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Split-Sample Instrumental Variables 

Estimates of the Return to Schooling 

Joshua D. ANGRIST 

Department of Economics, Mount Scopus, Hebrew University, Jerusalem 91 905, Israel 

Alan B. KRUEGER 
Department of Economics, Princeton University, Princeton, NJ 08544 

This article reevaluates recent instrumental variables (IV) estimates of the returns to schooling 
in light of the fact that two-stage least squares is biased in the same direction as ordinary least 
squares (OLS) even in very large samples. We propose a split-sample instrumental variables 
(SSIV) estimator that is not biased toward OLS. SSlV uses one-half of a sample to estimate pa- 
rameters of the first-stage equation. Estimated first-stage parameters are then used to construct 
fitted values and second-stage parameter estimates in the other half sample. SSIV is biased 
toward 0, but this bias can be corrected. The splt-sample estimators confirm and reinforce some 
previous findings on the returns to schooling but fail to confirm others. 

KEY WORDS: Finite-sample bias; Human capital and wages; Two-stage least squares. 

There has been longstanding interest in the finite-sample 
properties of instrumental variables (IV) estimators. In an 
influential early article, Nagar (1959) used an approxima- 
tion argument to show that two-stage least squares (2SLS) 
estimates are biased toward the probability limit of ordinary 
least squares (OLS) estimates in finite samples with normal 
disturbances. Buse (1992) generalized this result to cases 
with nonnormal disturbances. Other things equal, the bias of 
2SLS is greater if the excluded instruments explain a smaller 
share of the variation in the endogenous variable. Nelson and 
Startz (1990) and Maddala and Jeong (1992) showed that, in 
samples of the size typically used in time series analyses, 
IV estimates and their t ratios have highly nonnormal distri- 
butions if the first-stage R-square is low and the correlation 
between reduced-form and structural errors is large. 

Recently, Bound, Jaegar, and Baker (in press) (hence- 
forth BJB), Staiger and Stock (1994), and Bekker (1994) 
argued that finite-sample bias may also be a problem in 
cross-sectional studies that use very large samples with many 
excluded instruments. BJB and Staiger and Stock (1994) 
presented replication studies of Angrist and Krueger (1991) 
(henceforth AK-91), who reported the results of using quar- 
ter of birth to construct instruments for years of schooling 
in log-wage equations estimated with Census data. Quarter 
of birth is correlated with schooling because of a mechani- 
cal interaction between compulsory attendance laws and age 
at school entry. Both BJB and Staiger and Stock explored 
the possibility that the empirical finding that IV estimates of 
schooling coefficients are similar to OLS estimates is largely 
attributable to bias in the IV estimates. 

In a second application (Angrist and Krueger 1992a; 
henceforth AK-92), we used draft lottery numbers to con- 
struct IV estimates of the returns to schooling for men at risk 
of being drafted during the Vietnam era. The idea behind 

AK-92 was to exploit the possibility that draft avoidance 
via college deferment generated a relationship between ran- 
domly assigned draft-lottery numbers and the educational 
attainment of men at risk of being drafted. As in AK-91, 
IV estimates of schooling coefficients in AK-92 were also 
similar to the OLS estimates. 

The case for finite-sample bias in these two applications 
begins by noting that the first-stage equations explain lit- 
tle of the variance of the endogenous regressor. To see 
how a weak first stage can lead to bias, we experimented 
with randomly drawn fictitious instruments, which natu- 
rally generate a very weak first-stage relationship (similar 
experiments were reported by BJB). It turns out that by 
drawing instruments from a uniform random-number gen- 
erator it is possible to generate 2SLS estimates that are quite 
close to the OLS estimates arising from specifications re- 
ported by AK-92, as well as some of those reported by 
AK-9 1. More importantly, the reported second-stage stan- 
dard errors give the impression of a "statistically signifi- 
cant" structural coefficient estimate using the conventional 
normal approximation to the sampling distribution of 2SLS 
estimates. 

The possibility of such misleading inferences highlights 
the importance of developing IV estimators that are not bi- 
ased toward OLS. In this article, we propose a new estima- 
tor that we call split-sample instrumental variables (SSIV). 
SSIV works by randomly splitting the sample in half and 
using one half of the sample to estimate parameters of the 
first-stage equation. These estimated first-stage parameters 
are then used to construct fitted values and second-stage pa- 
rameter estimates from data in the other half of the sample. 
This estimator is a special case of the two-sample instru- 
mental variables (TSIV) estimator presented by Angrist and 
Krueger (1992b). (Altonji and Segal [I9941 also discussed 
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sample splitting to reduce the bias of generalized method of 
moments estimators.) 

Unlike conventional IV estimates, SSIV estimates are bi- 
ased toward 0 regardless of the degree of covariance between 
structural and reduced-form errors or the first-stage R2. An 
unbiased estimate of the attenuation bias of SSIV is given by 
the coefficient from a regression of the endogenous regres- 
sor on its predicted value (using data from one half of the 
sample but first-stage parameters from the other). The esti- 
mator formed from the product of SSIV and the estimated 
inverse attenuation bias, called USSIV, is consistent as the 
number of instruments grows, holding the number of obser- 
vations per instrument constant. Bekker (1994) showed that 
this sort of asymptotic argument gives a good account of the 
finite-sample properties of simultaneous-equations estima- 
tors, improving considerably on the conventional asymptotic 
approximation. 

In Section 1, we review the literature on finite-sample bias 
in IV estimators. In Section 2, we develop the basic SSIV and 
USSIV approach. In Section 3, we discuss "group asymp- 
totic~'' applied to SSIV and USSIV, as well as to 2SLS. In 
Section 4, we present a replication study of our two arti- 
cles using 2SLS to estimate the returns to schooling. SSIV 
and USSIV coefficient estimates generated from the AK-9 1 
data are similar to conventional IV estimates. A reexami-
nation of the results of AK-92, however, strongly suggests 
that the 2SLS results reported in that article are almost solely 
attributable to the finite-sample bias of IV toward OLS. 

1. SMALL-SAMPLE BIAS IN 2SLS ESTIMATES 

Consider the following two-equation model with one 
endogenous regressor: 

and 
xi = x;woi +R ~ W I ~  xtzi+ qi, (2)+ f7i 

for i = 1, .. . ,n observations, where yi is the dependent vari- 
able (e.g., log wages) and si is the endogenous regressor (e.g., 
years of schooling). zi is a (k +p) x 1 vector of instrumental 
variables that includes the p exogenous variables appearing 
in Equation (I), woi, plus k additional variables, wli (e.g., 
quarter-of-birth dummies). Thus there are k excluded instru- 
ments and k- 1 overidentifying restrictions. xi is a @+ 1) x 1 
vector that includes the exogenous regressors along with the 
endogenous regressor. 

The data are more compactly denoted by an n x 1 vector 
Y, an n x (p + 1) matrix X, and an n x (k +p) matrix Z. 
From (1) and (2), we have Y =XP +E and X =Zx +q. The 
coefficient PI is the scalar parameter of interest, assumed to 
be the last element in the (p  + 1) x 1 vector P, and x is the 
(k +p) x (p + 1) matrix of reduced-form parameters. We 
assume that observations in the sample are iid and that the 
disturbances satisfy E(ei I zi) =E(qi I zi) = 0. The residual 
variance of ei is denoted a:. The vector of residual variances 
in Equation (2), qi, consists of p zeros for the exogenous 
convariates, plus the last element corresponding to si. The 
variance of this element is a;, and its covariance with ei is a<,. 

BIB'S adaptation of the Buse (1992) approximate bias for- 
mula for a simple case with no exogenous regressors (where 
all variables have mean 0) is 

BJB pointed out that ntZtZx/a;k is the inverse of the popu- 
lation analog of the F statistic for a test of n = 0 in the first- 
stage equation (i.e., substituting x and a; for OLS estimates 
in the usual F statistic formula) and that the approximate bias 
of IV estimates is proportional to the OLS bias, a,,/o;. It 
'is also clear that a lower first-stage R2, keeping constant the 
number of instruments, leads to more bias unless there is no 
need to instrument (i.e., a,, = 0.) 

A simple explanation for this sort of bias in IV estimates is 
that the estimated coefficients used to construct the first-stage 
fitted values are correlated with the structural-equation error. 
Let P, =Z(ZIZ)-'Z'. The first-stage fitted values can then be 
written P,X = Zx +P,e. The average covariance between 
P,E and the last column of q is asymptotically negligible but 
has an expectation equal to a,,[k +p]/n in any finite sample. 

To see how serious this sort of bias could be, we exper- 
imented with the specification reported by AK-91 using 3 
quarter-of-birth dummies x 10 year-of-birth dummies plus 
3 quarter-of-birth dummies x 50 state-of-birth dummies to 
form a set of 180 excluded instruments. Conventional IV esti- 
mates from this specification (using a sample of over 329,000 
observations) generate a schooling coefficient of .093 with 
standard error of .009. OLS estimates of the same specifi- 
cation generate a schooling coefficient of .067 with a stan- 
dard error of .0003. Replacing actual quarter of birth with a 
random draw from a four-point discrete uniform distribution 
and repeating the IV estimation generated a coefficient of 
.057 with a reported standard error of .014. Most researchers 
would probably believe (not knowing that the instruments 
were fictitious) that they had learned something about the 
returns to schooling from this estimate. 

2. 	 SPLIT-SAMPLE INSTRUMENTAL 
VARIABLES (SSIV) 

SSIV solves the problem of spurious inferences in IV esti-
mation by breaking the link between e and q in Equations (1) 
and (2). The SSIV estimate is constructed by randomly di- 
viding a single sample into two half samples, denoted 1 and 2. 
Each sample consists of data matrices {q,Xj, Zj} forj = 1, 2. 
Sample 2 is used to estimate the first-stage equation. The 
first-stage parameters are then combined with observations 
on Zl to form fitted values for XI in sample 1. Finally, Yl is 
regressed on these fitted values and the exogenous regressors 
in sample 1. The estimator is 

A A& = ( X ; ~ X ~ ~ ) - ~ Z ~ Y ~  
= [x;z2(z;&)-'z;zl(z;&)-1z;x2]-' 

x [Xi& <z;&)-lz:Yl] 7 	 (4) 

where g2, = Z1(Z;&)-IZ;X2 is the cross-sample fitted 

value. Note that the cross-sample fitted value for exogenous 
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regressors is the value of the exogenous regressors in 
saniple 1. 

To develop the properties of SSIV, we begin with the ob- 
servation that by virtue of independent sampling we have 

Assumption 1. The data matrices {Y1, XI, Z1} and 
{Y2, X2, &}are jointly independent. 

Assumption 1 implies that {Y,, XI} is jointly independent 
of {Y2, X2, &} given Z,. This is used to prove the following 
proposition. 

P_ropositip 1. (a) Provided that the expectation exists, 
E(j3,) = E(6')B = 8j3, where $is a (p +1) x (p +1) matrix, 

(b)Let?2l represent the cross-sample fitted value of the vector 
of sf, and let s l  represent the endogenous regressor in sample 
1. The lower right element of 8 is equivalent to the coefficient 
on?2l from a regression of sl  on?2I and all the exogenous 
regressors. This regression coefficient provides an unbiased 
estimate of the proportional bias in SSIV estimates of PI. 

Pro08 Substitute XIp + cl for Yl in (4). Then we can 
write 

Iterating expectations over Z1 and using assumption 1, we 
have 

which is 0 because E[cl I Zl] = 0. 
Note that $is the matrix of coefficients from a regression 

of the columns of XI on Z1 (Z;&)-IZ;X2. We can write XI = 
A

[W,, s,], and Z,(Zh&)-'Z;X, = [WO, s2 , ]  Regressing 
[W,, s,]on[Wo, ?21]givesthematrix 

A 

where I, is a p x p identity matrix, 8, is p x 1, and is a 
scalar equal to the coefficient in a regression of sl  on 
A

s2, and Wol. 

Proposition 1 starts with the assumption that the expecta- 
tion of $exists. We have not been able to provide general 
conditions for the existence of this expectation. Instead, we 
first consider a special case in which the expectation clearly 
exists. Then in Section 4 we use an improved asymptotic 
argument to make the same point in a more general way. The 
special case we consider is one in which EIX1 I ?21] is lin- 
ear. [This will be approximately true if X and Z are normally 
distributed and if the sampling variance of (Z;&)-'Z;X2 is 
negligible.] We have the following corollary. 

Corollary 1.1. Suppose that EIXI I ?21] is linear. Then 

where c = tr{E[(Zi&)-'(Z;Zl)]/nl} and L1 is a (k + p) 
square matrix consisting of all zeros except for a 1 in the 
lower right corner. If (Z'Z) is the same in the two samples, 
then c = (k +p)/n,. L, reflects the fact that Xi includes only 
one endogenous regressor, Si. 

Proof If E[X, 1 $,I is linear, then AEIXl I ?21] is A 

$ , { E [ x ~ , ~ , ] - ~ E [ ~ ~ x ~ ] } .  weSince $= A [ ~ ~ , ~ 2 1 ~ 1 ~ ~ , ~ l ] ,  
can substitute for XI to show that E[8] = E[X~,X2,/n,]-1* 
E[?h,~~/n,]. In the Appendix, the moments in the numerator 
and denominator are simplified to give (5b). 

The corollary shows that $represents a kind of attenuation 
bias arising from the use of reduced-form coefficients from 
a separate sample. If there are no exogenous variables, then 
the proportional bias of SSIV is between 0 and 1-that is, the 
SSIV coefficient will be biased toward 0 in absolute value. 
More generally, (5b) implies a matrix attenuation bias. As 
in multivariate measurement-error models with a single mis- 
measured regressor (e.g., Fuller 1975), matrix attenuation in 
this case implies attenuation of the coefficient on the single 
endogenous regressor, PI. The Appendix shows that 

where P and R are submatrices in a partitioned matrix and @ 
is a positive scalar so that @/(@+ca;) is necessarily between 
0 and 1 (because c is also positive.) 

A consequence of Equation (6) is that, under the condi- 
tions of Corollary 1.1, the SSIV estimate is asymptotically 
unbiased as n gets large with the number of instruments fixed 
(because c then goes to 0.) Another case of interest is when 
the vector of reduced-form coefficients, TC , is near 0. In this 
case, it is apparent from Equation (5) that the SSIV estimate 
of PI has expectation near 0. Moreover, increasing the num- 
ber of instruments with the explained sum of squares fixed 
also tends to pull SSIV estimates toward 0 (because c then 
increases.) This property contrasts sharply with the tendency 
of conventional IV estimates to be biased toward OLS. 

2.1 Conventional Asymptotic Results for SSIV 

SSIV is consistent because plim $equals the identity ma- 
trix. The following proposition characterizes the asymptotic 
distribution of 8. 

Proposition 2. Define g, (p) = [Z;Yl /nl - (Z;X2/nz)j?], 
where nl = an2 for some positive number a .  Under stan- 
dard conditions, nt12g,(/?) k N(0, R), where R is a (p  + k) 
x (p  + k) asymptotic covariance matrix. Then ntI2(g^, -
/3) k N(0, @) where @ = (C,C;'C,)-' C,C;'RC;'C, 
(c,c;'c,)-' and C, and C, denote population average 
cross-product matrices. 

Pro05 This proposition is established by showing that 
SSIV is asymptotically equivalent to the general TSIV 
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estimator discussed by Angrist and Krueger (1992b) and 
then using the asymptotic covariance matrix given by them. 
The general TSIV estimator is [(X;&/n2)@(Z;X2/n2)]-I 
[(X;&/n2)@(Z~Y,/nl)], where @ is any positive-definite 
weighting matrix. To see that SSIV is asymptotically equiv- 
alent to TSIV, set @ = (Z;&)-'(Z;Z,)(Z;&)-'. 

In general, setting @ = R-' gives the optimal TSIV es- 
timator. If R = C,a,2 (say because B = 0), then SSIV is 
the asymptotically efficient TSIV estimator constructed from 
Z', Yl/nl and Z;X2/nz. In this case, the asymptotic covariance 
matrix of SSIV simplifies to (c,c;'c,)-'a: under an (n1)'I2 
normalization, which is the usual form of the 2SLS asymp- 
totic covariance matrix. Since nl = n/2 in the SSIV case, 
however, the asymptotic covariance matrix of SSIV is at least 
twice the asymptotic covariance matrix of 2SLS. This is not 
surprising because SSIV uses half as much data as 2SLS to 
compute the second-moment matrices. 

Finally, note that SSIV has a practical advantage over other 
T S N  estimators in that it is easy to compute using standard 
OLS regression software. Moreover, like TSIV, the SSIV 
estimate can be calculated using one sample with information 
on Z and Y but no information on X and a second sample 
with information on Z and X but no information on Y. This 
property sometimes motivates the use of TSIV instead of 
2SLS (e.g. Angrist 1990; Angrist and Krueger 1992b.). 

2.2 Unbiased Split-Sample Estimation 

It seems reasonable to try to improve on SSIV by-inflating 
E by the inverse ofthystimated proportional bias, 0. The re- 
sulting estimator, @-'B,, is not unbiased, however, because it 
involves a nonlinear function of the (correlated) random vari- 
ables c a n d  E. Nevertheless, the inflated estimator is unbi- 
ased under the group-asymptotic argument outlined later. We 
therefore label the inflated estimator unbiased split-sample 
instrumental variables (USSN). 

Recallsat  FA=P;,X~&'[~;,X,I Then the USSIV esti- 
mator is /I. - B- l f l .  

A 

= 

A 

[_X;,X,]-'[X;,Y,]. Note that ,& can 
be constructed by using Xzl as an instrument for XI in the 
regression Yl =XIB +el. Using z2,as an instrument for XI 
instead of including it directly as a regressor eliminates the 
attenuation bias that arises from estimation of the first-stage 
reduced form. An important difference between USSIV and 
SSIV is that USSIV requires data on XI but SSIV does not. 
This means that USSN cannot be used in applications such 
as that of Angrist and Krueger (1992b), where one sample 
includes only observations on (Z1, Yl) and the other includes 
only observations on (&,X2). 

3. GROUP ASYMPTOTICS 

In this section, we develop an asymptotic argument that 
appears to capture important features of the finite-sample be- 
havior of E and B^.. The group;asymptotics approach derives 
the limiting characteristics of B, as the number of instruments 
grows, but the number of observations per instrument is held 
fixed. In the context of AK-91, this can be thought of as ob- 
taining additional instruments by adding new cross-sections 

for new years of data, or by adding additional cross-sections 
from new states, regions, or cohorts. This is the same type 
of argument used by Deaton (1985) in his study of panel 
data created from an asymptotically lengthening time series 
of cross-sections. The group-asymptotics approach is also 
similar to the parameter sequence used in Bekker's (1994) 
study of simultaneous-equations estimators. As noted by 
Bekker, the rationale for this approach is not really impor- 
tant; what matters is that it gives a good account of finite- 
sample properties. 

Under group asymptotics, each cross-section replication 
provides m additional observations. In particular, the tth 
cross-section replication is assumed to contain iid data ma- 
trices of length m with observations on {Y,, X,, Z,} for t = 
1, . . . ,T. We split these observations into data matrices for 
half-samples of size ml and m2, denoted by {&,Xjl, &),for 
j = 1,2.  An important feature of this replication sequence 
is that there is assumed to be a different matrix of reduced- 
form coefficients associated with each replication. In par- 
ticular, we imagine that at each replication a reduced-form 
coefficient matrix, n,, is also drawn. The n, are themselves 
iid random matrices satisfying EIXjl -5,n1 1 Z,,] = 0, with 
E[(% - 3,n,)(Xjt - Gn,)' I q , ]  having one nonzero ele- 
ment equal to a;. Each rc, is independent of the data in each 
half sample. 

The fact that n, varies with t motivates the use of interaction 
terms in the instrument list. The matrix of fitted values is 
therefore 

A 

* . * . . .x21= ZI,* 
A 

where X21.t = Similarly, the data matrices Z l t ( Z ~ t ~ t ) - l Z ~ & t .  
from each replication are stacked: 

f o r j =  1,2. 
Consider the S S N  estimator constructed by pooling all 

replications and allowing a separate reduced form for each 
replication. We define the group-asymptotic probability limit 
of 8as the probability limit of this estimator when the num- 
ber of groups (2') becomes infinite while the group size (m) 
is fixed. This probability limit turns out to be similar to the 
expectation derived in Proposition 1, in which a linear condi- 
tional expectation, EIX1 1 221], was assumed. Proposition 3 
uses group asymptotics to compare the bias of S S N  and con- 
ventional 2SLS. 

Proposition 3. (a) For SSIV, it is useful to write 

The group-asymptotic probability limit of SSIV is 
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where c* e tr{E[(Z~,&t)-l(Z~,Zl,)]/ml}.(b) For 2SLS, it is 
useful to write 

The group-asymptotic probability limit of 2SLS is 

where el is a ( p  + 1) column vector consisting of zeros in the 
first p rows and a 1 in the last row. 

Proot For Part (a), the first step is to note that 

The proof is completed by using the definitions of 221,tand 
Yl, and the independence assumption to evaluate population 
moments, as in the proof of Corollary 1.1 (given in the Ap- 
pendix). As in Corollary 1.1, the matrix attenuation in Propo- 
sition 3 implies scalar attenuation of the coefficient PI. Sim- 
ilarly, proof of Part (b) begins with the observation that the 
desired probability limit is ~[2:X/m]- '  * E[%Y,/~]. In this 
case, however, E, and q, are in the same sample and have 
covariance a,,for the element of v icorresponding to si. 

This proposition shows that neither SSIV or 2SLS is con- 
sistent under group asymptotics, although the two estimators 
are biased in different ways. The group-asymptotic proba- 
bility limit of SSIV is the same as that presented in Corollary 
1.1 for a special case and reflects a bias toward 0. The group- 
asymptotic probability limit of 2SLS is the same as Bekker's 
(1994) formula for the bias of 2SLS. Like the Nagar (1959) 
and Buse (1992) approximation results, this formula reflects 
a bias toward OLS. (Because SSIV and 2SLS are not con- 
sistent under group asymptotics, the standard errors for the 
SSIV and 2SLS estimates reported in Section 4 are based on 
the usual asymptotic approximation.) 

The group-asymptotic properties of USSIV are summa- 
rized in the following proposition. 

Proposition 4. 

proof of Corollary 1.1. To derive the variance formula in (b), 
substitute for YI in &: 

so that 

Using the fact that el, is mean independent of 221.twith a 
scalar covariance matrix completes the proof. 

Thus USSN is consistent under group asymptotics. The 
USSIV coefficient estimates and group-asympteic standard 
errors are also easy to compute. Note that B, is a just- 
identified 2SLS estimator in sample 1, so it can be written 

The conventional 2SLS covariance matrix estimator for an es-
A  A A  

timate of this form is [X~X;l(X21X21)-1 z 1 ~ , ] - la:. Software-
reported 2SLS standard errors therefore provide a consis- 
tent estimate of the sampling variance of & under group 
asymptotics. 

We also have the following corollary, which gives conven- 
tional asymptotic results for USSIV for the case in which 
ml = m/2. 

Corollary 4.1. ( [ m / 2 ] ~ ) ~ / ~ ( &-/I) has the same conven- 
tional asymptotic covariance matrix (i.e., letting m get large 
with fixed T) as 2SLS. 

This can be proved directly or by taking the limit of A 
as m becomes infinite. An implication of the corollary is 
that the average of USSIV and its complement (reversing the 
roles of samples 1 and 2) has the same limiting distribution 
under conventional asymptotics asdoes 2SLS. Analysis of the 
group-asymptotic distribution of the combined estimator is 
more complicated, however, because the group-asymptotic 
covariance of the two possible U S S R  estimators is not 0. 
We therefore leave an investigation of the combined USSIV 
estimator for future work. 

4. lV ESTIMATES OF THE RETURN 
TO SCHOOLING 

(a) plim[(ll~>~~~~~,J1,/m11-~~(1/~)~~%~,,~1t/11= B. 4.1 Angrist and Krueger (1991) 
T + w  

(b) T1f2(&- ,!I)k N(0, A) 

where 

Proog To prove (a), we only need to show that 

Writing XI, = Zltn1+ vlt and using the definition of z,,, 
gives E [ ~ , , J ~ , / ~ , ]  = E[n~Z~,Zlrn,/ml],as in the Appendix 

AK-91 argued that quarter of birth provides a legitimate 
instrumental variable for years of schooling because children 
born earlier in the year enter school at an older age and are 
therefore allowed to drop out (on their 16th or 17th birthday) 
after having completed less schooling than children born later 
in the year. In particular, men born in earlier quarters get less 
schooling, are less likely to graduate from high school, and 
earn less than men born in later quarters. These relationships 
are statistically significant in data on single-year birth cohorts 
from 1920-1959 and in both the 1970 and 1980 Census. 

2SLS estimates of the return to education based on quarter- 
of-birth instruments are close to OLS estimates, suggesting 
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that omitted variables do not bias the OLS estimates. Here 
we focus on estimates for men in their 40s (i.e., men born 
1930-1939 in the 1980 Census and men born 1920-1929 in 
the 1970 Census) because the age-earnings profile is fairly 
flat for this age group. This minimizes potential problems 
due to correlation between age and quarter of birth. 

The first two columns of Table 1 report OLS and 2SLS es-
timates of the education coefficient from log-wage equations 
estimated using the Census samples. The sample sizes range 
from close to 250,000 in the 1970 Census to close to 330,000 
in the 1980 Census, and the specifications are the same as 
those reported by AK-91 (tables IV and V). The 2SLS model 
uses 30 quarter-of-birth x year-of-birth interaction terms as 
excluded instruments, including year-of-birth main effects as 
exogenous covariates. 

As noted previously, OLS and 2SLS estimates are remark- 
ably similar in both data sets. This naturally raises the ques- 
tion of whether such similarity is a real finding or a spurious 
result attributable to the finite-sample bias of IV. For com- 
parison, SSIV and USSIV results are presented in columns 
3 and 4. Each of the SSIV estimates is somewhat smaller 
than the corresponding IV estimate, as one would expect be- 
cause SSIV is biased toward 0. The SSIV estimate is above 
the OLS estimate for the 1980 sample, whereas it is below 
it for the 1970 sample. But in each case the SSIV and OLS 
estimates are not statistically different. The SSIV estimates 
are significantly different from 0, with standard errors 50% 
larger than the standard errors of 2SLS estimates. 

The proportional attenuation bias (8) of SSIV is estimated 
to be 78% in the 1980 sample and 93% in the 1970 sample, 
with a standard error of about 12% in each case. Column (4) 
reports USSIV estimates, which inflate the SSIV estimates 
by the inverse of The USSIV estimates tend to be above 
the OLS estimates and are also remarkably close to 2SLS 
estimates. 

Table 1. Quarter-of-Birth Estimates With 30 Instruments 

Type of estimates 
OLS 2SLS SSlV USSIV 

Parameter (1) (2) (3) (4) 

A. 1980 Census, men born 1930- 1939 

p 	 .063 ,081 .070 .089 
(.0003) (.016) (.023) (.030) 

e - - .780 -
(.118) 

First-stage F - 4.75 2.41 2.41 
(df =30) 

B. 1970 Census, men born 1920-1 929 

B 	 .070 .069 .059 .063 
(.0004) (.015) (.023) (.024) 

e 	 .934 -
(.1 27) 

First-stage F - 4.54 2.03 2.03 
(df = 30) 

NOTE: Models include 9 year-of-birth dummies, marltal status, region dummies. SMSA 
dummy, and a raw dummy as exqmnous regressom. Sample size for 1980 sample for 
OLS and 2SLS is 329.509; for SSIV and USSIV, the tirst-stage equation was estimated with 
164,474 observations and the second-stage with 165.035 observations. Sample size for the 
1970 sample for OLS and 2SLS is 244,099; for SSIV and USSIV the first-stage equation 
was estimated with 121,956 ObSe~atiOns and the second-stage with 122,143 Observations. 

Educatlon Resldual 


Figure 1. Split-sample Graph of Average Wages by Quarter of 
Birth Against Average Schooling by Quarter of Birth in the 1970 Cen- 
sus. The scatter shows averages computed from two half samples, 
one for earnings and one for schooling, both drawn from the 1970 
Census for men born 1920-1929. Points plotted in the figure are 
residuals from a regression on year-of-birth effects. The OLS regres- 
sion line through the average is also shown. 

The split-sample approach can also be used to produce a 
graphical impression of the SSIV slope estimate. To do this, 
we randomly split the sample in half and then graphed average 
earnings by quarter of birth in one sample against average ed- 
ucation by quarter of birth in the other sample (after removing 
year effects). Figures 1 and 2 show these graphs for the 1970 
and 1980 samples. The plots clearly show upward-sloping 
relationships. The slope of the regression line drawn in the 
figures can be shown to be an SSIV estimator for this exam- 
ple because Z;Z1 is roughly proportional to Ik+pin this case. 
For both the 1970 and 1980 data, the slope is roughly .069. 

Table 2 reports a set of OLS, 2SLS, SSIV, and USSIV re-
sults for models estimated using 150 quarter-of-birth x state-
of-birth interactions plus 30 quarter-of-birth x year-of-birth 
interactions as the excluded instruments, with data from the 

- 0 . 0 4 ~ , , , , , , , , ,, , , , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  


-0.19 -0.14 -0.09 -0.04 0.01 0.06 0.11 0.16 0.21 


Educatlon Residual 


Figure 2. Split-sample Graph of Average Wages by Quarter of 
Birth Against Average Schooling by Quarter of Birth in the 1980 Cen- 
sus. The scatter shows averages computed from two half samples, 
one for earnings and one for schooling, both drawn from the 1980 
Census for men born 1930-1 939. Points plotted in the figure are 
residuals from a regression on year-of-birth effects. The OLS regres- 
sion line through the averages is also shown. 
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Table 2. Quarter-of-Birth Estimates With 180 Instruments 

Type of estimate 
OLS 2SLS SSlV USSIV 

Parameter f1) (2) (3) (4) 

1980 Census, men born 1930- 1939 

p 	 .063 .083 ,031 .076 
(.0003) (.009) (.011) (.028) 

e - - .408 -
(.057) 

First-stage F - 2.43 1.70 1.70 
(df = 180) 

NOTE: Models include 9 year-of-birth dummies, 48 state-of-birth dummies, marital status. 
region dummies, SMSA dummy, and a race dummy as exogenous regressors. Sample size 
for 1980sample for OLS and 2SLS is 329.509:for SSIV and USSIV the first-stage equation 
was estimated with 164,4740bSe~ati0nS and the second-stage with 165,035observations. 

1980 Census sample. This model has a first-stage F statistic 
for the excluded instruments of 2.4 (compared to 4.8 in the 30- 
instrument model) and corresponds to the models reported in 
table VII of AK-91. BJB and Staiger and Stock (1994) argued 
that the low first-stage F statistic means that IV estimates of 
these models are likely to be seriously biased. (On the other 
hand, Hall, Rudebusch, and Wilcox [I9941 noted that pretest- 
ing for instrument relevance using first-stage F tests or other 
criteria can exacerbate the poor finite-sample properties of 
2SLS.) For the 180-excluded-instruments specification, the 
SSIV education coefficient is .03 1, about 40% as large as the 
IV estimate, though still significantly different from 0. The 
estimated proportional attenuation bias of SSIV, however, is 
also on the order of 40%. Consequently, the USSIV estimate 
is .076, only slightly less than the 2SLS estimate and above 
the OLS estimate. 

Would SSIV and USSIV provide misleading results in the 
extreme case of fictitious, randomly assigned instruments? 
To investigate this, as well as the sensitivity of SSIV and 
USSIV estimates to alternative splits, we conducted a small- 
scale Monte Carlo exercise in which we randomly divided 
the sample and calculated SSIV and USSIV estimates 31 
times. For each replication, we divided the data using a dif- 
ferent (randomly generated) seed number. The specifications 
estimated here use the 180 quarter-of-birth interactions as ex- 
cluded instruments, as in Table 2. 

The Monte Carlo results for the actual instruments are re- 
ported in columns (1) and (2) of Table 3. The average SSIV 
kstimate is .048, with a Monte Carlo standard deviation of 
.010 in 31 replications. This is somewhat higher than the 
SSIV estimate reported in Table 2 for a similar specifica- 
tion. (We omitted region dummies, marital status, the SMSA 
dummy, and the race dummy from the first and second stages 
of the models used for the Monte Carlo replications. The es- 
timates in Table 3 and Table 2 are therefore not strictly com- 
parable.) The median SSIV estimate is .05, with upper and 
lower quartiles of .055 and .042. The average estimate of the 
proportional attenuation bias in SSIV in these 3 1 replications 
(not shown in the table) is .433 with a Monte Carlo standard 
deviation of .05. The average USSIV estimate is .I12 with 
a standard deviation of .024. Lower and upper quartiles for 
USSIV estimates are .099 and .129, giving an interquartile 

Table 3. Quarter-of-Birth Estimates-Results of 31 Monte Carlo 

Replications of Split (180-instrument specification) 


Actual instruments Random instruments 
SSlV USSlV SSlV USSIV 

Statistic (1) (2) (3) (4) 

Summary statistics for education coefficients 

Mean ,048 ,112 ,002 ,021 
Median ,050 ,114 ,004 ,034 
Standard deviation ,010 .024 ,014 ,187 

of coefficients 
25th percentile ,042 .099 -.006 -.080 
75th ~ercentile ,055 ,129 ,014 ,133 

NOTE: Models include 9 year-of-birth dummies and 50 state-of-birth dummies as exoge- 
nous regressors. The conventional 2SLS estimate and standard error using random instru- 
ments is ,057 (.014). 

range of .03. This suggests that the SSIV estimates are less 
sensitive than USSIV estimates to the sample split. 

Results of the same experiment using randomly assigned 
fictitious instruments are reported in columns (3) and (4) of 
Table 3. The SSIV coefficient estimates are centered on 0, 
with a Monte Carlo standard deviation of .014. The average 
estimate of 8 in this experiment is .086, suggesting substantial 
bias downward, and this estimate is not significantly differ- 
ent from 0. An insignificant estimate of 8 means that the 
researcher cannot reject the hypothesis that the true vector 
of reduced-form coefficients is 0. In that case, the SSIV es- 
timate is 0 regardless of the correlation between 6 and rl in 
Equations (1) and (2) and the (group-asymptotic) moments 
of the USSIV coefficient do not exist. 

The USSIV coefficient estimates with randomly generated 
instruments are highly variable, with a Monte Carlo standard 
deviation of .187. Their individual standard errors are also 
high-on the order of .l3-which is about double the size 
of the OLS coefficient estimate. Although the USSIV coeffi- 
cients are centered near 0, the key result here is that they have 
very large sampling variance and would be unlikely to lead to 
an apparently credible inference. In contrast, using the same 
randomly generated instruments in 2SLS estimation yields a 
coefficient estimate of .057 with a reported standard error of 
.014. Thus, unlike SSIV and USSIV, 2SLS results with ficti- 
tious instruments look remarkably like the OLS estimates. 

4.2 Angrist and Krueger (1992a) 

In AK-92, we used the 1970-1972 draft lotteries to con- 
struct instruments for the education of men at risk of induction 
during the Vietnam era. The lotteries worked by assigning a 
random sequence number (RSN) to dates of birth in cohorts 
at risk of being drafted. The lowest numbers were called 
first, up to an administratively determined ceiling. Men with 
numbers above the ceiling were not drafted. In certain years, 
men could be deferred or exempted from military service by 
remaining in school and thereby obtaining an educational de- 
ferment. Thus draft-lottery numbers affected both the like- 
lihood of serving in the military and the incentive to seek 
additional schooling. 

Angrist (1990) showed that low lottery numbers are asso- 
ciated with an increased probability of military service and 
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reduced Social Security earnings. If this link represents the 
casual effect of veteran status, then the impact of military ser- 
vice on earnings must be accounted for if the draft lottery is 
also to be used to identify the effect of schooling on earnings. 
We therefore proposed the following model: 

Yi = P ~ w o ~  (8)+Plsi + yvi + r i ,  

si =nIowoi+nIlwli + V i ,  (9) 
and 

vi = niOwoi+ni1wli+ ui, (10) 

where vi is a dummy for veteran status and wliis a vector of 
excluded instruments. The first equation captures the partial 
effects of the two endogenous regressors si and vi on the 
outcomeyi. The latter two equations are reduced forms. The 
excluded instruments, wl i ,are dummies that indicate groups 
of consecutive RSN's interacted with dummies for years of 
birth from 1944-1953. 

The data set used to estimate (8)-(10) consists of a sample 
of over 25,000 observations from six March Current Popu- 
lation Surveys (CPS's) that were specially prepared for us 
and includes information on draft-lottery numbers. The CPS 
extracts contain labor-market information for the years 1979 
and 198 1-1985. These data show that men born from 1950- 
1953 with low lottery numbers were indeed significantly and 
substantially more likely to have served in the military than 
men with high numbers. 

Table 4 reports CPS estimates of Equation (9), which re- 
lates education to dummies for lottery numbers. Results from 

two models are reported, one where vi is treated as an exoge- 
nous covariate and one where vi is treated as endogenous in 
(8). The instruments are three dummies for coarse lottery- 
number groups (RSN 1-75, 76-150, and 151-225), inter-
acted with 10 years of birth. The first-stage estimates do not 
show a consistent pattern and only a few of the individual 
coefficient estimates are positive. But the joint test of signif- 
icance has a marginal significance level under 10% for both 
sets of estimates. 

Table 5 reports OLS, 2SLS, SSIV, and USSIV estimates of 
schooling coefficients from Equation (8) corresponding to the 
first-stage estimates in Table 4. The estimates are for models 
in which veteran status is treated as an exogenous covariate 
(treating veteran status as endogenous has little impact on the 
estimated schooling coefficients.) For comparison, the OLS 
estimate of .059 is reported in column (1). The 2SLS esti- 
mate is .021 with a standard error of .029. The SSIV estimate 
is essentially 0, with a somewhat larger standard error than 
the 2SLS estimate. The attenuation bias in the SSIV estimate 
is .176, but the standard error associated with this parameter 
is .167. Thus the null hypothesis that the true reduced-form 
coefficients are 0 cannot be rejected. The USSIV estimate, 
although inflated by the inverse attenuation bias, is also vir- 
tually 0. 

The main specification reported by AK-92 is replicated in 
Panel A of Table 6. Column (2) shows the 2SLS estimate 
generated by using 3 lottery-number dummies (indicating 
groups of 25 consecutive RSN's) interacted with 10 year- 

Year of 
birth 
1944 

Table 4. LotteryNumberand EducationalAttainment 

Veteran status exogeno~s~~~ Veteran status endo
RSN RSN 

1-75 76150 151-225 1-75 76150 
f1) (2) (3) (4) (5) 

-.I94 -.563 -.471 -.I97 -.556 

genousbec 

15 1-225 
(6) 

-.485 

1945 

1946 

1 947 

1 948 

1949 

1950 

1951 

1952 

1953 

P value for 
joint  Ftest 
(df = 30) 

aDependent variable is years d schooling. 
b~ependentvariable is years of schooling after removing the effect of predicted veteran status and covariates. 
CCovariates are two race dummies, central city dummy, balance of SMSA dummy, marriage dummy, five year dummies, nine year-of- 

birth dummies, and eight region dummies. Veteran status is also a covarlate when it is treated as exogenous. Sample size is 25,781. 
Standard errors are shorn below the coefficients. 
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Table 5. Lotterv Estimates With 30 lnstruments 

Type of estimate 
OLS 2SLS SSlV USSIV 

Parameter (1) (2) (3) (4) 

Actual instruments (3 lottery dummies * 10 years of birth) 

NOTE: The sample includes 25,781 observations on men born 1944-1953 in the March 
1979 and 1981-1985 CPS Special Extrads. The table reports OLS estimates and 2SLS 
estimates of regressions in which years of schooling is the sole endogenous regressor. 
Other covariates include veteran status, a dummy for Blacks, a dummy for Hispanic and 
other races, dummies for residence in central city, other SMSA, and married with spouse 
present, five year dummies, nine year-of-birth dummies, and eight region dummies. The 
SSIV and USSIV estimates in both panels are based on a single sample split with 12,967 
0bSe~atiMSused for the cross-sample fitted values and 12,814 0bSe~ationS used for the 
second stage. The instruments include 3 lottery-number dummies (indicating RSN 1-75. 
76-150 and 151-225) interacted with 10 year-of-birth dummies. 

of-birth dummies. Coefficients on the additional covariates 
are not reported (for these see table 3 of AK-92). Although 
the results, using relatively few instruments, in Table 5 sug- 
gest that lottery-based estimation is not very informative, the 
2SLS estimate in Table 6 using 130 instruments is .066 with a 
standard error of ,015, a finding close to the OLS estimate of 
.059. The conventional asymptotic standard error of this es- 
timate does not provide a warning of weak instruments based 
on the usual normal approximation. 

In contrast with the 2SLS estimates, SSIV estimates in 
column (3) of Table 6 are .005 with a standard error of .016. 
Thus, unlike for most of the specifications reported by AK-9 1, 

Table 6. Lottery Estimates With 130 lnstruments 

Type of estimate 
OLS 2SLS SSlV USSIV 

Parameter 11) 12) 13) (4) 

A. Actual instruments (13 lott8ry dummies * 10 years of birth) 

B. Random instruments 

(13 multinominal dummies * 10 years of birth) 


(df = 730) 

NOTE: The sample includes 25,781 observations on men born 1944-53 in the March 
1979 and 1981-1985 CPS Special Extracts. The table reports OLS estimates and 2SLS 
estimates of regressions in which years of schooling is the sole endogenous regressor. 
Other covariates include veteran status, a dummy for Blacks, a dummy for Hispanic and 
other races, dummies for residence in central city, other SMSA, and married with spouse 
present, fwe year dummies, nine year-of-birth dummies, and eight region dummies. The 
SSIV and USSlV estimates In both panels are based on a single sample split with 12,967 
0bSe~atiMlS used for the cross-sample fitted values and 12,814 0bSe~ationS used for the 
second-stage. The instruments include 13 lottery-number dummies (indicating group of 25 
consecutive RSN's), interacted with 10 year-of-birth dummies. The same sample split was 
used to compute estimates in both panels and in Tables 5 and 6. 

the SSIV estimate in this case does not confirm the conven- 
tional 2SLS findings. The implied attenuation of SSIV is .088 
with a standard error of .084. This is consistent with the null 
hypothesis that the lottery instruments are actually worth- 
less for estimating schooling coefficients. Inflating SSIV by 
the attenuation bias generates a USSIV estimate of .062, but 
the standard error of this estimate is .177, again suggesting 
that little is learned from lottery-based instruments about the 
returns to schooling. 

As a final check on these models, estimates from the same 
specification using 13 fictitious randomly generated lottery- 
number dummies as i n ~ t r u ~ n t s  are reported in Panel B of 
Table 6. The 2SLS estimate here is .049 with a standard 
error of ,018. This is smaller than the estimate using the 
actual instruments but does not lead to adramatically different 
inference. As with the actual instruments, however, SSIV 
and USSIV provide strong evidence that the 2SLS result is 
spurious. The SSIV estimate is .025 with a standard error 
of .018 and the USSIV estimate is 1.65 with a standard error 
of 10.1. 

5. CONCLUSIONS 

SSIV and USSIV provide valuable complements to con- 
ventional 2SLS. SSIV estimates are biased toward 0 rather 
than toward the OLS probability limit. Thus with SSIV there 
is little risk of spurious or misleading inferences generated 
solely as a consequence of finite-sample bias. Moreover, 
the estimated SSIV attenuation bias can be used to inflate 
SSIV estimates and provide an asymptotically unbiased (un- 
der group asymptotics) USSIV estimate. 

Our reinvestigation of Angrist and Krueger (1991) shows 
that SSIV and USSIV produce relatively precise parameter 
estimates that are close to the conventional 2SLS and OLS 
estimates. All of the IV estimators used here-2SLS, SSIV, 
and USSIV-lead to similar results for the 30 instrument 
specifications reported in that article. There is evidence of 
a problem for 2SLS estimates in the 180-instrument specifi- 
cations, as well as for the SSIV estimates, which are biased 
toward 0. But the bias-corrected USSIV estimator gener- 
ates statistically significant estimates close to 2SLS and OLS 
estimates for the 180-instrument specification. 

In contrast, our reexamination of results from Angrist and 
Krueger (1992a) fails to support the findings reported in that 
article. 2SLS estimates are close to OLS estimates in a 130- 
instrument specification, but SSIV estimates are essentially 
0, and both SSIV and USSIV estimates are statistically in- 
significant. These findings therefore suggest that draft-lottery 
numbers are not useful for estimating schooling coefficients. 

A natural extension of the research agenda begun here is to 
develop more efficient estimators that use sample splitting to 
reduce bias with a minimal increase in sampling variance. For 
example, an estimator based on combining the two SSIV and 
USSIV estimators that could be produced from any single 
split will have lower sampling variance than the SSIV and 
USSIV estimators introduced here. With Guido Imbens, we 
are also working on a jackknifed "leave-one-out" version of 
USSIV based on a separate first stage and fitted value for 
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each observation. This estimator has the same asymptotic 
distribution as 2SLS with the desirable bias properties of 
USSIV. 
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APPENDIX: PROOFS 

Proof of Corollary 1.1. We need to show that 
A A 

E[X~,Xzl/nI]= (n1E(zizj)n+ c a ; ~ ~ }  (A.l) 

and 
= {ntE(zizj)n} (A.2) 

where c -= tr{E[(Z;&)-'(Z;Z1)]/nl) and L1 is a (k + p) 
square matrix consisting of zeros except for a 1 in the lower 
right corner. Note that 

z2,=Z, (Z~&)-'ZiX, =Zln +z , ( z ~ & ) - ' z ~ ~ ,  (A.3) 

and 
X1 =Z1n + f l l .  (A.4) 

Using the independence of the two samples and the fact 
A h  

that E[qZI &] = 0, E[X~lX21/nl] simplifies to 

Derivation of Equation (6). Recall that = [BI, Bll'. 
r ~ n ,  as a con- Write the (p + 1) x ( p  + 1) matrix, n'E(z :) . 

formably partitioned matrix: 

where p is p x p, Q is a scalar, and R is p x 1 .  Moreover, 
let q = ca;. Using the partitioned inversion formula (Theil 
1971, p. 18), we have 

where 4 = Q -R'P-'R is a scalar. We can use (A.6) to write 

and 

The first term in curly brackets equals [n'E(ziz;)n]-'. 
Therefore, 

Multiplying this times B gives Equation (6) in the text. 
Because {n'E(ziz:)n) is positive definite, 114 -= l/[Q -
RIP-'R], which is the lower right diagonal element of 

E[n'ZiZlnlnll+ ~[~~&(z~&>-'zjzl(Zi&)-'Z~r12/n11.[ntE(ziz:)n]-I, must be positive. Finally, note that c > 0 
We have, E[n'ZtZn/nl] = {ntE(ziz!)n}by virtue of iid sam- 
pling. To simplify E[q;&(Zk&)-'Z;Z,(Z;&)-'Z~q2/nl],let 
T];be the column of r], corresponding to si. Then, 

~[~i&(ziz2>-'zjzl(zi&)-~Z~r12/nll 

= E[~;'Z,(Z;&)-'Z~Z, ( ~ i & ) - ' ~ i q l ] ~ , / n , .  

Using properties of the trace operator, we have 

E[rl;'&(Z~&>-'Z~Zl(Z~zZ)-'Z~tl~l 


because (ZiZz)-' (Z;Zl) is positive definite. Thus the propor- 
tional bias in estimates of PI,  [#I(# +q)] = [#/(4 + ca;)], 
is between 0 and 1. 
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