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Abstract

We argue that in microeconometric applications, just-identified instrumental variables (IV)
estimators are virtually unbiased and the usual inference strategies are likely adequate. Confidence
interval undercoverage exceeds 5% only for endogeneity beyond that seen even when IV and OLS
estimates differ by an order of magnitude. Three widely-cited applications are used to explain
why endogeneity is likely low enough for IV estimates to be reliable. IV identification typically
implies a first-stage sign restriction; most analysts probably screen their estimates accordingly.
We show that screening on the estimated first stage sign halves median bias of conventional IV
without reducing coverage.
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1 Introduction

The Bekker (1994) and Bound et al. (1995) critiques of the heavily over-identified two-stage least
squares (2SLS) estimates reported in Angrist (1990) and Angrist and Krueger (1991, AK91) sparked
a flood of interest in the finite-sample behavior of instrumental variables (IV) estimates. In the
intervening three decades, attention to bias in 2SLS estimates with many weak instruments has become
a staple of applied microeconometrics. The fact that the finite-sample distribution of 2SLS estimates
is shifted towards the ordinary least squares (OLS) probability limit is especially worrying. IV is often
motivated by fears that OLS estimates are compromised by omitted variable bias (OVB). The IV
analyst hopes, therefore, that when IV estimates are close to OLS, this signals minimal OVB rather
than substantial finite-sample bias in the IV estimates.

The heavily over-identified models that prompted 1990s IV critiques are a case of many weak
instruments, roped together by 2SLS in an effort to estimate a single causal effect with acceptable
precision. Strikingly, Bound et al. (1995) show that in the specifications reported in AK91 that
interact quarter of birth dummies with 10 year-of-birth and 50 state-of-birth dummies to generate 180
instruments, replacing real quarter of birth dummmies with fake dummies randomly drawn yields 2SLS
estimates and standard errors much like those generated by the real thing.1 But most studies using
IV (including Angrist (1990) and AK91) report just-identified (just-ID) IV estimates computed with
a single instrument. Just-ID IV estimates are less obviously biased than the estimates generated by
heavily over-identified models, and the empirical relevance of bias in just-ID IV applications remains
a matter of debate. Our analysis comes in the wake of recent and renewed interest in the finite-sample
properties of just-ID IV, seen in Andrews and Armstrong (2017), Lee et al. (2020), and Keane and
Neal (2021), among others.

We argue here that in typical microeconometric applications of just-ID IV, conventional IV es-
timates and t-tests are unlikely to be compromised by failures of conventional asymptotic theory.
Our analysis builds on the (approximate) finite-sample normality of reduced-form and first-stage es-
timators (in the argot of classical simultaneous equations models, these are both estimated “reduced
forms”). Our modeling framework parallels that in Andrews et al. (2019) and earlier theoretical in-
vestigations of weak instrument problems. The normality of reduced-form estimates is justified by
conventional asymptotic reasoning, as well as by the local-to-zero asymptotic sequence used in Staiger
and Stock (1997) and Stock and Yogo (2005), in which the first stage shrinks to zero at a rate inversely
proportional to the square root of the sample size.

Our setup has only two free parameters: the correlation between structural and first-stage residuals
(henceforth, “endogeneity”) and the population first-stage F statistic. This fact lends itself to the
construction of easily-interpreted rejection contours characterizing conventional second-stage t-tests
and confidence interval coverage rates. We see, for example, that for endogeneity less than about 0.76,
95% confidence interval coverage is distorted by no more than 5% for any population F . An important
insight here is that, even though bias increases when the first stage gets weaker, second-stage precision

1This “fake instruments” simulation was originally suggested by Alan Krueger. Although not an empirical study,
Bekker (1994) is likewise motivated by a heavily over-identified specification in Angrist (1990) that uses 73 draft lottery
dummies plus interaction terms as instruments for Vietnam-era veteran status. This application is featured at the end
of Bekker’s paper, and, originally, in an Amsterdam bar in 1992, where Paul Bekker first confronted Angrist with claims
of bias.
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falls. In contrast with the over-identified case, conventional just-ID IV standard errors reflect this, and
confidence intervals widen accordingly. This keeps coverage high unless endogeneity is extraordinarily
high.2

Few analysts can gauge endogeneity outside of a particular empirical context. We therefore use
three applications to calibrate endogeneity: the AK91 study, the Angrist and Evans (1998, AE98) IV
estimates using a dummy for samesex sibships as an instrument for family size, and the Angrist and
Lavy (1999, AL99) fuzzy regression discontinuity estimates of class size effects on student learning.
These studies span a range of OVB scenarios, from modest (for most of the AK91 estimates), to
substantial (in AE98, where OLS exceeds IV by about 50%), to dramatic (in AL99, where IV exceeds
small, insignificant OLS estimates by an order of magnitude). Yet, the absolute value of estimated
endogeneity is no more than 0.46 in these applications, and over 0.35 only for a single specification
and sample. Although three examples do not make a theorem, we argue that the features of these
studies that limit endogeneity are common to empirical strategies designed to estimate causal effects
or to mitigate attenuation bias in models with measurement error.

Our theoretical case for a sanguine view of conventional just-ID IV builds on Andrews and Arm-
strong’s (2017) observation that a contemporary analyst pursuing a just-identified IV strategy likely
has a first-stage direction in mind. In particular, Andrews and Armstrong (2017) show how to use a
sign restriction on the population first stage to construct an estimator, denoted β̂U , that is unbiased
when the reduced-form estimates are normally distributed. Given a theoretical first-stage sign restric-
tion, it’s tempting to apply this to first-stage estimates. We show, however, that conditional on the
sign of the estimated first stage, β̂U is no longer unbiased: as it turns out, β̂U is unbiased by virtue of
the fact that it averages two conditional estimators, each biased but in opposite directions.

This discouraging result raises the question of whether and how we might use sign restrictions to
mitigate the bias of IV in a manner consistent with empirical practice. Our answer to this question
comes in the form of a novel theoretical result showing that the median bias of just-ID IV is roughly
halved if we condition on the first-stage estimate having the expected sign (we focus on median bias
because the conventional just-ID IV estimator has no moments). Analysts might justifiably worry
that screening on the basis of first-stage estimates distorts inference.3 Perhaps surprisingly, we also
show that pre-screening on the sign of the first stage is virtually costless: rejection contours for
a sign-screened estimator differ little from those obtained without screening. The upshot is that
sign-screening mitigates the already-modest bias of just-ID IV without degrading coverage. To the
extent that such screening is a feature of modern empirical work, reported IV estimates reflect the
impressively minimal bias characteristic of sign-screened IV.

The next section details the normal just-ID IV setup and derives an expression for endogeneity
in terms of OLS OVB. Section 3 reviews the relationship between t-test rejection rates and the
parameters that govern the normal model. This section also explains why endogeneity in applied

2The spirit of this argument differs from that in Stock and Yogo (2005), which focuses on worst-case rejection rates
over all possible endogeneity values. Lee et al. (2020) and Keane and Neal (2021), discussed further in Section 3 below,
consider possible restrictions on endogeneity. But these studies stress the fact that the standard definition of coverage
doesn’t involve restrictions on parameter values.

3Recent years have seen growing awareness of the bias induced by screening on the basis of a first-stage pre-test,
such as the first-stage F statistic. Hall et al. (1996) appear to be the first to note that pre-testing on the first-stage F-
statistic for just-ID IV reduces confidence interval coverage; Andrews et al. (2019) draw on recent empirical scholarship
to demonstrate the empirical relevance of pre-test bias in IV applications.
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microeconometrics is unlikely to be high enough for conventional IV inference to mislead. Section 4
shows how and why conditioning on the sign of the estimated first stage strengthens the case for this
view. Section 5 concludes. Proofs and details behind numerical calculations appear in the appendix.

2 Setup

We observe a sample of n units indexed by i, with data on outcome variable, Yi, a scalar treatment
variable, Di, a vector of covariates, Xi, and a scalar instrument, Zi. Population regressions of outcome
and treatment on the instrument and covariates define the reduced form and first stage. These are
written as follows:

Yi = Ziδ +X ′iψ1 + ui, (1)

Di = Ziπ +X ′iψ2 + vi. (2)

The parameter of interest is β = δ
π , the ratio of the reduced-form and first-stage regression coefficients

on Zi. Provided that the instrument, Zi, satisfies an exclusion restriction and is relevant (i.e. π 6= 0),
this parameter measures the effect of Di on Yi. More generally, if treatment effects are heterogeneous
and a monotonicity condition holds, β is a weighted average of individual causal effects (Angrist &
Imbens, 1995; Imbens & Angrist, 1994).

Let δ̂ =
∑n
i=1 Z̃iYi/

∑n
i=1 Z̃

2
i and π̂ =

∑n
i=1 Z̃iDi/

∑n
i=1 Z̃

2
i denote OLS estimates of δ and π,

where Z̃i is the residual from the regression of Zi on Xi. Under mild regularity conditions that
allow the errors (ui, vi) to be non-normal, heteroskedastic, and serially or cluster-dependent, (δ̂, π̂)

is consistent and asymptotically normal as n → ∞, with an asymptotic covariance matrix that can
be consistently estimated. Importantly, this holds regardless of the strength of the instrument. We
therefore follow Andrews et al. (2019) and earlier analyses of weak instrument problems by assuming
this large-sample approximation holds exactly. Specifically, we assume:(

δ̂

π̂

)
∼ N

((
πβ

π

)
,Σ =

(
σ2
δ̂

σδ̂π̂
σδ̂π̂ σ2

π̂

))
, (3)

with a known covariance matrix, Σ. This distributional assumption is implied by the Staiger and Stock
(1997) weak-instrument asymptotic sequence (see Andrews et al. (2019, Section 3.2) for additional
discussion and references). Finite-sample results under eq. (3) can therefore be seen as asymptotic
under the Staiger and Stock (1997) sequence.

Equation (3) is our only substantive restriction; this assumption allows us to focus on the weak
instrument problem, separating this from other finite-same problems, such as the effect of high-leverage
observations on the quality of the normal approximation to the distribution of the OLS estimators
(δ̂, π̂) and the challenge of standard-error estimation with clustered data.4 With (3) as foundation, we
derive finite-sample properties of the IV estimator:

β̂IV =
δ̂

π̂
, (4)

4Young (2021) discusses these problems in an IV context.
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and the null rejection rate of the corresponding Wald test. The latter is based on the t-statistic
centered at the parameter of interest, β, divided by the estimated IV standard error, σ̂IV :

tW =
β̂IV − β
σ̂IV

; σ̂2
IV =

σ2
δ̂
− 2σδ̂π̂β̂IV + σ2

π̂β̂
2
IV

π̂2
, (5)

where σ̂2
IV estimates the asymptotic variance of β̂IV under standard n → ∞ asymptotics. The

corresponding theoretical variance is σ2
IV = (σ2

δ̂
− 2σδ̂π̂β + σ2

π̂β
2)/π2. In a homoskedastic model with

constant causal effects, this simplifies to the familiar formula

σ2
IV =

σ2
ε

nE[Z̃2
i ]π2

,

where σ2
ε is the variance of the residual in the structural equation,

Yi = Diβ +X ′i(ψ1 − ψ2β) + εi, (6)

that motivates IV estimation in the classic linear set-up (the structural residual is εi = ui − viβ).
Given the assumption of a known covariance matrix for the first-stage and reduced-form estimates,

both tW and σ̂2
IV depend on the data only through (δ̂, π̂). These have distributions determined by the

two unknown parameters, π and β. Rather than π and β, however, it is illuminating to characterize
finite-sample behavior in terms of a pair of parameters that measures instrument strength and the
degree of endogeneity (a reparameterization adopted in Staiger and Stock (1997) and Lee et al. (2020),
among others). The first parameter, denoted E[F ], is defined as:

E[F ] = π2/σ2
π̂ + 1.

Because E[F ] is the expectation of F = π̂2/σ2
π̂, the F-statistic testing π = 0, it’s sometimes called the

population first-stage F-statistic, a term adopted here.
The second parameter is defined as:

ρ = cor(δ̂ − π̂β, π̂) =
σπ̂√

σ2
δ̂
− 2βσδ̂π̂ + σ2

π̂β
2
× (σδ̂π̂/σ

2
π̂ − β). (7)

Under independent heteroskedastic errors, ρ is also given by cor(Z̃iεi, Z̃ivi). When, in addition, the
errors (ui, vi) are homoskedastic, ρ = cor(εi, vi), where εi is the structural residual in (6). We therefore
refer to ρ as (the degree of) endogeneity.5

With weak instruments as well as homoskedastic error terms, ρ is proportional to the bias of the
OLS estimand. This can be seen by using the first-stage and reduced-form equations to write the OLS

5This simplification is obtained using the fact that, under homoskedasticity, the variance of vi is σ2
v = σ2

π̂ · nE[Z̃2
i ]

and the variance of εi is σ2
ε = (σ2

δ̂
−2βσδ̂π̂+σ

2
π̂β

2) ·nE[Z̃2
i ], with cov(vi, εi) = (σδ̂π̂−βσ

2
π̂) ·nE[Z̃2

i ]. The homoskedastic
formula for the variance of εi also leads yields the simplification of the formula for σ2

IV noted above.
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slope coefficient, βOLS , as follows:

βOLS =
E[D̃iYi]

E[D̃2
i ]

=
E[Z̃2

i ]π2β + E[uivi]

E[Z̃2
i ]π2 + σ2

v

= R2
pβ + (1−R2

p)
E[uivi]

σ2
v

; R2
p =

E[Z̃2
i ]π2

E[Z̃2
i ]π2 + σ2

v

, (8)

where D̃i is the residual from a regression of Di on Xi, and σ2
v = E[v2

i ]. The weight multiplying β
in (8), denoted R2

p, is the population partial R2 generated by adding the instrument to the first-stage
regression. When the instrument is weak, R2

p is close to zero, and (8) is approximately E[uivi]/σ
2
v .

The OLS estimand likewise converges to E[uivi]/σ
2
v in the Staiger and Stock (1997) weak-instrument

sequence (which takes π → 0). This in turn equals σδ̂π̂/σ
2
π̂ under homoskedasticity, so the second

term on the right-hand side of (7),

σδ̂π̂/σ
2
π̂ − β = βWOLS − β, (9)

is the weak-instrument OVB of OLS (where we’ve introduced the notation βWOLS for σδ̂π̂/σ
2
π̂). More-

over, when π = 0, it follows from (3) that βWOLS −β is the median bias of β̂IV with no independence
or heteroskedasticity assumptions on the errors in (1) and (2).6 Thus, ρ also measures endogeneity
in the sense that it’s proportional to the median bias of the IV estimator when the instrument is
irrelevant.

3 Rejection Rates in Theory and Practice

We’re interested in the bias of β̂IV and in t-test rejection rates when the null hypothesis is true.
Beginning with the latter, the null rejection rate for a two-sided t-test with level α is the probability
that the absolute value of a t-statistic, |tW |, exceeds z1−α/2, the 1−α/2 quantile of a standard normal
distribution. This is:

RW = PE[F ],ρ(|tW | > z1−α/2),

where PE[F ],ρ is the distribution of tW parameterized by E[F ], ρ. As detailed in Appendix A.2 (and
paralleling Stock and Yogo, 2005), RW is evaluated by rewriting tW in terms of the Anderson and
Rubin (1949, AR) statistic,

tAR =
δ̂ − π̂β√

σ2
δ̂
− 2σδ̂π̂β + σ2

π̂β
2
, (10)

and the first-stage t-statistic, t1 = π̂/σπ̂, the square of which is the first-stage F statistic. Note tAR
differs from tW in that it replaces β̂IV with the null value of β in the formula for σ̂2

IV .
7

6Assumption (3) implies that we can write reduced form and first stage estimates as δ̂ = πβ + (σδ̂π̂/σπ̂)Zπ + (σ2
δ̂
−

σ2
δ̂π̂
/σ2
π̂)

1/2Zδ and π̂ = π+σπ̂Zπ , where Zδ and Zπ are independent standard normal variables. When π = 0, therefore,

β̂IV = 1
σπ̂

(σ2
δ̂
− σ2

δ̂π̂
/σπ̂)

1/2(Zδ/Zπ) + βWOLS , the median of which is βWOLS since Zδ/Zπ has a standard Cauchy
distribution with zero median.

7See Anderson and Rubin (1949) for the general form of the AR statistic in over-identified models with a fixed
number of instruments and Mikusheva and Sun (2021) for an adaptation to models with many weak instruments.
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The AR statistic often offers an attractive alternative to the usual t-statistic, tW (as in, e.g.
Andrews et al., 2019; Keane & Neal, 2021). The AR test has size undistorted by weak instruments
under the Staiger and Stock (1997) sequence and, under the just-ID model in eq. (3), is optimal among
unbiased tests (Moreira, 2009). When testing β = 0, tAR is simply the t-statistic for the associated
reduced form. We focus here on a conventional t-statistic because the conventional test is ubiquitous
in applied work, while AR is seen less. This may reflect the fact that confidence intervals derived
by inverting tAR have infinite length when F < z2

1−α/2 (i.e., less than about 4 for 95% confidence
intervals), and AR-based intervals are always wider than conventional intervals when the former are
finite (see, e.g., Lee et al., 2020).

Summarizing the behavior of a conventional 5% nominal test, Panel (a) in Figure 1 depicts rejection
rates for tW as a contour plot indexed by ρ and E[F ]. The figure shows that rejection rates greatly
exceed the nominal 5% rate only if the instrument is weak (i.e., E[F ] is close to 1) and endogeneity
is high. In particular, if |ρ| < 0.76, rejection rates are below 10%, regardless of the strength of the
first stage. If |ρ| < 0.565, the nominal 5% test under-rejects (this cutoff is also noted in Lee et al.,
2020). A simple corollary, further substantiated below, is that the coverage of conventional nominal
95% confidence intervals for β̂IV is likely to be satisfactory in most applications.

The modest over-rejection seen in Figure 1 is explained by a signal feature of just-ID IV: the bias
of β̂IV rises as the instrument grows weaker, but precision falls apace. The IV standard error reflects
this lack of precision well enough that, unless endogeneity is egregious, inference is distorted little.
This contrasts with overidentified 2SLS with many weak instruments (as in Bekker (1994) and Bound
et al. (1995)), where, bias notwithstanding, the usual standard errors for 2SLS remain small enough
for the t-statistic to be misleading.

Our conclusions here also contrast with those drawn in Stock and Yogo (2005) and Lee et al.
(2020) regarding the reliability of inference based on a conventional just-ID IV t-statistic. Although
Lee et al. (2020) report a similar plot, both studies emphasize worst-case rejection rates over ρ, for
a given E[F ]. As can be seen in our Figure 1, this worst-case rejection rate occurs at |ρ| = 1. In
the same spirit, Keane and Neal (2021) highlights simulations showing that conventional just-ID IV
t-tests can be misleading when endogeneity is very high. Sections 3.1 and 3.2 explain why we are not
much concerned with high values of ρ.

3.1 The Anatomy of Endogeneity

We put endogeneity in context using three applications. These are the AK91 study that launched
the modern weak instruments literature, the AE98 estimates using a dummy for samesex sibships
(of first- and second-born children) as an instrument for family size, and the AL99 fuzzy regression
discontinuity estimates of class size effects. The AE98 and AL99 first-stage t-statistics exceed those
for AK91 and are arguably out of the zone where an instrument might be considered weak. With
a first-stage t-statistic of almost 8, the AK91 quarter-of-birth instrument also seems strong enough.
But all three studies can be used to calibrate endogeneity and to document contextual features that
constrain it.

Table 1 reports key statistics for specifications drawn from each study (some estimates in the table
differ slightly from those in the original). The first row in Panel A shows estimates of the economic
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returns to schooling in the AK91 sample of men born 1920–29. Here, OLS and IV estimates equal 0.08

and 0.072, respectively. These are close, so endogeneity is small in this case, with an estimated ρ of
only 0.043. Schooling returns estimated in the second AK91 sample, consisting of men born 1930–39,
exhibit more OVB. In this sample, the IV estimate of 0.105 surprisingly exceeds the OLS estimate of
0.071 (IV estimation of the returns to schooling is usually motivated by a concern that omitted ability
controls causes OLS estimates to be too large). Endogeneity is correspondingly larger at ρ = −0.175,
but still well outside the danger zone depicted in Figure 1.8

The AK91, AE98, and AL99 studies span a range of OVB scenarios, from modest in the first
AK91 sample, to substantial in AE98 (where OLS magnitudes consistently exceed IV by at least
50%), to dramatic in AL99 (where IV exceeds small, insignificant OLS estimates, mostly by an order
of magnitude, and sometimes with a sign flip). Yet, the magnitude of endogeneity exceeds 0.40 in only
one specification, that for reading scores in the AL99 discontinuity sample (which consists of classes
in schools with enrollment near the cutoff that determines class size). The just-ID IV estimates in all
three of these studies are therefore unlikely to be compromised by finite-sample bias.9

Although the consistently moderate levels of endogeneity documented in Table 1 does not make a
theorem, these applications have features in common with many IV-driven microeconometric investi-
gations of causal effects. First, measured against endogenous variable standard deviations, first-stage
magnitudes are small. In particular, the range of first-stage impact in eq. (2) runs from under 4%
of the endogenous variable standard deviation in AK91, to about 12% of the endogenous variable
standard deviation in AE98, with the AL99 first stage in-between.

Most importantly, endogeneity in research on causal effects is often capped by the modest size of
the effects of interest. To make this point, it’s helpful to write ρ as a function of OVB. Using eqs. (8)
and (9), we can express ρ under homoskedasticity as:

ρ =
σv
σε

(βWOLS − β) (11)

=
σv
σε

(
βOLS − β

1−R2
p

)
≈ σD
σY

(βOLS − β).

We can use this expression to compute ρ by replacing β with β̂IV . The relevance of this representation
of ρ can be seen in the AE98 estimates of the effects a third child on weeks worked by women aged
21–35 in the 1980 Census. Here, the first-stage partial R-square (R2

p) is close to zero, while the
difference between the conventional OLS estimate and the corresponding IV estimate is 3.42. The
term multiplying this, σv

σε
, is well-approximated by the ratio of the endogenous variable standard

deviation to the dependent variable standard deviation (denoted σD
σY

), a ratio of about 0.022. The
product of these two terms gives 0.075, equal to the value of ρ reported in the table for this sample.

Equation (11) suggests alternative bounds on endogeneity. For starters, in the AK91 scenario,
8Estimates of ρ in the table are computed as described in Appendix A.1. These estimates may differ from ρ because

β̂IV is biased, and because of sampling variance. In the examples analyzed here, however, the instruments are not
particularly weak, so the bias in estimated endogeneity is negligible. With weaker instruments, endogeneity can be
bounded by features of the problem at hand; this approach is taken below.

9Estimates of ρ computed under homoskedasticity in the AK91 and AE98 samples are almost identical to those
reported in Table 1. For the AL99 samples, endogeneity parameters computed using homoskedasticity are smaller;
these are reported as ρ∗ in the table.
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it seems reasonable to assume that the (causal) economic returns to schooling are no more than
double the OLS estimate and certainly positive. Under these restrictions, the descriptive statistics in
Table 1, which approximate σv

σε
at around 5.2, suggest |ρ| can be no more than about 0.41. Although

substantial, this is well below the 0.76 threshold for coverage concerns. With β bounded below by
zero, large magnitudes of ρ require β to far exceed βWOLS . Only when the causal effect of schooling is
triple the OLS estimate (so that OLS is too small by 0.15) does the endogeneity danger zone become
relevant.

Many microeconometric IV applications involve linear probability models in which causal effects
are changes in probabilities. The AE98 estimates of the effect of the birth of a third child on female
labor force participation in 1980, for example, range from roughly −0.18 for OLS to −0.12 for IV.
Labor force participation rates for women with only two children run around 57%. Causal effects
might therefore be as large as −0.57, but no larger, since probabilities can’t be negative. In this case,
σv
σε

is about 1 (again, using standard deviations in the data rather than residuals), so βOLS − β can
be no larger than −0.18 + .57 = 0.39, thereby bounding ρ at this value. This generous bound makes
no use of the fact that selection bias is likely to make OLS estimates of family-size effects on female
supply too large (in magnitude) rather than too small. Other applications with Bernoulli outcomes
admit similar sorts of bounds.

A related argument, appropriate for models with continuous outcomes, shows endogeneity to be
constrained by plausible values for causal effects measured in standard deviation units. This line of
reasoning is especially apt for education research where standard-deviation-denominated effect sizes
are widely reported. The influential Tennessee STAR class size experiment analyzed in Krueger (1999)
generated a reduction of 7 students per class, roughly one standard deviation of class size in the AL99
data. The STAR experiment yielded treatment effects of about 0.2σ, an impact typical of education
interventions deemed to have been effective. At the same time, education researchers often view effect
sizes as large as half a standard deviation in the outcome distribution as rare, if not implausible. Using
the fact that σv

σε
is about equal to (1−R2

p) in the AL99 data, the scenario of a half-standard deviation
effect size generated by a one-standard deviation reduction in class size implies σv

σε

β
1−R2

p
= −0.5 on the

second line of eq. (11). At the same time, OLS estimates of class size effects in AL99 are mostly zero
(as is often found in class size research; see e g., Hanushek (1986)), so the magnitude of endogeneity
is capped at 0.5.

Contributing to all three of these arguments is the fact that endogeneity under homoskedasticity
can be split into the difference between two R-squared-like terms:

ρ ≈ σD
σY

(βOLS − β) =
σD
σY

βOLS −
σD
σY

β. (12)

The square of the first term, (σDσY βOLS)2, is the variation in the dependent variable accounted for
by Di in an analysis-of-variance for Yi. In microeconometric applications, this term is mostly small,
as is the causal analog that determines the square of the second term, (σDσY β)2. This fact limits the
magnitude of the difference between them.10

10Keane and Neal (2021) consider bounds on ρ in the context of estimates of the economic returns to schooling
motivated by the view that OLS returns should exceed causal effects. Although this seems defensible, it’s worth noting
that the literature surveyed by Card (2001) reports many IV estimates in excess of the corresponding OLS estimates, a
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3.2 When Measurement Error Motivates IV

In addition to IV for causal effects, a second major arena for microeconometric IV involves models with
measurement error. Suppose the regression of interest is Yi = D∗i β +X ′iγ + ηi, where ηi is a residual
uncorrelated with (D∗i , Xi) by definition. The regressor D∗i is unobserved; we see only a noisy measure,
Di = D∗i + ei, where the measurement error, ei, is assumed to be classical, that is uncorrelated with
(D∗i , Xi, ηi). Replacing D∗i with Di yields the structural equation to be instrumented:

Yi = Diβ +X ′iγ + (ηi − eiβ)

= Diβ +X ′iγ + εi,

where εi = ηi−eiβ is the structural residual. Given an instrument correlated withD∗i and uncorrelated
with εi, the coefficients of interest are consistently estimated by IV. The first stage in this scenario
can be written as in (2), with first-stage residual, vi.

To calibrate endogeneity in this model, note first that, given the classical measurement error as-
sumption, cov(vi, εi) = −σ2

eβ. Under homoskedasticity, endogeneity squared can therefore be written:

ρ2 =
σ4
eβ

2

σ2
vσ

2
ε

=
σ4
eβ

2

σ2
v(σ2

η + β2σ2
e)
≤ σ2

e

σ2
v

=
1− r

1−R2
p

, (13)

where r = σ2
D̃∗/σ

2
D̃

denotes the reliability (or signal-to-noise ratio) of mismeasured Di, after partialing
out covariates.11

Although we can’t speak to reliability across all fields, labor economists have collected evidence
on the reliability of key variables of interest. These include schooling, earnings, hours worked, and
hourly wages. Schooling appears often on the right-hand side of wage equations, while earnings, hours,
and hourly wages are used in various configurations to estimate labor supply elasticities. The Angrist
and Krueger (1999) summary of reliability estimates suggests r ≈ 0.9 for schooling and r ≈ 0.8 for
earnings, falling to about 0.65 − 0.75 for hours worked and hourly wages. The lower end of this
range may be more relevant for wage reliability after partialing out covariates.12 With r = 0.65 as a
reasonably conservative value, we’d need to see an R2

p equal to at least 0.4 for ρ to reach 0.76. But

E[F ] =
nR2

p

1−R2
p

+ 1, so, at this level of first-stage fit, E[F ] is way nowhere near the trouble zone for
any sample size that’s empirically relevant. This suggests that, unless reliability is unusually low,
microeconometric measurement error can be expected to generate parameter combinations for which
conventional IV inference is trouble-free.

4 Bias Under a Good Sign

Having made an empirical case for a sanguine view of just-ID IV, we add a novel analytical argument.
This builds on the idea that IV identification strategies are most credible when a strong institutional

pattern first highlighted by Lang (1993).
11The first equality in (13) follows from the definition of correlation, the middle inequality uses the fact that σ2

η must
be non-negative, and the last equality uses the definition of partial R2 in eq. (8).

12See Table 11 in Angrist and Krueger (1999). The reliability of variables other than wages is less sensitive to covariate
adjustment.
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or theoretical foundation explains the first stage. These foundations usually imply a sign for π. In
the AK91 application, for example, the quarter-of-birth first stage arises from the fact that children
born later in the year enter school younger, and are therefore constrained by compulsory attendance
laws to stay in school longer than those born earlier. The AE98 samesex instrument for family size is
predicated on parents’ preference for mixed-sex sibships. The AL99 Maimonides Rule instrument for
class size is derived from regulations that determine class size as a function of enrollment. In these
and many other applied micro applications, institutions or preferences determine the sign of π.

Andrews and Armstrong (2017) use this insight to motivate an IV estimator that is unbiased under
a first-stage sign restriction. Without loss of generality, assume π > 0, and let µ(x) = 1−Φ(x)

φ(x) denote
the Mills’ ratio of a standard normal random variable, where φ(x) and Φ(x) are the standard normal
density and cdf evaluated at x. The Andrews-Armstrong unbiased IV estimator, denoted β̂U , exploits
the fact that when first-stage estimates are normally distributed,

E

[
µ(t1)

σπ̂

]
=

1

π
.

In other words, τ̂ ≡ µ(t1)/σπ̂ is an unbiased estimator of the reciprocal of the first-stage coefficient,
π. Define

β̂U ≡ τ̂(δ̂ − βWOLS π̂) + βWOLS = t1µ(t1)β̂IV + (1− t1µ(t1))βWOLS . (14)

Finally, recall that βWOLS is the slope from a regression of the estimated reduced form on the estimated
first stage. δ̂−βWOLS π̂ and τ̂ are therefore uncorrelated, and since E[δ̂−βWOLS π̂] = (β−βWOLS)π,
it follows that β̂U is unbiased for β. Moreover, β̂U is a linear combination of conventional IV estimates
and βWOLS with coefficients, or weights, given by t1µ(t1) and 1− t1µ(t1).

To interpret β̂U , observe that t1µ(t1) = π̂τ̂ , so that the weights in (14) reflect the extent to which
τ̂ differs from 1/π̂. If t1 > 0, these weights are bounded by a classic Mills’ ratio inequality (e.g. Feller,
1968, p. 175) that implies:

0 ≤ 1− t1µ(t1) ≤ 1

t21
. (15)

Thus, when the first stage is right-signed, the weights t1µ(t1) in eq. (14) lie between 0 and 1, and we
can interpret β̂U as shrinking the conventional IV estimate towards OLS. The amount of shrinkage is
bounded by the reciprocal of t21, that is, by 1/F . When F = t21 = 10, the unbiased estimator shrinks
β̂IV at most 10% of the way towards βWOLS .

The shrinkage interpretation of β̂U seems surprising: since β̂IV is biased towards OLS, shrinkage
towards OLS increases bias. This counterintuitive fact is reconciled with the unbiasedness of β̂U by
the following theorem:

Theorem 1. Consider the model in (3), and suppose that π > 0. Let λ = π/σπ̂ =
√
E[F ]− 1. Then

the relative mean bias of β̂U conditional on t1 > 0 can be written:

E[β̂U − β | t1 > 0]

βWOLS − β
=
√
π/2

φ(λ)

Φ(λ)
,

10



while, conditional on t1 < 0, relative mean bias is:

E[β̂U − β | t1 < 0]

βWOLS − β
= −

√
π/2

φ(λ)

(1− Φ(λ))
.

The estimator β̂U is therefore unbiased because it averages conditional positive bias when t1 > 0 and
conditional negative bias when t1 < 0. As in Stock and Yogo (2005), the theorem scales mean bias
by the weak-IV OVB of the OLS estimand, defined in eq. (9). This simplifies bias formulas, while the
relationship between conditional and unconditional bias stands without this rescaling.13

It is hard to imagine an analyst who is prepared to sign the population first stage while ignoring the
sign of the estimated first stage. Such conditioning, however, strips β̂U of its appeal. In contrast with
the deleterious effects of sign-screening on β̂U , the next section shows that first-stage sign-screening
has surprisingly salutary effects on the sampling distribution of conventional IV estimates.

4.1 Sign-Screened Bias and Coverage

Suppose we assume π is positive and report second-stage estimates only when first-stage estimates
are positive as well (equivalently, when t1 > 0). In contrast with β̂U , sign-screening reduces the bias
of β̂IV markedly. Moreover, screening on the estimated first-stage sign has no downside in terms
of coverage: in contrast with procedures that screen on the magnitude of the first-stage F statistic,
screening on the sign of the corresponding t-statistic is shown here to have little effect on rejection
rates for a conventional second-stage t-test.

Because the expectation of a just-ID IV estimator is undefined, our investigation of sign-screening
looks at median bias (the expectation of 2SLS exists only for over-identified models). As in Theorem 1,
we scale bias by the weak-IV OVB of the OLS estimand. We are interested in the difference between
relative median bias computed unconditionally and conditional on π̂ > 0.

Surprisingly, Theorem 2 below shows that the worst-case relative bias obtains in the limit as
|ρ| → 0 (this is not the same as relative bias when ρ = 0; with no endogeneity, both IV and OLS are
unbiased, so that relative bias is discontinuous in ρ). The relationship between ρ and relative median
bias therefore contrasts with that in Section 3, which shows higher endogeneity leading to worse
coverage. This reversal reflects the fact that, although the bias of β̂IV increases with endogeneity,
OVB increases faster. Because modest endogeneity is empirically relevant, median relative bias is
reasonably characterized by the worst case over ρ. This leads us to the following theoretical result:

Theorem 2. Consider the model in eq. (3), and suppose that π > 0. Let λ = π/σπ̂ =
√
E[F ]− 1.

Then, for a given λ, unconditional relative median bias of β̂IV is characterized by

sup
ρ

∣∣∣∣∣medianE[F ],ρ(β̂IV − β)

βWOLS − β

∣∣∣∣∣ =
φ(λ)

λ[Φ(λ)− 1/2] + φ(λ)
.

13Stock and Yogo (2005) focus on relative mean bias for 2SLS models with over-identifying restrictions.
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Moreover, if λ ≥ 0.84, the relative median bias of β̂IV conditional on π̂ > 0 satisfies

sup
ρ

∣∣∣∣∣medianE[F ],ρ(β̂IV − β | π̂ > 0)

βWOLS − β

∣∣∣∣∣ =
φ(λ)

λΦ(λ) + φ(λ)
.

Equivalently, these expressions give the limit of relative unconditional and conditional median bias as
|ρ| → 0.

Figure 2 plots the two bias expressions in the theorem. We see that: (i) unconditional relative bias
falls rapidly as first-stage strength increases: (ii) unless E[F ] is exceedingly low, conditional median
bias is only about half as large as the corresponding unconditional bias. This is a consequence of the
fact that the ratio of conditional to unconditional median bias bounds is:

1− 0.5λ

λΦ(λ) + φ(λ)
.

For λ greater than about 1.5, this is within 1 percentage point of 0.50, since the normal cdf is then
close to one and the normal density close to zero. The shaded regions in Figure 2 delineate the range
of variation in relative median bias as a function of ρ, showing a surprisingly flat relationship (see
Appendix A.5 for computational details). Appendix A.5 also shows that the conditional median bias
of β̂IV is always less than that of β̂U , and at least 50% smaller once λ ≥ 1.14

Screening on the sign of the first-stage estimate clearly mitigates bias. Since many analysts likely
pursue a just-ID IV identification strategy only when the first-stage estimates are signed as expected,
the inner line in Figure 2 may be a better guide to the bias in published IV estimates. But perhaps
this sort of screening is costly. Econometricians have long warned that screening on the first-stage F -
statistic risks a form of pretest bias and so may do more harm than good. Intuitively, when π is truly
zero, large F -statistics signal realizations in which the in-sample correlation between instruments and
structural errors is largest. Consequently, when instruments are weak, large F s come with especially
misleading β̂IV realizations. Perhaps sign-screening runs a similar risk.

By way of evidence on this point, panel (b) of Figure 1 plots rejection contours for a conventional
(second-stage) t-test conditional on π̂ > 0. That is, the figure plots contours for:

RcW = PE[F ],ρ(|tW | > z1−α/2 | π̂ > 0).

Comparison of the two panels in Figure 1 shows that screening on the first-stage sign affects
rejection rates little. For instance, the endogeneity cutoff required to keep rejections rates below 10%
is |ρ| ≤ 0.75, rather than the unconditional 0.76. This result is explained by the fact that, when
the instrument is very weak, screening has two effects. On one hand, the bias of β̂IV is reduced. At
the same time, screening out wrong-signed first-stage estimates leads to an overestimate of first-stage
strength, on average. These two effects are just about offsetting, so that the rejection contours in

14Andrews and Armstrong (2017) show numerically that the unconditional median bias of β̂U is smaller than that
of β̂IV when E[F ] is small, while their bias ranking reverses for larger E[F ]. They also note that the median absolute
deviation of β̂U is always smaller than that of β̂IV . Our numerical calculations indicate that this fails to hold for
all parameter values conditional on the estimated first stage sign. An analyst evaluating estimators on the basis of
conditional mean bias will nevertheless prefer β̂U to β̂IV since only the bias of the former is finite.
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panel (a) of Figure 1 are much like those in panel (b).
What practical lesson should we draw from this? The careful analyst judges statistical power by

standard errors rather than t-statistics, and hesitates to declare a finding conclusive based on β̂IV

alone when the reduced form is statistically uninformative. Just-ID IV is a strong hand, but the
reduced form, a regression coefficient with anodyne statistical properties, is the IV analyst’s ace in
the hole. The good properties of the AR test statistic can be seen as justifying this view since the t-
statistic for the reduced form and tAR coincide for a zero null. At the same time, an empiricist hewing
to conventional IV reporting strategy—showing reduced-form, first-stage, and IV estimates and the
associated standard errors—can be reassured that, provided the first stage has the anticipated sign,
the bias of just-ID IV is likely to be minimal and conventional confidence interval coverage adequate.
Only when endogeneity exceeds a level that applied microeconomists rarely encounter is inference
likely to be misleading.

In the context of the AK91, AE98, and AL99 studies, first-stage sign screening adds no action items
to the empirical agenda. The first-stage estimates in these applications are robustly right-signed. The
reduced forms, reported in detail, are consistent with second-stage estimates in clearly showing that
the instrument moves outcomes in a manner implied by plausible first-stage values. In applications
with weaker instruments than these, an empirical strategy that begins by examining the first-stage
sign would seem to have no downside. Claims of credible causal evidence requires more than this,
however. In AK91, for instance, the quarter-of-birth story holds water because schooling can be seen
to move sharply up and down with quarter of birth as predicted by compulsory attendance laws, across
30 birth cohorts in three data sets, and because graduate degree completion that should be changed
little by compulsory attendance, indeed moves little with quarter of birth. This coherence is part of
what gives the AK91 first stage its strength.

5 Summary and Conclusions

Assuming reduced-form and first-stage estimates are normally distributed, null rejection rates for
conventional t-tests in just-ID IV models are distorted little unless endogeneity is extraordinarily
large. A corollary is that conventional IV standard errors are likely to yield confidence intervals with
good coverage. Three widely-cited applications, two of which demonstrate considerable OVB in OLS
estimates, are characterized by modest endogeneity and consequently fall well inside the low-distortion
comfort zone. We’ve argued that these three examples should be seen as representative rather than
idiosyncratic: the structure of much applied micro research naturally bounds endogeneity.

We’ve also introduced a new theoretical reason to be unconcerned with the bias of just-ID IV. This
builds on the Andrews and Armstrong (2017) argument that in credible applications of just-ID IV,
the analyst is rarely agnostic about the direction of the first stage. Unlike Andrews and Armstrong
(2017), however, we impose the same sign restriction on the estimated as well as the theoretical first
stage. Such conditioning roughly halves the median bias of the IV estimator. Moreover, in contrast
with screening on the first-stage F , sign-screening generates no pretest bias. Since most analysts likely
impose an estimated first-stage sign screen as a matter of course, the bias reduction sign-conditioning
engenders is already reflected in published empirical work.
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Panel (b): Rejection rate conditional on sign-screening

Panel (a): Unconditional rejection rate
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Figure 1: Contour plot of the rejection rate of conventional t-test with nominal level α = 0.05 as
function of E[F ] and ρ. Panel (a) plots the unconditional rejection rate RW . Panel (b) plots the
rejection rate RcW conditional on π̂ > 0. See Appendix A.2 for computational details.
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Figure 2: Bound on median bias of β̂IV in units of OLS bias, i.e. as a fraction of |βWOLS − β|.
Dashed line: unconditional median bias. Solid line: median bias conditional on π̂ > 0. The yellow
and blue shaded areas delineate the range of variation in unconditional and conditional median bias,
respectively, over possible values of ρ.

17



Table 1: Estimates and Endogeneity in Three IV Applications

OLS 2SLS

0.0802 0.0724
(0.0004) (0.0226)

0.0711 0.1049
-0.0004 (0.0246)

-0.177 -0.117
(0.002) (0.025)

-8.997 -5.559
(0.071) (1.118)

-0.164 -0.092
(0.002) (0.025)

-8.65 -5.46
(0.077) (1.156)

0.009 -0.263
(0.034) (0.094)

0.036 -0.264
(0.045) (0.123)

-0.070 -0.410
(0.050) (0.118)

0.090 -0.185
(0.070) (0.155)

 
Dep. Var. 

(sd)
Endog. Var. 

(sd)
Instrument  

(sd)
First Stage Estimates

Log weekly 
wage (0.65)

Log weekly 
wage (0.68)

Years of 
schooling 

(3.28)

QOB 1 birth 
(0.43)

Years of 
schooling 

(3.36)

QOB 1 birth 
(.43)

𝝆= 0.043

𝝆 = -0.175

Weeks 
worked 
(22.3)

0.061 
(0.0015)

𝝆 = -0.058

𝝆 = -0.075

-0.122 
(0.016)

-0.106 
(0.013)

Class size 
(6.55)

Maimonides 
 Rule (6.11) 

0.477 
(0.041)

5th Grade 
Reading 

(8.18)
5th Grade 

Math 
(10.20)

Class size 
(7.42)

Maimonides 
 Rule (7.50)

5th Grade 
Math (9.60)

0.481 
(0.057)

More than 
2 kids (0.49)

Samesex 
sibship 
(0.50)

Worked for 
pay (.50)

𝝆=0.352 (𝝆* = 0.225)

𝝆 =0.310 (𝝆* = 0.183)

Sample

Men born  
1920-29  

(N= 247,199)
Men born  
1930-39 

(N=329,509)

1980 Census 
mothers aged 

18-35 
(N=394,840)

1990 Census 
mothers aged 

18-35 
(N=380,007)

5th Grade 
classes  

(N=2,019)

5th Grade 
discontinuity 

samples
(N=471)

A. AK91

B. AE98

C. AL99

𝝆 =0.460 (𝝆* = 0.390)

𝝆 =0.292 (𝝆* = 0.224)

Worked for 
pay (.47)

Weeks 
worked 
(22.8)

5th Grade 
Reading 

(7.68)

𝝆  = -0.067

More than 
2 kids (0.48)

Samesex 
sibship 
(0.50)

0.062 
(0.0015)

𝝆  = -0.070

Notes: This table reports IV and OLS estimates replicating the AK91, AE98, and AL99 studies discussed in the text.
For each study, the table reports estimates from multiple samples, as well as the corresponding first-stage estimate and
its standard error. The endogeneity parameter appears below columns showing OLS and IV. Endogeneity estimates
for AL99 marked with an asterisk were computed assuming homoskedasticity. The 2nd, 3rd, and 4th columns report
standard deviations in parentheses. Other columns show standard errors in parentheses. These are robust for AK91
and AE98, and clustered on school for AL99.
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Appendix A Derivations and Proofs

The appendix uses the notation β̃IV = (β̂IV − β)/|βWOLS − β| and β̃U = (β̂IV − β)/|βWOLS − β| to
denote the IV and the unbiased estimator, after centering and scaling by the weak-IV OVB of OLS.
Also, we let λ = π/σπ̂ =

√
E[F ]− 1, and s = ρ/

√
1− ρ2.

A.1 Estimating ρ

We estimate ρ (defined in eq. (7)) using first-stage and IV estimates, and the associated first-stage,
reduced-form and IV standard errors. To see how this works, rewrite eq. (5) as

σδ̂π̂ =
σ2
π̂β̂

2
IV − π̂2σ̂2

IV + σ2
δ̂

2β̂IV
. (A.1)

With this in hand for σδ̂π̂, endogeneity can be computed as the sample analog of eq. (7), replacing β
with β̂IV . The resulting estimator is:

ρ̂ =
σπ̂
|π̂|σ̂IV

× (σδ̂π̂/σ
2
π̂ − β̂IV ).

A.2 t-Test Rejection Rates

This section writes the rejection probabilities of the t-test as an integral indexed by (E[F ], ρ). Stock
and Yogo (2005) use Monte Carlo methods to compute unconditional rejection probabilities in a
similar setup. The calculation described here is faster and more accurate. More importantly, it
allows us to easily compute both the unconditional rejection rates, and rejection rates conditional on
sign-screening.

Using eq. (7), and the fact that βWOLS − β and ρ have the same sign, we may write tAR as

tAR =
(δ̂ − π̂β)|ρ|

σπ̂|βWOLS − β|
. (A.2)

Consequently,

β̃IV =
δ̂ − βπ̂

σπ̂t1|βWOLS − β|
=

tAR
|ρ|t1

. (A.3)

Thus,

tW =
sign(t1)tAR√

σ2
δ̂
/σ2
π̂−2βWOLSβ+β2

(βWOLS−β)2 ρ2 +
t2AR
t21
− 2ρ tARt1

=
sign(t1)tAR√

1 + t2AR/t
2
1 − 2ρtAR/t1

(A.4)

where the first equality uses eq. (A.3) and the definition of βWOLS , and the second equality uses
eq. (7). This expression for tW implies that conditional on t1, the rejection region {|tW | ≥ z1−α/2} is
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quadratic in tAR. Solving this quadratic inequality implies that the rejection region is given by

tAR ∈


∅ if t21 ≤ (1− ρ2)z2

1−α/2,

[a1, a2] if (1− ρ2)z2
1−α/2 ≤ t

2
1 ≤ z2

1−α/2.

(−∞, a2) ∪ (a1,∞) if t21 ≥ z2
1−α/2

where

a1 =
ρz2

1−α/2t1 − |t1|z1−α/2

√
t21 − (1− ρ2)z2

1−α/2

z2
1−α/2 − t

2
1

,

a2 =
ρz2

1−α/2t1 + |t1|z1−α/2

√
t21 − (1− ρ2)z2

1−α/2

z2
1−α/2 − t

2
1

.

Note that cor(tAR, t1) = ρ, so that

P (tAR ≤ x | t1) = Φ((x− ρ(t1 − λ))/
√

1− ρ2). (A.5)

Thus, conditional on t1, the rejection probability is given by

P (|tW | ≥ z1−α | t1) = (P (tAR ≤ a2 | t1)− P (tAR ≤ a1 | t1)) I{t21 ≥ z2
1−α/2(1− ρ2)}

+ I{t21 ≥ z2
1−α/2}

= f(t1;λ, ρ) I{t21 ≥ (1− ρ2)z2
1−α/2}+ I{t21 ≥ z2

1−α/2},

(A.6)

where

f(t1;λ, ρ) = Φ

(
a2 − ρ(t1 − λ)√

1− ρ2

)
− Φ

(
a1 − ρ(t1 − λ)√

1− ρ2

)
.

Since t1 ∼ N (λ, 1), the rejection probability conditional on t1 ≥ c is therefore given by

P (|tW | ≥ z1−α | t1 ≥ c) =

∫∞
c

(I{t21 ≥ (1− ρ2)z1−α}f(t1;λ, ρ) + I{t21 ≥ z2
1−α/2})φ(t1 − λ)dt1

Φ(λ− c)
.

The unconditional rejection probability RW obtains by setting c = −∞. The rejection probability
conditional on sign screening, RcW , obtains by setting c = 0. The coverage contours in Figure 1
evaluate the above expression as a function of (ρ, λ) by numerical integration.

A.3 Proof of Theorem 1

We may write

β̃U = t1µ(t1)β̃IV + (1− t1µ(t1)) sign(ρ) = µ(t1)
tAR
|ρ|

+ (1− t1µ(t1)) sign(ρ) (A.7)

where the first equality follows from eq. (14), and the fact that βWOLS − β and ρ have the same sign,
and the second equality applies eq. (A.3).
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Since E[tAR | t1] = ρ(t1 − λ), the relative bias conditional on t1 is given by

E[β̃U | t1] = sign(ρ) [1− λµ(t1)] .

By arguments analogous to those in the proof of Lemma 2.1 in Andrews and Armstrong (2017), we
have

E[λµ(t1) | t1 > 0] =
1

Φ(λ)

∫ ∞
t=0

λ
1− Φ(t)

φ(t)
φ(t− λ)dt =

e−λ
2/2

Φ(λ)

∫ ∞
t=0

(1− Φ(t)) · λeλtdt

=
e−λ

2/2

Φ(λ)

{[
eλt(1− Φ(λ))

]∞
t=0

+

∫ ∞
t=0

φ(t)eλtdt

}
=

1

Φ(λ)

[
−1

2
e−λ

2/2 +

∫ ∞
t=0

φ(t− λ)dt

]
= −1

2

e−λ
2/2

Φ(λ)
+ 1,

where the first line uses the definition of a Mills’ ratio, second line uses integration by parts, and the
third follows by “completing the square”. It therefore follows that

E[β̂U − β | t1 > 0]

βWOLS − β
=

1

2

e−λ
2/2

Φ(λ)
=
√
π/2

φ(λ)

Φ(λ)
.

The second claim follows by an analogous argument.

A.4 Proof of Theorem 2

The distribution of β̃IV conditional on t1 can then be written as

P (β̃IV ≤ x | t1; s) =

P (tAR ≤ t1x|ρ| | t1) = Φ(s[λ− (1− sign(s)x)t1]) if t1 ≥ 0,

P (tAR ≥ t1x|s| | t1) = Φ(−s[λ− (1− sign(s)x)t1]) if t1 < 0.

= Φ (s[sign(t1)λ− (1− sign(s)x)|t1|]) .

(A.8)

where the first equality uses eq. (A.3), and the second equality follows from eq. (A.5). Observe that
since P (β̃IV ≤ x | t1;−s) = 1− P (β̃IV ≤ −x | t1;−s), the distribution is symmetric in s. It therefore
suffices to consider s > 0.

We first prove the claims concerning the distribution of β̃IV conditional on t1 > 0. By eq. (A.8),
this distribution is given by

P (β̃IV ≤ x | t1 > 0; s) =
1

Φ(λ)

∫ ∞
−λ

Φ (s[λ− (1− x)t1])φ(z)dz. (A.9)

Observe that the conditional median, denoted mc = mc(s), of β̃IV is smaller than 1, since

P (β̃IV ≤ 1 | t1 > 0; s) =
Φ (sλ)

Φ(λ)

∫ ∞
−λ

φ(z)dz = Φ(sλ) > 1/2. (A.10)
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Next, by the mean value theorem, for some s̃ = s̃(x, s) ∈ [0, s],

P (β̃IV ≤ x | t1 > 0; s) = Φ (0) +
s

Φ(λ)

∫ ∞
−λ

((x− 1)z + xλ)φ (s((x− 1)z + xλ))φ(z)dz

=
1

2
+

s

s̃2(1− x)Φ(λ)

∫ s̃λ

−∞
yφ (y)φ(a+ by)dy,

where the second line uses the change of variables y = s̃xλ − s̃(1 − x)z, and we let a = xλ/(1 − x),
b = − 1

s̃(1−x) . By line 111 of Table 1 in Owen (1980),

∫
xφ(x)φ(a+ bx) =

φ(a/t)

t2

[
−φ(tx+ ab/t)− ab

t
Φ(tx+ ab/t)

]
, t =

√
1 + b2. (A.11)

Applying this result to the preceding display then yields

P (β̃IV ≤ x | t1 > 0; s) =
1

2
+

s

s̃2(1− x)Φ(λ)

φ(a/t)

1 + b2

[
−φ (ts̃λ+ ab/t)− ab√

1 + b2
Φ(ts̃λ+ ab/t)

]
=

1

2
+

s

Φ(λ)

φ(a/t)(1− x)

s̃2(1− x)2 + 1

[
x

|1− x|
λ

g̃(x, s̃)
Φ(λg(x, s̃))− φ (λg(x, s̃))

]
,

where g(x, s̃) = s̃2|1−x|+sign(1−x)√
s̃2(1−x)2+1

, and g̃(x, s̃) =
√
s̃2(1− x)2 + 1. When evaluated at x = mc, the

expression in square brackets must equal zero by definition of the median. Therefore, mc > 0, and
since we also know from eq. (A.10) that mc < 1, the conditional median must satisfy

mc =
1

λ
g̃(mc,s̃(mc,s))

Φ(λg(mc,s̃(mc,s)))
φ(λg(mc,s̃(mc,s)))

+ 1
, (A.12)

We have
λ

g̃

Φ (λg)

φ(λg)
≥ λ

g̃

Φ (λg̃)

φ(λg̃)
, and

λ

g̃

Φ (λg̃)

φ(λg̃)
≥ λΦ (λ)

φ(λ)
if λ ≥ 0.84.

Here the first inequality follows because Φ(x)/φ(x) is increasing in x, and g ≥ g̃, and the second
inequality follows because Φ(x)

xφ(x) is increasing for x ≥ 0.84, and g̃ ≥ 1. Therefore,

mc ≤
φ(λ)

λΦ(λ) + φ(λ)
= lim

s↓0
mc(s),

where the equality follows since the right-hand side of eq. (A.12) converges to φ(λ)
λΦ(λ)+φ(λ) as s→ 0.

We now prove the claims concerning the unconditional distribution of β̃IV . From eq. (A.8), we
obtain

P (β̃IV ≤ x; s) = 1− Φ(λ)

+

∫ ∞
−λ

Φ (s(xλ− (1− x)z))φ(z)dz −
∫ −λ
−∞

Φ (s(xλ− (1− x)z))φ(z)dz. (A.13)
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Observe that the median of β̃IV , denoted mu = mu(s) is smaller than 1, since

P (β̃IV ≤ 1; s) = 1− Φ(λ) + Φ (sλ)

[∫ ∞
−λ

φ(z)dz −
∫ −λ
−∞

φ(z)dz

]
= 1− Φ(λ) + Φ (sλ) [Φ(λ)− 1 + Φ(λ)] > 1− Φ(λ) + [Φ(λ)− 1 + Φ(λ)] = Φ(λ) > 1/2. (A.14)

By arguments as in the conditional case, for x < 1,

P (β̃IV ≤ x; ρ) =
1

2
+

s

s̃2(1− x)

[∫ s̃λ

−∞
yφ (y)φ(a+ by)dy −

∫ ∞
s̃λ

yφ (y)φ(a+ by)dy

]

=
1

2
+

s

s̃2(1− x)

φ(a/t)

1 + b2

[
−2φ(ts̃λ+ ab/t)− 2

ab

t
Φ(ts̃λ+ ab/t) +

ab

t

]
=

1

2
+

s

s̃2(1− x)

φ(a/t)

1 + b2

[
−2φ(λg(s̃, x)) + 2

x

1− x
λ

g̃
Φ(λg(s̃, x))− x

1− x
λ

g̃

]
.

Here the first line follows by the mean value theorem, where s̃ = s̃(x, s) ∈ [0, s], the second line
uses eq. (A.11), and the last line follows by algebra. When evaluated at x = mc, the expression in
square brackets must equal zero by definition of the median. Therefore, mu > 0, and it must satisfy

mu =
1

λ
g̃

Φ(λg)−1/2
φ(λg) + 1

(A.15)

Now,
λ

g̃

Φ(λg)− 1/2

φ(λg)
≥ λ

g̃

Φ(λg̃)− 1/2

φ(λg̃)
≥ λΦ(λ)− 1/2

φ(λ)
.

Here the first inequality follows because Φ(x)/φ(x) is increasing in x, and g ≥ g̃, and the second
inequality follows because Φ(x)−1/2

xφ(x) is increasing for x > 0. As a result,

mu ≤
φ(λ)

λ(Φ(λ)− 1/2 + φ(λ))
= lim

s↓0
mu(s),

where the equality follows since the right-hand side of eq. (A.15) converges to φ(λ)
λ(Φ(λ)−1/2+φ(λ)) as

s→ 0.

A.5 Median Bias Comparisons

To evaluate the relative median bias of β̂IV as a function of both E[F ] and ρ conditional on t1 ≥ c,
we first evaluate

P (β̃IV ≤ x | t1 ≥ c; ρ, λ) =
1

Φ(λ− c)

∫ ∞
c−λ

fIV (z;x, λ, s)φ(z)dz (A.16)

by numerical integration. Here we use the formula fIV (z;x, ρ, λ) = Φ (s[sign(z + λ)λ− (1− x)|z + λ|])
from eq. (A.8) for the cdf conditional on z = t1 − λ. We then numerically solve for the median. For
unconditional median, we set c = −∞, and for the median conditional on sign screening, we set c = 0.
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The shaded regions in Figure 2 correspond to the range of the absolute value of the relative median
bias as ρ varies between −1 and 1.

To compare the relative median bias to that of β̂U , it suffices to consider ρ > 0, since the distribu-
tions of β̂U and β̂IV are symmetric in ρ. By eq. (A.7), it follows that for t1 > 0,

P (β̃U ≤ x | t1; s) = P

(
β̃IV ≤ x− (1− x)

(1− t1µ(t1))

t1µ(t1)
| t1; s

)
,

which for x < 1 is smaller than P (β̃IV ≤ x | t1; s). Since the median of β̃IV conditional on t1 > 0 is
smaller than 1, it follows that the conditional median bias of β̃IV is always smaller than that of β̃U .

To compare the relative magnitudes of the median biases, we compute the relative median bias
of β̃U analogously to that of β̃IV , except we replace fIV in eq. (A.16) with fU (z;x, λ, ρ) = Φ(s[λ −
(1 − sign(s)x)/µ(λ + z)]) (it follows from eqs. (A.5) and (A.7) that this is the cdf β̃U conditional on
z = t1−λ). We then compute the ratio medianλ,ρ(β̃U | t1 > 0)/medianλ,ρ(β̃IV | t1 > 0) of the median
biases on a fine grid of values of (ρ, λ). This ratio is greater than 2 if E[F ] ≥ 2, and greater than 3 if
E[F ] ≥ 3, regardless of the value of ρ.
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