
ECON 1630 (Hull) Chapter 8: Introduction to Instrumental Variables Fall 2021

Regression Endogeneity

So far in this class we’ve considered a “selection-on-observables” approach to identifying causal effects—that
the treatment (or other regressors of interest) are conditionally uncorrelated with potential outcomes (or
potential outcome trends, in a panel data setting) given some observed controls. This is a flexible framework
for using regression to overcoming “selection bias” or other threats to identification, as we’ve seen. But in
many cases this sort of identification strategy may fail us: individuals may select into treatment on the basis
of some unobservables (e.g. private information) that we may never have hope to measure and control for
in our regression. More generally, the economic model of interest may suffer from “omitted variables bias”
by involving terms that cannot be included in a regression.1

Broadly, the failure of regression-based identification is sometimes called endogeneity: a word economists
appear to have made up for this situation.2 In some cases this problem can be solved by instrumental
variables (IVs), a statistical technique which economists appear to have also made up but that is now widely
used across many disciplines.3 The basic idea of IV is as follows: when the causal or otherwise “structural”
relationship between some Yi and some Xi is “endogenous,” we can use an “exogenous” Zi that affects Yi
only through Xi to estimate the structural relationship. This definition, while compact, is very unclear
without some more notation however...

Let’s (as usual) consider the returns-to-schooling example: Yi denotes an individual’s adult earnings, Xi

measures her completed schooling, and εi captures her (unobserved) ability or family characteristics. We
posit a simple relationship of

Yi = α+ βXi + εi, (1)

with β being our usual returns-to-schooling parameter of interest. As written, equation (1) may look like
a regression but of course we now know better: the model unobservable εi need not be uncorrelated with
schooling Xi. When Cov(Xi, εi) 6= 0 we cannot recover β by the regression of Yi on Xi; here we might say
Xi is “endogenous,” perhaps because more advantaged people (with higher εi) are more likely to select into
high schooling levels Xi.

To see how IV can address this endogeneity challenge, let’s suppose we have some Zi that is randomly
assigned across individuals but which affects schooling decisions. Concretely, let’s suppose we randomly give
some students a scholarship to attend college and not others: here, Zi = 1 if individual i is a scholarship
winner and Zi = 0 otherwise. The randomization of Zi ensures it is uncorrelated with student ability or
background characteristics; if it only affects earnings Yi through Xi we say it is “excludable” from the model
of interest (1) and that Cov(Zi, εi) = 0.4 In this case, we can use (1) to write

Cov(Zi, Yi) = βCov(Zi, Xi) + Cov(Zi, εi)
= βCov(Zi, Xi). (2)

1Here we are again using “bias” to mean “non-identification”—i.e., that the parameter of interest is not recovered by a
particular regression estimand. This should not be confused with the statistical definition of bias—that an estimator is not, in
expectation, equal to an estimand of interest. The fact that economists use the same word for these very different concepts is
unfortunate, but hopefully not too confusing depending on the context.

2The first use of the term “endogenous” in an economics journal appears to be this 1953 poem(!) by Frederick Waugh,
of FWL fame: https://pbs.twimg.com/media/EVF1qLGUMAAj0te?format=png&name=small. Waugh may have gotten this term
from the natural sciences, as it is sometimes used in biology to refer to substances created by or put into an organism as early
as the 1920s. These days “endogeneity” is used in the statistical sense across many fields, especially epidemiology.

3The inventor of IV appears to be Philip G. Wright who, in 1928, devised it as a solution to the classic simultaneity of supply
and demand (discussed below). For more on this history, see https://scholar.harvard.edu/files/stock/files/wr_5_w.pdf.

4In general, the random assignment of such Zi will not be enough for it to be excludable from such specifications. We might
imagine, for example, that random scholarship offers make students more successful in school by allowing them to not work
during college and earn better grades. In that case Zi might affect earnings Yi not only through college attendance but by an
unmeasured channel of college GPA. Here we are abstracting from such concerns to introduce the IV concept simply.
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Thus, provided Cov(Zi, Xi) 6= 0 we can identify the returns-to-schooling parameter β by the estimand
Cov(Zi, Yi)/Cov(Zi, Xi) = β. This is the basic logic of IV; here Zi is a valid instrument for Xi when
Cov(Zi, εi) = 0, and a relevant instrument when Cov(Zi, Xi) 6= 0.

This simple example captures the core logic of IV, but there are many types of “endogeneity” that IV
can solve. Each problem essentially boils down to finding some Zi which is “valid” in the sense of being
uncorrelated with a particular model unobservable and “relevant” in the sense of being correlated with a
particular “endogenous variable” or treatment. Let’s walk through a few more examples to see exactly how
broad this set of problems can be.

First, consider omitted variables bias (OVB): a problem you previously saw in Chapter 6. The OVB problem
is one in which we are interested in a parameter β from the “long” regression of

Yi = α+ βXi + γWi + υi, (3)

where Cov(Xi, υi) = Cov(Wi, υi) = 0. The issue is we do not observe Wi, and when it is omitted from our
regression we may obtain a biased view of β. Indeed, the bivariate regression of Yi on Xi gives

Cov(Xi, Yi)
V ar(Xi)

= Cov(Xi, α+ βXi + γWi + υi)
V ar(Xi)

= β + γ
Cov(Xi,Wi)
V ar(Xi)︸ ︷︷ ︸

δ

. (4)

OVB here is the product of two terms: the “effect” of the omitted variable Wi on the outcome Yi, γ, and
the regression of the omitted variable on the included variable Xi, δ. If we knew the sign of γ and δ, we
could sign OVB: if, for example, we knew Xi and Wi were positively correlated and that Wi conditionally
positively correlates with Yi given Xi then we would know both γ > 0 and δ > 0; then we would know that
the bivariate regression overstates the parameter of interest β. Moreover, if we can credibly argue that either
γ or δ are zero then we know there is no OVB: the bivariate regression identifies β even without observing
Wi. You will often see these sorts of arguments and discussions in papers and seminars when people think
through the kinds of biases that may plague their regression estimates; they can be useful heuristics for
determining whether one’s estimates are likely inflated up or down.

In the OVB setting, a valid IV is one which is uncorrelated with the omitted variables: if Cov(Zi,Wi) =
Cov(Zi, υi) = 0 then β = Cov(Zi, Yi)/Cov(Zi, Xi), provided Cov(Zi, Xi) 6= 0. The schooling/scholarship
example above is basically a version of this more general setup.

A second example is measurement error. Here suppose the relationship of interest Yi = α+βX∗i +υi is known
to be unconfounded: i.e. we know Cov(X∗i , υi) = 0 and that this equation is a regression, for some reason.
However we do not observe the regressor of interest X∗i but instead observe a noisy measure Xi = X∗i + ηi,
where Cov(X∗i , ηi) = 0 and Cov(ηi, υi) = 0. In this case a regression of Yi on Xi does not identify the
parameter β:

Cov(Xi, Yi)
V ar(Xi)

= Cov(X∗i + ηi, α+ βX∗i + υi)
V ar(X∗i + ηi)

= β
V ar(X∗i )

V ar(X∗i ) + V ar(ηi)
. (5)

Here we have what is sometimes called attenuation bias: the regression estimand is a scaled version of the
parameter of interest β, with a scaling factor of λ ≡ V ar(X∗i )/V ar(X∗i ) +V ar(ηi) strictly between zero and
one. In other words, when β is positive we will identify a smaller positive regression coefficient βλ < β.

In the measurement error setting we can undo attenuation bias by knowing the “signal-to-noise ratio” λ, which
reduces to knowing the variance of X∗i or the variance of ηi (since then we can solve out for λ from knowledge
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of V ar(Xi)). More directly, if we know V ar(X∗i ) we can directly estimate Cov(Xi, Yi)/V ar(X∗i ) = β. We
can also “bound” the degree of attenuation bias if we know something about the possible range of V ar(X∗i ).

One example of a valid instrument in the measurement error case is a different mismeasured Zi = X∗i + ξi,
satisfying Cov(X∗i , ξi) = Cov(ηi, ξi) = 0. The trick here is that the measurement error in this instrument
ξi is uncorrelated with the measurement error in the observed Xi = X∗i + ηi, which might be true in some
cases. Such an instrument is guaranteed to be relevant, since Cov(Zi, Xi) = V ar(X∗i ) > 0, and we again
have Cov(Zi, Yi)/Cov(Zi, Xi) = β.

A final example of regression endogeneity is simultaneity, which has a long history with IV. The classic
example of simultaneous data is supply and demand: suppose we are interested in a demand elasticity β
from the system

ln q = αD + βD ln p+ υi (6)
ln q = αS + βS ln p+ ηi (7)

where q denotes the quantity of some good and p denotes its price. Here equation (6) is a demand equation:
βD tells us how consumer demand increases with the offered price (as an elasticity). Equation (7) is the
corresponding supply equation: βS tells us how producer supply increases with the market price (again as an
elasticity). We write υi and ηi as demand and supply “shocks” arising across different markets i, normalized
to E[υi] = E[ηi] = 0. We observe the equilibrium quantities and prices (Qi, Pi) which solve the system given
by (6) and (7) following the realization of these shocks.

It is easy to see how the simultaneous determination of quantities and prices from this system makes regres-
sions of lnQi on lnPi (or vice versa) difficult to interpret. Solving out for these variables, we have

lnPi = αS − αD + ηi − υi
βD − βS

(8)

lnQi = βDαS − βSαD + βDηi − βSυi
βD − βS

, (9)

so long as βD 6= βS . You can see from this that a regression of lnQi on lnPi, or vice versa, fails to identify
either the demand or supply elasticity but instead gives some messy formula involving both βD, βS , and the
relative variances of the shocks ηi and υi. This is intuitive, as the equilibrium relationship between prices
and quantities is not driven by the variation along either the demand or supply curve, in general, but is
instead given by the intersection of these curves as the different shocks move around the equilibrium.

A valid instrument in the simultaneous supply-and-demand case is one that isolates variation in shocks to
one of the sides of the market: to identify the demand elasticity βD we require a shock to the supply side
(i.e. ηi) and to identify a supply elasticity βS we require a shock to the demand side (i.e. υi). This is again
intuitive, as when we have isolated variation that shifts around one of the two curves (e.g. supply) we are
able to trace out the other curve (e.g. demand). Formally, if we have a Zi with Cov(Zi, ηi) 6= 0 (relevance)
but Cov(Zi, υi) = 0 (validity), then we can see from equations (8) and (9) that

Cov(Zi, lnQi)
Cov(Zi, lnPi)

= Cov(Zi, βDαS − βSαD + βDηi − βSυi)
Cov(Zi, αS − αD + ηi − υi)

= βD (10)

and similarly for a “demand-side” instrument that identifies the supply elasticity βS when Cov(Zi, υi) 6= 0
and Cov(Zi, ηi) = 0.

In practice, of course, regression endogeneity can manifest in many ways (including combinations of the above
stylized examples); the general formulation of the problem is the existence of some “structural” relationship
that regression fails to identify due to the correlation between a regressor of interest and an unobserved
model residual. We will next formalize the IV solution to such problems in both the simple bivariate case
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discussed here, and the more general case with multiple endogenous regressors, multiple instruments, and
controls. The basic logic of instrument validity and relevance will continue to hold in that case.

Instrument Validity and Relevance

Let’s first define some terms in the simple (bivariate) case, where we have one outcome Yi, one endogenous
variable Xi, and one instrument Zi. The IV estimand here is

β = Cov(Zi, Yi)
Cov(Zi, Xi)

= Cov(Zi, Yi)/V ar(Zi)
Cov(Zi, Xi)/V ar(Zi)

. (11)

In the second equality we’ve simply divided the numerator and denominator of the initial definition by
V ar(Zi). In doing so we can see that the IV estimand β can be written as the ratio of two regression
estimands: β = ρ/π where

Yi = κ+ ρZi + νi (12)
Xi = µ+ πZi + ηi (13)

denote bivariate regressions of Yi and Xi, respectively, on the instrument. Here, by definition of regression,
Cov(Zi, νi) = Cov(Zi, ηi) = 0, with ρ = Cov(Zi, Yi)/V ar(Zi) and π = Cov(Zi, Xi)/V ar(Zi). We sometimes
call equation (12) the “reduced form” regression and equation (13) the “first stage” regression, for reasons
that will become more clear shortly.

An alternative but equivalent way to define this IV starts with the “second stage”

Yi = α+ βXi + Ui (14)

where (α, β) (and thus Ui) are such that Cov(Zi, Ui) = 0. This parallels our definition of population
regression as the parameters (and residual) satisfying Cov(Xi, Ui) = 0; it is a proper definition so long as
Cov(Zi, Xi) 6= 0, since then it can be shown there are unique (α, β) satisfying Cov(Zi, Ui) = 0.5 This
parallels the “no perfect multicollinearity” condition with regression which uniquely defines the regression
coefficients. As with regression, we can always define the IV estimand β when this Cov(Zi, Xi) 6= 0; there
is always a residual Ui satisfying Cov(Zi, Ui) = 0, just as before how there was always a regression residual
satisfying Cov(Xi, Ui) = 0. The aim of identification is to make sufficient assumptions on the model such
that Zi is uncorrelated with the model’s residual, in which case it coincides with this Ui and β identifies an
interesting parameter.

The more general definition of IV starts with a J × 1 vector of endogenous variables Xi, a L × 1 vector of
instruments Zi, and a K × 1 vector of controlsW i (which includes a constant). Suppose, from an economic
model, we arrive at a linear relationship of

Yi = X ′iβ + ei, (15)

where the model parameter of interest is the coefficient vector β. Here ei is a model residual (e.g. something
related to “potential outcomes”), and need not be orthogonal to Xi. We however think the vector of
instruments is orthogonal to εi after controlling for Wi: that is, we think the coefficient on Zi from the
population regression of εi on Zi = [Z ′i,W ′

i]′ is the L×1 vector of zeros. The controls here may thus account
for some observed confounding between Zi and εi, as with the kind of “selection-on-observables” stories told
before (but now with Zi instead of the actual “treatment” Xi; more on this below). To accommodate them,
let’s imagine projecting ei on the control vector to obtain

ei = W ′
iγ + εi, (16)

5Here α = κ − βµ and Ui = νi − βηi, by substituting the reduced form and first stage equations into the second stage
equation. The reduced form and first stage coefficients are unique provided V ar(Zi) 6= 0, which is implied by Cov(Zi, Xi) 6= 0.
Further, as shown above, β = ρ/π.
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where εi is by construction orthogonal toW i. Combining (16) and (15), we have our second stage equation:

Yi = X ′iβ +W ′
iγ + εi. (17)

How can we use instrument exogeneity in this case? Motivated by the simple case above, let’s consider the
first stage regression of the endogenous variable on the instrument and controls. Here we have one such
regression for each row of Xi; stacking these, we have

Xi = ΠZi + µW i + ηi, (18)

where Π is a J × L matrix of coefficients from regressing each Xij on Zi while controlling for W i. By
construction, ηi is orthogonal to both Zi and W i. Substituting this series of first stage regressions into the
second stage (17), we obtain

Yi = (ΠZi + µW i + ηi)′β +W ′
iγ + εi

= (ΠZi)′β +W ′
i(µ′β + γ) + (η′iβ + εi). (19)

From this we can see that β is identified, by the population regression of Yi on ΠZi and W i, under two
conditions.

The first condition is the generalized IV validity assumption, that E[ΠZiεi] = 0. This is enough to ensure
equation (19) is a regression, since we know ηi is by construction orthogonal to both Zi and W i (so the
linear combination η′iβ is orthogonal to both the linear combination ΠZi and toW i) and we know that εi is
orthogonal to W i by definition. A sufficient condition for IV validity is the conditional orthogonality of Zi
and εi given W i, by the Frisch-Waugh-Lovell theorem. For example, if εi denoted fixed student ability, Zi
were a vector of randomized scholarship offers, andW i contained information on which scholarship lotteries
a student was entered into, we may expect E[ΠZiεi] = 0.

The second condition in the generalized IV relevance condition, which here resolves to a no perfect collinearity
assumption on [(ΠZi)′,W ′

i]′. This in turn resolves to no perfect multicollinearity in [Z ′i,W ′
i]′ (which allows

us to define the first stage regressions) and an assumption that Π is of full row rank. This rank condition
could fail when, for example, there are fewer instruments than endogenous variables (L < K) or more
generally when the instruments do not generate independent variation in all of the endogenous variables.

As above we’ve derived the IV validity and relevance condition by starting with a model satisfying them,
but when the relevance condition holds it can be shown there is always a second stage residual satisfying the
validity condition. Namely, so long as Zi and W i are not perfectly collinear we can always define the first
stage regression (18). Let Xi = [X ′i,W ′

i]′ collect the endogenous variables and controls, let Zi = [Z ′i,W ′
i]′

collect the instruments and controls, and let

Π =
[
Π µ
0 I

]
(20)

collect the first-stage coefficients. Then it can be shown the IV “moment condition”

E[ΠZiUi] = E[ΠZi(Yi −X ′iβ)] = 0,

which imposes orthogonality of the second-stage residual Ui = Yi− (ΠZi)′β−W ′
iγ with the regressors ΠZi

and W i, has a unique solution

β = [β′,γ′]′ = E[ΠZiX ′i]−1E[ΠZiYi]. (21)

Thus, we can always define the general IV estimand β when relevance holds, just as we could define the
“simple” IV estimand when Cov(Zi, Xi) 6= 0 or define the population regression of Yi on Xi when V ar(Xi).
As in these cases, the identification question is whether the statistical residual Ui, which imposes instrument
validity, coincides with the residual of a particular model for how the data are generated. If it does, then we
know the coefficients of the IV regression coincide with the coefficients from that “structural” second stage
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equation. Furthermore, we can see that the IV estimand (21) is relatively straightforward to estimate, as it
is a relatively simple function of second moments; more on that soon.

You shouldn’t be too surprised if all of this is sounding familiar; the link between IV and linear regression is
tight because the latter is a special case of the former. Formally, when Xi = Zi, the first stage regression
of Xi on Zi fits perfectly; the first stage matrix is then Π = I and the IV estimand

β = E[ΠZiX ′i]−1E[ΠZiYi]
= E[XX ′i]−1E[XYi],

is just population regression. The IV relevance condition here is satisfied just by the lack of perfect multi-
collinearity in Zi = Xi and IV validity is simply E[Xiεi] = 0. Working through this special case is useful
for showing how IV allows some endogenous “slippage” between Xi and Zi; instead of regressing Yi on Xi,
we regress on the component of Xi which is predicted by the exogenous instrument (the fitted values).

Of course, since IV arises just from regression the Frisch-Waugh-Lovell theorem applies. We can, for example,
think of regressing Yi on the residuals from projecting ΠZi on W i by the first part of the FWL. This will
come in handy for analyzing some IV coefficients, as before.

It may also be handy to work with the generalized IV’s reduced form and first stage expressions:

Yi = Z ′iρ+W ′
iκ+ νi (22)

Xi = ΠZi + µW i + ηi, (23)

where, per (19), we have ρ = Π′β, κ = µ′β + γ, and νi = η′β + Ui. Consider the case where L =
dim(Zi) = dim(Xi) = K; we call this case “just-identified,” in that there are just as many instruments
as endogenous variables. Here Π is a square matrix, which is invertible (i.e. full rank) when the relevance
condition holds. Thus we can define β = Π′−1ρ in this case, generalizing how we defined IV as the reduced
form ρ = Cov(Zi, Yi)/V ar(Zi) divided by the first stage π = Cov(Zi, Xi)/V ar(Zi) in the simple (bivariate)
case above, which was just-identified. The FWL also of course applies here, allowing us to study Π and ρ
by first residualizing out the controls.

In the just-identified case, where Π is invertible, the IV validity condition becomes equivalent to the or-
thogonality of the instrument vector with the residual: E[ΠZiεi] = 0 if and only if Π−1E[ΠZiεi] = Π−10
or E[Ziεi] = 0. In the just-identified case any full-rank linear combination of Zi is valid and gives the
same IV estimand. In the “overidentified” case of L = dim(Zi) > dim(Xi) = K, where we have more
instruments than endogenous variables, this is no longer true: different linear combinations of the Zi may
or may not be valid and will yield different IV estimands. If we assume the stronger validity condition holds,
that E[Ziεi] = 0, then we can use any MZi as a set of L instruments, for any full-rank J × L matrix M .
More specifically, we can consider the class of IV estimands

β = E[MZiX
′
i]−1E[MZiYi] (24)

for anyM , not just Π. This class is quite large, containing some well-studied IV estimands such as the Nagar
(1962), k-class, or limited information maximum likelihood (LIML) procedures that you may encounter in
future econometrics classes. In this class, however, we will focus on theM = Π case even when overidentified.

Where do Instruments Come From?

So far we’ve talked about instruments in the abstract, and from that perspective they sound pretty magical:
what are these “exogenous” Zi and how are they actually used in practice? Here we will walk through
three examples, from Abdulkadiroglu et al. (2016) (on charter school effectiveness) and Angrist and Krueger
(1991) (on—what else?—the returns to schooling).

Some of the best candidates for instruments come from true experiments, in which Zi is as-good-as-randomly
assigned across observations i. Abdulkadiroglu et al. (2016), for example, use the random assignment of
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offers to attend charter middle schools as an instrument for charter school enrollment. The idea is that when
students apply to an “oversubscribed” charter, with more applicants than available seats, the school runs a
simple lottery to determine who is eligible to attend. Those who receive offers can decline, and go somewhere
else, while other students may find their way into the charter through later admission rounds. Thus, while
the randomized offers are a strong predictor of charter enrollment there is still a considerable amount of
“slippage” in terms of enrollment (both conditional on application and unconditionally, as most students
do not apply to enroll in a charter school). Formally, Abdulkadiroglu et al. (2016) study the effects of
charter enrollment Xi ∈ {0, 1} on subsequent test score achievement Yi, instrumenting by a Zi ∈ {0, 1} that
indicates student i got an offer to attend a charter on the night of the lottery.6 We estimate this regression
in the sample of charter applicants, controlling for strata W i indicating different lottery years and schools.
The upshot is we estimate very large test score effects from charter enrollment, consistent with other papers
in a recent literature on charter effectiveness.

A virtue of IVs like charter enrollment offers is that they are (conditionally) randomly assigned; we thus
know for sure that we can estimate their “reduced form” effects on test scores Yi as well as the “first stage”
effect on charter enrollment Xi. That is, we can estimate the ATT E[Yi1 − Yi0] of getting an charter
offer on test scores—sometimes in the IV context this is referred to as an “intent-to-treat” effect (the idea
being Zi captures the randomized “intent” to receive the endogenous enrollment treatment Xi)—as well as
E[Xi1−Xi0]. A key point to recognize, however, is that random assignment is not sufficient for such Zi to be
a valid instrument for Xi. For this we also need an exclusion restriction, that Zi only affects Yi through Xi.
In the charter school case of Abdulkadiroglu et al. (2016) this seems fairly defensible: admission offers likely
only affect later achievement via enrollment decisions, having no real effects other than giving a student
access to attend a charter school. This sort of logic is often found in randomized control trials (RCTs) with
“imperfect compliance,” where an offer to participate in a program is randomized but people can opt out or
in. These days most researchers understand that instrumenting by offers can identify causal program effects
despite such imperfect incompliance, though economists were a driving force behind making this clear to
different fields.7

Absent literal randomization of Zi, researchers may still credibly argue that it is “as-good-as-randomly”
assigned (perhaps conditional on some W i). The idea here is to appeal to a kind of “natural experiment”
which generates Zi in a way that is plausibly unrelated to the second-stage model of interest. Angrist and
Krueger (1991) give a now-famous example of such a setting when estimating the returns to schooling in the
early 20th century. They leverage two institutional features of this time: compulsory schooling laws, which
typically required a student to stay in school until their 16th birthday, and the fact that most schools require
students to enter school in the calendar year they turn six. Consequently, students born in different quarters
who plan to drop out as soon as they are able will tend to have different completed years of schooling. A
student born in January, for example, will start school at six and eight months and at her 16th birthday
will have nine years of completed schooling. A student born in December, in contrast, will start school at
five and eight months and at her 16th birthday will have completed ten years of schooling. Angrist and
Krueger (1991) thus use the “natural experiment” of quarter-of-birth as an instrument for completed years
of schooling, controlling for the year- and state-of-birth (to help with the instrument’s first-stage power).

One’s quarter-of-birth may appear as-good-as-randomly assigned with respect to the labor market conditions
(and other factors) one faces in adulthood. Even though people do not time the conception of their children
by a lottery, this “natural experiment” seems fairly plausible. Again, however, we must consider not only
the independent assignment of this Zi across individuals but also ponder the key exclusion restriction: does

6As you’ll see in the paper, and course slides, we actually use two instruments in the main specifications of the paper: an
“immediate offer” to enroll on lottery night, and a “waitlist offer” to enroll later. The latter comes from the fact that we know
each student’s position on the school waiting list, which is randomized on lottery night. So we can define arbitrary cutoffs on
this randomized wait list and use it as an instrument too. In practice we get very similar estimates with both instruments or
just the “immediate offer” IV.

7A famous result by Imbens and Angrist (1994), formalized this approach by showing when Zi and Xi are binary such
IV regressions identify “local average treatment effects” (LATEs), defined as the average effect of Xi on Yi among marginal
individuals (“compliers”) who are induced to the treatment by the randomized offer. Such an interpretation requires an
additional “monotonicity” condition which says the randomized offer can only shift people into taking the treatment. We may
have the opportunity to say more about LATEs and related parameters in the final lectures or TA sessions.
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quarter-of-birth only affect adult earnings through completed schooling? More recent studies have, for
example, found that being older in your class in grade school can have direct effects on both mental and
physical development which may conceivably violate the exclusion restriction. It turns out that the Angrist
and Krueger (1991) student may also have suffered from a different problem, related to estimation instead
of identification, as we will cover in the next Chapter. Still, it is a compelling story at first glance as well as
an influential early example of our modern view of such “natural experiments.”

Both of these examples highlight a useful way of thinking about instruments, by separating a statistical
assumption of (as-good-as) random assignment from the more model-based exclusion restriction. We can
think of other ways to ensure random assignment by leveraging what we’ve seen in “reduced form” treatment
effect estimation. For example we might tell a “selection-on-observables” story that makes a given instrument
Zi as-good-as-randomly assigned conditional on some W i, even though the ultimate treatment of Di is not
unconfounded. With panel data, we might use a difference-in-differences approach to argue ZiPostt satisfies
a parallel trends assumption controlling for Zi and Postt main effects. Given such arguments we still need to
be able to credibly argue an exclusion restriction holds, in order to relate the (say) reduced-form difference-
in-difference estimates of the effect of Zi on Yi to first-stage difference-in-difference estimates of the effect
of Zi on Xi. Again, such arguments tend to be “model-based,” requiring us to rule out stories of other
direct effects of the instruments on outcomes. Abdulkadiroglu et al. (2016) pursue such an approach in their
study of non-lotteried “takeover” charters, which sits alongside their lottery analysis discussed above. See
the course slides for an illustration of these two approaches.

This discussion of where IVs come from, and the example of Abdulkadiroglu et al. (2016) in particular,
highlight a general tradeoff between internal and external validity of observational (possibly IV-based)
analyses. In many ways the “gold-standard” for estimating causal effects is a randomized treatment; since
analyzing such an RCT requires minimal assumptions (besides the existence of potential outcomes) we
sometimes say that it has high internal validity. In contrast, an observational study of the treatment’s
effects which makes hard-to-swallow selection-on-observables assumptions may have low internal validity
(in that it requires assumptions that are not guaranteed by virtue of randomization). But (far from) all
treatments of interest can be or are randomized, and those that are often can only be deployed on selected
individuals. In the Abdulkadiroglu et al. (2016) example, we have high internal validity for estimating the
effects of charter school enrollment among the students who enter the admission lottery. We may worry
about the external validity (i.e. generalizability) of such studies, especially when individuals self-select into
the study population (by, e.g., applying to a charter school). To probe external validity, it is often helpful
to turn to more observational studies (i.e. those that make a selection-on-observables argument or rely on
difference-in-difference-type identification) on a more representative population. The point is that IV can
help on both fronts, but not all IVs are created equal in this regard. The exclusion restriction can fail
even when the instrument is randomized in a lottery, and parallel trends can be very credible even in a
non-experimental setting.

As with our discussion of population regression, we’ll next turn to the question of how we estimate IV
estimands from data. The key insight, as before, is that these β are also relatively simple functions of
second moments; we can thus consider their sample analogues to construct an estimator of β, and follow
similar steps as with OLS to characterize its asymptotic behavior. There are, however, a few new practical
considerations with IV that we didn’t have before. These are related to the fact that we now have some
“slippage” between the exogenous Zi and endogenous Xi, and can be tricky to deal with in practice.
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