
Chapter 4

Instrumental Variables in Action:

Sometimes You Get What You Need

Anything that happens, happens.

Anything that, in happening, causes something else to happen,

causes something else to happen.

Anything that, in happening,

causes itself to happen again, happens again.

It doesn�t necessarily do it in chronological order, though.

Douglas Adams, Mostly Harmless (1995)

Two things distinguish the discipline of Econometrics from our older sister �eld of Statistics. One is a lack

of shyness about causality. Causal inference has always been the name of the game in applied econometrics.

Statistician Paul Holland (1986) cautions that there can be �no causation without manipulation,�a maxim

that would seem to rule out causal inference from non-experimental data. Less thoughtful observers fall

back on the truism that �correlation is not causality.�Like most people who work with data for a living,

we believe that correlation can sometimes provide pretty good evidence of a causal relation, even when the

variable of interest has not been manipulated by a researcher or experimenter. 1

The second thing that distinguishes us from most statisticians� and indeed most other social scientists�

is an arsenal of statistical tools that grew out of early econometric research on the problem of how to estimate

the parameters in a system of linear simultaneous equations. The most powerful weapon in this arsenal is

the method of Instrumental Variables (IV), the subject of this chapter. As it turns out, IV does more than

allow us to consistently estimate the parameters in a system of simultaneous equations, though it allows us

1Recent years have seen an increased willingness by statisticians to discuss statistical models for observational data in an

explicitly causal framework; see, for example, Freedman�s (2005) review.
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to do that as well.

Studying agricultural markets in the 1920s, the father and son research team of Phillip and Sewall

Wright were interested in a challenging problem of causal inference: how to estimate the slope of supply

and demand curves when observed data on prices and quantities are determined by the intersection of these

two curves. In other words, equilibrium prices and quantities� the only ones we get to observe� solve these

two stochastic equations at the same time. Upon which curve, therefore, does the observed scatterplot of

prices and quantities lie? The fact that population regression coe¢ cients do not capture the slope of any

one equation in a set of simultaneous equations had been understood by Phillip Wright for some time. The

IV method, �rst laid out in Wright (1928), solves the statistical simultaneous equations problem by using

variables that appear in one equation to shift this equation and trace out the other. The variables that do

the shifting came to be known as instrumental variables (Reiersol, 1941).

In a separate line of inquiry, IV methods were pioneered to solve the problem of bias from measurement

error in regression models2 . One of the most important results in the statistical theory of linear models is

that a regression coe¢ cient is biased towards zero when the regressor of interest is measured with random

errors (to see why, imagine the regressor contains only random error; then it will be uncorrelated with the

dependent variable, and hence the regression of yi on this variable will be zero). Instrumental variables

methods can be used to eliminate this sort of bias.

Simultaneous equations models (SEMs) have been enormously important in the history of econometric

thought. At the same time, few of today�s most in�uential applied papers rely on an orthodox SEM frame-

work, though the technical language used to discuss IV still comes from this framework. Today, we are

more likely to �nd IV used to address measurement error problems than to estimate the parameters of an

SEM. Undoubtedly, however, the most important contemporary use of IV is to solve the problem of omitted

variables bias. IV solves the problem of missing or unknown control variables, much as a randomized trial

obviates the need for extensive controls in a regression.3

4.1 IV and causality

We like to tell the IV story in two iterations, �rst in a restricted model with constant e¤ects, then in

a framework with unrestricted heterogeneous potential outcomes, in which case causal e¤ects must also be

heterogeneous. The introduction of heterogeneous e¤ects enriches the interpretation of IV estimands, without

changing the mechanics of the core statistical methods we are most likely to use in practice (typically, two-

stage least squares). An initial focus on constant e¤ects allows us to explain the mechanics of IV with a

2Key historical references here are Wald (1940) and Durbin (1954), both discussed below.
3See Angrist and Krueger (2001) for a brief exposition of the history and uses of IV; Stock and Trebbi (2003) for a detailed

account of the birth of IV; and Morgan (1990) for an extended history of econometric ideas, including the simultaneous equations

model.
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minimum of fuss.

To motivate the constant-e¤ects setup as a framework for the causal link between schooling and wages,

suppose, as before, that potential outcomes can be written

ysi � fi (s) ;

and that

fi (s) = ρs + �i; (4.1.1)

as in the introduction to regression in Chapter 3. Also, as in the earlier discussion, imagine that there is a 

vector of control variables, Ai, called �ability�, that gives a selection-on-observables story:

�i = α+A0i+ vi;

where  is again a vector of population regression coe¢ cients, so that vi and Ai are uncorrelated by con-

struction. For now, the variables Ai, are assumed to be the only reason why � i and si are correlated, 

so that

E[sivi] = 0:

In other words if Ai were observed, we would be happy to include it in the regression of wages on schooling; 

thereby producing a long regression that can be written

yi = �+ �si +A0i + vi: (4.1.2)

Equation (4.1.2) is a version of the linear causal model, (3.2.9). The error term in this equation is the

random part of potential outcomes, vi, left over after controlling for Ai. This error term is uncorrelated with

schooling by assumption. If this assumption turns out to be correct, the population regression of yi on si

and Ai produces the coe¢ cients in (4.1.2).

The problem we initially want to tackle is how to estimate the long-regression coe¢ cient, �, when Ai is

unobserved. Instrumental variables methods can be used to accomplish this when the researcher has access

to a variable (the instrument, which we�ll call zi), that is correlated with the causal variable of interest, si,

but uncorrelated with any other determinants of the dependent variable. Here, the phrase "uncorrelated

with any other determinants of the dependent variables" is like saying Cov(�i;zi) = 0; or, equivalently, zi

is uncorrelated with both Ai and vi. This statement is called an exclusion restriction since zi can be said

to be excluded from the causal model of interest. The exclusion restriction is a version of the conditional

independence assumption of the previous chapter, except that now it is the instrument which is independent

of potential outcomes, instead of schooling itself (the "conditional" in conditional independence enters into
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the discussion when we consider IV models with covariates).

Given the exclusion restriction, it follows from equation (4.1.2) that

� =
Cov(yi; zi)
Cov(si; zi)

=
Cov(yi; zi)=V (zi)
Cov(si; zi)=V (zi)

: (4.1.3)

The second equality in (4.1.3) is useful because it�s usually easier to think in terms of regression coe¢ cients

than in terms of covariances. The coe¢ cient of interest, �, is the ratio of the population regression of yi on zi

(the reduced form) to the population regression of si on zi (the �rst stage). The IV estimator is the sample

analog of expression (4.1.3). Note that the IV estimand is predicated on the notion that the �rst stage is

not zero, but this is something you can check in the data. As a rule, if the �rst stage is only marginally

signi�cantly di¤erent from zero, the resulting IV estimates are unlikely to be informative, a point we return

to later.

It�s worth recapping the assumptions needed for the ratio of covariances in (4.1.3) to equal the casual

e¤ect, �: First, the instrument must have a clear e¤ect on si. This is the �rst stage. Second, the only

reason for the relationship between yi and zi is the �rst-stage. For the moment, we�re calling this second

assumption the exclusion restriction, though as we�ll see in the discussion of models with heterogeneous

e¤ects, this assumption really has two parts: the �rst is the statement that the instrument is as good as

randomly assigned (i.e., independent of potential outcomes, conditional on covariates), while the second is

that the instrument has no e¤ect on outcomes other than through the �rst-stage channel.

So where can you �nd an instrumental variable? Good instruments come from institutional knowledge

and your ideas about the processes determining the variable of interest. For example, the economic model

of education suggests that educational attainment is determined by comparing the costs and bene�ts of

alternative choices. Thus, one possible source of instruments for schooling is di¤erences in costs due, say,

to loan policies or other subsidies that vary independently of ability or earnings potential. A second source

of variation in schooling is institutional constraints. A set of institutional constraints relevant for schooling

are compulsory schooling laws. Angrist and Krueger (1991) exploit the variation induced by compulsory

schooling in a paper that typi�es the use of �natural experiments�to try to eliminate omitted variables bias

The starting point for the Angrist and Krueger (1991) quarter-of-birth strategy is the observation that

most states required students to enter school in the calendar year in which they turn 6. School start age is

therefore a function of date of birth. Speci�cally, those born late in the year are young for their grade. In

states with a December 31st birthday cuto¤, children born in the fourth quarter enter school shortly before

they turn 6, while those born in the �rst quarter enter school at around age 6 12 . Furthermore, because

compulsory schooling laws typically require students to remain in school only until their 16th birthday, these

groups of students will be in di¤erent grades or through a given grade to di¤erent degree, when they reach

the legal dropout age. In essence, the combination of school start age policies and compulsory schooling laws
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creates a natural experiment in which children are compelled to attend school for di¤erent lengths of time

depending on their birthdays.

Angrist and Krueger looked at the relationship between educational attainment and quarter of birth

using US census data. Panel A of Figure 4.1.1 (adapted from Angrist and Krueger, 2001) displays the

education-quarter-of-birth pattern for men in the 1980 Census who were born in the 1930s. The �gure

clearly shows that men born earlier in the calendar year tend to have lower average schooling levels. Panel

A of Figure 4.1.1 is a graphical representation of the �rst-stage. The �rst-stage in a general IV framework

is the regression of the causal variable of interest on covariates and the instrument(s). The plot summarizes

this regression because average schooling by year and quarter of birth is what you get for �tted values from

a regression of schooling on a full set of year-of-birth and quarter-of-birth dummies.

Panel B of Figure 4.1.1 displays average earnings by quarter of birth for the same sample used to

construct panel A. This panel illustrates what econometricians call the �reduced form�relationship between

the instruments and the dependent variable. The reduced form is the regression of the dependent variable

on any covariates in the model and the instrument(s). Panel B shows that older cohorts tend to have higher

earnings, because earnings rise with work experience. The �gure also shows that men born in early quarters

almost always earned less, on average, than those born later in the year, even after adjusting for year of

birth, which plays the role of an exogenous covariate in the Angrist and Krueger (1991) setup. Importantly,

this reduced-form relation parallels the quarter-of-birth pattern in schooling, suggesting the two patterns

are closely related. Because an individual�s date of birth is probably unrelated to his or her innate ability,

motivation, or family connections, it seems credible to assert that the only reason for the up-and-down

quarter-of-birth pattern in earnings is indeed the up-and-down quarter-of-birth pattern in schooling. This

is the critical assumption that drives the quarter-of-birth IV story.4

A mathematical representation of the story told by Figure 4.1.1 comes from the �rst-stage and reduced-

form regression equations, spelled out below:

si = X0i�10 + �11zi + �1i (4.1.4a)

yi = X0i�20 + �21zi + �2i (4.1.4b)

The parameter �11 in equation (4.1.4a) captures the �rst-stage e¤ect of zi on si, adjusting for covariates,

4Other explanations are possible, the most likely being some sort of family background e¤ect associated with season of birth

(see, e.g., Bound, Jaeger, and Baker, 1995). Weighing against the possibility of omitted family background e¤ects is the

fact that the quarter of birth pattern in average schooling is much more pronounced at the schooling levels most a¤ected by

compulsory attendance laws. Another possible concern is a pure age-at-entry e¤ect which operates through channels other

than highest grade completed (e.g., achievement). The causal e¤ect of age-at-entry on learning is di¢ cult, if not impossible, to

separate from pure age e¤ects, as noted in Chapter 1). A recent study by Elder and Lubotsky (2008) argues that the evolution

of putative age-at-entry e¤ects over time is more consistent with e¤ects due to age di¤erences per se than to a within-school

learning advantage for older students.
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A Average Education by Quarter of Birth (first stage)
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Figure 4.1.1: Graphical depiction of �rst stage and reduced form for IV estimates of the economic return to

schooling using quarter of birth (from Angrist and Krueger 1991).
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Xi. The parameter �21 in equation (4.1.4b) captures the reduced-form e¤ect of zi on yi, adjusting for these

same covariates. In the language of the SEM, the dependent variables in these two equations are said to be

the endogenous variables (where they are determined jointly within the system) while the variables on the

right-hand side are said to be the exogenous variables (determined outside the system). The instruments, zi,

are a subset of the exogenous variables. The exogenous variables that are not instruments are said to be

exogenous covariates. Although we�re not estimating a traditional supply and demand system in this case,

these SEM variable labels are still widely used in empirical practice.

The covariate-adjusted IV estimator is the sample analog of the ratio �21
�11
. To see this, note that the

denominators of the reduced-form and �rst-stage e¤ects are the same. Hence, their ratio is

� =
�21
�11

=
Cov(yi; ~zi)
Cov(si; ~zi)

; (4.1.5)

where ~zi is the residual from a regression of zi on the exogenous covariates, Xi. The right-hand side of

(4.1.5) therefore swaps ~zi for zi in the general IV formula, (4.1.3). Econometricians call the sample analog

of the left-hand side of equation (4.1.5) an Indirect Least Squares (ILS) estimator of � in the causal model

with covariates,

yi = �0Xi + �si + �i; (4.1.6)

where �i is the compound error term, A0i + vi5 . It�s easy to use equation (4.1.6) to con�rm directly that 

Cov(yi; z~i) = �Cov(si; z~i) since z~i is uncorrelated with Xi by construction and with �i by assumption. In 

Angrist and Krueger (1991), the instrument, zi, is quarter of birth (or dummies indicating quarters of birth) 

and the covariates are dummies for year of birth, state of birth, and race.

5For a direct proof that (4.1.5) equals � in (4.1.6), use (4.1.6) to substitute for yi in
Cov(yi;~zi)
Cov(si;~zi)

.
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