
D
RA
FT

[Draft v0.2] Heuristic framework for generalized transaction tree analysis1

2

Contents3

1 Notation 14

2 Formalizing fungibility defects 25

2.1 Framework for Boolean traits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Extension for valued traits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Statistical analysis 38

3.1 Defect analysis (B and V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Studying Boolean defects (B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

3.1.2 Studying valued defects (V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

3.2 Studying chains of defects (C and E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

4 Comments 513

4.1 Shape of the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514

4.2 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515

4.3 Implications for blockchain analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516

4.4 Windowed implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517

5 Example Applications 518

5.1 Incorrect decoy selection algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519

5.1.1 Uniform or old-weighted decoy selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520

5.1.2 Juvenile spending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521

5.1.3 Cached ring members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522

5.2 Unlock time L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623

5.2.1 Resembling height differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624

5.2.2 Resembling heights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625

5.2.3 Resembling timestamps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626

5.3 Transaction extra contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627

5.3.1 Intertransaction duplicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628

5.3.2 Unencrypted payment ID after deprecation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629

5.3.3 No payment ID after inclusion on all transactions by core software . . . . . . . . . . . . . . . . . . . . 730

5.3.4 Payment ID contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731

5.3.5 Extra transaction public keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732

5.3.6 Transaction extra ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733

5.4 Unusual fees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734

5.4.1 Outlier fees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 735

5.4.2 Round fees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736

5.5 Ring size (has been addressed) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737

5.6 Single output transactions (has been addressed) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 838

5.7 Network analysis (off chain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 839

5.8 Age analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 840

to-do: intro, references, SQL implementation, figures, esploristo warnings41

1 Notation42

Let x refer to an output on the blockchain. Let t refer to a transaction on the blockchain. Define T (x) to indicate the43

transaction that created the output x. Let z refer to the ring size (currently 11) and let |I(t)| be the number of inputs44

(i.e. number of ring signatures) for transaction t, and |O(t)| be the number of outputs created by transaction t. For45
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convenience, in this draft we will discard structure for which ring members belong to which ring signatures, and throw46

them all into one set R(t) with k = z ∗ |I(t)| elements indexed by any arbitrary deterministic order (e.g. sorted ascending47

by one time “stealth” address value). Defining xit to reference the ith output used as a ring member in transaction t, we48

see R(t) = {x1t , x2t , x3t , ..., xkt } = {r1, r2, r3, ..., rk}. Whereas R(t) refers to a set of outputs, we define P (t) as the set of49

transactions that generated those outputs, i.e. P (t) = {T (x1t ), T (x2t ), T (x3t ), ..., T (xkt )} = {p1, p2, p3, ..., pk}50

2 Formalizing fungibility defects51

Let f refer to some type of fungibility defect, such as an incorrect decoy selection algorithm, juvenile ring members, an52

unusual unlock time, etc. Bf (t) is a Boolean where the logic for each heuristic is described based on characteristics of the53

transaction.54

Example: The core wallet always waits 10 blocks for outputs to unlock before including them in transactions. Wal-55

lets that ignored this rule and spent outputs too quickly left on-chain evidence evidence of ‘juvenile’ transactions,56

which allowed them to be fingerprinted as originating from non-core software.57

First, we define H(t) as the height of the block containing the transaction t. To analyze juvenile spending within58

this framework, define Bf as follows:59

Bjuv(t) =

{
True if ∃x ∈ R(t) such that H(t)−H(T (x)) < 10

False otherwise
(1)

2.1 Framework for Boolean traits60

Now we define a way to keep track of chains in the transaction tree, so we’ll use an integer counter for number of transactions61

in a chain that all have the same defect.62

Cmax
f (t) =

{
0 if Bf (t) is False

1 +max(Cmax
f (P (t))) otherwise

(2)

Where max(Cmax
f (P (t)) = max({Cmax

f (p1), Cmax
f (p2), Cmax

f (p3))), ...}). This is interpreted as follows: Given a particular63

transaction t′, if Cf (t′) = 5, this indicates that defect f was observed in this transaction t, and was observed in one or more of64

the (parent) transactions P (t), and observed in their parent transactions, and so forth, in an unbroken chain of 5 transactions65

(4 hops). The selection of max chooses to track the longest defective chain if there are more than 1 ring members satisfying66

Cmax
f (pi) > 0. This type of situation (Bf (t) Boolean and Cmax

f (t) counter) is shown in figure 1.67

An analogously constructed Cmin
f will be useful later68

Cmin
f (t) =

{
0 if Bf (t) is False

1 +min(Cmin
f (P (t))) otherwise

(3)

Naturally, these chains will not always represent the actual spend pattern, as there will be some false positives, which69

can be modeled from the empirical distribution of outputs with Bf (T (x)) = True and the decoy selection algorithm (at that70

time). Longer chains are (statistically) less likely to represent false positives so, while a chain with Cmax
juv = 2 may not be71

remarkable, a chain with Cmax
juv = 15 is likely to represent the actual spend path (perhaps due to impatient churn, or change72

address linking).73

2.2 Extension for valued traits74

The example heuristic in the previous section Bjuv had a simple True/False outcome - either the wallet waited 10 blocks, or75

it didn’t. Now consider a defect like unlock time that contains any uint64 value, i.e. integer on [0, 18446744073709551615].76

Let U(t) be the value of the unlock time field in transaction t. We can make strong and weak counters.77

The weak counter resembles the previous section, we’ll start with defining Bf , in this case we’ll take any non-zero value78

to be a ‘defect’.79

Block(t) =

{
True if U(t) > 0

False if U(t) = 0
(4)

The counter Cf as described in the previous section will keep track of the length of chained reactions with any nonzero80

lock time (the weak constraint).81

Cmax
lock (t) =

{
0 if Block(t) is False

1 +max(Cmax
lock (P (t)) otherwise

(5)
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f (t) counter function to the transaction graph

However, we can also build a counter with stronger constraints such as exact matches, by (generally) mapping the82

transaction to a single value Vf (t). In specific example of unlock time, this value is simply the unlock time, Vlock(t) = U(t).83

Analogous to the weak match counter Cf we will define an exact match counter Ef ,84

Emax
f (t) =

{
0 if 6 ∃pi ∈ P (t) such that Vf (pi) = Vf (t)

1 +max(Emax
f (P (t)) otherwise

(6)

Thus if Elock(t) = 5, this indicates 5 chained transactions with the exact same value for the unlock time. This type of85

situation (Vf (t) value and Emax
f (t) exact match counter) is shown in figure 2.86

Note that there is lots of flexibility in how these constraints are designed. For example, we could define yet another unlock87

time heuristic (lkht) and counter by specifying a specific wallet fingerprint, such as using the unlock time field to represent88

a block height (250 ≤ U(t) < 500, 000, 000). This is accomplished by defining89

Blkht(t) =

{
True if 250 ≤ U(t) < 500, 000, 000

False otherwise
(7)

and using Cmax
lkht (t) as defined in equation 2 as the counter.90

3 Statistical analysis91

3.1 Defect analysis (B and V )92

This section describes general tips and general first steps exploratory data analysis of fungibility defects, examining whether93

they leak information, and the degree of impact.94

3.1.1 Studying Boolean defects (B)95

Let < B > be the total number of transactions included, and < Bf > be the number of transactions for which Bf (t) = True.96

First note < Bf > / < B >. If 0% or 100% of transactions exhibit the same characteristic, then there is nothing to worry97

about - the transactions all resemble each other (with respect to this feature) which is the goal for fungibility.98

For visualizations, consider a scatter plot showing (y =) fraction of transactions exhibiting a characteristic versus (x =)99

time (or height). Note that calculation of the trace’s y value could be accomplished either by binning (e.g. by month) or a100

rolling average over < Bf > / < B >.101
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Figure 2: Applying a Vf (t) value and Emax
f (t) exact match counter function to the transaction graph.

3.1.2 Studying valued defects (V )102

First, plot a histogram of Vf (t) to get a sense of the distribution. Indistinguishability can be achieved if all transactions103

have the same Vf (t), which appears as a single spike on the histogram. Alternately, fungibility may be achieved if the104

Vf (t) is uniformly distributed, which appears as a horizontally flat histogram. Distributions/histograms that suggest an105

information leak include those with multiple peaks (e.g. fees), or a nearly-uniform distribution that exhibits some deviations106

(e.g. CryptoNote nonces).107

To see trends that change over time, consider a heatmap where the x-axis is time (or height), the y-axis is Vf , and the108

z-axis (or color) showing the count in that bin.109

3.2 Studying chains of defects (C and E)110

Examine the distribution of chain lengths for any heuristic. We desire a list of Qf values which describe the lengths of chains111

observed in the transaction graph (keeping only the longest value from each chain). This Qf list can be generated from either112

Cf of Ef (whichever is applicable). For respective examples, note that the set of chain lengths shown in figure 1 is (4, 4, 1),113

and for 2 is (3, 3, 6).114

While some chains of fungibility defects will represent repeated transactions generated by a custom or malfunctioning115

wallet (consider this a true positive) there will occasionally be chains that arise by statistical chance through serendipitous116

decoys selection (false positive).117

The false positive rate could be determined by asking how statistically likely it is for a given chain (length) to arise from118

random selection of outputs. However this is not a trivial exercise, since it must take into account both the decoy selection119

algorithm and the empirical distribution of the defects in the chain history.120

For defects that are observed in less than half of the outputs (under weighted consideration by the decoy selection121

algorithm) the false positive rate will decrease as chain length increases. (In other words, defect chains of length 2 are122

statistically noisy, but (for example) a chain of length of 20 for a defect with a 2% incidence rate is quite statistically123

powerful!124

Given this, visualizing the distribution (histogram of Qf values) of chain length provides an intuitive way to estimate125

a significance threshold for a given fungibility defect. Due to false positives, low values of chain length will contain chance126

matches, but this should drop off relatively quickly for longer chains. Outliers at high values (long chain lengths) are127

statistically likely to represent true spend patterns, often due to change outputs (TXOs) that link many transactions generated128

by the same wallet.129

To see how the statistics around chain length for a given fungibility defect change over time, consider a scatter plot of130

(y =) Qf values versus (x =) the height of the last transaction in the chain.131
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4 Comments132

4.1 Shape of the data133

This framework is designed to be implemented in a relational database, e.g. SQL where each row is a transaction and columns134

can be added as necessary to calculate and store the flags and counters such as Bf , Cf , Vf , Ef .135

4.2 Efficiency136

Note that calculating each set of features for the entire blockchain only requires a single O(N) pass from the genesis block137

up to the current height. No recursion is necessary to calculate chain lengths leading to a given transaction.138

4.3 Implications for blockchain analysis139

If one is applying probabilistic methods for graph matching on the transaction tree, some efficiency may be gained by140

initializing the weights based on defect chains where possible (then apply other heuristic(s) for the remaining edges based on141

the decoy selection algorithms and/or spend time distribution priors).142

4.4 Windowed implementation143

For some analyses/heuristics, it might make sense to only look at a given period or subset of transactions, for example144

‘RingCT transactions’ or ‘Transactions after plaintext payment IDs were deprecated’. This can be handled by defining how145

Cf and/or Ef handle references to transactions outside the set under study. In most cases, a simple approach is to simply146

ignore those ring members, i.e. drop them from P (t), though this will not make sense in all contexts.147

5 Example Applications148

Here we note how various fungibility defects can be formulated in this framework, by defining Bf (t) or Vf (t) which are149

typically paired with Cmax
f and Emax

f respectively.150

5.1 Incorrect decoy selection algorithm.151

Note: let F (H(R(t))) = F ({H(r1), H(r2), H(r3), ...,H(rk)}) where F () is max() or median().152

5.1.1 Uniform or old-weighted decoy selection153

Apply some threshold ε e.g. 1 week154

Balgo(t) =

{
True if max(H(R(t)))−median(H(R(t))) > ε

False otherwise
(8)

5.1.2 Juvenile spending155

Bjuv(t) =

{
True if ∃x ∈ R(t) such that H(t)−H(T (x)) < 10

False otherwise
(9)

5.1.3 Cached ring members156

Transactions that reference the same handful of outputs G = g1, g2, ...g6. This has been observed in the wild, anecdotally157

attributed to a particular exchange.158

Bcache(t) =

{
True if (∀g ∈ G)g ∈ R(t)

False otherwise
(10)
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5.2 Unlock time L159

5.2.1 Resembling height differences160

Note that the Monero protocol does not support height differences in the protocol, so this is an incorrect use of the field.161

Observed low values:162

163

B(t) =

{
True if U(t) < 250

False if U(t) = 0
(11)

5.2.2 Resembling heights164

B(t) =

{
True if 250 ≤ U(t) < 500, 000, 000

False if U(t) = 0
(12)

5.2.3 Resembling timestamps165

B(t) =

{
True if U(t) ≥ 500, 000, 000

False if U(t) = 0
(13)

5.3 Transaction extra contents166

Let X(t) be a list of items in the transaction extra field for transaction t, such as plaintext payment identifiers (pPID),167

encrypted payment identifiers (ePID), public transaction key(s) (K), etc. Let #X(t).item resent the number of some item168

item in the transaction extra payload X(t). Let X(t).item.data represent the data itself (this glosses over the edge case of169

duplicate items containing different data, such as two non-matching pPIDs in the same transaction.)170

5.3.1 Intertransaction duplicates171

Unexpectedly and statistically unlikely collisions between different transactions have been located in the wild for the pPID,172

ePID, and K fields. Of course chance collisions are possible by chance, but they are statically extremely unlikely (the173

birthday problem on a 8 byte or 32 byte field) and certainly cannot account for the large number of duplicates observed on174

the blockchain (included often repeated collisions on the same values). In general, we should identify instances where175

B(t) =

{
True if ∃(t′)|t 6= t′ ∧X(t).item.data = X(t′).item.data

False otherwise
(14)

Checking the transactions pairwise would scale with O(N2) for number of transactions, but there is a faster approach.176

Consider a particular item category, such as pPID. First, let177

Jitem = {X(t1).item.data,X(t2).item.data,X(t3).item.data, ...,X(tm).item.data} represent a list containing data from each178

of the m transactions the item, and let Kitem be a list of the duplicates in Jitem. Then our fast way to construct the weak179

(non-matching) B(t) and C(t) data features is:180

B(t) =

{
True if X(t).item.data ∈ K
False otherwise

(15)

We could also make an exact match filter by declaring Vitem(t) = X(t).item.data and calculating Emax
item(t) according to181

equation 6182

5.3.2 Unencrypted payment ID after deprecation183

B(t) =

{
True if H(T ) > uDepHeight ∧#X(t).pPID > 0

False otherwise
(16)
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5.3.3 No payment ID after inclusion on all transactions by core software184

B(t) =

{
True if H(T ) > eEnfHeight ∧#X(t).ePID = 0

False otherwise
(17)

5.3.4 Payment ID contents185

(write this later)186

5.3.5 Extra transaction public keys187

Surprisingly, this happens, and we have seen #K(X(t))) = 1000 in the wild. May be related to https://hackerone.com/reports/377592188

B(t) =

{
True if #X(t).K > 0

False otherwise
(18)

5.3.6 Transaction extra ordering189

Link to Ukoe issues and related research190

5.4 Unusual fees191

5.4.1 Outlier fees192

Let F (t) be the fee attached to a transaction t and let F̂ (t) be the set of plausible fee values that the core wallet may have193

suggested (at any priority level) in the 1000 blocks leading up to H(t). In this case, the exact match filter on V (t) = F (t)194

could be useful. The weaker filter for any non-default fee is195

B(t) =

{
True if F (t) 6∈ F̂ (t)

False otherwise
(19)

5.4.2 Round fees196

Theoretically, we identify round fees by checking for transactions whose fees map to 0 modular some power of ten. The below197

equation uses XMR as the denomination, however note that the transaction & daemon store amounts as atomic units (each198

atomic unit corresponds to 10−12 XMR)199

B(t) =

{
True if F (t) = 0 (mod 0.001XMR)

False otherwise
(20)

Since most round fees have been used in multiple transactions, another (perhaps even more reliable) method for fishing200

out these transactions is checking for fees that have been used more than some threshold, for example showing up in more201

than 100 transactions.202

Taking into account Monero’s dynamic fee algorithm, high precision fees, and 10 block lock time, it is very unlikely203

that long chains of transactions with exactly identical fees will arise naturally. Thus we can define Vfee(t) = F (t) and then204

calculating Emax
item(t) according to equation 6.205

5.5 Ring size (has been addressed)206

Let z(t) be the ring size of transaction t and let ẑ(t) be the minimum ring size allowed by the protocol at the time that207

t was included in the blockchain. In this case, the exact match filter on V (t) = z(t) could be useful (for example, when208

MyMonero users frequently fingerprinted themselves with z = 41 due to the defaults on the web app). The weaker filter for209

any non-default ring size is210

B(t) =

{
True if z(t) > ẑ(t)

False otherwise
(21)

to be matched with Cmax as described in equation 2.211
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5.6 Single output transactions (has been addressed)212

B(t) =

{
True if |O(t)| = 1

False otherwise
(22)

and utilize Cmax as described in equation 2.213

5.7 Network analysis (off chain)214

If one is surveilling the network, the IP address could be treated as a valued trait. A hacky way to force the data into integer215

form by including leading 0s, prepending a 1, and retaining only the numerals. For example, in decimal:216

10.23.45.6 7→ VIP (t) = 1010023045006

10.234.5.6 7→ VIP (t) = 1010234005006
(23)

(There must be much better ways to do this, and I welcome suggestions.)217

In terms of dragnet surveillance, IP analysis is likely to be fraught with false positives. However, it may be effective218

for targeted surveillance when combined with other intelligence and network monitoring. Let IP (t) be the IP address from219

which a transaction appears to originate, and let LIP be a list of IP address(es) attributed to some entity.220

BIP (t) =

{
True if ∃i ∈ LIP such that i = IP (t)

False otherwise
(24)

Monero’s recent Dandelion integration increases the difficulty of the identifying transaction origins, and users concerned221

about network-layer surveillance can take additional measures to improve their security.222

5.8 Age analysis223

This is an partially unrelated topic, but the notation described above is convenient to describe it:224

Any given transaction and its outputs has many possible histories, which initially grows exponentially the more hops225

considered - given ring size z we initially expect zn possible histories looking n rounds deep. Of course, this does not increase226

indefinitely, as all paths eventually terminate at a coinbase.227

Naturally, each possible history starts at some coinbase and ends at t, and we can ask which path is the shortest. We will228

refer to the length of that path as the ‘youngest possible age’, which could be measured in hops, height, or time. Here, we229

show derivation Yhops(t), which is the length of the shortest chain of transactions from all possible histories.230

The Boolean Bf simply indicates whether or not the transaction references a coinbase.231

Bhops(t) =

{
False if ∃x ∈ R(t) where T (x) is a coinbase

True otherwise
(25)

Then Yhops(t) is simply Cmin
f (t) as described in equation 3232

Yhops(t) = Cmin
hops(t) =

{
0 if Bhops(t) is False

1 +min(Cmin
hops(P (t))) otherwise

(26)

This application of a Cmin(t) style counter for evaluating shortest distance to a coinbase is shown in figure 3.233

Youngest possible age in terms of height or days can be calculated in a related manner, and are left as an exercise to the234

reader.235

Looking at the empirical distribution of Yhops(t) values observed on the blockchain in real life, it will become apparent236

that some transactions have a plausible history with (including) no history, if a transaction references a coinbase and thus237

has Yhops(t) = 0. Other transactions that do not reference coinbases have Yhops(t) > 0 and are thus the funds guaranteed to238

have been received rather than mined. Of course, protocol could enforce 1 coinbase per ring to remove this difference.239
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Figure 3: Counting Yhops(t), the shortest path from any given transaction to a coinbase
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