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 JACKKNIFE INSTRUMENTAL VARIABLES ESTIMATION
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 SUMMARY

 Two-stage-least-squares (2SLS) estimates are biased towards the probability limit of OLS estimates.
 This bias grows with the degree of over-identification and can generate highly misleading results. In this
 paper we propose two simple alternatives to 2SLS and limited-information-maximum-likelikelihood (LIML)
 estimators for models with more instruments than endogenous regressors. These estimators can be
 interpreted as instrumental variables procedures using an instrument that is independent of disturbances
 even in finite samples. Independence is achieved by using a 'leave-one-out' jackknife-type fitted value
 in place of the usual first stage equation. The new estimators are first order equivalent to 2SLS but with
 finite-sample properties superior, in terms of bias and coverage rate of confidence intervals, compared
 to those of 2SLS and similar to those of LIML, when there are many instruments. Copyright ( 1999 John
 Wiley & Sons, Ltd.

 1. INTRODUCTION

 This paper develops two simple alternatives to two-stage-least-squares (2SLS) and limited-
 information-maximum-likelihood (LIML) estimators for models with more instruments than
 endogenous regressors. The new estimators can be interpreted as instrumental variable estimators
 based on an asymptotically optimal instrument constructed in a manner that ensures that even in
 finite samples it is independent of the disturbance in the equation of interest. The key insight is
 that the bias associated with 2SLS is due to the use of the ith observation in constructing
 the optimal instrument for the ith observation. Our proposed estimators remove this
 dependence in a jackknife, leave-one-out, approach similar to the SSIV and USSIV estimators
 developed by Angrist and Krueger (1995) but without requiring an arbitrary sample split. The
 computation required is of the order of that for weighted least squares estimation. Both of the
 new Jackknife Instrumental Variables Estimators (JIVE) estimators are simple to implement in
 standard packages and are first-order equivalent to 2SLS and LIML. These estimators, which we
 proposed in Angrist, Imbens and Krueger (1993), have also been derived by Blomquist and
 Dahlberg (1994).

 The finite sample properties of JIVE are superior, in terms of bias and coverage rates of
 normal-distribution-based confidence intervals, to those of 2SLS and similar to those of LIML in
 the case of many instruments which are only weakly correlated with the endogenous regressor.
 This case has received considerable attention in the recent literature on instrumental variables

 * Correspondence to: Dr. G. W. Imbens, Department of Economics, UCLA, 405 Hilgard Avenue, Los Angeles,
 CA 90()95-1477 USA. Emiail: imbens(a econ.ucla.edu
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 estimation (See, e.g., Phillips, 1983; Nelson and Starz, 1990; Maddala and Jeong, 1992; Buse,
 1992; Bekker, 1994; Staiger and Stock, 1994; Angrist and Krueger, 1995; Bound, Jaeger and
 Baker, 1995), partly in reaction to some recent applications (Angrist, 1990; Angrist and Krueger,
 1991, 1992). The problem is discussed from a Bayesian perspective in Chamberlain and Imbens
 (1995), who find that the implicit prior distribution in 2SLS puts large probability mass on the
 event that the instruments combined are very informative and suggest that a prior distribution
 that puts substantial mass on the event that the instruments combined are not very informative
 might be more appropriate in many cases.

 Like 2SLS, JIVE1 AND JIVE2 can be interpreted as instrumental variables estimators with a
 constructed instrument of the same dimension as the endogenous regressor. For 2SLS, as well as
 for JIVE1 and JIVE2, this constructed instrument converges to the best linear prediction of the
 endogenous regressor given the instruments. The probability limit of the new estimators and
 their first-order asymptotic distributions are therefore identical to those of 2SLS even under
 general misspecification. This is important because if the model is misspecified, LIML and 2SLS
 can have very different properties. While neither dominates the other, Fisher (1966, 1967)
 suggests that in misspecified models 2SLS (and therefore by implication JIVEI and JIVE2) may
 be preferable to LIML.

 2. THE BIAS OF TWO-STAGE LEAST SQUARES

 The basic model we consider has two equations. The first, describing the relation of interest
 between a scalar endogenous variable Yi and a row vector of potentially endogenous regressors
 Xi is:

 Yi = XiP + i,.

 The second equation captures the relation between the endogenous regressors and the
 instruments Zi:

 Xi = Zi7 + qji.

 Here, Xi is an L-dimensional row vector and the instrument Zi is a K-dimensional row vector,
 with K ) L. The number of overidentifying restrictions is K - L. In matrix notation we can write
 this model as

 Y = X,3 + e, (1)

 X Zir + ?, (2)

 where Y and gi are N vectors with typical element Yi and ij, and X, Z and q are N x L, N x K,
 and N x L-dimensional matrices with typical row Xi, Zi, and qi respectively. If there are M
 common elements in the vector of regressors and the vector of instruments, then M columns of
 the N x L matrix Yj are identically zero.
 We assume that conditional on the instruments Zi the disturbance ei has expectation zero
 and variance a2. We also assume that E[q I Z] = 0 and E[uq.5 I Z] = i,,, with rank L - M. The
 expectation E[ciq' I Z] is equal to the L-dimensional column vector and the probability limits

 Copyright (') 1999 John Wiley & Sons, Ltd.
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 JACKKNIFE INSTRUMENTAL VARIABLES ESTIMATION

 of Z'Z/N and X'X/N are denoted by Sz and Ex respectively. Finally we assume that all
 observations of the triple (Yi, Xi, Zi) are independent and identically distributed.

 As is well known, the OLS estimator for 3,

 ols = (X' X)I (X'Y),

 is not consistent if a:,,1 differs from zero. Its probability limit equals : + (Tr'lEzr + S, )-I'a,,. The
 optimal instrumental variables (IV) estimator, using the optimal instrument of lowest dimension,
 ZTr, is:

 /3opt = ((ZTX)')-' ((zt)'Y).

 This estimator is not feasible because 7r is unknown.

 The 2SLS estimator, a feasible version of the optimal IV estimator, is:

 32sls = (x'Z(z'z)- z'x)- (X'Z(Z'z)- IZ').

 It is useful to work with a characterization of P2sls as an instrumental variable estimator using the
 constructed instrument ZiT where it = (Z'Z)-'(Z'X), so we can write

 22sls = ((Z)'x)-i (Z)'Y). (3)

 The limiting distributions of both /N(^2sls - 3) and (/3(fopt - f) are normal with mean zero
 and variance (r'SX_r)-1 a".

 The motivation for our approach begins with the observation that /opt has much better small
 sample properties than P2sls in the presence of many instruments, even though the two estimators
 have the same asymptotic normal distribution. This follows directly from the Nagar (1959) bias
 formula, which shows that keeping the explanatory power of the instruments constant while
 increasing the number of instruments increases the bias of I2sls, while^obviously increasing the
 number of instruments with Zi1 fixed does not affect the properties of Popt. The intuition for the
 former is that the first-stage fitted values, Zfr, can be written as PzX = Z7r + Pzl where Pz is the
 projection matrix Z(Z'Z)- Z'. The second component of these fitted values, Pzr, is correlated
 with r and hence with e. Formally,

 E[,iZ,f] = E[E[i,Z, IZ]] = E[Zi(Z'Z)- IZ E[Eii I Z]] = E[Zi(Z'Z)-'. Z'] = (K/N) . ^

 Even though this correlation vanishes in large samples as K/N -O 0, it increases with the number

 of instruments for fixed sample size and fixed a,,1.
 The previous discussion suggests that the bias of f/2sls towards Biols is related to the difference

 between the estimated instrument Zft and the optimal instrument Zin. This leads us to develop
 new estimators of / based on different estimates of the optimal instrument Zn7. The key feature of

 our approach is that these alternative estimates of the optimal instrument are independent of ri
 even in finite samples, unlike the standard estimate Zjic which is only asymptotically independent
 of ?j. Although these estimated instruments differ from Zfi and Zin in finite samples, the
 difference in variance goes to zero fast enough to give the resulting estimators the same first-order
 asymptotic properties as both /opt and Isis. The resulting bias reduction is such that in models
 with many instruments the associated estimators of f/ are superior to 2SLS.

 Copyright c 1999 John Wiley & Sons, Ltd.
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 3. JACKKNIFE INSTRUMENTAL VARIABLES ESTIMATION

 Note that the ith row of the estimated instrument Zg underlying 2SLS can be written as:

 Zic = Zi(Z'Z)- (Z'X). (4)

 Let Z(i) and X(i) denote (N - 1) x K and (N - 1) x L-dimensional matrices equal to Z and X
 respectively with the ith row removed. JIVEI removes the dependence of the constructed
 instrument Zir on the endogenous regressor for observation i by using

 as an estimate of ic rather than i = (Z'Z)- (Z'X). The estimate of the optimal instrument is

 ZiT(i) = Zi(Z(i)'Z(i))-I(Z(i)'X(i)).

 Because ei is independent of X. ifj i, it follows that

 E[eiZif(i)] = E[Zi(Z(i)'Z(i))- (Z(i)')E[X(i)e, I Z]] = 0,

 implying E[X'jive IX/N] = E[(Zm)'X/N ] and E [X'jjiVe Y N] = E [(Zn)' Y/N], where XjiveI is the
 N x L-dimensional matrix with ith row Zj7r(i). The associated estimator for /B, denoted by
 JIVE1, is equal to:

 fjivel= (XjivelX) '(XjivelY).

 To calculate this estimator the researcher is not required to calculate the N regression coefficients
 vi(i). Rather, the calculation only requires the evaluation of the constructed instrument, ZFt(i),
 which can be calculated as

 (z'zf-' Z1i- hX Z 7T(i) = Z (Z'Z) (Z'X - ZXi) = i -hX (5) 1 - zi(ztz)-lI ' - (5)

 where hi = Zi(Z'Z)-'Z. Given ZiC(i), calculation of fljive is straightforward. This calculation
 requires only two passes through the data, one to calculate regular fitted first-stage values and the
 leverage, hi, (see Cook, 1979), and a second using n(i)Zi as an instrument.
 An alternative estimator, denoted by JIVE2, also based on the idea of eliminating the

 correlation between the estimate of Zin and Xi, adjusts only the Z'X component of rt =
 (Z'Z)-'(Z'X). Define

 fc(i) = (Z'Z)- (Z(i)'X(i)) * (N/(N - 1)) = (N/N - 1)). (- - (Z'Z)- IZXi),

 as the associated first-stage parameter for observation i. A formulation similar to equation (5) is:

 (Z'Z)(-I' -j - hiX, Zig(i)= Zi -(Z'X - ZXi) = 1 - (6) 1 - IIN 1 - IIN (

 Copyright ? 1999 John Wiley & Sons, Ltd.
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 JACKKNIFE INSTRUMENTAL VARIABLES ESTIMATION

 with the same definition for hi. Again this estimate of the optimal instrument is independent of ei
 in finite samples:

 E[iZir((i)] = E[Zi(Z'Z)- (Z(i)')E[X(i)Ei I Z] = 0.

 The resulting estimator for ft is:

 fjive2 = (Xjive2) (Xjive2Y)

 where the N x L-dimensional matrix X2 has ith row equal to Z i(i). Note that the only
 difference between JIVE1 and JIVE2 is the difference between 1 - Z(Z'Z)- Z, and 1 - 1/N in
 the denominator of equations (5) and (6). The second estimator also requires only two passes
 through the data.

 In both cases the estimator for Zi1 is consistent. The probability limit of the estimators of /
 and their first-order asymptotic distribution are therefore the same as those of fopt and f.2sls

 4. A MONTE CARLO STUDY

 This section reports evidence on the finite sample behaviour of the JIVE estimators, focusing
 on robust measures of bias. In particular, we report quantiles of the Monte Carlo sampling
 distribution along with the median absolute error. Mean squared error is not likely to be as useful
 a standard for comparison because neither LIML or the JIVE estimators necessarily have first or
 second moments. For additional theoretical discussion of the bias of JIVE, 2SLS amd LIML, see
 our working paper (Angrist, Imbens and Krueger, 1995). An important conclusion of this
 discussion and earlier work on the finite-sample properties of IV estimators is that LIML is less
 biased than 2SLS in models with many instruments.

 In addition to measures of bias, we also report coverage rates for 95% confidence intervals
 computed using the usual asymptotic approximation to the distribution of OLS, 2SLS, and
 LIML (i.e. the estimate plus or minus 1 96 times the asymptotic standard error). For the JIVE
 estimators, we report coverage rates based on asymptotic standard errors for a just-identified IV
 estimator using Xivei and Xive2 as instruments. The justification for this is pragmatic: if the usual
 approximation works in the sense of providing accurate coverage for the approximately unbiased
 LIML and JIVE estimators, there would seem to be little reason to report more sophisticated
 approximations such as those developed by Bekker (1994) and Staiger and Stock (1994). In fact
 Bekker (1994) finds that some theoretically more accurate approximations to the limiting
 distribution of LIML based on group-asymptotics provide little or no improvement over the
 usual asymptotic approximation in cases with a linear first stage. This is not true for 2SLS,
 however. The results of our simulations confirm and extend this: asymptotic confidence intervals
 for LIML and JIVE estimators turn out to be remarkably accurate while in contrast conventional
 asymptotic confidence intervals for 2SLS are quite poor.

 We begin with a model where there is a single overidentifying restriction. The second model is
 similar, with the modification that there are a large number of instruments relative to the number
 of regressors. In both of these first two models, the errors are homoscedastic and the first-stage
 regression is linear, so that LIML is the maximum likelihood estimator. In the third model, the first
 stage is non-linear and heteroscedastic. Here there is less reason to expect LIML to have good
 small sample properties since it is no longer the maximum likelihood estimator. In both the second

 Copyright ?) 1999 John Wiley & Sons, Ltd.
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 J. D. ANGRIST ETAL.

 and third models, 2SLS should be badly biased because of the large number of overidentifying
 restrictions. The fourth model sets the true reduced-form coefficients to zero for all instruments in

 an attempt to ascertain how misleading the estimators might be in this non-identified case. In the
 final experiment we introduce some misspecification where one of the instruments has incorrectly
 been left out of the main regression. The models and results are as follows:

 Model 1

 Yi = o + i Xi, + Ei,
 2

 X,, = -o + E i/. z,j + 0i,
 /j=1

 with fiI = 1, fo = 0, 0ro = O, 7 = 0.3, and r2 = 0. Here, K = 3 and L = 2, and

 U ^i o}0~ (0.20 0.25
 All Zi, are independent, normally distributed random variables with mean zero and unit
 variance.

 The first panel of Table I presents quantiles of the sampling distributions of the estimators, as
 well as the median absolute error and coverage rates. In this set of simulations, LIML, JIVE 1 and
 JIVE2 all have median absolute error close to that of 2SLS, which is the estimator with the
 minimum median absolute error. But confidence interval coverage is actually more accurate for
 JIVE and LIML than for 2SLS. It is not surprising that LIML does very well, however, since it is
 the maximum likelihood estimator under normality and in this example the disturbances are in
 fact normal. Note that confidence interval coverage for JIVE is as good as that for LIML, in spite
 of some asymmetry in the Monte Carlo sampling distribution of JIVE.

 Model 2

 Model 2 adds 18 worthless instruments to the design in Model 1. This is a situation where we
 expect the performance of 2SLS to deteriorate, as in the experiments reported in Bound, Jaeger
 and Baker (1995).

 yi /= + 1 .Xil + ei,
 20

 Xi =7ro + E j .*Zij + li
 .i=1

 with fi = 1, f 0o= = 0, ro 0, r = 0.3, and . = 0 forj = 2, 3,...,20. Here, K = 21 and L = 2,
 and

 i 0 0.25 0.205
 All Z are independent, normally distributed random variables with mean zero and unit variance.

 Copyright ? 1999 John Wiley & Sons, Ltd.
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 JACKKNIFE INSTRUMENTAL VARIABLES ESTIMATION

 Table I. Simulations

 Estimator Quantiles around /, Median Coverage rate
 0-10 0.25 0-50 0-75 0.90 Absolute error 95% conf. interval

 Model 1: N =
 OLS
 2SLS
 LIML
 JIVE1
 JIVE2

 Model 2: N =
 OLS
 2SLS
 LIML
 JIVE1
 JIVE2

 Model 3: N =
 OLS
 2SLS
 LIML

 JIVE1
 JIVE2

 Model 4: N =
 OLS
 2SLS
 LIML
 JIVE1
 JIVE2

 Model 5: N =
 OLS
 2SLS
 LIML
 JIVE1
 JIVE2

 100, L = 2, K = 3; 5000 replications
 0-50 0.55 0.59 0.64

 -0-19 -0-06 0.04 0-14
 -0-26 -0-13 0-00 0-11
 -0-40 -0-20 -0-05 0-07
 -0-40 -0-20 -0-05 0.07

 100, L = 2, K = 21; 5000 replications
 0.51 0-55 0.59 0.63
 0.14 0-21 0.28 0-35

 -0-31 -0-14 0-00 0-11
 -0-61 -0-28 -0-04 0-12
 -0-63 -0-29 -0-04 0-11

 100, L = 2, K = 21; 5000 replications
 0-12 0-14 0-17 0-20
 0-04 0.10 0-16 0-22

 -0-59 -0-15 0.10 0.32
 -0-69 -0-13 0-16 0-43
 -0-41 -0-13 0.04 0-16

 100, L = 2, K = 21; 5000 replications
 0-72 0-76 0-80 0.84
 0-62 0-71 0.80 0.89

 -1-14 0-18 0-81 1-42
 -0-40 0.41 0-80 1-21
 -0-35 0-41 0.80 1-20

 100, L = 2, K = 21; 5000 replications
 0-50 0-54 0-59 0-64
 0-10 0.19 0.28 0-37

 -1-13 -0-69 -0-41 -0-21
 -0-66 -0-28 -0-04 0-14
 -0-67 -0-28 -0-05 0-14

 The second panel of Table I presents Monte Carlo statistics for this model. In this set of
 simulations, LIML, JIVE1 and JIVE2 are all superior to 2SLS and OLS in terms of median
 absolute error. Unlike 2SLS and OLS, the three other estimators are essentially median unbiased
 and the asymptotic confidence intervals have very good coverage. LIML is less dispersed than
 both JIVE1 and JIVE2 with the latter having thick tails. The asymptotic coverage for 2SLS is
 poor. Again, it is not surprising that LIML does very well here since in this example the
 disturbances are normally distributed.

 Model 3

 The third model has the same basic structure as before, except that the relationship between Xi
 and Zi is non-linear and heteroscedastic. As in Model 2, the model is estimated with 20 linear

 Copyright ? 1999 John Wiley & Sons, Ltd.

 0-67
 0-22
 0.19
 0-17
 0.17

 0-67
 041
 0-20
 0-23
 0-23

 0-23
 0-27
 0-80
 0-95
 0-33

 0-87
 0.97
 2-69
 2-07
 2.05

 0-68
 045

 -0-06
 0-28
 0.28

 0-59
 0-11
 0.12
 0-13
 0.13

 0.59
 0.28
 0.13
 0.17
 0-17

 0.17
 0.16
 0-25
 0-32
 0.15

 0.80
 0-80
 1-01
 0-88
 0.88

 0-59
 0-28
 0.41
 0-20
 0-20

 0.00
 0-91
 0-96
 0-96
 0.96

 0-00
 0-31
 0-94
 0.94
 0.94

 0-03
 0.57
 0.97
 0-97
 0-95

 0-00
 0-00
 0-71
 0.71
 0-71

 0-00

 0.38
 0.93
 0-93
 0.94
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 instruments so that non-linearities in the first stage are ignored in the estimation.

 Yi = / +/ I .Xi + :i,,
 20 2 20

 Xi= - O + Eni . Z, + 0.3 E Z. + q0? E Z , /19,
 j.= = j=2 j=2

 with l = 1, / = 0, o = 0, lrr = 0.3, and r. = 0 for/j= 2, 3,..., 20. Here, K = 21 and L = 2,
 and

 (i 0 1.0 0.8

 JioZ A( oH . (08 1.0))
 The third panel of Table I presents Monte Carlo statistics for this model. As expected, OLS and
 2SLS are still biased, as evidenced by the fact that almost all probability is concentrated on one
 side of the true value of /3 for these estimators. Moreover, in spite of the low median absolute
 error of 2SLS in this case, the asymptotic coverage of 2SLS is very poor.

 JIVE1 and LIML do not do as well in Model 3 as in Models 1 and 2. But JIVE2 is the best

 estimator in terms of median-bias and median absolute error. It is clearly superior to LIML and
 even to JIVEI in this model, both in terms of bias and (slightly) in terms of asymptotic coverage.
 The medians of JIVEI, LIML, and 2SLS are all similar. The large difference in spread between
 JIVE1 and JIVE2 is surprising and only in this type of non-linear example have we seen such a
 difference. It is important to note, however, that in contrast with 2SLS, even the highly dispersed
 JIVE1 generates an asymptotic confidence interval with reasonably accurate coverage. The lack
 of dispersion in 2SLS, reflected in the 2SLS asymptotic standard errors, actually leads to highly
 misleading inferences.

 Model 4

 The fourth model has the same basic structure as Model 2 but all coefficients in the reduced form
 are set to zero.

 i = + /3' xt K + , ,
 20

 x,i = '70 + E Z/i Z/i + q,
 Ji=

 with /3f = 1, /o = 0, ir = 0, for all.j. Again, L = 2 and K = 21, and

 \\'7 ) ((?\ (0o25 0 20))
 Zi a usf 0oh20 0.25e

 The fourth panel of Table I presents Monte Carlo statistics for this model. The two JIVE
 estimators and LIML are much more dispersed than either OLS or 2SLS in this case, suggesting
 that a researcher would not be misled by JIVE or LIML estimates into thinking that the
 instruments generate reliable inferences regarding the coefficient of interest. It is also interesting
 to note that the correlation between JIVE and LIML in this model is very low, unlike in models
 where the instruments are valid. This suggests that a comparison of JIVE and LIML could
 provide a useful check on the validity of inferences in applications with weak instruments.

 Copyright (D 1999 John Wiley & Sons, Ltd.
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 JACKKNIFE INSTRUMENTAL VARIABLES ESTIMATION

 Model 5

 The fifth model has the same basic structure as Model 2 but one of the instruments that has a

 zero coefficient in the second regression has a non-zero coefficient in the first regression from
 which it is inappropriately left out.

 Yi = io + I Xi] + ?i l
 20

 X? = 7o + 7CE iZ Zi + li
 ji=1

 with f l, = 1, f0 = 0, 1, = 0.3, and n. = 0 for j > 1. Again, L = 2 and K = 21, but now
 ?E = 0.2 Zi + Vi, with

 ( v. 0lz 0 ( 25 0.20\ (i Z 020 0.25}}
 Because Y, directly depends on Zp, Zi2 is not a valid instrument. However, because Xi does not
 depend on Zi2, the estimated instrument does not depend on Zi2, and therefore 2SLS, as well as
 JIVEI and JIVE2 are not affected by this form of specification, and all three are consistent.
 LIML is affected by this direct effect of Zi2 on Y, and is not consistent.
 The fifth panel of Table I presents Monte Carlo statistics for this model. The two new

 estimators, JIVE1 and JIVE2, are superior to the other estimators considered. While 2SLS is still
 consistent, because of the many instruments it is badly biased towards OLS. LIML is clearly also
 biased.

 5. RETURNS TO EDUCATION USING QUARTER OF BIRTH AS INSTRUMENT

 In this section, we return to the Angrist and Krueger (1991) application that has motivated some
 of the recent literature on instrumental variables estimates with many weak instruments. Angrist
 and Krueger (1991) estimated schooling coefficients using quarter of birth as an instrument in a
 sample of 329,500 men born 1930-39 from the 1980 census. The dependent variable is the log
 weekly wage. In one version of this model, there are 30 instruments created by interacting quarter
 and year of birth. In a second version there are 180 instruments constructed by adding inter-
 actions of 50 state and quarter of birth dummies to the 30 original instruments. The appendix to
 Angrist and Krueger (1991) provides a detailed description of the data.

 Table II reports schooling coefficients generated by different estimators applied to the Angrist
 and Krueger data. Exogenous covariates are listed in the table (these are either state effects or
 state and year effects). Table II shows that all IV estimators give similar results. This is important
 because Bound, Jaeger and Baker (1995) and Angrist and Krueger (1995) note that if the

 Table II. Angrist-Krueger data

 No. of instr. State effects Year effect OLS 2SLS LIML JIVE1 JIVE2

 30 No Yes 0 071 0.089 0-093 0 096 0-096

 (0-0003) (0-016) (0-018) (0-022) (0-022)
 180 Yes Yes 0-067 0.093 0.106 0-121 0.121

 (0-0003) (0-009) (0-012) (0-020) (0-020)

 Copyright ? 1999 John Wiley & Sons, Ltd.
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 J. D. ANGRIST ETAL.

 instruments are in fact uncorrelated with schooling (as in the second model in the Monte Carlo
 section), 2SLS could still give results very close to OLS. In contrast, the two JIVE estimators
 and LIML would not be expected to give similar or statistically significant estimates in such
 circumstances. Also worth noting is the fact that the standard errors of the two JIVE estimators
 are considerably lower than the standard errors for the USSIV estimators discussed in Angrist
 and Krueger (1995).

 6. CONCLUSION

 In this paper we present two alternatives to 2SLS, LIML and other k-class estimators for models
 with endogenous regressors. In models with many weak instruments these estimators perform
 much better than 2SLS, and have finite sample properties similar to those of LIML. Moreover,
 under certain forms of misspecification the JIVE estimators may have less bias than LIML. The
 JIVE estimators therefore seem to provide useful alternatives in applications where there is
 concern about the number of instruments, although the question of when JIVE estimators should
 be preferred to LIML remains open.

 Instrumental variables is one special case in a larger class of generalized method of moments
 estimators where a weight matrix is estimated in an initial stage and a weighted set of restrictions
 is imposed in a second stage. In some cases, using the same data set to estimate the weight matrix
 and to impose the moment restrictions leads to poor small sample properties. In this context,
 Altonji and Segal (1996) discuss a sample splitting approach similar to that used by Angrist and
 Krueger (1995). The jackknife idea developed here for instrumental variables would also appear
 to extend to estimators such as those considered by Altonji and Segal.
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