRyxx139C1r216OXNDoQ1Q12rjxgy00Wl0sv2MiAZ4neIPtMMOrqWCugvNekqwJTpKPHrqHqsI8pt7+D1JOP+ukjydzOP/9PpO3fsvDz6Dh+3tOJdSnc4NLK6u+Y8+euQCMHLGYwMAzO/zaxcXVPJZbCsBlIX78LzkaTV+VHPczRFHEsrUS06o8RKeA0qDG77JEPIb+pfulYneLKqMlqC3p/BZVhhyKJyPTHeRlbObb+S/itFnxCwtnxoNP4B8e0dPTGpBs3bqV7777DkEQCA4OZtasWfj790DBwN4sBZduXgzVmW37Y0+DcXOkTKM+3nVuFwQ+KqvllcJKapySGiHc0sjEfVsJNDeiUqlITU1lwoQJffIG0GKxsH//fvbs2UNhYSGH3k7FxMQwfPhwIuIi+Cz/Mz7e/zFWlxWA9JB05o6aS3qIbOHaUXL+3MD3r8/DabfhHRTM9H8+SnDM4J6elkw3IYoiQpPzkGyLllDuGivuehscdSVDRDBXIzSVIzRVovRS4D3tFLzPOxWVl+6IRQi34KakuYRcUy659bnSd1MuhQ2Fraqqv+Kr820tciT4JbRmdfjofDrvl3CCiIKIPc+EOaMS655acLUUYZWgT/THkB6CxxB/FOrDG9WamvaSse1K3C4zwdoZxHrej6vc1prNIViO/PtQBehbixsHCx0qr15sk9hUATuXwvaP/hIkHn9IkLisZD9hKnZLgeE1WdL2xLvhzMe6zTpz45efsuGzJQCccf0c0s69sFvGPRHq6zeRlf1/mM05APh4jyIp6Sm8vLo3h2Sg82VFHat/yuOJPTbU4UZC70474vPcbjdvvvkmNTU1TJgwgalTp3bzTPs3ckGjD1HbbGfGG+sprrOSPsiPJTePQ685wRvZzYvhu39KvpB3bwfdiXvKNtXWsOiO60Gh4PaFH2Hw8T3hY8kcmT/za5m1eBOiCG9dnc60lM69YLJYCti8ZQZudzODoucQH/9gh14niiIvFFTwv6JKAG6JDOTJ+AiUcqdKr8NZbaHu00ycZWYAPCeG43NuLAqFC9YdVGW4wMNPKnSmXCp3HMnIdDPVRQUsf+Epmmqq0Rs9ufC+fxGdMrKnpzUgOXDgAMuWLcNsNqPX67n88suJi4v7+xd2BjW5sOVt2LFEsggF0BghdTaMvbVf+Hi7BJHPKup4ubCCUrtkZeJjs5BesI+EqhI89HrGjBnDuHHjujzou7toampi37597N69m5KSEpwKJ7k+ueT45OBUSr+Dof5DuSftHiaET+gT3dy9AVEQ2PDFJ2z6cikAUcNGcME/HsLg3fMLxTKdT5vaQipaHBrKLdrdR32dQq9uybSQci1a/x3ggau2hrr336d+2TJEi6S80MbEEHDLLfhceAEKbccWVZ1uJ0WNReSacskx5ZBnyiPXlMuBxgOIR6moBHsEt6o4Dn7F+cZh0JyEG0MHcdZYsWRUYtlWhbuhLQNIHWzAODoEQ2owKu+//9nr6zezY+f1CIKd0NAZDB3yIgqFUgofb3DgLJXyOKQih7ndWIei9NK0FDnaLKtU/vre9VkoilD8p5S1sXc5OKX7KilI/GxJtZE4VQ4SPxEcFvjxEdj6rrQdlioFhgd2j9XiuqUf8efyZQCcfctdjDhrWreM21Hs9ipycp+jsnIVABqNP/FxDxEWdgkKheyK0d3Y3AKn/7Kbz35qRAmE/mssap/DG843bdrE6tWrMRgMzJ07Fw+Po6sCZY4fuaDRx8itauKSNzbQaHNx4chwXr0iFeWJdMK7nfDaGKgvgDMfhVMfOOE57VzzHT+9/QZhiclc+fRLJ3wcmSPTaHNy7it/UGqyMnN0JC9c1rmLW263ja0Zl9LcnImv71hGpX6EUvn3MmC3KPKv7BI+LKsF4OHYUO4ZFNK7Ljpl2iG6BBpWF9K8TlLTeASW46/7H4rafdITki+A8+fJqgwZmR7EbKpn5cv/oTw7E6VKxZQbb+91N1UDhcbGRpYtW0ZpaSkKhYKzzjqLiRMnds15ThAkH+nNiyD3p7b9/nFSESN1Nuj7/gKtIIqsqjLxQkEF+VZpUctot5JelElSxQH8vb2ZMGECo0aN6nmrry7C7rbz/vb3eX//+zQLzQB4O7wZWj+UaEc0SYlJpKSkkJCQgEbOpDsmdouZ7xa8RP62LQCknTed066+EaWqbyuXBjqiKCI0O9tUFocoLo6ptlCAyl+PJtDjkGBu6bvSU/O3n92u+nrqP15C3ccfIzRIOT7qsDACbrwR38suRXmCC1FWl5WChgLyTHnkmHJaVR3l5vKjvibCM6KdbVWCbwIxPjHoVCf3uSjYXFh312DOqMRR2Ni6X6FXY0gNwpgegibS87jPc9U1a9m9+3ZE0U1U5PUkJDx61GO4zc7W4sbBQoerxnrE/1eFTtWWx3HwK9ijdwSs25ulosb2j6F4U9t+YxCMuEIqbgR3bt7lgGD/N7DqLrDWS/Ze574gqWC6eI1BFEV+X/IeW7/+CoCpt91Dyhlnd+mYHUEQXJSUfkR+/iu43c2AgoiIK4kbfD8aTd+/LuzLPJFTypgvi0g1ufGdEYfn+PB2j5vNZhYsWIDNZuOCCy5g9OjRPTTT/otc0OiDbMit4dp3N+MSROaeGc/955xgp97uL+DLm0DnDffsPGH/5a+ee4KCHRmcMvs6xs3onJBxmTbuW7aDr7aX8v/snXd4VGXah+/pk5n03nsIqZTQBLuCBUFsiL03sK2r7qrfumtf66ooVixYACsiNixYKNIhBEhIJ71nJtPLOd8fJ0yIhJ6QwtzXlSuZU9+ZzDnnfd/neX6/+GAd3951Er6a3tUc3bnzAWrrPkGlCmH8uGVoNOEH3cchCNy+czdLG9uRAf8dFss1MYNPCuJ4xbqjHtenj+ErLEQmcyOqAmH688i8VRlevAwIXA4HP7z+EoWrfgM6J+muut5ratsPOJ1OvvnmG7Zs2QJATk4O06ZNQ32IGbsHxdoGmz+C9W9BW0XnQpmU4TnuJkg+HQaI8fXRIIoiy1uMPF1Wxw6zDQCtw86o3bvIqisnJiyMSZMmkZWVhWKITkY7BSdfFn/JG/lv0GhpBCDeL56rkq8irDWMHdt30NLS4tlerVYzfPhwcnJySE5OHrKfy5HSWlvNkmcfp622GoVKxeSbbifrlDP6u1leDgPRJVVb7F1lsafyQrQdqNpC0a3KYk/QQhni06Ms0uHiNplpX7yYlvfexd0k+dApgoMJvuYagi6/DIVf73hcmRwmSg2lFLd1VXOUtJfQbG3ucXu5TE68X7xHsmrPT7x/PMoDJKOJgoi9zIBlYwPWgmZEZ6eklAy0w4I6JaVCjtq8u65+CTt2/B2A5KS7SUq645D3FRxunHXm7oGOejO4e5iCUspQRei7SVapovTI1f14j2zaBVs+hC0LJVnvPcSOlSbjsy4ErXdO65Ax1sIXN0PFH9LrzBkw7UVJSaAPEUWRFe+/yebvvgaZjHPn3EPGScfOz+OvtLdvoKjoYUxmSYrL338E6cMewd8/p9/adLwhiuJ+g7O7zDbeXryVO3c5ICWA2Jtyu61ftmwZGzZsICIigltuuQX5EOjPDzS8AY1Byicbqrj/s3wAnrtkBBfnHbp5swdBgDdPljQLT7gdznrisA/htNl49cbLcDudXPPcq4TG7d8Mx8vhsyy/lts/3oxcBp/eegJ5Cb2r4V1X9zk7dt4PyBk18n2CgycedB+zy80NBRX82taBSibjlcx4zg/v286Fl16kLh+WzIYGySvD4p5Iu/M2NFmpBF2UhlznzQb14mUgIIoia79YzKpPPgQgadQYpt55Pxpd38tQeOmOKIqsX7+e77//HkEQiIyMZNasWQQGBh75QRu2S9UY+Z+As9NcVhsgZXSOvQGCh472/x+tHTxVVsemjk4pF5eTEVXF5NSUMTwhnkmTJpGcnDxkKzzdgptvy79l3pZ5VJuqAYjUR3Jr7q1MT52OSi49d0VRpL6+nm3btlFQUIDR2JU97ePjQ2ZmJtnZ2SQkJBz3g+LSjWv5du7zOKwWfENCOf/vDxGZktbfzfLSA13VFtbu/hbNVtytB6m2CNJ2Bi32VFtIfx9KtUVvINjtGL78kpa33sZZI1U3y/38CLricoKvvhplH3krtdnaKGkv8QQ5ituKKWkvwegw9ri9Sq4iKSBpHzPyCEcI1k1NWDY24G7fS1IqzAddXgT6UeEoepBIORqqqt5jV/FjAKQPe4TY2CuP+FiiW8DZaPX4cTg6gx09SovJpPe1t/G4Otr32I9r3E4o/rHTSPz77kbimTOk4EbCRG8C2aEguGH1y/DL45IsckAcXPim9Pn1IaIo8vP8eWz98TtkMjlT77qf9BNO7NNz/hW7o5mSkv9SX/8lAEplIKkp9xIdfalXXuoYc6CABsAtv+7kX98345ZD3MMnINdKweX6+nreeOMNRFHk2muvJTEx8Ri1+PjCG9AYxDz7QyGvrihFpZCx4PrxnJAScvCd/krxT/DRRaDQwB0bITDu8HZfv4alzz1BQHgEN7z89pAdjPYH9QYbZ734Owar8+gqcfaDyVTE+g0XIgg2kpP+RlLS7Qfdp9Xp4sr8MjYZLfjI5bybk8ipwd7rc1DgcsAfz8Efz3d6ZQQjnvscptZxGJZXgltEEaAm+NLhaJK95atevAwUitas5Pt5/8PlsBMal8CM+x8mINwrC9cfVFRU8Mknn2CxWNDpdFxyySUkJSUd+gHcLij6Bta+CZUru5aHZ8H4myHnElDre7/h/cQGg5knS2tZbZA0xpVuFzk1ZYysLmHM8HQmTpxIVFRUP7ey7xBFkZ92/8Srm1+l1FAKQLA2mJtybuKS9EsOKB0jCALV1dUUFBSwfft2zGazZ52fnx9ZWVlkZ2cTExNzXPW9RUHgzy8Xe8xbY4ZnMe1v/0Qf6E2s6W+6V1vs7W9hRbT1bAwNkqRQtyqLPX+H+Bx1xUBvITqdGL/7juY338RRIl3LMq2WwJmXEHL99agi+94MWhRFmq3N3SSr9khYWV1Wz3ZaQcOJxlFMMZxAjqUryOdUubGlKwgcF0dEanyfBkXLyl6kvGIuICMr8wUiI6f32rFFQcTdZvMEN5y1Jhw1JgSTs8ftFYGaziBHZyVHjC8Kf/WxuW92NED+Islvo6W4a3lwcqeR+OXgP3Sfgb1GzUb4/EZoLQOZXJJKP/l+UPSuasXeiILA8jfnUrDiR2RyOdPueYC0sSf02fk85xXdVNd8RFnZC7hcHYCM6OiZpCTfi1rdNwFUL0fH53UtRL61kwSLSODlw/HNDUMURd5//30qKirIzMxk5syZ/d3MIYs3oDGIEQSROxdtZll+Hf5aJV/MnkRq+GEaJ4oivHeeNLAedSWc/+ph7f7D6y9RsOJHRp0zjdOvveXwzt2LuASRr5va2dphIVSlJFKjIlKjIkIt/fZVyAfVgE8QRK5+Zx0rS5rJjQ3g89smoupFrVCXy8T6DRdgsZQRHHwSI0e8c9Bof53dwaVbythlsRGkVPBhbjJ5AUNn4mVIU7e1syqjQHqdMV3yyvANA8BR3UHrwkJcLTaQgd/p8fifHo9MMXiuGS9ehjL1pcUsefYxzG2t+PgHcP7fHyJmeGZ/N+u4pL29nUWLFlFfX49MJuPss89m3LhxB+5jmJpg0/uS0aVRyvJFpoCM82DcLUMqW9MpiKw1mHi9soGf2iR/CLkgkFlbzri6ck7KyWLChAkEBQ3dCWhRFFlZs5K5m+eys3UnAP5qf67Lvo7Lh19+2Ga/brebiooKCgoK2LFjB3Z7V6Z1UFAQ2dnZZGdnExExtAOdDquF7+e9SPG61QCMPGsqp159Iwqlt7L0WCGKIoLZ2Vll0b3iwnUI1RbKUJ+/VFzokPsdm2qL3kAUBDp+/pmWN97EVtDZp1apCJxxPiE33IC6HzJwBVGg1lRLzfZSyO8grFKP2i1N9AoIbNYX8mPAn6zx24pDLk36+6n89jEiTw1KJVjbOxOmoiiyq/gRqqs/QCZTkpvzOqGhfSvb4zY69jIeN+GoNUsVQD0g1ys9fhx7Ah3KEB9kR+JLeiiIIlStg82dRuIO6dmITA6pk2H0VZB2Fih7ScpyKGLvgO/+AVukYDax4+CityGo79RBBMHND/NeZMcfK5ArlJx/70Mkjx7bZ+czGDZTVPRvOkzbAfDzyyJ92KMEBIzss3N6OXpsboHX5m/gkjI77ZmBZF+dw44dO/jkk09QKBTcfvvtQ7rP2994AxqDHJvTzeVv/cmm3e3EB+v4cvZEQnwPs3S0aj3MP1N6qN625pDNq0RB4PVbr8ZiaOfihx4nIXfk4b+Bo8QhCHzW0MbcygbKrY79bqdTyIlUq4jQKDt/q4jsDHZEaFTEa9XEaAdOJ+KdleU8umwHWpWcb+48iZSwwwxUHQBRFCnYfheNjd+g0UQybuzXB434l1psXLq1lGqbkyiNikUjUkjXa3utTV76CJcDfn9WqsoQ3aALgXOfg6wL9pk8E+wu2r8qxbJJ0n1VJ/gTPCsdZZD3/+zFy0Cgo6WZJc88RmNFKQqlkim33Enmyaf3d7OOS5xOJ19//TX5+ZL058iRI5k6deq+Bs41G2HdW1DwObg7+yi6UMi7BsZcDwFHIBc6AGl3uviltYPlzQZ+aTFidEv67DJRJL1+Nyc17WbyqBGMGTMG3RCXTFtfv565m+eyuXEzADqljqsyr+LqrKvxVx/9eMblclFSUkJBQQFFRUU4nV1ZyWFhYeTk5JCVlUVIyBFUbQ9g2upr+erZx2mp3o1CqeSMG2aTc/qU/m7WkEV0CbhabT2acovWA1RbqBUow326m3KH61CGaJGpho4HjCiKmFevpuWNN7GsWyctlMvxP/tsQm65GW1671bV7w9Xqw3LpgbMmxq7Td4rQ33Qjg6jLc1BqVDZraqj0liJW+zZnyRYG7yPEXlKYAp+6sP3DBFFge07/k5Dw1Lkci2jRr5PYOCxNcQVbC5PcGNPJYeryQLCvtvK1HJUUb7dDcgjdL3iydINuwl2LJEkqXav6VquC4URs7xG4gdj22ew7G9gN0o+sOf9D3Iu7rPTCW433859jqI1f6BQKplx/8Mkjhjdq+dwOFopLX2W2rpPAFAq/UlJvpeYmFnIZEPnvjmUee2PEqZ9U4dFLSPxwXHMe30e7e3tnHzyyZx+unes1pd4AxpDgBaTnQvmrWZ3q4W8hCA+unE82sPtNC66AgqXwfDzYNZHh7RLXXERH//f31H76Jj99kfHNEPK5hZYVN/K3MoGauzSYC5YpWB6eBAml5sGh5N6u5MGhxOjq4deSw9cFxPKo6kxqPoqO+MQKarvYNorK3G4BB6bkc1VE3o386Cq+gN27foPMpmSvNELCQg48EN5W4eFWVvLaHG6SPHRsGhkCnEDKPjjZT/UboYlc6BRyvIg83w493lPVcb+sGxppO3LEkS7G5lWQdCFaehyD7yPFy9ejg1Om41vX3mekvXSIHjcjEs48dKrkB3nevr9gSiK/PnnnyxfvhxRFImOjubSSy8lQK+F7Uskf4yaDV07RI+G8bdIAWVl72qW9welFhvLm40sbzGwzmDu5tuqddhJbKnn1I4mzssbyYgRI/YN9gwxCpoLeHnTy6ypk65NjULDrPRZXJ9zfa9lPf8Vh8NBUVERBQUFlJSU4HZ3TVJGR0d7KjcG+ziqYstGlr38DHazGX1QMNPveZDoYd4Jv97AbXZ2k4ba87er1drjpC8gVVsEaFCG66TARbgPylAdqnAf5H7HSMpnAGHZtJmWN9/E9OuvnmW+p55KyC03oxs1qtfPJzjcWLc1Y9nYgL3M4Fku0yjQjQhDlxeBOt5vv/8Hh9tBhbHCE+DY81PdUY24nxKbCF1EtwBHWmAaSQFJB602EwQn+dtupaXlV5RKP0aPWoifX8aRv/leQHS6cdZb9qrmMOOsN3cZpe+NQoYqXNdVyRHTaT6u6SWpo+ZiKbCxdSGYGrqWe43ED0xbJXxxE1StlV6PuBzOfQY0hx94OxTcLhfLXnyakvVrUKrUXPDP/xCfnXvwHQ+CKLqpqV1MaelzuFzStRwVdTGpKfehVoce9fG9HB0H887Ym+IOK/ZnNhDohMIJsHLLz/j5+XHHHXegVnvnzfoSb0BjiFDSaOLCeasw2lxMGxHNS5eORH44E/ONhfDaCSAKcMNPEHfwcrqViz5g7ZeLGTbhRKb97Z9H0fpDx+IW+LC2mXm7m6h3SIGMMLWS2XHhXB0dgl65byDH7HbTaHdR73DSYJcCHXV7/d3gcHqqO04M9OWt7ESCVH2nyXgg7C43M15dzc46I6elh/HOtWN7dWBgNOazYeNMRNFJWupDxMdff8DtNxjMzNpaisktkOvrw0cjkglTD+1JiUGPyw6/PQMr/9dVlTH1eWkS7VAP0WKldVERjqoOAPTjIgk4Lxm52psl4sVLfyMKAisXf8C6JZ8CkDZuIufMuQeV1ltN1R+Ulpby2WefobI2MkFVyHjFDhS2VmmlQi1NSIy7GWLz+rehR4lLEFlvNLO82cDyZiOlVnu39UFmI4kt9SS01DPaX8dJkyaRnp4+5M2rd7Xt4pXNr7CiagUASpmSi4ZdxE05NxGhP3YSUFarlcLCQrZt20Z5eTl7D9sSEhLIzs4mMzMTvX7wSIWKosj6pZ+zcuECRFEgathwpt/zIL5BXh3xw0F076m26KyyaLTiapb+FiwHqraQd5OGUnZKRalCh1a1RW9hKyyk5c23MH7/PQjS5Lhu3DhCbrkZ/cSJRzWeE0URR4UR84YGrNuaER2dwUsZaFIC0edFoM0KOap+usVpodxQTnF7scebo6SthAZLQ4/by5AR6xe7j2xVkn8SKkXXWNHttrJ5yzUYDBtRq0PJG70YnS7xiNvZF4huEVezBWet2RPocNSYe/Z+kYEyxAdVp1TVHgNyhe9RTFq6XVCyl5G40Hler5H4/nG7JBWC35+R5q+CkuCi+X3W13K7nCx9/knKNq1HqdFw0QOPEJuRfcTHMxrzKSr6N8YOqdLX1zeD9GH/OeZVTF56Zk8f6nDu25+/vp7xFTZ+CjZRYVnLBRdcwIgRI/qqiV468QY0hhCrS5u5ev46XIJ4ZCbSS+bAlg8h4US4dtlBH5oL7rudpt0VnHP738k8qW91MU0uN+/WNPN6VRMtTukhH6VRMSc+nCuiQvA5Sn+J75sMzN5ZicUtkOSj5v2cZIb1g6TSU9/u5I3fywjWq/n+7pMI9+u9NjidBtatn4bNVkNY2FnkZL96wJv0DpOVCzaXYHC5mRjoy/s5Sfj1EDDyMoCo2QRfzYHGHdLrrAskiSn94Wd5iG4B44+76fitCkRQhvkQfNlw1NG9J3/mxYuXI2f7bz/z45tzcbtchCelMOP+f+EX7M3oOqaIIlSuxrHqVZTF3yHvTGl2aENRT7wVRl970Kq4gYzR5eaXFiM/thj5ucVIu6urAkABJFqMRNRWkNhSj7/NQnp6OpMmTSI+Pr7/Gn2MqDRWMm/LPL4r/w4REblMznnJ53HbiNuI9etfKTGTycSOHTsoKChg9+7dnuUymYyUlBSys7MZPnw42gEcBHXabPzw+ksUrfkDgJzTp3D69behHOKVPkeD2+yUAhWNFpydv13NVskfTdj/MF4RqOnRlFt+rIyThxiOigqa334bw1dLoVMSTpuTQ+gtN+N7+umHVVHparNh2dSIeWNDN0kpRYgW/egIdHnhKAP79jo2OoyUtZd1k60qaS+hdU/g/i8oZUoS/BNICUzxVHUk+UbSVHI/ZnMRWm0sY/I+QaMZ2J4/oijibrN3SlZ1GZC7jT1LXMv91Z7gxh7JKkWQ5vCvIVMjbF0k+W007+pa7jESvwz8o4/inQ0xKtdI1RqGKpAr4bSHYNJdIO/9OQuXw8FXzz1OxdZNqLQ+XPzQY4ddLeh0tlNa9jw1NQsBEYXCl5TkvxETcyVyef8k1HrpHVasrCBtWRXVPpAfXcSNN1w/5JN6BgLegMYQ49MNVdz3mRTpffbiXC4ZE3foO7dXwdw8cNvhys8h9cz9bmpsauSt269HJpNz21sf4uPXN/8jg9PF/Jpm3qpqoq1zIB2nVXNnQjgzI4PR9OJNYqfJytXbyqmyOfBTyHk9K5EzQo7dd29NaQuXv/0noghvXpXHlKzIXju2KArkb7uV5uaf8dHGM27cUpTK/ZdlllvsTN9cTJPDxbgAPYtGpKDrRVNyL72Myw6/PQ0rX+ysygjtrMqYcdSHtpW007q4CKHDAQoZAecm4Tsx2jvI9eJlAFBduJ2lzz2BtcOIb1AwM+5/mIjk1P5u1tDHYYFtn0j+GA0FnsVNumGssKRRSAqj8sZxzjnnoFQOrgFqhdXuqcL402DCtVfvP1CpYJTMSWBpEYG7S9G4XSgUCnJzc5k4cSJhYYM3eHOo1JnqeD3/db4q+cqjQz8lYQpzRs4hOTC5n1u3L+3t7Wzfvp2CggLq6uo8yxUKBcOGDSM7O5u0tLQBJYlgaGzgq+cep6myHLlCwenX3ULumed4+x38tdpiL1PuZguC+QDVFio5ynDdPqbcylAfb/VtH+Gsq6Pl3Xdp/+RTRJsUjFCnphB68834n3susv08GwSHG+v2FklSqrTdY7QuUyvwyQ1FPyYCdYJ/v18PLdYWTyVHaXupFOhoK6HD2dHj9sFKJXdF2AmQ23EoQvFJeJi00JFE6aOQywbPGNNtcnSr5HDWmnG1WOlJrUumVXpMx/cEOpRhOmSKQ/jfiSJUr5cCGwVf7GskPupKGHa210gcwNoOy+6WDNcBEk+CC9/sk8CP02FnydOPsLsgH41Oz8X/9ziRKWkH3U8Q7FTXfExFxas4nW0AREbOIDXln2g0Q7/vdDxQWlKJbP5u1CJsmBHOjAnHxkvpeMcb0BiCPPdDEa+sKEGlkLHg+vGckHIYxoA/PARrXoHIHLj5d9hPwGDz91/zy7tvEDM8i1mPPN1LLe+ixeHireom5lc30dFpLpnio+HOhAgujAjqM5+LZoeLGwvK+dNgRg48nBLNLXFhfd5pNFidnPPi79QabMwaG8d/Lzp6Xca9qax8g5LSZ5DL1YzJ+ww/v6z9bltndzB9UwlVNgdZvlq+GJlKQD9JcHk5BGo2wZLZ0LRTep11IZz77BFVZewPt9lJ26e7sBVK2Vja4cEEXZx2dOXVXrx46RUMjfV8+fSjtFTvRqnWcM6cvzFswon93ayhSWs5rH9bmmCwdWqXK30gdyaMuxkxIotVq1bx008/ARAXF8fMmTPx8+sbXefewC2KbDCYWd5iZHmzgWJLdympNJ2G0wJ0xDbW0L5uDRaTNFml0WgYO3Ys48ePH9Dvr7dotjbzVv5bfLrrU5yClHV9cuzJ3D7ydjJC+lcT/lBpbm6moKCAgoICmpubPcvVajXp6elkZ2eTkpLSr0G4ym1bWPbSM9g6jOgCApn2t38elazHYEWwOLt5Wnj+Pli1RYCm09Oi04y705xb4a9G1s8egccrrtZWWhcsoO2jjxE6pPunKjaWkBtvIOCCC5BrNJKkVKURy8ZGLPlNiPauajhNcgC6MRH4ZIcO+OCTKIo0WBooaS+Rgh1txZ6/bW4bwQpBCmooRCrscuY1aVAq9KQGpkoVHXuZkYf6hPZ70OZQEewunHXm7oGOBgvdzKX2oJSjitR1GY9H61FH6Q8s43ZQI/ErIXxwPIf6DFGELR/Bt/eD0ww+QTD9Fcg4r9dP5bTZ+Pypf1NTuB2t3pdLHn6S8MSeExpE0U19/RLKyl7EZq8FQK9PI33YowQFjev1tnk5eg7HO2PvfebPn09MXSI5Zg3fjfTnplleualjgTegMQQRBJE7F21mWX4d/lolX8yeRGr4IcrEmFvg5ZFgN0o6hDkX97jZZ0/8i8r8zZx8xXWMnX5Rr7W90e7k9aom3qttxtIZyEjXa7k7IYLp4YEojkHHxiEIPLCrmo/qpMnbSyODeSY9tlerQf7K3Ys2s2RLLQkhOr698yT0vWU2BrS1rWPzlisRRTfD0x8nJuay/W7b6nQxY1MJuyw2knzULB2d5vXMGKi47PDrf2HVS1JVhj5MqsrIPL9PTieKIuY1dbR/WwYuEbmfmuBLh6FNDeqT83nx4uXQsVvMLHvpGSq2bARg0qVXMf6CmYNmMmBAIwhQtkIy+d71A540zMAEGHeTNJHg0/0+WFxczOeff47NZsPPz4+ZM2cSF3cYFbN9TIfLzYrWDpY3G/il1Uirs2vyTCmD8QG+TAn1Z4JaRt3mjWzatAmHQ5LZ8Pf3Z8KECeTl5aHRDH5z84NhsBt4t+BdPi78GKvLCsC4yHHcMeoORoaP7N/GHSGiKNLQ0OAJbrS3t3vW+fj4kJGRQXZ2NomJicdMLkEURTZ9u5TfPpyPKAhEJKdx/r0P4RcydGX0RLeIq83mkYZy7pGIarIimJ373U+mkkuBij0VF52m3Mowb7XFQMbd0UHbwkW0vvce7lZpjKmKScX37BsQxWjcrV3BZEWwFv3ocHSjI1AGD1xpuENFEAVqTDWUtJVQ2byGyPYFqHBSZFPwZpMaN/v2VfzV/qQGppIWlOYJeKQFphGoDTz2b+AIEF0CzkaLp4pjj2yVx/9kb2SgDNN1GY9H+6KO0iPX9TAGby6RJMK3LARTfdfymDFSfyT7ouPbSLy5BD6/Aeq2SK/zroOzngT1gQ3sDxeH1cJnTz5M3a5CfPz8mfnwk4TGJ3rWi6JIc8svlJY+h9ksSYdpNJEkJ91FZOSFXnmpAcyRBDTy8/P54osvSFamcropga2BckbePZYYrTf5s6/xBjSGKDanm8vf+pNNu9uJD9bx5eyJhPge4sDzt2dhxeOSudKcdfuUMjqsFubdeDlul4trX3iNkJijH6TX2hzMq2rkw9oWbJ2ZRzm+PtydGME5oQHIj/GkjCiKvF3dzL9LahCAsf563slJ7JPJ/aVba7lz4WYUchmf3noCo+N7b4LY7mhm3bppOByNREbMIDPzuf3eoE0uN5dsKWVzh4UojYqvRqUS7zP0JysGJdUb4avZ0FQovc6+CM55FvSHUY11hDjqzLQu3Imr0Qoy8Ds5Fv8pCci8kmRevPQrgtvNbx/MZ9N3SwHIOPFUptxyJ8oBJCUzqLAZYetCKZDRUtK1POUMyeQ7bfIBNZpbWlpYtGgRTU1NKBQKpk6dyujRo49Bw3um0mrnxxYjPzQb+LPdjHOvbn2gUsHpIf5MCfHntGA/rC3NrF69moKCAoROc9vw8HAmTZpEdnY2CsXQnzQ1O80s2LGABdsXYHJKUh+5obncMfoOJkRN6OfW9R6iKFJdXU1BQQHbt2/HZDJ51vn6+pKVlUV2djaxsbF9FiB1Ouz89OYr7PhDMlbPPPl0Jt90+5C5d3VVW0jSUJIpd2e1RU8Z3J0oAtQ9mHL7oPDXeKstBjFuo5mW93/AusOA3D8Z2R65JZkbn+xQfE+IRZ0YMKT/xwbDJjZtvhpBsKIPPBlD0ExKDeWUtJdQ3FbM7o7dCKLQ476hPqH7GJGnBKTgqx74Hn+iIOJqtXUGOUw4as04a0z7DWAqgjTdjMfV0b5d3jZuF5T8JFWM7m0krvSRJIdHXQkJk45PI3GXQ5rLWvWS9Do0HS6eLymQ9CJ2i5lPH/s/GsqK0QUEMvPfTxESE0d7+wZKSp/BYJCSjJTKABITbiU29moUisEfoPTSHbvdziuvvEJHRwdTJp5B/C8gAEuuTuTOzIGTzDRU8QY0hjAtJjsXzFvN7lYLeQlBfHTjeLQHKmfcg90EL48Cc6OU8T32xm6rd61dxdcvPEVgZBTXv/jmUQ1wdlvtvLK7kUV1rTg6v2Kj/XXcnRDB5JD+1wdd0WLklh0VGF0CMRoVC3KTyfL16bXj17ZbOfvF3zHaXNx5Rhr3TB7Wa8cWRTebt1xDW9sa9Po0xo75AoWi5+wEm1vgyvwyVrabCFYp+HJUGun9YIru5SA4bfDrU7D6ZRCFzqqMFyBz+jFthuBwY1hWhnmdlBmkivMjZFY6ypDeuza8ePFyZGz98Tt+fuc1REEgelgG59/7ELqAwP5u1uChqUjyxti6sEuzWu0Ho66Q+kOhB9dK3oPdbufLL7+ksFAKPo8dO5azzz77mAQE3KLIJqNF8sNoMVJktnVbn+KjYXKoP1NCAhgXoEchg/LyclatWkVpaalnu6SkJCZNmkRKSkq/98mOBTaXjUWFi5hfMJ92ezsAw4KGcceoOzgl9pQh/RkIgkBFRQUFBQXs2LEDm63rOxMYGEh2djbZ2dlERET02udgbG5i6fNP0FBWgkwu59Srb2TU2dMG3ecsukXcbbYuT4u9/C0Oqdqi09fC428R6oNcM/QDh8cLoiji2N2BZWMDlq3dJaUEUyX2Xb/gqtmETKMgaNYsgq+9BlV4eD+2uO9pafmDrfk3IYpOoqNnMTz9cc91b3fbqTBUeIzI93h11Jhq9nu8KH1UN8mqlMAUkgOS0SoH9nhWFEUEo8NTwbFHssrdZu9xe7le1c14XBXji1JjRLbtE9j0ATQXdW0cnAwjr4CRlx+fRuKlK+DLW6VKFoUaJj8K42/t1SCP1dTBp489RFNFGUGJGnIu0mE0rQZALtcSF3ctCfG3oFJ55zOHKr/88gu///47gYGBzJkzh7K5W9A32nhppJ6nZo5COYSD0wMBb0BjiFPSaOLCeasw2lxMGxHNS5eORH4oF9W6t+Dbe8E3Au7cDGq9Z9X38/7H9t9+Jm/q+Zx69U1H1K4yi52XKxv4rKHVYzg5IUDPPYmRnBTkO6AGMiUWG1fnl1NmteMjl/NqZjznhgUe9XEFQeTK+WtZXdrCiNgAPrttIqpezHIvLfsfFRWvoFDoGDvmS/T6no1iXYLITdsr+K7ZgF4h57ORqYzy792yTC+9QPUGyStjT0c15xI45xnQBfdbkyzbmmn7vBjR5pIGYTNS0Y0a2gMwL14GA5X5W/j6xaewm834h4Uz4/6HCdurFN7LXxDcUobjujeh7Neu5aHpkqzUiFmgOTKfCEEQ+OOPP1ixQso+T0hI4JJLLsHXt/ezSU0uN7+2drC8xcBPLd2lpBQyGBegZ0pIAFNC/UnRSZM8brebHTt2sHr1ao9ptEwmIzMzk0mTJhEdfXxMgjjdTr4o/oI38t+gydoEQKJ/InNGzmFK4pRBZVrbG7hcLkpLSykoKKCwsBCns2tSPjQ0lJycHLKzswkJOfLK0OodBSz931NYjQZ8/Pw57+5/Ep/dux5yvY1gdfUYtHC1WA9cbeGv9khEeSouwr3VFkMdt8GOeXMjlo0NuJqsnuWKQA26vAj0o8NRBKrp+PFHmt94E/tOyQ9PplYTcOEFhNx4I+rY2P5qfp/T0PANBdvvAkQSE24jJeXeA25vcVq6DMj3/LSV0Ght7HF7uUxOnF9cN8mq1MBUEgISUMkHtqSyYHHiqDN3k6xyNVp6Nh/XKFBFSV4cKp8mVC3foip7H5mz0+tLJofUMzuNxM85vozEzS2w9HYo+lZ6nToZZswD394br7Y27WTldzeji6ntjJUoiImeSVLSHWg0Eb12Hi99y57p7sOZh2xra+PVV1/F5XIxc+ZMMjMzaf2xAsvPVawIVxJxdSZTQgP6qsle8AY0jgtWlzZz9fx1uASR209L5d6z0g++k8sBr4yB9ko4/V9wstTBEAQ3r998FdYOIzMffpK4rMMbeBSarbxc2ciShjb2FJKeEuTH3YkRnBA4cEtF250ubtleyW9tkpnbP5IiuTvh6DLU3v6jjMe/2YmPSsE3d55Icljvvf+Wlt/ZsvV6QCQr839ERvacwS+IIn8rrGJxfSsauYyPcpM5MWjom3sOKpw2+PVJWD23syojHM77X5+YnB0JrnYbrYuKcFQYAdCNCidwRgryXvSB8eLFy+HTWlvNl08/Qnt9HSqtD+fddT/Jo8f2d7MGFpZW2LQA1s8Hw25pmUwuDfjH3wxJp/RaJl9hYSFffPEFDocDf39/Zs2a1SvBgiqbg+XNBn5sNrK63eSpdgXwV8o5PdifKaEBnBbsR5Cq677scDjYvHkza9as8XgoKJVKRo8ezQknnEBQ0PHhj+QSXCwrW8brW1/3ZP9G66O5dcStTEuZhtKrc43D4aC4uJht27ZRXFyM290VKIuKivJUbgQEHNqgXRRFtiz/hl/ffwvB7SY8MYXz730I/7CBkRAhCnuqLfY25e6stjDtv9oCpbyzwsJbbXE8IzoFrDtaMG9swF7c5pmAlqnk+GSHosuLQJO8r6SUKIqYf/+d5tffwLp5s7RQocB/6rmE3nwzmtSeE9MGOzU1Cyks+j8A0lIfJD7+hsM+hsFu8AQ6ituKKTVIhuR7quz+ilKuJNE/sZtsVWpgKrG+sSgOICXZ34hON856i6eKw1FrxllnBlcP8lwKGSp/Oyr3DtSWP1HJS1DJKpDr9ZA7C0ZfdfwYiYsibJgPPzwELps0lp7xGqSdeVSHdThaqKiYR3XNx4ii5DPWVuqHqTSDC+99Gf/QsN5ovZdjxJF4Z3zyySfs2LGDxMRErrnmGmQyGY5aE40vb8aqgCcviubd0Sl91GIv4A1oHDd8uqGK+z7LB+DZi3O5ZMwh6LnlfwJf3AQaf7hrK+iCqSnayaKH70Oj13Pbmx+hUB7aQG9bh4UXKxv4psngWTY5xJ+7EyLIC9AfYM+Bg0sQ+U9pDW9XNwMwIzyQF4bHozuCqorCeiPT567C4RZ44oJsrhif0GvttNnqWLd+Ok5nKzHRlzF8+OM9bieKIv8uqeXN6iYUMpiflcTZYd4I8oCiar3kldEsmYmRMxPOebpfqzJ6QnSLdKzYjfHn3SCCMkRL8GXDUcd6g2NevPQn1g4jX7/wFFU7tiGTyTnlqusZfe75A6oKsl+oy4d1b8C2z6TBLUjG3qOvhjE3QFDvPZP3pqmpiUWLFtHS0oJSqWTatGmMGDHisI4hiCKbjRaWtxhZ3mxg51+kpJJ81EwJCWByqD/jA3xR/WXSzGQysW7dOtavX4/VKmUM63Q6xo8fz9ixY9Hpjo8KTUEUWF65nHlb5lFuKAckbfabc2/morSLUCuOowzWw8Bms1FYWEhBQQGlpaXsPTyMj48nOzubrKws9Pqe+/Yup5Of58+jYMWPAAyfdApTbrkDlebYy8IINlf3KosmixTEaLHiKR/vAbm/uitYsZe/hSLAW21xvCKKIs5qE+YN9Vi2NiPaXJ516kR/9HkR+OSEItcefNwsiiLWDRtofuNNzCtXepb7TT6T0Dlz0A4f3ifvoT+pqHiN0rLnAEhPf4zYmMuP+piiKNJia6GkvVOyqq2Y4vZiSttLMTvNPe6jUWhIDkjuFuRIC0wjUh85YPtNolvE1Wzx+HHsCXTs/R3sQkApq0ElK0MtL0MVJkc15kQUeReA9jiYA2jcCZ/dAI3bpdcTZsOZ/wHl4XmG2u1N1NQuZPfu+bjdkjRpcNAkosJu4ptnF9BeX0dgRBSX/ue/+Ab3vb+ll97hcAMaFRUVvPfee8hkMm655RYiIyM9x6l+ah0yo4O/jfbhxem5XnPwPsQb0DiOeO6HIl5ZUYJKIeP968cxMSX0wDsIArxxMjRsgxNuh7Oe4PeP32P9V58xfNIpTL3zvoOec5PRzP8qGvixxehZNjUsgLsTIsjxG5yD5g9qm3lgVzUuEXL9fHg/J4kozaHfpOwuN+e/sorC+g7OGB7O29eM6bVOkiA42bT5cgyGTfj5ZZE3+lMUip4f0i9U1PNMueSB8HJGPDMjB9Yk+XGN0wornoQ1r0hVGb4RcN6LMPzc/m7ZAbFXGGhdWITbYAe5jICzEvE9KcY7wPfipR9xu5z8PP81tv2yHICcM87ijOtvO+SEhCGD2wk7l8LaN6Hqz67lkTkw7hbIuRhUfe8DZLPZ+PzzzykuLgZgwoQJTJ48+YC+GmaXm9/aOljebOSnFiPNzq6JCjmSlNTk0ACmhPiTqtP02KdoaWlh9erVbN26FZdL2j8oKIiJEycycuRIVKqBLb/RW4iiyO/Vv/PKllcobJW8TQI0AdyQfQOzhs/CR+n1gjpUzGYzO3bsoKCggMrKSs9ymUxGcnIy2dnZDB8+HB8f6TPtaG3m6+efoq6kCJlMzslXXEveeRf06UShKIi42+3dghZ7ghhCx4GqLWSoQvcNWihDfQ5pUtrL8YHb6MCyuRHzxgZJDqgTRYAGXV44+tERKEOP/J5iLdhOyxtv0PGjFABEqST0llsIveVmZOqhM0EmiiIlJU+xu2o+ALGxV5OW+iDyPpCFEkWRenN9N9mq4rZiygxl2N09+1boVfpuklV7gh0h2pABGegQRRF3m70zuNElWSUYHT1ur5A1owqwoUqORZ2ZgSrGF0Vgz32JQY/TBj8+LCW1AETkSIbhYQdWMHE622ls+oGGhq9pa1sLnVojfn7ZpKbcT3DwJEDyhfrkkX9iaGwgKDqWS//9FPrA46Pi9XhCEATeeOMNGhoaGDNmDOed1105o+2rEsxr6vgiVoV9agL3JUX1U0uHPt6AxnGEIIjcuWgzy/Lr8Ncq+WL2JFLDDyJztGs5fHwJKDRw52bee/QJWqp3c+6d95Ex6ZT97vZnu4kXKxr4tVOiSQ6cHx7IXYkRDNcP/sHi6jYTN24vp9XpJkKt5N2cJEb7H1qlyRPf7OCtP8oJ0av5/u6TCfM7vKyAA1Fc/CS7q+ajVPoxbuxSfHzie9xufnUTDxVL0gqPp8VwY6y3JHLAULVO8spokSa7yL0Uzv7vgKvK2B+CxUnblyVYt0mVTJq0QIIvSUfhP3QGXl68DDZEUWTTt1/x6wfzQRSJy8pl2j0P4ON7HFRRdTTAxvdgwzuSMSSAXAmZ58O4myFufK8aRB4KgiDw66+/8vvvvwOS8fbFF1/cLau9xubwVGGsbjdhF7q64X4KOaeF+DMlxJ/TQ/wJVu1/grW6uppVq1axs1ObHSAmJoZJkyYxfPhw5PLjxxtibd1a5m6ey9amrYA0SXVN5jVclXkVvuqBK3s6GDAYDGzfvp2CggJqa2s9yxUKBWlpacQE+FHw5UIshna0el+m3nU/iSNG99r5BfueaouuoIWryYKz+SDVFn4qlKE6VOHdZaIUgd5qCy89I7oErDtbsGxowLarS1IKpRyf7BD0eRFoUgJ79ftjLymh6aWXPYENTUYG0f99Cm36IchIDxJEUaS8/CXKK+YCEBgwluzsuWg0x2aM6hbc1JhqPEbke4IdFYYKXGJP1Q4QqAn0yFalBUlG5KmBqQRoBma1g9vk6DIe392Cs7IJl7nn6ji5Vo4qxg9VtK9kQB7jizLUZ+jcF3f9AEtuA0sLKH3g7Kcg79pu/UGXy0xz8080NCyjpfUPRLErCO7vP4r4uOsIDz8H2V88tgyNDSz+zz/paGkiJDaemf9+Cp3/wPxOeDkyNm7cyNdff41Wq+WOO+7YpyrVtquN5ncKaFbLuP6sQNadkOU1B+8jvAGN4wyb080Vb69lY2Ub8cE6vpw9kRDfA0yoiyK8NxUqV9GeNov5S2uQyeXMfutjtH8xtBRFkZVtJl6orGdNu1TKqZDBxRHB3JkQ7jGgHCpUWu1cs62cQrMNjVzG/4bHc2HEgSPwq0uaufzttQC8ffUYzszsPaOoxqYf2LZtNgC5Oa8RFjYFALvVRf4vVdQWtxOR6M/2ZC0PtUiGl/cmRnJvUmSvtcHLUeC0wi+Pw5pXAXHQVGX0hCiKWNY30P51KaJTQK5XEXTJMHyGD46gjBcvQ5WyTetZ9tIzOG1WgqKimXH/vwmOjunvZvU+ogjV6yWT7+1LQOgchPpGQN510qDVv/+zpXbs2MGXX36J0+kkIDCQ7PMvZJOoYnmLge2m7lJS8Vo1U0L9OSskgPGBetQHCEQIgkBxcTGrVq1i9+7dnuVpaWlMmjSJhISEoZl5uR+2Nm1l7qa5rK2X+l9ahZbLhl/G9dnXE6gN7N/GDUFaWlooKCigoKCApqYmVG1NaOp3I0NE5R/IidffRu7Y8SgPs0psT7WFq9mKs9GCq9mKq1EKWuwv8xgAhQxlqE+PMlHeagsvh4IoijhrTJg3NmDZ0oRo3UtSKsEfXV44utywPv8+Gb/7jvpHHsXd3g4qFWFzZhNy443IhlDFZVPTT2zf8XfcbhMadQQ5Oa8SEDCq39rjdDupNFZKlRydklUl7SXsNu5G7MmhGwj3CSc1qLsReUpgCjrVwFOnEGxOnFs34dyyFke1AacrDqeYAOz7nZKp5Kii9KiifVFF66VAR4QemWqQJkZ01MOXt0LZCun18PNwn/ccLdZ8GhqW0dz8C4LQ1Rfz9c0gIvw8IiKm4uNzYPn29vo6Fv/nH5jaWglLSOKSh588PpKIBhHWDiNFa1YSEhNLZFo6KvWhJRlbrVbmzp2LxWLh7LPPZsKECftsI7oEah/7E9Hu5prxOv5xUqrXHLyP8AY0jkNaTHYumLea3a0W8hKC+OjG8WhVBzDAqloH8yezqTWGFQ3JxGXmMPPfT3lWi6LIz60d/K+ino1GqdxWJZNxWVQwc+LDSfDpvQqEgYbJ5Wb2jkqWd0pq3Rkfzj+To5D3MFFgsDg5+6XfqTPYuGxcPE9dmNNr7bBYKlm3fjput4n4uBtIS3sQh9VF/ooqtvxUhd0idbx3Rav4ZJIvolzGWR0KHo6NIC4zGLV3QNe/7F4reWW0lEivR1wGZz05aKoy9oez0ULrx4U466UAp++kaALOSUKmHKQdXy9ehgBNuytY8syjGJsa0ej1TPvbAyTkjOzvZvUOThsUfC4FMuq2dC2PGy9VY2RMB+XAqRazuAW+Lq/inS07KPYNwrKXj4AcGBOgZ3KIZOo9bD9SUnvjcrnIz89n9erVNDdLVXJyuZzc3FwmTpxIePjAMF0+VhS1FjF381x+q/4NkIxgLxl2CTfl3ESYzluZ2te4XU6+mfcSxat+BcDpF4QtOhHkCrRaLRkZGWRnZ5OUlNStUkiwu6Uqi26BC8nbQnT2YH7bidxX1d2MO0wKYiiCtEMnq9jLMcXdsZekVMNeklL+anSjw9HlRaAKO7aT1K6mJur+8wimn38GQJudTfR/nxpSpuFmcxn5227FYilFJlOTPuzfxMTM6u9mdcPqslJuKO+Sruqs6qgz1+13nxjfmG5G5GmBaSQGJKLZjzz0Mcdhhh1fIW5ciLOyBqeQjENMwSlLxykkIQo9zBfIQRWu6wxy+KKOlgIegyZYLAgIa16mbeN/aQhV0Bimxb3XtJiPTyKREdOIiDgPvf7wrrHW2moW/+efWAztRCSncvH/PY5W760GHSgse/Fpitb8AYBCqSQydRixGdnEZmQTPWw4ap997+1ms5kPP/yQuro6QkNDue222/YrGdvy0U6s25qZn6ymeEIYH+Ym9+n7OV7xBjSOU0oaTVw4bxVGm4tpI6J56dKRyA/U2V94OZ8ur2S3JYhTrrqBMeddgCCKfN9s4MWKBvJNkrGkVi7jyugQZseFE32cmN+4RZH/ltUxd3cjAGeH+vNKRgK+yu43tzsWbubrrbUkhuj45s6T0Gt650HvdtvZuPESOkzbCQgYTXbGAgp+a2DLT7uxmzt1siN1OE8M4/9kHTjlkFtuZ/o6MzJAoZQTkx5IYk4oibmh+AUPrUqaAY3DAiue2KsqIxKmvQTpZ/d3y3oN0Slg+K4c02pJgkIVpSf48uHHfADoxYuXLiyGdpY89zh1uwqRyeWccf1tjJh8Tn8368ixGWDli5K0lLVVWqbQQM4lMO4miB7Zj43rTp3dwY/NRpa3GFnZ1oFtLykplctJXFsjk4P9uP2kCYQdoj+X1Wpl48aN/Pnnn5hMkkGlRqMhLy+PCRMmHHf96HJDOfO2zOP7iu8BkMvkTE+Zzq0jbiXGdwhWJA1AzO1tLH3hKWqLdoBMxomXXkX0mBM8slR7vqcAOrUPaf7xpMiiCG3XHtjbQiFDGdK92mJPxYXcZ5BMoHkZ0EiSUq1YNjVgK2rdI5UPShk+WaGSpFRq70pKHXYbRRHj119T//gTCEYjMrWasLvuJPjaa5EdwI9pMOFydbBj5/00NUn+X9HRs0gf9jBy+QCZ/N8PJoeJUkOpJ8Cxp6qj2drc4/ZymZx4v3jSgroqOdIC04j3j0cp78d7WkspbP4AtiwEUz2iKMclRuEMPANH4Jk4XfE4G2wI5p7luBTBWk9wY49s1UCSHxZFgfb2DTQ0LqOx8TuczlbPOo3dTYQ6h4i8x/ALGHFUFa3NVZV88sgDWDuMRKWlc/FDj/U4Ue7l2GJqbeGt269HcLvRBwZhbm/rtl4mlxORlEJsZg6xGVnEpGfhEAQ++OADmpqa0Ol0XH311R4j8J4wb26kbXERxb5yrpikZ90JmcQeJ/OjxxJvQOM4wS2ItJjthPt1TVavLm3m6vnrcAkid5yeyt+n7F+H0165iXn3/x8Ccq755x2sjB7Hi5UNFJqlMjydQs410SHcFhdOuOb4MJb8K5/Vt/L3oirsgkiGXsv7OUnEd1anfLWlhrsWbUEhl/HZrScwKr73zKEKC/+PmtqFKJVB6CyvsfVHa7dAxpipiViG+XHx1lJMboEpIf48qgqgelsr5duaMTZZux0vJNaXpNxQEnNCCU/w82a19RW7/5S8MlpLpdcjLoeznwSfoWkcZt3ZQttnuxDMLmQqOYHTU9CNiTiuZE+8eDkcRFGk1u5kp9nGTpOVIrONGruDdL0Pef468vz1JPmoj/gacjkcLH/jZXau/BWA0edM55SrbkA+2CZDdq+FL26E9k5ppYA4GHsDjLoa9CH92zak/2O+ycryZgM/Nhs9CSB7iNWqmBISwJnBftg2r2PdqlUApKSkcPHFF3sMlXvCYDDw559/snHjRhwOSXLHz8+PCRMmkJeXh1Z7fCUo1JhqeG3La3xd9jWCKM1Cnp14NrNHziYpIKmfW3f8UF+yi6+efwJTawsanZ4pl99ObFi6x9/C0WihuqWWUrGOckUjdlnXhJivqCXZHUGqJoaI0HDUEXqUoT4ow3WoQjurLRTefoOX3kUURZy1ZiwbG7BsaUSw7CUpFeeHLi8C3YiwARc0czY0UvfwvzD/Jvkx+YwcSdRTT6JJGhr3O1EUqKx8ndKyFwARf/9R5OS8glYz+OSS22xtnmqO0vZSituKKWkvwegw9ri9Sq4iKSBpHzPyGN8Y5LJjWOnudkHpz1Jwo+g7EDqvDaUWMeN83MOuwikfjrPOgqPWjLPWhLu9Z3N1ua+qy5MjWo86xveYVtCJokhHxzYaGpbR0PgNdnu9Z51KFUx46GQiSysJ2LAMGUBMHlz0NgQfXWZ9Y0UZnz76IDaziZjhmVz0wKOojrP+2UBj9acfseazhcQMz+TS/zxNe0Md1TsLqNm5naodBRibGrrvIJOBjx6HRoc6JIxLbriZ+OSUA55DsDipffxPEGD6SXpmZUZxv9ccvNfxBjSOA+wuN5e+s5SCphLuP/FCbj6l6+L7dEMV932WD8CzF+dyyZie9QCL1vzBshefJlhtIXcsTM1+HmQy/BRybogN46bYMELUA6uT1x9sNJi5tqCcJoeLYJWCd7KTiEPB2S/+TofNxd1npnH3mcN67Xz19V+xfcc9IMqoX/d32iuloFRghI4x5yaSNjaCGoeTqRt30ehwMSnQl49yk9EqpI6QKIq01Vmo2NZMRX4z9WUG9r7Sdf5qEnJCSMwJJS4jGJVmkE10DUT+WpXhFyVVZQw7q79b1ue4jXZaP9mFvaQdAJ/cUIIuSBtwA0QvXo417U4XO802CjuDF4VmG4VmK0bX/uVVAIKUCkb768kLkAIco/x1+CsP/T4tiiJrv/yEVYs/ACBpZB5T77ofjU5/kD0HAG4X/P4s/P4MiAIEJsCUxyH9XFD07z3F6hb4o62DH1uM/NhspN7RlXEuA0b765gSEsCUUH+G67XdglIFBQUsWbIEl8tFUFAQl1122T5SUQ0NDaxevZpt27YhCNJ3JCwsjIkTJ5KTk3PY3gSDnSZLE2/mv8lnxZ/h6pxsOTX2VG4fdTvpwUPHNHcg4zY7cTVY2P7rz/z+4wLcggt/TSgnhl2An2o/8pkKGbJgNXX6DkpdNZS0VeF0d10rISEh5OTkkJ2dTWho6DF6J16OJ9wmB5bNTVg2NnjkUQHkfmr0eySlwgd2NrUoihi++JKGp55CMJmQaTSE3/M3gq66CtkBvJYGEy0tv1Gw/W5cLiNqdSg52a8SGDimv5t11IiiSLO1uZsReWl7KcXtxVhd1h738VH6kByQvI8ReYTuGCSJmZogf7EU3Ggq7FoelAijrpSS8wJicJudOOtMXQbktSZcTVZ6shyRaRRdfhx7fsJ9kCl677trMu2ioXEZDQ3LsForPcuVSj/CQqcQETGNoKATkO+piNm+BL6+U6r+VfvC1OdhxNFJnjWUlfDpYw9ht5iJy8rlgn88jErjDWr0B26Xk7fmXI+5vY2pd97H8Emn7LONsblRCm7sLKCyYCvGhvp9tjn16hvJmzrjgOdqejMfe5mBZ4dr+H2YnvUTMr3m4L2MN6AxxGm2NHPNkseodKxAJhOx1Z/HnLzruOuMNM9D77kfinhlRQkqhYz3rx/HxJTugwa7IPDWc09h37iGUSG1nB5eyg0jXyBr5FRuiAklQHV8DZwPRo3NwXXbysk3WVEBqQVGyms6GBkXyGe3noCylx7Q7W1FbNx0IchsNG8/j+bt5xMQ5sPYqVIgQ66QY3S5mb6pmEKzjUy9lq9Gp+F3gMkuq8nB7oIWyvNb2L2jBafN7VmnUMmJTQ8iMTeUxJwQfIO8D+HDpnINfDWnqypj5BWSV4ZPYL8261giCiIdv1djXF4JgogiUEPwZcPRJHjv816OD5odLn5pNVJosrHTLAUv6uw9S6woZJDioyXDV0uGXkukRsVOk42NRjPbTFbsQveumQxI02k9AY48fx3D9FoUBxnk7vpzJd+9+j9cDjshsfFc8I+HCQgfwBmQbZXwxU1QJZk8k3spnPscaPvvPtJgd/Jji5HlzQb+aOvAutf/RqeQc2qQH5ND/TkzxJ8w9YErWevq6li0aBEGgwGVSsUFF1xARkYGFRUVrFq1ipKSEs+2CQkJTJo0idTU1G4+BMcD7bZ23il4h4WFC7G5pYrhCVETuGPUHeSG5fZz64YeoigimJw4GyySGXejxfO3y2Qnv/VXiozrAYjWpTIh7DxUcg1yvaqbEbdyj1zUX6otnE4nu3btoqCggF27duF2d/VBIyMjyc7OJjs7m8DAwGP91r0MIUS3gK2wFfPGRmyFrbDnXq2Q4ZMVgi4vAm1q0KCrBHLW1lL3f//CvHo1AD5j8oh+8knU8fH93LLewWKpZNu22zCZi5DJlKSl/R+xMVcOyUpvQRSoM9d5ghx7fsray3AIjh738VP5eYzIUwMlf47UoFSCtX3gxyiKULNRCmxs+xwcHdJymRxSTodRV0H6OaDskgcTHG6c9VIFhyfQUW8GVw9TjEoZqgi9p5JDFe2LKkqPXH3oCTtW626pEqNhGSZzkWe5XK4lNPQMIiOmERJy8v4lzAzV8MXNUClVzZIzE6Y+B9ojN3auKy7isyf+D4fVSkLuKGbc9y+Uaq8E0bGmcPXvfPPSM+gCArl53rsolPvvk9fX17NgwQKsRgNBShlpkeE0lhTRXFWJSqPl5tfeO6AvSscfNRi+KWNTqJKb83x4PyeJs7zm4L2KN6AxRLG6rCzYvoA3ts7HKXZF+EW3GnPZ37nxhJE8eG4GMpkMQRC5c9FmluXX4a9V8sXsSaSG+2J1C3xU18JrFXVc8OZj+NitBIwL4caOJbgjc1Hc/BscZ4PnQ8XiFrhr526+XVeFapcRpVLO93edRGrY0RtBOR1utv1WQoP1RtS+tZjrMzDsfICxU5MZ1hnIAHAKIlfll/FrWwcRaiXf5g0j5jB0+9wugdridirym6nY1oyx2dZtfWicL4m5oSTlhhIW55WmOiAOC/zyGPz5GlJVRnRnVcaU/m5Zv+Go6qBlYSHuVhvIwf+MBPxOi/N+j7wMaZY3G7i7cDetTvc+62I0KjJ8fRiul4IXGb4+pOg0aPbznLULAttNVjYZLWwyWthoMFNp23egq1fIGeWnIy9ACnCM8tf1OKFeX1rMV88+hqmtFR8/f86/9/+IGZ559G+6t8n/FL65B+xGUPvBeS9A7sxj3gxRFCkwWVnebGR5i4GtHd2zKWM0KiaHBjAlxJ+Jgb6eyshDxWw28+mnn1JRUQGAr6+vx3dAJpORkZHBxIkTiY2N7ZX3M5gwOUws2LGABTsWYHZKWdUjwkZw56g7GRc1rp9bN3RwNpixFbdLwYsGKYAhWvfVS3e4baxp+op6awUAI3PPYvyUi1CF+6IK80GuO3wpWpvNRlFREQUFBZSWlnoqkQDi4uLIzs4mKysLX1+vwaqXQ8NRa+qUlGpCMHclEahifdHvkZQ6gu/qQEIURdoXf0LDM88gWizIfHwIv+9egmbNGhLVGm63hZ07H6ChcRkAUZEXkp7+GArF8ZFk5xJcVHdUe7w5Stqkio4KYwVucd9+JUCwNribEfkenw5/dS/NrzkssHMpbPoAKld2LfcJlqoaRl0JEVk97iq6BVxNVhw1UhWHo9aMs86EaOvhvchAGerTTbJKFe2LQt91zdrtDTQ0fktDw9cYjVu7dpWpCAk5hYjwqYSGnoFSeYhVyIIbVr4AK54C0S1VAl/0NsQdeT+junA7Xzz5b5x2G8mjxzL97w8ecELdS++z6N//oKZwOxMuuoxJM6/Y73ZVVVV89NFH2Gw2oqKiuPLKK9Hr9YiiyIL7bqe5qtLjLbw/XC1W6p/dgCCD00/zZUJkgNccvJfxBjSGGG7BzddlXzN301warZJJtdsay4WJt1AufEp+Uz5OYw62miu4Ynw8j52fjVwuw+Z0c8Xba9lY2UZsqI4Z56fzfmMrTQ4XsbXlXLZ0PjKdnpv/9xK+88ZIkfiL34Hsi/r5HQ9cttcamPbKKgRBxJkVyMm5kbyemXDEFS2CW2D7H7Ws/7acwIzXCEhYi9seRLT/AjInDPcEMkDq0P5jVzULalvwkctZMjqVEX5HXjItiiKtdWYpuJHfQn25oVvZqC5A7TEVjx0ehOowMiiGPJWrO6syyqTXo66EKU8cV1UZ+0OwuWj/qhTLZulepU4KIHhWOsqAgW3458XL4WJ1CzxaWsu7NZIpZJpOw4lBfmTotQzXaxnu63NYUlH7o8nhZLPRwsbOAMfmDgtm976yVQlaNXkBekZ3enFk+WpRy+V0tDaz5JnHaCwvRaFUMuWWO8k8+fSjbteh4u5w4Kw3I7oEcIuIggiCiOgWwd6BuuARVLVLpW39R2AZ/l9EdYy0HlBF6dGmBvbZpJTNLbCy3cTyZgM/tRip/UtlzSg/HVNC/ZkSGkDmX6SkDheHw8GmTZtYsWIFdrukRy2TyRg5ciQnnngiISH97w9yrLG6rCwsXMg7Be9gsBsAGB48nDtG3cFJMScNyUzd/sDVYsXwYyXWrU37SoTIQBnS6WkRrqND0c73S17B0FyPUqPh7Nv+RvoJJ/Zqe8xmMzt37qSgoMAT4APpekhKSiI7O5uMjIwD+s14OT5xm51YtjRKklK1e0lK+arQjQ5HnxeBKmIQSCweJo7qauoefAjLunUA6CeeQPRzz6EM7oNs/WOMKIrsrppPScnTgICfXza5Oa+h1Ub3d9P6DYfbQYWxYp+KjuqOasSedJ6ACF2EFOAIkAIdaYFpJAUkoVMdhcRaSyls+Ri2fAQddV3Lo0dJVRvZFx10/CuKIu5Wm8ePQwp0mBA6eq5kFkMcWJK3YghcRYdsK10PLTnBQScQETGNsLApqFRHkRVftR4+vwHaK0GmgFMfgJPuAfmR9durtufzxX8fweWwkzp2Aufd/U8Ux5lUaH/RtLuCBffdjkwu56ZX38EvuGc5y7KyMhYuXIjT6SQuLo4rrriimy9d/s/f8+Obr+AfFsENL7+J/ADfhfoXNuJqtPBQrpYfo1Rec/BexhvQGEKsqV3D8xuep6its6zOFYS14WzOTjyLuZeNpqitiEuXXYogClirrsdlGsaFo2J45uJclAo5lQYL5y7dSku4GjonpGO1Kq7fsgLrr9+TcdJpnHv73+G3ZyQPgOBkmLMOFN6o8l+xOd1Mf2UluxpM5KQEsy3NB5sIqToN7+ckkaI7vEyS+jIDvy0sornKRGDyb0SO+RBQMHLEB4SEjN9n+9d2N/JIaS0y4N3sJM4O693SNmuHg8qCFsrzm6na0YrT3pVJoVTJiR2+R5oqFH3gcTo57TDDz4/B2tcBEfxjYNrLkHZmf7dswGHe1ED7klJEhxu5TknQRWn4ZHn1sr0MDYrMNm7dXsFOs1TldmtcGA8kR+238qI3cYsiu8w2NhjNnVUcFnZZbPtsp5HLyPXVkRegY6SPCsMXH9K88hcAxs24hBMv7Rstble7HXu5AUe5AXuZAVdzz5rRalkhwapnUcobEEU5He5LMbpmAT0MIGSgjvVDkxaIdlgQ6ji/o9JibrQ7+alFqsL4rdWEda9McR+5nFOCfSVT7xB/wjVH3x8ym82sW7eOdevWYbVKn4darcbpdCKKIiEhIcyaNYuwsLCjPtdgweF28Nmuz3hr21s0W6WgYFJAEnNGzmFywuRja5A6hHEbHRh/2Y15Xb1HhkebHoQqxhdVhA5luB5VqA8ylfR5l25cx7dzn8VhteIfFs759/4f4Yl9m3loNBrZvn07BQUF1NTUeJbL5XLS0tLIzs4mPT0dtVfG47hFdAvYitqwbGzAWtgK7r0kpTKC0Y2JRJs2+CSlDhdREGj76GMan38e0WZDFRND7LxX0aYPDV+h1tZVFGy/C6ezDZUqmOyslwgOntjfzRpQWJwWyg3lngDHnqqOBktDj9vLkBHjG+MJcAwLHsZpcaehURzmWF5wQ8neRuKdwQilFjKmw+irIOHEw1L6cHc4PH4ctromWqy/YvBdiTlkO8i75iG0bakEtE4kWHkauog41J2VHMpQn6NTAbAZ4Ju/w7ZPpdfxE6VqjYCYIzpcRf5mljzzKG6nk2EnnMTUO+5FrvAmhPY1P771Cvk/fc+w8ZOYds8DPW6za9cuFi9ejNvtJjk5mVmzZu3Tp3Dabbw5+zpspg6m3/sQaWNP2O85Dd+X0/FrNZvitdycoeKexAivOXgv4g1oDAGK24p5YeMLrKyRyvx8Vb4ojZOpqhxNVlQIn906EZ/OAMXT657mw50fEqyOorpgDm63ktMzw0mbGM17da0YXNIDQWZxMdoh54tpI/novtm01VZz3t3/IP2Ek8BugpdGgKUZpr4AY2/ot/c+UHn06x28s6qcUF8NP9x9ErWim2u3lVNjdxKgVPBmViKnBPsd9Dg2k5M1S0rZsbIWAL/IamJOfhJwkppyPwkJt+yzz7dN7dxQUIEIPJIazS1x4fts05u4nQI1u9qoyG+mfFszplZ7t/Vh8X4eaarQON/jI4OycjUsmQ1t5dLrUVfBWU8cle7mUMfVbKVlUSHOaklSRT8hisCpSchU3s6dl8GJKIp8UNvCwyU12ASRUJWSlzPiOT2kf/s0BqeLLR1WNhrNbDBIgY52177l/cFuB6EVu4hqrGJcUAA3XX0t/vqjq/Rzt9mxlxmwl0s/7ta/BFdkoAzzQaZRSgNPmYDe8iE647vIcONWRmKK+g9u/ShQyKVtFDJkchmiW8BeYcTVYOl+SI0CTUog2rRAtGlBKEMPnMUtiiI7zDaWNxtY3mxkc0f340VpVEwOkaowJgX64tNLvlitra2sWbOGzZs343JJsj6BgYGccMIJjBo1iqamJhYvXozRaEStVnPRRReRPkQmpvaHS3DxdenXvLb1NerMUrZnjG8Mt424jfOSz0NxhNmRXrojWF10/FaNaVUNolMK2GmGBRFwViLqmH0lnURRZN2ST1m5+AMQRWIzs5n2twfQ+R/bPk5raysFBQUUFBTQ2NjoWa5SqRg2bBg5OTmkpqai9Ga+Hhc4682YNzZg2dyIYNpLUipGkpTyGRHWTZ7meMFeUkLV7Dk4d+9GptMR88zT+J05NJKrrNYathXcRkfHdkBGfNz1JCf/HcXhTsAfZxgdRsray7qZkZe0l9Bqa91n23CfcG7KvYkL0y5ErTiCQLG5GfI/kYIbjTu6lgclwsgrYeRlEHBw6Uy320ZLy6/UN3xNS8sKBKFrvkEnSyPQdCK+u8cgq9HDvoXJyFRyVFH67pJVkXpkysPsw21dLMmeOkxSsuKVX0D48MM7Ridlm9fz1bNPILhdZJx4KmfP+dsBM/29HB02s4k3brsGl93OzIefJC5rX6+1goICvvjiCwRBID09nYsvvhiVqufnxh8fv8e6rz4jLjOHmf9+ar/ntVcaaXptKy6NnBNP1hHmo2bDCZkH9Tf0cmh4AxqDmCZLE69ueZUvS75EEAWUciWXpl9KRclEvs/vIESvZukdJxIT2DV4NzvNTP9yOo3WRk6OuILvfs9FEETcoRqcI4NJ8/PhXB89by8uwO0WuX10ALLP/4tcoWT22x+h0XWW5a59A767H3wj4M4toD6K8sQhxh/FTVw1XyrxfefaMZw+PAKQsjyvKyhno9GCQgaPpMZwQ0xojxP8oiCyc00da74oxdap8zp8oi+alPux26sIDT2D3JzXkf0lK3Gz0cKFm4uxCiLXxoTyVFrMMQ0giKJIS43Z47vRUGHsJlegD9SQmBMiSVOlB6EcatJUDjP8/Kh0fXirMg4b0SVg+LES02/VACgjdIRcNhxV5NCTA/AytGlzuri3qIpvmiRZnNOC/Xg5I/6gZtD9gSiKlFntHpmqTUYLO8xWT1LrHuSCQKZew9jgAPI6paoSfdT7fcaIooirxYZjTwCjzIDbYP/LQUEV7YsmOQBNUgCaBP8uuaj2KsmQcbdkcEr2RVISxUHkCtwGO7bidmzFbdiL2xAs3TX/FcFaT3BDkxqIXKvELgisajOxvMXIj80Gav4iJTXCz4cpIQFMCfUn29enV5+rNTU1rFq1ip07d7Knqx0VFcWkSZPIyMhAsVfGnslk4pNPPmH37t0AnHbaaZx00klDzgxcEAV+qPiBeVvmUWGsAKRJlZtzb+bCtAtReSuDewXB4ca8phbjr9Uebwx1vB8BZyeiSQ7scR+nzcYPr79E0Zo/ABgx+VxOu/bmfpfLaGho8AQ32traPMs1Gg0ZGRnk5OSQmJjY7XryMvgRLE4sW5swb2zwJMRAp6TUyHB0eRGoo7x9SFdbGzV/uwfLn38CEHbXnYTceuuQSDJzu23s2vUItXWfAKDTpZKV+Sz+/vtOVno5MC3WFkrbSyluL6a0vZTfq3/3VHNE6aO4JfcWpqdORyU/gmewKELtJslro+BzyQcNAJlkJD76Kkg/t7uRuOCktXUlDY3LaGr6Cbe76xrX6ZKJiJhGRPhU9PqUrtM4BZwNnabje2Sr6syeYH035DJU4TqPH8eeQIdce5DnWWsZfDwLmotAGwhXfHrEvhol6//k6/89heB2k3XqmZx1y51Dwu9mILLp269Y8f5bhMTGc81zr+5z/9u0aRNff/01oiiSk5PDjBkzDthnMDY38fYdNyAKAlc/M5ewhKQetxMFkbon1yKYnNw/Qc8vAXI+zk3u9wS3oYI3oDEIsTgtvL/jfd4teBerS5IjmJwwmbtH3803m5w8/X0hSrmMj24cz/jkfTWWFxd/y+Or/4GIknbtv1FsVSMTRFJj/fnixgn4a1V8uqGK+z7LZ6RhKye1riY+ZySX/N/jXQdxOeCVPGjfDWc8DCf9/Vi9/QFNu8XBWS/+ToPRzpUT4nl8Rk639Ta3wH27qvi0XhpsXRUdwhNpMaj3enA1V5v47eMi6sukibDgaD0nzxpGi+0Bmpp/RKuNZdzYpftoQVbZHEzduItGh4vTg/1YkJOMsp8Nli1GBxXbmqnIb6ZqZysuR1dnQqmWEzs8mKTcUBJyQtAPdt+EilWSV8aeqozRV8OUx71VGUeArbiN1k+KJL1UpZzAqUnoJ0QNiYGXl6HPmnYTc3ZUUmt3opLJeDA5ilviwpAPou+v2e0mv8PKBoOZ1TX1rG/vwOSzb6Z2sErBKD89eQE6RvvpyLGDZrfZE8AQOv5iUi6XoY7tCmCoE/2Ra3oYOBZ8Dl//DewGUPvCuc9J5pKH+RmKgijJExS3Y9vVhqPS6JHSaVXLWBmuYFW8D2t8wbLXoX3kMk4K8mNKqCQlFdkLUlLd2iWKlJSUsGrVqm6eAKmpqUyaNInExMT93u9cLhc//PAD69evByAjI4MZM2ag0QzyZyjS5/Jb9W/M3TyXXW27AAjUBHJjzo1cmn4pWuXxYfza14huAfOGBow/70YwSteoMkJHwFmJaDOC9/vdMzY3suTZx2mqKEOuUHD6dbcyYvI5x7LpB0UURWpraz3BjY6ODs86vV5PZmYm2dnZxMXFDblA4PGC6BaxFXdKSu1o6ZKUksvQZgSjz4tAmx50VFKDQxHR6aThv0/T9tFHAPifew5RTzyBfIh4zzQ3/8LOwgdxOJqQyRQkJNxKUuLtyOVe+bkjZY/c49vb3qbJ2gRArG8st428jalJU4+8StJhgZ1fS1UbFX90LfcJQsydSfuwUdQ7C2hs/B6Xq92zWquJJiLiPCIizsPXN/OQx4WiIOJqtnr8OPYEOv6a8LIHRYi2m/G4OtoXhd9fvkeWVvh4JlSvB6UPzHwfhp11uJ8EAEVrVvLNS88gigK5Z57NmTfO8Y55exlREHj3nttoq6vhjBtmM3LKud3W//nnn3z//fcA5OXlMXXq1EPqI3z9v/+y68+VZJ82hbNuvXO/27V+tgvLhgbyM/25Pk7k/PBA3shKPKr35EXCG9AYRLgFN0tLlzJ381zPQyU3LJf7xtzHyPCRrChs5Pr31yOK8NiMbK6akNBt/yqbg1d3N7KwthltwzOobdvQ6HO5NuVJXl9SiMnuYkRcIAuuG0eATsVzPxRR8/HzxNpqSTzvCi666rLuDdq6GL68GTQBcNcW0A1+o7GjQRRFbv94M99sqyM5VM83d57kkfr663bzqpp4vLQWETghUM/bWUn4CbDu63LyV1QjCiJKjYJx5yWRe3osNTXvUlzyJDKZmjF5i/fJOjG63EzfVEyh2UamXstXo9Pw6wWD2d7E5XRTU9Tuqd4wtXXP1A1PkKSpEnNDCY0dRNJUDjP89Aise0N67R8L01+CVG9VxtHgNjlo+3QXtiIp+KfNDCHoorTjUi7Ay+DAJYi8UFnPixUNCECyj4bXshIY4Tf4KxjbG+p57+Xn2S4qqI9KxJIzlhKU2P/SNZSJIklmgex2NzkGgZwOgfRgHbqkQDTJAajj/ZEfqDLPbpKqP7dIEy7E5EkaxcFHr8sviiI72sx8V9rEj4YO8uVuxL2eM6E2gZNbBc7QaDk5NpigYcEog3t3At3lclFQUMDq1as9EjlyuZycnBwmTpxIRETEIR9r06ZNfPPNN7jdbsLCwpg1a9agNgr/s+5P5m6aS35zPiDJp16TdQ1XZV6FXuXNsO4NREHEuq0Z4/IKXC2S3JsiUIP/5AR0o8IPqC9evbOApS88hdVowMc/gOn3PEBsRvaxavoRIQgCu3fvpqCggO3bt3s8aQD8/f3Jzs4mOzubqChvwsRgwNlokSSlNjV2C5arovToxkSgGxGGwtc7eX0w2hZ/Qv1jj4HLhTYri9hXX0EVGdnfzeoVnM42ior+Q0PjMgB8fTPIzHwOP98jkwTyImFz2VhctJh3Ct7xyFIl+icye+Rszko86+h8rFrLEDd/iHHXRzToO2gIU+PQdPUTVapgIiKmEhExjQD/UfuoUxwpoijiNthx1pg93hzOWvO+lcSdyP1UnUEO6Ucd44tC70L22XVQvFwyCz//FRh5+RG1Z+fKX/n2ledBFBl19jROu/Zm73OpF6nI38znT/wLtY8Pt7z2PmofaWwmiiJ//PEHv/wi+QaecMIJTJky5ZA/+5rCHSz69/0oVWpumvfufqU3rTtaaFmwA3eAmvHj1WgUcrZOzCJQ5ZXEPFq8AY1BRIWhghlfzcAtuonxjeFveX9jSoJ0wZU1mTj/1VV02FxcNi6OJy/I6XYhflDbzAO7qnF1/hdHa43UlfwNl+Dg2ZOfJVo1gavfWUe7xUlGlD8f3DAOneBg3s1XIBMFPk+5mgV3n0tq+F4ZmoIAb5wEDQUw8U6Y8tgx/kQGFl9squaeT7ailMv4YvZEcmMDD7j98mYDs3dUYnK5OalB4KzNFuxGSeYiZXQYJ16Shm+QlnbDRjZtuhxRdJE+7BFiY6/sdhynIHJVfhm/tnUQoVbybd4wYrQDu0MviiLN1SYpuJHfTGNlR7f1vkEaEnOk4EZMeiDKgeqjUP4HLL0d2iqk16Ovka4Db1VGryCKIqZVtRi+Kwe3iMJfTdCl6WhTAvu7aV68dKPK5mDOjkrWGcwAXBoZzJNpMegHWGD5aLCZzPz24us4Kk2Ea+MIDUihRKdkW6CCggAF2wIV1Oj2HWjqFXJG+enIC9CT569jlL+uZ+ktcwt8eAHUbQVkUuXnqf+Eo5AXsgsCa9pNLG828mOLkSpb94qRHB8Np7qUnFRjJ3lnB9i6Z+spQ30kc/G0IDQpAT1XkxwCNpuNTZs2sWbNGk/GuFqtJi8vjwkTJhAQcGTPjKqqKhYvXozJZEKr1XLxxReTmpp6RMfqL7Y0bmHu5rmsq5ekOrUKLVdkXMF12dcRoPE+S3sDURSxF7dj+L4cZ610j5LrVfifHod+fNRBNcS3/vgdv7z7OoLbTXhiCuff9xD+oX3rz9bbuN1uysrKKCgooLCwELu9a9IqJCTEE9wICwvrx1Z6+SuCxYklv1mSlKrqGivI9couSanofasHvRwY87p11Nx5F+72dhShocS9MhefkSP7u1m9RkPjtxQVPYzT2YZMpiI56S7i429CLvdOHh4NFqeFhYULeXf7uxjskpJEamAqs0fO5oz4Mw47sGEyFVHf8DUNDcuw2ao8y5UukfAmOxFNdgJNCuQZ0yQ/ysSTDstI/Ehwm52dwQ0Tjs5KDleztZuE9h5UkTp0o0PQ1z+BfIckecaZj8Ckuw67ohig4Nef+OG1FwHIO+8CTrnyem9Qo5dY8uxjlG5Yy8izzuOM628FpL7RTz/9xKpVqwA49dRTOeWUUw7rMxdFkY8e/BsNZSWcOOtqxl8ws8ftBIeb2kf/BJfAg2cEsVzp4r/DYrk2JvTo39xxjjegMch4ceOLBGuDmTV8lseYyWhzcsGrqyhtMpOXEMTCmyag3mtwYhcERqzaTrvLzaRAX+5JjGBioC+v57/OvC3zCPMJY+mMpdS0ilzx9lqaTXaSw/Q8keNg9fyXsehCmR9xCfHBOr6cPZEQ371kDXb9IJXbKbVwxyYIiDnWH8mAoKrVwjkv/YHJ7uLvk4dxxxlph7TfpopWPn9/B9F10iSLKkTD2ZcPJz5LyrJ0OFpYt346dns9EeHnkZX1YrebrCiK/GNXNQtqW/CRy1kyOnVQZgObDXYqt7VQnt9M9c5WXHvpXCo1CuKGB0nVGzmh6PwHQLDGboKf/gPr35Je+8fC9Jch9Yx+bdZQxVFjonVRIa4mK8jA79Q4/M+M98oJeBkQLG1s596i3RhdAr4KOc+kx3FhRFB/N+uoEd0CjhoT9jIDjnID9gojor27ebhb5sYnJRhtShCa5ACMYVo2W6wes/HNHRbM7n11ixO0avIC9Izu9OLIEttQf3ghNBWCLgRmLoDEE4+o3c0OFz+3GFneYuC31g5Me51fK5dxYpAfU0L8mRzqT5Sm63kiukUcNR3Yd7VhK27HUWXsbiwpl6FO8EObFoR2WBCqaN8DZrSD1Jddu3YtGzZs8Eyg+vr6MmHCBPLy8vDpBamPjo4OFi9eTHV1NTKZjDPOOINJkyYN+EFwYWshczfP5ffq3wFQyVXMTJ/JjTk3EurjHeD1FvbdRozfV2DvlDGVaRT4nRyL74nRBw3QuV1OVrz3Jlt//A6A9BNO4qzb7kKlGdzSX06nk5KSErZt28auXbtwuboCmREREeTk5JCVlUVQ0OC/jw9GREHEXtKOeWMD1u3NeLLx5KBND0Y/JgJtevDhm/l66Yajuprq2XOw79qFTKUi8rFHCZwxo7+b1WvYHc0UFj5Ec/NPAPj7jyAz49lufgtejgyTw8SHOz9kwfYFdDilQOPw4OHMGTmHU2IPPCFssVTQ0LCMhsZlmM3FnuVyuQ9hYWcSEX4eIdos5AVf7mskHhjfaSR+OQTG9dn7+yuC3Y2zXgpuOGokTw5nvblL7k4BwWEL0bV3VhefcDtMfuyIgi/5P33Pj2+9AsD4C2Yy6dKrBnx/bqBjbGrk7TtuRBQFrn3+NUJipe/OL7/8wu+/S33QKVOmMHHixCM6/o7ff+G7V1/ANziEG+fO36+nWPP727HtbKVofChXBNoZ5afjuzHDjuxNefHgDWgMcgRB5KYFG/i5sJFIfy1L75hEuF/3gcbXje3ctL2CKI2KDSdkoui8KTrcDi5ceiGVxkquyLiCf477J+XNZq54609qDTZmtP9CXFsROedewOMNyexutZCXEMRHN45HuydjXhTh3XMl087RV8P0ucf6I+h33ILIZW/+ybqKVkbHB/LJLSegPMhEq8vhZuP3lWxaXongEnEr4I8MH9YM1/LPtGjmxIcDAlu23kBr6x/odMmMHfMlSmX3LKTXdjfySGktMuDd7CTODhv82Ywuh5vqojZP9YbZsFdGrQwiEv091RshMfpj/5Av/x2+uh3aK6XXeddKnRat9z7VlwgON+1LS7FskMzp1PF+BM8a3uuSMF68HCpmt5uHi2v4qE4qvx/tr+O1zAQSfAanl4HoEnBUdWDvNPF2VBr3MVGUaRVoEgNoddWzeuUntFpriUwbxvn3/h/6wH0n/9yiyC6zTTIcN5rZaLCwy2Lrtk28tZbP8u8h3laHQRfBmmkfYgtOQwAEUfzL732XiaJ0HpNb4Pe2DtYbzN0S6cLUSiaH+DMlJICTgn3RH6IpsGBzYS9t9xiMu1u6t1uuU6JJ7azeGBaEci8fqMbGRlavXk1+fj6CIH2GoaGhTJo0iZycHJS9bKDscrn49ttv2bRpEwBZWVmcf/75qNUDIAHgL5QZynh186ssr1wOgEKmYEbqDG7JvYUo36h+bt3QwdlgxvBDJbYdLdICpQzfCdH4nRZ3SNKNbpeTL59+lMr8zSCTceKlVzFuxiVDbmLFbrdTVFREQUEBJSUlnusVIDY2luzsbLKysvDz8+vHVh4fOJssWDY2YtnUgNu4l6RUpA5dXiS6kWH76th7OSrcJjO1//gHpp9/BiD4+usJ//s9yA7xOTnQEUWR+vol7Cp+BJerA7lcQ0rKfcTFXtNr0kXHMwa7gQU7FvDhjg+xuCwA5ITmMGfkHCZGT/Q8L2y2Ohobv6W+4Ws6OrZ59pfJ1ISEnExkxDRCQ09HofhLUqYoQu1mKbCx7bO/GImfBqOuhOHndTMSP1YIFieWrU1S9Vi1ZFbuq/iCQNU70vq0C5Ff+gYoD/+etfmHZfzyzusATLzkCk64+LKD7OHlQPzx8Xus++oz4rNHcMm/ngCgsLCQRYsWATB16lTGjh17xMd3OZ28Nec6LIZ2pt55H8MnndLjduZ19bR9UYwsWs/4XDkuEX4bN5x0vXcu42jwBjQGOc/9UMQrK0pQK+V8dusJPcocXZlfxk8tRu4Uinhw4lng07XN6trV3PLjLchlchZOXUhmSCbVbRauenM1k7fMQyM4OOlvjxCcnM6F81ZhtLk4LzeKl2eNQr4nM3H3WnhnCsjkMHsthB1fkcZ5v5bwzPdF6NUKvr3rJBJCDqz1XLGtmT8W78LYLE2OxGcFM3HmMJ5ub2FBrTTwvDgiiDs1S6iqfBm5XMvYMV/g65ve7TjfNrVzQ0EFIvBIajS3xA2u8v9DQRRFmqtMlHcGN5p2d5em8gvWdvpuhBCTFoRC1YedU7sJfvo3rH9beh0QJwXwUk7ru3N62QdLfhNtXxQj2tzINAqCLkxFN2LoffcPF7dbwO2Uflz7/HYjuESUajlqH6X0o1Wg0iq77uNeDovtJiu3bq+g2GJHBtwRH859SVGoBtHnKTrd2Cs7pOBFuQH77g5wdQ9gyHVK1IkBHhNvVZTeU5Wwu2ArX7/wFDazCb/QMC64/2HCEpIOel6D08WWDisbjWbqqrZx78pbibA3U6GN5pIRL1ClPfpJ7SxfLVNCApgc6s9IP12vGLK7Wqwec3F7afs+1SqKMB9aohxsNu2itLbCszwhIYGJEyeSlpbWpybEoiiyYcMGvvvuOwRBICIiglmzZg2YLPPqjmpe2/oay8qWIYgCMmSck3QOs0fOJsE/4eAH8HJIuFptGH+qxLK5UZLIkIEuLwL/MxNQBh7apI8oiix/42UKVvyISqNl6l33k5I3rm8bPgCwWCzs3LmTgoICysvLPctlMhmJiYlkZ2eTkZGBTjf4KqEHKoLNhSW/CcuGBhx79fHlui5JKVV0PyQvHUeIgkDTyy/T8rrkBag/+SRinn8exRAK4tlsdewsfIDWVsmAOjBwPJkZT+Pjc+yy/IcybbY23tv+HgsLF2J1SV5Fp0WP5ebkPOyGlbS3r6dLs0lOcNBEIiKmERY2BZXqEOf5DmAkTs5MKbgRlbv//fsQZ70Z84YGLJsb0VqXE6R6EZnMjV09Ducpr6HLS0SuPbxElo3fLOHXBdKcw4mXXcP4GZf0RdOHPC6HgzdnX4u1w8j0vz9I2riJtLS08Oabb2K32xk/fjznnHPOUZ9n9acfs+azj4kaNpzLH3uux23cHQ7qnlgLwFMXRvK52cyc+HD+lRJ91Oc/nvEGNAYx3+TXMedjKRvvhZkjuHB07D7bNNqdjFpdgBsZK9ddSWpUKlzxGSi6bqr3/XYf31d8T05oDh+c8wEKuYL8dRv48fn/YJFrWZJxEwtunIDB6uTq+etwCSK3n5bKvWftNcG+8DIo+hYypsOlH/T5ex8oFNQYuGDeKpxukWcuymXm2P13jDpabfyxeBflW5sBySfixJlpJI8MQyaTIYoi79Y086+SGoYL+TzAo8gQycx4hqioi7oda7PRwoWbi7EKItfGhPJUWsxx0dk3tdmpLJCCG1WFbbj3yh5WaRTEZwaTmBtKQnYIPr2ZxVX2m+SV0b5bej3mepj8KGiGTme/t2lyOLELIgFKBXqFvFcmFPfgarXRuqjQM/jV5UUQOD0FuWZoZJTtjSiKtDdYqC1up2ZXO621JlyOvYIVLum3KBzZI1qlUaDWKroCHZ3BDrW26+/IlADiMoKPi3vMwRBFkberm3mstBaHKBKpVvFKZjwnBg38e4Fgd+OoNGIvN0gyUtUdXeXynch9VWiSugIYynDdAWWVWmtrWPLMI7TV1aLS+jD1zntJyRt/aA2q3QwfXAjWVhyh6Xx/zvuscvl6gkRyGciRdf+9198yQCGTIQfkMhkKGYzy1zM5xJ/YPvaREt1SNYttVxvW4jaKa8vIV1TSJO/MHhQh2Sea8Zl5JI1JRxWpP6g8VW9RWVnJJ598gtlsxsfHh0suuYTk5KM3VT9SGi2NvJn/Jp8Xf45LkKR9To87nTmj5jAs6PhKgOlL3CYHHb9UYVpb57mufbJD8J+SiCr88Cbg1331GX98/B4ymZwL/vEwSaPG9EWTBzQdHR1s376dgoICqqurPcvlcjkpKSnk5OSQnp6ORjM4K/L6E1EQsZd2SkoVtHQF0uWgHRaMLi8CnwyvpNSxxvjtt9Q+8CCi3Y46OZm4ea+iTkzs72b1GqIoUlO7kJKSp3C7LSgUOlJTHyAm+jJv/7aXaLI08dnWxxDafiBN40Kx18caEDCGyIhphIefjVp9lLKSreWw5SPY8jEYa7qWR42QvDZyLpYCHccY0SVgK2rF8fsS/OofRC6z4xCG0SI+giY7BV1eBJrkgEPuD65d8ikrF74PwKlX30je1Bl92PqhyR45KL+QMG6c+zYut5u3336bxsZG4uLiuPbaa1H0QkWaub2NN2dfh+B2ccUTLxCZ2nP/tmHuZpw1JqrOiuUCDISrlWw6IQvlIEqIG2h4AxqDlB21Ri56bTVWp5sbT0zi/87L7HG719Z8zyO2SMYYCli2ZY60cPxtcM5/Pds0WhqZvmQ6ZqeZf034FzPTZ/LrgrfY+M1X1IXn8Jn+RPy1St67fhyljSbu+ywfgGcvzuWSMZ0T+A074LWJgAg3/QIxeX359gcENqeb8+aupKTRxFlZEbx+ZV6PHSK3S2Drz1Ws/6Ycl0NALpcx4ow4xkxNRN1DtP63hlJat1+CPwbWKiZz3ugXyN3LF6PK5mDqxl00OlycHuzHgpzk4/Im6HS4qS5so2JrExXbWrAYu0tTRSYFkJgbQmJuKMFRR5jdZe+AH/8NG+ZLrwPi4fy5kHxqr7yHoYDZ5abIbKPQbGOn2cpOk42dZhstzi5Nahngr1Tgp5QToFTgv/ePouvvfdZ5fuSo/5LZLLpFjD9X0rGiCkTJvDf4suGoYwa3OaQoiLTWmanZ1U5tcTu1Je1YjY6D77gXCqUchUr6USrlKNVy5AoZToeA0+bCbnUhuA7vkR4UqSP3tFjSJ0ShGoKBo0Oh2eHi7sLd/NQiTVpPCfHnf8PjCVEPTJNJwebCXiEFMBxlBhw1JkmzaS/k/uruAYwwn8O+V1pNHSz731PsLsgHmYxTrriOvPMuOPBxKlfDx5dK8gHRo+DKL0AXfCRvs99wOp1s2bKFNWvW0NoqyY4pZHKGyWPItsQSIHY9t+W+KrSpgWjSgtCmBaHoYy8og8HA4sWLqa2tRSaTMWXKFCZMmHBMJ23abG3M3zafRUWLsLsl/5CJ0RO5Y9QdZIdmH7N2DHUEm4uOP2ow/VGN6JAmhjWpgQSclYg67vADrcXrVrP0hadAFDnt2lsYfc603m7yoKOtrY3t27ezbds2GhoaPMuVSiXDhg0jOzubtLQ0VKqDS3kdzzibrVg2NmDZ1Ijb0GXKrgzXoR8TgW5keJ/fG70cGGvBdqrnzMHV0IA8IIDY/72A/gh15QcqVutuduz8B+3t6wAIDj6JjOFPoe2F6tDjFVEUaW75hYqKVzEat3qWVzlkbLIosWtz+cfE/5Ic2MvJFYIbylbApg+g8BsQnNJyhQYypklVG0mn9LmReE+4d61B9uks5M52nEIszY5HcROOIkiDflwk+nFRhyT/uCfzH+D0629l1Fnn9XXThxQfPXQP9SW7mHTpVYy/YCZffvkl+fn56PV6brnlll6dZ/7ulefZ8ccKMk48lXPvuLfHbQw/VtLx82402SGckuim1enmw9xkzgzxzncfKd6AxiCk1exg2tyV1LRbOSktlHevHdujZ4O4/l1Oqw+g0DeZZ2yruTo+Gj69Rlo5fa7kedHJRzs/4r/r/ouf2o+vzv+KpQ88SHt9HWfecT+PbVOyobINnVrB29eMYXVJC6+sKEEpl7HghnFMTOmMsn95G2z9WHpwXLP0WHwU/cp/lm7nvdUVhPlp+OHukwnW79sJrylq47eFRbTVS7qS0WmBnHzZMEKie550FQQXmzdfSbthPXXyJB4QnkCp0PJSRgLTwwMxutxM31RModlGhl7L0tFp+CmPz8nFvREFkcbdHZLvxrZmmqtM3db7h2o9vhvRaYEoDiXrq+xX+OoOMOypyrgBJj9y3FZluASRMqudnWYrhaau4EWlrefJdhmgkslw9NKjw0cu6zHY4WtxodrVjt7kxlcQCc8MJTwzjACVAn+VFDAJUCrQKeQDMgNLEESaqzqk4EVnAMNudnXbRqGUE5nsT1RaIBGJ/mh0KpQquSdwoVRLf+9ZdiiZP26ngKMzuOG0ubFbXTisrs6AhxuHTfrbYnBQuqUJp02S19HolGRMiibn1Bj8Q47e0Hiw8HtrB7fvrKTR4UIjl/FwSjTXx4QOqO+UYHFiL++swCg34Kw1wV8uP0WgxhO80CQFoAjR9sp7cLtc/PLO6+T//D0A2adN4cwbb0Oh7GGwVvITLLoSXFZImASXLRpUHkQWi4X169ezdu1aLBbp2a7Vahk3bhzjxo1Dr9fjarZ6zMXtZe2eieY9qCJ1aIZJwQ1Noj8yVe8/x51OJ8uWLWPrVmlyITc3l2nTpvX5pGuHo4P3t7/PBzs+8Ghqjw4fzR2j7mBM5PGX6d9XiE4B05+1dKyoQrBIzwxVrC8BZyWiTTuyzNSGshIW/fsfuBx2Rp41lTOuv603mzwkaGpqoqCggG3btnkCmQAajYbhw4eTnZ1NcnJyr2R8DgUEmwvrtmbMGxpwVBo9y2VaJbqRYejzIlDF+g6oZ+nxjrOxkeo77sC2NR8UCiL+8Q+CrrpySP2PRFGgqvp9SkufRRDsKJV+DEt7mMjIgyRjeOmGKLppbPyeisp5mEyFAMjlGqKjZxETcwXfVG3ghY0vYHFZUMlV3DriVq7Lvg6VvA/6IeYW2PaJFNxo3N61PCAeRl3RaSQe3/vnPRBNuxA/uACZsRpBFU6T4xGcdikZWKaSoxsTgd+kGJSh+x9PiaLIqsUfsPbLTwCYfNPt5J559jFp/mCnvrSYjx78G3KFkpvnvcv2XcV8++23yGQyrrnmGhJ7uQKtoayEDx+4G7lCyU2vvoNv0L6JWvbdRprmbUWmVfDmZXG8UdvCtLBA3sru3bYcT3gDGoMMp1vg6vnrWFPWQnywjqW3TyJQ10M2y9o32frHW5yV9xYa0U3+iSMIUCvh16fh1ydBrpKCDglS1oVLcHH5N5ezs3Un5wdNJuijXSiUSmbPX4hLruLmBRtZWdKMRiln3hWj+XJzDcvy6/DXKvli9iRSw30lOZ65eeB2wFVfQsrpx/Szaas309FiIy6z76VRftvVxDXvSJkd7143ltPSu2v4mw12Vn9Rwq61UiaXj5+KSRelMmx85AHbVlLyNJW730Sh8CVj1OfcXS5jRaskq3N3QjibjRZ+azMRoVbybd4wYvpYVmOw0tFqo3JbM+X5LdQUteHeSxderVUQlxlCUm4ICdmhaH3/0qmyd8Dyf8HGd6XXgfEw/RVI7tngaSjS7HCxw2Rle+dPodlGscWGfT+yRmFqJRl6LRl6H4b7ahmu92GYXoNeocDmFjC63BjdboxO6bfB5ZaWuTrX/eXH4HLT0fnb5BZ6POfhopCBv0KBX4+VIPJur3usFFEoeqUSyu0WaKrsCmDUlbTjsHXX4leq5USlBBCdFkR0ZxCjT/1hDoLD6mLn6jryf63G2CRp48pkkDwyjNzT44hKDRiyA0CHIPB0eT3zdjciAsN0Wl7PSiDTt/+DOW6To0s+qtyAszNwvjfKEC3qzuCFJjkAZVDfGc+Josimb5fy2wfzEUWBuMwcpt3zAD5+e/XhdnwFn90gZdGlToaZC0A9OPTo29raWLNmDZs3b8bplLIAAwICmDhxIqNGjdqvAbfoEnDsNmLbJZmLO2u6B9xRytEk+aPtDHAoI3S9dj2JosjatWv54YcfEEWRqKgoZs2aRUBAQK8cf28sTgsfF37MuwXvYnRIE5eZIZncMeoOJkVPGrL3iGON6BaxbGrA+FMlboOUUKAM85ECGVkhR/w5d7Q28/GD92BqayVxZB4X3P8wcu+k/H4RRZG6ujoKCgooKCjAaOyarNfpdGRmZpKdnU18fHyfeucMRERBxF7WjmVjI9aCZsQ98rAy0A4L6pSUCkHWj/0aLwdGsNupf/jfGL76CoDASy4m8l//Qraf59xgxWwuY8fO+zAatwAQGnomw4c/geZoJZGGOILgpKFhKRWVr2OxlAGgUOiJjbmSuPjru31+daY6Hv3zUVbWrARgWNAwHp30KFkhWX3TOI+R+IedRuKGzhUySWFhj5G46hgZMRtq4MOLoGknojYA2+jXMO6Mwlln9jRLmxmC30kxqBP8e3yGC4LAmqceo3rFz4hyGTlnnkNc7khQKJAplciUKmRK6W8USmQqJTKFAjrXyX31KMPCjrt+2PfzXmT7bz+RceKp5My4lHfffRdBEJgyZQoT+6jybOHD91NbtIMJF81i0swr91kvCiJ1T/yJYHZhuiqdUxtrUctkbJ2URZBqYFb8D3S8AY1Bxp6qAL1awZdzJjEsoods8dWvwPKHeDD1Lt6JuZAZ4YG8npUorRNF+PRa2LEEdCFw0woIkswYtzVt44pvryCzzI+xhUEkjhjNRQ8+CkjySrd/vJmfdjagUsh49uIRfPBnJRsr24gP1vHl7ImE+Grg+wfgz3kQNVI69mF24l2uDnYWPogoCqSlPoiPT8xB92mrN7P+mwqKNzSACJknRnPKZcOQ91C10hu0mR2c9eLvNHbYufqEBB49v0s6QRBECn6rYe3SMhxWF8gg++QYxk9PRnuQssKmpp/I33YLADnZrxIefjZuUeTR0lreqGrybOcjl7FkdBoj/AbHJFB/47C5JGmqzuoNa4fTs04mg8iUAE/1RpBlHbKld4ChStpg7I1w5iOgGdwyRvvDLYqUWeyewMV2k5UdJhv1DmeP2+sUcobrtQzvDF5kdAYvQvtQcsctinR0C3gIXUEPtxuDsytY0tpopq3ZQocCTGoZZr0SoyhwmOpK+0WnkCSz/DqrPvyUctL1Ws4KDWCMv77HgIfbKdBQYaS2uE0KYJQZcf3FTFitVRCVGkh0WiDRwwIJi/dD0Uf3r6NBEEQqC1rI/6WK6sI2z/LQOF9GnB5H2piIfg289DYVVju3bq9kS4cUKLg6OoT/pMag66f/jdto9wQw7OUGXI3WfbZRhvl0r8AIOPb67mWb1/PNS8/gsFoJjIxixv0PExITJ2kdfzUHRAEyZ8CFb4Fy4E+O1NbWsmrVKnbs2MGernBkZCSTJk0iMzPzsDOx3SYH9pJ2yWC8uA3hL5Jycj812rRAtMOC0KQGovA9+s+ovLycTz/9FIvFgk6nY+bMmb2WmeZwO/h016e8lf8WLbYWAFICUrh91O2cEX/GcTeA7itEUcRa0IJxeQWuzsCyIkCN/5kJ6EZHIFMc+efssFlZ/O9/0lhRSkhsPJc99iwanb63mj7kEQSBqqoqCgoK2L59u6dyC8DPz4/s7Gyys7OJjo4e0teDq8WKeY+kVPteklJhPpKk1KhwFP5ez5HBgiiKtL7zLo3PPQeiiM+YPGJffhll8OCShzwYguBi9+63KCt/CVF0olIFkZ7+KBHh5/Z30wYcbreduvrPqax8A5tN8hZSKgOIi7uWuNirUakCe9xPFEW+Kf+Gp9c9Tbu9HblMzjVZ1zB7xGy0yj4MLDitXUbi5b93LdcGQu5MyW/jWBiJW9vg41lQ9ScotYgXv4tdORHTH9XYirrGU+o4P3xPisEnKxSZQoZgNmNYupTWjz7CUVJ6VE1QRkTgM2oUutGj8Bk1Cu3w4ciGsEyitcPIm7ddi8vp4PwHHuWrn1fQ0dFBZmYml1xySZ89i4vWrGTZi//Fxz+Am199F2UPQeDWxUVYNjfid0osF4U6KDBZeTIthutjw/qkTUMdb0BjEFFYb+Scl/5AFOGNq/I4Kyty343+eB5+fhS7TMXIk76lTaZmYW4yp+2ty+awwDtnQX0+RGTD9T94JmwfW/MYHe//RkSbllOuvYkx55zv2c3pFrjnk618vbUWuQz+PS2T+Ssr2N1qIS8hiI9uHI/W0QYvjQCHCS5+F7IvPOT353Qa2LLlWowdkkeHQqEnNfWf+zXram+wsP7bcorXNeD5dsoAERJzQ5lyYxYqde9ml4miyG0fbuL77fWkhOlZdsdJ+HSeo6HcyG8Li2jqNCoOT/DjlMvTCU84+PfXaq1i3frpuFxG4mKvZdiwf3Vbf3NBOUubpAyDeK2aRSNSSNZ5BwWHiyiINFQapeBGfgstnZmyKpmFSX7vk6VbDoBLH4vswnkoUoZOVUaHy+2puthhslFgslJktmLdT9VFko+aTF8fsnx9yOwMXsRp1b1q7t0XOOvNtCwsxNUgTSjoT45GfUYCHYg9VoAY9/rd4VkndFWRuN1YDqFKJFil4IwQfyb7+ZFhEGgtM1K7q52GcmO3CiEAjV5JdGcAI2ZYECGxvsgHmQ9OS42J/BXVFK2tx92ZfenjpyLr5BiyT45B3w8T6b3JZ/Wt/GNXNWa3QKBSwfPD45gaFnhM2+Bqt0nBi84KDFeLbZ9tVJE6qQIjOQBNYgAKv4ERIGjeXcGXzzyGsakBjU7P5dPTCd76krRy1JUw7WWQD9zsb1EUKS0tZdWqVZSXl3uWp6SkMGnSJJKSknplMCSKIq5Gi6d6w1Fu6Mpm7kQV44s2TfLf0CT4H7FRbnt7O4sWLaK+vh65XM7ZZ5/N2LFjj/h9OAUnS0uW8nr+69Sb6wGI9Y1l9sjZnJt0LooB/P8dbNhK2jB8X4GzWuqzyHVK/E6Lw3dC9FFnuQuCm6XPP0Xphj//n72zDq+jTr/45/rNvXF3a9J46qVCkSJFChQoros7/IDFpcAiC7vsLlDcZXHoIoXiWk/TNtZI467XfWZ+f0x607Sp0aRNS87z5MnNzB25SWbm+33Pe84hIDiE8x5+kpDomOE47T8lBEGgrq6O0tJSKioqcLsHCvvh4eF+ciM6OnonezlwILr7LaWKOvDUbW0ppcIwIQrDlBi0SUEHNZFzsMP288+03HIros2GJj6exGcXo8/O3t+nNeyw2jZRXv5XbLZyAGKi55OVtQiNZt+HS482CIKDlpb3aGx8GbdHdp/QaCJISb6UhITzUKt3r/Gvx9nD31f/na/qvwIgOSiZRbMWMS122oidux+9dXJjzfp3BgeJxxbKxEbhGSMbJO5xwEeXQNVXoFTD6a9A3gK8HXZsv7ViL+7A34Gn7EUyr8Kx6ltEm/zcVwQEYJgyhZ7mRmzdXSglifDYBPQBAUiCAD4vkk9A8vmQBB94fUiC/LNos4E4eGyp0OsJyM8nYNKk/q+JqMMOnv/1NZ99zC/vvEZUajpC9iQaGhqIjIzk8ssvR6cbuTmqKAi8dP2l2Hq6Oe6a/yPv8KO2e49jfSe971WijjHw+cJk7q1pYUJQAMumZo3YeR3MGCM0DjB8X9FBdaeNqw4fN3iFJMHPf4efHgXgyyP+w6XSRGK1Gopm5aLadiBpboYXjwR7pyy7O/MtUCrp6G7mrWuvRIGCoOuO5Yo5NwzaTBAl7vxkIx+slVn5G47K5PXf67C4fMwvjOOpsyeh/KX/PMLHwbWrQLVr9tfj6aF4/cXYbOVoNGEYAlIxW4oBCAubSU72YwQEJMqn3uVk7dI6Kld1IPUXY9MmRDJtfhrWbhffvFKG4BOJTQ/mxGsmbG8ptBf4cG0Tf/1oI2qlgiXXziY/IQSX3cvKJZsp+60VJNljfsaCceQeGr9bRUpRdLO26Cys1hKCgycxZfJ/USoHilJLu0xcWlqPBBiUShyiiEGl5NHMRM6MDRubJOwFLD1Oen7+nJjSezCI8gBto/14VtouQKEPIjkvnNSCSFLyI3apsBktkCSJJpenX3Hh8pMYO8q6CFAqyQ3Uy8RFP4GRY9QTeABns0heAdOXddhXtgFyQTD8nGw0O/Eo3Rm8okyGWIXBZEifV2B1p4VNlb1EtrtJ7vQR3+dDtQ3/ERCkIT4zjITxMokRHmfcrZyLAwEum5ey31oo/bkFW59cuFGqFGRMjWbiUclEJR9YmTNWn8CdVc181CF3TM0IMbI4N2XE7f0kSULodfnVF+5a86AOVwAUoIkPRJcajC49BG1qyG4FCu4vOMwm/vfPh0nsXsac6AZ54SFXw7xH9ktA4+5AEARKS0tZvny5P/xXoVCQn5/P7NmziY0dopFkGCF5RdwNZjl7o6pvwJKgHwqNUiavtthT7WGIu8fj4bPPPqO0tBSASZMmceKJJ6JW777KTpREvqr7imfXP0ujVc6YijZEc9WEq1iQsWBkvLH/pPA0WTEvq8ddYwJAoVUSeGgCQYclotQPjzLy57dfZe3nn6DSaDjzvkeIH58zLPsdA/h8PmpqaigpKaGyshKfbyAfKzo6moKCAvLy8gg/wDreJVHCXWfGUdQhW0p5BiyldJlhGKdEE5AbMSLZQGPYP3Bv3kzTNdfgbWhEYTAQ//fHCD7mmP19WsMOUfRQV7+YhobnkCQBrTaKnOxHiIzctzbaowU+n5Xm5rdpbHoVr1fODNLpYklJvpz4+LNQqf7YvOqnpp94aOVDdDo6AThj/Bn835T/I0i7D+YMOw0Sny+TGyMVJC744H/XwMb3QaGC016EgoUA+ExOel79H5bPPsLXPpABooqKJ+z88wg/ZyGq4GAkUWTZC09R9tN3KFUqTvq/O8mYNmPnH9nhwFlSirO4GGdxMY716xHN5u3ep01L85MbhkmT0Kanoxil4/WdQRQFXrnhCixdHSTOOYqKbjMajYYrrriCqKiRV0GsWvIhv737BtGp4zj/sX9vN04XHV5aH1op1w1vnszk8hq8ksSP07LIGQWWxgcaxgiNgwGSBN8/CL89Kf981P1cGLKAb3osXJcczT3j4ofermkNvH6CnHlx2F9h7j2U//IDXy1+kt4gD98c0cenp3xKYlDioM1EUeLBL8p5fXk9AOdMT+LDtc34RInrjszg1iPi4T8TwdEN8/8FUy/Z6em73V0Ur78Au70arTaSSRPfxGjMoKn5TTZv/gei6EKlMhAfcTfN6wrZtHKAyEgpiGD6/LRBKojWGhNLn92I2+EjLNbA/OsnDEt4bWOPg+P/8wt2j8Bf52VxzeHj2LSyneWf1OCyyQ/D7BmxzDwtA0Pw7he/KisX0dzyFmp1KIdM/xy9fuDvVWxxcFpxNU5R4uKESK5PiuK6TY2sMMlFjgXRoTyelUTwAVx83m9wWeCbe2DdGwBIISm05j/MptZxNJT2DLamUiqI81tTRRAWOzqsGJyCSKVdJi1KbU7KbU7K7U4svqEVBfE6DbmBAeT7yQs9qQG67QnPgwTOsh76Pq5CdPhQaJWEnpKBYXL0XpGALruXts1mWqtkC6muRivbPh0tAQoaojQ0RKtpjNKQEG9kXmQo8yKDyQvcswLkgQJBEKkt7mLjD8201w4MkpNzw5lyfArxfzCkdl+i2OLg6vJ66p0elMAtqbHclBozIteHJEn4upz+AG9PrRlhG+shlKBJCPLnX+hSg4etiLlPIEmI39yLcsXTAKzoSsY55VqOuOjyUefN73a7KSoqYuXKlX4vfI1Gw5QpU5gxYwahoaH75bwEqwdXjak/YLwP0TbYDlAVokPXb0+lzwhFadg1mSBJEitWrODbb79FkiQSEhI466yzdjnWliSJH5p+4JniZ6gx1QAQrg/nsoLLODPrTHSqA1uVNZrg7XRg+aYeZ6ls4YVKQeAhcQTNTRoWC7It2Pj9Mr59Ub4+T7jhr+TMPnhUqaMNbrebqqoqSkpKqKmpQdyqWzYhIYH8/Hzy8vJG9ZzX1+vCsa4D+7pOhN4BxaA6MgDDlBgMk6NRH+DqzDHsGILZTMv//R/25SsAiLzheiKvvvqgHNNaLBspK/8rDof8rIuLW8j4zHtQqw+sJp29QWvrB1TXPILPJztPBOiTSUm5kri4U1Eq9/46t3qs/KvoX3xY9SEgN0bcN+M+Dk/ah88hew+UfChbUnWUDiwfySBxUYDPboD1b4NCie/If2CqFDG9+x7e1lb5PQoFmqSJqBMPQxWVg0KlwlAYSeCcRLQJgYiiwNfP/puKX39EqVJzyl/vJn3S7qtcJFHEU1+Pc906HMXFOIvX46mt3e59SqMRZXAwSq0WxZYvna7/tQaFVotSq9tmnQalTk/gEYcTULgP7LyGwOai1Sx5/EE0+gB6U7JBqWLhwoXk5+fveuNhgNNq4cVr/oLP4+asRY+RmLP9cTuf24CnwULoqRncYHCxtNvMVUlRLMrYtd3+GAZjjNA40CFJclF2xTPyz/MeoWvKFUxcXoYgwS/Tsxlv3Ik34fp3YclV8uvTX+Hz72qoWvkbXRMMfJlQweGJh/P03Ke3G6xIksQ/vqlk8Y+yn9/ROdF8VyGz7E8sLOQM35fw9e0QGAs3FO8w9NPlaqN4/QU4HHXodLFMmvgWRmO6f73DUc/6NQ9RtyoRU91skORiTnJeONPnpxOTNvT/Rm+rnc+fXo+tz40hRMtJ108gMvGPD0IEUeKsF1awtqGPaalhLD6xgN/er6KtRi7chccbOfyc8XtctOvo+ILSshsBmDDhFSIjjvCva3J5OLGoik6Pj7nhQbxZkI5aqUCQJJ5p6OTx+jYECZL0Wp7LTWFqyOgosh8QqPkOPrsRLLLSiGmXw9GL/NZroijRWW+hbmM39Ru76W0d3CUbEh1AamEkaQWRxGWEjFhey9bodHsp9VtGyeqLGoeLoagLjUJBllHvV15sUV+E/wnDpnxmN33vV+LuL7IHTIwibEHGbheGnVaPP8C7pdok25Rt8zQMjtTL+ReZocRlhNJuUPBtj4Vl3WaKLI5Bb0/QaTg2MoQTo0KYHRp4UE4EOxssbPi+ieq1nX7yOS4jhCnHp5KcGz7qPrMoSTzb2MljdW34JPlv9GxuCoeEDl92jiTK1kJbZ2BsW5xGpUCbGOTPwNCmBKHUHaDXrCjC0ltg7asANMSdwUc/yLZEqRMmM/+m20eFR7/VamXVqlWsWbPGbw1jNBqZMWMGU6dOJSBg9HRKSZKEt83en7/Rh7vOzKCAIAVoEoPk/I3MMLTJQSh28myqqanho48+wuVyERgYyJlnnkly8vYTd0mSWNG6gqeLn6a0R57wB2mCuDj/Ys7POR+DZizPa7jgM7mxfNeAo0jOhEMBhknRBB+dgjp8eH3GG0s38PEj9yEKAjMXnsusM84d1v2PYcdwOp1UVFRQWlpKXV0dW0+xU1NTyc/PJzc3F4Nh/19bokfAWdKNo6jDP44CUOi2spRKHrOU+rNA8vno+Pvj9L31FgBBxx1H/KOPoBxFz8rhgiC4qa17ksbGVwAJnS6O3Jy/Ex4+e3+f2ohCFH1U1zxMc/ObABgMGaSmXk1M9HyUyuEfk65pX8Oi5Yv8is/j047njul3EK7fh8o1SYK29XKQ+MYPRz5IXBRxPn8JfZ//iKUhAEmU75+qkBBCz1hI6Nlno4lPwLWpF+uvLXjqBu69uvQQAg9LRDsumKXP/IOqlb+h0mhYcNt9pBZO+sOn5Ovrw7lhA87i9bKSY+NGJNf2Vrd7gtAzzyT65v9DtY+bgj5+9H7q1xfhi4rHGRnPjBkzOO644/bpOXzz4tOUfL+MzENmcfLNd2233vJjI5ZlDehzwik6MZGLSuqI0qpZNzMPzRAuDm53F5LkHdT4PAYZY4TGgQxRlEmD1S/KP5/wD5h+OS80dXJ/TSuTgw0snTJ+1/v55h5Y/jSCMoBna2bjcbs5/I5buLz0Znyij/8c+R/mJg8ttVz8Yw1PLKsEYEJiCBuazaiVCt66eAIzlx4HpkY46n6Yc/N22zqdzawrPh+Xqwm9PoHJk94mIGBgMm3rc7Pu63rKfm9F7J+0G2LKiSlYRsGMM0lMOA+FYseTdVufi8+f3kBvqx2tXsXxVxeSmPXHuoS3fM4wjZpHspKpW96OJEqodSqmnZjKhKOS9jjE126vZc3aBQiCndSUqxk37lb/OotP4OR11Wyyu8g16vnf5EyCtlFhFJntXF3eQKPLg0ohdxPfmDIy3cQHDVzmflWGPEgjLBVOWQyph+50M0u3k/oSmdxoqTIhCgO3Q51BTXJeBKmFEaTkRaDbjQ7ZncErStQ4tlZduCizOen2+oZ8f7hGtZXiQv7KMOjQHoAS0ZGCJEpYf2rC8l0DiKAK1xN+dha65O2fLXazm9YqmbxorTbRt43lC0BojMFPYMRnhhK0k0JTl8fLtz0Wvuk283OvdVBmSX5gANcmR3NSVOiQgeIHOsxdToq/baRi+cA9PCo5iCnHp5A+IWpU2G51uL1cX9HAL32yR+1JUaE8kZVI6F6Sf5LYX3zeosCoMyM6trmG1Qq0ScEDBEZyEMphzn3aLxC8sOQaKPkAUMBJ/4YpF1O16ne+euZJfB43EYnJLLjtPkJjRtbCaUfo6upi+fLlbNy4EUEQAIiIiGDWrFkUFhaiOQCCEkWPgKfegqtfvbElN2gLFDoVunGhfoJDFaHfrujY29vLe++9R2dnJ0qlkhNPPJEpU6b416/rWMdTxU9R1FEEQIA6gPNzzueivIsI0YWM/If8k0Cwe7H+2IRtZaufpNLnRhBybAqaEVCE9rY28997bsFtt5M9+3BOuP7WsYL0foLVaqW8vJzS0lKampr8y5VKJePGjSM/P5/s7OwR9fzeFpIk4am3YF/bgbOkG8kj3yNRgG5cKMapMehzIw6O59UY/hD6PvyQ9gcfAq8XXW4OSYsXo4mL29+nNSIwmdZSXv5XnC654J6QcD6ZGbejUu1/wnG44fWaKC29gd6+3wFIS7uJtNRrd1pvGQ64fC6e3fAsb5S9gSiJhOpCuWP6HZyQdsK+fzZ5nVDxRX+Q+M8Dy/1B4udD3IQ/tGvJ58Py1Vf0vv02rg0bB3Yd5iFs4UkEX/sYSv32c0pPsxXrry04S7rY0smojg7AOCuOH399neq1K1BrtJx25yKS8oZHFSF5vXgaGhCdLiSPG8njQfJ4EN1uJI/X//OWdaLHg+SWl3lbWrB+I+eSqsLDibnjdoJPOmmf/C372lt59cYrALCNyycpYzwXXXQRqn2sDO9urOeNv16HQqHksqdfJjhqcG6Wp9VG51PFKDRKou6ZweQ1FXR7fbxZkMaxkYPH16LoYV3xBTgctRQWPEdo6NR9+VFGPcYIjQMVoghf/h8Uvc7WBQNJkpi7ppIKu4vHxidycULkbuxLgHfPpmH9aj5qLMAYEsKVz7/FU+uf5uWSl4kzxrHklCU77MJ7/fc6Fn0uB2glhxto7HUQrFfz7VFtxHx/I+hD4MYNg4KWHI461hWfj9vdTkBACpMnve1nHO1mN+u+bqDs11Z/mG7C+FAKjzHQ530Ak2k1AKGhh5Cb89ggEmRbuB1elj5XQmu1CaVawdEX55I5dc/CDjc2mzht8XLS3QpOxYDokAf24yZFMfuMzJ0WM3cEQXCyZu1p2O1VhIYewqSJb/q7HryixAUba/mpz0qMVs3SKeN36N9u8QncUdXMJ1v5vT+Tm0LiCPu9H5Co+U6WeG4JAjvkKjjqPtDuWbHA4/TRWN5LfUk3DSU9uOyDraniM0JILYwktSCS0JidD3ZNXp8/pLusX31RaXfhGeJ2qwTGGXTbWEYFEKNVjxUidhPuBgu9721C6HODUkHwMSlQEElbzQCBYe50brddeLxxEIHxRwOvnYLIr31Wvu4282mHCWe/5USyXstVSVGcHReBYR+offY17CY3xd81UvZLC75+r+2wWANTjkshc1rMPlE4DYVvu83cuKmRXq9AgFLJ3zITODfujylIJEHC22obUGDUm5FcwqD3KDRKtCnBsoVUWogclLqXgb6jDl6XHHpY+aUcenjqC35/YICO2hqWPP4gtr5eAoKCOfmWu4aUYu8OfIJIRZuVNfW9rKnvpaRFbqgI1KsJ1KkJ0msI0qkJ1KsJ0qsJ1GnwOiy01NfQ3daMViGgQSA5PobDZ06jMDcL3QGsYhPMblzV/eqNmj5E+2ACTRWu95MbunGhKAPkz+p2u1myZAkVFRUATJ06leRpyTxb8iy/t8hFDa1Sy1nZZ3Fp/qVEBETs2w92EEN0C9h+a8H6SzOSW75faNOCCTkuDV3KyMx9nFYL/737FkwdbcSNz+bMex9BrR0bM44GmEwmSktLKS0tpb293b9crVYzfvx48vPzyczMHDHC1dfnwrGuE3tRxyBLKVWEHuPkGAxTolGHDq9SaAwHLhxr19J8w40Ivb2oIiNJfPopDJP+eIf4aIbPZ6dm8+O0tLwNQEBAMrk5TxxUhUW7vYYNG6/A6WxAqQwgL/efREfP26fnUNZdxn3L76OqrwqAwxIP494Z9xJr3D/NL/TVy0Hixe8MuDrAQJB4wUIw7FpJInk8mD/7jO4XXsS7hbjWaAg+bh7h46zo295FoQCO+zvMuGqH+/GZXHKA+Jp2/5hBadTQJFSypvILRI3EaXc9QGJ23l586OGBY80a2hY9gGez7OZimDGD2PvuQ5eeNqLH/fGNl1i39H/4jMGocidz5ZVXEhS0f6ziPnzobhpLNzD1pNM4/PzBFvySJNH26GpEi4fIS/J5VOnghaYuTowK4ZX8wb+jTZX309LyNgqFgRmHfIbBMLK/wwMNY4TGgQhRgM+uh/XvgEIpd5hPlKXiJVYHx6ytQqtQsHF23u53mbrM/HDnqRS3GsiP9zHv8SU4FRILliyg1d7KX/L/ws1TtldZbMEHa5q445ONiBKEGTT0Obykhun4zngP6u4KmH0THPMAADZ7NcXFF+DxdGEwjGPypLfQ6WJwWDys+6aB0p9bELxy0SsuI4TpJ6X7lRWSJNLc8jY1NY8jik6UygAyMm4jMeH8HXYP+LwC371azubiLlDAoQszmXBU0m79WpwegbP++QvjW3yk+WRmNzgqgMPOHk9K3h+b1EuSREXFbbS1f4JWG8X0aZ+j00X5191e1cybrT0EKJUsmZzBhKBdd4B82N7LHVXN2AWRELWKf2YlMT869A+d30EHlxmW3S13WgCEpfWrMvZeMiyKEu21Zur7ran62gd3yIbFGkgtiCS5IAJ3XADlzoGQ7jKbkxa3d8j9BqqUgxQXuYF6so0BB2Wxe19CkiRMzTZqPqyirc5Ct0/Cue2TTQGRiYEkZIbJFlKZIQQMo2f5FvR6fbzW3M0rLV30euVBabhGxaUJUfwlMfKgtAdz2jxs/KGZjT8243HKxdbgSD2Tjk0hZ2Ycqn1U3HeLIn/b3MpLzd0A5AXqeT43lcyd2TNuA8kn4mmx+e2jPPWWgS7Wfih0KpnA2KLASAhEoT6Ir2G3Dd47V+5oU+ngzDcha3uJt623hyVPPERHbQ1KlZpjr7yevMOP2uXunR6B4qY+1tT1sbahl3UNfdi3+Z3vLfQa5RBEiEyGBPX/vIUc2bJ+4L2a/veqUe1n9dEWhZCrug93VR/uBgtspSxECdqkYPSZoegyw9AkBPLb8t9Y8usSysLKaDXKPs5qhZoFmQu4svDK/VdQOAgh+UTsq9qw/Njkt57TxBsJmZeKbnzYiDUp+LxePn74XporSgmOiuG8h/+JISR0RI41hr1DV1eXn9zo6enxL9dqtWRnZ1NQUEB6evped52KHgFnWY9sKbXZ5LfUVGhVBBRGYpwagzYleKxxZgxDwtvSQtM11+KurESh0RD7wAOEnnbq/j6tEUNv7++UV9yO290GKEhOuoT09FtQHeAZUt3dP1JadhOCYEOvT6Cw4AWCgnL2y7l4RS+vlb7G8xuexyt6MWqM3DzlZhaOX4hyhJUiO4QoQO1PsiXVpi/k/FnYKkj8fEg7YrsgcdHjwfzJJ3S/+CK+1jZ5k7Awwi44n7Azz0QdGSnbXX23CH7/t7zRsX+DWddvdwoVbRYq2604vQIOhxdLrQlzgwWn24cbCRcSPV4TJtFGcGoaglqHyyvg8gooFArGRRkZHxNEVmwQ42OCSI8yohvhDFbJ46HntdfpfvZZJLcbhUZDxOWXE3HlFShHQHXodbtYfPn5CG4XzqRMLrj+JlJSUob9OLuLzUWrWPL4Q+iMRq589g0026hv+j6uxr6mncDZ8bQeGc/cNZVoFArWz8ojQivXAVpbP6Ri0x0AlJXN5dhjbiE7O3uff5bRjDFC40CD4JMzL0o+BIUKTntxUPfjPdXNvNzczcnRobyYl7rbu5UkiZevvQhLTy+nJJaRMfsYOPUFfm7+het+uA61Qs0HJ31AZljmDvfx+YZW/u/99fhEiQCNCqdX4IrYKu4yLQK1Hm4oxqowU7z+QrzeXgKNWUya9CaCJ5jibxop+anZ370bmx4sExnZQ0/snM5GyivuwGRaBUBo6HRysh/DYBj6piWKEr99UE3JTzK7PumYZGaeOm6nlic+j8A/n1qDvsaOGgVKtYIp81KYfFwKas0ffwC0tn5AxaY7ASWTJ71FWNgM/7rnGjt5YHMrCuC1/DSOi9p9S4c6h5uryxtYb5WL6ufHRfBAZjzGURa+uk9R/S18fmO/KkMBM66GuffuMNNlb2HuclC5vovK9V1Y6ixsHXDh0CqoidNQHa9hc6wGt1Ye9CTpteQF6v0ERn5gAEl6LcqxyeNeQ5Ik+tod/gyM1qo+7ObBwcsKIFSjILEgkuSZccSNC9lr27A9gUMQea+th+eaumhyyecWoFRyXnw4VyZFk3QQqq3cTh+lPzez4fsmnFa5mGcM0TLxmGTy5iSg0Y3cPava7uKq8nrKbHL36eWJkdydHo9+CLJQkiQcDgcWiwVLn5nehk5Mrd2Ye8xY7VbskgsRCS1qtJIGnUpDQKCBgDAjxuhgDJHB6AP06PUDXzqdzv9deTDZwjlN8M4Z0LwatIFwzruQdtgO3+51u/h68b+oWiUrAKadspA5Z1+IYqvfSa/dw9p+9cWa+j5KW8z4xMFD0SC9mqkpYUxNDWdychgalQKr24fV5cNsd1NV10hVXSMWpxePpMKnUKMLDEGtD8Ql0P9eLy7vUGlEfxxGrWqwUsT/eoAMCd5ClmxFhgRtRaIYtWqUw0SMiG5BVg9tsafqGqxEawvs5d2kZXzHb0hIIME49zjuOvIupo+fPiznMAaZaHIUd2L5rkFWCgLqCD3Bx6YSUBA5ojZ8kiSx7Ll/U/bz92gDDJzz0BNEJu2/if4Ydg+SJNHe3u4nN8zmAS/1gIAAcnNzyc/PJyUlZbefKZIk4Wmw4CjqxLGxy9/pC6AbF4JhSgwB+ZFjllJj2C2Idjutd9yJ9dtvAQi/+GKi/3orioN0/unzWamq/httbR8BcsZEXu4TBAfvnwDkvYEkSTQ2vkTN5scBidCQaRQUPINWuxsOHyOMWlMt9y+/n/Vd6wGYEjOFRTMXkRqSul/PC0evXIdb9xZ0lAwsD0mCiXKQuBgQg+nDj+h5+WV8HR0AqCIjibj0UsLOOhPltvlIkgQ/PgK/PC7/fNR9MOcWJElidV0vi3/azC9VXcP6MVRKBakRBj/BkRUTRGZMEKkRBtTD3EDpaWqi/cGHsP/6KwDalBRi778P46xZw3qcnz58l6KP3kHU6Jh99c3Mmr1/825EUeDVm67E3NHO0Zddy4Rjjh+03lnaTc/bFagjA4i9dSrHrqlko83J3zITuCwxCrNlA0VFZyFJXhrqJ2C3H8mll146KvK1RhPGCI0DCYIXPr4MypfIVg4LX4XcU/yrPaLIxOVl9HoF3ilM56iI3f+9bfF5U6lVXJvxOxqFVw5JPvT/uOGHG/ix6UcmR0/m9eNe32mXzrflHVz7zjo8gohKqUAQRb4Le4wMZwmegpNZEVWGz2cmKCifnMyXKfvJwsYfm/H2D6ajU4OZflLabgXHSpJIS8t/qdn8dwTBgVKpJ2PcX0lMvHBItYYkSaxb1sDKJbUAjJ8ew9wLc1AN0TFbX9LNN29X4DXLxbbAlEBOuSR/lxZCu4LVWsHaotMRRTfj0m8lNfVq/7qlXSYuLa1HAh7MiOeKpOgd72gH8IgiT9S180xjJxKQadDxXG4K+buh8jio4DTJqoz1sjSY8HQ45VlImTlsh5AkiVa3d1BId5nNSZ3TjQToPCLj2r2Mb/WS0eYlwDO4OzYoPZisCVFkT4wmJOrgC9PbH5BEiZ5WO63VfbRWmWitMfkL5lugVCmISQsmPiOUmJgAtKvakPqVNYGz4gk5Pm2/2AD5RIkvukw809hJqU0uNqoUcGp0GNcmR5MTePD9j3g9AuW/tbL+20Zs/cU9vVHDhKMSKTgicViJJUmSeLetl7urW3CKIuEaFf/JTubIUCO1tbX09PRgtVpl8qL/y2qxIojDqwDYGluTG1uTHjtatu1ytXqUqHhsXfDWqfLETh8K538Mibu2YZBEkeUfvsPKT94HYNzUGUSdfClflHWzpr6Xmk7bdtvEBuuZlhbOtNQwpqWGMz4maDs1hMPhYO3ataxatQq7Xc7A0ev1TJs2jenTpw8pPfcKIvZ+IkT+8mJz+7C5fVhcPmwuHza3F2v/6y1EiG2rbWwuHx5heImRARJkgPgI2tmybUiUIL2aAI1qu/GUr8+Fu9pEY1UNr5n+yzeBvyMo5HOfbZnI6X3HIrpVtKlNTDxxBhOnTx7Wz/VngyRJuCp6MS+r92edKIO0BB+djHFqzE7D24cLq5Z8yG/vvoFCqeS02+8ndeKUXW80hlEFURRpbm6mtLSUsrIy//0NICgoiLy8PPLz80lISBhyDuUzuXEUd+Ao6sTXPUBqqsL1GCdHY5gcM+zh82P4c0ASRboXP0v34sUAGOfMIeGf/0B1ENdwurt/oGLTXXg8XSgUKlJSriYt9VqUygOjEUkQ3GyqvIv29iUAxMedSVbWA6Pq/EVJ5L1N7/Hvdf/G6XOiVWq5ZuI1XJR3EeoRCCjfY7Sul1UbJR+Ay4zoU9BXY6CnOhzBLs8f1DExRFx2GaFnLBwyH2MQfn4cfnwYSYKf8h9hcfck1jbItuIqpYJpqWEE6TUEaFQEaFToNUr0WhUBahUamxfqzKg6nehRoAf0IWoipyagSAmmpttOZYeVqnYrlR1WrK6hszm1KiXjogPJigkks5/oyIoNIiE0YK+abCRJwrpsGR0PP4KvSyZngufPJ+aO22Wlyl7CarXy4g2Xg8NGaMEULrl70bApCx0WDz2tNnpb7PL3VjumDgchUQEk5YSTlBNO7LiQIWuKRV/+j5/efImIxGQu+sfiQeckuny0PrQSBImYW6fyhsvGPdUtFAYG8PmECFavPhmPp4Pu7kQaG07ksssuJyzsj+UBH8wYIzQOJHRugpePBsENZ7wB2ScMWv1Vl4m/lNYTrVWzbmbeHoXMrvr0A357703SJk3ltLkJsPRWQAHnvEtbwkRO+d8pOH1OHpr9EAsyFux0X79Vd3P5m2tx9tuoTFVs4iPdg0gKWDklFEXYbKSueyn5qRNvv8d4VHIQ009KIyU/Yo9vPk5nExUVd9BnWglAaMg0cnIew2BIHfL9m1a08cNbm5BEiaScMI67sgCtXn4oWntd/PZBNbXr5RutVSEhTgzlzism7/VN0eezsnrNKTidDUREHMGEwpf8xEuxxcFpxdU4RYmLEyJ5NHPoycju4tdeK9dVNNDh8aFVKLhnXByXJ0b9OSTjVd/A5zeAVZYDM+MamHvPXqkyPKJIld3lJy22kBh9vqGLndFadb9VlKy4yA7QY2xz0VTaQ/3GbkzbhLeGxRlJK4wgtSCSmPSQYevKPdghCiLdzTZaq020VJloqzHh3iZ4WaVREpseTHy/hVRsWjDqrboOJZ+I+et6bL/J2SqaWCPh52ShiRn+INbdgSRJ/NJn45nGDn7tGyjozg0P4rrkGGaGGg+661jwiVSubKdoWQOW/s5xrV5F/hGJTDwqiYCgvZtcmb0+bq1s5vMuEwCHhQXyUFwITSUbKC4uHlQUGgoBkhajpMOoCiA4OJiQ6DDCkiIJTYhErVbjcrlwu924XK5BX9su2/Kzzzf0JGJPoVarhyQ/dpcg0Wq1e/+/ZG6GN0+BnhowRsMFn0LsnmVilP3yA8+9+T/WBhbSrh9sa5QRHci01AECIzEsYIfnbDKZWLFiBevWrcPrlYnMkJAQZsyYweTJk/dJqK7bJ/STHzLJYXF5sbuF7cgPP2HiJ0dkwsTWv35bJcreQKlgO6WIXu+gR/01reIPiMi/q2SpgENNJ5HcEYNRUhCIAgMQgIQqGJKmpWLMjkSTEDiiSoKDDe5aE+av6/E0WgFQ6NUEHZFI4Kz4fdYBX7Xqdz5/8lEAjrrkaibOO3GfHHcMIwdBEKivr6e0tJSKigpcroHMi7CwMPLz88nPzyc6PBJnWQ/2og7cNaatLKWUBBREYZwSjTY1ZOyaHsOwwPL117TecSeSy4U2LY3EZxejSzt4/d693j4qKxfR0fkFAIGBueTl/oPAwKz9fGY7h9vdycaSq7FY1qNQqMjMuLu/IXR03gdaba08uOJBfm+VVb054Tk8OPtBssNHh/WOYOqh7+kH6P30B4T+rFW1wUdkoUDIqaegnHYRxE/c9X5Eia8/epnFxR7KpVRAJhjOmJrIlYeNIzli17UMR3MvpYu/IFpIRK2UG8NUIToCZ8djnB6LUq9GkiQ6LG4/wVHVseXL5q/fbQuDVkVmdOAg26qs2CCig3R79H8jWK10/ecp+t55ByQJZVAQ0bfcTOiZZw5Sae8JBEHg1af+hWXlT6BUctkzrxISseckicflo7fVTk+LTFpsIS+2bY4cCmqtkvjMMJJywkjKCSc8Xp6vux12Xrj6YrwuJ6ff/RCphYNzhrpe2oh7s5mQ+el4D4lhwu9liKKXd4Mex2stwuEIpqz0ZC688Eri4+P3+DP9GTBGaBxoaFwJbitkHrPdqotLavm628I1SdHcl7Fn//D/vfdW2qo2yXKoo4+DL/4Pil6TrSMu+45XO1fwr6J/EaYL47MFnxGqD93p/tbW9/KX19ZgdfvQq1z8EHkdkX0SK1VnU2k6FY9TvllGJAYyfX4aaRMi9+ohKqs13u1Xa9hRKvWMG3crSYkXDanWaCjr4esXS/G5BaKSgzj+qgKq13Sw5ss6fB4RCVij89KZpOPTG+eg3wuLKfn8JEpLr6ez6yv0unimT/8MjUZmWJtcHk4sqqLT42NueBBvFqTvERm1I/R4fNxc2ciybgsAh4YGkh8UgEqhQAmoFAoUyMWObZepFAr/cpVCQZJeS6ZBN7qtkJwmWHaXnC0DED4OFjwLyTN2utm26Pb4BuVclNmcVDtc+Ia4A6oUkGnQDyIvcgP1RGl33llu6nBQXyLnbrTWmJG2Kl7pAzWk5MvkRnJuONqAUdCBMkogCCJdDVZaqvporTbTttnkJ0W3QK1TETcuxB/gHZMSvFvZDK7KXno/rEK0eVFolITMT8c4PXa/Du7XWxwsbuzkyy6T371scrCBa5OjOT4yZPRei38QoiBSU9RJ0dcN9LbKJINaoyR3TjyTjkkmMGzPO0fXmO1cXV5Ps8uLWgGXGFWM27Seuv6QOgCDQkeMLwSjpJeJC0mHQdIRHBREWFoUAePC0aWFoI7ccTF9T+Dz+XZIeuzOMrfbvdfnAKBQKAYRHXtKjOjsLajfOQ3MTbLU/sL/QcS43T6+2yewpLiFF36ppbZL/nurRB/53gYWHjWZE4+cTrhxezLL5XLR3d1NZ2cnXV1ddHV10dnZicVi8b8nJiaG2bNnk5eXt9ce8/sakiTh9on9JEc/+bE18bE1ObKFFNlWLdK/3Xa8iNKBNuJXtOG/o1DKFnc+exqernkIztSdnpcKMKIgUKGQCZJALcEheoKDtENaa0UF6ZiSEoZB++d8hnlabJiX1eOukrsrFRolgbMTCDosAeU+tDVs31zN+4vuwOdxM+n4k5h78ZX77Nhj2Dfw+Xxs3ryZkpISKisr8Xq8REvBZArxZIixaKSBe6A2LQTjlBgCCiJRjqC94xj+vHCVl9N07XX42tpQBgWR8K9/EXjo/rV+GWl0dC6lsvI+vN4+FAoN6Wk3kpx8OcrRoCLYBhbLRjaWXI3b3Y5aHUJB/tOEh4/+v48kSXxe+zl/X/13LB4LKoWKS/Iv4coJV6LbTxkmgtVK39tv0/v6Gwj9doCahDgij0wlRL8KhW3rIPGC/iDxM7YLEvf4RJasb+H5nzZT2y2Phw24OF/1HZfOiCNm/r2wB/MPl93G/x56kOC+UMaHTEGnlIkQhU6FcVosgYfGow7dfk4lihLNfU6qOmQVR2U/2VHbZd+hAjlYrx5EcGRGy9+HGr9vDWdJKe3334+rvByAgAkTiH1gEfo/kA/xzTffsO7Dt9FYehk341AW/N8du7Wd0+ph44/NdDdZ6Wm1Y+1xDf1GBYREBRARH0h4gpGI+EBCogLoabHRVNFL06Y+nJbBltaGEC1J2eEk5YRRv+FTSn9YSvrkaZx6+/2D3mf9pRnz0jp0maFEXVrApaV1RHQ+yTyW4vNp2LD+BE499WoyM3ds+/9nxxihcZCgy+Nl0vIyfBL8ND2LbOPu25M4zCaeu/ICkCSueO51gsIjZXurNxdAw28Qlor30m858/srqTHVcHrm6SyatWiX+y1pNnP+K7/jcEicLnWQYY3ALclWD+HxRqaflEb6hKhh7QpyOpup2HQnfX3LAQgJmUpuzmMYDNt3h3TUW/hy8QacVi8KpcJfVFbH6HnJYcKshU+vmU1+wu7nWOwITU2vU1X9EAqFhimT3yMkZCIAFp/Ayeuq2WR3kWvU89nkTAKHMaBJkiReb+3hgZoWXMPQ8RmgVJBh0DPeqCfToOv/ric1QIdmf3Z3VS2TszK2qDJmXgtH3r1TVYYgSdQ63IOIi3Kbi3bP0Cx8qFrVn3Oh95MX4416dHvpg++ye2ks76F+Yw+NZT2DFAZKlYKE8aGkFkaSWhBJcOTBZzu0M/i8Ap31Flqq5AyM9lqzP2dnC7QBauIyBgiMqOQgVH/QvkOweuj9sMpfgArIiyDs9Mx9WnwaCnUON881dfJ+ey/u/ut4XICOa5KjWRgbttf/g6MNkihRt7Gboq/q6WyQu5qVKgXZM2KZNC+F0OhddygJksR/Gjr4Z307ggTRksAxZWsI6mn3vydBCCdbSCBFjESJElW4Hl1aCLq0YHRpIajC9aOyW00URdxu9x8iQ7Z8ieLeWSNF080FfEwQDnoV4XwWeik+Y+xukSE+hZrPyvv479pWOq3yBCBYr+bMCVGE/v4W7qZqANKnzSTnuJNxeLx+0qKrq2sQcbEt0tPTmTVrFuPGjRuVf7t9CUmScHplxUiHzcInm9/jy4Z3cQqy8itGl8mkwHMIIRebW9ghOWJ3+/ijowetSsnU1DAOGx/FYZlR5MQFHfR/F1+3E/O3DTg39PtdKxUYp8cSPDcZVfC+tfKwdHfx37tvxm7qI23iFBbcfh9K5VgR+2CFYHZjWdOGZXULKsvAPd6Kk2pVG+Z4kXGTssjLyyMkZO/nNmMYw47g6+6m+fobcBYXg1JJzO23EXbh6FUADAfcnm42bbqb7u7vAAgOnkhuzhMYjen7+cwG0N7xORUVtyOKbgyGcUwofGHIGsloRrezm0dXPco3Dd8AkBqcygOzHmByzL6zxhTtdnpeeZXet95CtMrzFG1qKhFXXUnI/Pko1GoQRaj7Sbakqvh8qyBxLWSfCJMuwJU0h/fWtvDiL7W0muViekiAhotnpXKx/hfCvr9F3uaQq+G4R/eI1HDarHz44F30NDaSFT2dCYlHIfX21ziUEFAQRdCcBLSJ29uwbgufIFLf45CJjnYr1Z3y9/oeB8IO6kvZsUGcPjmRUybGEx08dEOaJAj0vfNfuv7zH0S7HVQqIq+8gsjrr9/te0V5eTkf/vcdjNUbUSBx/qP/JiY9Y5fbCV6Rj58ooqtfPbsFhhAtEQmBRMQbCY8PJCLBSFicEc1OFLWSJNHTYqepopfmil5aq034tsrmE4U+PJbXAJh3zd/Jnpntd4vwdjroeLIIVAri75/J9/XvomyWSY+ysiOYPesapkwZswjdGcYIjYMELzZ1cl9NKxODDHw9dfwebVv603cse+7fRKeN44LH/jOwwt4DLx0JpgZInUPRvHu5+JvLAHjr+LeYGD1xp/tta/2eLz/4HnPlXPSSXHALUzUxIWUDubf+c8TkzZIk0dL6LjU1j/WrNXSMS7+VpKSLUCgG34xMnQ4+f2o9lm4X+kANWfOSuOKXTTi8Arcfl83VR+x+t+mOYDavp2jd2UiSl/GZ95KUdDEAXlHigo21/NRnJUarZumU8SSMUABwld3Fpx19uEUJAQlJkgt+IiBu9V2QQERClPAv84gSdU43mx1uPDu4DWgUCtICdGQadYzvJzzGG/WkB+gIGElvaGcffH0nbHhX/jkiQ87KSD5k0NusPoFym5PSrfIuKu1OnDt4CKcFaP2kxRb1RYJOM+IDcUEQaa8xU9ev3jB3Dg5uDY83kloYSVphJNGpwQedNZXXLdBeZ5bzL6pNdNRZEHyDC696o8ZPXsRnhhKRGDisvwdJlLD91oJ5WT0IEqoQHeHnZKFL3f+T/y6Pl1eau3mtpRtzv91ZtFbN5YlRXJQQSfAwkqGjAZIk0VzRx9qv6mmtNgHyWD5jagxTjkshIiFwyO1aXB6uLaljZX8WSWZHE3OqN6AVfOglDVlCPFlCAuERsvJCmx4iKzBC90+H176GJEmDVCI7Iz6GWh7urONs3wcE4KadSN7iNOzs2qLNIWko98VQKUThRe5aNOBhQkAPk4MdBBt0aDUaLF0dmCxWJM2On4eBgYFER0cTFRVFVFQU0dHRREZGjgXlbQO34Ob9Te/zSukr9Lp6AcgIzeC6SdcxN2nubj3TRFGivqWddz/6hO5eG0GKULLj8sCuwtztwI6EHQkHYFNIuAxqnHoVDR4vLdbBaqKoIB1zMiI5bHwUh2ZGEhl48FxzgsWN5ftG7Gs62CKNCZgYRcgxKagj9n0zgsfl5L37bqOroY7IpBTOfvAJdGPXx0EHySviLO+3lKruG7CU0ijR5ITRGW6nuHMTtXW1bD2VT0lJIT8/n9zcXIzG/WOxOYaDG6LHQ/uiBzB/8gkAIaefRuz996PUjp6MhuGGJEm0t39KVfWD+HxWuQYx7q87dIzYd+clUlv7JPUNzwEQEXEE+Xn/Rq3edTF7tOL7hu/526q/0e3sBuDsrLO5acpNGDUjez9zrFlD65134W2W1RfajHFEXn01wccdh2JHimBHL5R8BMVvQnsJFimAt4WjeVWYT3d/s29UkI7L56Rx7iEpBOr6lT1rX4MvbpJfT70UTvgH7EETm8Ni5sMH76K7qYGgiChOv+hexBK7bD/YD21aMEFzEtFnh+9xbc7lFajtsm9lWSUrO5p6B+oXSgUcmhnFaZMSODYvZkjVrrejg46HH8H6jUxSxdxzD+Hnn7fL43d3d/Piiy9Caz26rlbiMrM492//3K1z/+3DajZ834TOqGb6/HQi+pUX+sC9b2L0eQXaN5tpquijqaKXriYrHuuniN46VLpJhMTOY/bCDDKnxQDQ/sRahF4XunMUbOy5DPDS0FCIEHUFl88/fucHG8MYoXGw4Og1lZTanDw6PpG/JOyZZ9xn/3yE6tXLmbnwHGadsc3No7NCzu3w2GDqpdwTauB/m/9HVlgW781/b8hAJq9HYOWX31P2kxPBLd+kLWqJUl0PrxivQa/0YjnjQ4Lzjv3Dn3d34HS2sGnTnfT2yX6LISGTyc15fLtOBKfNQ0NpD4m54Vz49lrWNZqYnhbOu5fP2C5sdE/h9faxavVJuN1tREefQH7eUygUCiRJ4vaqZt5s7SFAqWTJ5AwmjGBwtyQzGCiGCCvaXfhEiUaXhyq7i2qHi8r+79UON44dyBAVQEqAlswhVB1Be1t8rfwKPr8JbO3ykWZdh3TEXTQKqq3ICznzotHlGXIXAUoluYGDLaNyjHqMo6Qw3Ndup35jD/Ul3bTVmNj6LhwQ1G9NVRhJUk64PwfmQILH6aNts5nWahOt1X101lsRtyGZAoK1JGwhMMaHEh5r3Cdez55mK73vVcrBmQoImptM8NxkFKr9TyLZfAJvt/bwYnMXrW652yZQpeTC+EiuSIoiVrd/FSUjgbYaE2u/aqCxrMe/LG1CJFOOTyUmNRjB7MZdZ+bDulYeCPThUKvR+LzMqd7A+M5m4oUw8gLTycocj6HfQmpfd0sfFKj7Fd49Gzw2hPgpWOa/ghPdTsmQJpObH9tUbDDrEZCvnxCFk3xVG+mqXlSKHQ8vFV4PSrcLo07DhFmHklkwgaioKAIC/lxqtT2FV/TyafWnvLDxBTodnQAkByVzzcRrOC71OFR/oEvf6XTy8ccfU1NTA8DMmTOZO/sIvHVW3NV9uKr6EEwDBIaERLNBxbowFatFH6u7rTi9g8cK+QnBHJYZxWHjo5icHIZ2L8Yo+wuiw4v152Zsy1uR+j+fPiuM4HmpaOOHJl1H/JxEgf/942Fqi1ZjCAnlvIefJDgqer+cyxiGH5Ik4W22YV/bjmNDN9JW4a7a1OABS6mtxoU2m43y8nJKS0tpbGz0L1coFKSnp1NQUEB2djb6XYXWjmEMewBJkuh94w06H38CRJGAyZNJfOo/wxICPJrhcrVRselOent/BSA09BByc/5OQEDSPj8Xn89GWfktfuVIcvLlZIz763ZNngcizG4zTxY9ySfVMmkWa4zlvhn3MSdxzrAfS3S56PrXv+l9802QJNTxccTcdhtBxx6729kPFpeXl5au4PWiPqyCfH9OVHRylepzFo4T0U85D3Lmg2arMW7x2/C/6wBJtqw66ak9IjXspj4+eOBOelubCY6K4axFj6H3BGD7tQXHhi5/A4Y6MoDAQxMwTI7e63yvPruHL0va+GRdM+saTf7lRq2K4/LjOH1yAjPSI7ZrSOx55RU6n/gHqNWkvPYqhmnTdngMt9vNyy+/TFdnJyH15YguJ8dfdwu5c47c5fnVb+zmy2c3AnDCNYWkFY7s/chp87Duq19Z+dG/UCi0aEMuR6HQkZAVymFnZaFY04a5qJL6OQ8gqHro6Ungk+6LCJh9JK8Vjh6F12jFGKFxEKDU6uDotVVoFQo2zM4jTLP7hU2fx8Ozl52L1+3asUSr8it49xxAonfeQ5xU/z4Wj4W/Tv0rF+ZduNW+BMp+bWXN0krcdvlGqw+xM2vBZALHh3HeK6v4i+U5/qJeRpUqg+TbV6EfYW9lSZJobX2f6ppHEQRbv1rjFpKSLt7uQf7U99U8+W0VQTo1X900h8SwvSMYJElkw8bL6On5mYCAVKZPW+LvhHiusZMHNreiAF4vSGNe5PB0f0uihGBy4+1y4Ot04O1w4Oty4u10ILl8aGKM6NJD0G6xVAnc+4KeKEm0ur1+okP+7qbK7sK0g9BsgHidhkyD3q/qyDTqGW/QE7HV/4QoSZh9Ar1eH31e+bvV1kP+rw+QtXkJAG2Bqfx74n2sCMqjze3BugNyJV6n2SrnQraOSg3QoTpA5M8uu5eGUpncaCzrxePcyppKrSBxfJhsTVUYSVD46JyQuuxe2mpMtFSbaKs20dVoZdsnS2CYzq++SBgfRkj08OQW/BGIbgHTZ5txFHUAcqEg/OysIX1H9wc8osinHSYWN3ZS5ZClylqFgoWxYVyTHE2GYXSc53Ciq9FK0Vf1tG7oIlKlIEKtJNqgpFnRw7+zdKxKjAMgytLHiZs2MDsonsmTJhNbkDws97s/NaqWwQcXgs8FaYfB2e+CbscF2+LGPp7/eTPflHf4r/OpKWFcdfg4jsyKwufzDqkAEQSBiIgIIiMi2Lz6d35553VcVtlmKv/IY5hz7sUYgve/Ymo0QhAFltYt5dn1z9Lc790ca4zlqsKrODnjZDTKvSM7RVHkhx9+4LfffgNki6+FCxdiMBhk5U+3E3e1CVdVH+5aM5JnYAzgQaIiTM0ao5KVDiebeh2D9m3Uqpg5LoLDx0dxXH4cUUGjW70hegRsv7di/bkJqT/LSZsSTMi8VHTpO/7/FCwWHEVFKLRaVIGBKIOCUBoDUQUaURgMw/K8++nNlyn6cglqjZYz73+UuMzRHVA7ht2DYPHgKO7AXtSBbysFrypEh2FKNMbJMah3w5rUbDZTWlpKaWkpbW1tA/tRqcjMzCQ/P5/x48ejPYg76cewb2H79Tdabr4Z0WpFHRdH0rOL0efk7O/TGlEMOEY8iiA4UKkMZGbcRXz82ftsXuNwNLCx5Crs9ioUCi052Q8TF3faPjn2vsTKtpUsWr6IFlsLACeln8Rt027bZebr7sK5YQOtd9yJp64OgJCFpxNzxx2oAnevacHjE3l7ZQNP/1BNn0NuRMuIMnBNhomTTG+gqfsJv7xOHyLnbEw6H+ImytL0De/DkqtAEmHCOXDKYtiDxhRbbw/vP3AHpvY2QmPjOOv+xwgMj0Awu7Etb8W2qt1PjCsNaowz4gicGY8qaO+fAXXddj4tbuHT4uZByo24ED0LJiVw2qQEMmPk+pgkSbTe+lcsX36JKiKCtI8/QhMbu90+JUnio48+oqysjECPE8XmMgKCQ7ji2ddRa3Y+zrX1uXn/b6tx2b0Uzk1kzpl75mzzRyFJEq/fcg29LU2Mm3Y67Q1pCF4RpVJB7qQwFGF34A2vxuEIpq3nShYlTkepUrJ+Vj6Rf9Isut3FGKFxEOC+6hZebO5iflQIL+fvmQ9i3foiPnn0fgLDwrniuTd2/ID99Un4/gFQqPjo6Ft5oOZdDGoDny34jEhtFGW/tbLu63rsZrkTXmPsZtzMdo5YcA0qtXwRdlpdXPHc17xtv5JAhYunwu/huutu3Se2OS5XKxUVd9LbJ0/CQ4InkZPzuN/XckOTidOeW44gSvzrrAmcOilxr49ZX/8sm2v/iVKpY+rUTwgKlEOOlnaZuLS0Hgl4MCOeK5L2vGtOEkR8PS6ZtOhy4Otw4O1y4ut0+DsEdwfq6ADZMz49BF1a6LB2LEuSRJfHR5VjgOCotruocrjo9Ph2uF24RkW4Rk2v14fJK7D1pzmm+3eeqP4nsZ4eBJS8kHgmj6degmurMDCNQkGWUe9XXmxRX4TvAdE32iEIIm3VJuo39lBX0o2la7A1VURCIKmFsnojJiV4nygahoLT6qG1WiYwWqtM9LTa2NaMPThST/z4ML8KIyhi9OUWONZ30vdpDZJbQKFXE3Z6JoaC0dNdJkoS3/VYWNzYySqzHCanAI6LDOG65GimhBzYdhKSJOHrceGpNeOuk78Ekxs7bqpUrfwWYuGz3EL6jPJYYU53K3ekxjNhUj5q9cFz3e9XlH4Mn1wBog/GHw9nvA6a7QkzSZL4qbKL537ezOq6Xv/yo3NiuOrwdKamhm+3za7gsJj59b9vUPqjLEXXBwZx2Hl/If+Io3e7K+5ghyRJfN/4Pc8UP8Nmsxx4H64P54rCK1g4fuGwB2aWlZWxZMkSvF4voaGhnH322cRuM+mUfCKeRiuu6j5c1X14Wwbf/3tUsD5Sw2qVwIo+O73OgfwqtVLBEVnRLJySyNzs6FGl3JAEEfuadizfNyJa5XNWxxgImZeKPid8h88vwWaj98036X39DcQd5cAolSgDA1EGGlEFBg3xOhBVUCBKo/xaGRQokyJb1gUGUrp2Bd+//iIA82+6nayZw9+pOoZ9B8knW0o5ijpwVQ1YSqFWYsiPwDAlBt240D88zuvu7qasrIySkhK6u7v9yzUaDdnZ2eTn5zNu3LixZ+kY9hru2jqar7kGT309ioAA4h97jOB5I+vWMBrgdDZSXnE7JtNqAMLD55CT/Sh6fdyIHren52dKy27C57Og1UZRWPAcISGTRvSY+xMOr4PF6xfzdsXbiJJIuD6cOw+5k3kp8/7wvFL0eOhe/Cw9L70Eoog6KorYhx4k6Igjdm97UeLLkjaeWFZJY38TR0Z0ILccM555ebEDNbC+Btk+u/gdMA8o6IjJl1UZhWdC7Y/w8eUgCZC/EE59AVS7f1+2dHfx/qI7sHR1EB6fyJn3P4oxNEw+T7eAfW07tt9bEXr7g7HVCgwTownIj0SXGjxI8fdHIEkSaxv6+GRdC19ubMWylbKwICGEUyclcPLEeMJVIvXnnIt70yb0hYWkvPUmSt3gMezKlSv5+uuvUSqVpLpMdG2uYvqCM5hzzkU7PQdRlPjfv4pprTYRmRTIwtumotLsu/Hlhm+X8t3LzxISE8vCu//N7x/XUr+xm6iJ7xIx/gd8PjXN9edz/kW3cXJJPRusTh7KSODypKh9do4HIsYIjQMcHlFk4vIyer0CbxWkccwedvp/98pzbPjmSwqPOo5jrrhux2+UJLmYUfIBYkAYF+RMpbSnhlOFv5C2eSq2PtlmQG3oITLnS3Jmp5CTc/92fpF9dg+f/ft6LvK+x2Yxjufz3uaJs6bu8ef+I5Akida2D6iufsSv1khP/z8iYy7kpKdXUNtt58TCOJ45Z9JeF1T7+layrvgCQCQn+zHi488AoNji4LTiapyixMUJkTyambDbx/J2OrCvbMNVY8LX4wRhB5ekSoE6MgBNtAF1tAFNdADqKANKowZPg0UuCNaa8XU4tttUHaFHu4XgSA8ZsU50k9dHtcNNtd1FpWOA6Gh2DR3InSjaeLDmaU5o+xqA9qBUPpv5MLb4qYRr1IRpVERo1ERq1aQH6ND+iYpckiTR1+6gfmM39SXdtG82D7amCtaSusWaKjd8p6FWewu7yb0VgdFHX/v2/2OhMQbix4f6CYzAsANDReDrcdL7XiWeJjk8zDg9lpD56Xstyx1urDHbWdzYwdfdAwWzGSFGrk2O5uiI4FFHFg0FSZLwdTr6yQsL7lozYn94tIREi7KXCnULDcpuSuNTWTEuH0GpwuDycPJqMzPVIUw5LpVxk6L2G5m3M9j6eultaSYoMpKgiKhddhPtd6x7Ez67AZDkrrEFz4Fq8Dl7BZHPN7Tyws+1VHbI14hGpWDBxASuOCzd3321N2jZVM53rzxLd2M9APHjczj6smuISjmwAi2HE5Ik8Xvr7zxd/DTlPeUABGuD+Uv+Xzg3+1wMmpGzsmxvb+e9997DZDKh0WhYsGABeXl5O3y/YPfirjHhqu7DXdWHYBmwghSR2GxQsi5UzU8uFyW9dv+6cKOWUybGs3BKInnx+0+ZI4kSzo1dmL9tQOiRJ/yqMB3Bx6ZimLDje41gs9P3zjv0vvoqgtkMgCYxEaXRiGizIdhsiDYbCDtWtO4uugMDWJMeh6RQkNVnJ1tQDRAfQ5IgQTJh0q8S8RMmW9brRrdK5mCFJEl4W2zYizpwbuhCdGxlKZUchGFqDIbCqL0uMG17zI6ODr9yw2Qy+dfp9Xpyc3PJz88nNTUV5Z9ojD2G4YVgNtNy8y3Yf5ftoCOvvZbIa6856JsTJEmkqfkNNm9+AlF0o1YHMT7zPmJjTx32cbkkSTQ0vMDm2n8AEsHBkygsWIxOFzOsxxmt2Ni1kfuX30+NSbbHPDLpSO6ZcQ/Rhj1rIHVt2kTr7XfgrqwEIHj+fGLvuRtVaOhubb9icw+PflXBxmb5uR8VpOPmY8ZzxpRE1DvKFxVFqPsZit+Cii9A6Lfx3BIkHpEBv/1Lbi7KPQVOf2W78fjOYO5s5/1Fd2Lt6SIyKYUz7ntkkOJZEiSc5d3Yfm3Bs3VYthI0CUH++pAuNRil7o8/f1xegR82dfLJuhZ+quzE1297pVIqOH1yAoumh9N8xhkIZjMhp59G3N/+5r9OGhoaeOONNxBFkcOmTaH4zRdQKJRc9szLBEfu/G+85ss6Vn9eh0an4sy7phEas29zxbwuFy9ddwlOq4V5V99E/hFHs37lG/Q4HgSgouQoovvO5dirp/Opz8GdVc3kBer5flr2Pj3PAw1jhMYBjq+7zFxcWkeUVk3xzDzUe1C8kSSJl669BGtPF6fefj/pk3fsUweA1wmvn4jQvJ6f1GezpmsuQR6521If5CMk8z1C034jOfUiMjPu2uED2mruRfjXBEKxcIf3MoJnX8ZdJ+w72anL1UrFprv8vpb/rb6W7+uyiA3W8/VNcwg17J1Kwe3uYvWa+Xg83cTFnk5u7uMANLk8nFhURafHx9zwIN4sSN/l30sSJFwVPdhWtOLebB60TqFR9hMWBtTRAwSGOjxgt3z+BbsXT71MbrjrzHjb7Nt1z6vCdLKCo5/kUIWPbPe8XRCocbix+0Q/SRFWuwzNlzeDrQMUSph1PRxx52B/yTH44bR5aCztoW5jD43lPXhdA0UStVZJSl4E6ZOjSM2PRBuwd5NhS49Tzr/oD/E2b6MUATnIPCEzlPjxYcRnhmI4gHMLJEHE8m0j1p+bQJIVTuHn5KCNG30KiCq7i2cbO/m4ow9v/+M726jn2uRoFkSHoRlFhX5JlPB2OPDUmvwkhmgfTG46VB42h/VQ4W3E4rbhUmv4KWsy9ZFyh9vhQQYubIDmn1vxeWRdV1isgcnHpZA5LQbVjiYP+wiSJNGyqYziZV9Ss3o54pbipUJBYFg4wVExhETHEBIVTXBUDMFR0YRExxIUEelXOe4XrFgMy+6SX0+5GE58cpDM3e728f6aJl75rY4Wk3z9G7Uqzj0kmUsOTSMuZHjv04LPR/HXn7P8w//idTlRKJVMPv5kZp1xLtqAP1fg8dr2tTxd/DTrOtcBYFAbuCD3Ai7Mu5Bg7b4ZNzscDj766CNqa2sBOPTQQ5k7d+4uC55bSEtXtQl3db891Vbq0noEvgmErzxuurZSdObEBXPGlEROmRhPxD4KFJckCVdlH5Zl9fI4CVAGagg+KhnjtNgdZpOJDgd9//0vPa+8itDXB4A2LY3I667dLjxUkiQklwvBakW02RHtNkSrtZ/ssCPa+l9bZfJDtNsQtrzuJ0XMbie/x4fiU6mI77UyoamTvb3LKzSaAXJjCykS1E+C+AmRrUgQ41avg4JQGuX3KUY7aTtKIFg9ONZ3Yl/bMajpSBWsxTA5BsOUaDRRI3+fkySJ5uZmSktLKSsrw2az+dcFBgaSl5dHfn4+iYmJB0STxBhGFySfj85//JPe118HIOjYY4l/7FGUhoP/GW6311JecSsWywYAIiOPJjv7YXTa4VF9C4KD8orb6excCkB83JlkZS1CqfxzkdNewcvLJS/zYsmL+EQfQZogbpl6C6dlnrbLe5bk89Hz8st0LX4WvF5UYWHELlq022qiqg4rj321iR82yfllRq2KKw8fx2Vz0oYMxN4hHL2yOnrdm9C+cWB5QAS4TLJSI+tEOOM1UO/+37evvZUPFt2Bra+XqNR0zrj3YQICt286cjdYcKztwF1rwtffxOFHP8Gh7yc4tHtBcPTY3HyxsY1PilvY0GQC4OJZqdwaYaLp8itAFIm9/z7CzjkHq9XKCy+8gM1mIz8/n1BzFxu++ZKMaTM45dZ7dnqc1uo+ljxZjCTB0X/JJeuQ7a2s9gXWfP4Jv7z9KiHRMZz2wHWsKz4bhcJHc+MELGsuQSkYUKoV5B6dxF8CbThU8N3U8eSPYNbugY4xQuMAxyUldSztNnNVUhSLMhL2aNvO+lreuv0G1Fod17zyXzTand8MRUGk8qdK1n5agsUnP3jtGjM1qb9ySv6X6DU+UlOuJj39ll0+LDy/LUb73V20S2Ec4X6S648t4Nq5mXt0/nsDSZJoa/uQN3/+nOc3nI0CkX+e1MOpsy7Yq5AsUfRRvP5CTKZVGI3jmTb1E1SqACw+gZPXVbPJ7iLXqOezyZkE7iR4WrB5sK9px76yHcHcz84rQJ8TgXFKDJp4I6oQ3bB2H4tOH+56s7+g6G2xwjbuVapgLdr0AYJDHTmC+QaOXvjqdij5QP45crzcGZy4bxQ9BwMEn0hrtYn6jd3UbejG2jswIFGqFSTlhDNuUhRpE6LQGdQ7/VtKkoS5s5/AqDbRUt2Hrdc96D0KBUQmBRGfIQd4x2eEog88+AoZrhoTvR9UIlo8oFIQekIaxlnxo3Ji3+b28GJTF2+19mDrz5dJ0Gm4MimK8+IiMO7kPjRSkEQJb6vNrxZz11uQnNvY0KmVaJMC6YhwUGqppbp5M6Ion39XdDzfZ0/BpFChVSi4d1w8lyVGolAocNo8bPyhmY0/NvtzZoIi9Eyel0L2zFjUmn37eb1uFxW//cz6ZV/Q1VDnXx4cFYPDYsLndu9ka1AolASGR/QTHDGExsaRd/hRu+xC2mtIEvz8d/jpUfnnWTfAMQ/KFznyBOSN5fW8ubIBU78fcGSgjr/MTuX8Q1IIMYzsdW/t6eanN16iapXc5RkYHsGRF19B5vRZo/I6HE6UdpfydPHTLG9dDoBWqeWc7HO4pOASwvV7bum1txAEge+++44VK1YAkJGRwemnn75Hwe2SV8TdYPGrN7YQBz4k1uDjK4WPX/Hi7Z+JqJUK5mZHc8bUJI7IikIzQoSlu96M+et6PPWy4k2hUxF0eCKBsxNQ6oa+l4hOJ33vvU/Pyy8j9PQAoE1JkYmME04YRGQMFxwWM/+95xbMHe3EZ2Sx4Or/Q+ly9ZMdMiHiV4NYt5Ag/eTJNq9FqxXRsb26cm+g0Otl4sNo7CdEhrDV2oFKxK8mMRpRHIS2R5JPxLWpF3tRB67K3oFxt1pBQF4kxikx6DL+uKXU3kIURerr6yktLaW8vByXa2AcGRISQn5+PgUFBcTExBz0994xDC9MH39C+6JFSF4vuuxskhY/gyZhz2oZByJE0Udj40vU1v0HSfKi0YSRlfUQMdHH79V+nc5GNm68Cpu9EoVCzfjx95MQf86f+rqs7qvm/uX3U9JdAsD02OksmrmIpOChw9ndmzfTeseduErk9wcefRRxDzyAOiJil8dqN7v417dVfFjUhCjJ45RzD0nmhqMyidzbBoy2DXI4+MYPZDJja8QWwEWfQ0DYbu+up6WJDx64E4fZREx6Jmfc+zd0hh035/lMbnnOtlluPBOGIDi0Wyk4tKkhOxwj7QxLS9q45h25SeehBfmcUPadPyQ86dVX+bCslIaGBqKiorjwvHN57cYr8LqcLLz7b6QUTtzhfl02L+/9bTV2k5vsGbEcdXHuHp/bcMHrdvHy9ZfhcneTe24Hao2Fvt5EJmU+j/ftLjY6Bbp88mDXHazm0wl6jpgez0OZe2+Hf7BijNA4gNHt8TFxeSk+CX6clkVO4J51Qq78+D1+/+Btxk09hAV/vXeH7xNFierV7az5st7fgR2gNJEf+Al35FbSpXAxL9jLtROvIy1tJ7ZVW8PnRnx6CkpzE496z+EF4STunZ/LpYfuO+uI+m47Jz71C3aPyPz0rzk1YynBwRPJzfk7RuMQ4ei7gc2b/0F9w3OoVEamTV2C0ZiOV5S4YGMtP/VZidGqWTplPAn67bvUJUnC02TFvrwVR0m331JKaVRjnBaH8ZBY1PvQnkd0+/A0WP0KDk+zdTubK2WgZqsMjhDU0YbhmXRVfAFf/B/YO/tVGTf0qzIODHui0QhJkuhqtFJb3MXm4i5MW3X/KZQKEsaHMm5yNOkTo/wqCrvJTd3Gblqq+mitNuEwewbtU6FUEJ0S5A/xjssIRbeXqo8DBYLdS99HVbgq5JwAfXY4YQszR23wtNnr483WHl5s7vJ3PIeqVfwlIZJLEiOJ0o5cAVoSRDwtNjxbExjuwfYqCq0SbUowuvQQfLEayrtqKCpeR19/ZzNAXGISFXlTeN8li8kyDDqez00ZsmvF4/RR8nMzG75vwtnvc28I0TLpmGRyD41HO4xWHUPB3NnO+m+WUvrDN7jscnerWqsj59DDmThvPtGp6UiShNNixtzVgaWrE3NnB5auDsxbvRa829vwqdRqCo8+nkNOPdPvfzuskCT45h5Y8Yz885H3wGG3gkJBY4+Dl3+r5YO1Tbj6O+pTIwxcflg6p09ORL+PCaO64rV8/9rzmDvaAQiLTyRz+kwyp88iJj3joJrIV/dV80zxM/zQ9AMAaoWa0zJP44rCK4gx7n8riY0bN/LZZ5/h8/kIDw/n7LPPJjr6jxFvgtXjt6dyVfchWr1YkPgOL1/hoWKrbotwg4ZTJydyxtREsmOHZ77gabNjWVaPa1N/DoxaSeCsOIIOT0JlHPpeKbrdmN5/n+6XXkLokrMINElJRF5zDSEnzR+xYrzP6+Wjv91Ny6ZyQmJiOfdv/xxkIfFHIAkCosMhq0SsNkT7EKSI3bZL1Yjk3F61uTdQGAwyKdKvAFEFGmUSZDvViHFQ4LqfMNlCjOxnextJkvC22nEUdeBY3znYUippK0upUTae8vl8bN68mdLSUjZt2oR3q+dTZGQk+fn55OfnExk5ejLGxjC64VhXTPP11yP09KAKDyfx6acwTJmyv09rn8Bq20R5+a3YbBUAxMScRNb4RWg0oXu8r57e3ygtvQGfz4xWG0lB/mJCQ8caAAEEUeCdind4uvhpXIILvUrPdZOu4/yc81H1K44lQaD3jTfp+ve/kTwelEFBxN57D8EnnbTLcaTV5eWFn2t5+bda/7j4+PxY/jovi/So3QsN3214XVD5Jax7S87U2AKFGiaeB1MvhvhJ/uajnaG7sZ4PHrwLp9VCXGYWC+9+aLeVzj6TG3etSZ7T1ZoHcje2QAmGCdGEnJi2x/PixT/W8MSySlRKBa//ZRppzz6C9auvEYKC+PLIIxBCQ7niiitoKlrJD68+T1h8In958rkd/p0kSWLpcyXUb+wmNMbAGXdOHfE54K6w9suPabQ8QkiMCacziJTkFygoOIT2f67F2+nAOiOe1as6sJvkpre6RC13XjmJiKjR5wgxGjBGaBzAeLm5i3uqWygMCuCbqVl7vP07d99Me00Vx1xxPYVHzdtuvShK1BR1sOaLen/xMyBIw6RjU8gLX0VD6Q18FhHE6z061Aoln57yP1JDUnf/BNa/C0uuwoKRQ13/wkIg95+Uy19mjzyp4fYJnP7cckpbLExLDeOf81up3fxQf7aGlrS0m0hOuhSlcvdveN3dP7Jh42UA5Of9h5iY+UiSxO1VzbzZ2kOAUsmSyRlM2Kb4JnkFHBu6sK1ok0Mz+6FNCsI4Mw5DQRSKfRhYtCOIHgFPo9XfVe1psoBvG4LDoJYzOPq/NHHGPSM4HL3w1W1Q8qH8c2RWvyrjzzG43VeQJIneNruf3Ohptg1aHxQhE0fWXtcgGzKlWkFMajDxmaEkZIYRkx683wcF+xOSJGFf0YZpaS34JJRBWsLPGo8+YwSKzMMElyDyYUcvzzV2UeuUB0p6pYKz4yK4OimKlIC9l6VLPhFP81ZkaIMFyTNY7qXQqdClygSGNi0ETbyRhqZG1q5dS0VFhV+NodPpKCwsJLZgAvd1OSiyyM+i8+LCeTAzAeMuup29HoHy31pZ/22jP+tJb9RQODeRgiMS0e+gOPmHPrck0VCynvXLvmBz0Wq2hNkER8Uwcd6J5B95zJCy7h3uTxRxWMyYO9sxd3Vi6eygfuM6mstLAVDrdEw67iSmnXz6Hu13pxAF+OImWeIOcNzfYcZVlLaYeeGXWr7c2Eq/1S2FiSFcdfg45uXFotqPFmZej5vVSz5izWcfDSKAgiKjyJwmkxvx2TkolaMr72Z30WhpZPH6xXxV9xUSEkqFkvnp87lqwlUkBQ3dZbi/0Nrayvvvv4/ZbEar1XLqqaeSk7N3lqKSJOFtd+DuJzfcdWZqfT6+wssyvPRu9ZCaFh3ELXPSmZYbg3IXqsOh4OtxYvmuEcf6TvnZpwTj1FiCjkpGHTL0vVH0eDB9+CE9L7yIr1O2mNAkJBB5zdWEnHzyiNotSZLE14ufpPzXH9EZjJzz0D+ISBw9/xOSz4dot/eTIv1Eh3UrNYhtK1stqxXBvhVBslW+iLQLJdueQrmFFAkcHKq+W7Za/dsoDIY9/v8SbB4c67twFHX4VUgAyiAtxsnRGKbEoIk+MGwlPB4P1dXVlJaWUlVVhbBVBkxcXJyf3AgJ2X+5N2M4MOBtbaXp2utwV1SARkP0zTcTft65KLSjs0FoOCGKHurqn6Gh4XkkSUCrjSIn+1EiI4/cre0lSaKx8SVqNj8BiAQHT6Agf/GIB44fiGiyNvHA8gdY1b4KgPyIfB6Y/QCpVj2td96Fs6gIAOOcOcT97SE0MTtvFPH4RP67qoGnfqih1y43/E1NCePOE3KYkrIP5oGmRvjxMdjwXwZN1mPyYdL5UHAmGHeuLOmsr+XDB+/CZbeRkJ3L6Xc+iEa/582jPpML9+YBG/MtBIfSqCb0pHEETIja7eelJEn83/vrWbK+lWC9mk8unYLn0vNQNDbSHRFBxLOLySks5PVbrqG3pYkjL76CycefvMP9bfihid8+qEapVrDw9qlEJQ3TfGkv8PvvN+Fyf44gqLF3/oVTz7sDANOXtdh+bcEwJYbAk9JZ/UUdxd83oZRAoVEw/fg0Jh2TvE+DzA8EjBEaBzCOWVNJic3Jw5kJXJoYtUfb2k19PH/lBQBc+fybBIYN2BRIokTNuk7WfFHnD/XVGdVMPjaF/MMT0OiUVFU9SHPLW0gSvN2opkipZUbcDF485sXdH+CLAjx/KHSW85J0Cg+7zwLg3vk5XHpo+h59nj3Fos/KeH15PWEGDUtvnENcSAAuVxubKu+mp+dnAIKDJ5CT83cCjbu2wnK5Wlm1+iR8PhOJCReQlbUIgOcaO3lgcysK4PWCNOZtFdru63VhW9mGY237QHeWWoFhQjSBM+PQJu7/G+7OIHlFPE39BMeWoqV3m6KlXu0vWurSQtDEB+4436Pi835VRpesyph9Ixx+x5gqYx+gsaKHDd810Vpt8ucPbIFaqyQ+I5T8wxNIyglHPcpCsEcDPG12et/dhK/TAQoIOiyR4GNTUOzn3IadQZAkvuoy80xjJ+ut8n1eCZwUHcq1ydEU7oFXp+QVcDfKBIanzoy70Qq+be4FAepBeTxbyE6Hw8H69espKiqip9+eBSA+Pp6pU6eSn5/Pl312bqtswiqIBKuV/CMrmZOjQ/fs8/pEKle1s+7rBr/SUKNXUXB4IhOOStqrbBeP00HZz9+zftmX9LY2+5enFE5i0nHzSZs0ddiK6ZIk0Viygd/ef5P2mioAtAEGps4/lSknnrJ3ORI+D3x6JZR9Agol0klPsTz4eJ7/eTO/Vnf733bY+CiuOjydmekRo0oB4XY4qCteQ/XqFdQVr8XrHugYCwgOIWPaDDKnzyI5vxCVevRb4bXZ2nhh4wssqVmCIMnFwmNSjuHaidcyLnTcfj67HcNut/Phhx9SX18PwOGHH87hhx8+bEHCklfAXSfbU9kqe/m908JXePkNH1v63Geh5nJNALkRRlRhetRhevl7uK7/u35QoLJg9WD5oRH76na/EjWgMJLgY1J2mFkgeTyYPvmU7uefx9cuK4TUcXFEXnUVoacu2CfFuJWfvM/v77+FQqnk9Dsf3KnlwoEMyeNBsA9YYg2dLWIdIE+2IUS2vGYIxdsfhlI5YJe1AxJEGWhEaQxC8oXj6zPi61EN1J1UCvTZoRinxaHPDN+t7LvRCpfLxaZNmygtLWXz5s1sXTJITk4mPz+f3NxcAgOHuVt5DAcNRIeD1rvuxvr11wBoEhOJuvFGgk88Yb8rqvYFLJaNlJXfisOxGYC4uDMYn3k3avWOawGC4KCi4k46Or/o32YhWeMfRKX6c+Vl7AkkSeLTmk/5x5p/YPVYOK5YwUU/gcrtQ2kwEH3H7YSeccYux7Yra3u44+ON1PfI86f0KCN3HJfNMbn7wXqv/nd4+zTwuQAF/oeMSgtZJ8CkC2DckYPy77ZG++ZqPnzobjxOB0l5hZx6+31odHtXe/E0Wen7uApvfx1Rnx1O6KkZO2wMAaBnMxS9DrpgXNOv5ZzXiiluNJEcpufEvh+Zt/RzdB4PoWecgfeshXz40F1odHqufP6NHdpldTVa+ejxtYg+iTlnjafwyP1v21RS8gqdXY8AULW6EGVjCJf+5yXUGg2uGhPdL5egDNQQd9chKJQKHllVR98XTaR2ySPcYy/NI3Pa/ldljyaMERoHGATBjdfbQ60vjLlrKtEoFGyYnUe4Zs+6pDd+v4xvX3ya2HGZnPfIvwCZyKjd0MXqz+vobZU7h3QGNROPTqbwyES0AWokSWDTpntobfsAUJBtSUUoLebUxDg8CgWPH/Y4x6ftgQdk5Vfw7tmIaj2HOf9JsyAz2rfNy+KaI/+Y7dOusKysnSvfkln4Vy+eytzsgZuCJEm0tX9MdfXf8PmsKBRa0tNuJDn5sh2qNUTRQ9G6c7BY1hMcVMiUKe+hVOpY2mXi0tJ6JODBjHiuSIpGEiXc1X3YVrTJXrlbnjlhOgJnxGGYGrtDO4PRDskn28r4FRz1FiTPtrYyKrSpwf6ipjYhEIW7D776qxx8BRCVDac8O6bKGEFIkkRvq53NxV3UFnfS0zLQKahQQHBkABJg2SrkW6VRkjE5mrw58cSOCxlVhczRANEjYP6yFvsqubClSQoi4uws1BGjO7xekiSWm2w809jJj71W//LDwgK5LjmGOWGB2/2tRbeAp9EyoMBoGsKOzqjxE5natBA0MQN2dHJHmazGKC8v93d2arVaCgoKmDp1KnFxcdh9AndVt/B+u2z7Mi3YyLN5KSQNYdm3uxAFkZp1nRR91eB/zqk0SibPS2HqCako90Bp0NvaTPHXX1D+y/d4nFtIkgDyDj+KifNOJCJh5DqlJUlic9Fqfn//Lbob6wHQBwUz/ZSFTJx34i4zsbaD1wkfXATVy5CUGtZNe4JFNZmUtJgBUCkVzC+M44rD0smLH/0dt16Pm4aN66lZvZzNa1f5bb9AJoDGTZlO5vRZpE6Y/Ie60UYS3c5uXi55mQ8qP8ArygXYOQlzuH7S9eRE7J3aYV9BEAS++eYbVq2SOyGzsrI49dRT0Y/A71qwuHFVm2io6OLFui4+tzvYMvI4CjWXoiOZ7SfyCr1aJjiCdbg3m/wNGbrMUELmpe60qUS022m85FKcG+RgV3VMDBFXXkHowoUo91FXceWKX/ni338H4OjLrmXCMXvnv36wQ5IkJI9nK1JkCJXIUFkjQ6hGEIRdHk8ZnIAmeTbqpOkodQPzWKGvDm/jCrzNq8HrALV6wEZra5XIltd+BckQqpHAgUwShVY7KsZldrud8vJySktlr/MtUCgUpKWlUVBQQHZ29h5l7IzhzwFJkjB98CFdzzztt+3T5eQQffPNGA+dPSr+v0cSguCitvZJGpteBSR0ujhyc/5OePjs7d7rdDaxseRqbLYKFAo1mZn3kJhw/kH/OxoutNWWUnLzlST120puTg8g6bG/M6HwmJ1u5xNEnv6hhqd/qEaU5Oy4/zsmk7OmJqHen01sTWtkUsNtgdAU0AVBR+nA+uAEmHiubEsVvr0TSmvVJj56+F68LicphZNY8Nd7Ue/lWEbyiVh/bsbyQyMIEgqdipDj0zBOjx1w75AkqP8VVj4n1wS3FMZiC+k97jlOfLedNrObOKWZW1SV5H30IUgS5ccfSX1rIxOOOZ6jL7t2yON7XD4+eGQN5k4naRMiOf6qgv1+fbS0rKWs/FxUKgGH/TBalorYe3s46pKrmTjvRCSfSOuDK5E8AtHXTUSbGESV3cVhqyoobPRwrVPPyVcW7rdMrdGKMULjAILb3cW6H05HULv5QvMkr0tGjg8x8OqkzD2+QJc88RCb165i1pnnMeO0s6nb0M2aL+vobpIn/doANROPTqJwbpLfE18UfVRU3EZ7x/8AJbm5TxAXdjS8cizPeZp4NiyUSH0En536OUHa3VQXSBK8ehw0raQ98xxmlpzkb166fm4GNx8zflhvPs19Dk74z69YXD4un5PG3ScOHQrkcrezadPd9PT8BEBwUKGs1ggcv917q6oeoqn5ddTqYKZP+5yAgESKLQ5OK67GKUpcnBDJwwnRONZ1YV/Zim+rICXd+DACZ8Shzw4/6G5OkiDhbbP5i57uOguSa3Dwb4BmBWGaZ1GKfUgKFcy8AcWRY6qMkcCWDA2ZxBicoaFUKkjIkjM00iYMZGg4LB42r+uk/PdW/70BIDzeSN6cBLIOiUE3wuG/Bxqcpd30flyN5PSh0KkIW5CBYdIIBzgPE8ptThY3drKks8/PTxQGBXB9TARzbQq89RY8tWY8LTb8vkP9UAZp/QSGLj0EdVTAdvdup9PJhg0bWLt2Ld3dAx3/cXFxTJkyhYKCAnQ6uRC/0ergqrIGap1ulMBNqTHcnBKLepjuk5IoUV/SzdqvGujsD/xNyg3nmEtyCdiJ36soCtQVr6X46y9o2FjsXx4Wn8ikeSeSe9hR6Az7zjJEEkUqV/zK8g/foa+tFQBjWDgzTjubgrnH7J4SwW2Fd8+B+l/xKXXcpbmND8xy4VyvUXLW1CQum5NOUviBYYWyLQSfj+byUqpXL6dmzQrspoFcFrVWR+qEyWQeMov0ydPQG/dfB7HZbea10tf476b/4vTJBNm02GncMOkGJkZP3G/ntTcoLi7miy++QBAEIiMjOfvss0fcX7+u286/llXyWUkbACoFnBwTymWhwUTafAh9bkT79p36mqQgQualos8I3en+JZ+Ppmuvxf7zLyhDQoi67jpCzzwDpW7fdcW2VVfywQN34vN6mHLiKRxx4eX77Nh/dkiShLQlcH0bKy2hz4GnDXw9BiTvQMFeEp1ItkqEznX4ehv6M0jsIIo7OdIeQqMZZJ816HVQoD9wfTBJEjiQNbLFSmsYLdLMZjNlZWWUlpbS2trqX65SqcjIyCA/P5+srCy0fwJroTHsPkSHg94336TnpZfl6wQwHHII0bfeQkBBwX4+u5GHybSW8vK/4nQ1ApCYcAEZGbehUsljsN7e3ykpvQGfz4RGE0FB/jOEhU3fn6d8wECSJMyfLqHjkUdkklqr4aO5Oj6e6ASFkvNyzuP6Sddj0Gw/3m0zO7nxvfWsrpNJkDOnJnLfSXkE6kaJ9XLLOnhrAbjMED8Zjv0bVHwGG98H58C4l9Q5smoj5yTQDnzO5k1lfPzIffjcbtInT+PkW+4aFjWzt8NO38fVeBrlpjltWjBhJyehafsSVj0/mHgZNxda14OzF0kdwA8hC7my5Rh8qDl7Sjy39q2l8en/8FNOCpJCwUVPPENkcup2x5Qkie9eL6dqVQeBYTrOumf6sFoM/xG43Xa++/5o9PpOnI5Ujj32S8p//J7vX32OwLBwLn3qZdRaLd1vleMq6yH46GSCj04B4ISiKtZZHCwaF89VyQdGTWFfYozQOIDgdnWx4ouZuMOV3CC8iFkdysPPPsHsTSWoo6O3+YpCs80yZaDcaev1uHn20nPxedwcddkDVK0R6eq/yWj0KibMTWLCUUmDLnxR9FBWdjOdXV+hUKjJy/sXMdEnyCv7GvC8dCSnhWtp0Gg4N/tc7jzkzt3/YA0r4LXjQKHiq8M/4+qvzf5Vlx6axj0n5gwLqeEVRM56YQXrGk1MSArlwytnolXvmE2XJIn29k+oqn5oK7XGDSQnX+5Xa3R0fkVpqRyEXlj4IlGRR9Hk8nBCURVdHh9HGg081Qye4i5/959Cr8I4JQbjzHg0kX+eDiVJlPC223HXmvHW1BPQ8HcCJNneyysm0+v9P7yq8WiTggYUHMnBKMcsjv4wJEmiu9lG9ZoOaoo6sW5FpinVCpJzwkmfFE3ahMidPuglSaKz3krpry3UrOnA1/+/rNYoyZgWQ96ceGJSg/d758Nogc/kpve9TXj6C+WGSdGELhiHcrQMeneBxl4736xrxlRjorDXR5ZF3K6/WRWq81+nurQQVBH6If/+kiTR1NREUVERZWVl+HwyqanRaMjPz2fq1KkkJCT43y9KEi82dfFwbRteSSJep2FxbgozQ0em0CxJElWr2vnpnUp8XpHAMB3HXVFATNrgcYfTZqX0x2/Z8M2XmDs75IUKBeOmTGfivPmkFEzcr///oiBQ9sv3rPjoXazdXYCc3THrjHPJOfQIlDvKGnH04nvrdNRt67ARwCXuW1kt5RBq0HDRzFQumpVKuPHgKTZJokhbTSXVq1dQver3gb8loFSpSM6fQOb0WYybesjIBK4PAbvXzpvlb/Jm2ZvYvDJxXBBZwPWTrmdG3IwD/r7a3NzM+++/j9VqRafTcfrppzN+/PbNIcON8lYLT35byXcVcq6FVqXkvBnJXHtkBuEaNYLJha/XhdDnRhWhRz8+bJe/a0mSaLv3XswffYxCryfl9dcImDhxxD/L1rB0dfLO3TfjMJtInzyNU/56zwGbD3MwQBJEXJV9OIo6cG7qHVArqhQE5EZgmBKDPjNsO0spSZKQHI7Btlh+JcgOskWs/bZaW22zpeA7XFDodIMJkS1WWjux1RoIXN9CnhhRqAePd3p6eigrK6OkpISuri7/co1GQ1ZWFvn5+WRkZKBWHxjjpDGMPHx9ffS88CJ977yD1G8XFzRvHlE33YgubeTzNvcnfD47NZsfp6XlbQACApLJyX4cq3Uj1TWPASJBQQUUFjyLXh+/f0/2AIGvq4u2++7H9qMcph0wYQJxjz6KMz6MJ9Y+wWebPwMgITCB+2fez8z4mf5tvyvv4NaPNmByeAnUqXn41HxOmZgw5HH2K9o2wpungLMXYgvhwv+BxgCVS6H4Ldj8I34VhC4YChbKeRvxk0GhoLF0A58+9gA+r4eMaTOZf9PtqIbhniyJErYVrdi+XodR+hKjaikqRX+9T2OQ1SOHXAWRmWBpgyVX+0PPi6VsLnXfRC/BPHByLtEv30e5vY8It4/zXngTTcz2Bf5NK9r4/o0KFApYcMtk4nfRqDLSkCSJr76+HJ3uR3w+PVMm/4/IyAx8Xi+v3ngF1p4ufxaIfXU7fZ9Uo00KIvraiQC80dLN7VXNZBv1/Dgt64CfFww3xgiNAwiiy0X9v2/h4yk9/FN9ByEeMx/937WoxV1LnwEUAQGoo6PoighjuWBDqTSiCb4ChUKBWg3500KZdMI4DFGD7SQEwU1p2fV0d3+PQqGlIP8poqK2keTV/86KDxZyRUwkShS8O/89ciOGVj8MiXfOhOplkHcq13iuZ2lJu3/VOdOT+NuCgr0OHX3sq008//NmgvRqlt4wZ7e7TV3udio33Ut3zw8ABAUVkJvzOEqlhtVrFiAINlKSryAj43YsPoGTi6rZ5HAx3gUv/WbF2P/n0cQaMc6KwzAx+s9dpC9bAl/eAo5uJIUKb9plWJXn4a53Itq26ZpUKdAmBA5Y16QGHzBF4f0JU4eDqjUd1Kzt8OfggJyHkZIXQfrkKFLzI9EG7Pnv0u3wUrmqg7JfW/yWPQARiYHkz4ln/PTYP7Tfgw2SKGH9oRHL940ggTpCT/g52aMyG0eweXDXWeT8i1oz3g77oHw5gOYABevCVVRGasnNi+bMnDjCdmJ16HK52LBhA0VFRXT2B+UCxMTEMGXKFAoLC7ezn+nyeLmhotFvfXVCZAj/zE7a6XGGCz0tNr56oQRzpxOlSsGcMzPJOyyBroY61i/7gorffsbn2RIqHkj+3GOZeOwJhETHjvi57Ql8Xi8l33/Nyk/ex2E2ARAen8isM89j/CGzB3lRt7fUo3z7VKKdtfRKgVzkuYPekDwun5PGmdOSMGgP7utYkiS6GuqoXr2CmtXL6W4asEdBoSAhK5fM6TPJmDaTkOjh96t1+Vy8t+k9Xil9BZPbBMD4sPFcN/E6jkg64qCasFitVj744AOampoAmDt3LnPmzNknn7GooY8nlm1iZa3cVWnQqrhkdhqXH5ZOSMCedex1Pf0M3YsXg1JJ4jPPEDR394Jbhwsep4N377uN7sZ6opJTOfvBx/cuN2cMfxjedjv2og4cxZ2Dxq6ahECMU2IImBC1TyxkJUFAdDgGB67bd5A10k+QiHabbLll7bfYstuRHI5dH2wPoAgI2KFKxKVS0m2302oyYfH58Go0eNUaFIFGkrOyyCwsJDknB01QEIodkfFj+NPA29JC19PPYP7f/2RnB5WK0IULibz2GjTRB3e3ck/vb5SX34bH0zFoeUzMyeRkP4pKNeZosDuwLF1K+wMPIpjNKDQaIm+4nohLLhl0f/mt5TceXPEgbXZZ3bkgYwE3TLyZZ39o5bXf6wEoSAjh6XMmkRo5dGbDqEBHCl5cMQAAjJFJREFUObx5spxJGp0nkxqB/Vm7pibY8K5MbpgaB7aJzpOJjcKzqK9pYMnjDyL4fIyfOYcTr791x01Ru4u2DbDyOaSSj1D0W6n6pCicxtPRnXE92rTB2Rb1dbVUvnETR/EbagTs2kiutF3OKimP6zrexWe3MKm+nfS0TFLefGNQZllfu50PHlmDzyNyyMlpTD1h/5OfK1e9ic32AAoFREfdR0HBRf51G779iu9eXowxNIxLn34ZpQvaHlkNCoi7+xBUgVpMXh8TlpfhFiW+mTp+j3Iu/wwYIzQOQJxftJLvLHqOlz7nb5mZRKsOw9fZibezE19HJ77O/q+u/mWdXYgWCxLQF5bF+uREXNSj0k1ApzuUxJafSW76Hm1/Z6AyKMiv8lDFhtNySBG24CYUkoaswNuISpiHOjpqe5/goje4beUDfBVopMCYyFunfYFqd7vG2kvlgHAkGhcu5fB3TEgSKBWys8kpE+P5xxkT0PxBf8KfKju5+LU1ADx73mROKIjbo+1ltcYSqqofxOezABq02lA8ni5CQ6YxadLbeCw+zi+q4Telj0iXyOurHMR6ICA/gsBZ8WhT/uQd7PZumcgoXyL/HJ0LC56F+EmA/Dv2dTsHgoXrzAhmz+B9KEET309wpMokh3KseA6AtddF9doOatZ2+hVXACq1ktSCCDKmxpBSEIFmmMg0SZJor7VQ9msLNUWdCFtUGzoV46dGk3dYAtEpY/dud72Z3vcqEUxuUCoImZdK4JyE/WoxJ1g8uOtM/XZwFjnMfBuoowL8CgwhOZAPHHaeb+qiySVfkwaVkgviIrgiKYqErTIt+vr6WLlyJcXFxXg88nvVajX5+flMmTKFxMTEIe+DP/ZYuL6ikW6vD71SwYMZCVwQv29Dp91OHz+8UcHm4nZEbw1abTn2vjr/+qiUNCYddxLZsw/b68C8kYbX7aL46y9Y89nHuGzy/SAqNZ1Dz7oAb3wWH3y3nAuqbyRV0U6HFMp9wX/j+LlzObEw7g8/Zw909La2ULNmBdWrl/sD17cgOm0cmdNnkTl9FhGJe5eN4hW8fFz9MS9ufJEup9ypnBqcyjUTr2Fe6jyUioPz9+/z+fj6669Zu3YtADk5OSxYsMBvMzeSkCSJ32t6eGLZJjY0y12BwXo1Vx0xjotnpe4Wedf3wQe033c/ALGLFhF29lkjes7bQhQF/vfE36hdtwZjaBjnPvwkwZFR+/Qc/uwQHV4cG7qwF3XgbR6w4VQGajBMjMY4NQZN7CgudO0Eks+H2B+8LmydJ7JFNWLfijCx2RBsA69lFYn8WnK5dn2wPUFAAOrg4AE1yNbKkC2vt8kaUQUaB9QlxkCUhoA/RbD0wQ5XZRVdTz6J7WdZ3a/Q6wm/8EIiLr8MVdDoaxbaW/h8Nto7PqOl5R1stk3brFURGjqFiPDDCI+YQ1BgLoqDdOywN/D19dH+4INYv5LD5nW5OcQ/+hj6rKFVonavnf+s+w/vbXoPwROOt/VCPE65oeWyQ9O47bjsnbp7jBp0VcIbJ4GtQ84mvfAzCNqqMUcU5eyK4reg/DMQ5IYtlBrIPoG2oEN4/61vEARhpzkVO4UoyMqQlc9Bw+/+xVLSIbijz6WnKAPJJYESgg5PInhuMgqNEqvVygsvvIDNZuPQjBCOMr2LorsSgGf7jsHZ7kIXGMxRJZvBYiH07LOIW7QIAJ9X4KO/F9HTbCMhK4yTb5y4R9mII4GmpkpKSs9Ap7OjVMzhyCNfH7Re8Hl59aYrsXR1csSFlzHlxAV0/Gcd3jY7YWdlYey3rb55UyMeUeKGlBjGG0f3HHRfY4zQOMDQ6/Ux4fcyvJLEo9LNpCjamDz5bUJDdh6g3FTSzurPamlrdOI2vwSSjdToI5io6UXd1ewnRCTnQAiwqJPovdqHZ7yEwg3hz6nRVQ3cxFVhYYMsrtTR0Zh7f+L85CocaiV3JZ3F2YfdsZ3seIf45ArZ5y/9SG7S3s+S9a3kxQdT2W7FJ0ockxvDM+dOQqfes4Jsh8XFCf/5lR67hwtmpPDQgvw92n5ruN2dbKq8h+7u7wFQKFTkR7yEsiSK+0QbnyRq0fskXi7zMj0/BuP0OFTBB49dxx9G2af9qoweUKhgzs1w2F9BveNChiRJCL0u3HWW/qBxE0Kfe/CbFLLyZevw4QM1VP2PYEvGRfXaDtpqBqzaFEoFSTlhZE6LIX1C1IgrJlx2L5Ur2yn7tWWQIiQqOYi8OfFkTotBq//zEk+iw0vfpzU4S/pDDjNDCT8ja5/dG3wmtxze3Z9n4+t2bvcedYxhIAMjLQRV0Pbn5hMlPu8y8UxjB2U2uWihVsCpMWGcpfbSWryOiooKtgwXoqKimDp1KoWFhTsMAHWLIo/UtvFCk1zYzTbqeT4vhWzjvrfjs5v62Pjd16z98gs8ji3Xk5K0yTOYfsopJGTlHnCktNthp+jLJaz9cgn1YijrQieiNGp5W/sI8YpeOlUx1J7wXw6ZPOWA+2wjCUt3FzVrVlKzejnNFWVI0oDXfXh8IpmHyORGdNq43f69+UQfX9R+wfMbnqfF1gJAnDGOqydczUnjTkKt/HPcI9euXcvSpUsRRZHo6GjOPvtswsPD98mxJUnim/IO/vlNJVUdckE6MlDHncdnc/qUxB1uZ/3xR5qvux4EgYirryL6xhv3yflujR9ff5F1X32GWqvjrPsfJTZj5G27xiDnwbmq+y2lynsGLKWUCvTZ4RinxqDPCkPxJyWCt4Xk8fjJjUFWWvZd2GrZbHhMffjMFhQuF8rhzBdRKHY/W8S4gzD2oCAU+qGtNcewb+FYu5bOf/wT5/r1AKhCQoi46irCzj1nn2YZjRQslhJaWt+lo+NzBEGeUymVWkJCpqFRh2C1leF0NgzaRqOJICJ8DuERc4gIPxStdmSzqg4EWH/4gbb77kfo7gaVisirriLyqit3KyfoXz/9ztPfdCKKWhQqOzMmVPP0SVcSGXAA/V67a2RSw9oKERlw0ecQPIQ9mbMPSj6C4rehbb1/sVcXQVGLgXW98cz+y01MOOaE3TuuzwNrX4WVz4Kp//9UqYbcBTDjGkiUa5aC1YPps83+ubE6KoDgU9N598dPaWpqIjo6mssuuwwtPvjmHlj7Cu/WF9LqDKE9Lo+b5p+A5fqrQZKIfehBws44g1/eq6Lkp2YCgjScdfd0jKH7935gt9v5etnphIZW4/OFc+QRP6AdIme45Idv+OaFpzCEhHLZUy/j+Lkd649NBEyIIuKc7P1w5gcWxgiNAwyvNHdxd3UL+YF6ntQ/RVfXMrTaSKZN/XRID8XWahOrv6ilpdIkL5C6cJneQq3Tc+3L/0W9lcpCkiREux1fZyeujnoqbA9jV9Wj9GlIWDEd7SafX/2xxctyKCydquD1Y1QYnRL/ekkkwhCBJioadUzMIPJj64wPVVgYCnMjPD0VRC9tp7zPoR+KCKLEXSdk849vqvD4ROZkRvLiBVMJ2M0uc0GUOO/llays7SUnLphPr5mFXrN3HeqtrR9Tsek2kCCm7C+Eth7O2yka/p2tRyHBC8HhnDQpcWxyA2DrgqW3QPn/5J+j8/pVGRP/0O52uzC7tbf/EIXZAxlup4/a4i6q13bQvKkPaUs4swLiM0LJnBbDuMlROw02HilIkkRbjVlWbazrRPTJ56bRqRg/PYa8OQlEJR98XVS7A0mScKzpwPT5ZiSviNKoIeyM8QRkD28hb4AINPcrMMzDTgRKksRPvVaeaWintaaGCc01xFr+n737Do/iuho4/Nuu3VXvBXWJJlFFL27YYBv3Au4lbiQuSRynOp9rEseJkzjudmwnrhjcwcY2uGF6EQgkBEK997La3ma+P1asEFUSkhD4vs+jR9rRzO7sajU7c88957T5f5+ens7MmTNJTz/2YG+pzcFP91Sy2+L7P741IZKH0uPRD/Gxs764iJ1frqRo03okr6/HR0BgCKiykRmLzhDKvFvGkjbx1JsNLUkyX+9t5IVv95NXa2asooI3tX8lUtFJKxG4L/sfsRPPONm7OazZOk2Ubt9C8daNVO7O879HAIIio7oyN2YSP2rMEXsZSLLE6srVvJD3AuUmX8ZPpD6SO8bdwVUjr0KrOr0+o3qjqqqK5cuXY7FYCAgI4KqrriIjI2PIHt8ryazYVcu/1hRT1eYbMHrm2klcMuHw82j77t1U3nwLst1OyOWXE/eXPw/5oGbe6lV889oLAFz8y98xcsacIX38HyN3oxVrbhO2nY1I5oNKSsUZMUyJwTAhCtVJOM/6MfB6vZTu28fe3FwqCgvBZkPjdqN2ewjXaUmMjCQ2JAS9JB3ea+TgUloWC3h7V5a5V1Sqw4MihwZIjhIUOThrRKHVisDICZJlGcs339D0z3/hKisDQB0dTejiRYQtWoQ66tQ6X/N4rDQ2rqS2bilmc3eTZIMhjYT4a4mLuxyNpruvl81WSVvbOlrb1tHevgmvt2cvnaCgLMLDzyAifC4hIZNRKn88k/28ZjONf3kC08cfA6DNSCf+r0+iz8467rZWp4eHPt3DhztqABgRZccc+gySup0gbRC/mfobLk2/9NT5/20rgzcuAVM1hKX6ghqhx8gybsj3BTYOaiTu8KrY3JpC+s9eIzF70rEfrzYXPr0Hmgp9t/VhkHMrTL0dQo7cc8Re0EL7pyV4zS42qfdTqK5Bp9Vy5113ERER4V+v6fs3eevF5SiRuCljJ59G/oQLdYm0P/NvX5DqsVf55ivfRJWL7plAcnbEER9vqEiSxMcf/47QsA+RZQXjx71DdPT0I67r9Xj47/1LMDU2cMb1tzJ+/Lk0v7QbhV5N/B9nHNaDS+hJBDROMfO3F7HbbOdPmQncEmsgd8ciLJZ9BAVlkTN5GSqVb1ZrQ5mJrSvLqN7rOxgpVQrGzolH9mwh97PlZEydyaUPPHjEx3C7O9iZdwtmcz5qdTATJ/6PkOAJ/t/Lsoy3owNPU3OP8lYHsjycjXXcP20/5dEKzsiXuOezXsyyUatRR0URPa6ZkPAqPLpEHkp7jXd3tjA7I4K7z8rg9je3Y3N5mZYSzmu3TCEo4Pgfzk9/vZ+nvy7GoFXx2b1zSIs6scayHVW72FF8LbLCSUTJ5USWXco3MTK/mxCErFDwYKKGezOO/4F52pNlX1bGqgd8WRlKNcz9Fcx9ANQDdwHoK51j8g/eHq90ji41BFXIqTd7x+3yUrG7hZLtTVQUtPgDBQDRyUFkTo0hIyeawLDhk4Jot7jYt6mBwvV1dDR2/12iU4J9WRtTYtDofny1kd1NNtqW7sNd77v4CJwdT8gFqSj6mcLc51Jtqb5ybSdSqs3lcrFz5042b95Me7vvM8arUFAcncjuEemkxcdxd1I0CyJDUB6lUfiyhjb+UFyLzSsRplbxr9FJnH9I/6bB5HG5KNq0jryvPqOhtNi/PC5zFJPOv5jM6bNxWiW+erXAn/00aX4SMy5NQ3kKBKudHi+f7qzj5R9KKW32vdemqUt4Q/skeslKoyOQD6uysHu1pOVMY/aiG4hOSTvJez38OW1WynZup2TLRsrytuNxdgcLDSGhZEyZQea0mSRmj0epUvNDzQ88l/cc+9p85SJCdCH8JPsnXDv6WvTqoc9CGk46OztZtmwZtbW1KBQKzj33XGbNmjWkAwVur8SfP9/L/zZWoFUrWXrHDHKSuweNXJWVVFxzLd72doxz55L4wvO9mt05kCrycvnoyUeRJYk519zE9MsXDenj/5hINje23c1Yc5twV3eX7lQa1RgmRmPIiUEbf2LXEULfuN1uiouLKSgoYP/+/Xg83QHl2NhYsrOzyc7OJjQ09LBtZVlGdjj8wQ1/xoilq8n6oaWzjtSMvet3DGTGiEaDymjsarIe2OPnw8pqHdJwXZOUhCpQvAcPkD0eTJ98QvOzz+Fp7OozodEQPH8+Yddfj37SxGE9+Gw276G2dikNjSv8QQmFQkt09AIS4q8lNHTacfdfklyYTDtobVtHW+s6zJY9PX6vUgUSFjaD8LCZhIXNxGgcOaxfkxNh2bCB+gf/iKehARQKIm77CZH33turzJ09dSbufXcnZS1WlAr4xbkjufvsDIo7inhow0PsbdsLwMy4mTw08yFGBB09q3NYaa/0ZWp0VEJoEtz8GYQlH3sbjxP2fY684WkU9bt8d+M2or38GYxTrjp8fZcNvvuzLytDlsAQAWc/CBOuBe3x+z00Vdfz8dKPqLf5svXPc49n1KjRBM1NQJviK9m++uVnyP92NWkxcHn4OgAKg2YTUjmCprUFbJ32IB6VnonnJTH7yqGbIHM0a9d+hMP5B9RqN1GRtzF+/B+OuX7B91/z1YtPow8K5rZ/v0rLU7uQ7R6iloxHlzJ018enIhHQOIVU2p1M37wXtQLyZmUTqVVjt9ewbfvluN1tREcvJMr4ONs+K6dqj2+2rFKpYMzsOHIuSCEoPIC3fvdzmspLWbDk52Sffd5hj+FytbIz72Yslr1oNOFMmvgGQUF9aO7dJb/4c67f8FtkhYKX7JmMH3VfV9CjGU9joy/40XXb29rqGwAHVDov6QubUGllrO5EZkqP0ikHsPSOGWjVSm7571bMDg/jR4Twxq3TCDMefXB8U2kr17+6GUmGfy2ewOWT+vfBI3tlHPtaMW0uozj6l7iMDRhaskmpepCyaVFcL7XjkJWcK3/BrYo3SEu5h+Tku35UsyF6sDT5ykvtXeG7HZPty8qIm3Ds7QaA1+LCVdHpn5nubji8ubEqPKBHgEMdPnyCAAfzeiSqC9so3t5I+a4W3M7uWWZhsQYyp8aQOSWG0Jjh3RhKlmVq93ewZ10tZTubkbrKNWgDVIyaHkvWGQlEJPy4Ls5kt4Tpi3IsG+sA34zP8GtHo4k+/t9SlmU8TTb/e9xZbuoxexQAlQLtiKCu8lHBaFOCUepOvJxNZ2cnW7duZfv27Ti66mQHBAQwdepUYsZN5M12G8sa2nB2ZQ1lGnT8NCmaK2PC0HXVr+70ePltUTUfN3UAMDs0kOfGJhGnG5qZrp0tzez++gt2f/MV9k5foEKl0TB61hlMXHARsemZPdb3eiU2fVTKrm98zYwTRoYy//ZsDMO0lKDZ4ebdLVW8vqGcxk7fYHtQgJoHxzSxqOQ3KN02SJyBaf7zbPrsMwrXfusvpzRq5lxmLbqe8PhT5CLtJHO7nFTu2knx1o2U5m7Bae2eIdkSD7vH2ahS+S7OjBojN429iRvH3kjQEdLNf6zcbjeff/45eV2lQ7Kzs7nkkkvQHtqjbRB5JZklb+eyprCRCKOWT+6eTWK4AU9LCxXXXoe7upqArCyS33wDpXFo+yO01lTx7h8fwGW3kXXmPBb89Ben7UDUySJLMs7idqwHSkp5DikplRNNwKjwfk86EAaOw+GgqKiIgoICSktLkQ4KMiQmJpKdnU1WVhaBAzzgL8syss3W994ih962Wv3Xu/2mUhGQlYVx+jQM06ZhmDx5yI9Lw5HkcmH+ajXt77zjL0UFvp4J4dddR/DChSiPUvp0qHm9NhobP6O2dimd5t3+5QZDKvHx1xAXewVabf+zt52uFtpa1/kzONzuth6/12giegQ49PrkU/5zRbJaaXzqKTqWvgeAJjmJ+CeewDB58nG3lWWZNzdV8udVe3F5JOJCAnh68USmp3XP8PdIHt4qfIvn857H6XWiV+u5b9J9XDv62t73iz2ZTDW+oEZbGQSPgFtWQngvJjFJXjzb/otn1YMEKHzXfVLGfJQX/BUi0n3rlP8AK+6F9grf7XGL4Py/gvH4GRJer5cNGzawdu1avF4vWrWGOSETSKvtHsDXjAhEOyWMN5+/H4/LxeKHn8C6fxUpO/+GTuHBoo5kZcUfaVMnE+Jt5pp/X4racHLHdkpK9rM7/2ZCQppQqUZyxtyVKI9TVlbyevnv/UvoaKhnzrU3k2Efh31XM0FnJxKyIGVodvwUJQIap5gqu5MdnTYui+meQdbevpWN3/6B5oKFWOt9g8YKpYLRM2KZcmEKwZG+D3BzWwuv/PQWUCj46ctvYQgJ7XHfTmcTO3beiM1WglYbyaSJbxEY2P8avY9/eRfLGzeS6nLzYfY9aGbec8T1ZLcbT2urP9vDu3sVwW2vo1TLNLdHM0/9OKMyk1h+10z21HVy0+tbabO6GBUTxFu3TyM66PCDVqvFyQX/XkeT2cnVOSP4+9V9H0z3WlxYtzVi3VKPp8NB/biXMMdtQeOJYFLSe7QnJbBwZzHNLg9nher4jfLftLeuASAoMIsxY/9GUOCPqO6dLEPBh7Dq12BvG7SsjL6QbG6cBwc46iyHBzhCdf4AhzY1BHXEyauRK0kydfvbKd7eROnOJpzWg0qbRASQOSWGzKkxRCQYT8mTT1uni32b6tmzvo7O5u5yYbFpwWTNTSAjJxr1ADUtPxXY97bS/sF+JKsHhUZJ6CXpGKbE9PjbypKMu8HanYFRYUI66H0BgFqBNjGo+32cFIxyAF/HhoYGNm3aRH5+vn8AITw8nBkzZjBx4sQeg49NTjev1jTzv7oWOj2+dWO1Gu5IjGJcoJ4HiqqpcrhQKeA3KXHckxyNapDfy7IsU1OYz86vPqNk22bkrucQFBHFhPMuYNy8BRiCjz37pSS3iW/f3Ivb6cUQouX8O7KJywgd1P3ui6ZOB//dWMHbmysxO3zvj5hgHbfNSeXG0AL0n94OXheknwOL3watbwCkra6GjcvfoWiTb7aTQqFk7JnnMPPKawmJjjnq4wk9eT0eqgvz+Xrbx3xoWUNNqC/tXeVVMLY6lIuDzmbi1LNInTyVAOOPK4B7PLIss23bNr788kskSSI2NpbFixcTFhZ2/I0HiNXp4eqXNlFY38nImECW3zyR9jtvx1FQgGbECFLeW4o6cmhrZ9s6Tbz74P2YmhpJGJ3FVX/8E+ohzg45nbmbbNh2NGLd0YTU2Z3VqIk1YMiJxTBJlJQazqxWK3v37qWgoICKigr/coVCQWpqKtnZ2YwZM+ao/btOBlmSkGy27kbqB7JBDskM8QVJDskosVjwdnb6+gEcTK1Gn52NYfp0jNOnoZ80adgM3J8s9oI9tL/7Lp2ff47clUWpDAkh9MorCbv2GrSJxyi5M4jMln2+bIyGT/B6fecICoWGqKj5JCRcS1jojAG/tpNlCbN5D23tG2lv30RHxzYkydFjHZ0uriu4MYOwsJlHLGE+nFk3baL+/x7CXeMrExV2ww1E3/9LlIbjTxLrsLn4zQe7WV3oy+45d0wMf79q/FEnzFZ2VvLwxofJbcwFYHzUeB6b9RjpoekD9GwGUWe9L6jRWgxBcb7yU5GZx98O6KwtofxfV5FtrEClkJFVWhRTbwNHJ+S941spOAEuehpGzu/VfdbX1/Ppp5/S0NAAQEZGBhdddBGhoaG4m2xY1tdi3dEIHpki0zby2r4lPCKBm/75HKoADR+s+oLxm39Fu/UMtlsXoZbtTN32BPGXzSf2oYf68woNCJPJxKef3kXCiG3Iso7Zs75Er0/q1baF677ji+f+QUBgENfd8Vesn1ShiTMS8/PjB+Z+zERA4xTXUmNm68pyynd1neAoJFImwpwrZhES1fNAvmvNF3z96vPEjRzNdY8/1eN3DkcdO3begN1eiU4Xy+RJb2MwpJ7QvpmcJi55/zzavHZ+3m7i9oteh4xze7Wt/ZNn0OU+hFIlU18fyqUBf+Kpu8/njJFRFDeauf7VLTSZnaRGGnn79ukkhHafvEmSzK3/28ba/c1kRAey4p7ZGLRHj4q+sbGCr/c2Eh0UQEywjggvBNdYCao0EykpiECBNe17GjPeQIGayTnvojRO5JIdxeyzOhhrDGDF5EyMKiWNjSsp2v8oHk8HCoWGlJS7SUlecvpna1ia4PP7Ye9K3+2YcV1ZGeNP7n4dQnJ4fAGOct/gsKvGAlLPQ5syWOtvjKxLC0EdpR/U4IEsyzRWdFK8rZGS3CZsB5ULMgRryciJJnNqDDGpwadkEONIZEmmpqidPetqKc9rQer6G+gMal/WxtwEwuN/HDPOvJ0u2pYX4SzpACBgXASBM+Jx11q6MjA6kR09AxgKjRJtcrD/fapNDEKhGfjZo/X19Xz99deUlpb6lyUlJTFz5kxGjRqFUnn0x7R4vLxV18orNc3UO3tmkMTrNPwnK4WckMH9G7sdDgrXfUfeV5/RUt3dQDExazyTFlxE+pTpKFW9D/y0N1j54qV82htsKJUKZl2ZwfhzRpzU/8uyZgv/WVfGh7m1uLy+QE16lJG7zkjn0knx6Ao/hI+XgOyF0RfBVa+D+vDU+6aKMjYsf5uy3K0AKFVqxp+7gOmXLyYwbGgaNp/KitqKeG7nc3xf8z0AaoWKmXI2I/MUeOva/espVWqSxk0gc9pMMqbMOGxiyY9ZRUUFy5cvx2azodfrufrqq0lLG7oyaPUmO5c9v4GWDhv/LniH9LLdqEJDSV76LrrUEzsf7iuPy8X7jz9I3f69hMbEce2fnjpu0FU4PsnhwbarGVtuI66qg0pKGbpLSmniT80JIz9mnZ2d7Nmzh4KCAmpra/3LlUolGRkZZGdnM2rUKHSnQcNod10dtm3bsG7Zim3LFtwHPV8AhUZDwITxGKdNwzBtOvpJE0+LRtn94Wlvx/TRR7S/u7T7dVIoCDzjDMJuuB7j7NkojnEeOxC8XjuNjZ9TW/cenZ07/cv1+iQS4q8hLu7KIW3gLUkuTJ27aG/fTHv7JkymnchyzzK1en0yYWEz/UGO4dpg3Gs20/S3v9Px/vsAqOPjiP/LXzDOmNGr7bdVtPHzpTupMznQqpT8/sLR3DIr5fglvmSJD/Z/wD9z/4nVbUWj1HDn+Du5Lfs2NKphPt5jafL11GjeC4ExcNMKiO7d5NuafXv45q+/4MzI/aQEdvT85ZTb4dyHIeD4Y7Zut5u1a9eyYcMGZFlGr9dz/vnnM378+MNee6/FhXljLcveegiLq52ciAVkRuVgnB6LcWY8f162g6g8O6BgfshTJDq3ULsxjIjfPknolVf28kUZOB6Ph3fffYK4+DdQKmVGjvwLiSMW93p7SfLyv1/dTXtdDTMvu5ak3UkgQ9zvp52SJdOHighonKJaay1s+7yc0h2+cgYoIHZUI4bUZ9GHWpiS8z6BgaN6bPPxk49StmPbYTV47fZqduy8AYejhoCAEUye9FavI4nHs7JkBX/Y8CABksTHzRZG/OTrXkeDnd+8hmbtr1AqZZpqgvm/EX/jpYevQaFQUNlq5br/bKG2w05CqJ53bp9OSqRvcOyltaX89Yt96NRKVtwzh1Gxxy7v8Ov3d/F+bs0x1wnSmgnVmYgPiyIpOp2NdjsVspcQo4ZnJqYyLiqIyEAdKqUCp7OZoqL/o7nFl60RGDiWsWP+RlDQmF4971OKPyvjAV/zKKUazvg1zLn/pGVl9IXk9OKq6s7gcFWbwXtIgCNQ0z1wnBqCJsaAQnniF7uttRb2b2ukZHsjnS3ds2V0BjXpk6LInBpD/MgwlAPwWMOZ1eT0ZW2sq8Pc2v06xGWEkDU3gfTJUag1p2/WhuyVcFabMX9bhXN/xxHXUWhVaFOCuzMwEgIHtfyF2Wzm22+/ZedO38WXQqFg7NixzJw5kxEj+laOqMru5PrdZRTbunsNaIDFcRH8NCmK9EFIC+5oqCdv9WcUfPc1TpuvDJBapyPrjHOYOH8hkUkp/b5vl8PDd2/vo2R7EwCZU2OYd9MYVIMQUDqWvOoOXl5bypd7GvwVLCYnhbLkzHTOHRPjO25sfx0+ux+QfXVsL3kOVMdOea7bv48Ny96iqsBXM1et1TFxwUKmXXoV+iBxLnaoclM5L+S9wJcVXwKgVCi5JP0SlkxYQkJgArIs01RRRsm2TRRv2UhrTZV/W4VCScLosb7gxrSZBEdGn6ynMWx0dHSwbNky6uvrUSgULFiwgOnTpw/ZAHN+dQff3/ELzq3YgkejJeOtN9BPnDgkj32ALMusevYp9m1Yi85o5NrHnyIi4eTMKD4dyJKMs7QD6/ZG7HtaoStzECUEjAzHkBODfowoKXW6aGtrY8+ePeTn59PU1ORfrlarGTVqFNnZ2WRkZKA5TbKdXDW12LZswbZ1C9YtW329Aw6i0GrRT5iAce5cQi67FE306fU543a7cTgcOLsyMXQ6HTqdDo1G4//ckL1eLGt/oP3dd7GuX+/fVpOcRPh11xFy+eWoBnisyWIporbOl43h8fiCpwqF2peNEX8NYWEzUShO/jHH67VjMu2grX0T7e2b6OzcDRzcL0ZJQvxi0tN/1aMp+clm/u47Gh551N83Jey664i6/35UgcefKOWVZF74roR/fb0fSYbUSCPPXjuJ7IS+TRposDbw+ObH+aHmBwAywzJ5bNZjZEdm9/0JDSVrC7x5KTQWgCESbl4BMb3r/1r4xXuo1jzIqOBDMsVGTIMLnoSEY2cSVFVV8emnn9La2gpAVlYWF1xwwTHLBJbn5fLREw+j1eq5bNwvULT53p9O4HubF4dLolnXyM/DfksYJiQPNBWEEfLop+gnDH6584N98cUneLyPYjB0Ehoyj8mTX+7z+eveDWtZ9czf0RmNXDbhl1DvJuyKTIzTYgdpr099IqBximmrt7Lt83JKcpt8pXMUkJkTzZSFqYTGaMnLu4X2js0EBCQyberH/g8ft9PBC7ddh8ft4ua/P+cf0LHZytmx8waczgb0+mQmT3p7QFMNZVnmtq9uZVtjLmfa7DzrCUZx+zeg792HonvD26i/ugeFUqalIpDC8//DGddcCEBdh50bXt1CWYuVqCAd79w+HbPDzaKXN+OVZJ64YhzXTjt2YMbT5mDb12UUFjTR5PLQikyLQqLNoKZVKdNkc+H29u6tr1RAVJCOmOAAooN0BGkaUTi+I1jdQGiAhay0C5g48gYiAo2nxyC1udGXlbHvM9/t2HFw2Yu+76co2e3FWWX2lfYpM+GsMndf/HZRGtRoU7ozODRxxl4HOEzNNoq3NVK8vYm2uu5662qditTxkWROjSFpTPiQD44OB7IkU7W3jT0/1FKR34p8IGvDqGb0zDiy5sQTFnvqZ23IbglXtdnf/8JV2YnsPnKzSV1mKMHnJaNNCEKhGvxjhtvtZvPmzaxbtw6XyzdjKzs7m3nz5vWr/MvqFhO/2FdFm9uLQank+vhwdppsbDf7msQrgAujQrg7KZrJwSf2t5UliYrdO9n55UrK83L9dapDY+OYOP8iss6aN2ClfmRZJv/7Gja8X4IkySSNDef8JePQDHK5NFmWWbu/mZfWlrK5rLsm8rzR0Sw5K52pKQdlUqx/Gr5+2Pfz1Dvggr9BH2YiVhXsZv2yN6nf72tmrdXryVl4GTkLL0fXizT+012dpY4Xd73IitIVSF09SM5POZ+fTfwZqSFHn83fVldD8dZNlGzd2KMZPUBMWiaZ02aSOX3Wj7qPidvtZuXKleze7astPmHCBC666KIhGYBsfuZZWl54AS8KHp9+CxfetYibZ6UM+uMebNMHS9n4/jsoVSqu+P2jJI+bOKSPf7pwt9ix5TZi29GI96DMV3WMAWNODIZJ0aiChv/EG6H/mpqaKCgooKCggLa27s9MnU7HmDFjyM7OJjU1FVUfMjWHM1mWcVdXY92yBdvWbdi2bMFzUFAHlYqgc84mdNFijLNnDXp2Ql95vV4qKyvp7OzE4XD4AxXH+tnr9R7xvhQKhT+4ERAQ0B3o8HigshKpuBiN1Yra7UGrgJCJkwifdw7BmZn+dXU6HWq1utcDkl6vg6amVdTWLcVk2uFfHhCQ6MvGiL8K3TDNdjjA4zHT0bGtK8CxGYulEAC1OpSM9AeIj1+EQnHy/l887e00/uUJOlf6KkJokpOI/9OfMEyd2qvtGzsd/HJZHhtLfQPql09K4PHLsgnsZ59BWZb5ovwL/rr1r7Q721EqlNw09iZ+NvFn6NXDuPSbrQ3eugzqd4E+HG765Ni9TmUZdi+DL38H9nYkGXaakhl99kKMBW+A2wooYNL1MO9hCOwZOHU6nXzzzTds3erLAg8MDGThwoWMGXP8yb4HJmRPuuBizr7pThxFbZh/qGFtfhtNHhmDEl4Pc2H3tvGf4NeY5NoOgLU1GN2v16BOGpry7wUFBeTlPUBcfDFKZQRzZq9Gownt8/1Ikpc3f30vrTVVTM5ZSGZbNgFZEUTe2Peexj8WIqBxCmlvsPLuo1v8PQDSJ0cz9aIUIuK7B2nc7na2brsch6OasNAZTJz4P5RKDSXbt/Dp3x8nOCqG2599FYVCgcVazM6dN+JyNWMwZDB50lvodAM/c6Oso4wrV1yJR/bwdGMz8+JmwnXvH3em6AHebe+i/OxnKBQybWVGlFe+SOillwLQbHZy42tb2NdgJsygIUCjot7k4OIJ8TxzzcQjnoTIkoyzpAPLxjocRW3+11MVqsM4Iw7j1FhURg2yLJO3+y4q6zfjkEcRlfx33q+2srK6FaVTYrJWh+Tw0mR20Gx2Hlq56KjUSogJ1hMdrCOmq8xVdHAAscEBxAR33w4O6P1J1JCSZcj/AL74dVdWhgbO/A3M+SUM91TLPpI9Eq4ac3cGR2Unsqvn4LNCp0KXEuzvwaFNCESh6r5IsLQ7KcltpHhbI02VB5U4UCtIzoogc2oMKeMi0ehOjwuqgWDtcFK4oY7C9XVY2rtn9ieMDCVrbgJpE6NOmaCP5PLiquoKYJSZcFV3djcd7aI0qNEeyAJKCMSypR57ni/7TpsaQvg1o1APYqqpLMsUFhayZs0aOjo6AEhISGDBggUkJfU9W8/hlXistI7Xa30zeMYH6nkxK9mfjbG1w8JzVU2sbu30bzMrNJC7k6I5JzyoT8c9p83Knu+/Jm/157TX1/mXp07MYdL5F5MyYfKgXbRX721j1Yu78bgk4jJCWHj3BHT6E2++fiiPV+Kz3fW8tLaUfQ2+Y4haqeDSiQnceUZazyxEWYZv/wTruspKzrkf5j0E/fgskWWZ8p3bWb/sLZorygAICAxi6iVXMun8i9DoTm7TvZOh2dbMK7tf4YPiD/BIvlJwZ444k3sm3cPo8L5dNHW2NFGybTPFWzdSu7fQ35wdIGJEUlfmxiyiU9KG57nAIJJlmc2bN7N69WpkWSY+Pp7FixcTEjJ4ZZfaly+n4SFfELDourv5hS0VpQJeu2UqZ48amlnN+zas5fNn/g7AeXfew/h55w/J454uJIcH++4WrLmNuCq7P18UejWGiVEYc2LQJAT+6P6ffuxkWaaurs4f3DCbu8/FDQYDY8eOZdy4cSQmJh6zlOapRpZlXBUV2LZswbRiJfYd3YPsmhEjCL36akKvuBx1VNRJ20dJkqisrKSgoIDCwkLsdvvxNzoCnU6HQqHA6XQykENWSqXysKDIoYESrbYFFOvweNYjy5auLVWEhJxBXOxioqPPRKM5NYOn7e1b2b//ESzWIgCCgsYxatSjhAQP7cx3WZYxf/UVDY89jretDZRKwm+9hah770UZ0Ltz0e+Kmnhg+S5arS4MWhWPX5rNlTkDM3mkzdHGk1ufZFX5KgASgxJ5ZOYjTIubNiD3PyjsHfD2FVCbCwEhcOPHkJBz+HodVfDZL6HkawDkmHGsaRpDfmE9ITGxXP+7X6Pf/A9fwANAF+wbF5p2F6i1lJSUsHLlSkwmEwCTJk1i/vz5vepvZGpq4NX77gBZ5tZ/veSf7LNzTRUbPyxBpYQzAtW0KCWWYMWGzD8jfuAy8ysolTJejxbl9W+iGHPBgLxkR9Pc3Mz77/+RUaN9r9GkiW8SHj673/dXtGkdnz39JNoAPQuj70SnNxL/0AyRSXoUIqBxivn06Z1oA9RMvSiVyBFHnm1qsRSxPfdqvF4rIxJuZNSoR1j98jPkf7uaSedfzDm33oXZXMjOvJtxu9sIDBzNpIlvDGqNxH/v+Dev5r9KrMfLpzV1GKb/FM5/otfbWza/jeGLu1EqoK3YgHTmo0TccQcKhYIOm4ubX9/KrhrfgTI5wsBn984hKKDn4Lpk92DNbcS6qQ7PQaVtdBHtBKpXEZAooUidBclzICKdyqr/UFL6JEqllik5H/CDI4HbCyqQgccy4rkzsfsC1yvJtFqcNHY6aex00Gh20NjppKnTQYPJQW17Ew0mK2ZX72cIB2iUvgBHUIAv+NEV7PBlgHT/bOznrIJ+MTf4SpgUfe67HTu+KytjmKdXDhDZK+GqtXRncFR0Ijt7zg5SaJXI8YE0qJRUNtlpqOluRK5QwIjRYWROjSFtYhQ6w+kVABpokiRTtaeVPevqqMxv8ZfWCQjUMGZmHGPnxhMaPbxmi0tOL67Kg8qY1RyjjFmaL4ihjj68jJl1RyMdn5Qiu7wo9GrCr8xEnz3wx+ja2lq++uorqqp8pXCCgoI499xzGTduXL8u7IusDpbsqWCv1XeMXZIYxR/S4tAe4b6KrA5eqGrio8Z23F1/3DHGAO5OiubS6DA0x8h8aqmuJO+rzyj84TvcTt9j6QxGss46l4kLFhIWOzRNDetLTXz23C5cdg9RSUFcfN8E9APUSNbm8rB8WzX/WVdObYfvIt+gVXHttCRum5NKfOghFwOS5Js9tfVl3+1zH/EFmk+QLEns37KRjcvfpq3OV57RGBrG9MsXMW7e+T+KRsUdjg5eL3idpfuW4vD63m/T46Zzz8R7mBg98YTv32bqoGT7Fkq2bqQyfxeSt7tvTnBUjC9zY9os4keOHnazagdTaWkpH3zwAXa7HaPRyKJFi0hOTh7wxzF/9x01d98DkkTET5cQdd99/PbD3SzfXkOgTs2HP5113PKlR+OwummtsdBSY6GlxkxLjQWryUXy2HBGz4wjPjMUhVJB3f59LH/s93jdbnIuupyzbrxtgJ/l6UmWZJxlHdhym7AXtHRnPCogYGRYV0mpiEHpMyWceiRJorq6mvz8fAoLC7HZbP7fBQcHk5WVxbhx44iLizvtAl+O/fvpWP4+pk8/RToQ1FGrCZo3j7DFizDMmDEkny+yLFNbW0t+fj579uzBYrH4f2c0GomNjSUgIMAfMDjw86G3D/ys1Wr956uyLONyuXA6nYd9HcjsOHSZrakJW0MDDqsVt0aDR63GrT32eZxC4SUyqpK4uGJCQrqzYBwOIw31mTQ0puN2dV+fqFSqYwZFjvR1pN+djGwiSfJQU/sWZWVPdzUzVxAfdzXp6b9Gqx38HmvupiYaH38c8xrfYLEuM4O4P/8Z/fje9el0eSSeWl3EKz/4JuaMiQvmuesmkR41MFnbB1tbvZbHNj9Gk833nrhq5FXcn3M/Qdr+nT8MOocJ3rkaqrf4AhE3fAiJXUEYSYLtr8HXj4DLAiodnPVbmHUfNquNd/5wP53NjSRlT+DKPzyGsnY7fPEbqM8DwBaezeoRvyRvdwEAoaGhXHzxxaSn976B+g/v/JdtKz4kefwkrnrwcQAaKzr56G+5SJLMmdeNYvT4SCwba1mzsZrfeixIwCNyOde4HiUgpCs7c9pdcN5joBn4iVhOp5PXX3+a1NQ30GidjBhxK6NG/vGE7lOWJN78zb20VFeSFT2HbONsIm8fR0BG6MDs9GlGBDROMV631KuZyc3Na9idvwSAUSMf54u/fkNncyNXPvg44SkqdubdjMfTSVBQNpMmvtGvlKi+sHvsXPbJZdRZ67i1o5P72zvgkmdh8k29vo8v3/4nC4ofRaGAtiIjzlF3Evt//4dCpcLscHPPuzvZU2fiv7dMY9yI7ll8rjoL1s312HY2+S90FDoVxhFNGFv+jsZZcNhjtcdEs3OkhKyA0fH30BR7B1fsKsUuydyaEMlfMhP6fKLrdLVQUPgwpbVbaHeG4GQMutDrMLnCfcEPs8MXDOl0YrK7j3+HXQJ16h7ZHjEhAV0/dwc9ooJ0BJxIHwJZht3LfR9Ujo7TOiujL2RJxl3na95sKemgYl87NVYPzR6Zgw+YkUY1aZmhZMyKI3RMOIrTuCfEYDG3Odi7oY7CDfVYO7qzNkaMDiNrbgKpEyNRqYZ+wMLfaL4rgOGuNfcsPwuogrVo0w5qNB/Zu0bznhY7re/tw13ju9gzTo8l9KK0AXn/dHZ28s0337BrV1evBLWaOXPmMGvWLLTHuZA7ElmWeauulYdKanFIMpEaNc+MSeKciON/ftc5XLxS08xbda1YuxpbJ+g0/DQpmmvjwjF2XcBJXi+luVvY+eVnVO/Z7d8+YkQSk86/iDFzz0YbMPQp3s1VZlY+m4fd7CYszsgl900kMKz/GTVtVhdvbKzgzU0VtNt8nwURRi23zk7hxhkphBwpEOr1wMr7IO8d3+0Ln4Jpd/R7H45EkrzsXfc9G99/l85mX93ioMgoZl51LVlnzOtTg/VThcVl4c3CN3mz8E2sbl+ZwAlRE7hv0n2DNvPOYbVQvmMbxVs3UZ6Xi8fVfbwzhISSMXUGmdNmkZg1HpV6CCc0nCTt7e289957NDY2olQqueCCC5gyZcqADTbad+2i8uZbkB0OQi6/nLi//BmFQoHLI3HT61vYXNZGQqieT+6eTVTQ0f+vZVnG3OqgpdpCc42ZlmoLrTUWzG2Oo24DEBwZQHK2loKv/4XdbCJ9ynQu+dUfUCpPv/+ngeRptWPNbcS2ownvQecE6ig9xildJaWCRRNN4ei8Xi/l5eUUFBSwd+9efx8GgPDwcLKzs8nOzib6NOs7IdntdH75FR3LlmHPy/Mv1yQlEXr1VYRecQXqiIgBfUxZlmlsbPRnyRzIBgYICAhg7NixZGdnk5KSctKyZNwNDXQsX077suV4Wlt9gQ2DAe2ZZxKwYAEkJ2G1lmKxrMLpWgtYup6bEpdrFGbzJDpNI3A63f5gidvd++v53oiOjmbGjBmMHz8e9RB//judzZSUPklDw8cAqNUhpKf9ioSEawalDJUsy5g++ZTGJ55A6uwEtZrIO+8kYsldKHt5nVLVauPepTv8k15vmZXC7y4YfWJjIsdhcVn4V+6/WL5/OQDR+mj+OOOPnJ109qA95glxmuHdxVC5AbSBcP0HYIiAFfdC9WbfOokzfON2USP9mzVXVbD0jw/gdjqYsOAiZiy6AYfdjnP3xzRveZ810kysHt//8vTp0znnnHPQ6Xr/mex2OXnlZ7fiMHdy6QN/JGPqDJx2D8v/vJXOFgfpk6NYcEe2/1xQcnh4cVk+f99bhxJ4sq2KeebHCR/VVeI7eixc+Wqv+4X0hizLfPjhB8g8Q3h4HQb9SKZP/wSl8sTPPYq3bGTFP/+CRq1jYfxdRJyZQehFaQOw16cfEdA4jZVXPE9Z2T9RKNRkj3kNU7WK8FQF+Xvuwuu1EBI8iYkT/4taPTRR4++rv+feb+9FjYLlNXVkeoGbV0LyzF5t3+lw84+//h+P8iIArXuN2CIuI+Ef/0DZlbbm8UqoVUpkj4R9TwuWTfW4KrrTzjWxBoyJ9RgqH0HZ2VW/OjwdZt0LnXVQuQFXYy5bJ+hx6lTENjoIqjCycPLLNGvDOEfZzpuZYahjx0E/LjZlWaapaRVF+x/B7W5DoVCRnPxTUlPuRqns/nB2uL00dTq7Mj0c3ZkfXRkfzWYnDZ0ObK4j1w49knCjljFxQWTHhzA2PpjshBBSI3rRz8Pc4Es1LPKlURI3AS594UeTlXEsHpeXyoJWirc1UlHQivegXghhRjXxKgXxyBgOfo1VCrSJQd0NnpODUQ5y7f3TieSVqCxopeCHOqoKW/3ZL/pgLWNm+XptBEcO3qC21+rGVWHqDmDUW+GQT0dVmK5HBoYqPKDfg2+yR8K0phLLWt/MeHWMgYhrR6PpZz8Rt9vNxo0bWb9+vf9Ca/z48cybN6/f5Vza3R4eKKrm82bfBcPZ4UE8MyaJKG3fgp0dbg9v1Lbyn5pmWty+GephahW3humYWrST4m+/xNziK8WlUCjJmDqDiQsuIjFr3EmfSdneYGXFv/OwtDsJjgzgkp9PIiSqb+/D6jYbr60v571tVTi6jiXJEQbumJvGVTkjjn4B5nHCh7fD3hWgUPmy5iYsPtGndFRej5v8b9ew5aP3sLT76pKHxSUw6+rrGDVz7mmRQWD32Fm6bymvF7yOyel7X48KG8V9k+9jbsLcIXu/uZ0OKnbtoHjrJspyt/qb3APojEbSJ08jY/osUsZPOq1LgLlcLj799FP27NkDwOTJk7nwwgtPaEDH3dhE25tv0LH0PSSbDePcuSS+8DyKgzKOOmwuLn9hI+UtViYlhbL0jhn+/0Nbp4uK/BZf5kW1mdYaCy7Hkc/JgiICiBwR6PtKDEIboKJ4exPF2xtx2W24Ot9DllrRGmI5+9YHGTU9SZShPALJ6cGe31VSqvygklIBKgwTojDkxKBN7FvZQkEA37lRSUkJBQUFFBUV4fF0Z8nFxMT4gxv96Sc2nDmK9tOxbBmmFSuQDmRKaDQEnTuPsMWLMUybdkKf6a2trf4gRnNzs3+5RqNh9OjRZGdnk56ePuSD88ciuVyYv1pN+zvvYM/LQ1bL2CdKOBYE4Eg46DNYF0d8/GLi468mQHfkhr2SJPUqU+Rovztw++D3I/h6EEyfPp0pU6b0qnTPQOro2E7R/kewWPYCEBSUxaiRjxAScuyG0H3hrquj/uFHsK5bB0DA2LHE/eXPBIzufWnPlbvq+MNH+ZidHkL0Gv5+1XjmZw1dY+VtDdt4dNOjVHZWAr4+a7+b9jsi9AMbLBwQLissvQbKfwClBhkZheTBq9JTknoj5RFn43C6erwnHQ4HVosZp8N51B59kZGRXHrppSQmJvZqNxqf/Bu6USMJnj+fwq0b+erFpwmKjOoql69k9Wt7KNneRFB4AIv/OPWwSheyLPO7D/NZtr0ag0LBsyVbyGx5k/jpHagDJGSlDuY/imL6kn6V4j3Uli1byMt7mozMrSgUGqZNXUFg4Mjjb9gLsiTx1u9/QXNFGaNDZmBMm0fBtEjuOSdzQO7/dCICGqcxWZYp2PNzmpo+R6MJJzPj9xTtfxiv10Zo6HQmjH8FtXrg0+2O5b5v7+O76u+YrAzkf6WFKAyRcOd3ENq7Ou3Pf1dC7dcv8BfNawC07AnErJxD4osvog4Px9vpxLKlAevWeiRz16wIpQJ9VgSBibVoCx5G0dSVkREY60udm3SjP8tAlr3s3HkT7R2bMRDKqLoULg+7kSJDCmMtJazIu4dArx10Ib5ATHJXiaq4Cb3uCQLgcrVQVPQITc1f+HbFOIoxY/9GcFDfggQWp8cf6GjyBz18gZCmrp8bOh24DmlsfYBRq2JMnC+4kRUfTFZ8CJkxgWgOzHQv+hI+vqs7K+Os38LsX/yoszK8Xomave0Ub2ukbFcz7oMGMEJjDGROiSZzagxhsUZkWcbTbPcPfjvLTEhmV887VCrQjgj09U9IC0GXHIwyYPic2A9nnS12CjfUsXdDPbbOrtdVAUljwsmam0Dy+IgTztrwml3+Bt7OMhOeRtth66gjAnw9MNK6MjBCB35g0VHcTtvyIt9xTa0gdGEaxhm9L4kgyzIFBQWsWbOGzk7fQNCIESM4//zzGTGi/zVkN3VYuLuwkjqnG41CwYNpcdyZGIXyBE4U7V6J9xvaeHf7DmJz1zGmJB91VwkebVAwE+ctYMJ5FxAcObxmTXa22Pn033l0Ntsxhmi55OeTCI8/fuCpsK6Tl38o5bPd9Xi7mjFlJwSz5Mx0LsiOQ3WsoLPLBstugNJvQKWFq/4LYy4aqKd0TG6Xk11ffc6WTz/AYfa9p6KSUpi1+EbSc6adkoOKLq+LD/Z/wH/y/0OL3dcDJiU4hbsn3c385PkoFScvWOP1uKkq2E3J1k2UbN+MzdTh/51apyN1Yg6Z02aRNnkqOkP/Ap7DmSzLbNiwga+/9pWdGDFiBIsWLerzNYKrooLW117H9MknyF1BXX1ODkmvvIzSePjrVtZs4fIXNmKyu/392WqK2vnqPwU4rT0HmZRqBeFxRiITg4gcEUhUYiARCYFHLS/ptLtY9shDNFcUgMKILvg6FMogNDoVGTnRjJ4ZR1xGyCn5vzRQZEnGWW7CltvoKynl6i4ppcsMw5gTjX5shMh8FQaM0+mkqKiIgoICSkpKkKTua6gRI0aQnZ1NVlYWQUHDtIxMP0g2G51ffEH78uU4dnVnwGqTkwlddDUhl1+OOrx35YVMJhN79uyhoKCAurru3mYqlYrMzEyys7MZOXJkv7KBh5LNVk7l7udo7FiFV9t1jSFBwD4tMZp5JF7wALqklCHZF4/Hg91uZ/fu3WzevNnfB0aj0ZCTk8OMGTMIDQ0dkn2BrjJUlW9Rmf80UocVpQUi1DOI0s6BThfeDhMKnQ5loBFVYCDKwCCUgYG+20FdPxsDUQUFotB3Z63LkkTHsmU0/f0pJJsNhVZL5L33EHHrrSh6GfSyu7w8unIP722rBmBqShhPXzOJhEPLtA4Bh8fBi7te5I09b+CVvYToQvjt1N9yUdpFw+pzXZIk2nZ/RdjKW1F5fSVua4lhORdhopfnWLKMRqtFr9cTEBDAmDFjmDt3bq+Dla7qakrPmw+A0mhkY3YabQ4bc665iemXL6JwQx3fvbUPhVLBFQ9MJjbtyJPwXB6JG1/bwpbyNkYE6fj31qUEVawjfqaVwFhf0NYbcybK615BEdL/AFd1dTXvvfcvJkz8DJXKy8jM/yMx8ZZ+39+R5K7fyL/fWMneoDE0a32BsM/unUN2wuD1kzsViYDGac7rtZObuxizZY9/WXj4XMaPexGVaugP7PWWei799FLsHjuPuw1cVrMPYrLhJ1+B7vjBFavTwxl/+46LHCt5VPMGAM35QZgs4wm56nGc5XYOdOdWBmkwTosjMLER1aZHfKl04AtGzPk5TP8paHvW3y8re5ryimdRKvVMzPmIJaUq1rabiVHJfKHYRHzlt1C1GVzmHtuhDfTVHEyeDSlzIH4SqI+fbtbYtIqioocPytZY0pWtMXBp8rIsY7K7qW6zs6fOxJ66TgrqTOyt7/TPAu7xVNRKRscE8jPNShY0vIICGTl2AorLXxzQNL1TiSzJ1JV0ULy9idIdTTgs3SnEgWE6MqfEkDk1hsjEYzeblGUZT6sD10EBDq/J2XMlBWjiA7tn+KcEoxS9No7J65Wo2N3CnnV1VBe2+ZcbQrSMnR3PmNlxBEf07njnNTl7BjCaD29QqI7W98zAGKKyFl6Li/b39+MoagcgYEw4YVeNRGU8/P0hyzJms5mGhgYaGhooKiqitrYW8NWJPu+888jOzu73CbVHkvlnZQNPVzQiAWl6HS9lJTM+6MR6mng9bvZv3sDOL1dSX1zkX94QFc+O7BkUZ4xjYVwUP0uKZtwJPtZgsJqcrPh3Hm11VgKMGi6+bwLRyYefw8iyzKayVl5aW8YP+7tnLc7NjGTJmenMSo84/t/GYYJ3r4GqjaAxwDXvQPo5A/2Ujstlt5G76lO2r/wYl90X8IvLGMXsxTeSPH7ikO9Pf3gkDytLV/LSrpeos/oGYBICE1gyYQkXpV2EWjm8gsyS5KWuaC/FWzdRvHWjP3MJQKlSkzxuAhnTZpExZTqGkNCTt6ODoLi4mA8//BCHw0FgYCCLFy/u1ew/e34Bra++inn1ag40ZNLn5BBxx+0EnnnmMf/fNpa2cNNrW/F4ZX6ZHIsm34QsQ1ickaSscKK6Mi9CYw19CqJ/+9+X2fnlStRaHRff/xht9Qb2bmqg86DPneAoPaNnxDJ6ZhxB4advFs6hPG2OrpJSjXjbDyopFanH0FVSSh0iSkoJg8tms7Fv3z7y8/OpqKjo0XA6JSWFcePGMWbMGAyG4Xc+0l+OvXtpX76czhUrkay+jASFRkPQeecRungxhmlTDzteWq1WCgsLyc/P9/dkA1AoFKSlpTFu3DhGjx5NQC8bOJ8skuSiuXk1tbVLae/Y7F+u1UQT1jQS9VuVyPt8JTdRKAg880zCrr8e4+xZQ5ad6vF4KCgoYOPGjTQ1NXXtioKsrCxmz55NXFzcgDyOs6wcy9q1eFtb8LS1421rw9vejqfd97N0UO+TE6JUogwMRBEYxI6UDNxtbYypKCFyzGji/vxndGmpvb6rfQ2d3PvuToqbLCgUcM/ZGfx8Xibqk1CS+GB7Wvfw8IaHKWr3XdfMTpjNwzMeJi5wYP5WfSXLMq2trZSXl1NVWkRCydtM82xGiYwXJSokPChZl/BTrHGzevR0OayXjVbLd6+/QOnWTRhDQrn+L/8iODKqz/vkaW+nY9kyOj78iOaWJjaOHIFSkllgVxBwwTWs2ZeAxy0z8/J0Ji84di+1NquLy57fQFWbjSmJwTz26RMoqsoInxRI1MhKlAoXXkJwjn+CgAsX93kiqdVq5ZVXXiAtfRmBge2Eh81h4sT/ohiASU9eSWZ9SQvLt1ezZk8jrq5SzGpZ4rwR4dy/aDyZMadPMH0giIDGj4DDUcfWbZfhdrcSGTmP7KxnUalO3kXA6wWv86/cfxGmDWZFbROhliYYfREseuuoKWsHe3VdGX/6fC+/ClzNvZ7/AdCUF4Q97q+oQpLRpgQTODMefUwriu8fh32f+TZU6WD6Xb6+D4bDZ5m0tq4jb9etgMzYMf/kn52TeauuFb1SyaeTM7oH6rweaMyHig2+IEnlRl8Gw8HUATBialeAY7bvZ82RB1RdrlaK9j9CU5OvpJPROJKxY/5GcPC43ryc/ebxSpS3WCmoM1FQ2+kLdtR24nZaeVLzHy5VbQTgbc88ntPdzvzxSVwyIZ7JSWHHL1N1GpBlmeYqM/u3NVKyvalH3wZ9kIaMyb5MjNi0kMMaOveFp83hHzx3lpvwHlpvWwGaGKOvPFVqCLrUYFQD1HT4dGRqtlO4vo69G+uwH8jSUkByVgRZc+NJzo5AedCJrafd0Z1BU27C23p4vXNN7IHXP9gXwDiJr78sy1g21GH6ohy8MqpgLaGLRmIN9dLQ0EB9fb0/iGG1Wntsq9Fo/H0yNCfQyLna4eLuwkq2mnz3f01sOH/OTMCo7v8MWUtbK7u+/pLdX3/hn3muVKkZOWM2E8+/iLLIBF6obua7tu5g8llhQdydFM2csGMHEoeaw+Jm5bN5NFWa0QaoWHj3BOIzQwHfierqPQ28tLbUX9NXqYCF4+O564y03s+6sbbC25dD/S5fkP765ZA0Y5CeUe/YLWa2r/iQHV+uxNNVizwxazyzF99IwqgxJ3XfjkaSJVZXrOb5vOep6KwAIEofxV3j7+KKzCvQnALZiLIs01Re6g9utNVW+3+nUChJGD2WzGkzyZg2c9hlNfVXa2sr7733Hs3NzahUKhYuXMjkyYeXu5BlGdumTbT85z/YNnUPTgWedRYRd9yOISen14+5bFMla98tIsvtu/AdPSOWM68fhbqfmQE7v/qMb19/CYBL7v8DmdNn+fe5vsTEvk31lOQ24XZ2ZYEqYMSoMEbPjCNtUhSa07BUpeTyYs9vwZbbiLPM5F+u0B1UUipJlJQSTg6z2ewftK+pqfEvVyqVpKenk52dzejRo/tUJ344k6xWTKtW0bFsOY6C7n6T2tRUQhctQnfB+RTX11NQUEBZWVmPYE9SUhLjxo1j7NixGI+Q+Tbc2GwV1NUto67+A9zuAxOjFEREnEVC/DVERJyFUqlG9nqx/PAD7e+8i3X9ev/2muQkwq+7jpDLL0c1RONWsixTWlrKhg0bKC8v9y9PTU1l9uzZpKen9/lYKXu9WNaupf3td7Bu3Hj8DVQqVKGhKEL0OHStuAOsSIEy6rBIIoLnoHYbkCwWvBYzksWKZLEgmc14rVZfY3pJwqNU8c3UWSxdcAmVcb6McaUsMzZIz7SQQKaFGJkWYiQ+4OjXXrIs8+7WKh5bWYjTIxEdpOPpxROZlRHZp+c/mNySm/8V/I8Xd72IW3JjUBv4Rc4vWDxq8ZBk/3Z0dFBeXu7/MpvNJFPDJawhgg4AKgJzaJ50H9nVb6Kv6Mr8vvoNGH3hMe/b5bDz3v/9muaqCmLSMlj86JNotP07DsqSxGeP/5H9hbtJMNnIrmph++RfYw1MIErRyPmLYgmaO/e4GTvFjWaueGEjZqeHK0aGcOdzP0e22Qg99wwiI7egwfc/Y5EvRj7rEYLOzuj1Pq5evZq6+udITNyDWh3KjOlfoNOd2Pl1VauND3Kr+SC3hjpT91hERqiahJJvGWOr5Pozfk7ikt6V6v8xEQGNHwm7vZoOUy4x0Rf26NVwMrglN4tWLqKko4Qr48/gkc3LweuCM34N5/zxuNs73F7O+Nt3NJmdfDxuM5OKnwGgfu9kzLUG4v94C4HO7yHvXZAlUChh4vVw1u8hJOHI9+moZ+u2S3C720iIv5ZvDffxWGkdCuB/41JZEHmMQSZJgqZCX3CjYr0vwGFr6bmOUgMJOb7gRvJsSJx+WEZKY9MXFBU91J2tkXQXqan3DGi2xvFI7dW4370WXXM+XoWKN0Pv5umOuT2alCeE6rlofBwXT4gnKz74tLuwbKuzUry9keJtjZgOmiWp1atJmxRF5pRoRowK6zEoPpA8JieugwIcR84QMPizA3wZAiLAcSivR6J8Vwt71tVSs6/dvzwqVMvYjBCidCqkWkuPZqJAzwyZrgDScMqQcbvdNDc3U7O3gsrNRTQ7O2hTWPAoDq/drlAoiIyMJDY2ltjYWMaNG3fCn6crmjp4oKiKTo9EkErJ30YlcnlM/2pKy7JMbVEheV9+RvHWjUhe33MIDAtn/HkXMH7e+RhDe973Houd56ua+LSpHW/XWcn4ID33JMWwMCoE1TA5HrnsHj5/YTd1xR2oNUrOviOL7XY7/1lXRnmLLxAUoFGyaEoid8xNIzG8D7M7O+vhrcugeZ+vcd+NH/vKHg4T1o52tnyynN1rvsDbVfc5bfJUZi++keiU4dHQTpZl1tas5bmdz/lnzIXqQrl93O0sHrWYAPXwnkV6LK011ZRs8wU3GstKevwuJi2TzGkzyZw+i/D4/peaGw6cTicff/wx+/btA2Dq1KksWLAAtdo36GRes4bWV/6Do7DQt4FKRchFCwm/7TYCRvatxrG5zcEXL+XTXGVGQuYHg4ff3DuFqan9q4VdnpfLx399FFmWmHvdLUy79Kojrud2einb2cTeTfXUFnX4l2sCVGR2laSKTT+1S1LJsoyrvBNrbiP2/BZkV3cAR5cRijEnhoCxEaLXmDCstLe3+8sqNTQ0+Jer1WpGjhxJdnY2mZmZJzR5ZDix79lDx7LltH3xBTWhoVQlJ1EfF4ek6v6/jI+P95fj6m9PtqEkSS6aW772ZWO0dw/e67QxxMVfTUL8YgIC4o+6vbO8nPalSzF99LE/W0Gh1xNyySWEXXcdAaMGppZ+b9TV1bFp0yYKCgr8gaXo6GhmzZpFdnb2ccv+eNrb6fjgAzqWvof7QJkwhQLjnDno0tJQhYWhCg9DHR7u+zksHHV4GMrgYH9miix7qa1dSmnZP/B4OlEo1KSnP0BS4m1HnLlu93hZWt3IC7Wt1Lh9x/0gZEI1aqrdh1/TjAjQMD0kkKkhRqaHGBllDECpUNDpcPP7D/P5PL8egLNGRfHU1ROIDByegcUyUxkPb3iYvOY8ACZHT+aRWY+QGtL7TJTeMJvN/uBFRUUF7e3d18I6nJyn2MAUeRcAHkM0iov+iWrsxb4VvG5fb77CTyD7KrjqteM+nqmpkXf+8Evs5k5Gzz6TC+99oF/nJrZOE6/89Ga8Hg+L//A4ez6po6Rej9bVybRtf0HrNqOOjibksssIveJytCkpR72v74ua+Mn/tiHJ8KsMFec+9UsA4v70GEbrOjTlvmov7tgL0SxZ2ut9bGndSF7eTSgUMuPHvUhU1Pw+P0/wjWl+WdDA8u3VbCxt9S8P0Wu4bGI8V09JJCs+mHd++0saK0sYGTqNhc8+KM6HDiECGsJJkduYyy1f3gLAWxk3MXHNn3y/uOp1yL7yuNu/uamChz7dQ3SQjg0ztqJZ9yQA5nojgQluFFJXrcvRF8G8hyBq1FHvS5Lc7Nh5HSbTDoICs2hMfo07C2uRgccy4rkzsY8RV1mGlv3dwY3KDWCu77mOQgXxE7t7cCTNAH1oV7bGozQ1fQ6A0ZjZla0xvm/70B9VW3y12K1NvkGyRW9CyhzcXokNJS2s2FXH6j2NWJzdNaPTooxcPD6eSybGkx41MP1YZFlGttuRJdkXkJJlkCTfCdqBn6Wu5f7bMiCjUCpRRUai7GNd1s4We1cQo4nW2u4UWrVGScr4SDKnxpCUFd7vmZgnolc9HCL13T04UkNQhw7Pk7ihdqCHSUdeM215TahaHQQccm4lK0A7Iqg7QJQy/HqYSJJEcXExubm5h9VzPkAlK4nQhDBidDLxKSOIjY0lOjp6wGoUW71eHiqu5Z1638y1nGADL4xNJlnf9/ea2+Vk3/q17PzqM5oryvzLE0aPZdL5F5MxdSaq41x8VdqdvFzdzNL6VuxdZQZT9FqWJEazODYc/UlOLwfwuLx89NJuVpY2sUPnwdq1S6EGDTfNSObmWSlE9PWCq60c3rwUOiohKB5u+hSihu6iuS86W5rY/OF7FHz/te+YDYycMYdZi64nIqF3DQIHw+b6zTy741l2t/jqhAdqArkp6yZuGnsTRs3wn0naF53NTRRv3Ujx1k3UFhX6Sy0BRIxI6srcmEV0StopOSguSRLr1q3ju+++AyA5Pp6LA4PoeON/uCt9ZU8UAQGEXn01EbfcjCbhyJNajqWuuJ0vXynAbnYTEKihIFnDx7WtRBi1fHL37L4FI4GWqgqWPvRrXHY7WWedy4IlP+/Va9/ZYmff5gaKNtfT2dI9ey8kWs/omXGMmh57SpWk8rQ7sO1owprb2CMzVR0RgCEnBsPkGHEuI5wSmpub/Y2vW1u7B6W0Wi1jxowhOzubtLQ0VKpTcxDK4/FQWlpKQUEB+/btw+3unuQWbDKRVFlFugKSL72UkEsvRTXMgxl2exW1dcuoq3sft/vA30tBRMQZXdkY56DsQ5lJyWrFtPIz2t95B2dxsX+5YcoUwm64nqB581AMUWCro6ODzZs3s2PHDlwu31hIUFAQM2bMYMqUKYdlD9nzC2h/9106P/8cuWt9VUgIoYuuJnTxNWhH9P0z0+VqpajoYX+f0IjwMxg79u9otb5sCYvHyxt1rbxU3USzyzemEKlRc1diFLckRBKkVlHvdLHVZGVrh5VtJisFFjuHXvkEq5VMCTYyQRfA8g/3YrK6+O35o7ltTuqwryQhyRLv7XuPp3c8jd1jR6vU8tOJP+XmrJvRKPv3XrHZbFRUVPiDGC0tPSfXKhQKEhISmBLSSnb5a6htXaXTJt8M5z0G+tCed+j1wLZXYeptve6dWl2Yzwd/+iOS13vMyRrHsuWT91m/9A1i0jKYfuXvWf2qr2z++VdGErh9FaYVK/AeFJzRT8kh9MqrCF4wH+URSv/9d0M5j64sRKGAp0LrGPvff6LQ6Uh+9x0CtHXIn/wSrluGMqH3ZdVra9+jaP8jxMVezpgxT/Tp+cmyTH6tieXbq/k0rw6zw/c/oFDAnIxIFk1J5LyxMQQcNOZUtnM7H//1ERRKFTfd/y8ipw6PyWHDhQhoCCfNH9f/kU9LP2VU2Cje041Cvek5X6mmn3zp60FxDE6Pl3OeWktth50/Xjia293vwLp/dK+QPAfOfQQSpx53P4qL/0JV9Wuo1UFoR3/IdXst2CWZWxMi+Utmwolf5MsytJV1l6eq2ACmqkNWUkDsOH+JqmaDnb1VT+F2t6JQqEhKupO01HsHL1tjx1vw2S9Bcvt6mlzzLoQdXp/Q4fby3b4mVu6u45u9TTgPajaeFR/MJRPiuWhCfJ8ab8leL459+7Bt24Zt+3bs23PxdnSc0NNRhYWhjo7u+opCHR2Nxn/b9+VUB1K6q43ibY00lnf6t1WqFCSNDSdzagwp4yPRDrPBba/V7cvg6Ppy11vhkKOzKjygO8MgLQRVmO6UHKzqK1mScTfaerw+0kH9TsAXwLColNRZ3LR6ZNo8MvpwHWNnxzN2djzG4wygyJKE3WLG0taKtb0NjS6A0Lh4jKFhA/4ad3Z2smPHDnbs2OFv5A2g1+uJi4vzZ16EdupQfN2MwiGj0KkIuyIDw4SBKy2zx2JnyZ4Kim1OFMB9yTE8kBKLpo8XDKamRvJWf07Bd2twWHylo9QaLaPnnMWk8y/q1+z9FpeH/9Y283pNC+0e34yuSI2a20dEcktCJKGak/P/22By8Nr6Mt7dUoW1a8ZxsKTguvEJ3Ht1FkZdP/araZ8vM8NcD2GpvmDGEY7Tw017fS0b33+XfRt/AFlGoVAy9oyzmXnVtYRE978hX1/lNeXx7M5n2dqwFQC9Ws91o6/j1uxbCdEN7wGYgWDtaKd0+xaKt26kqmA3krd7ckJwVIwvc2PaLOJHjh6yWuADZd+6dRS88AKjSkpRdzVLVYWEEHb99YTdeAPqsL5nkcmyTP73tWx4vxhJkolMDOSCJeNQB2lY9PImCmo7yYwO5MOfzSI4oHcX+7Is89bvfk5zRRkjxmZz1YOPo1L3bfDiQE+vfZvqKdnRjOegklSJY8IZPTOWtAlRqIfhDD7J5cW+p9VXUqq0w3/uotCq0I+PxDglBm3y6Zf5K/w4yLJMQ0MD+fn5FBQUHHbeNnbsWMaNG0dSUhLKYX6MlSSJiooKCgoKKCwsxOHoDjqGhob6GnsH6FF/9SWdn69CtvkmWyl0OoLPP5/QxYvRT5o4bP6XJclNS8u31NYtpa1tnX+5VhtFfNzVxMcvRq8/saxFWZaxb99O2zvvYl6zBrqyjtXR0YRes5iwq69GHdX33gL9Ybfb2b59O1u2bMHSlT0SEBDA9OnTmTppEt4ffqDtnXd6NIAPGDuWsBtuIPjCC1CeYK8TWZaprVtKcfGfkCQnWm0UCSP/wQfWNF6racHUdb6eoNNwd1I018ZFHHMiksXjZUenjS0mC9tMVrZ32rB5u8cgFB0uNEoFOUmhzAkNYk5YIJOCDWiH+f9ZnaWOxzY9xoY6X5/X0eGjeXTWo4yNGHvcbZ1OJ5WVlf4AxsGZYgfExsaSmppKamoqyVFGdN8+DPnv+34ZlgIXPwNpZw7kUyJv9Sq+ee0FgiKiuOWfL6AN6P2YkCR5ee2+O+hsbuLMG37Gzm8Dcdk9TF6QzMzL0wGQXS7M331Px0cfYl233lcpBVAaDAQvvJDQK68kYMKE7kbzsswfPi5g6dYqjFoVzzV/Tex3n6OOjyP1ww9RBweBqu/XZGZzIXp9Mmp17ydCrS9u4ckv95Ff211SMyFUz9VTRnBVzghGhB15gkxVZxX/9587KTE28d+pzzMyR5SdOpgIaAgnTZujjYs/vphOVye/zvkVN+1aBcVf+Wad3vkdBB17oOO9rVX87qN8Ioxafvj1WRi3/hsq1sHMeyDjXF+o8zhkWaa84jnKy58hYtQL3FgRR7PLwznhQbw5Lg31YEX4O6q6ghtdWRxtpYetIkWOpD1ESZ22lo4QDZqwUQOfreH1wOoHYYuvjjNjLoHLXuxVg3azw82awkZW7KpjfXELHqn7EDElOYxLJsZz4bi4w1I+ZbcbR2GhL4CxbTu2HTt8dTR7S6Hw9VpRKHwfVl0/o1Qiu93gdh91U7daT3PUJBqjp9AemukrR+bbK6I0HSRHO0hO1xGYEOUPfKjCwob14I5k9+Cs6M7gcNdZOHQaiypEhy41uDuDI1I/bC4yToQsybjrrf7yXK4KE5LN03MltRJdUpCv/0haCLqkIBQaFe0NVvasq2Pf5nqcVg+yLKNQuIjP1DAiU4M+yI21ow1LexvW9jYs7a1dP7f3GAg8QKMLIDQ2rusrnrDYeEJj4wiLjccYFt7r11uSJEpLS9m+fTv79+/3p47r9XomTpzI5MmTiYyMPOz+PG0O2pYV4ar0XUAbcmIIvSQdpa7/g1qyLPNqTQuPl9bhkmVitRqeG5vEnLDeNyOTZZmq/F3s/Golpblb/TPEg6NimDj/QrLPmY8+8MSbm1m9XpbWt/FiVRO1Tt8xwKhSckN8BHeOiCLhGLV3B1Jxo5mXfyjj07xa3F01sUbFBnGGKoCgPWZUKJi7OJPxZ/cxQ0GW4bX5ULMVosbATZ8c9zNyuGmuqmDj8rcp2ebrZaBUqRl3znxmXLGYwPD+le7pjX1t+3h257P8UPMDABqlhkWjFnH7uNuJ1A+f+spDyWG1UL5jG8VbN1Gel4vH1V16zxgaRsbUGWRMm0Xi2HHHzZY6WZylpZjXfI15zRoce/b4l6tjY4m49RZCr7oKZT9rt3vcXn5Yup+9G33ZtZlTYzj7xtH+vhUNJgeXPr+exk4n/7h6Alfm9H4grLW2mu/ffJUL7/kV+qATu75xOTyU7mhm36Z66oo7/Mu1ejWZU3wlqWJST26AQJZlXJWd2HKbsO1uRnZ2lxLRpYdgyIlBnx0pSigIpxVJkqipqSE/P5/CwsIePc2CgoLIysoiOzubhIQBmDg3QGRZ9u/znj17euxzYGAgWVlZjBs37rB99losdK5cSfuy5Ti7SgAC6DIzCV20iJBLLxmyvhKHsttrunpjvI/L1exfHh4+l4T4a4mMPAdlP2fEH4u7sZGOZctoX/4+3gMz5TUagufPJ+z664cs2OPxeNi9ezcbNmzwZw+pPR7SS0oYta8IvddL8AXnE37ddT0GgQeKxVLE2vwH+cA+nm85D6fCN7idYdBxT1I0V8aE93lyFIBHkim02tlqsrKlw8pWk4VGV89rM71SyYxQI7NDA5kTFsS4IP2wKUt7MFmWWVm2kr9t+xsmpwmVQsUtWbewZMKSHuVP3W431dXV/gBGbW0thw7PRkVFdQcwkpMxGAy+64eCD+GL34Ct1Tf2MeNncPaDoO1bhmlvbf/sY0bPPpPAsMN71h5LyfYtfPr3xwkIDCIq4z6aK+3EpgVz2a8mozpCwMvd2Ijp40/o+Ogj3FXdk4W1GemEXnElIZdegjoiArdX4sbXtrC5rI2EEB1Pr3+OwNIiDDNmkPTqf47bj+NE7W8085dVe/m+yHcM0qqVXJAdy6IpicxMizhiRpEsy+Q15/HGnjf4tupb5K4ZIE+d+RQLUhYM6v6eakRAQzipPtj/AY9uehSD2sCnF7xD7LvXQUuRr9/ELatAc/QZAm6vxLn/XEtlq43fnD+Kn53V+2Y+h2roLGPxPhdFVgdjjQGsmJxJ4Ak0uO2zzvruDI7KDb7a6Iew6lWYQrQo0+cTPfNJlIFxJ/aYtjb44FYo+953+6zfwxm/6VVj9kO1WV18UVDPirw6tla0+ataKBVwRkoIVwWamdhWhrRzB7a8PP9MngOUgYHocyZjnDoVw5Qp6DIzQa0+PGhx4PZRyLKMt6MDT1MznqYmPE1N2Buaqa6WqDIF0yRFIyu6/67BpjJimnKJbt6BztV55DtVq1FHRaGOjvJleURFo46J8Wd/HMj8UAYPj1mFktODq9LcPchfY8bfbKCLMkjTI4NDHW0YFvt+PLJXwlVrwVXe6QvgVJiQHT3rrCo0SrQpwf7nph0RhNvjxNLWhrUrKOELTLRiaWvD3NZKR0MzdnMHsnT0YNihDCGhGEPDcDnsdDY1IcuHl4E6QK3TERoT5w9yhMbGE5WUQkx6Bkql7/1oNpvZuXMnubm5mEzdMzeSk5PJyclhzJgxx63FLHtlOr+twvxtFci+UmTh145Gm9C/cnBv1rbwm/2+xpcLIoP556gkIrTHP+mTJQlbp4n9WzaQ9+VntNV1N89MHj+JiQsuIm3yFP9zH0huSWZFUzvPVzVRaPXNKFQr4IqYMH6WFM1oY+9nCvXF9oo2Xlpbytd7m/zLpqeGs+TMdM4a5ZuRt+H9EnZ962vYPP2SNHIuSO7b/11HFXz5e7jkWTD07SJhOKkvKWLDsrep3L0T8GXpTFiwkGmXXoUheOAyJcpMZTy/83lWV64GQKVQcVnGZdw1/i7iTvTz8zTidjqo2LWD4q2bKMvditPWPYgVYAwkLWcamdNmkTxhUr+bPA4EWZZxFBZiXr0G85o1uMq6y9WhVGLIySHk8ssJuWghihMotWdpd/LlK/k0lneiUMDMKzKYeG7iYf+rBbUmihrMfQpmDCZTs519m+sp2tSA+aASTmGxBn9JquNlIA4kT4cT285GbLlNeFq6e4GpwgMwTo72lZQ6hUpkCUJ/eb3eHtkOTmd3ADksLIzs7Gyys7OJiYkZ8n07kFVyoGTWweefer2eMWPGMG7cOJKTk4+bVSLLMo7du2lfvtyXtdGV1aEICCD4ggsIW7xoUAbNDyVJHlpbv6W2dimtbes4kAqm0UQQ39UbQ69PGtR9OEB2uehcvYb2d97BvnOnf7lu7BjCr7+e4IULTygbQpZlZIcDyWZDslp93202JKut+2ebFcvmLewrKqJw9Gg6wn0Zi0pgYlYWc+bNIzx84M8pK+1OnqtqYll9G66ugYEUuYxrDHncMeEujPq+l7M6GlmWKbe7WN9uZn2HhQ3tFlrdPQMcwWols7qCG7NDAxltDBhW174t9hb+uvWvfFXxFQApQSncl34f2g4t5eXlVFdX4/X2vOYNCwvzBzBSUlIICjpkgpjbAe/fDPu/9N2OzoJLn/WNsw1DH/z5/6jcvZP40efQ1jgRnUHNoj9MJTjy2Ndusixj27YN04cf0fnVV/5jD2o1QWefRcgVV+CePJ0rXtlCRauNyTEBPPL279FYzYTfcgsxv/vtoDyfZrOTf329n/e2ViHJoFYquHFmMveek0m48cjnqR7JwzdV3/Dmnjf9pXEB5ibM5easm5kWO21YvW+HAxHQEE4qSZa46Yub2NW8i/nJ8/nHuJ/Bf87xDV7f8jnEHLue3Uc7arh/+S5C9BrW/fbsXqf9H8wtydywu4y17WZitGq+yBlJ/BDN5j0qa0t3cKNiA3JjAYqD6gq1Xfx7wnN+1//7b9oLS6+F9nLQGOHyl2DsJQOw41Df2M76Fd/T8MMmosoLGd1WiU7qeVKhDAnBMGUKhqlTMEydSsDo0SgGsLas1y1RuaeV4m2NVOxuwePuHmyOSAgkIyeKtAwteneHL/DR2ISnuTsI4m5uwtPUjLe1tUfN8WNR6HQ9ylz1KHEV1f2zKnBoa7RLLi+uqs6uAEcnrupO8BwS4DCq0aV09+DQxBpRDIP6o7JHwlVj9mefuCo7kV2HBA60SohW4Qp2Y9Ga6PA0Y+noDlhY2ttw2Q/vO3I0Ko0eWTYCRlAaUaoCiUyMIW1SKsnZSQSGR2AMDe1RJsTrcWNqaqKjsY6O+jraG+rpaKijo6EeU3Ojv3/AoQKCQ4jImoBVF0htc4u/N0ZAQAATJ04kJyeHqH6kpzvLOmhbVoTX5AKVgpDzUwicndDnv6nDK3FFXglXxYRxa0IkXrcbm6nDFxDq8GWrWE3tWNvbsHa0Y2lvw9bRjtXU0eM5awL0ZJ05j4kLFg5Z7wRZlvmuzcxzVU1s7Ojui3NeRDD3JEUzPfTEe/5Iksw3+5p4eW0p2yt99VwVCpg/NoYlZ6YzKalnmRtZltn2WTnbPq8A4MxrR5J95vAYDD0ZqgvzWf/eW9QV+Zo2awL05Cy8lCkXXY7O0P/jZI25hhd3vchnZZ8hyRIKFJyfej53T7yb5ODhX6LrZPJ63FQX7KZ46yZKtm/GZurw/06jCyB1Yg4Z02eRNmkquiPUKh5osteLPS/PH8TwNysF0GgwzpxB0HnnEXTOOagjTjzLp77UxJcv52PrdKEzqFlwezaJY0+t4KEsydQWd7BvYz2lO5r85z8KBSSODWf0zDhSJ0QOak+w1rcLse9pPaiklBL9uCiMOTFoU4KHxfmFIJwMHo+HkpISCgoKKCoq6tGPIjo62h/cGIwB5oO1tLT4gxgH19rXarWMHj3a3/fjeM2kj8ZrNmNasYKOZctx7t/vX64bNYrQRVcTcsklqA4dfD1BDkcdtXXLqK97H6er0b88LGwWCQnXEhV5Lkrlybu+t+Xn0/7223R+8SV09atQGo0YZs3COH06Sr3+oCBEdzDi0GCFbO25Tm+vUwH006ZhuvBCcq0Wqqp9E2wUCgXZ2dnMmTNnQIJq+6x2nq1s4uPGdn/BgOkhRm4OqSCs+gEkyYJaHcLYMX/tdzPl45FkmSKrg/XtFjZ0mNnYYaHT0/NaLFKjZnZYIHPCApkTGkSKXntSB4olSaKhoYE1O9eQuzeXYGswarnn/19QUFCPAEbYscppHnhfLL8Jir6AM38Ds38B6pM8xnUUbXW1/PeXdwEKtME/QakK4fw7s0mf3LcSyl6zmc5VX9Dx0Yc9Sqqpo6KQ5l/Ive0J7NeGc3Gsgp++9CsUQPzf/07IxRcN2HOxu7y8tr6MF78v9ZcdPj8rlt9eMJrUyCNf31jdVj4u/pi3975NraUWAK1Sy8XpF3Pj2BtJD00fsP073YiAhnDSFbUVseizRUiyxEvnvsRsj9JXSiM89bjbeiWZ+f9aS2mzlZ/Py+SX5/WtOaosy/xmfw1v1bWiVyr5dHIG44MG/yK9z+ztULUZ2953oHoL+rt2oehvmuC+VfDRHeCyQGgSXLMUYrP7vWteixX7zp3dPTDy8w8r+9SpDyIvLJWCyDTyI9Jpjozn3Kw4Lh4fzxkjo9CqT7ykk+SVqClqp3h7E2U7m3HZD64Prmfk1Bgyp8QQHt/7gTLZ7cbT2tod6Oj67s8AaWzE09zcp54fSoOhRy+PHgGQA5kfUVEnXL/06M9JwlVt9veYcFV2Irt7nuQpAtToUruzHDRxgShUg3+S59u3Tuwl7dhL2vDW2qDnZBQ8uGmXm2i0VlBnKqbD1eRPwzwWjS6AwPAIAsPCMYaF+3/2BSjCCAyPxBgWhkarw+3yUrK9iT3ranv0VwmJ0jN2bjxjZsahD+rdCaHX46GzuZGOhnrau4IczfV1VDY2YzcGI2u7/84Ghczo9DRmzzuPiLj43r1oRyHZ3LR9WIxjjy/FXDcyjPCrR6I6ZL9lWcZlt/nLaVk7fMEJa4cvUGHuaMPe0YG1vQ2H1XKkhzoyhYKIhEQmnHcBY8+YNySDn0ezo9PK81VNrGo2+d8pU4ON3J0UzfzIYJT9uIDZ32jm7nd2UNzke020KiVXTE7gjjPSSI86drAk7+sqirY0cOkvJhFgHJpGkcOVLMtU5OWyftlbNJX7Si8GGAM544afMO6cvl3oNtmaeGX3K3xY/CGeriD62Ylnc8+kexgZNjwbpw9nkuSlrmgvxVs3Ubx1I+aW7nIdKrWapHETyZw2i/Qp0wc0s0Z2ubBu2Yp5zRrM337bXa4DUOj1BM6dS9B55xF41pkDOiC2Z10tP7y3H8krE5Fg5IIl4wmJGpyMrqHisnso2dHEvk311Jd0z7zWGdRkTo1h9Mw4opODBnwQp+2D/di2N6JNDcE4pauk1AmUPxSE05HL5aKoqIiCggJKSkp6zL5OSEggOzubrKysARsH6ejoYM+ePeTn5/eot69SqRg5cqSvL8bIkcfNBu4LWZax5+XRsWw5nV98gdyVnaLQ6wm+8ALCFi8mYNy4EzoG2e01FO1/hNbWtRyouavRhBMfdxXx8YsxGFL6vt9eL5Ld3pXp4AsmyAcHGo6aDXGUdbq2H0xKgwGF0YDSYEBpMPq+G30/a2JjCbnicgJGdp8LVVZWsm7dOkpKSvzLRo8ezZw5cxgxov+Tbf5Z0cDfyn3vr7PDg/h5cgwzuiYR2e1VFBT8nE6zb6B5xIgbyUj/PSrV4GYPemWZfLOd9e1mNnRY2NxhxX7IZLMEnaYrwOHL4BjsUrWyLNPc3OwvIVVRUdGjVw2AU+mkWd+MI9jBDXNuYMHYBX3/XzE3gr0NoscM4N4PPLvFTO7nn7NzdQFKzTlkn5HAmdeNOqH7dOzfj+mjjzF9+mmPRuIFEWl8lTSVrMx4zl/+LyLvvYeou+8+0aeAJMl8klfL378qot7k+1tOGBHCgwvHMi31yEHqBmsD7+59lw/2f4DZ7SvBHqYLY/HoxSwetfhHWxq3L0RAQxgWntz6JG/vfZvEoEQ+uuSjHjUDj+ez3XXc8+5OgnRqfvjN2YQdJYXrSGRZ5pWaZh4vreO17FQWRJ7GjUFlGdY9Bd/+GZAhZS5c/QYY+zar0dvZiS0319f/Yts2HIWF/sZnB6hjYjB0lY8yTJuKNjWVokYzK/LqWLm7juq27vIDIXoNF2THcvGEeGakRaDqx8w9WZZZ9qettNZ2l8owhurImBLNyKkxRCUN/AX7wSSns0eGR88ASPdyydL7AWFlSAia6Kge2R3q6GjUMQc1OI+MRHGCFx6yx1fGyZ8FUdGJ7Drk7xmlJ/ZXU07occA3QGbv7MTS1tWPoqUNd40FZbNMgCUAozsIpaLnoIfDa6PZUd31VUXHQTVwAVQazUGBiYMCFWHhGMMiCAz3/azV929AvaXGwp51tezf0oCrq7yVUq0gfWIUWXMTiB8Z2qf3lsVi4V//+pf/wlWlVKC3mZHqKlA5u09ko5JSSMuZTnrONGLTM/vcx0WSvNhMJlrWF1O79yMcGWuRbWEQEI2zQ4e1SUVnvRNrh6lH/fzjUanVGMPCMYaEYQwLwxgajjG0++fAsHAMoaEYgkOHXe39UpuDF6uaWd7Qnf6eadDxs6RorowJ61PzQIvTw6wnvkGW4foZydw6O4WY4N5/bnndEirN8O3NM9RkWaZ460Y2LHubttpqLrjnV4yde3avt3+78G2e3vE0Tq/vvTwzbib3TrqXcVHjBmuXf1RkWaapvJTirRvZv2Uj7QeVkVMolIwYk0XGtFlkTJ1BcGT/m542P/MMbW+93aOvljI4mKCzzyLovPMwzp6NUj+wQQavR2Ld8mL2/OCbEZc+OYpzbhqDNmB4Hb9OVEeTjaLNDezbVI+l/aCSN3FGRs+M9ZWkChmYQSVPmwNkGXXEqR0QEoShYrfb2bdvH/n5+ZSXl/eojZ+cnMy4ceMYM2YMxj72BXI6neTl5VFQUEB114x8AKVSSVpaGuPGjWPUqFEEDNIkqoN5TSZMn66gffkyXCXdvSN1Y0YTumgRQQsXogr0DXwfOux08O1Df3Y7Oti64xwkyU6QdjxR6nMIcWeD3e0PJHgPZDbYuwMTss3uCzbYfT/LNhuS3Y5stfoDL4NCoUCh16MwGJAVCiS7Ha/d7ptwo1CgMBrRpKWhGzkSZUgI6AN86+v1oNejCOj6rtf7f4dOd1jv0KO9Zofebm5uZvfu3VRUVPiXxcfHM378eGJiYno0V+7N/Zm8Ek+3O1kcpGHkIee5siwjSR4aGj6iqdlXDjQgIJHkpDvR6WKOeH99eS/0dj23DEVe2OWGnW6ZfV7w0PP1i1fKTFDJjFfDeJVMiOLEHxd8mRj19fWUl5f36FMDoNPpSE5O9mdhlEvlPLbpMWosvnOuhWkL+e3U3xIWcIzMjFOULMmseCaPmn3tRCQYueq3U1APUG8t2eXC/P33mD78CMu6df5G4ja1DvekqUz4zX3ox53Y9cKm0lb+vKqQglrfRMiEUD2/OX8UF4+PP2KPjL2te3mj8A2+Kv8Kj+ybhJUSnMKNY2/kkvRL+jQW+mM3qAGNF154gb///e/U19eTlZXF008/zdy5cwd0x4TTg9Vt5ZKPL6HJ3sSSCUu4e2Lvo6SSJHPhM+vY12Dmp2el89vzR/f58SvtTpL1J6829KBz2eDTu2HPR77bU2+H8/8KquMPhnva27sbeG/f7mv4dsjhQDNiRFcJqakYpk1FM2LEUQd5ZVkmr7qDFbvq+Gx3Pc3m7pPGqCAdC8fFccnEeCYl9m2g+IelRRRvbyI9J5qRU6OJSw8ddmUNJKsVT3Mz7saegQ9Pc8/gh3zIDI1jUUVE9MzyODQAEh2FOiKi1yW9ZK+Mu647wOGsMBEwKpyIa4/+fyXLMg6L2RekaOvuU+EPXHT1rnCarERo44kOSCQqIJFwXexhAQy7x+ILXrhqsGrNEKzEGB7eFZiI8GVXHAhYhEcQYAwckhRht9NL8fZG9vxQS1Nl92BbaIyBKx6Y3OuMDYA33ngDl8vFlClTyMrKQqPR0FZXQ1nuVkpzt1JXtLdHTw5DSChpk6eSljONEWOycdmsWNrbsXW0d5XX6sqo6OjOsrCZTP77iJ3aROzk1sP2Q/IocHZosbfr8JgDwRuFhnj0+sSuQIUvm8UYGtYVtAgfstd7MDU63bxa08z/alswe32vUVKAlvXTR/cpqLG1vI3RcUH9KnUoHJkkeSnZtpmMqTP61GNldcVqfrX2V0yKnsS9k+5lauzUQdxLobWmmuKtGyneutGfWXNAbMZIMqfNInPaTMLi+lYju/mZZ2l54QVUkZEEzZvnC2JMm3pCPTGOxWpy8tUrBdSXmkABMy5NY/KCPva2OcXIkkxNUTv7NtVTurMZ74GSVEoFSVnhjJ4RR+r4SBFwFYSTxGKxUFhYSH5+/mFBiKCgoD4NoMqyjO2gzAClUolKpUKlUh1xoPp49zcg68kykS0tpJeUklhdjaprcNGtVlOVlERncDBqjwe1x4PG40bt9vhvH/HL68U+SUJTq0DdNLDHbkmhwKNWH/bl1mgOX645ZB215rBlHrUar0p1WPBBOLncShWNweHUhkVSGxpFc1AY8iF/o3CLifiOFhI6monvaEXn7X3fxaNRq9UkJSX5AxhxcXGoDrlet7ltPJ/3PG/vfRslSt676D1GhZ9Y5sJwVFfcwcf/3IFao+Tq308lPG5wSnS7GxsxffIJpW++R3CrL5NIvupaxv7poX7dX0mThb9+sdffQzFIp+ZnZ2dw6+wUAg4p7Sk5zaz/4THeMO1hq7X72D4lbCw3j7yaM5LnodSF9Kuf7Y/ZoAU0li1bxo033sgLL7zA7Nmzefnll3n11VcpLCwkKen4jZhEQOPH56uKr3hg7QNolBo+uuQjUkJSer3t6j0N3PlWLnqNinW/PZvIwNM4ONFXkgSvz4eabaBUw4VPwZRbe7Vpy4sv0vzvZw5brk1J8QUvunpgaOL612DVK8lsKW9l5a46VuU3YLJ3nxy8e8d0ZqX3Ps3OYXWjCVChUp3aHwKyLCOZzUfN8jhQ5srd3HxYaa+jUipRR0YSdt11RC65q0/74rRaMTc0YbN3Yj0QqGhvxdrW1qPBttfjOWx7jVJHlG4EUfokogMSCdXGoFT0/Pu41S5cwW6IUaNJDcKYGOmb5R8c0ueshKHSXGX2ZW1sbSQ4Us/iP07t0wCYy+VCe4wBOru5k/K8XEpzt1KRl9unHiA9KBQYgkMIijUQFOdBH+5CE2RFoW1DUjYic+T3j1KpxWBIx2jMJNCYidGYQWTkeafdIJ/Z4+XNulZeqW7inIhg/jV6aJpECgNPkiVyG3OZEjPltHufDnempkZKtvnKUtUW7e0x4eG8O+9h/Lzze31f7ro63A0N6CdMGNC+WkfTUmPmwydzUaqVzL8ti+TsE+/DcSpx2j2UbG9k36YGGsoOKkllVDNyaiyjZ8YOeoarIAhHd6BMVEFBAfX19Sd7dwac1ukkpaKC9JJSgg/KzOuPA8GHIwYbDgk6uNWaowYiDr4PSanscS1y8LHw0ONif3532Hr4yh3LTiccdF2lUKtR6vX+4H6v768fv5MkCbvd7m9ebzAYMHSVjR2Q53jQbVn2YLdX4fX6/vYaTTgGQyKgHPDH6st6doWSMq2BEp2RYq2ROk3P2fIKWWaEx0GOw8zZ9vYj3sexHis8PJzU1FRGjBjR6z41+c357G3by6JRi3q1/qniwBCzQqGgpqgde6eLzKkn3svleFweLw8//jZxG7+m/aKrefjnfesl22px8u9vinlnSxVeSUalVHDdtCR+cW4mEUcZh1y37wN+tuVRAFSyzHyrjZtNZrK6eur4aYNA1/UVENz9sy4Y5v6qV2X5f0wGLaAxffp0Jk+ezIsvvuhfNmbMGC677DKeeOKJw9Z3Op3+A+eBHUtMTBQBjR8RWZb56dc/ZUPdBmbEzeCV817p9UWULMtc+vwGdteY+OsV47hmmhiY6mHn27DmYVj0JqTM7vVmnV9+Re0vfoEuM6MrgDEVfU4Omui+NWjqDZdHYl1xMyt31bGzuoNv7j8T9SkenBhMsiTh7eg4QomrQwIgLS3+1Mq+1ogs+P5rvnrx6V6vrw8KJjAsnIiQREY6JxLg1qM4JIVXFa5Dlxrq78+hCtOdsoMlLocHS5uzT31Z+srrcVOzd48ve2PHVkyNDag0mq7sibCu0k/hBHZlUBycTWEIDkF5lEFBWfZit9dgtRZjtZZ0fS/GaitBknqm2uu0McyZs3HQnuPJ5pQkbF6JMM3pVWJGEIaataOdkm2bKd66keo9u7nlny8SFnti/YAGW8XuFkJjDITGDMP+aUOovcHKvs0NFG1uwNrR/RkQkWDk7BvGEJMqrsUE4WRqb2/3Z1sM5mDvQNxHX9eTZRnnzp3YVn2B7HCgMPh6QSgMet93vQGV0ff9QF8IpcFXtkll9PWLQKNBoVCc0D4Nl+sRWZaxbdtG+zvvYv76a39pZ3V0NMnvvoP2BHpc9JbZbGbLli3Mnj0b/QCXejyYLHupqHyJ8vJ/I8te9PpkJk96h4CA/k2WHAytLg+bOiys77Cwod1Msc33GXljfAR/H5V4kvfu1CbL8kn7vzPZ3Ly6vox7z8nsUz/XD3NreGTFHsxOX9Dx3DHR/O6CMWREH7uHotdUzXUrrmYKAdzg0RHntILT7PtydILUi4mqSzacUO/b09GgBDRcLhcGg4H333+fyy+/3L/85z//OXl5eaxdu/awbR555BEeffTRw5aLgMaPS1VnFZd/ejke2cPShUsZGzG219vmVXcAMDExdHB27lRnbwd932ouSnY7ksOBOmxoazVKknzEeoNC38keD57WNjxNTajDw9Ak9L4ESEVeLh8+8TA6g/GwUk+BB/WnCAyLwBAahrqrn4fk8FD36CaQff03dKkh6FJD0KaGoA4V2VP9JcsybqcDjS5g0E7+jhToUKuDGDXqkUF5PEEQTk9OmxWdYfCCvcLgkCSZmn1t7NtYT1leC5JX4qa/zCYwTHx2C4IgDDV3QwMdy5fTvmw5qsBA0r5YNWwz2E9ER8d2Cvb8Ar0+icmT3kKhGPwszf5qcLrZ0G4mVa9jcog4zzmV9Seg8l1RE7f+dxtZ8cE8uHBMnyqKHPXxZBk8zq4AR2fXV1eg40DQw2mCKbeB4cgNxn+sBiWgUVdXR0JCAhs2bGDWrFn+5X/5y1944403KCoqOmwbkaEhHPBpyadkhmX2KZghCMLA83rcSB4vmn40C3Tsb0cTZ0TVh94SgiAIgiAMD06bm7oSE6nje3+xLgiCIAw8yeXCXVOLLu30LTfjdncgSW50uqiTvSuCcFSyLLN2fzNnZEaJCbjDQG8DGv2qw3Bo9OlYETCdTodOJ2b/CHBpxqUnexcEQQBUag0qdf8aHgeMHNqsHkEQBEEQBo7OoBHBDEEQhGFAqdWe1sEMAI0m9GTvgjCETma5qUMd3MvjeBQKBWeNGvjy68Lg6lNeW2RkJCqVioaGhh7Lm5qaiIkZ/CYvgiAIgiAIgiAIgiAIgiAIwvDQx/bMg264BFaEwdOngIZWqyUnJ4c1a9b0WL5mzZoeJagEQRAEQRAEQRAEQRAEQRCE099wDCIMt0CLMHD6XHLq/vvv58Ybb2TKlCnMnDmTV155haqqKpYsWTIY+ycIgiAIgiAIgiAIgiAIgiAMQ8MxmDEc90kYOH0OaCxevJjW1lYee+wx6uvryc7OZtWqVSQnJw/G/gmCIAiCIAiCIAiCIAiCIAiCIKCQhzj/prfdygVBEARBEARBEARBEARBEIThaTg1Az+avjQJF06u3sYN+tRDQxAEQRAEQRAEQRAEQRAEQfhxO1V6VBwIZJwq+yscX59LTgmCIAiCIAiCIAiCIAiCIAg/XqdSxsOptK/C8YkMDUEQBEEQBEEQBEEQBEEQBEEQhj0R0BAEQRAEQRAEQRAEQRAEQRAEYdgTAQ1BEARBEARBEARBEARBEAThtCfLsuincYoTAQ1BEARBEARBEARBEARBEAThtCeahJ/6RFNwQRAEQRAEQRAEQRAEQRAE4UdBNAk/tYkMDUEQBEEQBEEQBEEQBEEQBEEQhj0R0BAEQRAEQRAEQRAEQRAEQRCOSZRpEoYDEdAQBEEQBEEQBEEQBEEQBEEQBGHYEwENQRAEQRAEQRAEQRAEQRAE4ZhE7wlhOBABDUEQBEEQBEEQBEEQBEEQBEEQhj0R0BAEQRAEQRAEQRAEQRAEQRAEYdgTAQ1BEARBEARBEARBEARBEARBEIY9EdAQBEEQBEEQBEEQBEEQBEEQBGHYEwENQRAEQRAEQRAEQRAEQRAEQRCGPRHQEARBEARBEARBEARBEARBEARh2BMBDUEQBEEQBEEQBEEQBEEQBKEHWZZP9i4IwmFEQEMQBEEQBEEQBEEQBEEQBEEQhGFPBDQEQRAEQRAEQRAEQRAEQRCEHhQKxcneBUE4jAhoCIIgCIIgCIIgCIIgCIIgCIIw7ImAhiAIgiAIgiAIgiAIgiAIgiAIw54IaAiCIAiCIAiCIAiCIAiCIAiCMOyJgIYgCIIgCIIgCIIgCIIgCIIgCMOeCGgIgiAIgiAIgiAIgiAIgiAIgjDsiYCGIAiCIAiCIAiCIAiCIAiCIAjDnnqoH1CWZQA6OzuH+qEFQRAEQRAEQRAEQRAEQRAEQRhmDsQLDsQPjmbIAxpmsxmAxMTEoX5oQRAEQRAEQRAEQRAEQRAEQRCGKbPZTEhIyFF/r5CPF/IYYJIkUVdXR1BQEAqFYigfeljr7OwkMTGR6upqgoODT/buCIJwGhLHGUEQBps4zgiCMNjEcUYQhMEkjjGCIAw2cZw5OlmWMZvNxMfHo1QevVPGkGdoKJVKRowYMdQPe8oIDg4Wb2ZBEAaVOM4IgjDYxHFGEITBJo4zgiAMJnGMEQRhsInjzJEdKzPjANEUXBAEQRAEQRAEQRAEQRAEQRCEYU8ENARBEARBEARBEARBEARBEARBGPZEQGOY0Ol0PPzww+h0upO9K4IgnKbEcUYQhMEmjjOCIAw2cZwRBGEwiWOMIAiDTRxnTtyQNwUXBEEQBEEQBEEQBEEQBEEQBEHoK5GhIQiCIAiCIAiCIAiCIAiCIAjCsCcCGoIgCIIgCIIgCIIgCIIgCIIgDHsioCEIgiAIgiAIgiAIgiAIgiAIwrAnAhqCIAiCIAiCIAiCIAiCIAiCIAx7IqAhCIIgCIIgCIIgCIIgCIIgCMKwJwIaQ+iFF14gNTWVgIAAcnJyWLdu3THXX7t2LTk5OQQEBJCWlsZLL700RHsqCMKpqi/HmY8++ojzzjuPqKgogoODmTlzJl999dUQ7q0gCKeivp7PHLBhwwbUajUTJ04c3B0UBOGU1tdjjNPp5MEHHyQ5ORmdTkd6ejqvv/76EO2tIAinor4eZ9555x0mTJiAwWAgLi6OW2+9ldbW1iHaW0EQTjU//PADF198MfHx8SgUCj755JPjbiPGgPtGBDSGyLJly/jFL37Bgw8+yM6dO5k7dy4XXHABVVVVR1y/vLycCy+8kLlz57Jz507+8Ic/cN999/Hhhx8O8Z4LgnCq6Otx5ocffuC8885j1apV5ObmcvbZZ3PxxRezc+fOId5zQRBOFX09zhxgMpm46aabmDdv3hDtqSAIp6L+HGMWLVrEN998w2uvvUZRURFLly5l9OjRQ7jXgiCcSvp6nFm/fj033XQTt912G3v27OH9999n27Zt3H777UO854IgnCqsVisTJkzgueee69X6Ygy47xSyLMsneyd+DKZPn87kyZN58cUX/cvGjBnDZZddxhNPPHHY+r/97W9ZsWIFe/fu9S9bsmQJu3btYtOmTUOyz4IgnFr6epw5kqysLBYvXsxDDz00WLspCMIprL/HmWuuuYbMzExUKhWffPIJeXl5Q7C3giCcavp6jPnyyy+55pprKCsrIzw8fCh3VRCEU1RfjzNPPfUUL774IqWlpf5lzz77LH/729+orq4ekn0WBOHUpVAo+Pjjj7nsssuOuo4YA+47kaExBFwuF7m5ucyfP7/H8vnz57Nx48YjbrNp06bD1l+wYAHbt2/H7XYP2r4KgnBq6s9x5lCSJGE2m8WAgCAIR9Tf48x///tfSktLefjhhwd7FwVBOIX15xizYsUKpkyZwt/+9jcSEhIYOXIkDzzwAHa7fSh2WRCEU0x/jjOzZs2ipqaGVatWIcsyjY2NfPDBByxcuHAodlkQhB8BMQbcd+qTvQM/Bi0tLXi9XmJiYnosj4mJoaGh4YjbNDQ0HHF9j8dDS0sLcXFxg7a/giCcevpznDnUP/7xD6xWK4sWLRqMXRQE4RTXn+NMcXExv/vd71i3bh1qtTjtFATh6PpzjCkrK2P9+vUEBATw8ccf09LSws9+9jPa2tpEHw1BEA7Tn+PMrFmzeOedd1i8eDEOhwOPx8Mll1zCs88+OxS7LAjCj4AYA+47kaExhBQKRY/bsiwftux46x9puSAIwgF9Pc4csHTpUh555BGWLVtGdHT0YO2eIAingd4eZ7xeL9dddx2PPvooI0eOHKrdEwThFNeXcxlJklAoFLzzzjtMmzaNCy+8kH/+85/873//E1kagiAcVV+OM4WFhdx333089NBD5Obm8uWXX1JeXs6SJUuGYlcFQfiREGPAfSOmyg2ByMhIVCrVYRH/pqamwyJwB8TGxh5xfbVaTURExKDtqyAIp6b+HGcOWLZsGbfddhvvv/8+55577mDupiAIp7C+HmfMZjPbt29n586d3HPPPYBv8FGWZdRqNatXr+acc84Zkn0XBGH468+5TFxcHAkJCYSEhPiXjRkzBlmWqampITMzc1D3WRCEU0t/jjNPPPEEs2fP5te//jUA48ePx2g0MnfuXP70pz+JmdOCIJwwMQbcdyJDYwhotVpycnJYs2ZNj+Vr1qxh1qxZR9xm5syZh62/evVqpkyZgkajGbR9FQTh1NSf4wz4MjNuueUW3n33XVEHVhCEY+rrcSY4OJj8/Hzy8vL8X0uWLGHUqFHk5eUxffr0odp1QRBOAf05l5k9ezZ1dXVYLBb/sv3796NUKhkxYsSg7q8gCKee/hxnbDYbSmXPoTOVSgV0z6AWBEE4EWIMuO9EQGOI3H///bz66qu8/vrr7N27l1/+8pdUVVX50xR///vfc9NNN/nXX7JkCZWVldx///3s3buX119/nddee40HHnjgZD0FQRCGub4eZ5YuXcpNN93EP/7xD2bMmEFDQwMNDQ2YTKaT9RQEQRjm+nKcUSqVZGdn9/iKjo4mICCA7OxsjEbjyXwqgiAMQ309l7nuuuuIiIjg1ltvpbCwkB9++IFf//rX/OQnP0Gv15+spyEIwjDW1+PMxRdfzEcffcSLL75IWVkZGzZs4L777mPatGnEx8efrKchCMIwZrFY/BO6AMrLy8nLy6OqqgoQY8ADQZScGiKLFy+mtbWVxx57jPr6erKzs1m1ahXJyckA1NfX+9/YAKmpqaxatYpf/vKXPP/888THx/PMM89w5ZVXnqynIAjCMNfX48zLL7+Mx+Ph7rvv5u677/Yvv/nmm/nf//431LsvCMIpoK/HGUEQhL7o6zEmMDCQNWvWcO+99zJlyhQiIiJYtGgRf/rTn07WUxAEYZjr63HmlltuwWw289xzz/GrX/2K0NBQzjnnHJ588smT9RQEQRjmtm/fztlnn+2/ff/99wPdYy1iDPjEKWSRIycIgiAIgiAIgiAIgiAIgiAIwjAnSk4JgiAIgiAIgiAIgiAIgiAIgjDsiYCGIAiCIAiCIAiCIAiCIAiCIAjDnghoCIIgCIIgCIIgCIIgCIIgCIIw7ImAhiAIgiAIgiAIgiAIgiAIgiAIw54IaAiCIAiCIAiCIAiCIAiCIAiCMOyJgIYgCIIgCIIgCIIgCIIgCIIgCMOeCGgIgiAIgiAIgiAIgiD8f3t2LAAAAAAwyN96GjtKIwBgT2gAAAAAAAB7QgMAAAAAANgTGgAAAAAAwJ7QAAAAAAAA9gIoHEGMwEYHHgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "decomp = GatherByOffset(T_interp,coefs,offsets)\n", "fig = plt.figure(figsize=(20,10))\n", "for offset,(time,coef) in decomp.items():\n", " plt.plot(time,coef)\n", "plt.legend(decomp.keys(),ncol=7);\n", "savefig(fig,\"Coefs_Vor5.pdf\")" ] }, { "cell_type": "code", "execution_count": 54, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:18.998885Z", "iopub.status.busy": "2024-04-30T08:46:18.998763Z", "iopub.status.idle": "2024-04-30T08:46:19.001253Z", "shell.execute_reply": "2024-04-30T08:46:19.001019Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Matrix eigenvalues : [16.09060444 5.79356695 5.18317148 0.28922182 0.53419682]\n", "Coefficients : [0.63645127 0.29439048 1.75636743 0.19158944 0.20794792 1.34492959\n", " 0.90525318 0.7313639 0.19515092 0.15422503 0.35351432 0.66033955\n", " 0.41295122 1.18902423 0.11726199]\n", "Offsets : \n", " [[ 2 2 1 1 2 0 1 0 1 1 0 0 1 1 1]\n", " [ 1 1 1 2 2 0 0 1 -1 1 1 1 -1 1 0]\n", " [ 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0]\n", " [ 0 0 0 -1 0 0 0 -1 1 0 0 -1 1 0 1]\n", " [ 0 -1 0 0 -1 1 0 0 -1 -1 0 1 0 0 -1]]\n" ] } ], "source": [ "print(\"Matrix eigenvalues : \",np.linalg.eigvals(D5_interp[...,0]))\n", "print(\"Coefficients : \", coefs[...,0])\n", "print(\"Offsets : \\n\", offsets[...,0].astype(int))" ] }, { "cell_type": "code", "execution_count": 55, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:19.002714Z", "iopub.status.busy": "2024-04-30T08:46:19.002612Z", "iopub.status.idle": "2024-04-30T08:46:19.004499Z", "shell.execute_reply": "2024-04-30T08:46:19.004264Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Decomposed matrix : \n", " [[ 9.47698215e+00 5.56816864e+00 3.78013118e+00 5.33774689e-01\n", " -1.47131475e+00]\n", " [ 5.56816864e+00 7.98192782e+00 2.07286383e+00 -2.38298448e+00\n", " -9.02088673e-03]\n", " [ 3.78013118e+00 2.07286383e+00 5.14894904e+00 -2.47388327e-01\n", " 2.00526914e+00]\n", " [ 5.33774689e-01 -2.38298448e+00 -2.47388327e-01 2.30865702e+00\n", " -9.72752458e-01]\n", " [-1.47131475e+00 -9.02088673e-03 2.00526914e+00 -9.72752458e-01\n", " 2.97424548e+00]]\n" ] } ], "source": [ "print(\"Decomposed matrix : \\n\",D5_interp[...,0])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 3.3 Spanning, of the lattice $Z^d$ by the tensor decomposition offsets. \n", "\n", "The tensor decompositions presented in this notebook are intended as the foundation to finite difference schemes. \n", "The offsets $(e_i)_{i=1}^I$ involved in the decomposition of a tensor $D = D(x)$ appearing in the discretized PDE, thus determine the local connectivity of the discretization grid around $x$.\n", "\n", "In order to avoid chessboard artifacts, it is desirable that the offsets span the lattice $Z^d$ (using integer coefficients), which is referred to as the *spanning property*. Let us recall that a set of $d$ vectors $e_1,\\cdots,e_d \\in Z^d$ span the lattice $Z^d$ with integer coefficients iff\n", "$$\n", " \\det(e_1,\\cdots,e_d)=1.\n", "$$\n", "\n", "*General findings* In dimension $d\\leq 4$, the spanning property is guaranteed for the implemented tensor decomposition. In dimension $d=5$, it is not, but we provide a fix for it. However, it is not clear that this fix is desirable in practical implementations." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Four dimensional decompositions span**\n", "\n", "We can guarantee, by theoretical arguments, that our decompositions of $4\\times 4$ SPD tensors obey the spanning property." ] }, { "cell_type": "code", "execution_count": 56, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:19.005963Z", "iopub.status.busy": "2024-04-30T08:46:19.005863Z", "iopub.status.idle": "2024-04-30T08:46:19.015172Z", "shell.execute_reply": "2024-04-30T08:46:19.014823Z" } }, "outputs": [], "source": [ "coefs,offsets = VoronoiDecomposition(D4)" ] }, { "cell_type": "code", "execution_count": 57, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:19.016795Z", "iopub.status.busy": "2024-04-30T08:46:19.016698Z", "iopub.status.idle": "2024-04-30T08:46:19.019337Z", "shell.execute_reply": "2024-04-30T08:46:19.019102Z" } }, "outputs": [ { "data": { "text/plain": [ "-1.0" ] }, "execution_count": 57, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.linalg.det(offsets[:,0:4])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**An intruiguing special case**\n", "\n", "Interestingly, there are exists tensors $D\\in S_4^{++}$ admitting an optimal decomposition, in the sense of Voronoi's first reduction see above, which is not spanning." ] }, { "cell_type": "code", "execution_count": 58, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:19.020650Z", "iopub.status.busy": "2024-04-30T08:46:19.020557Z", "iopub.status.idle": "2024-04-30T08:46:19.022557Z", "shell.execute_reply": "2024-04-30T08:46:19.022325Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "A tensors admitting a non-unique optimal decomposition : [[ 2 -1 -1 1]\n", " [-1 2 0 -1]\n", " [-1 0 2 -1]\n", " [ 1 -1 -1 2]]\n", "Coefficients of an optimal decomposition : [1 1 1 1]\n", "Offsets of an optimal decomposition : [[ 0 0 1 1]\n", " [ 0 1 -1 0]\n", " [ 1 0 0 -1]\n", " [ 0 -1 0 1]]\n" ] } ], "source": [ "print(\"A tensors admitting a non-unique optimal decomposition : \", D4_NonUnique)\n", "print(\"Coefficients of an optimal decomposition : \", coefs_NonUnique)\n", "print(\"Offsets of an optimal decomposition : \", offsets_NonUnique)" ] }, { "cell_type": "code", "execution_count": 59, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:19.023981Z", "iopub.status.busy": "2024-04-30T08:46:19.023886Z", "iopub.status.idle": "2024-04-30T08:46:19.025968Z", "shell.execute_reply": "2024-04-30T08:46:19.025746Z" } }, "outputs": [ { "data": { "text/plain": [ "-2.0" ] }, "execution_count": 59, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.linalg.det(offsets_NonUnique)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "However, our tensor decomposition method selects a different decomposition, which is spanning." ] }, { "cell_type": "code", "execution_count": 60, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:19.027306Z", "iopub.status.busy": "2024-04-30T08:46:19.027215Z", "iopub.status.idle": "2024-04-30T08:46:19.034690Z", "shell.execute_reply": "2024-04-30T08:46:19.034334Z" } }, "outputs": [], "source": [ "coefs,offsets = VoronoiDecomposition(D4_NonUnique)" ] }, { "cell_type": "code", "execution_count": 61, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:19.036271Z", "iopub.status.busy": "2024-04-30T08:46:19.036161Z", "iopub.status.idle": "2024-04-30T08:46:19.038547Z", "shell.execute_reply": "2024-04-30T08:46:19.038295Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Coefficients : [0.33333333 0.33333333 0.33333333 0.33333333 0.33333333 0.33333333\n", " 0.33333333 0.33333333 0.33333333 0.33333333 0.33333333 0.33333333]\n", "Offsets : \n", " [[ 0 0 0 1 0 0 1 0 1 1 1 1]\n", " [ 0 0 1 0 1 0 0 1 -1 -1 0 -1]\n", " [ 0 1 0 0 0 1 -1 -1 0 0 -1 -1]\n", " [ 1 0 0 0 -1 -1 0 0 0 1 1 1]]\n" ] } ], "source": [ "print(\"Coefficients : \", coefs)\n", "print(\"Offsets : \\n\", offsets.astype(int))" ] }, { "cell_type": "code", "execution_count": 62, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:19.039825Z", "iopub.status.busy": "2024-04-30T08:46:19.039735Z", "iopub.status.idle": "2024-04-30T08:46:19.041935Z", "shell.execute_reply": "2024-04-30T08:46:19.041708Z" } }, "outputs": [ { "data": { "text/plain": [ "1.0" ] }, "execution_count": 62, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.linalg.det(offsets[:,0:4])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Five dimensional decompositions may not span**\n", "\n", "We present below a tensor $D\\in S_5^{++}$ whose Voronoi's decomposition is unique and non-spanning. Note that the choice of these offsets is very specific, coming from a fine theoretical description of Voronoi's first reduction, the associated *perfect forms*, and their minimal vectors." ] }, { "cell_type": "code", "execution_count": 63, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:19.043321Z", "iopub.status.busy": "2024-04-30T08:46:19.043220Z", "iopub.status.idle": "2024-04-30T08:46:19.045229Z", "shell.execute_reply": "2024-04-30T08:46:19.044985Z" } }, "outputs": [], "source": [ "coefs_NonSpanning = np.array([1,1,1,1,1])\n", "offsets_NonSpanning = np.transpose(np.array(\n", " [[0,0,1,0,1],[0,0,1,1,0],[0,1,0,0,0],[1,0,0,0,0],[1,1,0,1,1]]))" ] }, { "cell_type": "code", "execution_count": 64, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:19.046558Z", "iopub.status.busy": "2024-04-30T08:46:19.046461Z", "iopub.status.idle": "2024-04-30T08:46:19.048044Z", "shell.execute_reply": "2024-04-30T08:46:19.047821Z" } }, "outputs": [], "source": [ "D5_NonSpanning = Reconstruct(coefs_NonSpanning,offsets_NonSpanning)" ] }, { "cell_type": "code", "execution_count": 65, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:19.049301Z", "iopub.status.busy": "2024-04-30T08:46:19.049223Z", "iopub.status.idle": "2024-04-30T08:46:19.050932Z", "shell.execute_reply": "2024-04-30T08:46:19.050716Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "-2.0\n" ] } ], "source": [ "print(np.linalg.det(offsets_NonSpanning))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As can illustrated below, the explicit decomposition in terms of coefficients and offsets maximizes the sum of the weights (a property which defines Voronoi's reduction). In addition, and contrary to the previous four dimensional example, this maximizer is non-degenerate and attained for a unique decomposition - the one represented above which is reproduced by our decomposition algorithm." ] }, { "cell_type": "code", "execution_count": 66, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:19.052307Z", "iopub.status.busy": "2024-04-30T08:46:19.052225Z", "iopub.status.idle": "2024-04-30T08:46:19.060064Z", "shell.execute_reply": "2024-04-30T08:46:19.059687Z" } }, "outputs": [], "source": [ "coefs,offsets = VoronoiDecomposition(D5_NonSpanning)" ] }, { "cell_type": "code", "execution_count": 67, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:19.061637Z", "iopub.status.busy": "2024-04-30T08:46:19.061518Z", "iopub.status.idle": "2024-04-30T08:46:19.063962Z", "shell.execute_reply": "2024-04-30T08:46:19.063722Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Sum of coefficients : 5.0\n", "Coefficients : [0. 1. 1. 0. 0. 1. 0. 0. 0. 0. 0. 1. 1. 0. 0.]\n", "Offsets : \n", " [[ 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0]\n", " [ 0 0 0 1 0 0 0 1 1 0 0 1 1 1 1]\n", " [ 0 0 1 0 0 1 1 0 0 1 1 0 0 1 -1]\n", " [ 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0]\n", " [ 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0]]\n" ] } ], "source": [ "print(\"Sum of coefficients : \", np.sum(coefs))\n", "print(\"Coefficients : \", coefs)\n", "print(\"Offsets : \\n\", offsets.astype(int))" ] }, { "cell_type": "code", "execution_count": 68, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:19.065319Z", "iopub.status.busy": "2024-04-30T08:46:19.065223Z", "iopub.status.idle": "2024-04-30T08:46:19.067196Z", "shell.execute_reply": "2024-04-30T08:46:19.066950Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[1 0 0 1 0]\n", " [0 0 0 1 1]\n", " [0 1 1 0 0]\n", " [0 1 0 1 0]\n", " [0 0 1 1 0]]\n" ] } ], "source": [ "print(offsets[:,coefs>0].astype(int)) # Same as offsets_NonUnique" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**A fix for the spanning property**\n", "\n", "Let $D$ be a PSD tensor. Then it is always possible to construct a decomposition of $D$ with the spanning property by adding the decompositions of \n", "$$\n", " D = \\lambda I + (D-\\lambda I),\n", "$$\n", "where $\\lambda>0$ is sufficiently small, so that $D-\\lambda I$ is positive definite. A natural choice is to set $\\lambda := \\frac 1 2 \\lambda_{\\min}(D)$, half the smallest eigenvalue of $D$.\n", "\n", "Recalling that the decomposition of the identity matrix is\n", "$$\n", " I = \\sum_{1 \\leq i \\leq d} e_i e_i^T,\n", "$$\n", "we obtain a tensor decomposition which is spanning. " ] }, { "cell_type": "code", "execution_count": 69, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:19.068547Z", "iopub.status.busy": "2024-04-30T08:46:19.068449Z", "iopub.status.idle": "2024-04-30T08:46:19.070145Z", "shell.execute_reply": "2024-04-30T08:46:19.069931Z" } }, "outputs": [], "source": [ "alpha = np.min(np.linalg.eigvals(D5_NonSpanning))/2" ] }, { "cell_type": "code", "execution_count": 70, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:19.071485Z", "iopub.status.busy": "2024-04-30T08:46:19.071388Z", "iopub.status.idle": "2024-04-30T08:46:19.079619Z", "shell.execute_reply": "2024-04-30T08:46:19.079212Z" } }, "outputs": [], "source": [ "coefs,offsets = VoronoiDecomposition(D5_NonSpanning - alpha*np.eye(5))\n", "coefs = np.concatenate([alpha*np.ones(5),coefs],axis=0)\n", "offsets = np.concatenate([np.eye(5),offsets],axis=1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The new decomposition reproduces the norm, and is spanning, as checked below." ] }, { "cell_type": "code", "execution_count": 71, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:19.081318Z", "iopub.status.busy": "2024-04-30T08:46:19.081202Z", "iopub.status.idle": "2024-04-30T08:46:19.083220Z", "shell.execute_reply": "2024-04-30T08:46:19.082986Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.0\n" ] } ], "source": [ "print(LInfNorm(D5_NonSpanning - Reconstruct(coefs,offsets)))" ] }, { "cell_type": "code", "execution_count": 72, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:19.084511Z", "iopub.status.busy": "2024-04-30T08:46:19.084421Z", "iopub.status.idle": "2024-04-30T08:46:19.086422Z", "shell.execute_reply": "2024-04-30T08:46:19.086205Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Coefs : [0.15933468 0.15933468 0.15933468 0.15933468 0.15933468 0.36266129\n", " 0.15933468 0.15933468 0.15933468 0.52199597 0.15933468 0.31866936\n", " 0.52199597 0.52199597 0.15933468 0. 0. 0.36266129\n", " 0.15933468 0.15933468]\n", "Offsets : \n", " [[ 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0]\n", " [ 0 1 0 0 0 1 0 0 0 1 1 1 0 0 1 1 2 0 1 1]\n", " [ 0 0 1 0 0 0 1 0 0 0 1 -1 1 1 1 0 0 0 0 0]\n", " [ 0 0 0 1 0 0 1 1 0 1 1 0 1 0 1 0 1 0 0 1]\n", " [ 0 0 0 0 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1 0]]\n" ] } ], "source": [ "print(\"Coefs : \", coefs)\n", "print(\"Offsets : \\n\", offsets.astype(int))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "However, this decomposition is not optimal from the point of view of the sum of weights, and of the offsets norms." ] }, { "cell_type": "code", "execution_count": 73, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:19.087804Z", "iopub.status.busy": "2024-04-30T08:46:19.087658Z", "iopub.status.idle": "2024-04-30T08:46:19.089528Z", "shell.execute_reply": "2024-04-30T08:46:19.089305Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Sum of coefficients : 4.521995965407466\n", "Max offset norm : 2.6457513110645907\n" ] } ], "source": [ "print(\"Sum of coefficients : \", np.sum(coefs))\n", "print(\"Max offset norm : \", np.max(np.linalg.norm(offsets,axis=0)))" ] }, { "cell_type": "code", "execution_count": 74, "metadata": { "execution": { "iopub.execute_input": "2024-04-30T08:46:19.090818Z", "iopub.status.busy": "2024-04-30T08:46:19.090718Z", "iopub.status.idle": "2024-04-30T08:46:19.092478Z", "shell.execute_reply": "2024-04-30T08:46:19.092250Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Optimal sum of coefficients : 5\n", "Canonical offset norm : 2.0\n" ] } ], "source": [ "print(\"Optimal sum of coefficients : \", np.sum(coefs_NonSpanning))\n", "print(\"Canonical offset norm : \", np.max(np.linalg.norm(offsets_NonSpanning,axis=0)))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "celltoolbar": "Format de la Cellule Texte Brut", "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.8" }, "varInspector": { "cols": { "lenName": 16, "lenType": 16, "lenVar": 40 }, "kernels_config": { "python": { "delete_cmd_postfix": "", "delete_cmd_prefix": "del ", "library": "var_list.py", "varRefreshCmd": "print(var_dic_list())" }, "r": { "delete_cmd_postfix": ") ", "delete_cmd_prefix": "rm(", "library": "var_list.r", "varRefreshCmd": "cat(var_dic_list()) " } }, "types_to_exclude": [ "module", "function", "builtin_function_or_method", "instance", "_Feature" ], "window_display": false } }, "nbformat": 4, "nbformat_minor": 2 }