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SUMMARY
We present finite sample evidence on different IV estimators available for linear models under weak
instruments; explore the application of the bootstrap as a bias reduction technique to attenuate their finite
sample bias; and employ three empirical applications to illustrate and provide insights into the relative
performance of the estimators in practice. Our evidence indicates that the random-effects quasi-maximum
likelihood estimator outperforms alternative estimators in terms of median point estimates and coverage rates,
followed by the bootstrap bias-corrected version of LIML and LIML. However, our results also confirm the
difficulty of obtaining reliable point estimates in models with weak identification and moderate-size samples.
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1. INTRODUCTION

Linear instrumental variables (IV) estimation is commonly used in econometrics to avoid the
problems caused when one or more explanatory variables are endogenous, that is, correlated
with the disturbance term. A requirement of IV estimation is to have instrumental variables
that are: (a) ‘highly’ correlated with the endogenous explanatory variables (i.e., ‘relevant’); and
(b) uncorrelated with the disturbance term (‘exogenous’). In this paper, we focus on the finite
sample problems of IV estimators when the first requirement above is not met, which has been
called the problem of ‘weak instruments’.

The literature on the finite sample problems of IV estimators under weak instruments has grown
after Nelson and Startz (1990a, 1990b) and Maddala and Jeong (1992) pointed out that, under
weak instruments, two-stage least squares (TSLS) is severely biased in finite samples towards the
expectation of the inconsistent OLS estimator; which occurs even when using very large samples
(Bound et al., 1995).1 In addition, the standard error of TSLS is severely downward biased (Staiger
and Stock, 1997; Hahn and Hausman, 2003), resulting in misleading statistical inference.

This literature focuses on several aspects. One of them proposes ways to detect weak instruments
in practical situations (Hall et al., 1996; Shea, 1997; Hahn and Hausman, 2002b; Stock and Yogo,
2004). A second aspect proposes alternative approximations to the distributions of IV estimators
under weak instruments, such as allowing the instruments to grow with the sample size (Bekker,
1994), considering the relevance of instruments to be in a neighborhood around zero (Staiger

Ł Correspondence to: Alfonso Flores-Lagunes, Department of Economics, Eller College of Management, University of
Arizona, McClelland Hall 401, Tucson, AZ 85721, USA. E-mail: alfonso@eller.arizona.edu
1 The fact that the bias is in the direction of the OLS estimator may incorrectly lead one to conclude that there is no
endogeneity problem if a Hausman specification test comparing the OLS and IV estimators is employed.
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and Stock, 1997), and higher-order asymptotic expansions (Donald and Newey, 2001; Hahn and
Hausman, 2002b). A third aspect provides alternative frameworks for undertaking robust statistical
inference on parameters of interest under weak instruments (Wang and Zivot, 1998; Zivot et al.,
1998; Kleibergen, 2002; Moreira, 2003). A final aspect aims at finding estimators that have smaller
finite sample bias than TSLS in the presence of weak instruments. A large number of these
alternative IV estimators are reviewed and evaluated in this paper.2

We add to the understanding of the consequences and potential solutions of IV estimation under
weak instruments in three main ways. First, we provide finite sample evidence through Monte
Carlo simulations regarding point estimation and confidence interval construction when employing
several different IV estimators under weak instruments. Second, we explore the usefulness of
employing the bootstrap method as a finite-sample bias-reduction technique on some of the
estimators considered: while the higher-order expansions typically used to theoretically justify
the bootstrap have been found to break down when instruments are arbitrarily weak or irrelevant,
it is an open question whether the method is successful in reducing bias of IV estimators in finite
samples for small but fixed instrument relevance. Finally, we illustrate the methods using three
different empirical applications that illustrate and provide insights into the relative performance
of the different estimators in practice. Our focus is on providing the empirical researcher with
guidance when only potentially weak instruments are available. The evidence we present indicates
that the random-effects quasi-maximum likelihood estimator of Chamberlain and Imbens (2004)
outperforms alternative estimators in terms of median point estimates and coverage rates, followed
by LIML and the bootstrap bias-corrected version of LIML. However, our results also confirm
that reliable point estimates are very difficult to obtain in models with weak identification.

The paper is organized as follows. Section 2 reviews the finite sample bias of the TSLS estimator.
Section 3 discusses the alternative IV estimators we consider and the bootstrap bias-reduction
technique we apply to some them. Section 4 delineates the design of the Monte Carlo experiment
and describes the results. Section 5 presents the results of the three empirical applications we
employ. Concluding remarks are provided in the last section of the paper.

2. THE FINITE SAMPLE BIAS OF THE TSLS ESTIMATOR

Consider the following model:

Y D Xˇ C u �1�

X D Z� C v �2�

where Y is a Tð 1 vector of a dependent variable, X is, for simplicity, a Tð 1 vector of an
explanatory variable, ˇ is the scalar parameter of interest, u is a Tð 1 disturbance with mean zero
and correlated with X, and v is a Tð 1 vector of reduced form disturbances with mean zero.3

Further, there exists a Tð n nonrandom matrix Z to instrument for X, with n ½ 1 and uncorrelated
with v and u, and � is a nð 1 vector of coefficients.

It is well known that, while asymptotically (as T ! 1) the TSLS estimate of ˇ is consistent,
in finite samples it is a biased estimator. Rothenberg (1983) provides an expression for the

2 Stock et al. (2002) and Hahn and Hausman (2003) are useful reviews of the literature on weak instruments.
3 The model can be one in which additional included exogenous variables have been partialled out.
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IV ESTIMATORS UNDER WEAK INSTRUMENTS 679

approximate bias of the TSLS estimator using higher-order asymptotic expansions:4

biasTSLS D �n� 2� Ð �uv
T Ð �� 0Z0Z���1 �3�

Several points are worth noting in equation (3). First, the finite sample bias of TSLS is present
even if instrument relevance is acceptable; however, when the instruments are weak (� ³ 0) this
bias will be exacerbated. Second, the bias is an increasing function of the degree of endogeneity
of the endogenous variable (�uv) and of the number of instrumental variables used (n). Finally, the
bias is a decreasing function of the sample size (T).5 We consider situations in which instrument
relevance is very small (but non-zero so that the model is identified), and study the finite-sample
behavior of different IV estimators as the factors that play a role in (3) change.

3. ALTERNATIVE IV ESTIMATORS

Several alternative estimators to TSLS have been proposed in an attempt to attenuate its finite
sample problems, in particular under weak instruments. We consider in this paper a large number of
them, which are outlined in this section in the context of model (1)–(2). The exposition is divided
into the �-class of estimators, those that employ bias-reduction techniques, and other estimators.

3.1. The k-Class of Estimators

The �-class of estimators (Nagar, 1959) is given by

Ǒ �-class D �X0PZX� � Ð X0MZX�
�1�X0PZY� � Ð X0MZY� �4�

where PZ � Z�Z0Z��1Z0 and MZ D �I� PZ�. Several estimators belong to this class; for instance,
TSLS is obtained when � D 0 and limited information maximum likelihood (LIML) when � is
chosen as the smallest eigenvalue of the matrix W0PZW�W0MZW��1, where W � [Y :X].

The LIML estimator has been generally found to perform better than TSLS in the presence
of weak instruments (see, among others, Bekker, 1994; and Blomquist and Dahlberg, 1999).
A potential drawback of this estimator, however, is the non-existence of any of its finite
sample moments under normally distributed disturbances (see Theorem 12 of Mariano, 2001,
and references therein to the large earlier literature), which is known as the ‘moment problem’
(Hahn et al., 2004).

Two other �-class estimators have been considered for use under the presence of weak
instruments: the ‘modified LIML’ estimator by Fuller (1977), which was expressly developed
to have finite sample moments and is obtained when � D � � ˛

T� n where � is the same as �
for LIML, and ˛ > 0 is a constant to be chosen by the researcher;6 and the bias-adjusted 2SLS
(B2SLS) (Donald and Newey, 2001; Nagar, 1959), which is mean unbiased but shares the moment
problem with LIML, and is obtained when � D n� 2

T� n� 2 .

4 See also Hahn and Hausman (2002a), who obtain a similar approximate finite sample bias expression for TSLS.
5 We also note that for the case of one endogenous explanatory variable, the expression � 0Z0Z� can be written as the
product of the R2 of the first stage regression and X0X.
6 In the simulation experiment we consider ˛ D 4, which can be shown to minimize a MSE criterion (Fuller, 1977).
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3.2. Estimators Employing Bias-Reduction Techniques

Since the TSLS estimator is consistent but biased in finite samples, and such bias is exacerbated
in the presence of weak instruments, a natural approach is to apply bias-reduction techniques to
TSLS. In this paper, we propose to employ the bootstrap method as a bias-reduction technique
and explore its practical usefulness. We also apply the bootstrap bias reduction to LIML and
Fuller’s estimator (denoted as BCLIML and BCFULL).7 The bias-reduction approach has also
been followed by Hahn et al. (2004), who apply a jackknife bias correction to TSLS.

Bias reduction consists of computing an estimate of the bias of an estimator and using it to
obtain an approximately unbiased estimator. The bias of say, TSLS, is defined as the difference
between the expectation of ǑTSLS and the true value of the parameter it estimates:

biasTSLS D E[ ǑTSLS] � ˇ �5�

To estimate the bias using the bootstrap principle, B samples are drawn (with replacement) from
the original data, ‘recentered’ (see below), and TSLS is computed B times to be used in estimating
E [ ǑTSLS] by 1

B
∑B

iD1
Ǒ �i�

TSLS. The last term in (5) is approximated by using the TSLS estimator
obtained using the original data. In this way, the ‘bias-corrected’ TSLS estimator is obtained as

ǑBCTSLS D ǑTSLS � b̂iasTSLS D 2 ǑTSLS � 1

B

B∑
iD1

Ǒ �i�
TSLS �6�

For consistent estimates that are smooth functions of sample moments in place of population
parameters, such as the TSLS estimator, the bias-corrected estimator reduces the order of the bias
by the factor T�1 under regularity conditions (see Hall, 1992; Shao and Tu, 1995; and references
therein).8

Freedman (1984) first applied the bootstrap method to TSLS, which implies the following
‘recentering’ of the TSLS residuals Ou�T��D Y� X ǑTSLS�:

Qu�T� D �I� PZ�Ou�T� �7�

This is required since, in general, Ou�T� will not be exactly orthogonal to the set of instrumental
variables Z, which is an assumption imposed in the model. The bootstrap method is then used to
resample (with replacement) from the empirical distribution of the triplets �X, Z, Qu�T�� in obtaining
the B samples to be used in estimating the bias. Freedman (1984) shows using conventional
asymptotics (T ! 1) that, under the assumptions that the vector �Y, X, Z, u� is jointly independent

7 Hahn, Kuersteiner and Newey (2002, unpublished manuscript) analyze the higher-order properties of bootstrap and
jackknife bias-corrected maximum likelihood estimators (such as LIML). They find that both methods have the same
properties in terms of bias reduction and mean squared error to order T�3/2. There are no similar higher-order results for
TSLS (or Fuller’s estimator), but our simulations suggest that these results may apply to TSLS as well.
8 There are two potential issues arising in the bootstrap estimation of the bias of TSLS (and other related estimators).
One is the use of the expectation in equation (5), since it is known (see, for instance, Theorem 12 in Mariano, 2001) that
some IV estimators might not have first or second moments. In the simulation results presented below, we find that using
either the mean or the median of the bootstrap distribution of the estimators to bias-correct them makes little difference
in practice. The second issue is the possibility that sampling with replacement can result in degenerate samples (e.g.,
all observations identical), although this can only happen with very low probability. In the simulations and empirical
applications below we did not find any such case.
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IV ESTIMATORS UNDER WEAK INSTRUMENTS 681

and identically distributed (iid) and the population random vector �Y, X, Z� has finite fourth
moment, the TSLS estimator obtained in each of the bootstrap samples converges in distribution
to the same limit as the conventional TSLS estimator.

In the case of weak instruments, however, it is an open question whether the bootstrap method
is successful in achieving acceptable bias reduction. The theoretical literature on the subject finds
that the higher-order expansions used to justify the bootstrap break down in the unidentified case
(� D 0) (e.g., Moreira et al., 2004, unpublished manuscript). Since we analyze the situation when
� is small but different from zero, it is valuable to explore how the bootstrap bias correction
performs in our simulations as instrument relevance decreases and other features of the estimation
environment change.

Hahn et al. (2004) propose the use of the jackknife method to estimate the bias of TSLS
in (5) and derive a higher order mean-squared error (MSE) for their jackknife 2SLS (J2SLS)
estimator, which is shown to be equivalent to the corresponding one for the �-class estimators
derived in Donald and Newey (2001). The jackknife estimate of the bias is given by �T�
1� Ð � Ǒ �Ð�TSLS � ǑTSLS�, where Ǒ �Ð�

TSLS � 1
T

∑T
tD1

Ǒ �t�
TSLS and Ǒ �t�

TSLS is the TSLS estimator obtained by
removing the tth observation from the data matrices Y, X, and Z. The J2SLS estimator is obtained
as: Ǒ J2SLS D T ǑTSLS � �T� 1� Ǒ �Ð�TSLS.

As can be seen from the current exposition, the difference between J2SLS and the BCTSLS
estimators is the way in which each of them estimates the bias of the TSLS estimator. We discuss
briefly some points of comparison between them. First, while the higher-order properties of the
BCTSLS estimator have not been derived, we conjecture that they are similar to those of J2SLS.9

Indeed, our simulation results and empirical applications suggest there is a close agreement in the
performance of BCTSLS and J2SLS. A second point of comparison is the ease of computation and
flexibility. Both estimators are computationally intensive, since TSLS has to be computed T times
for J2SLS and B times for BCTSLS. For a given choice of B, BCTSLS (J2SLS) will be less
computationally expensive if T > B (T < B). Also, in a given application, T is fixed while B can
be chosen, which renders BCTSLS more flexible than J2SLS. In fact, Andrews and Buchinsky
(2000) have devised a three-step method for choosing the number of bootstrap repetitions to
achieve a given level of accuracy, which can be easily applied in particular applications.10

Other estimators based on the jackknife method (called JIVE1 and JIVE2) have been proposed
by Phillips and Hale (1977) and more recently by Angrist et al. (1999). These estimators have been
recently criticized by Davidson and MacKinnon (2006) and improved by Ackerberg and Devereux
(2003, unpublished manuscript). They differ from J2SLS in that the jackknife is applied to the
first-stage equation to avoid the finite sample bias of IV estimators. In this paper we consider the
JIVEs as developed in Angrist et al. (1999).

3.3. Other Estimators

There are other estimators that do not naturally fall into the two classes outlined above.
Chamberlain and Imbens (2004) propose a random-effects quasi-maximum likelihood estimator

9 For instance, there is evidence that the higher-order properties of jackknife and bootstrap methods are identical in terms
of bias reduction and mean squared error to order T�3/2 in the context of maximum likelihood estimators, such as LIML
(Hahn et al., 2002, unpublished manuscript).
10 Using formulae in Andrews and Buchinsky (2000), for a typical simulated sample in the simulation experiment below,
the percentage deviation of the estimated bias using B D 500 with respect to B D 1 is š5–6% with 95% probability.
This provides support for using B D 500 in the simulations below.
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(REQML) for a model with many instrumental variables in the particular case of one endogenous
regressor. Their main insight is to put a random coefficients structure (centered at zero) on
the statistical relationship between the endogenous regressor and the instrumental variables. The
estimator can be obtained from the maximization of a log-likelihood function that depends on the
typical parameters of the simultaneous equations model plus the variance parameter of the random
coefficients structure of the parameter relating the endogenous variable and instruments.11 The
REQML estimator seems to perform well in situations with many (potentially) weak instrumental
variables compared to TSLS and LIML, but it has not been compared to other estimators as we
do it here.

Finally, other estimators that are conjectured to perform better than TSLS in situations with
weak instruments are generalized empirical likelihood (GEL) estimators. A recent paper by
Guggenberger (2005, unpublished manuscript), however, presents finite-sample evidence indicating
that this is not the case in the linear model under weak instruments. We do not simulate GEL
estimators here, but instead point out below some of Guggenberger’s results.12

4. MONTE CARLO EXPERIMENT

4.1. Experimental Design

The goal of the Monte Carlo experiment is to compare the relative performance of the estimators
presented in the previous section under several model specifications. The data-generating process
(DGP) follows model (1)–(2) in which[

u
v

]
¾ N

([
0
0

]
,

[
1 �uv
Ð 1

])
�8�

ˇ is set to 1, and Z
iid¾ N�0, In�. We explore the effects on the performance of each

estimator of varying the degree of endogeneity: �uv 2 f0.5, 0.9g; the degree of overidentification:
n 2 f1, 5, 30g; and the sample size: T 2 f100, 500g. For the degree of instrument relevance, we
fix the value of the R2 of the first-stage regression (R2

f) and obtain the implied coefficients for the
first-stage regression in (2) following the relationship proposed in Hahn and Hausman (2002b):

R2
f D � 0E[Z0Z]�

� 0E[Z0Z]� C 1
�9�

and then assigning the total explanatory power of the first-stage equation equally among the
n corresponding coefficients: �j D

√
R2
f/[n�1 � R2

f�], j D 1, . . . , n. We consider the following

values for R2
f: R2

f 2 f0.001, 0.01, 0.1g. Note that all the factors we consider impact the finite
sample bias of TSLS in equation (5). We undertake 5000 replications for the models with T D 100
and 1000 for those with T D 500.

11 Chamberlain and Imbens (2004) show that both TSLS and LIML can be obtained as special cases of REQML.
12 A general computational problem with GEL estimators is to find the solution to the saddle point problem necessary to
obtain them. This is even more pronounced under weak instruments, and thus Guggenberger (2005, unpublished) uses a
time-consuming fine grid search over the whole parameter space.
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Furthermore, to evaluate the possible lenient effect of employing normal variates, we also
report results for models with T D 100, five instruments generated log-normally distributed, and
the disturbances in (8) multivariate-t distributed with either 12 or 1 degrees of freedom.13 Finally,
when applying the bootstrap bias-reduction technique, we employ 500 bootstrap replications, which
keeps the experiment manageable and provides an acceptable approximation (see footnote 10).

Some other simulation exercises have compared different subsets of the estimators considered
here. Blomquist and Dahlberg (1999) consider LIML and the JIVEs, concluding that none
of the analyzed estimators performs uniformly better than TSLS. More recently, Hahn et al.
(2004) undertake a simulation study considering a number of �-class estimators, J2SLS, JIVE
and TSLS. They find that J2SLS and the modified LIML estimator by Fuller (1977) have
better performance than the rest of the estimators. A point raised by Hahn et al. (2004) is
that estimators such as LIML and JIVEs exhibit the moment problem, evidenced in the form
of high RMSE and interquartile range, and poor mean estimates. Finally, Guggenberger (2005,
unpublished manuscript) presents finite-sample evidence for generalized empirical likelihood
(GEL) estimators under weak instrument relevance and compares them to TSLS, LIML, and
Fuller’s (1977) estimator, finding that the latter �-class estimators perform typically better than
the GEL estimators.14 Given the similarity of Guggenberger’s experimental design to some of our
model specifications, his results pertaining to the performance of GEL estimators can be compared
to the performance of the alternative estimators presented here.15

4.2. Measures to Evaluate the Performance of the Estimators

One important issue concerns the choice of measures to compare the different estimators. Angrist
et al. (1999), for instance, point out that median point estimates and MAE might be more useful
measures than mean point estimates and RMSE, since many of the IV estimators do not necessarily
have first or second finite sample moments. On the other hand, Hahn et al. (2004) argue that the
absence of finite sample moments is of concern, which is reflected in higher-order risk properties
for those estimators. In fact, it is common to obtain extremely high mean estimates and/or RMSE
for certain estimators in simulations, which most probably results from the absence of finite sample
moments. Under this latter view, measures such as mean estimates, RMSE, and interdecile range
(IDR) may become important in evaluating the finite sample performance of the estimators. To
save space, we discuss only the results on the median point estimates, MAE, IDR, and the coverage
rates of the 95% confidence interval yielded by the estimators.16

4.3. Results

The results from the Monte Carlo experiment are contained in four tables that correspond to each
one of the measures of performance considered and in figures plotting the empirical density of

13 Both sets of variates are standardized to have mean zero and variance one. The other features of the DGP take on
values as before.
14 The GEL estimators considered are the continuous updating, empirical likelihood and exponential tilting estimators.
See Guggenberger (2005, unpublished manuscript) for details.
15 Guggenberger (2005, unpublished manuscript) considers R2

f 2 f0.002, 0.02, 0.2g, �uv 2 f0, 0.5g, n 2 f1, 3, 5, 20g, and
T D 100, with normally distributed variates.
16 The results pertaining to the mean point estimates and RMSE are available upon request. We do point out, however,
that the REQML estimator, which is found to perform well in the results presented here, typically has high mean point
estimates and RMSE.
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selected estimators. We summarize below the simulation results based on our tables and figures;
however, in order to save space, we only present here four figures to illustrate the main points of
our findings and make available the tables and the rest of the figures on the JAE Data Archive at
www.econ.queensu.ca/jae.

Median Point Estimates
In terms of median point estimates, REQML outperforms all other estimators across model
specifications, followed by LIML and BCLIML. Importantly, REQML performs substantially
better than the other estimators when the model has the weakest instrument relevance and highest
degree of endogeneity. Nevertheless, the remaining bias is sometimes quite considerable. This
point illustrates the difficulty associated with obtaining reliable point estimates when instrument
relevance is considerably poor. It is also interesting to note that the bootstrap bias reduction is
successful on the estimators, except in the models with weakest instrument relevance; and that
TSLS is typically outperformed by most of the other estimators in terms of median point estimates.

Median Absolute Error (MAE)
In this respect, FULLER and BCFULL outperform the other estimators, while REQML has
minimum MAE for some of the model specifications where instrument relevance is weakest
and the degree of endogeneity highest. At the other end, the estimators with highest MAE across
model specifications are both JIVEs and to a lesser extent BCLIML.

Interdecile Range (IDR)17

FULLER has the smallest IDR across model specifications, except when the models contain
30 instruments, where TSLS has smallest IDR. However, the empirical densities of these two
estimators (to be discussed below) are concentrated away from the true parameter value. The
estimators with relatively high IDR are JIVE2, JIVE1, REQML, J2SLS and BCLIML. In particular,
REQML typically has highest IDR in the model specifications with weakest instrument relevance
and highest degree of endogeneity.

Coverage Rates18

The estimator that performs best in this regard is the REQML estimator. In particular, it is worth
noting that, even though REQML does not have best coverage rate in all model specifications,
it is the only estimator that yields coverage rates that are consistently closer to the nominal
95% across all model specifications. In contrast, other estimators that perform well in some model
specifications (e.g., JIVE1, BCLIML, JIVE2 and BCTSLS) show considerable under-coverage rates
in other model specifications, sometimes on the order of 0.5 or worse. Finally, it is interesting to
note that the confidence intervals for the bootstrap bias-corrected estimators that use the bootstrap
estimate of the standard error typically result in better coverage rates compared to the uncorrected
estimators, especially for BCLIML, which has best coverage rate in many model specifications.

17 The IDR is the width of the interval defined by the difference between the ninth and first deciles of the values of the
estimator obtained in the replications.
18 The confidence intervals are computed using the asymptotic distribution of the estimators, that is, the estimate plus
or minus 1.96 times the asymptotic standard error. For the bootstrap bias-corrected estimators (BCTSLS, BCLIML, and
BCFULL), the confidence intervals are constructed using the bootstrap estimate of the standard error, which results in
better coverage rates. For the REQML confidence interval, we follow Chamberlain and Imbens (2004) and find upper and
lower values such that the concentrated log-likelihood function differs from its maximum value by G�1�0.95�/2, where
G is a chi-squared distribution with one degree of freedom.
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Performance Across DGP Features
As expected, all measures of performance for the estimators improve as the degree of instrument
relevance increases. In fact, in most of the cases with R2

f D 0.1 the majority of the estimators are
median unbiased and have acceptable coverage rates, with the exception of TSLS, FULLER and
BCFULL when n D 30.

As the degree of overidentification increases, the performance of the estimators typically
deteriorates, especially of those closely related to TSLS. This is particularly true for median
point estimates and coverage rates; and in model specifications with high degree of endogeneity
and values of R2

f of 0.01 or 0.1. Nevertheless, the following estimators are more robust to
a high degree of overidentification: LIML, FULLER, BCLIML, BCFULL, and REQML. This
evidence is consistent with the recent theoretical results of Hansen et al. (2005, unpublished
manuscript), who argue that using a large number of instruments improves efficiency but results in
inaccurate statistical inference. They suggest the use of FULLER or LIML and propose standard
errors based on Bekker’s (1994) asymptotics to improve inference in cases of high degree of
overidentification.19

The performance (except in terms of IDR) of most of the estimators deteriorates as the degree of
endogeneity increases across model specifications, although it typically does not make much of a
difference in the specifications with highest instrument relevance. When the sample size increases
from 100 to 500 there is a marked improvement in the performance of the estimators, but this trend
does not totally hold for specifications with the weakest instrument relevance, in which clearly
the sample size does not completely offset the weak relevance.

Finally, the models that depart from normality yield further insights. When the distur-
bances are generated multivariate t with 12 degrees of freedom the results outlined above
hold: REQML and BCLIML dominate the other estimators in terms of median point esti-
mates, FULLER dominates in terms of MAE and IDR, and REQML yields good cover-
age rates across specifications. As expected, however, when the disturbances depart further
from normality (multivariate t with 1 degree of freedom) all measures of performance for all
estimators deteriorate substantially. Importantly, REQML disproportionately deteriorates under
these models, suggesting its good performance may not hold under strong departures from
normality.

Lessons from the Empirical Distribution of the Estimators

Figures 1–4 plot the density of selected estimators in four different model specifications, which are
illustrative of the full set of plots for all model specifications.20 Figure 1 corresponds to a model
with the following specifications: R2

f D 0.001, �uv D 0.9, n D 30, T D 100; which is one of the
most difficult estimation scenarios considered. Consequently, the density of all the estimators is
centered away and to the right of the true value (ˇ0 D 1), which illustrates the difficulty of obtaining
reliable point estimates and inference under these circumstances. However, a few estimators clearly
perform better in relative terms: REQML is the estimator that puts highest mass on the true value
of the parameter, followed by LIML and BCLIML. All other estimators put essentially zero mass
on the true value. Figure 2 corresponds to a model similar to that in Figure 1 except that instrument
relevance is now higher at R2

f D 0.01. Despite this higher instrument relevance, the performance

19 We thank an anonymous referee for suggesting this point.
20 The density estimates are based on a Gaussian kernel using Silverman’s rule of thumb bandwidth.

Copyright  2007 John Wiley & Sons, Ltd. J. Appl. Econ. 22: 677–694 (2007)
DOI: 10.1002/jae



686 A. FLORES-LAGUNES

of the estimators is very similar. This illustrates the importance of other factors besides instrument
relevance, such as the high degree of overidentification and the degree of endogeneity, which
affect the properties of IV estimators.

Figure 3 corresponds to a model with the same specification as before but now highest instrument

Figure 1. Empirical density of selected estimators for model with Rf2 D 0.001, �uv D 0.9, n D 30, T D 100

Figure 2. Empirical density of selected estimators for model with Rf2 D 0.01, �uv D 0.9, n D 30, T D 100
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Figure 3. Empirical density of selected estimators for model with Rf2 D 0.1, �uv D 0.9, n D 30, T D 100

Figure 4. Empirical density of selected estimators for model with Rf2 D 0.1, �uv D 0.9, n D 5, T D 100

relevance (R2
f D 0.1), while Figure 4 is based on a model as Figure 3 but now with n D 5 (smaller

degree of overidentification). A number of points are worth mentioning about these two figures.
First, in Figure 3 the densities of REQML, LIML and BCLIML are very similar and almost
centered at the true value. Second, in both figures the rest of the estimators improve with respect
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to the previous two models in Figures 1 and 2, but are still centered far from the true value. Third,
FULLER and BCFULL perform relatively better in Figure 3 than the rest of the estimators based
on TSLS, which is consistent with the results in Hansen et al. (2005, unpublished manuscript) since
this advantage is not present in Figure 4, where the degree of overidentification is much lower.
Fourth, the bootstrap bias correction for TSLS and FULLER recenters the density of the estimators
towards the true value, but not nearly enough. This property of the bootstrap bias correction is
present in most of the model specifications, and we point out the amount of correction decreases
as the instrument relevance decreases, which is similar to the findings in Moreira et al.’s (2004,
unpublished manuscript) simulations for bootstrap size adjustments of t-statistics under weak
instruments.

Summary
The results from the simulation experiment illustrate the properties of alternative IV estimators
under several model specifications. First of all, our results make evident the difficulty of obtaining
reliable point estimates when the model is weakly identified, in particular if that is coupled
with high degree of overidentification and/or endogeneity. Nevertheless, our results point towards
REQML as an estimator with less biased median point estimates, satisfactory MAE and IDR, and
acceptable coverage rates across model specifications, relative to alternative IV estimators. Other
estimators worth considering are the LIML and BCLIML with bootstrapped standard errors in the
construction of confidence intervals.

5. EMPIRICAL APPLICATIONS

5.1. Returns to Schooling

In an influential paper, Angrist and Krueger (1991) estimate the returns to schooling using quarter
of birth as an instrument for schooling in a log-wage equation. This study has become a benchmark
for testing methodologies concerning IV estimation in the presence of weak instrumental variables.
The data consists of 329,509 men born in the 1930s, taken from the 1980 census. Among the
various specifications estimated by Angrist and Krueger (1991), we will concentrate on two of
them. The first uses 30 instruments: 3 quarter of birth dummies and 27 dummies resulting from
interacting quarter of birth with 9 year of birth dummies. The second specification uses 180
instruments: the same instruments as in the 30 instrument case plus 150 dummies obtained by
interacting quarter of birth with 50 state of birth dummy variables.21 Estimates of the returns to
schooling coefficient using OLS, TSLS, LIML, JIVE1, JIVE2 and B2SLS are reproduced from
Angrist et al. (1999) and Donald and Newey (2001). We further estimate both specifications using
FULLER, BCTSLS, BCLIML, BCFULL and J2SLS, while the REQML estimate is taken from
Chamberlain and Imbens (2004). The estimates are presented in Table I.22

On both specifications, the OLS estimator is notably smaller in magnitude than all IV estimators,
while TSLS is smallest in magnitude among all IV estimators and closest to the OLS estimator,

21 The first secification includes 9 year of birth dummy variables as included exogenous variables, while the second also
includes 50 state of birth dummy variables.
22 Chamberlain and Imbens (2004) employ a different specification of the AK data which includes 504 instruments and
only individuals born in either the first or fourth quarters for a T D 162, 515. They find, as we do, that TSLS, LIML and
REQML yield very similar point estimates and confidence intervals.
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which is consistent with the direction of TSLS’s finite sample bias (under the assumption of
orthogonal instruments) and with the sensitivity of TSLS to the degree of overidentification, since
such difference is larger in the 180-instrument case. Interestingly, most other IV estimators are
very similar in magnitude (within one standard deviation of each other), and also the confidence
intervals of the estimators are all of roughly the same length. In summary, it seems that in this
empirical application there are no substantial finite-sample bias for the IV estimators (except
perhaps TSLS), which may be due to the large sample sizes offsetting the effects of the low R2

f.

5.2. Elasticity of Intertemporal Substitution

In a recent paper, Yogo (2004) analyzes the problem of estimating the elasticity of intertemporal
substitution (EIS) using the linearized Euler equation. In this literature, weak instruments have
been blamed for the empirical puzzle that using conventional IV methods the estimated EIS is
statistically significantly less than 1, while its reciprocal, obtained using a ‘reverse regression’, is
not statistically different from 1. Yogo (2004) illustrates how undertaking inference with methods
robust to weak instruments helps solve this empirical puzzle for 11 countries used in his analysis.
Besides employing tests for weak instruments and robust methods for undertaking statistical
inference on the parameter of interest, he presents LIML and FULLER as alternative estimators
to TSLS.

In this subsection, we follow one of the specifications in Yogo (2004) using quarterly data from
1947.3 to 1998.4 for the United States and compare all the estimators considered in the present
paper. The estimated models correspond to the following equations:23

ctC1 D � C  rf,tC1 C 	tC1 �10�

and the ‘reverse regression’:

rf,tC1 D 
C �1/ �ctC1 C �tC1 �11�

where  is the EIS, ctC1 is consumption growth at time t C 1, rf,tC1 is the real return on a risk-
free asset, � and 
 are constants, and 	tC1 and �tC1 are the innovations to consumption growth and
asset return, respectively. Since the explanatory variable in each of the equations is correlated with
the corresponding innovation, the following instruments are used when employing IV methods:
the twice-lagged nominal interest rate, inflation, consumption growth, and log dividend–price
ratio.

Yogo (2004) documents, using the test for weak instruments in Stock and Yogo (2004), that
these are weak instruments for ctC1 but apparently not for rf,tC1. This appears to be the case
given the parameter estimates for each equation presented in columns 3 and 4 of Table I: while
all the IV estimates for  are similar in magnitude (within one standard deviation from each
other), those for 1/ are very different, especially LIML, BCLIML, and REQML. In particular,
it is interesting to note the behavior of their respective confidence intervals: for most estimators,
they are misleadingly tight, except again for LIML, BCLIML and REQML, while notably the
confidence intervals for REQML and BCLIML do not include 1, which is consistent with the

23 See Yogo (2004) and references therein for the derivation of these two equations from the linearized Euler equation,
the importance that the EIS has in macroeconomics and finance, and a description of the data used.
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conclusion in Yogo (2004) that weak instruments explain the empirical puzzle in the estimation
of EIS.

5.3. Labor Supply Functions

Blomquist and Dahlberg (1999) examine the performance of some IV methods in estimating
linearized labor supply functions when the budget constraints are nonlinear, following Blomquist
(1996). Hours of work are generated with actual data on nonlinear budget constraints of 602
Swedish males.24 The estimated equation is

hi D ˛C ˇwi C �yi C �1Ai C �2NCi C εi

where hi are hours worked, wi is the wage, yi is non-labor income, Ai is age and NCi is the number
of children. The corresponding literature has recognized that both wi and yi are endogenous.
Commonly used instruments in this framework are socio-demographic variables, which appear to
be weak instruments (Blomquist and Dahlberg, 1999): dummies for the educational level of the
individual, his wife, father and mother, and dummies for the type of region where the individual
lives. In total, 29 instruments are used.

The results for this application are presented in columns 5 (for ˇ) and 6 (for �) of Table I.25 The
results again show some of the patterns evident in the simulations and the previous applications,
which we summarize here. First, TSLS is typically closer to OLS (which is the direction of the
finite-sample bias) than most of the other estimators. Second, among the bootstrap bias-corrected
estimators, BCTSLS is very close to TSLS, while BCLIML and BCFULL are further away from
OLS than TSLS (which holds across the three empirical applications). Finally, the width of the
confidence interval of TSLS is typically smaller than those of the other estimators, in particular
LIML, BCLIML and BCFULL.

The last column in Table I shows computation times for the alternative IV estimators in this
application.26 For most IV estimators the computation time is not an issue, except for those
employing bias-reduction techniques, for which the computation time is close to that of their
corresponding uncorrected counterpart (TSLS, LIML or FULLER) multiplied by the number of
bootstrap replications (B) or the sample size (T) in the case of the jackknife. The computation
time for REQML in this application is about 60% higher than LIML.27

5.4. Summary of Applications

Consistent with the simulation results, when appropriate relevance of the instruments is doubt-
ful, some of the alternative IV estimators (in particular REQML, LIML and BCLIML) yield
substantially different point estimates and wider confidence intervals than the other estimators.

24 The data and method to construct hours of work are described in Blomquist and Dahlberg (1999) and more thoroughly
in Blomquist (1996).
25 The REQML estimator was developed for the case of one endogenous variable, and thus cannot be computed for this
application, which contains two endogenous regressors.
26 Computation times are reported in seconds on a Pentium M processor at 1.6 GHz with 496 MB RAM. For REQML
we assume only one endogenous variable (wage) since the method does not allow more than one endogenous variable.
27 We also note that, in our experience, a computational burden in REQML arises when obtaining the confidence intervals
in the way proposed by Chamberlain and Imbens (2004) (see footnote 18), especially when the instruments are very weak.
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692 A. FLORES-LAGUNES

Conversely, when the relevance of the instruments appears to be appropriate (especially relative
to the sample size), alternative IV point estimates are within one standard deviation of each other
and their confidence intervals are similar.

6. CONCLUSIONS

This paper presents finite sample evidence (using simulations and three empirical applications) of
a number of IV estimators to estimate linear models, with special emphasis on weak identification;
and explores the application of the bootstrap bias-reduction technique to some of these IV
estimators.

The finite sample evidence we present indicates that the random-effects quasi-maximum likeli-
hood (REQML) estimator of Chamberlain and Imbens (2004) outperforms alternative estimators
in terms of median point estimates and coverage rates, followed by LIML and the bootstrap bias-
corrected version of LIML. However, our results also confirm that reliable point estimates are
very difficult to obtain in models with weak identification, especially when that is coupled with
large overidentification and high degree of endogeneity.

In terms of the application of the bootstrap bias reduction, the correction is successful for TSLS
and FULLER in recentering the density of the estimators towards the true value. However, this
correction is not typically enough to obtain estimators with better overall finite sample properties,
and, importantly, the extent of the correction decreases as the instrument relevance decreases.
For LIML, the bootstrap bias correction does not make much of a difference; however, using
bootstrapped standard errors in the construction of confidence intervals improves the coverage
rates of BCLIML or LIML.

In addition, we present three different empirical applications that illustrate the relative perfor-
mance of the different methods in practice. Consistent with the simulation results, when appropriate
relevance of the instruments is doubtful, some of the alternative IV estimators (in particular
REQML, LIML and BCLIML) yield substantially different point estimates and wider confidence
intervals than the other estimators. Conversely, when the relevance of the instruments appears to
be appropriate, alternative IV point estimates are within one standard deviation of each other and
their confidence intervals are similar.

ACKNOWLEDGEMENTS

Detailed comments and suggestions by the referees and one co-editor are gratefully acknowledged.
Comments by Stephen R. Cosslett, Carlos A. Flores, John Ham, Kei Hirano, Stefan Krause,
Audrey Light, Lawrence Marsh, Nathan Porter, James Stock, Bruce Weinberg, and participants at
the 2001 Econometric Society Winter Meetings are also gratefully acknowledged. Thanks also
to Matz Dahlberg, Alan Krueger, and Motohiro Yogo for making their data available. Very
competent research assistance was provided by Alex Shcherbakov. Remaining errors are my
own.

REFERENCES

Andrews DWK, Buchinsky M. 2000. A three-step method for choosing the number of bootstrap repetitions.
Econometrica 68: 23–51.

Copyright  2007 John Wiley & Sons, Ltd. J. Appl. Econ. 22: 677–694 (2007)
DOI: 10.1002/jae



IV ESTIMATORS UNDER WEAK INSTRUMENTS 693

Angrist JD, Krueger AB. 1991. Does compulsory school attendance affect schooling and earnings? Quarterly
Journal of Economics 106: 979–1014.

Angrist JD, Imbens G, Krueger AB. 1999. Jackknife instrumental variables estimation. Journal of Applied
Econometrics 14: 57–67.

Bekker PA. 1994. Alternative approximations to the distributions of instrumental variables estimators.
Econometrica 62: 657–682.

Blomquist S. 1996. Estimation methods for male labor supply functions: how to take account of nonlinear
taxes. Journal of Econometrics 70: 383–405.

Blomquist S, Dahlberg M. 1999. Small sample properties of LIML and Jackknife IV estimators: experiments
with weak instruments. Journal of Applied Econometrics 14: 69–88.

Bound J, Jaeger DA, Baker RM. 1995. Problems with instrumental variables estimation when the correlation
between the instruments and the endogenous explanatory variable is weak. Journal of the American
Statistical Association 90: 443–450.

Chamberlain G, Imbens G. 2004. Random effects estimators with many instrumental variables. Econometrica
72: 295–306.

Davidson R, MacKinnon JG. 2006. The case against JIVE (with discussion). Journal of Applied Econometrics
21: 827–833.

Donald SG, Newey W. 2001. Choosing the number of instruments. Econometrica 69: 1161–1191.
Freedman DA. 1984. On bootstrapping two-stage least-squares estimates in stationary linear models. Annals

of Statistics 12: 827–842.
Fuller WA. 1977. Some properties of a modification of the limited information estimator. Econometrica 45:

939–954.
Hahn J, Hausman J. 2002a. Notes on bias in estimators for simultaneous equations models. Economics Letters

75: 237–241.
Hahn J, Hausman J. 2002b. A new specification test for the validity of instrumental variables. Econometrica

70: 163–189.
Hahn J, Hausman J. 2003. Weak instruments: diagnosis and cures in empirical econometrics. American

Economic Review Papers and Proceedings 93: 118–125.
Hahn J, Hausman J, Kuersteiner G. 2004. Estimation with weak instruments: accuracy of higher order bias

and MSE approximations. Econometrics Journal 7: 272–306.
Hall P. 1992. The Bootstrap and Edgeworth Expansion. Springer: New York.
Hall A, Rudebusch GD, Wilcox DW. 1996. Judging instrument relevance in instrumental variables estima-

tion. International Economic Review 37: 283–298.
Kleibergen F. 2002. Pivotal statistics for testing structural parameters in instrumental variables regression.

Econometrica 70: 1781–1803.
Maddala GS, Jeong J. 1992. On the exact small sample distribution of the instrumental variable estimator.

Econometrica 60: 181–183.
Mariano RS. 2001. Simultaneous equation model estimators: statistical properties and practical implications.

In A Companion to Theoretical Econometrics, Baltagi BH (ed.). Blackwell: Malden, MA.
Moreira M. 2003. A conditional likelihood ratio test for structural models. Econometrica 71: 1027–1048.
Nagar AL. 1959. The bias and moment matrix of the general k-class estimators of the parameters in

simultaneous equations. Econometrica 27: 575–595.
Nelson CR, Startz R. 1990a. Some further results on the exact small sample properties of the instrumental

variable estimator. Econometrica 58: 967–976.
Nelson CR, Startz R. 1990b. The Distribution of the instrumental variables estimator and its t-ratio when the

instrument is a poor one. Journal of Business 63: 125–140.
Phillips GDA, Hale C. 1977. The bias of instrumental variable estimators of simultaneous equation systems.

International Economic Review 18: 219–228.
Rothenberg TJ. 1983. Asymptotic properties of some estimators in structural models. In Studies in Economet-

rics Time Series, and Multivariate Statistics, Karlin S, Amemiya T, Goodman LA (eds). Academic Press:
New York.

Shao J, Tu D. 1995. The Jackknife and Bootstrap. Springer: New York.
Shea J. 1997. Instrument Relevance in Multivariate Linear Models: A Simple Measure. Review of Economics

and Statistics 79: 348–352.

Copyright  2007 John Wiley & Sons, Ltd. J. Appl. Econ. 22: 677–694 (2007)
DOI: 10.1002/jae



694 A. FLORES-LAGUNES

Staiger D, Stock JH. 1997. Instrumental Variables Regression with Weak Instruments. Econometrica 65:
557–586.

Stock JH, Wright JH, Yogo M. 2002. A survey of weak instruments and weak identification in generalized
method of moments. Journal of Business and Economic Statistics 20: 518–529.

Stock JH, Yogo M. 2004. Testing for weak instruments in linear IV regression. In Identification and Inference
in Econometric Models: Essays in Honor of Thomas J. Rothenberg, Andrews DWK, Stock JH (eds).
Cambridge University Press: Cambridge, UK.

Wang J, Zivot E. 1998. Inference on structural parameters in instrumental variables regression with weak
instruments. Econometrica 66: 1389–1404.

Yogo M. 2004. Estimating the elasticity of intertemporal substitution when instruments are weak. Review of
Economics and Statistics 86: 797–810.

Zivot E, Startz R, Nelson CR. 1998. Valid confidence intervals and inference in the presence of weak
instruments. International Economic Review 39: 1119–1144.

Copyright  2007 John Wiley & Sons, Ltd. J. Appl. Econ. 22: 677–694 (2007)
DOI: 10.1002/jae


